Goodin, Burel; Kindler, Lindsay L.; Caudle, Robert M.; Edwards, Robert R.; Gravenstein, Nikolaus; Riley, Joseph L.; Fillingim, Roger B.
2013-01-01
The current study tested the hypothesis that conditioned pain modulation is mediated by the release of endogenous opioids with a placebo-controlled (sugar pill) study of naltrexone (50 mg) in 33 healthy volunteers over two counter-balanced sessions. Pain modulation consisted of rating of heat pain (palm) during concurrent cold water immersion (foot). Compared to baseline heat pain ratings, concurrent foot immersion lowered pain intensity ratings, which suggests an inhibitory effect, was reduced with naltrexone, suggesting at least partial dependence of inhibition on endogenous opioids. An exploratory analysis revealed that individual differences in catastrophizing moderated the effects of naltrexone; endogenous opioid blockade abolished modulation in subjects lower in catastrophizing while modulation was unaffected by naltrexone among high catastrophizers. The results suggest a role of endogenous opioids in endogenous analgesia, but hint that multiple systems might contribute to conditioned pain modulation, and that these systems might be differentially activated as a function of individual differences in responses to pain. PMID:22534819
Endogenous pain modulation in chronic orofacial pain: a systematic review and meta-analysis.
Moana-Filho, Estephan J; Herrero Babiloni, Alberto; Theis-Mahon, Nicole R
2018-06-15
Abnormal endogenous pain modulation was suggested as a potential mechanism for chronic pain, ie, increased pain facilitation and/or impaired pain inhibition underlying symptoms manifestation. Endogenous pain modulation function can be tested using psychophysical methods such as temporal summation of pain (TSP) and conditioned pain modulation (CPM), which assess pain facilitation and inhibition, respectively. Several studies have investigated endogenous pain modulation function in patients with nonparoxysmal orofacial pain (OFP) and reported mixed results. This study aimed to provide, through a qualitative and quantitative synthesis of the available literature, overall estimates for TSP/CPM responses in patients with OFP relative to controls. MEDLINE, Embase, and the Cochrane databases were searched, and references were screened independently by 2 raters. Twenty-six studies were included for qualitative review, and 22 studies were included for meta-analysis. Traditional meta-analysis and robust variance estimation were used to synthesize overall estimates for standardized mean difference. The overall standardized estimate for TSP was 0.30 (95% confidence interval: 0.11-0.49; P = 0.002), with moderate between-study heterogeneity (Q [df = 17] = 41.8, P = 0.001; I = 70.2%). Conditioned pain modulation's estimated overall effect size was large but above the significance threshold (estimate = 1.36; 95% confidence interval: -0.09 to 2.81; P = 0.066), with very large heterogeneity (Q [df = 8] = 108.3, P < 0.001; I = 98.0%). Sensitivity analyses did not affect the overall estimate for TSP; for CPM, the overall estimate became significant if specific random-effect models were used or if the most influential study was removed. Publication bias was not present for TSP studies, whereas it substantially influenced CPM's overall estimate. These results suggest increased pain facilitation and trend for pain inhibition impairment in patients with nonparoxysmal OFP.
Goodin, Burel R.; Glover, Toni L.; Sotolongo, Adriana; King, Christopher D.; Sibille, Kimberly T.; Herbert, Matthew S.; Cruz-Almeida, Yenisel; Sanden, Shelley H.; Staud, Roland; Redden, David T.; Bradley, Laurence A.; Fillingim, Roger B.
2012-01-01
Dispositional optimism has been shown to beneficially influence various experimental and clinical pain experiences. One possibility that may account for decreased pain sensitivity among individuals who report greater dispositional optimism is less use of maladaptive coping strategies like pain catastrophizing, a negative cognitive/affective response to pain. An association between dispositional optimism and conditioned pain modulation (CPM), a measure of endogenous pain inhibition, has previously been reported. However, it remains to be determined whether dispositional optimism is also associated with temporal summation (TS), a measure of endogenous pain facilitation. The current study examined whether pain catastrophizing mediated the association between dispositional optimism and TS among 140 older, community-dwelling adults with symptomatic knee osteoarthritis. Individuals completed measures of dispositional optimism and pain catastrophizing. TS was then assessed using a tailored heat pain stimulus on the forearm. Greater dispositional optimism was significantly related to lower levels of pain catastrophizing and TS. Bootstrapped confidence intervals revealed that less pain catastrophizing was a significant mediator of the relation between greater dispositional optimism and diminished TS. These findings support the primary role of personality characteristics such as dispositional optimism in the modulation of pain outcomes by abatement of endogenous pain facilitation and less use of catastrophizing. PMID:23218934
Goodin, Burel R; Glover, Toni L; Sotolongo, Adriana; King, Christopher D; Sibille, Kimberly T; Herbert, Matthew S; Cruz-Almeida, Yenisel; Sanden, Shelley H; Staud, Roland; Redden, David T; Bradley, Laurence A; Fillingim, Roger B
2013-02-01
Dispositional optimism has been shown to beneficially influence various experimental and clinical pain experiences. One possibility that may account for decreased pain sensitivity among individuals who report greater dispositional optimism is less use of maladaptive coping strategies such as pain catastrophizing, a negative cognitive/affective response to pain. An association between dispositional optimism and conditioned pain modulation, a measure of endogenous pain inhibition, has previously been reported. However, it remains to be determined whether dispositional optimism is also associated with temporal summation (TS), a measure of endogenous pain facilitation. The current study examined whether pain catastrophizing mediated the association between dispositional optimism and TS among 140 older, community-dwelling adults with symptomatic knee osteoarthritis. Individuals completed measures of dispositional optimism and pain catastrophizing. TS was then assessed using a tailored heat pain stimulus on the forearm. Greater dispositional optimism was significantly related to lower levels of pain catastrophizing and TS. Bootstrapped confidence intervals revealed that less pain catastrophizing was a significant mediator of the relation between greater dispositional optimism and diminished TS. These findings support the primary role of personality characteristics such as dispositional optimism in the modulation of pain outcomes by abatement of endogenous pain facilitation and less use of catastrophizing. Results from this study further support the body of evidence that attests to the beneficial effects of positive personality traits on pain sensitivity and pain processing. Further, this study identified diminished pain catastrophizing as an important mechanism explaining the inverse relation between dispositional optimism and endogenous pain facilitation. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Endogenous inhibition of pain and spinal nociception in women with premenstrual dysphoric disorder
Palit, Shreela; Bartley, Emily J; Kuhn, Bethany L; Kerr, Kara L; DelVentura, Jennifer L; Terry, Ellen L; Rhudy, Jamie L
2016-01-01
Purpose Premenstrual dysphoric disorder (PMDD) is characterized by severe affective and physical symptoms, such as increased pain, during the late-luteal phase of the menstrual cycle. The mechanisms underlying hyperalgesia in women with PMDD have yet to be identified, and supraspinal pain modulation has yet to be examined in this population. The present study assessed endogenous pain inhibitory processing by examining conditioned pain modulation (CPM, a painful conditioning stimulus inhibiting pain evoked by a test stimulus at a distal body site) of pain and the nociceptive flexion reflex (NFR, a spinally-mediated withdrawal reflex) during the mid-follicular, ovulatory, and late-luteal phases of the menstrual cycle. Methods Participants were regularly-cycling women (14 without PMDD; 14 with PMDD). CPM was assessed by delivering electrocutaneous test stimuli to the sural nerve before, during, and after a painful conditioning ischemia task. Participants rated their pain to electrocutaneous stimuli, and NFR magnitudes were measured. A linear mixed model analysis was used to assess the influence of group and menstrual phase on CPM. Results Compared with controls, women with PMDD experienced greater pain during the late-luteal phase and enhanced spinal nociception during the ovulation phase, both of which were independent of CPM. Both groups showed CPM inhibition of pain that did not differ by menstrual phase. Only women with PMDD evidenced CPM inhibition of NFR. Conclusion Endogenous modulation of pain and spinal nociception is not disrupted in women with PMDD. Additionally, greater NFR magnitudes during ovulation in PMDD may be due to tonically-engaged descending mechanisms that facilitate spinal nociception, leading to enhanced pain during the premenstrual phase. PMID:26929663
Endogenous analgesic effect of pregabalin: A double-blind and randomized controlled trial.
Sugimine, S; Saito, S; Araki, T; Yamamoto, K; Obata, H
2017-07-01
Conditioned pain modulation (CPM) is widely used to measure endogenous analgesia, and a recent study indicated that drugs that act on endogenous analgesia are more effective in individuals with lower CPM. Recent animal studies have indicated that pregabalin activates endogenous analgesia by stimulating the descending pain inhibitory system. The present study examined whether the analgesic effect of pregabalin is greater in individuals with lower original endogenous analgesia using CPM. Fifty-nine healthy subjects were randomly assigned to either a pregabalin group or a placebo group, and 50 of them completed the study. CPM was measured before and after pregabalin or placebo administration. The correlation of initial CPM to change in CPM was compared between the pregabalin and placebo groups. Initial CPM was significantly correlated with the change in CPM in the pregabalin group (r = -0.73, p < 0.0001) but not in the placebo group (p = 0.56) (difference in correlation coefficients between groups; p = 0.004). Furthermore, the initial CPM significantly affected the change in CPM in the pregabalin group but not in the placebo group (pregabalin group: adj R 2 = 0.51, p < 0.001, y = -0.54x + 2.98; placebo group: p = 0.56, significant difference in regression slopes; p = 0.015). These results indicate that pregabalin has a higher endogenous analgesic effect in individuals with lower original endogenous analgesia. The analgesic effect of pregabalin depends on the original endogenous analgesia status. Its effect on conditioned pain modulation (CPM) was stronger for subjects with lower original endogenous analgesia, suggesting that the mechanism of pregabalin involves the improvement of endogenous analgesia. © 2017 European Pain Federation - EFIC®.
Conditioned pain modulation: a predictor for development and treatment of neuropathic pain.
Granovsky, Yelena
2013-09-01
Psychophysical evaluation of endogenous pain inhibition via conditioned pain modulation (CPM) represents a new generation of laboratory tests for pain assessment. In this review we discuss recent findings on CPM in neuropathic pain and refer to psychophysical, neurophysiological, and methodological aspects of its clinical implications. Typically, chronic neuropathic pain patients express less efficient CPM, to the extent that incidence of acquiring neuropathic pain (e.g. post-surgery) and its intensity can be predicted by a pre-surgery CPM assessment. Moreover, pre-treatment CPM evaluation may assist in the correct choice of serotonin-noradrenalin reuptake inhibitor analgesic agents for individual patients. Evaluation of pain modulation capabilities can serve as a step forward in individualizing pain medicine.
Physical activity behavior predicts endogenous pain modulation in older adults.
Naugle, Kelly M; Ohlman, Thomas; Naugle, Keith E; Riley, Zachary A; Keith, NiCole R
2017-03-01
Older adults compared with younger adults are characterized by greater endogenous pain facilitation and a reduced capacity to endogenously inhibit pain, potentially placing them at a greater risk for chronic pain. Previous research suggests that higher levels of self-reported physical activity are associated with more effective pain inhibition and less pain facilitation on quantitative sensory tests in healthy adults. However, no studies have directly tested the relationship between physical activity behavior and pain modulatory function in older adults. This study examined whether objective measures of physical activity behavior cross-sectionally predicted pain inhibitory function on the conditioned pain modulation (CPM) test and pain facilitation on the temporal summation (TS) test in healthy older adults. Fifty-one older adults wore an accelerometer on the hip for 7 days and completed the CPM and TS tests. Measures of sedentary time, light physical activity (LPA), and moderate to vigorous physical activity (MVPA) were obtained from the accelerometer. Hierarchical linear regressions were conducted to determine the relationship of TS and CPM with levels of physical activity, while controlling for demographic, psychological, and test variables. The results indicated that sedentary time and LPA significantly predicted pain inhibitory function on the CPM test, with less sedentary time and greater LPA per day associated with greater pain inhibitory capacity. Additionally, MVPA predicted pain facilitation on the TS test, with greater MVPA associated with less TS of pain. These results suggest that different types of physical activity behavior may differentially impact pain inhibitory and facilitatory processes in older adults.
Mindfulness Meditation Modulates Pain Through Endogenous Opioids.
Sharon, Haggai; Maron-Katz, Adi; Ben Simon, Eti; Flusser, Yuval; Hendler, Talma; Tarrasch, Ricardo; Brill, Silviu
2016-07-01
Recent evidence supports the beneficial effects of mindfulness meditation on pain. However, the neural mechanisms underlying this effect remain poorly understood. We used an opioid blocker to examine whether mindfulness meditation-induced analgesia involves endogenous opioids. Fifteen healthy experienced mindfulness meditation practitioners participated in a double-blind, randomized, placebo-controlled, crossover study. Participants rated the pain and unpleasantness of a cold stimulus prior to and after a mindfulness meditation session. Participants were then randomized to receive either intravenous naloxone or saline, after which they meditated again, and rated the same stimulus. A (3) × (2) repeated-measurements analysis of variance revealed a significant time effect for pain and unpleasantness scores (both P <.001) as well as a significant condition effect for pain and unpleasantness (both P <.2). Post hoc comparisons revealed that pain and unpleasantness scores were significantly reduced after natural mindfulness meditation and after placebo, but not after naloxone. Furthermore, there was a positive correlation between the pain scores following naloxone vs placebo and participants' mindfulness meditation experience. These findings show, for the first time, that meditation involves endogenous opioid pathways, mediating its analgesic effect and growing resilient with increasing practice to external suggestion. This finding could hold promising therapeutic implications and further elucidate the fine mechanisms involved in human pain modulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.
Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna
2014-01-01
The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.
The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress.
Corcoran, Louise; Roche, Michelle; Finn, David P
2015-01-01
Stress has a complex, bidirectional modulatory influence on pain. Stress may either reduce (stress-induced analgesia) or exacerbate (stress-induced hyperalgesia) pain depending on the nature, duration, and intensity of the stressor. The endogenous cannabinoid (endocannabinoid) system is present throughout the neuroanatomical pathways that mediate and modulate responses to painful stimuli. The specific role of the endocannabinoid system in the brain in pain and the modulation of pain by stress is reviewed herein. We first provide a brief overview of the endocannabinoid system, followed by a review of the evidence that the brain's endocannabinoid system modulates pain. We provide a comprehensive evaluation of the role of the endocannabinoid system supraspinally, and particularly in the rostral ventromedial medulla, periaqueductal gray, amygdala, and prefrontal cortex, in pain, stress-induced analgesia, and stress-induced hyperalgesia. Increased understanding of endocannabinoid-mediated regulation of pain and its modulation by stress will inform the development of novel therapeutic approaches for pain and its comorbidity with stress-related disorders. © 2015 Elsevier Inc. All rights reserved.
King, Christopher D.; Wong, Fong; Currie, Tom; Mauderli, Andre P.; Fillingim, Roger B.; Riley, Joseph L.
2013-01-01
Females with Irritable Bowel Syndrome (IBS) and Temporomandibular Disorder (TMD) are characterized by enhanced sensitivity to experimental pain. One possible explanation for this observation is deficiencies in pain modulation systems like Diffuse Noxious Inhibitory Control (DNIC). In a few studies that used brief stimuli, chronic pain patients demonstrate reduced DNIC. The purpose of this study was to compare sensitivity to prolonged heat pain and the efficacy of DNIC in controls to IBS and TMD patients. Heat pain (experimental stimulus; 44.0-49.0°C), which was applied to left palm, was continuously rated during three 30-second trials across three separate testing sessions under the following conditions: without a conditioning stimulus; during concurrent immersion of the right foot in a 23.0°C (control); and during noxious cold immersion in a (DNIC; 8.0-16.0°C) water bath. Compared to controls, IBS and TMD patients reported increased sensitivity to heat pain and failed to demonstrate pain inhibition due to DNIC. Controls showed a significant reduction in pain during the DNIC session. These findings support the idea that chronic pain patients are not only more pain sensitive and demonstrate reduced pain inhibition by pain, possibly because of dysfunction of endogenous pain inhibition systems. PMID:19278784
Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva
2017-01-01
Abstract Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH. PMID:28282362
Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva
2017-07-01
Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.
Flood, Andrew; Waddington, Gordon; Cathcart, Stuart
2017-01-01
The aim of the current study was to examine the relationship between pain modulatory capacity and endurance exercise performance. Twenty-seven recreationally active males between 18 and 35 years of age participated in the study. Pain modulation was assessed by examining the inhibitory effect of a noxious conditioning stimulus (cuff occlusion) on the perceived intensity of a second noxious stimulus (pressure pain threshold). Participants completed two, maximal voluntary contractions followed by a submaximal endurance time task. Both performance tasks involved an isometric contraction of the non-dominant leg. The main analysis uncovered a correlation between pain modulatory capacity and performance on the endurance time task (r = -.425, p = .027), such that those with elevated pain modulation produced longer endurance times. These findings are the first to demonstrate the relationship between pain modulation responses and endurance exercise performance.
Influence of oral contraceptives on endogenous pain control in healthy women.
Rezaii, Taraneh; Ernberg, Malin
2010-06-01
This study investigated the influence of oral contraceptives (OC) on diffuse noxious inhibitory control (DNIC) in healthy women. Fifteen women taking OC and 17 normally menstruating women (No-OC) were tested during high and low endogenous estrogens sessions. Saliva was sampled for analysis of endogenous estradiol level. Mechanical pressure (test stimuli) was applied to the masseter muscle and finger. The pain induced by this pressure was assessed on a 0-10 numerical rating scale (NRS) before, during, and after immersion of the contralateral hand in ice-cold water (cold pressor test, CPT) to induce DNIC. For all subjects, pain induced by the test stimuli decreased significantly during the CPT (P < 0.001). The decrease in general was larger in the No-OC group, with a significant difference between groups in the masseter muscle in the low session (P < 0.027). There were no significant differences between groups or sessions in estradiol levels. These results indicate that endogenous pain modulation may be less effective in OC users.
Lu, Gang; Su, Rui-Bin; Li, Jin; Qin, Bo-Yi
2003-10-08
The effects of alpha-difluoromethyl-ornithine (DFMO) and aminoguanidine, which might influence the metabolism of endogenous agmatine, on pain threshold, morphine analgesia and tolerance were investigated in mice. In the mouse acetic acid writhing test, intracerebroventricular (i.c.v.) injection of DFMO or aminoguanidine significantly elevated the pain threshold as indicated by a decrease in the number of writhings. DFMO or aminoguanidine obviously increased the analgesic effect of morphine in the mouse acetic acid writhing test and the mouse heat radiation tail-flick assay. These effects of DFMO and aminoguanidine were antagonized by idazoxan (3 mg/kg, i.p.), which is a selective antagonist of the imidazoline receptor. In the mouse heat radiation tail-flick assay, aminoguanidine significantly prolonged the tail-flick latency of animals, suggesting that the pain threshold was elevated. Furthermore, both DFMO and aminoguanidine enhanced morphine analgesia and inhibited acute morphine tolerance in the mouse heat radiation tail-flick assay. Neither DFMO nor aminoguanidine inhibited the activity of nitric oxide synthase in different brain areas in mice in vivo. These results indicate that the substances involved in the metabolism of endogenous agmatine could modulate the pain threshold, morphine analgesia and tolerance, indicating the possible role of endogenous agmatine in the pharmacological effects of morphine.
Effect of ketamine on endogenous pain modulation in healthy volunteers.
Niesters, Marieke; Dahan, Albert; Swartjes, Maarten; Noppers, Ingeborg; Fillingim, Roger B; Aarts, Leon; Sarton, Elise Y
2011-03-01
Inhibitory and facilitatory descending pathways, originating at higher central nervous system sites, modulate activity of dorsal horn nociceptive neurons, and thereby influence pain perception. Dysfunction of inhibitory pain pathways or a shift in the balance between pain facilitation and pain inhibition has been associated with the development of chronic pain. The N-methyl-d-aspartate receptor antagonist ketamine has a prolonged analgesic effect in chronic pain patients. This effect is due to desensitization of sensitized N-methyl-d-aspartate receptors. Additionally, ketamine may modulate or enhance endogenous inhibitory control of pain perception. Diffuse noxious inhibitory control (DNIC) and offset analgesia (OA) are 2 mechanisms involved in descending inhibition. The present study investigates the effect of a ketamine infusion on subsequent DNIC and OA responses to determine whether ketamine has an influence on descending pain control. Ten healthy subjects (4 men/6 women) received a 1-hour placebo or S(+)-ketamine (40mg per 70kg) infusion on 2 separate occasions in random order. Upon the termination of the infusion, DNIC and OA responses were obtained. After placebo treatment, significant descending inhibition of pain responses was present for DNIC and OA. In contrast, after ketamine infusion, no DNIC was observed, but rather a significant facilitatory pain response (P<0.01); the OA response remained unchanged. These findings suggest that the balance between pain inhibition and pain facilitation was shifted by ketamine towards pain facilitation. The absence of an effect of ketamine on OA indicates differences in the mechanisms and neurotransmitter influences between OA and DNIC. Diffuse noxious inhibitory control responses following a 1-hour low-dose ketamine treatment displayed facilitation of pain in response to experimental noxious thermal stimulation. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Central Mechanisms in the Maintenance of Chronic Widespread Noninflammatory Muscle Pain
DeSantana, Josimari M.; Sluka, Kathleen A.
2009-01-01
Chronic widespread pain (CWP) conditions such as fibromyalgia and myofascial syndromes are characterized by generalized pain, tenderness, morning stiffness, disturbed sleep, and pronounced fatigue. However, CWP pathophysiology is still unclear. A number of hypotheses have been proposed as the underlying pathophysiology of CWP: muscular dysfunction/ischemia, central sensitization, and a deficit in endogenous pain-modulating systems. This article reviews the current and emerging literature about the pathophysiology and neurobiology of chronic widespread musculoskeletal pain. Widespread musculoskeletal pain results in changes in the central nervous system in human subjects and animal models. These changes likely reflect alterations in supraspinal modulation of nociception, and include increases in excitatory and decreases in inhibitory modulation pathways. These alterations in excitation and inhibition likely drive changes observed in the spinal cord to result in central sensitization, and the consequent pain and hyperalgesia. PMID:18765138
Attenuation of Activity in an Endogenous Analgesia Circuit by Ongoing Pain in the Rat
Ferrari, Luiz F.; Gear, Robert W.; Levine, Jon D.
2010-01-01
Analgesic efficacy varies depending on the pain syndrome being treated. One reason for this may be a differential effect of individual pain syndromes on the function of endogenous pain control circuits at which these drugs act to produce analgesia. To test this hypothesis we examined the effects of diverse (i.e., ongoing inflammatory, neuropathic, or chronic widespread) pain syndromes on analgesia induced by activation of an opioid-mediated noxious stimulus-induced endogenous pain control circuit. This circuit was activated by subdermal capsaicin injection at a site remote from the site of nociceptive testing. Analgesia was not affected by carrageenan-induced inflammatory pain nor the early-phase of oxaliplatin neuropathy (a complication of cancer chemotherapy). However, the duration of analgesia was markedly shorter in the late-phase of oxaliplatin neuropathy and in alcoholic neuropathy. A model of fibromyalgia syndrome produced by chronic unpredictable stress and proinflammatory cytokines also shortened analgesia duration, but so did the same stress alone. Therefore, since chronic pain can activate neuroendocrine stress axes, we tested whether they are involved in the attenuation of analgesic duration induced by these pain syndromes. Rats in which the sympathoadrenal axis was ablated by adrenal medullectomy showed normal duration pain-induced analgesia in groups with either late-phase oxaliplatin neuropathy, alcoholic neuropathy, or exposure to sound stress. These results support the suggestion that pain syndromes can modulate activity in endogenous pain control circuits, and this effect is sympathoadrenal dependent. PMID:20943910
Relationship between Personality Traits and Endogenous Analgesia: The Role of Harm Avoidance.
Nahman-Averbuch, Hadas; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena; Granot, Michal
2016-01-01
Whether psychological factors such as anxiety and pain catastrophizing levels influence the expression of endogenous analgesia in general and, more specifically, the conditioned pain modulation (CPM) response is still under debate. It may be assumed that other psychological characteristics also play a role in the CPM response. The neurotransmitters serotonin, dopamine, and norepinephrine are involved both in CPM, as well as personality traits such as harm avoidance (HA), novelty seeking (NS), and reward dependence (RD), which can be obtained by the Tridimensional Personality Questionnaire (TPQ). However, the associations between these traits (HA, NS, and RD) with endogenous analgesia revealed by CPM have not yet been explored. Healthy middle-age subjects (n = 28) completed the TPQ, Spielberger's State Anxiety Inventory, and the Pain Catastrophizing Scale and were assessed for CPM paradigms using thermal phasic temporal summation as the "test stimulus" and hand immersion into hot water bath (CPM water) or contact heat (CPM contact) for "conditioning stimulus." Higher levels of HA were associated with less-efficient CPM responses obtained by both paradigms: CPM water (r = 0.418, P = 0.027) and CPM contact (r = 0.374, P = 0.050). However, NS and RD were not associated with the other measurements. No significant relationship was observed between state anxiety and pain catastrophizing levels and the CPM responses. The relationship between the capacity of endogenous analgesia and the tendency to avoid aversive experience can be explained by mutual mechanisms involving similar neurotransmitters or brain areas. These findings illuminate the key role of harm avoidance obtained by the TPQ in determining the characteristics of pain modulation profile. © 2014 World Institute of Pain.
Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain.
Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H; Porreca, Frank
2017-12-01
Gabapentin (GBP) is a first-line therapy for neuropathic pain, but its mechanisms and sites of action remain uncertain. We investigated GBP-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal GBP reversed evoked mechanical hypersensitivity and produced conditioned place preference (CPP) and dopamine (DA) release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal GBP also significantly inhibited dorsal horn wide-dynamic-range neuronal responses to a range of evoked stimuli in SNL rats. By contrast, GBP microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP, and elicited NAc DA release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on wide-dynamic-range neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous GBP-induced CPP and NAc DA release but failed to block its inhibition of tactile allodynia. Gabapentin, therefore, can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity, and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from nonopioid analgesics, GBP requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain-motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of GBP's analgesic effects in patients.
Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain
Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H.; Porreca, Frank
2017-01-01
Gabapentin is a first-line therapy for neuropathic pain but its mechanisms and sites of action remain uncertain. We investigated gabapentin-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal gabapentin reversed evoked mechanical hypersensitivity, produced conditioned place preference (CPP) and dopamine release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal gabapentin also significantly inhibited dorsal horn wide dynamic range (WDR) neuronal responses to a range of evoked stimuli in SNL rats. In contrast, gabapentin microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP and elicited NAc dopamine release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on WDR neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous gabapentin-induced CPP and NAc dopamine release but failed to block its inhibition of tactile allodynia. Gabapentin therefore can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from non-opioid analgesics, gabapentin requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of gabapentin’s analgesic effects in patients. PMID:28832395
2014-01-01
Background Central disinhibition is a mechanism involved in the physiopathology of fibromyalgia. Melatonin can improve sleep quality, pain and pain threshold. We hypothesized that treatment with melatonin alone or in combination with amitriptyline would be superior to amitriptyline alone in modifying the endogenous pain-modulating system (PMS) as quantified by conditional pain modulation (CPM), and this change in CPM could be associated with serum brain-derived neurotrophic factor (BDNF). We also tested whether melatonin improves the clinical symptoms of pain, pain threshold and sleep quality. Methods Sixty-three females, aged 18 to 65, were randomized to receive bedtime amitriptyline (25 mg) (n = 21), melatonin (10 mg) (n = 21) or melatonin (10 mg) + amitriptyline (25 mg) (n = 21) for a period of six weeks. The descending PMS was assessed with the CPM-TASK. It was assessed the pain score on the Visual Analog Scale (VAS 0-100 mm), the score on Fibromyalgia Impact Questionnaire (FIQ), heat pain threshold (HPT), sleep quality and BDNF serum. Delta values (post- minus pre-treatment) were used to compare the treatment effect. The outcomes variables were collected before, one and six weeks after initiating treatment. Results Melatonin alone or in combination with amitriptyline reduced significantly pain on the VAS compared with amitriptyline alone (P < 0.01). The delta values on the VAS scores were-12.85 (19.93),-17.37 (18.69) and-20.93 (12.23) in the amitriptyline, melatonin and melatonin+amitriptyline groups, respectively. Melatonin alone and in combination increased the inhibitory PMS as assessed by the Numerical Pain Scale [NPS(0-10)] reduction during the CPM-TASK:-2.4 (2.04) melatonin + amitriptyline,-2.65 (1.68) melatonin, and-1.04 (2.06) amitriptyline, (P < 0.05). Melatonin + amitriptyline treated displayed better results than melatonin and amitriptyline alone in terms of FIQ and PPT improvement (P < 0.05, fort both). Conclusion Melatonin increased the inhibitory endogenous pain-modulating system as assessed by the reduction on NPS(0-10) during the CPM-TASK. Melatonin alone or associated with amitriptyline was better than amitriptyline alone in improving pain on the VAS, whereas its association with amitriptyline produced only marginal additional clinical effects on FIQ and PPT. Trial registration Current controlled trail is registered at clinical trials.gov upon under number NCT02041455. Registered January 16, 2014. PMID:25052847
Gibson, William; Moss, Penny; Cheng, Tak Ho; Garnier, Alexandre; Wright, Anthony; Wand, Benedict M
2018-03-01
Many factors interact to influence threat perception and the subsequent experience of pain. This study investigated the effect of observing pain (extrinsic threat) and intrinsic threat of pain to oneself on pressure pain threshold (PPT). Forty socially connected pairs of healthy volunteers were threat-primed and randomly allocated to experimental or control roles. An experimental pain modulation paradigm was applied, with non-nociceptive threat cues used as conditioning stimuli. In substudy 1, the extrinsic threat to the experimental participant was observation of the control partner in pain. The control participant underwent hand immersion in noxious and non-noxious water baths in randomized order. Change in the observing participant's PPT from baseline to mid- and postimmersion was calculated. A significant interaction was found for PPT between conditions and test time (F 2,78 = 24.9, P < .005). PPT increased by 23.6% ± 19.3% between baseline and during hand immersion (F 1,39 = 43.7, P < .005). Substudy 2 investigated threat of imminent pain to self. After a 15-minute break, the experimental participant's PPT was retested ("baseline 2"). Threat was primed by suggestion of whole arm immersion in an icier, larger water bath. PPT was tested immediately before anticipated arm immersion, after which the experiment ended. A significant increase in PPT between "baseline 2" and "pre-immersion" was seen (t = -7.6, P = .005), a pain modulatory effect of 25.8 ± 20.7%. Extrinsic and intrinsic threat of pain, in the absence of any afferent input therefore influences pain modulation. This may need to be considered in studies that use noxious afferent input with populations who show dysfunctional pain modulation. The effect on endogenous analgesia of observing another's pain and of threat of pain to oneself was investigated. Extrinsic as well as intrinsic threat cues, in the absence of any afferent input, increased pain thresholds, suggesting that mere threat of pain may initiate analgesic effects in traditional noxious experimental paradigms. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Ma, Fei; Xie, Hong; Dong, Zhi-Qiang; Wang, Yan-Qing; Wu, Gen-Cheng
2004-07-15
Orphanin FQ (OFQ) is an endogenous ligand for opioid receptor-like-1 (ORL1) receptor. Previous studies have shown that both OFQ immunoreactivity and preproorphanin FQ (ppOFQ) mRNA expression could be observed in the brain regions involved in pain modulation, e.g., nucleus of raphe magnus (NRM), dorsal raphe nucleus (DRN), and ventrolateral periaqueductal gray (vlPAG). It was reported that electroacupuncture (EA) has analgesic effect on neuropathic pain, and the analgesic effect was mediated by the endogenous opioid peptides. In the present study, we investigated the effects of EA on the changes of OFQ in the neuropathic pain rats. In the sciatic nerve chronic constriction injury (CCI) model, we investigated the changes of ppOFQ mRNA and OFQ immunoreactivity in NRM after EA by in situ hybridization (ISH) and immunohistochemistry methods, respectively. Then, the ppOFQ mRNA-positive and OFQ immunoreactive cells were counted under a computerized image analysis system. The results showed that expression of ppOFQ mRNA decreased and OFQ immunoreactivity increased after EA treatment in the neuropathic pain rats. These results indicated that EA modulated OFQ synthesis and OFQ peptide level in NRM of the neuropathic pain rats. Copyright 2004 Elsevier Inc.
The Effects of Yin, Yang and Qi in the Skin on Pain.
Adams, James David
2016-01-29
The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients.
The Effects of Yin, Yang and Qi in the Skin on Pain
Adams, James David
2016-01-01
The most effective and safe treatment site for pain is in the skin. This chapter discusses the reasons to treat pain in the skin. Pain is sensed in the skin through transient receptor potential cation channels and other receptors. These receptors have endogenous agonists (yang) and antagonists (yin) that help the body control pain. Acupuncture works through modulation of these receptor activities (qi) in the skin; as do moxibustion and liniments. The treatment of pain in the skin has the potential to save many lives and improve pain therapy in most patients. PMID:28930115
Bernaba, Mario; Johnson, Kevin A; Kong, Jiang-Ti; Mackey, Sean
2014-01-01
Purpose Conditioned pain modulation (CPM) is an experimental approach for probing endogenous analgesia by which one painful stimulus (the conditioning stimulus) may inhibit the perceived pain of a subsequent stimulus (the test stimulus). Animal studies suggest that CPM is mediated by a spino–bulbo–spinal loop using objective measures such as neuronal firing. In humans, pain ratings are often used as the end point. Because pain self-reports are subject to cognitive influences, we tested whether cognitive factors would impact on CPM results in healthy humans. Methods We conducted a within-subject, crossover study of healthy adults to determine the extent to which CPM is affected by 1) threatening and reassuring evaluation and 2) imagery alone of a cold conditioning stimulus. We used a heat stimulus individualized to 5/10 on a visual analog scale as the testing stimulus and computed the magnitude of CPM by subtracting the postconditioning rating from the baseline pain rating of the heat stimulus. Results We found that although evaluation can increase the pain rating of the conditioning stimulus, it did not significantly alter the magnitude of CPM. We also found that imagery of cold pain alone did not result in statistically significant CPM effect. Conclusion Our results suggest that CPM is primarily dependent on sensory input, and that the cortical processes of evaluation and imagery have little impact on CPM. These findings lend support for CPM as a useful tool for probing endogenous analgesia through subcortical mechanisms. PMID:25473310
Unimpaired endogenous pain inhibition in the early phase of complex regional pain syndrome.
Kumowski, N; Hegelmaier, T; Kolbenschlag, J; Maier, C; Mainka, T; Vollert, J; Enax-Krumova, E
2017-05-01
The complex regional pain syndrome (CRPS) is characterized by distal generalisation of pain beyond the initial trauma. This might be the result of impaired endogenous pain inhibition. We compared Conditioned Pain Modulation (CPM) between patients with CRPS (n = 24; pain: 4.5 ± 2.2, NRS 0-10; disease duration <1 year), neuralgia (n = 17; pain: 5.5 ± 1.1) and healthy subjects (n = 23) and its correlation with loss and gain of function as assessed by Quantitative Sensory Testing (QST). CPM was assessed with heat as test stimulus (TS) and cold water as conditioning stimulus (CS). The early CPM-effect was calculated as difference between heat pain during and before conditioning, the late CPM-effect, 5 minutes after and before conditioning, respectively. Heat pain decreased comparably after CS in all groups, resulting in a significant CPM-effect (healthy: -12.5 ± 12.4, NRS 0-100; CRPS: -14.7 ± 15.7; neuralgia: -7.9 ± 9.8; p < 0.001). When compared to healthy subjects, heat pain declined significantly steeper in CRPS patients (healthy: -2.0 ± 5.5, NRS 0-100/10 s; CRPS: -6.3 ± 8.1; p < 0.05). Only CRPS patients demonstrated a late CPM effect (-6.0 ± 9.0, p < 0.005). Neither spontaneous pain nor any QST parameter correlated with CPM, with the exception of a decreased cold pain threshold, which correlated with an enhanced CPM in CRPS patients only (r = -0.456, p < 0.05). An impairment of endogenous pain inhibition does not explain the extent of pain in the early stage of CRPS or in neuralgia. The unexpectedly high CPM in CRPS patients might result from activation of the intact descending pathways in response to central sensitization, as cold hyperalgesia correlated with the CPM-effect. Conditioned pain modulation (CPM) is not impaired in the early phase of complex regional pain syndrome (CRPS) and neuralgia. Only in CRPS higher CPM was associated with lower cold pain thresholds. © 2017 European Pain Federation - EFIC®.
Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara
2013-01-01
Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with its deregulation. PMID:23613529
Morales-Lázaro, Sara L; Simon, Sidney A; Rosenbaum, Tamara
2013-07-01
Pain is a physiological response to a noxious stimulus that decreases the quality of life of those sufferring from it. Research aimed at finding new therapeutic targets for the treatment of several maladies, including pain, has led to the discovery of numerous molecular regulators of ion channels in primary afferent nociceptive neurons. Among these receptors is TRPV1 (transient receptor potential vanilloid 1), a member of the TRP family of ion channels. TRPV1 is a calcium-permeable channel, which is activated or modulated by diverse exogenous noxious stimuli such as high temperatures, changes in pH, and irritant and pungent compounds, and by selected molecules released during tissue damage and inflammatory processes. During the last decade the number of endogenous regulators of TRPV1's activity has increased to include lipids that can negatively regulate TRPV1, as is the case for cholesterol and PIP2 (phosphatidylinositol 4,5-biphosphate) while, in contrast, other lipids produced in response to tissue injury and ischaemic processes are known to positively regulate TRPV1. Among the latter, lysophosphatidic acid activates TRPV1 while amines such as N-acyl-ethanolamines and N-acyl-dopamines can sensitize or directly activate TRPV1. It has also been found that nucleotides such as ATP act as mediators of chemically induced nociception and pain and gases, such as hydrogen sulphide and nitric oxide, lead to TRPV1 activation. Finally, the products of lipoxygenases and omega-3 fatty acids among other molecules, such as divalent cations, have also been shown to endogenously regulate TRPV1 activity. Here we provide a comprehensive review of endogenous small molecules that regulate the function of TRPV1. Acting through mechanisms that lead to sensitization and desensitization of TRPV1, these molecules regulate pathways involved in pain and nociception. Understanding how these compounds modify TRPV1 activity will allow us to comprehend how some pathologies are associated with its deregulation.
Meeus, Mira; Hermans, Linda; Ickmans, Kelly; Struyf, Filip; Van Cauwenbergh, Deborah; Bronckaerts, Laura; De Clerck, Luc S; Moorken, Greta; Hans, Guy; Grosemans, Sofie; Nijs, Jo
2015-02-01
Temporal summation (TS) of pain, conditioned pain modulation (CPM), and exercise-induced analgesia (EIA) are often investigated in chronic pain populations as an indicator for enhanced pain facilitation and impaired endogenous pain inhibition, respectively, but interactions are not yet clear both in healthy controls and in chronic pain patients. Therefore, the present double-blind randomized placebo-controlled study evaluates pains cores, TS, and CPM in response to exercise in healthy controls, patients with chronic fatigue syndrome and comorbid fibromyalgia (CFS/FM), and patients with rheumatoid arthritis (RA), both under placebo and paracetamol condition. Fifty-three female volunteers - of which 19 patients with CFS/FM, 16 patients with RA, and 18 healthy controls - underwent a submaximal exercise test on a bicycle ergometer on 2 different occasions (paracetamol vs. placebo), with an interval of 7 days. Before and after exercise, participants rated pain intensity during TS and CPM. Patients with rheumatoid arthritis showed decreased TS after exercise, both after paracetamol and placebo (P < 0.05). In patients with CFS/FM, results were less univocal. A nonsignificant decrease in TS was only observed after taking paracetamol. CPM responses to exercise are inconclusive, but seem to worsen after exercise. No adverse effects were seen. This study evaluates pain scores, TS, and CPM in response to submaximal exercise in 2 different chronic pain populations and healthy controls. In patients with RA, exercise had positive effects on TS, suggesting normal EIA. In patients with CFS/FM, these positive effects were only observed after paracetamol and results were inconsistent. © 2014 World Institute of Pain.
Harper, Daniel E; Ichesco, Eric; Schrepf, Andrew; Hampson, Johnson P; Clauw, Daniel J; Schmidt-Wilcke, Tobias; Harris, Richard E; Harte, Steven E
2018-06-01
Conditioned pain modulation (CPM), a psychophysical paradigm that is commonly used to infer the integrity of endogenous pain-altering systems by observation of the effect of one noxious stimulus on another, has previously identified deficient endogenous analgesia in fibromyalgia (FM) and other chronic pain conditions. The mechanisms underlying this deficiency, be they insufficient inhibition and/or active facilitation, are largely unknown. The present cross-sectional study used a combination of behavioral CPM testing, voxel-based morphometry, and resting state functional connectivity to identify neural correlates of CPM in healthy controls (HC; n = 14) and FM patients (n = 15), and to probe for differences that could explain the pain-facilitative CPM that was observed in our patient sample. Voxel-based morphometry identified a cluster encompassing the periaqueductal gray (PAG) that contained significantly less gray matter volume in FM patients. Higher resting connectivity between this cluster and cortical pain processing regions was associated with more efficient inhibitory CPM in both groups, whereas PAG connectivity with the dorsal pons was associated with greater CPM inhibition only in HC. Greater PAG connectivity to the caudal pons/rostral medulla, which was pain-inhibitory in HC, was associated with pain facilitation in FM patients. These findings indicate that variation in the strength of the PAG resting functional connectivity can explain some of the normal variability in CPM. In addition, pain-facilitative CPM observed in FM patients likely involves attenuation of pain inhibitory as well as amplification of pain facilitative processes in the central nervous system. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Abnormal Pain Modulation in Patients with Spatially Distributed Chronic Pain: Fibromyalgia
Staud, Roland
2009-01-01
Many chronic pain syndromes including fibromyalgia, irritable bowel syndrome, chronic fatigue syndrome, migraine headache, chronic back pain, and complex regional pain syndrome are associated with hypersensitivity to painful stimuli and with reduced endogenous pain inhibition. These findings suggest that modulation of pain-related information may be related to the onset and/or maintenance of chronic pain. Although pain sensitivity and pain inhibition are normally distributed in the general population, they are not useful as reliable predictors of future pain. The combination of heightened pain sensitivity and reduced pain-inhibition, however, appears to predispose individuals to greater risk for increased acute clinical pain (e.g., postoperative pain). It is unknown at this time whether such pain processing abnormalities may also place individuals at increased risk for chronic pain. Psychophysical methods, including heat sensory and pressure pain testing have become increasingly available and can be used for the evaluation of pain sensitivity and pain inhibition. However, long-term prospective studies in the general population are lacking which could yield insight into the role of heightened pain sensitivity and pain disinhibition for the development of chronic pain disorders like fibromyalgia. PMID:19647141
Freitas, K; Negus, SS; Carroll, FI; Damaj, MI
2013-01-01
Background and Purpose The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU-120596 induces antinociception on its own and in combination with choline in the formalin pain model. Experimental Approach We assessed the effects of PNU-120596 and choline and the nature of their interactions in the formalin test using an isobolographic analysis. In addition, we evaluated the interaction of PNU-120596 with PHA-54613, an exogenous selective α7 nAChR agonist, in the formalin test. Finally, we assessed the interaction between PNU-120596 and nicotine using acute thermal pain, locomotor activity, body temperature and convulsing activity tests in mice. Key Results We found that PNU-120596 dose-dependently attenuated nociceptive behaviour in the formalin test after systemic administration in mice. In addition, mixtures of PNU-120596 and choline synergistically reduced formalin-induced pain. PNU-120596 enhanced the effects of nicotine and α7 agonist PHA-543613 in the same test. In contrast, PNU-120596 failed to enhance nicotine-induced convulsions, hypomotility and antinociception in acute pain models. Surprisingly, it enhanced nicotine-induced hypothermia via activation of α7 nAChRs. Conclusions and Implications Our results demonstrate that type II α7 positive allosteric modulators produce antinociceptive effects in the formalin test through a synergistic interaction with the endogenous α7 agonist choline. PMID:23004024
Asymmetric pain processing in Parkinson's disease.
Granovsky, Y; Schlesinger, I; Fadel, S; Erikh, I; Sprecher, E; Yarnitsky, D
2013-10-01
Reduced endogenous pain inhibition, as part of the degenerative process, is presumed to be the mechanism underlying the common presence of pain in patients with Parkinson's disease (PD). The present study aimed to assess an endogenous pain inhibitory system in PD using the conditioned pain modulation paradigm. Twenty-six predominantly unilateral PD patients and 19 controls underwent psychophysical pain assessment before and after patients' morning dopaminergic medication. An unexpected increase in several parameters of pain perception for PD patients was found after dopaminergic medication (e.g. for 49°C noxious heat stimulation an increase from 70.6 ± 4.0 to 77.6 ± 4.0 on the numerical pain scale, P < 0.001). This increase was seen in patients with predominantly left-sided PD, regardless of the stimulated side (for 49°C noxious heat stimulation, predominantly left-sided PD patients, pain perception increased from 73.5 ± 6.8 to 85.0 ± 6.8, P < 0.001, whereas predominantly right-sided PD patients did not show a significant increase, 68.3 ± 6.8 to 70.4 ± 6.5, P = 0.777). Baseline efficiency of conditioned pain modulation inversely correlated with age at disease onset (r = -0.522; P = 0.009) and disease severity (Unified PD Rating Scale, r = 0.447; P = 0.032) but did not differ between patients and controls. Increased sensory response causing hyperalgesia occurs after dopaminergic medication in patients with predominantly left-sided PD. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.
Gerhardt, Andreas; Eich, Wolfgang; Treede, Rolf-Detlef; Tesarz, Jonas
2017-03-01
Findings considering conditioned pain modulation (CPM) in chronic back pain (CBP) are contradictory. This might be because many patients with CBP report pain in further areas of the body, and altered CPM might influence spatial extent of pain rather than CBP per se. Therefore, we compared CPM in patients with CBP with different pain extent. Patients with fibromyalgia syndrome (FMS), for whom CPM impairment is reported most consistently, were measured for comparison. Based on clinical evaluation and pain drawings, patients were categorized into chronic local back pain (CLP; n = 53), chronic widespread back pain (CWP; n = 32), and FMS (n = 92). Conditioned pain modulation was measured by the difference in pressure pain threshold (test stimuli) at the lower back before and after tonic heat pain (conditioning stimulus). We also measured psychosocial variables. Pressure pain threshold was significantly increased in CLP patients after tonic heat pain (P < 0.001) indicating induction of CPM. Conditioned pain modulation in CLP was significantly higher than that in CWP and FMS (P < 0.001), but CPM in CWP and FMS did not differ. Interestingly, a higher number of painful areas (0-10) were associated with lower CPM (r = 0.346, P = 0.001) in CBP but not in FMS (r = -0.013, P = 0.903). Anxiety and depression were more pronounced in FMS than in CLP or CWP (P values <0.01). Our findings suggest that CPM dysfunction is associated with CWP and not with FMS as suggested previously. FMS seems to differ from CWP without FMS by higher psychosocial burden. Moreover, patients with CBP should be stratified into CLP and CWP, and centrally acting treatments targeting endogenous pain inhibition seem to be more indicated the higher the pain extent.
The Cannabinoid System and Pain
Woodhams, Stephen G.; Chapman, Victoria; Finn, David P.; Hohmann, Andrea G.; Neugebauer, Volker
2018-01-01
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics, representing an enormous clinical, societal, and economic burden. Existing pain medications have significant limitations and adverse effects including tolerance, dependence, gastrointestinal dysfunction, cognitive impairment, and a narrow therapeutic window, making the search for novel analgesics ever more important. In this article, we review the role of an important endogenous pain control system, the endocannabinoid (EC) system, in the sensory, emotional, and cognitive aspects of pain. Herein, we briefly cover the discovery of the EC system and its role in pain processing pathways, before concentrating on three areas of current major interest in EC pain research; 1. Pharmacological enhancement of endocannabinoid activity (via blockade of EC metabolism or allosteric modulation of CB1 receptors); 2. The EC System and stress-induced modulation of pain; and 3. The EC system & medial prefrontal cortex (mPFC) dysfunction in pain states. Whilst we focus predominantly on the preclinical data, we also include extensive discussion of recent clinical failures of endocannabinoid-related therapies, the future potential of these approaches, and important directions for future research on the EC system and pain. PMID:28625720
Nir, Rony-Reuven; Granovsky, Yelena; Yarnitsky, David; Sprecher, Elliot; Granot, Michal
2011-05-01
Endogenous analgesia (EA) can be examined experimentally using a conditioned pain modulation (CPM) paradigm. While noxious conditioning stimulation intensities (CSIs) are mainly used, it has not been fully investigated in the same experimental design whether the experienced conditioning pain level affects CPM responses. The principal goal of the present study was to characterize CPM induction and magnitudes evoked by various conditioning pain levels. Furthermore, we explored associations between conditioning pain reports and CPM responses across various CSIs. Thirty healthy, young, right-handed males were tested with a parallel CPM paradigm. Three different CSIs (hand water-immersion) induced mild, moderate and intense pain levels, rated 12.41 ± 7.85, 31.57 ± 9.56 and 58.1 ± 11.43, respectively (0-100 numerical pain scale) (P < 0.0001). Contact-heat 'test-stimulus' levels were compared before and during conditioning. Within the group, (i) CPM was induced only by the moderate and intense CSIs (Ps ≤ 0.001); (ii) no difference was demonstrated between the magnitudes of these CPM responses. Regression analysis revealed that CPM induction was independent of the perceived conditioning pain level, but associated with the absolute CSI (P < 0.0001). Conditioning pain levels were correlated across all CSIs, as were CPM magnitudes (Ps ≤ 0.01). We conclude that among males, (i) once a CPM response is evoked by a required conditioning pain experience, its magnitude is not further affected by increasing conditioning pain and (ii) CPM magnitudes are inter-correlated, but unrelated to conditioning pain reports. These observations may suggest that CPM responses represent an intrinsic element of an individual's EA processes, which are not significantly affected by the experienced conditioning pain. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Disrupted functional connectivity of the periaqueductal gray in chronic low back pain
Yu, Rongjun; Gollub, Randy L.; Spaeth, Rosa; Napadow, Vitaly; Wasan, Ajay; Kong, Jian
2014-01-01
Chronic low back pain is a common neurological disorder. The periaqueductal gray (PAG) plays a key role in the descending modulation of pain. In this study, we investigated brain resting state PAG functional connectivity (FC) differences between patients with chronic low back pain (cLBP) in low pain or high pain condition and matched healthy controls (HCs). PAG seed based functional connectivity (FC) analysis of the functional MR imaging data was performed to investigate the difference among the connectivity maps in the cLBP in the low or high pain condition and HC groups as well as within the cLBP at differing endogenous back pain intensities. Results showed that FC between the PAG and the ventral medial prefrontal cortex (vmPFC)/rostral anterior cingulate cortex (rACC) increased in cLBP patients compared to matched controls. In addition, we also found significant negative correlations between pain ratings and PAG–vmPFC/rACC FC in cLBP patients after pain-inducing maneuver. The duration of cLBP was negatively correlated with PAG–insula and PAG–amygdala FC before pain-inducing maneuver in the patient group. These findings are in line with the impairments of the descending pain modulation reported in patients with cLBP. Our results provide evidence showing that cLBP patients have abnormal FC in PAG centered pain modulation network during rest. PMID:25379421
DREAM regulates BDNF-dependent spinal sensitization
2010-01-01
Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062
Coppieters, Iris; Cagnie, Barbara; Nijs, Jo; van Oosterwijck, Jessica; Danneels, Lieven; De Pauw, Robby; Meeus, Mira
2016-03-01
Compelling evidence has demonstrated that impaired central pain modulation contributes to persistent pain in patients with chronic whiplash associated disorders (WAD) and fibromyalgia (FM). However, there is limited research concerning the influence of stress and relaxation on central pain modulation in patients with chronic WAD and FM. The present study aims to investigate the effects of acute cognitive stress and relaxation on central pain modulation in chronic WAD and FM patients compared to healthy individuals. A randomized crossover design was employed. The present study took place at the University of Brussels, the University Hospital Brussels, and the University of Antwerp. Fifty-nine participants (16 chronic WAD patients, 21 FM, 22 pain-free controls) were enrolled and subjected to various pain measurements. Temporal summation (TS) of pain and conditioned pain modulation (CPM) were evaluated. Subsequently, participants were randomly allocated to either a group that received progressive relaxation therapy or a group that performed a battery of cognitive tests (= cognitive stressor). Afterwards, all pain measurements were repeated. One week later participant groups were switched. A significant difference was found between the groups in the change in TS in response to relaxation (P = 0.008) and cognitive stress (P = 0.003). TS decreased in response to relaxation and cognitive stress in chronic WAD patients and controls. In contrast, TS increased after both interventions in FM patients. CPM efficacy decreased in all 3 groups in response to relaxation (P = 0.002) and cognitive stress (P = 0.001). The obtained results only apply for a single session of muscle relaxation therapy and cognitive stress, whereby no conclusions can be made for effects on pain perception and modulation of chronic cognitive stress and long-term relaxation therapies. A single relaxation session as well as cognitive stress may have negative acute effects on pain modulation in patients with FM, while cognitive stress and relaxation did not worsen bottom-up sensitization in chronic WAD patients and healthy persons. However, endogenous pain inhibition, assessed using a CPM paradigm, worsened in chronic WAD and FM patients, as well as in healthy people following both interventions.
USDA-ARS?s Scientific Manuscript database
Endogenous pain inhibition is often deficient in adults with chronic pain conditions including irritable bowel syndrome (IBS). It is unclear whether deficiencies in pain inhibition are present in young children with IBS. The present study compared endogenous pain inhibition, somatic pain threshold, ...
Honigman, Liat; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-08-01
The endogenous analgesia (EA) system is psychophysically evaluated using various paradigms, including conditioned pain modulation (CPM) and offset analgesia (OA) testing, respectively, the spatial and temporal filtering processes of noxious information. Though both paradigms assess the function of the EA system, it is still unknown whether they reflect the same aspects of EA and consequently whether they provide additive or equivalent data. Twenty-nine healthy volunteers (15 males) underwent 5 trials of different stimulation conditions in random order including: (1) the classic OA three-temperature stimulus train ('OA'); (2) a three-temperature stimulus train as control for the OA ('OAcon'); (3) a constant temperature stimulus ('constant'); (4) the classic parallel CPM ('CPM'); and (5) a combination of OA and CPM ('OA + CPM'). We found that in males, the pain reduction during the OA + CPM condition was greater than during the OA (P = 0.003) and CPM (P = 0.07) conditions. Furthermore, a correlation was found between OA and CPM (r = 0.62, P = 0.01) at the time of maximum OA effect. The additive effect found suggests that the two paradigms represent at least partially different aspects of EA. The moderate association between the CPM and OA magnitudes indicates, on the other hand, some commonality of their underlying mechanisms.
Ickmans, Kelly; Moens, Maarten; Putman, Koen; Buyl, Ronald; Goudman, Lisa; Huysmans, Eva; Diener, Ina; Logghe, Tine; Louw, Adriaan; Nijs, Jo
2016-07-01
Despite scientific progress with regard to pain neuroscience, perioperative education tends to stick to the biomedical model. This may involve, for example, explaining the surgical procedure or 'back school' (education that focuses on biomechanics of the lumbar spine and ergonomics). Current perioperative education strategies that are based on the biomedical model are not only ineffective, they can even increase anxiety and fear in patients undergoing spinal surgery. Therefore, perioperative pain neuroscience education is proposed as a dramatic shift in educating patients prior to and following surgery for lumbar radiculopathy. Rather than focusing on the surgical procedure, ergonomics or lumbar biomechanics, perioperative pain neuroscience education teaches people about the underlying mechanisms of pain, including the pain they will feel following surgery. The primary objective of the study is to examine whether perioperative pain neuroscience education ('brain school') is more effective than classic back school in reducing pain and improving pain inhibition in patients undergoing surgery for spinal radiculopathy. A secondary objective is to examine whether perioperative pain neuroscience education is more effective than classic back school in: reducing postoperative healthcare expenditure, improving functioning in daily life, increasing return to work, and improving surgical experience (ie, being better prepared for surgery, reducing incongruence between the expected and actual experience) in patients undergoing surgery for spinal radiculopathy. A multi-centre, two-arm (1:1) randomised, controlled trial with 2-year follow-up. People undergoing surgery for lumbar radiculopathy (n=86) in two Flemish hospitals (one tertiary care, university-based hospital and one regional, secondary care hospital) will be recruited for the study. All participants will receive usual preoperative and postoperative care related to the surgery for lumbar radiculopathy. The experimental group will also receive perioperative pain neuroscience education comprising one preoperative and one postoperative individual educational session plus an educational booklet. Participants in the control group will receive perioperative back school on top of usual preoperative and postoperative care, comprising one preoperative and one postoperative individual educational session plus an educational booklet. Self-reported pain and endogenous pain modulation (including measurements of simultaneous cortical activation via electroencephalography) will be the primary outcome measures. Secondary outcome measures will include daily functioning, return to work, postoperative healthcare utilisation and surgical experience/satisfaction. Psychological factors will be measured as possible treatment mediators. All assessments will take place in the week preceding surgery (baseline), and at 3 days and 6 weeks after surgery. Intermediate and long-term follow-up assessments will take place at 6, 12 and 24 months after surgery. All data analyses will be based on the intention-to-treat principle. Repeated measures AN(C)OVA analyses will be used to evaluate and compare treatment effects. Baseline data, treatment centre, age and gender will be included as covariates. Statistical, as well as clinically, significant differences will be evaluated and effect sizes will be determined. In addition, the numbers needed to treat will be calculated. This study will determine whether pain neuroscience education is worthwhile for patients undergoing surgery for lumbar radiculopathy. It is expected that participants who receive perioperative pain neuroscience education will report less pain and have improved endogenous pain modulation, lower postoperative healthcare costs and improved surgical experience. Lower pain and improved endogenous pain modulation after surgery may reduce the risk of developing postoperative chronic pain. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Increased conditioned pain modulation in athletes.
Flood, Andrew; Waddington, Gordon; Thompson, Kevin; Cathcart, Stuart
2017-06-01
The potential relationship between physical activity and endogenous pain modulatory capacity remains unclear. Therefore, the aim of the current study was to compare the pain modulatory responses of athletes and non-athletes. Conditioned pain modulation (CPM) was assessed in 15 athletes and 15 non-athletes at rest. Participation was restricted to pain-free males between 18 and 40 years of age. To measure CPM capacity, a sequential CPM testing protocol was implemented, whereby a test stimulus (pressure pain threshold [PPT]) was presented before and immediately after a conditioning stimulus (4-min cold-pressor test). Pain intensity ratings were obtained at 15-s intervals throughout the cold-pressor task using a numerical rating scale. Athletes demonstrated higher baseline PPTs compared to non-athletes (P = .03). Athletes also gave lower mean (P < .001) and maximum (P < .001) pain intensity ratings in response to the conditioning stimulus. The conditioning stimulus had a stronger inhibitory effect on the test stimulus in athletes, showing enhanced CPM in athletes compared to non-athletes (P < .05). This finding of enhanced CPM in athletes helps clarify previous mixed findings. Potential implications for exercise performance and injury are discussed.
Endogenous Opioid Antagonism in Physiological Experimental Pain Models: A Systematic Review
Werner, Mads U.; Pereira, Manuel P.; Andersen, Lars Peter H.; Dahl, Jørgen B.
2015-01-01
Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double-blind studies using ʻinhibitoryʼ or ʻsensitizingʼ, physiological test paradigms in healthy human subjects. The databases PubMed and Embase were searched according to predefined criteria. Out of a total of 2,142 records, 63 studies (1,477 subjects [male/female ratio = 1.5]) were considered relevant. Twenty-five studies utilized ʻinhibitoryʼ test paradigms (ITP) and 38 studies utilized ʻsensitizingʼ test paradigms (STP). The ITP-studies were characterized as conditioning modulation models (22 studies) and repetitive transcranial magnetic stimulation models (rTMS; 3 studies), and, the STP-studies as secondary hyperalgesia models (6 studies), ʻpainʼ models (25 studies), summation models (2 studies), nociceptive reflex models (3 studies) and miscellaneous models (2 studies). A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and rTMS. In the remaining 14 conditioning modulation studies either absence of effects or ambiguous effects by MOR-antagonists, were observed. In the STP-studies, no effect of the opioid-blockade could be demonstrated in 5 out of 6 secondary hyperalgesia studies. The direction of MOR-antagonist dependent effects upon pain ratings, threshold assessments and somatosensory evoked potentials (SSEP), did not appear consistent in 28 out of 32 ʻpainʼ model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect, presumably mediated by an EOS-dependent mechanisms of analgesia and hyperalgesia. PMID:26029906
The effects of elevated pain inhibition on endurance exercise performance.
Flood, Andrew; Waddington, Gordon; Keegan, Richard J; Thompson, Kevin G; Cathcart, Stuart
2017-01-01
The ergogenic effects of analgesic substances suggest that pain perception is an important regulator of work-rate during fatiguing exercise. Recent research has shown that endogenous inhibitory responses, which act to attenuate nociceptive input and reduce perceived pain, can be increased following transcranial direct current stimulation of the hand motor cortex. Using high-definition transcranial direct current stimulation (HD-tDCS; 2 mA, 20 min), the current study aimed to examine the effects of elevated pain inhibitory capacity on endurance exercise performance. It was hypothesised that HD-tDCS would enhance the efficiency of the endogenous pain inhibitory response and improve endurance exercise performance. Twelve healthy males between 18 and 40 years of age ( M = 24.42 ± 3.85) were recruited for participation. Endogenous pain inhibitory capacity and exercise performance were assessed before and after both active and sham (placebo) stimulation. The conditioned pain modulation protocol was used for the measurement of pain inhibition. Exercise performance assessment consisted of both maximal voluntary contraction (MVC) and submaximal muscular endurance performance trials using isometric contractions of the non-dominant leg extensors. Active HD-tDCS (pre-tDCS, -.32 ± 1.33 kg; post-tDCS, -1.23 ± 1.21 kg) significantly increased pain inhibitory responses relative to the effects of sham HD-tDCS (pre-tDCS, -.91 ± .92 kg; post-tDCS, -.26 ± .92 kg; p = .046). Irrespective of condition, peak MVC force and muscular endurance was reduced from pre- to post-stimulation. HD-tDCS did not significantly influence this reduction in maximal force (active: pre-tDCS, 264.89 ± 66.87 Nm; post-tDCS, 236.33 ± 66.51 Nm; sham: pre-tDCS, 249.25 ± 88.56 Nm; post-tDCS, 239.63 ± 67.53 Nm) or muscular endurance (active: pre-tDCS, 104.65 ± 42.36 s; post-tDCS, 93.07 ± 33.73 s; sham: pre-tDCS, 123.42 ± 72.48 s; post-tDCS, 100.27 ± 44.25 s). Despite increasing pain inhibitory capacity relative to sham stimulation, active HD-tDCS did not significantly elevate maximal force production or muscular endurance. These findings question the role of endogenous pain inhibitory networks in the regulation of exercise performance.
Höffken, Oliver; Özgül, Özüm S; Enax-Krumova, Elena K; Tegenthoff, Martin; Maier, Christoph
2017-08-29
Conditioned pain modulation (CPM) evaluates the pain modulating effect of a noxious conditioning stimulus (CS) on another noxious test stimulus (TS), mostly based solely on subjective pain ratings. We used painful cutaneous electrical stimulation (PCES) to induce TS in a novel CPM-model. Additionally, to evaluate a more objective parameter, we recorded the corresponding changes of cortical evoked potentials (PCES-EP). We examined the CPM-effect in 17 healthy subjects in a randomized controlled cross-over design during immersion of the non-dominant hand into 10 °C or 24 °C cold water (CS). Using three custom-built concentric surface electrodes, electrical stimuli were applied on the dominant hand, inducing pain of 40-60 on NRS 0-100 (TS). At baseline, during and after CS we assessed the electrically induced pain intensity and electrically evoked potentials recorded over the central electrode (Cz). Only in the 10 °C-condition, both pain (52.6 ± 4.4 (baseline) vs. 30.3 ± 12.5 (during CS)) and amplitudes of PCES-EP (42.1 ± 13.4 μV (baseline) vs. 28.7 ± 10.5 μV (during CS)) attenuated during CS and recovered there after (all p < 0.001). In the 10 °C-condition changes of subjective pain ratings during electrical stimulation and amplitudes of PCES-EP correlated significantly with each other (r = 0.5) and with CS pain intensity (r = 0.5). PCES-EPs are a quantitative measure of pain relief, as changes in the electrophysiological response are paralleled by a consistent decrease in subjective pain ratings. This novel CPM paradigm is a feasible method, which could help to evaluate the function of the endogenous pain modulation processes. German Clinical Trials Register DRKS-ID: DRKS00012779 , retrospectively registered on 24 July 2017.
The control of tonic pain by active relief learning
Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W
2018-01-01
Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716
Breaking down the barriers: fMRI applications in pain, analgesia and analgesics
Borsook, David; Becerra, Lino R
2006-01-01
This review summarizes functional magnetic resonance imaging (fMRI) findings that have informed our current understanding of pain, analgesia and related phenomena, and discusses the potential role of fMRI in improved therapeutic approaches to pain. It is divided into 3 main sections: (1) fMRI studies of acute and chronic pain. Physiological studies of pain have found numerous regions of the brain to be involved in the interpretation of the 'pain experience'; studies in chronic pain conditions have identified a significant CNS component; and fMRI studies of surrogate models of chronic pain are also being used to further this understanding. (2) fMRI studies of endogenous pain processing including placebo, empathy, attention or cognitive modulation of pain. (3) The use of fMRI to evaluate the effects of analgesics on brain function in acute and chronic pain. fMRI has already provided novel insights into the neurobiology of pain. These insights should significantly advance therapeutic approaches to chronic pain. PMID:16982005
R-Flurbiprofen Reduces Neuropathic Pain in Rodents by Restoring Endogenous Cannabinoids
Marian, Claudiu; Häussler, Annett; Wijnvoord, Nina; Ziebell, Simone; Metzner, Julia; Koch, Marco; Myrczek, Thekla; Bechmann, Ingo; Kuner, Rohini; Costigan, Michael; Dehghani, Faramarz; Geisslinger, Gerd; Tegeder, Irmgard
2010-01-01
Background R-flurbiprofen, one of the enantiomers of flurbiprofen racemate, is inactive with respect to cyclooxygenase inhibition, but shows analgesic properties without relevant toxicity. Its mode of action is still unclear. Methodology/Principal Findings We show that R-flurbiprofen reduces glutamate release in the dorsal horn of the spinal cord evoked by sciatic nerve injury and thereby alleviates pain in sciatic nerve injury models of neuropathic pain in rats and mice. This is mediated by restoring the balance of endocannabinoids (eCB), which is disturbed following peripheral nerve injury in the DRGs, spinal cord and forebrain. The imbalance results from transcriptional adaptations of fatty acid amide hydrolase (FAAH) and NAPE-phospholipase D, i.e. the major enzymes involved in anandamide metabolism and synthesis, respectively. R-flurbiprofen inhibits FAAH activity and normalizes NAPE-PLD expression. As a consequence, R-Flurbiprofen improves endogenous cannabinoid mediated effects, indicated by the reduction of glutamate release, increased activity of the anti-inflammatory transcription factor PPARγ and attenuation of microglia activation. Antinociceptive effects are lost by combined inhibition of CB1 and CB2 receptors and partially abolished in CB1 receptor deficient mice. R-flurbiprofen does however not cause changes of core body temperature which is a typical indicator of central effects of cannabinoid-1 receptor agonists. Conclusion Our results suggest that R-flurbiprofen improves the endogenous mechanisms to regain stability after axonal injury and to fend off chronic neuropathic pain by modulating the endocannabinoid system and thus constitutes an attractive, novel therapeutic agent in the treatment of chronic, intractable pain. PMID:20498712
Zheng, Zhen; Wang, Kelun; Yao, Dongyuan; Xue, Charlie C L; Arendt-Nielsen, Lars
2014-05-01
This study investigated the relationship between pain sensitivity, adaptability, and potency of endogenous pain inhibition, including conditioned pain modulation (CPM) and local pain inhibition. Forty-one healthy volunteers (20 male, 21 female) received conditioning stimulation (CS) over 2 sessions in a random order: tonic heat pain (46 °C) on the right leg for 7 minutes and cold pressor pain (1 °C to 4 °C) on the left hand for 5 minutes. Participants rated the intensity of pain continuously using a 0 to 10 electronic visual analogue scale. The primary outcome measures were pressure pain thresholds (PPT) measured at the heterotopic and homotopic location to the CS sites before, during, and 20 minutes after CS. Two groups of participants, pain adaptive and pain nonadaptive, were identified based on their response to pain in the cold pressor test. Pain-adaptive participants showed a pain reduction between peak pain and pain at end of the test by at least 2 of 10 (n=16); whereas the pain-nonadaptive participants reported unchanged peak pain during 5-minute CS (n=25). Heterotopic PPTs during the CS did not differ between the 2 groups. However, increased homotopic PPTs measured 20 minutes after CS correlated with the amount of pain reduction during CS. These results suggest that individual sensitivity and adaptability to pain does not correlate with the potency of CPM. Adaptability to pain is associated with longer-lasting local pain inhibition. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Lean mass predicts conditioned pain modulation in adolescents across weight status.
Stolzman, S; Hoeger Bement, M
2016-07-01
There is a wide continuum of conditioned pain modulation (CPM) in adults with older adults experiencing an attenuated CPM response compared with younger adults. Less is known for adolescents and the role of anthropometrics. Fifty-six adolescents (15.1 ± 1.8 years; 32 normal weight and 24 overweight/obese; 27 boys) completed in a CPM session that included anthropometric testing. Pressure pain thresholds were measured at the nailbed and deltoid muscle (test stimuli) with the foot submerged in a cool or ice water bath (conditioning stimulus). Weight status, body composition (Dual-energy X-ray absorptiometry scan), physical activity levels and clinical pain were also evaluated. The CPM response in adolescents was similar across sites (nailbed vs. deltoid), weight status (normal vs. overweight/obese) and sex. CPM measured at the deltoid muscle was positively associated with left arm lean mass but not fat mass; lean mass of the arm uniquely predicted 10% of the CPM magnitude. CPM measured at the nailbed was positively correlated with physical activity levels. These results suggest that lean mass and physical activity levels may contribute to endogenous pain inhibition in adolescents across weight status. © 2016 European Pain Federation - EFIC®
Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator.
Font, Joan; López-Cano, Marc; Notartomaso, Serena; Scarselli, Pamela; Di Pietro, Paola; Bresolí-Obach, Roger; Battaglia, Giuseppe; Malhaire, Fanny; Rovira, Xavier; Catena, Juanlo; Giraldo, Jesús; Pin, Jean-Philippe; Fernández-Dueñas, Víctor; Goudet, Cyril; Nonell, Santi; Nicoletti, Ferdinando; Llebaria, Amadeu; Ciruela, Francisco
2017-04-11
Light-operated drugs constitute a major target in drug discovery, since they may provide spatiotemporal resolution for the treatment of complex diseases (i.e. chronic pain). JF-NP-26 is an inactive photocaged derivative of the metabotropic glutamate type 5 (mGlu 5 ) receptor negative allosteric modulator raseglurant. Violet light illumination of JF-NP-26 induces a photochemical reaction prompting the active-drug's release, which effectively controls mGlu 5 receptor activity both in ectopic expressing systems and in striatal primary neurons. Systemic administration in mice followed by local light-emitting diode (LED)-based illumination, either of the thalamus or the peripheral tissues, induced JF-NP-26-mediated light-dependent analgesia both in neuropathic and in acute/tonic inflammatory pain models. These data offer the first example of optical control of analgesia in vivo using a photocaged mGlu 5 receptor negative allosteric modulator. This approach shows potential for precisely targeting, in time and space, endogenous receptors, which may allow a better management of difficult-to-treat disorders.
Waning of "conditioned pain modulation": a novel expression of subtle pronociception in migraine.
Nahman-Averbuch, Hadas; Granovsky, Yelena; Coghill, Robert C; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-01-01
To assess the decay of the conditioned pain modulation (CPM) response along repeated applications as a possible expression of subtle pronociception in migraine. One of the most explored mechanisms underlying the pain modulation system is "diffuse noxious inhibitory controls," which is measured psychophysically in the lab by the CPM paradigm. There are contradicting reports on CPM response in migraine, questioning whether migraineurs express pronociceptive pain modulation. Migraineurs (n = 26) and healthy controls (n = 35), all females, underwent 3 stimulation series, consisting of repeated (1) "test-stimulus" (Ts) alone that was given first followed by (2) parallel CPM application (CPM-parallel), and (3) sequential CPM application (CPM-sequential), in which the Ts is delivered during or following the conditioning-stimulus, respectively. In all series, the Ts repeated 4 times (0-3). In the CPM series, repetition "0" consisted of the Ts-alone that was followed by 3 repetitions of the Ts with a conditioning-stimulus application. Although there was no difference between migraineurs and controls for the first CPM response in each series, we found waning of CPM-parallel efficiency along the series for migraineurs (P = .005 for third vs first CPM), but not for controls. Further, greater CPM waning in the CPM-sequential series was correlated with less reported extent of pain reduction by episodic medication (r = 0.493, P = .028). Migraineurs have subtle deficits in endogenous pain modulation which requires a more challenging test protocol than the commonly used single CPM. Waning of CPM response seems to reveal this pronociceptive state. The clinical relevance of the CPM waning effect is highlighted by its association with clinical parameters of migraine. © 2013 American Headache Society.
Williams, Amy E.; Heitkemper, Margaret; Self, Mariella M.; Czyzewski, Danita I.; Shulman, Robert J.
2013-01-01
Endogenous pain-inhibition is often deficient in adults with chronic pain conditions including irritable bowel syndrome (IBS). It is unclear whether deficiencies in pain-inhibition are present in young children with IBS. The present study compared endogenous pain-inhibition, somatic pain threshold, and psychosocial distress in young girls with IBS versus controls. Girls with IBS did not show significant endogenous pain-inhibition of heat pain-threshold during a cold-pressor task in contrast to controls who had significant pain-inhibition. Girls with IBS did not differ from peers on measures of somatic pain but had more symptoms of depression, somatization, and anxiety than controls. When psychological variables were included as covariates the difference in pain-inhibition was no longer significant, although poor achieved power limits interpretation of these results. Higher-order cognitive processes including psychological variables may be contributing to observed pain-inhibition. In girls with IBS, pain-inhibition was positively related to the number of days without a bowel movement. To our knowledge, this is the first study to demonstrate deficiencies of endogenous pain-inhibition in young children with IBS. Findings have implications for better understanding of onset and maintenance of IBS and other chronic pain conditions. PMID:23685184
Van Den Houte, Maaike; Van Oudenhove, Lukas; Van Diest, Ilse; Bogaerts, Katleen; Persoons, Philippe; De Bie, Jozef; Van den Bergh, Omer
2018-01-01
Background: Several studies have shown that patients with functional somatic syndromes (FSS) have, on average, deficient endogenous pain modulation (EPM), as well as elevated levels of negative affectivity (NA) and high comorbidity with depression and reduced resting heart rate variability (HRV) compared to healthy controls (HC). The goals of this study were (1) to replicate these findings and (2) to investigate the moderating role of NA, depression, and resting HRV in EPM efficiency within a patient group with fibromyalgia and/or chronic fatigue syndrome (CFS). Resting HRV was quantified as the root mean square of successive differences between inter-beat intervals (RMSSD) in rest, a vagally mediated time domain measure of HRV. Methods: Seventy-eight patients with fibromyalgia and/or CFS and 33 HC completed a counter-irritation paradigm as a measure of EPM efficiency. Participants rated the painfulness of electrocutaneous stimuli (of individually calibrated intensity) on the ankle before (baseline phase), during (counter-irritation phase) and after (recovery phase) the application of a cold pain stimulus on the forearm. A larger reduction in pain in the counter-irritation phase compared to the baseline phase reflects a more efficient EPM. Results: In contrast to our expectations, there was no difference between pain ratings in the baseline compared to counter-irritation phase for both patients and HC. Therefore, reliable conclusions on the moderating effect of NA, depression, and RMSSD could not be made. Surprisingly, patients reported more pain in the recovery compared to the counter-irritation and baseline phase, while HC did not. This latter effect was more pronounced in patients with comorbid depression, patients who rated the painfulness of the counter-irritation stimulus as high and patients who rated the painfulness of the electrocutaneous stimuli as low. We did not manage to successfully replicate the counter-irritation effect in HC or FSS patients. Therefore, no valid conclusions on the association between RMSSD, depression, NA and EPM efficiency can be drawn from this study. Possible reasons for the lack of the counter-irritation effect are discussed.
Pillarisetti, Sivaram; Alexander, Christopher W; Khanna, Ish
2009-12-01
Fatty acid amide hydrolase (FAAH) is responsible for the hydrolysis of several important endogenous fatty acid amides (FAAs), including anandamide, oleoylethanolamide and palmitoylethanolamide. Because specific FAAs interact with cannabinoid and vanilloid receptors, they are often referred to as 'endocannabinoids' or 'endovanilloids'. Initial interest in this area, therefore, has focused on developing FAAH inhibitors to augment the actions of FAAs and reduce pain. However, recent literature has shown that these FAAs - through interactions with unique receptors (extracellular and intracellular) - can induce a diverse array of effects that include appetite suppression, modulation of lipid and glucose metabolism, vasodilation, cardiac function and inflammation. This review gives an overview of FAAs and diverse FAAH inhibitors and their potential therapeutic utility in pain and non-pain indications.
Wan, Dawn Wong Lit; Arendt-Nielsen, Lars; Wang, Kelun; Xue, Charlie Changli; Wang, Yanyi; Zheng, Zhen
2018-03-27
Healthy humans can be divided into the pain adaptive (PA) and the pain nonadaptive (PNA) groups; PA showed a greater decrease in pain rating to a cold pressor test (CPT) than PNA. This study examined if the dichotomy of pain adaptability existed in individuals with chronic musculoskeletal pain. CPTs at 2°C and 7°C were used to assess the status of pain adaptability in participants with either chronic nonspecific low back pain or knee osteoarthritis. The participants' potency of conditioned pain modulation (CPM) and local inhibition were measured. The strengths of pain adaptability at both CPTs were highly correlated. PA and PNA did not differ in their demographic characteristics, pain thresholds from thermal and pressure stimuli, or potency of local inhibition or CPM. PA reached their maximum pain faster than PNA (t 41 = -2.76, P < .01), and had a gradual reduction of pain unpleasantness over 7 days whereas PNA did not (F 6,246 = 3.01, P = .01). The dichotomy of pain adaptability exists in musculoskeletal pain patients. Consistent with the healthy human study, the strength of pain adaptability and potency of CPM are not related. Pain adaptability could be another form of endogenous pain inhibition of which clinical implication is yet to be understood. The dichotomy of pain adaptability was identified in healthy humans. The current study confirms that this dichotomy also exists in individuals with chronic musculoskeletal pain, and could be reliably assessed with CPTs at 2°C and 7°C. Similar to the healthy human study, pain adaptability is not associated with CPM, and may reflect the temporal aspect of pain inhibition. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Granot, Michal; Weissman-Fogel, Irit; Crispel, Yonathan; Pud, Dorit; Granovsky, Yelena; Sprecher, Elliot; Yarnitsky, David
2008-05-01
Descending modulation of pain can be demonstrated psychophysically by dual pain stimulation. This study evaluates in 31 healthy subjects the association between parameters of the conditioning stimulus, gender and personality, and the endogenous analgesia (EA) extent assessed by diffuse noxious inhibitory control (DNIC) paradigm. Contact heat pain was applied as the test stimulus to the non-dominant forearm, with stimulation temperature at a psychophysical intensity score of 60 on a 0-100 numerical pain scale. The conditioning stimulus was a 60s immersion of the dominant hand in cold (12, 15, 18 degrees C), hot (44 and 46.5 degrees C), or skin temperature (33 degrees C) water. The test stimulus was repeated on the non-dominant hand during the last 30s of the conditioning immersion. EA extent was calculated as the difference between pain scores of the two test stimuli. State and trait anxiety and pain catastrophizing scores were assessed prior to stimulation. EA was induced only for the pain-generating conditioning stimuli at 46.5 degrees C (p=0.011) and 12 degrees C (p=0.003). EA was independent of conditioning pain modality, or personality, but a significant gender effect was found, with greater EA response in males. Importantly, pain scores of the conditioning stimuli were not correlated with EA extent. The latter is based on both our study population, and on additional 82 patients, who participated in another study, in which EA was induced by immersion at 46.5 degrees C. DNIC testing, thus, seems to be relatively independent of the stimulation conditions, making it an easy to apply tool, suitable for wide range applications in pain psychophysics.
Cannabinoids and Pain: Sites and Mechanisms of Action.
Starowicz, Katarzyna; Finn, David P
2017-01-01
The endocannabinoid system, consisting of the cannabinoid 1 receptor (CB 1 R) and cannabinoid 2 receptor (CB 2 R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB 1 R and CB 2 R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB 1 R agonists, CB 2 R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB 1 R/non-CB 2 R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders. © 2017 Elsevier Inc. All rights reserved.
Manzanares, J; Julian, Md; Carrascosa, A
2006-07-01
Cannabis extracts and synthetic cannabinoids are still widely considered illegal substances. Preclinical and clinical studies have suggested that they may result useful to treat diverse diseases, including those related with acute or chronic pain. The discovery of cannabinoid receptors, their endogenous ligands, and the machinery for the synthesis, transport, and degradation of these retrograde messengers, has equipped us with neurochemical tools for novel drug design. Agonist-activated cannabinoid receptors, modulate nociceptive thresholds, inhibit release of pro-inflammatory molecules, and display synergistic effects with other systems that influence analgesia, especially the endogenous opioid system. Cannabinoid receptor agonists have shown therapeutic value against inflammatory and neuropathic pains, conditions that are often refractory to therapy. Although the psychoactive effects of these substances have limited clinical progress to study cannabinoid actions in pain mechanisms, preclinical research is progressing rapidly. For example, CB(1)mediated suppression of mast cell activation responses, CB(2)-mediated indirect stimulation of opioid receptors located in primary afferent pathways, and the discovery of inhibitors for either the transporters or the enzymes degrading endocannabinoids, are recent findings that suggest new therapeutic approaches to avoid central nervous system side effects. In this review, we will examine promising indications of cannabinoid receptor agonists to alleviate acute and chronic pain episodes. Recently, Cannabis sativa extracts, containing known doses of tetrahydrocannabinol and cannabidiol, have granted approval in Canada for the relief of neuropathic pain in multiple sclerosis. Further double-blind placebo-controlled clinical trials are needed to evaluate the potential therapeutic effectiveness of various cannabinoid agonists-based medications for controlling different types of pain.
Age-Dependent Decline of Endogenous Pain Control: Exploring the Effect of Expectation and Depression
Grashorn, Wiebke; Sprenger, Christian; Forkmann, Katarina; Wrobel, Nathalie; Bingel, Ulrike
2013-01-01
Although chronic pain affects all age ranges, it is particularly common in the elderly. One potential explanation for the high prevalence of chronic pain in the older population is impaired functioning of the descending pain inhibitory system which can be studied in humans using conditioned pain modulation (CPM) paradigms. In this study we investigated (i) the influence of age on CPM and (ii) the role of expectations, depression and gender as potential modulating variables of an age-related change in CPM. 64 healthy volunteers of three different age groups (young = 20–40 years, middle-aged = 41–60 years, old = 61–80 years) were studied using a classical CPM paradigm that combined moderate heat pain stimuli to the right forearm as test stimuli (TS) and immersion of the contralateral foot into ice water as the conditioning stimulus (CS). The CPM response showed an age-dependent decline with strong CPM responses in young adults but no significant CPM responses in middle-aged and older adults. These age-related changes in CPM responses could not be explained by expectations of pain relief or depression. Furthermore, changes in CPM responses did not differ between men and women. Our results strongly support the notion of a genuine deterioration of descending pain inhibitory mechanisms with age. PMID:24086595
Functional abdominal pain syndrome.
Clouse, Ray E; Mayer, Emeran A; Aziz, Qasim; Drossman, Douglas A; Dumitrascu, Dan L; Mönnikes, Hubert; Naliboff, Bruce D
2006-04-01
Functional abdominal pain syndrome (FAPS) differs from the other functional bowel disorders; it is less common, symptoms largely are unrelated to food intake and defecation, and it has higher comorbidity with psychiatric disorders. The etiology and pathophysiology are incompletely understood. Because FAPS likely represents a heterogeneous group of disorders, peripheral neuropathic pain mechanisms, alterations in endogenous pain modulation systems, or both may be involved in any one patient. The diagnosis of FAPS is made on the basis of positive symptom criteria and a longstanding history of symptoms; in the absence of alarm symptoms, an extensive diagnostic evaluation is not required. Management is based on a therapeutic physician-patient relationship and empirical treatment algorithms using various classes of centrally acting drugs, including antidepressants and anticonvulsants. The choice, dose, and combination of drugs are influenced by psychiatric comorbidities. Psychological treatment options include psychotherapy, relaxation techniques, and hypnosis. Refractory FAPS patients may benefit from a multidisciplinary pain clinic approach.
The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli
Schoell, Eszter D.; Bingel, Ulrike; Eippert, Falk; Yacubian, Juliana; Christiansen, Kerrin; Andresen, Hilke; May, Arne; Buechel, Christian
2010-01-01
The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone. PMID:20811582
Endogenous opioidergic dysregulation of pain in fibromyalgia: a PET and fMRI study.
Schrepf, Andrew; Harper, Daniel E; Harte, Steven E; Wang, Heng; Ichesco, Eric; Hampson, Johnson P; Zubieta, Jon-Kar; Clauw, Daniel J; Harris, Richard E
2016-10-01
Endogenous opioid system dysfunction potentially contributes to chronic pain in fibromyalgia (FM), but it is unknown if this dysfunction is related to established neurobiological markers of hyperalgesia. We previously reported that µ-opioid receptor (MOR) availability was reduced in patients with FM as compared with healthy controls in several pain-processing brain regions. In the present study, we compared pain-evoked functional magnetic resonance imaging with endogenous MOR binding and clinical pain ratings in female opioid-naive patients with FM (n = 18) using whole-brain analyses and regions of interest from our previous research. Within antinociceptive brain regions, including the dorsolateral prefrontal cortex (r = 0.81, P < 0.001) and multiple regions of the anterior cingulate cortex (all r > 0.67; all P < 0.02), reduced MOR availability was associated with decreased pain-evoked neural activity. Additionally, reduced MOR availability was associated with lower brain activation in the nucleus accumbens (r = 0.47, P = 0.050). In many of these regions, pain-evoked activity and MOR binding potential were also associated with lower clinical affective pain ratings. These findings are the first to link endogenous opioid system tone to regional pain-evoked brain activity in a clinical pain population. Our data suggest that dysregulation of the endogenous opioid system in FM could lead to less excitation in antinociceptive brain regions by incoming noxious stimulation, resulting in the hyperalgesia and allodynia commonly observed in this population. We propose a conceptual model of affective pain dysregulation in FM.
Potvin, Stéphane; Marchand, Serge
2016-08-01
Although fibromyalgia (FM) is associated with a deficit in inhibitory conditioned pain modulation (CPM), the discriminative power of CPM procedures is unknown. Moreover, the high intersubject heterogeneity in CPM responses in FM raises the possibility that a sizeable subgroup of these patients may experience pain facilitation during CPM, but the phenomenon has not been explicitly studied. To address these issues, 96 patients with FM and 71 healthy controls were recruited. Thermal stimuli were used to measure pain thresholds. Pain inhibition was elicited using a tonic thermal test (Peltier thermode) administered before and after activation of CPM mechanisms using a cold pressor test. Thermal pain thresholds were lower in patients with FM than in healthy controls. Pain ratings during the cold pressor test were higher in patients with FM, relative to controls. The CPM inhibitory efficacy was lower in patients with FM than in controls. The CPM procedure had good specificity (78.9%) but low sensitivity (45.7%), whereas a composite pain index had good sensitivity (75.0%) and specificity (78.9%). Finally, the rate of patients with FM who reported pain facilitation during the CPM procedure was found to be significantly increased compared with that of controls (41.7% vs 21.2%). The good discriminative power of the composite pain index highlights the need for further validation studies using mechanistically relevant psychophysical procedures in FM. The low sensitivity of the CPM procedure, combined with the large proportion of patients with FM experiencing pain facilitation during CPM, strongly suggests that endogenous pain inhibition mechanisms are deeply impaired in patients with FM, but only in a subgroup of them.
Filingeri, Davide; Morris, Nathan B; Jay, Ollie
2017-01-01
What is the central question of this study? Investigations on inhibitory/facilitatory modulation of vision, touch and pain show that conditioning stimuli outside the receptive field of testing stimuli modulate the central processing of visual, touch and painful stimuli. We asked whether contextual modulation also exists in human temperature integration. What is the main finding and its importance? Progressive decreases in whole-body mean skin temperature (the conditioning stimulus) significantly increased local thermosensitivity to skin warming but not cooling (the testing stimuli) in a dose-dependent fashion. In resembling the central mechanisms underlying endogenous analgesia, our findings point to the existence of an endogenous thermosensory system in humans that could modulate local skin thermal sensitivity to facilitate thermal behaviour. Although inhibitory/facilitatory central modulation of vision and pain has been investigated, contextual modulation of skin temperature integration has not been explored. Hence, we tested whether progressive decreases in whole-body mean skin temperature (T sk ; a large conditioning stimulus) alter the magnitude estimation of local warming and cooling stimuli applied to hairy and glabrous skin. On four separate occasions, eight men (27 ± 5 years old) underwent a 30 min whole-body cooling protocol (water-perfused suit; temperature, 5°C), during which a quantitative thermosensory test, consisting of reporting the perceived magnitude of warming and cooling stimuli (±8°C from 30°C baseline) applied to the hand (palm/dorsum) and foot (sole/dorsum), was performed before cooling and every 10 min thereafter. The cooling protocol resulted in large progressive reductions in T sk [10 min, -3.36°C (95% confidence interval -2.62 to -4.10); 20 min, -5.21°C (-4.47 to -5.95); and 30 min, -6.32°C (-5.58 to -7.05); P < 0.001], with minimal changes (∼0.08°C) in rectal temperature. While thermosensitivity to local skin cooling remained unchanged (P = 0.831), sensitivity to skin warming increased significantly at each level of T sk for all skin regions [10 min, +4.9% (-1.1 to +11.0); 20 min, +6.1% (+0.1-12.2); and 30 min, +7.9% (+1.9-13.9); P = 0.009]. Linear regression indicated a 1.2% °C -1 increase in warm thermosensitivity with whole-body skin cooling. Overall, large decreases in T sk significantly facilitated warm but not cold sensory processing of local thermal stimuli, in a dose-dependent fashion. In highlighting a novel feature of human temperature integration, these findings point to the existence of an endogenous thermosensory system that could modulate local skin thermal sensitivity in relationship to whole-body thermal states. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Influence of Dopaminergic Medication on Conditioned Pain Modulation in Parkinson's Disease Patients
Buhmann, Carsten; Forkmann, Katarina; Diedrich, Sabrina; Wesemann, Katharina; Bingel, Ulrike
2015-01-01
Background Pain is highly prevalent in patients with Parkinson’s disease (PD), but little is known about the underlying pathophysiological mechanisms. The susceptibility to pain is known to depend on ascending and descending pathways. Because parts of the descending pain inhibitory system involve dopaminergic pathways, dysregulations in dopaminergic transmission might contribute to altered pain processing in PD. Deficits in endogenous pain inhibition can be assessed using conditioned pain modulation (CPM) paradigms. Methods Applying such a paradigm, we investigated i) whether CPM responses differ between PD patients and healthy controls, ii) whether they are influenced by dopaminergic medication and iii) whether there are effects of disease-specific factors. 25 patients with idiopathic PD and 30 healthy age- and gender-matched controls underwent an established CPM paradigm combining heat pain test stimuli at the forearm and the cold pressor task on the contralateral foot as the conditioning stimulus. PD patients were tested under dopaminergic medication and after at least 12 hours of medication withdrawal. Results No significant differences between CPM responses of PD patients and healthy controls or between PD patients “on” and “off” medication were found. These findings suggest (i) that CPM is insensitive to dopaminergic modulations and (ii) that PD is not related to general deficits in descending pain inhibition beyond the known age-related decline. However, at a trend level, we found differences between PD subtypes (akinetic-rigid, tremor-dominant, mixed) with the strongest impairment of pain inhibition in the akinetic-rigid subtype. Conclusions There were no significant differences between CPM responses of patients compared to healthy controls or between patients “on” and “off” medication. Differences between PD subtypes at a trend level point towards different pathophysiological mechanisms underlying the three PD subtypes which warrant further investigation and potentially differential therapeutic strategies in the future. PMID:26270817
Moritaka, Kentaro; Zeredo, Jorge L; Kimoto, Mari; Nasution, Fajar H; Hirano, Takafumi; Toda, Kazuo
2010-01-01
A descending inhibitory mechanism from the periaqueductal gray (PAG) to the spinal cord through the nucleus raphe magnus (NRM) is strongly involved in endogenous analgesic system produced by acupuncture stimulation. In addition to the PAG to NRM system which descends in the medial pathway of the brain stem, the nucleus reticularis lateralis (NRL) situated in the lateral part of the brain stem is reported to play an important role in modulating centrifugal antinociceptive action. In the present study, to clarify the role of NRL in acupuncture analgesia, we investigated the response properties of NRL neurons to acupuncture stimulation. The majority of NRM-projecting NRL neurons were inhibited by electroacupuncture stimulation. This effect was antagonized by ionophoretic application of naloxone, indicating that endogenous opioids act directly onto these NRL neurons. By contrast, about half of spinal projecting NRL neurons were excited by electroacupuncture stimulation, suggesting that part of the NRL neurons may modulate pain transmission directly at the spinal level.
Martel, Marc O; Wasan, Ajay D; Edwards, Robert R
2013-11-01
To examine the temporal stability of conditioned pain modulation (CPM), formerly termed diffuse noxious inhibitory controls, among a sample of patients with chronic pain. The study also examined the factors that might be responsible for the stability of CPM. In this test-retest study, patients underwent a series of standardized psychophysical pain-testing procedures designed to assess CPM on two separate occasions (i.e., baseline and follow up). Patients also completed self-report measures of catastrophizing (Pain Catastrophizing Scale [PCS] and negative affect [NA]). Overall, results provided evidence for the stability of CPM among patients with chronic pain. Results, however, revealed considerable sex differences in the stability of CPM. For women, results revealed a significant test-retest correlation between baseline and follow-up CPM scores. For men, however, the test-retest correlation between baseline and follow-up CPM scores was not significant. Results of a Fisher's Z-test revealed that the stability of CPM was significantly greater for women than for men. Follow-up analyses revealed that the difference between men and women in the stability of CPM could not be accounted for by any demographic (e.g., age) and/or psychological factors (PCS and NA). Our findings suggest that CPM paradigms possess sufficient reliability to be incorporated into bedside clinical evaluation of patients with chronic pain, but only among women. The lack of CPM reproducibility/stability observed among men places limits on the potential use of CPM paradigms in clinical settings for the assessment of men's endogenous pain-inhibitory function. Wiley Periodicals, Inc.
Cheriyan, John; Sheets, Patrick L
2018-05-16
The medial prefrontal cortex (mPFC) plays a major role in both sensory and affective aspects of pain. There is extensive evidence that chronic pain produces functional changes within the mPFC. However, our understanding of local circuit changes to defined subpopulations of mPFC neurons in chronic pain models remains unclear. A major subpopulation of mPFC neurons project to the periaqueductal gray (PAG), which is a key midbrain structure involved in endogenous pain suppression and facilitation. Here, we used laser scanning photostimulation of caged glutamate to map cortical circuits of retrogradely labeled cortico-PAG (CP) neurons in layer 5 (L5) of mPFC in brain slices prepared from male mice having undergone chronic constriction injury (CCI) of the sciatic nerve. Whole-cell recordings revealed a significant reduction in excitability for L5 CP neurons contralateral to CCI in the prelimbic (PL), but not infralimbic (IL), region of mPFC. Circuit mapping showed that excitatory inputs to L5 CP neurons in both PL and IL arose primarily from layer 2/3 (L2/3) and were significantly reduced in CCI mice. Glutamate stimulation of L2/3 and L5 elicited inhibitory inputs to CP neurons in both PL and IL, but only L2/3 input was significantly reduced in CP neurons of CCI mice. We also observed significant reduction in excitability and L2/3 inhibitory input to CP neurons ipsilateral to CCI. These results demonstrating region and laminar specific changes to mPFC-PAG neurons suggest that a unilateral CCI bilaterally alters cortical circuits upstream of the endogenous analgesic network, which may contribute to persistence of chronic pain. SIGNIFICANCE STATEMENT Chronic pain is a significant unresolved medical problem that is refractory to traditional analgesics and can negatively affect emotional health. The role of central circuits in mediating the persistent nature of chronic pain remains unclear. Local circuits within the medial prefrontal cortex (mPFC) process ascending pain inputs and can modulate endogenous analgesia via direct projections to the periaqueductal gray (PAG). However, the mechanisms by which chronic pain alters intracortical circuitry of mPFC-PAG neurons are unknown. Here, we report specific changes to local circuits of mPFC-PAG neurons in mice displaying chronic pain behavior after nerve injury. These findings provide evidence for a neural mechanism by which chronic pain disrupts the descending analgesic system via functional changes to cortical circuits. Copyright © 2018 the authors 0270-6474/18/384829-11$15.00/0.
[Hypertension, cardiovascular reactivity to stress and sensibility to pain].
Conde-Guzón, P A; Bartolomé-Albistegui, M T; Quirós-Expósito, P; Grzib-Schlosky, G
To provide a review of empirical evidence of decreased pain perception in hypertensive persons or exaggerated cardiovascular reactivity to stress. To following article will briefly review the existing literature on the association between hypoalgesia and high blood pressure. In particular, evidence of hypoalgesia in normotensive individuals at increased risk for hypertension (exaggerated cardiovascular reactivity to stress) will be offered in support of the notion that high cardiovascular reactivity to stress and decreased pain perception may result from a common physiological dysfunction. Cardiovascular reactivity refers to changes in cardiovascular activity associated primarily with exposure to psychological stress. Different individuals show different amounts of reactivity under the same conditions. The greater cardiovascular reactivity to behavioral stressors may play some role in the development of sustained arterial hypertension. Central opioid hyposensitivity is hypothesized as a mechanism of both hypoalgesia and exaggerated autonomic and neuroendocrine responses to stress in individuals at risk for hypertension. The paraventricular nucleus of the hypothalamus (PVN) serves the crucial function of integrating cardiovascular and painful responses. The central opioid hyposensitivity model of hypoalgesia asserts that attenuation of inhibitory opioid input to the PVN may have important consequences for pain modulation. These consequences includes: 1) greater activation of baroreceptor reflex arcs, 2) enhanced release of endogenous opioids during stress, and 3) increased stimulation of descending pain modulation pathways. High elevated thresholds to painful thermal stressors might serve as a behavioral marker of risk for hypertension before the onset of high blood pressure levels.
The future of type 1 cannabinoid receptor allosteric ligands.
Alaverdashvili, Mariam; Laprairie, Robert B
2018-02-01
Allosteric modulation of the type 1 cannabinoid receptor (CB1R) holds great therapeutic potential. This is because allosteric modulators do not possess intrinsic efficacy, but instead augment (positive allosteric modulation) or diminish (negative allosteric modulation) the receptor's response to endogenous ligand. Consequently, CB1R allosteric modulators have an effect ceiling which allows for the tempering of CB1R signaling without the desensitization, tolerance, dependence, and psychoactivity associated with orthosteric compounds. Pain, movement disorders, epilepsy, obesity are all potential therapeutic targets for CB1R allosteric modulation. Several challenges exist for the development of CB1R allosteric modulators, such as receptor subtype specificity, translation to in vivo systems, and mixed allosteric/agonist/inverse agonist activity. Despite these challenges, elucidation of crystal structures of CB1R and compound design based on structure-activity relationships will advance the field. In this review, we will cover recent progress for CB1R allosteric modulators and discuss the future promise of this research.
Fingleton, Caitríona; Smart, Keith M; Doody, Catherine M
2017-05-01
Normal efficiency of exercise-induced hypoalgesia (EIH) has been demonstrated in people with knee osteoarthritis (OA), while recent evidence suggests that EIH may be associated with features of pain sensitization such as abnormal conditioned pain modulation (CPM). The aim of this study was to investigate whether people with knee OA with abnormal CPM have dysfunctional EIH compared with those with normal CPM and pain-free controls. Forty peoples with knee OA were subdivided into groups with abnormal and normal CPM, as determined by a decrease/increase in pressure pain thresholds (PPTs) following the cold pressor test. Abnormal CPM (n=19), normal CPM (n=21), and control participants (n=20) underwent PPT testing before, during, and after aerobic and isometric exercise protocols. Between-group differences were analyzed using repeated-measures analysis of variance and within-group differences were analyzed using Wilcoxon signed-rank tests. Significant differences were demonstrated between groups for changes in PPTs postaerobic (F2,55=4.860; P=0.011) and isometric (F2,57=4.727; P=0.013) exercise, with significant decreases in PPTs demonstrated during and postexercise in the abnormal CPM group (P<0.05), and significant increases in PPTs shown during and postexercise in the normal CPM and control groups (P<0.05). Results are suggestive of dysfunctional EIH in response to aerobic and isometric exercise in knee OA patients with abnormal CPM, and normal function of EIH in knee OA patients with an efficient CPM response. Identification of people with knee OA with inefficient endogenous pain modulation may allow for a more individualized and graded approach to exercises in these individuals.
Mindfulness-Meditation-Based Pain Relief Is Not Mediated by Endogenous Opioids.
Zeidan, Fadel; Adler-Neal, Adrienne L; Wells, Rebecca E; Stagnaro, Emily; May, Lisa M; Eisenach, James C; McHaffie, John G; Coghill, Robert C
2016-03-16
Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably attenuates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg/kg/h infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when compared to the control + saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no significant differences in pain intensity or pain unpleasantness reductions between the meditation + naloxone and the meditation + saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioidergic mechanisms to reduce pain. Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms supporting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and placebo saline. The results demonstrate that meditation-based pain relief does not require endogenous opioids. Therefore, the treatment of chronic pain may be more effective with meditation due to a lack of cross-tolerance with opiate-based medications. Copyright © 2016 the authors 0270-6474/16/363391-07$15.00/0.
Mindfulness-Meditation-Based Pain Relief Is Not Mediated by Endogenous Opioids
Adler-Neal, Adrienne L.; Wells, Rebecca E.; Stagnaro, Emily; May, Lisa M.; Eisenach, James C.; McHaffie, John G.; Coghill, Robert C.
2016-01-01
Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably attenuates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg/kg/h infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when compared to the control + saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no significant differences in pain intensity or pain unpleasantness reductions between the meditation + naloxone and the meditation + saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioidergic mechanisms to reduce pain. SIGNIFICANCE STATEMENT Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms supporting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and placebo saline. The results demonstrate that meditation-based pain relief does not require endogenous opioids. Therefore, the treatment of chronic pain may be more effective with meditation due to a lack of cross-tolerance with opiate-based medications. PMID:26985045
Martel, MO; Wasan, AD; Edwards, RR
2013-01-01
Objectives To examine the temporal stability of conditioned pain modulation (CPM), formerly termed diffuse noxious inhibitory controls (DNIC), among a sample of patients with chronic pain. The study also examined the factors that might be responsible for the stability of CPM. Design & subjects, and methods In this test-retest study, patients underwent a series of standardized psychophysical pain testing procedures designed to assess CPM on two separate occasions (i.e., baseline, follow-up). Patients also completed self-report measures of catastrophizing (PCS) and negative affect (NA). Results Overall, results provided evidence for the stability of CPM among patients with chronic pain. Results, however, revealed considerable sex differences in the stability of CPM. For women, results revealed a significant test-retest correlation between baseline and follow-up CPM scores. For men, however, the test-retest correlation between baseline and follow-up CPM scores was not significant. Results of a Fisher’s Z-test revealed that the stability of CPM was significantly greater for women than for men. Follow-up analyses revealed that the difference between men and women in the stability of CPM could not be accounted for by any demographic (e.g., age) and/or psychologic factors (PCS, NA). Conclusions Our findings suggest that CPM paradigms possess sufficient reliability to be incorporated into bedside clinical evaluation of patients with chronic pain, but only among women. The lack of CPM reproducibility/stability observed among men places limits on the potential use of CPM paradigms in clinical settings for the assessment of men’s endogenous pain-inhibitory function. PMID:23924369
2014-01-01
Background The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. Methods The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. Results An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. Conclusion These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation. PMID:24884961
Modulators of Nucleoside Metabolism in the Therapy of Brain Diseases
Boison, Detlev
2010-01-01
Nucleoside receptors are known to be important targets for a variety of brain diseases. However, the therapeutic modulation of their endogenous agonists by inhibitors of nucleoside metabolism represents an alternative therapeutic strategy that has gained increasing attention in recent years. Deficiency in endogenous nucleosides, in particular of adenosine, may causally be linked to a variety of neurological diseases and neuropsychiatric conditions ranging from epilepsy and chronic pain to schizophrenia. Consequently, augmentation of nucleoside function by inhibiting their metabolism appears to be a rational therapeutic strategy with distinct advantages: (i) in contrast to specific receptor modulation, the increase (or decrease) of the amount of a nucleoside will affect several signal transduction pathways simultaneously and therefore have the unique potential to modify complex neurochemical networks; (ii) by acting on the network level, inhibitors of nucleoside metabolism are highly suited to fine-tune, restore, or amplify physiological functions of nucleosides; (iii) therefore inhibitors of nucleoside metabolism have promise for the “soft and smart” therapy of neurological diseases with the added advantage of reduced systemic side effects. This review will first highlight the role of nucleoside function and dysfunction in physiological and pathophysiological situations with a particular emphasis on the anticonvulsant, neuroprotective, and antinociceptive roles of adenosine. The second part of this review will cover pharmacological approaches to use inhibitors of nucleoside metabolism, with a special emphasis on adenosine kinase, the key regulator of endogenous adenosine. Finally, novel gene-based therapeutic strategies to inhibit nucleoside metabolism and focal treatment approaches will be discussed. PMID:21401494
Van Oosterwijck, Jessica; Meeus, Mira; Paul, Lorna; De Schryver, Mieke; Pascal, Aurelie; Lambrecht, Luc; Nijs, Jo
2013-10-01
There is evidence that education on pain physiology can have positive effects on pain, disability, and catastrophization in patients with chronic musculoskeletal pain disorders. A double-blind randomized controlled trial (RCT) was performed to examine whether intensive pain physiology education is also effective in fibromyalgia (FM) patients, and whether it is able to influence the impaired endogenous pain inhibition of these patients. Thirty FM patients were randomly allocated to either the experimental (receiving pain physiology education) or the control group (receiving pacing self-management education). The primary outcome was the efficacy of the pain inhibitory mechanisms, which was evaluated by spatially accumulating thermal nociceptive stimuli. Secondary outcome measures included pressure pain threshold measurements and questionnaires assessing pain cognitions, behavior, and health status. Assessments were performed at baseline, 2 weeks, and 3 months follow-up. Repeated measures ANOVAS were used to reveal possible therapy effects and effect sizes were calculated. After the intervention the experimental group had improved knowledge of pain neurophysiology (P<0.001). Patients from this group worried less about their pain in the short term (P=0.004). Long-term improvements in physical functioning (P=0.046), vitality (P=0.047), mental health (P<0.001), and general health perceptions (P<0.001) were observed. In addition, the intervention group reported lower pain scores and showed improved endogenous pain inhibition (P=0.041) compared with the control group. These results suggest that FM patients are able to understand and remember the complex material about pain physiology. Pain physiology education seems to be a useful component in the treatment of FM patients as it improves health status and endogenous pain inhibition in the long term.
Bruehl, Stephen; Burns, John W.; Gupta, Rajnish; Buvanendran, Asokumar; Chont, Melissa; Schuster, Erik; France, Christopher R.
2014-01-01
Background and Objectives Factors underlying differential responsiveness to opioid analgesic medications used in chronic pain management are poorly understood. We tested whether individual differences in endogenous opioid inhibition of chronic low back pain were associated with magnitude of acute reductions in back pain ratings following morphine administration. Methods In randomized, counterbalanced order over three sessions, 50 chronic low back pain patients received intravenous naloxone (8mg), morphine (0.08 mg/kg), or placebo. Back pain intensity was rated pre-drug and again after peak drug activity was achieved using the McGill Pain Questionnaire-Short Form (Sensory and Affective subscales, VAS intensity measure). Opioid blockade effect measures to index degree of endogenous opioid inhibition of back pain intensity were derived as the difference between pre-to post-drug changes in pain intensity across placebo and naloxone conditions, with similar morphine responsiveness measures derived across placebo and morphine conditions. Results Morphine significantly reduced back pain compared to placebo (MPQ-Sensory, VAS; P < .01). There were no overall effects of opioid blockade on back pain intensity. However, individual differences in opioid blockade effects were significantly associated with degree of acute morphine-related reductions in back pain on all measures, even after controlling for effects of age, sex, and chronic pain duration (P < .03). Individuals exhibiting greater endogenous opioid inhibition of chronic back pain intensity reported less acute relief of back pain with morphine. Conclusions Morphine appears to provide better acute relief of chronic back pain in individuals with lower natural opioidergic inhibition of chronic pain intensity. Possible implications for personalized medicine are discussed. PMID:24553304
Stress antagonizes morphine-induced analgesia in rats
NASA Technical Reports Server (NTRS)
Vernikos, J.; Shannon, L.; Heybach, J. P.
1981-01-01
Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.
Li, Zheng-Wei; Wu, Bin; Ye, Pin; Tan, Zhi-Yong; Ji, Yong-Hua
2016-12-01
A previous study found that brain natriuretic peptide (BNP) inhibited inflammatory pain via activating its receptor natriuretic peptide receptor A (NPRA) in nociceptive sensory neurons. A recent study found that functional NPRA is expressed in almost all the trigeminal ganglion (TG) neurons at membrane level suggesting a potentially important role for BNP in migraine pathophysiology. An inflammatory pain model was produced by subcutaneous injection of BmK I, a sodium channel-specific modulator from venom of Chinese scorpion Buthus martensi Karsch. Quantitative PCR, Western Blot, and immunohistochemistry were used to detect mRNA and protein expression of BNP and NPRA in dorsal root ganglion (DRG) and dorsal horn of spinal cord. Whole-cell patch clamping experiments were conducted to record large-conductance Ca 2+ -activated K + (BK Ca ) currents of membrane excitability of DRG neurons. Spontaneous and evoked pain behaviors were examined. The mRNA and protein expression of BNP and NPRA was up-regulated in DRG and dorsal horn of spinal cord after BmK I injection. The BNP and NPRA was preferentially expressed in small-sized DRG neurons among which BNP was expressed in both CGRP-positive and IB4-positive neurons while NPRA was preferentially expressed in CGRP-positive neurons. BNP increased the open probability of BK Ca channels and suppressed the membrane excitability of small-sized DRG neurons. Intrathecal injection of BNP significantly inhibited BmK-induced pain behaviors including both spontaneous and evoked pain behaviors. These results suggested that BNP might play an important role as an endogenous pain reliever in BmK I-induced inflammatory pain condition. It is also suggested that BNP might play a similar role in other pathophysiological pain conditions including migraine.
Wilder-Smith, Oliver Hamilton; Schreyer, Tobias; Scheffer, Gert Jan; Arendt-Nielsen, Lars
2010-06-01
Chronic pain is common and undesirable after surgery. Progression from acute to chronic pain involves altered pain processing. The authors studied relationships between presence of chronic pain versus preoperative descending pain control (diffuse noxious inhibitory controls; DNICs) and postoperative persistence and spread of skin and deep tissue hyperalgesia (change in electric/pressure pain tolerance thresholds; ePTT/pPTT) up to 6 months postoperatively. In 20 patients undergoing elective major abdominal surgery under standardized anesthesia, we determined ePTT/pPTT (close to [abdomen] and distant from [leg] incision), eDNIC/pDNIC (change in ePTT/pPTT with cold pressor pain task; only preoperatively), and a 100 mm long pain visual analogue scale (VAS) (0 mm = no pain, 100 mm = worst pain imaginable), both at rest and on movement preoperatively, and 1 day and 1, 3, and 6 months postoperatively. Patients reporting chronic pain 6 months postoperatively had more abdominal and leg skin hyperalgesia over the postoperative period. More inhibitory preoperative eDNIC was associated with less late postoperative pain, without affecting skin hyperalgesia. More inhibitory pDNIC was linked to less postoperative leg deep tissue hyperalgesia, without affecting pain VAS. This pilot study for the first time links chronic pain after surgery, poorer preoperative inhibitory pain modulation (DNIC), and greater postoperative degree, persistence, and spread of hyperalgesia. If confirmed, these results support the potential clinical utility of perioperative pain processing testing.
Burford, N T; Traynor, J R; Alt, A
2015-01-01
Morphine and other agonists of the μ-opioid receptor are used clinically for acute and chronic pain relief and are considered to be the gold standard for pain medication. However, these opioids also have significant side effects, which are also mediated via activation of the μ-opioid receptor. Since the latter half of the twentieth century, researchers have sought to tease apart the mechanisms underlying analgesia, tolerance and dependence, with the hope of designing drugs with fewer side effects. These efforts have revolved around the design of orthosteric agonists with differing pharmacokinetic properties and/or selectivity profiles for the different opioid receptor types. Recently, μ-opioid receptor-positive allosteric modulators (μ-PAMs) were identified, which bind to a (allosteric) site on the μ-opioid receptor separate from the orthosteric site that binds an endogenous agonist. These allosteric modulators have little or no detectable functional activity when bound to the receptor in the absence of orthosteric agonist, but can potentiate the activity of bound orthosteric agonist, seen as an increase in apparent potency and/or efficacy of the orthosteric agonist. In this review, we describe the potential advantages that a μ-PAM approach might bring to the design of novel therapeutics for pain that may lack the side effects currently associated with opioid therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24460691
2014-01-01
Background Hydrogen sulfide (H2S), an endogenous gaseotransmitter/modulator, is becoming appreciated that it may be involved in a wide variety of processes including inflammation and nociception. However, the role for H2S in nociceptive processing in trigeminal ganglion (TG) neuron remains unknown. The aim of this study was designed to investigate whether endogenous H2S synthesizing enzyme cystathionine-β-synthetase (CBS) plays a role in inflammatory pain in temporomandibular joint (TMJ). Methods TMJ inflammatory pain was induced by injection of complete Freund’s adjuvant (CFA) into TMJ of adult male rats. Von Frey filaments were used to examine pain behavioral responses in rats following injection of CFA or normal saline (NS). Whole cell patch clamp recordings were employed on acutely isolated TG neurons from rats 2 days after CFA injection. Western blot analysis was carried out to measure protein expression in TGs. Results Injection of CFA into TMJ produced a time dependent hyperalgesia as evidenced by reduced escape threshold in rats responding to VFF stimulation. The reduced escape threshold was partially reversed by injection of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA), an inhibitor for CBS, in a dose-dependent manner. CFA injection led to a marked upregulation of CBS expression when compared with age-matched controls. CFA injection enhanced neuronal excitability as evidenced by depolarization of resting membrane potentials, reduction in rheobase, and an increase in number of action potentials evoked by 2 and 3 times rheobase current stimulation and by a ramp current stimulation of TG neurons innervating the TMJ area. CFA injection also led to a reduction of IK but not IA current density of TG neurons. Application of AOAA in TMJ area reduced the production of H2S in TGs and reversed the enhanced neural hyperexcitability and increased the IK currents of TG neurons. Conclusion These data together with our previous report indicate that endogenous H2S generating enzyme CBS plays an important role in TMJ inflammation, which is likely mediated by inhibition of IK currents, thus identifying a specific molecular mechanism underlying pain and sensitization in TMJ inflammation. PMID:24490955
Opioid modulation of reflex versus operant responses following stress in the rat.
King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P
2007-06-15
In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia.
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning ( P =0.007 and P =0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect ( P >0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation ( P =0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus ( P =0.269). The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Introduction Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Methods Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. Results In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning (P=0.007 and P=0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect (P>0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation (P=0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus (P=0.269). Conclusion The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls. PMID:27713648
1982-04-01
Hypothesis: leukocyte endogenous mediator/ endogenous pyrogen /lymphocyte-activating factor modulates the development of nonspecific and specific... endogenous pyrogen /lympho- NI cyte-activating factor (LEM/EP/LAF) integrates the host’s nonspecific and specific immune responses to infection by...mediator/ endogenous pyrogen /lymphocyte-activating factor, nonspecific and specific immunity, infection, metabolism, nutrition. Introduction LAF which lead
Interacting Effects of Trait Anger and Acute Anger Arousal on Pain: The Role of Endogenous Opioids
Bruehl, Stephen; Burns, John W.; Chung, Ok Yung; Chont, Melissa
2011-01-01
Objective Elevated trait anger (TRANG; heightened propensity to experience anger) is associated with greater pain responsiveness, possibly via associations with deficient endogenous opioid analgesia. This study tested whether acute anger arousal moderates the impact of TRANG on endogenous opioid analgesia. Methods 94 chronic low back pain participants (LBP) and 85 healthy controls received opioid blockade (8mg naloxone) or placebo in randomized, counterbalanced order in separate sessions. Participants were randomly assigned to undergo either a 5-minute anger recall interview (ARI) or neutral control interview (NCI) across both drug conditions. Immediately following the assigned interview, participants engaged sequentially in finger pressure and ischemic forearm pain tasks. Opioid blockade effects were derived (blockade minus placebo condition pain ratings) to index opioid antinociceptive function. Results Placebo condition TRANG × Interview interactions (p’s<.05) indicated that TRANG was hyperalgesic only in the context of acute anger arousal (ARI condition; p’s<.05). Blockade effect analyses suggested these hyperalgesic effects were related to deficient opioid analgesia. Significant TRANG × Interview interactions (p’s<.05) for both pain tasks indicated that elevated TRANG was associated with smaller blockade effects (less endogenous opioid analgesia) only in the ARI condition (p’s<.05). Results for ischemic task VAS intensity blockade effects suggested that associations between TRANG and impaired opioid function were most evident in LBP participants when experiencing anger (Type × Interview × TRANG Interaction; p<.05). Conclusions Results indicate that hyperalgesic effects of TRANG are most prominent when acute anger is aroused, and suggest that endogenous opioid mechanisms contribute. PMID:21862829
Social Laughter Triggers Endogenous Opioid Release in Humans.
Manninen, Sandra; Tuominen, Lauri; Dunbar, Robin I; Karjalainen, Tomi; Hirvonen, Jussi; Arponen, Eveliina; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko; Nummenmaa, Lauri
2017-06-21
The size of human social networks significantly exceeds the network that can be maintained by social grooming or touching in other primates. It has been proposed that endogenous opioid release after social laughter would provide a neurochemical pathway supporting long-term relationships in humans (Dunbar, 2012), yet this hypothesis currently lacks direct neurophysiological support. We used PET and the μ-opioid-receptor (MOR)-specific ligand [ 11 C]carfentanil to quantify laughter-induced endogenous opioid release in 12 healthy males. Before the social laughter scan, the subjects watched laughter-inducing comedy clips with their close friends for 30 min. Before the baseline scan, subjects spent 30 min alone in the testing room. Social laughter increased pleasurable sensations and triggered endogenous opioid release in thalamus, caudate nucleus, and anterior insula. In addition, baseline MOR availability in the cingulate and orbitofrontal cortices was associated with the rate of social laughter. In a behavioral control experiment, pain threshold-a proxy of endogenous opioidergic activation-was elevated significantly more in both male and female volunteers after watching laughter-inducing comedy versus non-laughter-inducing drama in groups. Modulation of the opioidergic activity by social laughter may be an important neurochemical pathway that supports the formation, reinforcement, and maintenance of human social bonds. SIGNIFICANCE STATEMENT Social contacts are vital to humans. The size of human social networks significantly exceeds the network that can be maintained by social grooming in other primates. Here, we used PET to show that endogenous opioid release after social laughter may provide a neurochemical mechanism supporting long-term relationships in humans. Participants were scanned twice: after a 30 min social laughter session and after spending 30 min alone in the testing room (baseline). Endogenous opioid release was stronger after laughter versus the baseline scan. Opioid receptor density in the frontal cortex predicted social laughter rates. Modulation of the opioidergic activity by social laughter may be an important neurochemical mechanism reinforcing and maintaining social bonds between humans. Copyright © 2017 the authors 0270-6474/17/376125-07$15.00/0.
Ruscheweyh, R; Becker, T; Born, Y; Çolak-Ekici, R; Marziniak, M; Evers, S; Gerlach, A L; Wolowski, A
2015-04-01
The significance of occlusal disharmony for the development of painful temporomandibular disorder (TMD) is controversial. The ongoing biomechanical strain caused by occlusal disharmony might lead to sensitization processes in the nociceptive system. Understanding these processes might be an important step toward understanding the possible relationship between occlusal disharmony and TMD. In this study, we therefore investigated whether subjects with occlusal disharmony (n = 22) differ from healthy controls (n = 26) in their pain perception and pain modulation by stress and relaxation. Trigeminal and extratrigeminal experimental pain perception (pinprick, heat, and pressure pain) was assessed before and after stress (mental arithmetic) and relaxation (viewing of low-arousal pictures). There were no group differences in pain perception at baseline or during the stress task. Compared with controls, the occlusal disharmony group exhibited an inadequate reduction in pain perception during relaxation, which was significant for the extratrigeminal site (P < 0.01) and reached a trend for significance at the trigeminal site (P = 0.1). These results suggest that subjects with occlusal disharmony show signs of disturbed endogenous pain inhibition during relaxation. There is evidence for the presence of sensitization of the nociceptive system in subjects with occlusal disharmony. Possibly, deficient inhibition of extratrigeminal and trigeminal pain perception by relaxation might contribute to the development of TMD or other chronic pain disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Alternative Therapies for the Prevention of Postoperative Nausea and Vomiting.
Stoicea, Nicoleta; Gan, Tong J; Joseph, Nicholas; Uribe, Alberto; Pandya, Jyoti; Dalal, Rohan; Bergese, Sergio D
2015-01-01
Postoperative nausea and vomiting (PONV) is a complication affecting between 20 and 40% of all surgery patients, with high-risk patients experiencing rates of up to 80%. Recent studies and publications have shed light on the uses of alternative treatment for PONV through their modulation of endogenous opioid neuropeptides and neurokinin ligands. In addition to reducing PONV, hypnosis was reported to be useful in attenuating postoperative pain and anxiety, and contributing to hemodynamic stability. Music therapy has been utilized to deepen the sedation level and decrease patient anxiety, antiemetic and analgesic requirements, hospital length of stay, and fatigue. Isopropyl alcohol and peppermint oil aromatherapy have both been used to reduce postoperative nausea. With correct training in traditional Chinese healing techniques, acupuncture (APu) at the P6 acupoint has also been shown to be useful in preventing early PONV, postdischarge nausea and vomiting, and alleviating of pain. Electro-acupuncture (EAPu), as with APu, provided analgesic and antiemetic effects through release and modulation of opioid neuropeptides. These non-pharmacological modalities of treatment contribute to an overall patient wellbeing, assisting in physical and emotional healing.
Alternative Therapies for the Prevention of Postoperative Nausea and Vomiting
Stoicea, Nicoleta; Gan, Tong J.; Joseph, Nicholas; Uribe, Alberto; Pandya, Jyoti; Dalal, Rohan; Bergese, Sergio D.
2015-01-01
Postoperative nausea and vomiting (PONV) is a complication affecting between 20 and 40% of all surgery patients, with high-risk patients experiencing rates of up to 80%. Recent studies and publications have shed light on the uses of alternative treatment for PONV through their modulation of endogenous opioid neuropeptides and neurokinin ligands. In addition to reducing PONV, hypnosis was reported to be useful in attenuating postoperative pain and anxiety, and contributing to hemodynamic stability. Music therapy has been utilized to deepen the sedation level and decrease patient anxiety, antiemetic and analgesic requirements, hospital length of stay, and fatigue. Isopropyl alcohol and peppermint oil aromatherapy have both been used to reduce postoperative nausea. With correct training in traditional Chinese healing techniques, acupuncture (APu) at the P6 acupoint has also been shown to be useful in preventing early PONV, postdischarge nausea and vomiting, and alleviating of pain. Electro-acupuncture (EAPu), as with APu, provided analgesic and antiemetic effects through release and modulation of opioid neuropeptides. These non-pharmacological modalities of treatment contribute to an overall patient wellbeing, assisting in physical and emotional healing. PMID:26734609
Cortical influences on brainstem circuitry responsible for conditioned pain modulation in humans.
Youssef, Andrew M; Macefield, Vaughan G; Henderson, Luke A
2016-07-01
Conditioned pain modulation (CPM) is a powerful endogenous analgesic mechanism which can completely inhibit incoming nociceptor signals at the primary synapse. The circuitry responsible for CPM lies within the brainstem and involves the subnucleus reticularis dorsalis (SRD). While the brainstem is critical for CPM, the cortex can significantly modulate its expression, likely via the brainstem circuitry critical for CPM. Since higher cortical regions such as the anterior, mid-cingulate, and dorsolateral prefrontal cortices are activated by noxious stimuli and show reduced activations during other analgesic responses, we hypothesized that these regions would display reduced responses during CPM analgesia. Furthermore, we hypothesized that functional connectivity strength between these cortical regions and the SRD would be stronger in those that express CPM analgesia compared with those that do not. We used functional magnetic resonance imaging to determine sites recruited during CPM expression and their influence on the SRD. A lack of CPM analgesia was associated with greater signal intensity increases during each test stimulus in the presence of the conditioning stimulus compared to test stimuli alone in the mid-cingulate and dorsolateral prefrontal cortices and increased functional connectivity with the SRD. In contrast, those subjects exhibiting CPM analgesia showed no change in the magnitude of signal intensity increases in these cortical regions or strength of functional connectivity with the SRD. These data suggest that during multiple or widespread painful stimuli, engagement of the prefrontal and cingulate cortices prevents the generation of CPM analgesia, raising the possibility altered responsiveness in these cortical regions underlie the reduced CPM observed in individuals with chronic pain. Hum Brain Mapp 37:2630-2644, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Monhemius, R; Azami, J; Green, D L; Roberts, M H
2001-07-20
Cannabinoids are known to suppress responses to noxious stimulation in animals and man. Recent research has suggested a role for endogenous cannabinoids in the descending inhibition of dorsal horn cells via a supraspinal site of action. We have recently demonstrated [J. Physiol. 506(2) (1998) 459] that the nucleus reticularis gigantocellularis pars alpha (GiA) is a major source of such descending modulation, and importantly, that this system is activated in response to noxious stimulation. We have therefore investigated the role of CB1 receptor activation in mediating the antinociceptive effects of activation of GiA in models of acute and chronic pain. Microinjections (0.5 microl 60% DMSO) of either WIN 55,212-2 (5 microg, selective CB1 agonist), SR141716A (50 microg, competitive CB1 antagonist), both compounds together, or vehicle alone into GiA were performed prior to these tests in a randomised, blind manner. In control animals, WIN 55,212-2 markedly increased withdrawal latencies in the tail flick test and reduced responses to subcutaneous formalin. These effects were blocked by co-administration of SR141716A. These data suggest that activation of cannabinoid CB1 receptor subtypes in GiA leads to behavioural analgesia. In animals with partial sciatic nerve ligation, microinjection of drugs and injection of formalin were performed contralaterally to the site of ligation. Partial sciatic nerve ligation significantly reduced behavioural responses to contralaterally applied formalin. Microinjection of SR141716A to GiA reversed this inhibition of responses to formalin in animals with partial sciatic nerve ligation. These data provide evidence that endogenous CB1 receptor ligands are involved in GiA mediated antinociception, and that this system is important for the modulation of nociceptive transmission in an animal model of chronic neuropathic pain.
Rombolà, L; Amantea, D; Russo, R; Adornetto, A; Berliocchi, L; Tridico, L; Corasaniti, M T; Sakurada, S; Sakurada, T; Bagetta, G; Morrone, L A
2016-01-01
In complementary medicine, aromatherapy uses essential oils to improve agitation and aggression observed in dementia, mood, depression, anxiety and chronic pain. Preclinical research studies have reported that the essential oil obtained from bergamot (BEO) fruit (Citrus bergamia, Risso) modifies normal and pathological synaptic plasticity implicated, for instance, in nociceptive and neuropathic pain. Interestingly, recent results indicated that BEO modulates sensitive perception of pain in different models of nociceptive, inflammatory and neuropathic pain modulating endogenous systems. Thus, local administration of BEO inhibited the nociceptive behavioral effect induced by intraplantar injection of capsaicin or formalin in mice. Similar effects were observed with linalool and linalyl acetate, major volatile components of the phytocomplex, Pharmacological studies showed that the latter effects are reversed by local or systemic pretreatment with the opioid antagonist naloxone hydrochloride alike with naloxone methiodide, high affinity peripheral μ-opioid receptor antagonist. These results and the synergistic effect observed following systemic or intrathecal injection of an inactive dose of morphine with BEO or linalool indicated an activation of peripheral opioid system. Recently, in neuropathic pain models systemic or local administration of BEO or linalool induced antiallodynic effects. In particular, in partial sciatic nerve ligation (PSNL) model, intraplantar injection of the phytocomplex or linalool in the ipsilateral hindpaw, but not in the contralateral, reduced PSNL-induced extracellularsignal- regulated kinase (ERK) activation and mechanical allodynia. In neuropathic pain high doses of morphine are needed to reduce pain. Interestingly, combination of inactive doses of BEO or linalool with a low dose of morphine induced antiallodynic effects in mice. Peripheral cannabinoid and opioid systems appear to be involved in the antinociception produced by intraplantar injection of β -caryophyllene, present in different essential oils including BEO. The data gathered so far indicate that the essential oil of bergamot is endowed with antinociceptive and antiallodynic effects and contribute to form the rational basis for rigorous testing of its efficacy in complementary medicine.
Kilts, Jason D; Tupler, Larry A; Keefe, Francis J; Payne, Victoria M; Hamer, Robert M; Naylor, Jennifer C; Calnaido, Rohana P; Morey, Rajendra A; Strauss, Jennifer L; Parke, Gillian; Massing, Mark W; Youssef, Nagy A; Shampine, Lawrence J; Marx, Christine E
2010-10-01
Nearly half of Operation Enduring Freedom/Operation Iraqi Freedom veterans experience continued pain post-deployment. Several investigations report analgesic effects of allopregnanolone and other neurosteroids in animal models, but few data are currently available focusing on neurosteroids in clinical populations. Allopregnanolone positively modulates GABA(A) receptors and demonstrates pronounced analgesic and anxiolytic effects in rodents, yet studies examining the relationship between pain and allopregnanolone in humans are limited. We thus hypothesized that endogenous allopregnanolone and other neurosteroid levels may be negatively correlated with self-reported pain symptoms in humans. We determined serum neurosteroid levels by gas chromatography/mass spectrometry (allopregnanolone, pregnenolone) or radioimmunoassay (dehydroepiandrosterone [DHEA], progesterone, DHEA sulfate [DHEAS]) in 90 male veterans who served in the U.S. military after September 11, 2001. Self-reported pain symptoms were assessed in four areas (low back pain, chest pain, muscle soreness, headache). Stepwise linear regression analyses were conducted to investigate the relationship between pain assessments and neurosteroids, with the inclusion of smoking, alcohol use, age, and history of traumatic brain injury as covariates. Durham VA Medical Center. Allopregnanolone levels were inversely associated with low back pain (P=0.044) and chest pain (P=0.013), and DHEA levels were inversely associated with muscle soreness (P=0.024). DHEAS levels were positively associated with chest pain (P=0.001). Additionally, there was a positive association between traumatic brain injury and muscle soreness (P=0.002). Neurosteroids may be relevant to the pathophysiology of self-reported pain symptoms in this veteran cohort, and could represent future pharmacological targets for pain disorders. Wiley Periodicals, Inc.
Sex, Gender, and Pain: A Review of Recent Clinical and Experimental Findings
Fillingim, Roger B.; King, Christopher D.; Ribeiro-Dasilva, Margarete C.; Rahim-Williams, Bridgett; Riley, Joseph L.
2009-01-01
Sex-related influences on pain and analgesia have become a topic of tremendous scientific and clinical interest, especially in the last 10 to 15 years. Members of our research group published reviews of this literature more than a decade ago, and the intervening time period has witnessed robust growth in research regarding sex, gender, and pain. Therefore, it seems timely to revisit this literature. Abundant evidence from recent epidemiologic studies clearly demonstrates that women are at substantially greater risk for many clinical pain conditions, and there is some suggestion that postoperative and procedural pain may be more severe among women than men. Consistent with our previous reviews, current human findings regarding sex differences in experimental pain indicate greater pain sensitivity among females compared with males for most pain modalities, including more recently implemented clinically relevant pain models such as temporal summation of pain and intramuscular injection of algesic substances. The evidence regarding sex differences in laboratory measures of endogenous pain modulation is mixed, as are findings from studies using functional brain imaging to ascertain sex differences in pain-related cerebral activation. Also inconsistent are findings regarding sex differences in responses to pharmacologic and non-pharmacologic pain treatments. The article concludes with a discussion of potential biopsychosocial mechanisms that may underlie sex differences in pain, and considerations for future research are discussed. Perspective This article reviews the recent literature regarding sex, gender, and pain. The growing body of evidence that has accumulated in the past 10 to 15 years continues to indicate substantial sex differences in clinical and experimental pain responses, and some evidence suggests that pain treatment responses may differ for women versus men. PMID:19411059
Benedetti, Fabrizio; Thoen, Wilma; Blanchard, Catherine; Vighetti, Sergio; Arduino, Claudia
2013-03-01
Pain is a negative emotional experience that is modulated by a variety of psychological factors through different inhibitory systems. For example, endogenous opioids and cannabinoids have been found to be involved in stress and placebo analgesia. Here we show that when the meaning of the pain experience is changed from negative to positive through verbal suggestions, the opioid and cannabinoid systems are co-activated and these, in turn, increase pain tolerance. We induced ischemic arm pain in healthy volunteers, who had to tolerate the pain as long as possible. One group was informed about the aversive nature of the task, as done in any pain study. Conversely, a second group was told that the ischemia would be beneficial to the muscles, thus emphasizing the usefulness of the pain endurance task. We found that in the second group pain tolerance was significantly higher compared to the first one, and that this effect was partially blocked by the opioid antagonist naltrexone alone and by the cannabinoid antagonist rimonabant alone. However, the combined administration of naltrexone and rimonabant antagonized the increased tolerance completely. Our results indicate that a positive approach to pain reduces the global pain experience through the co-activation of the opioid and cannabinoid systems. These findings may have a profound impact on clinical practice. For example, postoperative pain, which means healing, can be perceived as less unpleasant than cancer pain, which means death. Therefore, the behavioral and/or pharmacological manipulation of the meaning of pain can represent an effective approach to pain management. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Doubling Your Payoff: Winning Pain Relief Engages Endogenous Pain Inhibition1,2,3
Kwan, Saskia; Schweinhardt, Petra
2015-01-01
Abstract When in pain, pain relief is much sought after, particularly for individuals with chronic pain. In analogy to augmentation of the hedonic experience (“liking”) of a reward by the motivation to obtain a reward (“wanting”), the seeking of pain relief in a motivated state might increase the experience of pain relief when obtained. We tested this hypothesis in a psychophysical experiment in healthy human subjects, by assessing potential pain-inhibitory effects of pain relief “won” in a wheel of fortune game compared with pain relief without winning, exploiting the fact that the mere chance of winning induces a motivated state. The results show pain-inhibitory effects of pain relief obtained by winning in behaviorally assessed pain perception and ratings of pain intensity. Further, the higher participants scored on the personality trait novelty seeking, the more pain inhibition was induced. These results provide evidence that pain relief, when obtained in a motivated state, engages endogenous pain-inhibitory systems beyond the pain reduction that underlies the relief in the first place. Consequently, such pain relief might be used to improve behavioral pain therapy, inducing a positive, perhaps self-amplifying feedback loop of reduced pain and improved functionality. PMID:26464995
Zahari, Zalina; Lee, Chee Siong; Ibrahim, Muslih Abdulkarim; Musa, Nurfadhlina; Mohd Yasin, Mohd Azhar; Lee, Yeong Yeh; Tan, Soo Choon; Mohamad, Nasir; Ismail, Rusli
2017-09-01
Endogenous and exogenous opioids are substrates of the permeability glycoprotein (P-gp) efflux transporter, which is encoded by the ABCB1 (MDR1) gene. Genetic polymorphisms of ABCB1 may contribute to interindividual differences in pain modulation and analgesic responses. We investigated the relationship between ABCB1 polymorphisms and cold pain sensitivity among healthy males. Cold pain responses, including pain threshold and pain tolerance, were measured using the cold-pressor test (CPT). DNA was extracted from whole blood and genotyped for ABCB1 polymorphisms, including c.1236C>T (rs1128503), c.2677G>T/A (rs2032582), and c.3435C>T (rs1045642), using the allelic discrimination real-time polymerase chain reaction. A total of 152 participants were recruited in this observational study. Frequencies of mutated allele for c.1236C>T, c.2677G>T/A, and c.3435C>T polymorphisms were 56.6%, 49.7%, and 43.4%, respectively. Our results revealed an association of the CGC/CGC diplotype (c.1236C>T, c.2677G>T/A, and c.3435C>T) with cold pain sensitivity. Participants with the CGC/CGC diplotype had 90% and 72% higher cold pain thresholds (87.62 seconds vs. 46.19 seconds, P = 0.010) and cold pain tolerances (97.24 seconds vs. 56.54 seconds, P = 0.021), respectively, when compared with those without the diplotype. The CGC/CGC diplotype of ABCB1 polymorphisms was associated with variability in cold pain threshold and pain tolerance in healthy males. © 2016 World Institute of Pain.
Lower Placebo Responses After Long-Term Exposure to Fibromyalgia Pain.
Kosek, Eva; Rosen, Annelie; Carville, Serena; Choy, Ernest; Gracely, Richard H; Marcus, Hanke; Petzke, Frank; Ingvar, Martin; Jensen, Karin B
2017-07-01
Knowledge about placebo mechanisms in patients with chronic pain is scarce. Fibromyalgia syndrome (FM) is associated with dysfunctions of central pain inhibition, and because placebo analgesia entails activation of endogenous pain inhibition, we hypothesized that long-term exposure to FM pain would negatively affect placebo responses. In our study we examined the placebo group (n = 37, mean age 45 years) from a 12-week, randomized, double-blind, placebo-controlled trial investigating the effects of milnacipran or placebo. Twenty-two patients were classified as placebo nonresponders and 15 as responders, according to the Patient Global Impression of Change scale. Primary outcome was the change in pressure pain sensitivity from baseline to post-treatment. Secondary outcomes included ratings of clinical pain (visual analog scale), FM effect (Fibromyalgia Impact Questionnaire), and pain drawing. Among placebo responders, longer FM duration was associated with smaller reductions in pressure pain sensitivity (r = .689, P = .004), but not among nonresponders (r = -.348, P = .112). In our study we showed that FM duration influences endogenous pain regulation, because pain levels and placebo-induced analgesia were negatively affected. Our results point to the importance of early FM interventions, because endogenous pain regulation may still be harnessed at that early time. Also, placebo-controlled trials should take FM duration into consideration when interpreting results. This study presents a novel perspective on placebo analgesia, because placebo responses among patients with chronic pain were analyzed. Long-term exposure to fibromyalgia pain was associated with lower placebo analgesia, and the results show the importance of taking pain duration into account when interpreting the results from placebo-controlled trials. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Bagdas, Deniz; Targowska-Duda, Katarzyna M.; López, Jhon J.; Perez, Edwin G.; Arias, Hugo R.; Damaj, M. Imad
2016-01-01
BACKGROUND Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. METHODS We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant induced inflammatory pain, and the chronic constriction injury–induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid–induced aversion by using the conditioned place aversion test. RESULTS We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed antiinflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and antiinflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid induced aversion in the conditioned place aversion assay. CONCLUSIONS These findings suggest that the administration of PAM-2, a new α7-selective type II PAM, reduces the neuropathic and inflammatory pain sensory and affective behaviors in the mouse. Thus, this drug may have therapeutic applications in the treatment and management of chronic pain. PMID:26280585
Rougeot, Catherine; Messaoudi, Michaël; Hermitte, Véronique; Rigault, Anne Gaëlle; Blisnick, Thierry; Dugave, Christophe; Desor, Didier; Rougeon, François
2003-01-01
Sialorphin is an exocrine and endocrine signaling mediator, which has been identified by a genomic approach. It is synthesized predominantly in the submandibular gland and prostate of adult rats in response to androgen steroids and is released locally and systemically in response to stress. We now demonstrate that the cell surface molecule to which sialorphin binds in vivo in the rat kidney is the membrane-anchored neutral endopeptidase (neprilysin; NEP, EC 3.4.24.11). NEP plays an important role in nervous and peripheral tissues, as it turns off several peptide-signaling events at the cell surface. We show that sialorphin prevents spinal and renal NEP from breaking down its two physiologically relevant substrates, substance P and Met-enkephalin in vitro. Sialorphin inhibited the breakdown of substance P with an IC50 of 0.4–1 μM and behaved as a competitive inhibitor. In vivo, i.v. sialorphin elicited potent antinociceptive responses in two behavioral rat models of injury-induced acute and tonic pain, the pin-pain test and formalin test. The analgesia induced by 100–200 μg/kg doses of sialorphin required the activation of μ- and δ-opioid receptors, consistent with the involvement of endogenous opioid receptors in enkephalinergic transmission. We conclude that sialorphin protects endogenous enkephalins released after nociceptive stimuli by inhibiting NEP in vivo. Sialorphin is a natural systemically active regulator of NEP activity. Furthermore, our study provides evidence that it is a physiological modulator of pain perception after injury and might be the progenitor of a new class of therapeutic molecules. PMID:12835417
Rougeot, Catherine; Messaoudi, Michaël; Hermitte, Véronique; Rigault, Anne Gaëlle; Blisnick, Thierry; Dugave, Christophe; Desor, Didier; Rougeon, François
2003-07-08
Sialorphin is an exocrine and endocrine signaling mediator, which has been identified by a genomic approach. It is synthesized predominantly in the submandibular gland and prostate of adult rats in response to androgen steroids and is released locally and systemically in response to stress. We now demonstrate that the cell surface molecule to which sialorphin binds in vivo in the rat kidney is the membrane-anchored neutral endopeptidase (neprilysin; NEP, EC 3.4.24.11). NEP plays an important role in nervous and peripheral tissues, as it turns off several peptide-signaling events at the cell surface. We show that sialorphin prevents spinal and renal NEP from breaking down its two physiologically relevant substrates, substance P and Met-enkephalin in vitro. Sialorphin inhibited the breakdown of substance P with an IC50 of 0.4-1 microM and behaved as a competitive inhibitor. In vivo, i.v. sialorphin elicited potent antinociceptive responses in two behavioral rat models of injury-induced acute and tonic pain, the pin-pain test and formalin test. The analgesia induced by 100-200 mcicrog/kg doses of sialorphin required the activation of mu- and delta-opioid receptors, consistent with the involvement of endogenous opioid receptors in enkephalinergic transmission. We conclude that sialorphin protects endogenous enkephalins released after nociceptive stimuli by inhibiting NEP in vivo. Sialorphin is a natural systemically active regulator of NEP activity. Furthermore, our study provides evidence that it is a physiological modulator of pain perception after injury and might be the progenitor of a new class of therapeutic molecules.
Sumizono, Megumi; Otsuka, Shotaro; Terashi, Takuto; Nakanishi, Kazuki; Ueda, Koki; Takada, Seiya; Kikuchi, Kiyoshi
2018-01-01
Background Exercise regimens are established methods that can relieve neuropathic pain. However, the relationship between frequency and intensity of exercise and multiple cellular responses of exercise-induced alleviation of neuropathic pain is still unclear. We examined the influence of exercise frequency on neuropathic pain and the intracellular responses in a sciatic nerve chronic constriction injury (CCI) model. Materials and methods Rats were assigned to four groups as follows: CCI and high-frequency exercise (HFE group), CCI and low-frequency exercise (LFE group), CCI and no exercise (No-Ex group), and naive animals (control group). Rats ran on a treadmill, at a speed of 20 m/min, for 30 min, for 5 (HFE) or 3 (LFE) days a week, for a total of 5 weeks. The 50% withdrawal threshold was evaluated for mechanical sensitivity. The activation of glial cells (microglia and astrocytes), expression of brain-derived neurotrophic factor (BDNF) and μ-opioid receptor in the spinal dorsal horn and endogenous opioid in the midbrain were examined using immunohistochemistry. Opioid receptor antagonists (naloxone) were administered using intraperitoneal injection. Results The development of neuropathic pain was related to the activation of glial cells, increased BDNF expression, and downregulation of the μ-opioid receptor in the ipsilateral spinal dorsal horn. In the No-Ex group, neuropathic pain showed the highest level of mechanical hypersensitivity at 2 weeks, which improved slightly until 5 weeks after CCI. In both exercise groups, the alleviation of neuropathic pain was accelerated through the regulation of glial activation, BDNF expression, and the endogenous opioid system. The expression of BDNF and endogenous opioid in relation to exercise-induced alleviation of neuropathic pain differed in the HFE and LFE groups. The effects of exercise-induced alleviation of mechanical hypersensitivity were reversed by the administration of naloxone. Conclusion The LFE and HFE program reduced neuropathic pain. Our findings indicated that aerobic exercise-induced alleviated neuropathic pain through the regulation of glial cell activation, expression of BDNF in the ipsilateral spinal dorsal horn, and the endogenous opioid system. PMID:29445295
Kilts, Jason D; Tupler, Larry A; Keefe, Francis J; Payne, Victoria M; Hamer, Robert M; Naylor, Jennifer C; Calnaido, Rohana P; Morey, Rajendra A; Strauss, Jennifer L; Parke, Gillian; Massing, Mark W; Youssef, Nagy A; Shampine, Lawrence J; Marx, Christine E
2010-01-01
Objective Nearly half of Operation Enduring Freedom / Operation Iraqi Freedom (OEF/OIF) veterans experience continued pain post-deployment. Several investigations report analgesic effects of allopregnanolone and other neurosteroids in animal models, but few data are currently available focusing on neurosteroids in clinical populations. Allopregnanolone positively modulates GABAA receptors and demonstrates pronounced analgesic and anxiolytic effects in rodents, yet studies examining the relationship between pain and allopregnanolone in humans are limited. We thus hypothesized that endogenous allopregnanolone and other neurosteroid levels may be negatively correlated with self-reported pain symptoms in humans. Design We determined serum neurosteroid levels by gas chromatography / mass spectrometry (allopregnanolone, pregnenolone) or radioimmunoassay (dehydroepiandrosterone [DHEA], progesterone, DHEA sulfate [DHEAS]) in 90 male veterans who served in the U.S. military after September 11, 2001. Self-reported pain symptoms were assessed in four areas (low back pain, chest pain, muscle soreness, headache). Stepwise linear regression analyses were conducted to investigate the relationship between pain assessments and neurosteroids, with the inclusion of smoking, alcohol use, age, and history of traumatic brain injury as covariates. Setting Durham VA Medical Center. Results Allopregnanolone levels were inversely associated with low back pain (p=0.044) and chest pain (p=0.013), and DHEA levels were inversely associated with muscle soreness (p=0.024). DHEAS levels were positively associated with chest pain (p=0.001). Additionally, there was a positive association between traumatic brain injury and muscle soreness (p=0.002). Conclusions Neurosteroids may be relevant to the pathophysiology of self-reported pain symptoms in this veteran cohort, and could represent future pharmacological targets for pain disorders. PMID:20735755
Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.
Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C
2014-12-01
The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
A New Pain Regulatory System via the Brain Long Chain Fatty Acid Receptor GPR40/FFA1 Signal.
Nakamoto, Kazuo
2017-01-01
An increasingly large number of pharmacological and physiological works on fatty acids have shown that the functional properties of fatty acids are regulated by the amount of individual fatty acid intake and the distribution of fatty acids among organs. Recently, it has been determined that G-protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA1) is activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). GPR40/FFA1 is mainly expressed in the β cell of the pancreas, spinal cord and brain. It is reported that this receptor has a functional role in controlling blood glucose levels via the modulation of insulin secretion. However, its physiological function in the brain remains unknown. Our previous studies have shown that GPR40/FFA1 is expressed in pro-opiomelanocortin (POMC)-positive neurons of the arcuate nucleus, serotonergic neurons in the nucleus raphe magnus, and in noradrenergic neurons in the locus coeruleus. Furthermore, the intracerebroventricular injection of DHA or GW9508, which is a selective GPR40/FFA1 agonist, attenuates formalin-induced inflammatory pain behavior through increasing β-endorphin release in the hypothalamus. It also suppresses complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia. Our findings suggest that brain free long-chain fatty acids-GPR40/FFA1 signaling might have an important role in the modulation of endogenous pain control systems. In this review, I discuss the current status and our recent study regarding a new pain regulatory system via the brain long chain fatty acid receptor GPR40/FFA1 signal.
Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system.
Gertsch, Jürg
2008-05-01
Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.
Pandya, Anshul. A.; Yakel, Jerrel L.
2013-01-01
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation-conducting transmembrane channels from the cys-loop receptor superfamily. The neuronal subtypes of these receptors (e.g. the α7 and α4β2 subtypes) are involved in neurobehavioral processes such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and a number of cognitive functions like learning and memory. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders, and behavioral studies in animals are useful models to assess the effects of compounds that act on these receptors. Allosteric modulators are ligands that bind to the receptors at sites other than the orthosteric site where acetylcholine, the endogenous agonist for the nAChRs, binds. While conventional ligands for the neuronal nAChRs have been studied for their behavioral effects in animals, allosteric modulators for these receptors have only recently gained attention, and research on their behavioral effects is growing rapidly. Here we will discuss the behavioral effects of allosteric modulators of the neuronal nAChRs. PMID:23732296
Modulation of low-voltage-activated T-type Ca²⁺ channels.
Zhang, Yuan; Jiang, Xinghong; Snutch, Terrance P; Tao, Jin
2013-07-01
Low-voltage-activated T-type Ca²⁺ channels contribute to a wide variety of physiological functions, most predominantly in the nervous, cardiovascular and endocrine systems. Studies have documented the roles of T-type channels in sleep, neuropathic pain, absence epilepsy, cell proliferation and cardiovascular function. Importantly, novel aspects of the modulation of T-type channels have been identified over the last few years, providing new insights into their physiological and pathophysiological roles. Although there is substantial literature regarding modulation of native T-type channels, the underlying molecular mechanisms have only recently begun to be addressed. This review focuses on recent evidence that the Ca(v)3 subunits of T-type channels, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are differentially modulated by a multitude of endogenous ligands including anandamide, monocyte chemoattractant protein-1, endostatin, and redox and oxidizing agents. The review also provides an overview of recent knowledge gained concerning downstream pathways involving G-protein-coupled receptors. This article is part of a Special Issue entitled: Calcium channels. Copyright © 2012 Elsevier B.V. All rights reserved.
TRPV1: A Potential Drug Target for Treating Various Diseases
Brito, Rafael; Sheth, Sandeep; Mukherjea, Debashree; Rybak, Leonard P.; Ramkumar, Vickram
2014-01-01
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel present on sensory neurons which is activated by heat, protons, capsaicin and a variety of endogenous lipids termed endovanilloids. As such, TRPV1 serves as a multimodal sensor of noxious stimuli which could trigger counteractive measures to avoid pain and injury. Activation of TRPV1 has been linked to chronic inflammatory pain conditions and peripheral neuropathy, as observed in diabetes. Expression of TRPV1 is also observed in non-neuronal sites such as the epithelium of bladder and lungs and in hair cells of the cochlea. At these sites, activation of TRPV1 has been implicated in the pathophysiology of diseases such as cystitis, asthma and hearing loss. Therefore, drugs which could modulate TRPV1 channel activity could be useful for the treatment of conditions ranging from chronic pain to hearing loss. This review describes the roles of TRPV1 in the normal physiology and pathophysiology of selected organs of the body and highlights how drugs targeting this channel could be important clinically. PMID:24861977
The Endocannabinoid System Modulating Levels of Consciousness, Emotions and Likely Dream Contents.
Murillo-Rodriguez, Eric; Pastrana-Trejo, Jose Carlos; Salas-Crisóstomo, Mireille; de-la-Cruz, Miriel
2017-01-01
Cannabinoids are derivatives that are either compounds occurring naturally in the plant, Cannabis sativa or synthetic analogs of these molecules. The first and most widely investigated of the cannabinoids is Δ9-tetrahydrocannabinol (Δ9-THC), which is the main psychotropic constituent of cannabis and undergoes significant binding to cannabinoid receptors. These cannabinoid receptors are seven-transmembrane receptors that received their name from the fact that they respond to cannabinoid compounds, including Δ9-THC. The cannabinoid receptors have been described in rat, human and mouse brains and they have been named the CB1 and CB2 cannabinoid receptors. Later, an endogenous molecule that exerts pharmacological effects similar to those described by Δ9-THC and binds to the cannabinoid receptors was discovered. This molecule, named anandamide, was the first of five endogenous cannabinoid receptor agonists described to date in the mammalian brain and other tissues. Of these endogenous cannabinoids or endocannabinoids, the most thoroughly investigated to date have been anandamide and 2-arachidonoylglycerol (2-AG). Over the years, a significant number of articles have been published in the field of endogenous cannabinoids, suggesting a modulatory profile in multiple neurobiological roles of endocannabinoids. The general consensus accepts that the endogenous cannabinoid system includes natural ligands (such as anandamide and 2- AG), receptors (CB1 and CB2), and the main enzymes responsible for the hydrolysis of anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) as well as the anandamide membrane transporter (AMT). To date, diverse pieces of evidence have shown that the endocannabinoid system controls multiple functions such as feeding, pain, learning and memory and has been linked with various disturbances, such as Parkinson´s disease. Among the modulatory properties of the endocannabinoid system, current data indicate that the sleep-wake cycle is under the influence of endocannabinoids since the blocking of the CB1 cannabinoid receptor or the pharmacological inhibition of FAAH activity promotes wakefulness, whereas the obstruction of AMT function enhances sleep. However, no solid evidence is available regarding the role of the endocannabinoid system in an unquestionable emotional component of the sleep: Dream activity. Since dreaming is a mental activity that occurs during sleep (characterized by emotions, sensory perceptions, and bizarre components) and the endocannabinoid system modulates neurobiological processes involving consciousness, such as learning and memory, attention, pain perception, emotions and sleep, it is acceptable to hypothesize that the endocannabinoid system might be modulating dream activity. In this regard, an accumulative body of evidence in human and animal models has been reported regarding the role of the endocannabinoid system in the control of emotional states and dreams. Moreover, preliminary studies in humans have indicated that treatment with cannabinoids may decrease post-traumatic stress disorder symptoms, including nightmares. Thus, based on a review of the literature available in PubMed, this article hypothesizes a conceptual framework within which the endocannabinoid system might influence the generation of dream experiences. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Chemical Interventions for Pain.
ERIC Educational Resources Information Center
Aronoff, Gerald M.; And Others
1986-01-01
Reviews properties and pharmacological effects of medications for pain, including peripherally acting analgesics, centrally acting narcotics, and adjuvant analgesics including antidepressants. Discusses the role of the endogenous opioid system in pain and depression. Explores clinical management issues in both inpatient and outpatient settings,…
Distinct Brain Mechanisms Support Spatial vs. Temporal Filtering of Nociceptive Information
Nahman-Averbuch, H.; Martucci, K.T.; Granovsky, Y.; Weissman-Fogel, I.; Yarnitsky, D.; Coghill, R. C.
2014-01-01
The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional MRI during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula and SII. OA produced reduced activity in SI, but was associated with greater activation in the anterior insula, dorso-lateral prefrontal cortex, intra-parietal sulcus, and inferior parietal lobule relative to CPM. In the brainstem, CPM consistently produced reductions in activity while OA produced increases in activity. Conjunction analysis confirmed that CPM related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs. temporal filtering of nociceptive information. PMID:25047783
Hsu, D T; Sanford, B J; Meyers, K K; Love, T M; Hazlett, K E; Walker, S J; Mickey, B J; Koeppe, R A; Langenecker, S A; Zubieta, J-K
2015-02-01
The μ-opioid receptor (MOR) system, well known for dampening physical pain, is also hypothesized to dampen 'social pain.' We used positron emission tomography scanning with the selective MOR radioligand [(11)C]carfentanil to test the hypothesis that MOR system activation (reflecting endogenous opioid release) in response to social rejection and acceptance is altered in medication-free patients diagnosed with current major depressive disorder (MDD, n=17) compared with healthy controls (HCs, n=18). During rejection, MDD patients showed reduced endogenous opioid release in brain regions regulating stress, mood and motivation, and slower emotional recovery compared with HCs. During acceptance, only HCs showed increased social motivation, which was positively correlated with endogenous opioid release in the nucleus accumbens, a reward structure. Altered endogenous opioid activity in MDD may hinder emotional recovery from negative social interactions and decrease pleasure derived from positive interactions. Both effects may reinforce depression, trigger relapse and contribute to poor treatment outcomes.
Kwok, Charlie H-T; Devonshire, Ian M; Imraish, Amer; Greenspon, Charles M; Lockwood, Stevie; Fielden, Catherine; Cooper, Andrew; Woodhams, Stephen; Sarmad, Sarir; Ortori, Catherine A; Barrett, David A; Kendall, David; Bennett, Andrew J; Chapman, Victoria; Hathway, Gareth J
2017-11-01
Significant age- and experience-dependent remodelling of spinal and supraspinal neural networks occur, resulting in altered pain responses in early life. In adults, endogenous opioid peptide and endocannabinoid (ECs) pain control systems exist which modify pain responses, but the role they play in acute responses to pain and postnatal neurodevelopment is unknown. Here, we have studied the changing role of the ECs in the brainstem nuclei essential for the control of nociception from birth to adulthood in both rats and humans. Using in vivo electrophysiology, we show that substantial functional changes occur in the effect of microinjection of ECs receptor agonists and antagonists in the periaqueductal grey (PAG) and rostroventral medulla (RVM), both of which play central roles in the supraspinal control of pain and the maintenance of chronic pain states in adulthood. We show that in immature PAG and RVM, the orphan receptor, GPR55, is able to mediate profound analgesia which is absent in adults. We show that tissue levels of endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol, within the PAG and RVM are developmentally regulated (using mass spectrometry). The expression patterns and levels of ECs enzymes and receptors were assessed using quantitative PCR and immunohistochemistry. In human brainstem, we show age-related alterations in the expression of key enzymes and receptors involved in ECs function using PCR and in situ hybridisation. These data reveal that significant changes on ECs that to this point have been unknown and which shed new light into the complex neurochemical changes that permit normal, mature responses to pain.
Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury.
Fairbanks, C A; Schreiber, K L; Brewer, K L; Yu, C G; Stone, L S; Kitto, K F; Nguyen, H O; Grocholski, B M; Shoeman, D W; Kehl, L J; Regunathan, S; Reis, D J; Yezierski, R P; Wilcox, G L
2000-09-12
Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury.
Grosen, Kasper; Vase, Lene; Pilegaard, Hans K.; Pfeiffer-Jensen, Mogens; Drewes, Asbjørn M.
2014-01-01
Background Variability in patients' postoperative pain experience and response to treatment challenges effective pain management. Variability in pain reflects individual differences in inhibitory pain modulation and psychological sensitivity, which in turn may be clinically relevant for the disposition to acquire pain. The aim of this study was to investigate the effects of conditioned pain modulation and situational pain catastrophizing on postoperative pain and pain persistency. Methods Preoperatively, 42 healthy males undergoing funnel chest surgery completed the Spielberger's State-Trait Anxiety Inventory and Beck's Depression Inventory before undergoing a sequential conditioned pain modulation paradigm. Subsequently, the Pain Catastrophizing Scale was introduced and patients were instructed to reference the conditioning pain while answering. Ratings of movement-evoked pain and consumption of morphine equivalents were obtained during postoperative days 2–5. Pain was reevaluated at six months postoperatively. Results Patients reporting persistent pain at six months follow-up (n = 15) were not significantly different from pain-free patients (n = 16) concerning preoperative conditioned pain modulation response (Z = 1.0, P = 0.3) or level of catastrophizing (Z = 0.4, P = 1.0). In the acute postoperative phase, situational pain catastrophizing predicted movement-evoked pain, independently of anxiety and depression (β = 1.0, P = 0.007) whereas conditioned pain modulation predicted morphine consumption (β = −0.005, P = 0.001). Conclusions Preoperative conditioned pain modulation and situational pain catastrophizing were not associated with the development of persistent postoperative pain following funnel chest repair. Secondary outcome analyses indicated that conditioned pain modulation predicted morphine consumption and situational pain catastrophizing predicted movement-evoked pain intensity in the acute postoperative phase. These findings may have important implications for developing strategies to treat or prevent acute postoperative pain in selected patients. Pain may be predicted and the malfunctioning pain inhibition mechanism as tested with CPM may be treated with suitable drugs augmenting descending inhibition. PMID:24587268
Lamusuo, S; Hirvonen, J; Lindholm, P; Martikainen, I K; Hagelberg, N; Parkkola, R; Taiminen, T; Hietala, J; Helin, S; Virtanen, A; Pertovaara, A; Jääskeläinen, S K
2017-10-01
Repetitive transcranial magnetic stimulation (rTMS) at M1/S1 cortex has been shown to alleviate neuropathic pain. To investigate the possible neurobiological correlates of cortical neurostimulation for the pain relief. We studied the effects of M1/S1 rTMS on nociception, brain dopamine D2 and μ-opioid receptors using a randomized, sham-controlled, double-blinded crossover study design and 3D-positron emission tomography (PET). Ten healthy subjects underwent active and sham rTMS treatments to the right M1/S1 cortex with E-field navigated device. Dopamine D2 and μ-receptor availabilities were assessed with PET radiotracers [ 11 C]raclopride and [ 11 C]carfentanil after each rTMS treatment. Thermal quantitative sensory testing (QST), contact heat evoked potential (CHEP) and blink reflex (BR) recordings were performed between the PET scans. μ-Opioid receptor availability was lower after active than sham rTMS (P ≤ 0.0001) suggested release of endogenous opioids in the right ventral striatum, medial orbitofrontal, prefrontal and anterior cingulate cortices, and left insula, superior temporal gyrus, dorsolateral prefrontal cortex and precentral gyrus. There were no differences in striatal dopamine D2 receptor availability between active and sham rTMS, consistent with lack of long-lasting measurable dopamine release. Active rTMS potentiated the dopamine-regulated habituation of the BR compared to sham (P = 0.02). Thermal QST and CHEP remained unchanged after active rTMS. rTMS given to M1/S1 activates the endogenous opioid system in a wide brain network associated with processing of pain and other salient stimuli. Direct enhancement of top-down opioid-mediated inhibition may partly explain the clinical analgesic effects of rTMS. Neurobiological correlates of rTMS for the pain relief are unclear. rTMS on M1/S1 with 11 C-carfentanyl-PET activates endogenous opioids. Thermal and heat pain thresholds remain unchanged. rTMS induces top-down opioid-mediated inhibition but not change the sensory discrimination of painful stimuli. © 2017 European Pain Federation - EFIC®.
Duloxetine reduces morphine requirements after knee replacement surgery.
Ho, K-Y; Tay, W; Yeo, M-C; Liu, H; Yeo, S-J; Chia, S-L; Lo, N-N
2010-09-01
Multimodal analgesia is advocated for perioperative pain management to reduce opioid use and its associated adverse effects. Serotonin and norepinephrine are involved in the modulation of endogenous analgesic mechanisms via descending inhibitory pain pathways in the brain and spinal cord. An increase in serotonin and norepinephrine may increase inhibition of nociceptive input and improve pain relief. Duloxetine, a selective serotonin and norepinephrine reuptake inhibitor, has demonstrated efficacy in chronic pain conditions such as painful diabetic neuropathy and post-herpetic neuralgia. The objective of the study was to evaluate the efficacy of duloxetine in reducing morphine requirements in patients after knee replacement surgery. Fifty patients received either two doses of oral duloxetine 60 mg (2 h before surgery and on first postoperative day) or placebo. All patients received patient-controlled analgesia with morphine for 48 h after operation. Pain and adverse effects were assessed at 0.5, 1, 2, 6, 12, 24, and 48 h after surgery on an 11-point numeric rating scale. Twenty-three patients in the duloxetine group and 24 patients in the placebo group completed the study. Morphine requirements during the 48 h after surgery were significantly lower in the duloxetine group [19.5 mg, standard deviation (sd) 14.5 mg] compared with the placebo group (30.3 mg, sd 18.1 mg) (P=0.017). There were no statistically significant differences between the groups in pain scores (at rest and on movement) or in adverse effects. Perioperative administration of duloxetine reduced postoperative morphine requirements during the first 48 h after knee replacement surgery, without significant adverse effects.
Reward can modulate attentional capture, independent of top-down set.
Munneke, Jaap; Hoppenbrouwers, Sylco S; Theeuwes, Jan
2015-11-01
The traditional distinction between exogenous and endogenous attentional control has recently been enriched with an additional mode of control, termed "selection history." Recent findings have indicated, for instance, that previously rewarded or punished stimuli capture more attention than their physical attributes would predict. As such, the value that is associated with certain stimuli modulates attentional capture. This particular influence has also been shown for endogenous attention. Although recent leads have emerged, elucidating the influences of reward on exogenous and endogenous attention, it remains unclear to what extent exogenous attention is modulated by reward when endogenous attention is already deployed. We used a Posner cueing task in which exogenous and endogenous cues were presented to guide attention. Crucially, the exogenous cue also indicated the reward value. That is, the color of the exogenous cue indicated how much reward could be obtained on a given trial. The results showed main effects of endogenous and exogenous attention (i.e., speeded reaction times when either cue was valid, as compared to when it was invalid). Crucially, an interaction between exogenous cue validity and reward level was observed, indicating that reward-based associative-learning processes rapidly influence attentional capture, even when endogenous attention has been actively deployed.
Sex differences and hormonal modulation of deep tissue pain
Traub, Richard J.; Ji, Yaping
2013-01-01
Women disproportionately suffer from many deep tissue pain conditions. Experimental studies show that women have lower pain thresholds, higher pain ratings and less tolerance to a range of painful stimuli. Most clinical and epidemiological reports suggest female gonadal hormones modulate pain for some, but not all, conditions. Similarly, animal studies support greater nociceptive sensitivity in females in many deep tissue pain models. Gonadal hormones modulate responses in primary afferents, dorsal horn neurons and supraspinal sites, but the direction of modulation is variable. This review will examine sex differences in deep tissue pain in humans and animals focusing on the role of gonadal hormones (mainly estradiol) as an underlying component of the modulation of pain sensitivity. PMID:23872333
Endogenous opioids regulate moment-to-moment neuronal communication and excitability.
Winters, Bryony L; Gregoriou, Gabrielle C; Kissiwaa, Sarah A; Wells, Oliver A; Medagoda, Danashi I; Hermes, Sam M; Burford, Neil T; Alt, Andrew; Aicher, Sue A; Bagley, Elena E
2017-03-22
Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear.
ERIC Educational Resources Information Center
Symons, Frank J.; Harper, Vicki N.; McGrath, Patrick J.; Breau, Lynn M.; Bodfish, James W.
2009-01-01
The role of pain in relation to self-injurious behavior (SIB) among individuals with intellectual disabilities is not well understood. Some models of SIB are based on altered endogenous opioid system activity which could result in elevated pain thresholds. In this study, non-verbal behavioral signs indicative of pain as measured by the…
Musical Agency during Physical Exercise Decreases Pain.
Fritz, Thomas H; Bowling, Daniel L; Contier, Oliver; Grant, Joshua; Schneider, Lydia; Lederer, Annette; Höer, Felicia; Busch, Eric; Villringer, Arno
2017-01-01
Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful.
Musical Agency during Physical Exercise Decreases Pain
Fritz, Thomas H.; Bowling, Daniel L.; Contier, Oliver; Grant, Joshua; Schneider, Lydia; Lederer, Annette; Höer, Felicia; Busch, Eric; Villringer, Arno
2018-01-01
Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful. PMID:29387030
Streff, Anouk; Michaux, Gilles; Anton, Fernand
2011-01-01
Hot and ice-water immersions are commonly used for heterotopic noxious counter-stimulation (HNCS) in investigations on endogenous pain modulation. However, coincident sympathetic thermoregulatory activity does not allow to differentiate between perceptual hypoalgesia related to baroreflex sensitivity (BRS) or diffuse noxious inhibitory controls (DNIC). The present study analysed the internal validity of another supposedly less confounded tonic pain model (inter-digital web pinching; IWP) regarding its potential as DNIC trigger. We performed a randomized controlled study in 24 healthy gender-matched drug-free volunteers aged 21-54 (median 25) years. The study protocol comprised the assessment of mechanical and thermal perceptual wind-up before and after an IWP (15N) or hot water immersion trial (HIT; 47.5°C) of 2 min duration. Wind-up was induced either by 10 repetitive (1Hz) contact heat (max. 49°C; 5×5 mm thermode) or ballistic impact stimuli (0.5g at 9 m/s) on the phalanges of the non-dominant hand. Cardiovascular activity, pain experience and corrugator muscle activity were continuously monitored. Although both HNCS forms produced a similar pain experience (45% of scale), a more pronounced cardiovascular activity was observable for the HIT (P<0.01). This indicates a higher baroreceptor activity and stronger contamination of painful water immersion by BRS-related hypoalgesia. Regardless of pain modality, wind-up was significantly reduced by HNCS, although this was stronger for painful water immersion than for noxious pinching (P<0.01). The HNCS types allow a differentiation between BRS-related and DNIC-like hypoalgesia. IWP proved its validity for DNIC induction, being practically non-confounded by BRS. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Endogenous Positive Allosteric Modulation of GABAA Receptors by Diazepam binding inhibitor
Christian, Catherine A.; Herbert, Anne G.; Holt, Rebecca L.; Peng, Kathy; Sherwood, Kyla D.; Pangratz-Fuehrer, Susanne; Rudolph, Uwe; Huguenard, John R.
2014-01-01
Summary Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking (“endozepine”) roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a novel therapy for epilepsy and other neurological disorders. PMID:23727119
Briggs, Emma V; Battelli, Daniele; Gordon, David; Kopf, Andreas; Ribeiro, Sofia; Puig, Margarita M; Kress, Hans G
2015-08-10
Unrelieved pain is a substantial public health concern necessitating improvements in medical education. The Advancing the Provision of Pain Education and Learning (APPEAL) study aimed to determine current levels and methods of undergraduate pain medicine education in Europe. Using a cross-sectional design, publicly available curriculum information was sought from all medical schools in 15 representative European countries in 2012-2013. Descriptive analyses were performed on: the provision of pain teaching in dedicated pain modules, other modules or within the broader curriculum; whether pain teaching was compulsory or elective; the number of hours/credits spent teaching pain; pain topics; and teaching and assessment methods. Curriculum elements were publicly available from 242 of 249 identified schools (97%). In 55% (133/242) of schools, pain was taught only within compulsory non-pain-specific modules. The next most common approaches were for pain teaching to be provided wholly or in part via a dedicated pain module (74/242; 31%) or via a vertical or integrated approach to teaching through the broader curriculum, rather than within any specific module (17/242; 7%). The curricula of 17/242 schools (7%) showed no evidence of any pain teaching. Dedicated pain modules were most common in France (27/31 schools; 87%). Excluding France, only 22% (47/211 schools) provided a dedicated pain module and in only 9% (18/211) was this compulsory. Overall, the median number of hours spent teaching pain was 12.0 (range 4-56.0 h; IQR: 12.0) for compulsory dedicated pain modules and 9.0 (range 1.0-60.0 h; IQR: 10.5) for other compulsory (non-pain specific) modules. Pain medicine was principally taught in classrooms and assessed by conventional examinations. There was substantial international variation throughout. Documented pain teaching in many European medical schools falls far short of what might be expected given the prevalence and public health burden of pain. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Clark, Jacqui; Nijs, Jo; Yeowell, Gillian; Goodwin, Peter Charles
2017-09-01
Altered central pain modulation is the predominant pain mechanism in a proportion of chronic musculoskeletal pain disorders and is associated with poor outcomes. Although existing studies predict poor outcomes such as persistent pain and disability, to date there is little consensus on what factors specifically predict altered central pain modulation. To review the existing literature on the predictive factors specifically for altered central pain modulation in musculoskeletal pain populations. This is a systematic review in accordance with supplemented PRISMA guidelines. A systematic search was performed by 2 mutually blinded reviewers. Relevant articles were screened by title and abstract from Medline, Embase, PubMed, CINAHL, and Web of Science electronic databases. Alternative sources were also sought to locate missed potential articles. Eligibility included studies published in English, adults aged 18 to 65, musculoskeletal pain, baseline measurements taken at the pre-morbid or acute stage, > 3-month follow-up time after pain onset, and primary outcome measures specific to altered central pain modulation. Studies were excluded where there were concurrent diseases or they were non-predictive studies. Risk of bias was assessed using the quality in prognostic studies (QUIPS) tool. Study design, demographics, musculoskeletal region, inclusion/exclusion criteria, measurement timelines, predictor and primary outcome measures, and results were extracted. Data were synthesized qualitatively and strength of evidence was scored using the grading of recommendations, assessment, development, and evaluations (GRADE) scoring system. Nine eligible articles were located, in various musculoskeletal populations (whiplash, n = 2; widespread pain, n = 5; temporomandibular disorder, n = 2). Moderate evidence was found for 2 predictive factors of altered central pain modulation: 1) high sensory sensitivity (using genetic testing or quantitative sensory tests), and 2) psychological factors (somatization and poor self-expectation of recovery), at a pre-morbid or acute stage baseline. At the times of the article publications, the current definitions and clinical guidelines for identifying altered central pain modulation were not yet available. Careful interpretation of the information provided using current knowledge and published guidelines was necessary to extract information specific to altered central pain modulation in some of the studies, avoiding unwarranted assumptions. Premorbid and acute stage high sensory sensitivity and/or somatization are the strongest predictors of altered central pain modulation in chronic musculoskeletal pain to date. This is the first systematic review specifically targeting altered central pain modulation as the primary outcome in musculoskeletal pain populations. Early identification of people at risk of developing chronic pain with altered central pain modulation may guide clinicians in appropriate management, diminishing the burden of persistent pain on patients and heath care providers alike. Systematic Review Registration no.: PROSPERO 2015:CRD42015032394.Key words: Predictive factors, pre-morbid and acute stage baselines, altered central pain modulation, chronic musculoskeletal pain, sensory processing, somatization.
Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury
Fairbanks, Carolyn A.; Schreiber, Kristin L.; Brewer, Kori L.; Yu, Chen-Guang; Stone, Laura S.; Kitto, Kelley F.; Nguyen, H. Oanh; Grocholski, Brent M.; Shoeman, Don W.; Kehl, Lois J.; Regunathan, Soundararajan; Reis, Donald J.; Yezierski, Robert P.; Wilcox, George L.
2000-01-01
Antagonists of glutamate receptors of the N-methyl-d-aspartate subclass (NMDAR) or inhibitors of nitric oxide synthase (NOS) prevent nervous system plasticity. Inflammatory and neuropathic pain rely on plasticity, presenting a clinical opportunity for the use of NMDAR antagonists and NOS inhibitors in chronic pain. Agmatine (AG), an endogenous neuromodulator present in brain and spinal cord, has both NMDAR antagonist and NOS inhibitor activities. We report here that AG, exogenously administered to rodents, decreased hyperalgesia accompanying inflammation, normalized the mechanical hypersensitivity (allodynia/hyperalgesia) produced by chemical or mechanical nerve injury, and reduced autotomy-like behavior and lesion size after excitotoxic spinal cord injury. AG produced these effects in the absence of antinociceptive effects in acute pain tests. Endogenous AG also was detected in rodent lumbosacral spinal cord in concentrations similar to those previously detected in brain. The evidence suggests a unique antiplasticity and neuroprotective role for AG in processes underlying persistent pain and neuronal injury. PMID:10984543
Vernon, Claire G; Swanson, Geoffrey T
2017-03-22
Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG-dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2 -/- neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG-dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2) is also expressed in DRG. We show here that it is a developmentally downregulated but dynamic component of KARs in these neurons, that it contributes to regulated neurite regrowth in adult neurons, and that it is increased in adult mice after nerve injury. Our data confirm Neto2 as a KAR auxiliary subunit and expand our knowledge of the molecular composition of KARs in nociceptive neurons, a key piece in understanding the mechanistic contribution of KAR signaling to pain-processing circuits. Copyright © 2017 the authors 0270-6474/17/373352-12$15.00/0.
Vernon, Claire G.
2017-01-01
Peripheral sensory neurons in the dorsal root ganglia (DRG) are the initial transducers of sensory stimuli, including painful stimuli, from the periphery to central sensory and pain-processing centers. Small- to medium-diameter non-peptidergic neurons in the neonatal DRG express functional kainate receptors (KARs), one of three subfamilies of ionotropic glutamate receptors, as well as the putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2). Neto2 alters recombinant KAR function markedly but has yet to be confirmed as an auxiliary subunit that assembles with and alters the function of endogenous KARs. KARs in neonatal DRG require the GluK1 subunit as a necessary constituent, but it is unclear to what extent other KAR subunits contribute to the function and proposed roles of KARs in sensory ganglia, which include promotion of neurite outgrowth and modulation of glutamate release at the DRG–dorsal horn synapse. In addition, KARs containing the GluK1 subunit are implicated in modes of persistent but not acute pain signaling. We show here that the Neto2 protein is highly expressed in neonatal DRG and modifies KAR gating in DRG neurons in a developmentally regulated fashion in mice. Although normally at very low levels in adult DRG neurons, Neto2 protein expression can be upregulated via MEK/ERK signaling and after sciatic nerve crush and Neto2−/− neurons from adult mice have stunted neurite outgrowth. These data confirm that Neto2 is a bona fide KAR auxiliary subunit that is an important constituent of KARs early in sensory neuron development and suggest that Neto2 assembly is critical to KAR modulation of DRG neuron process outgrowth. SIGNIFICANCE STATEMENT Pain-transducing peripheral sensory neurons of the dorsal root ganglia (DRG) express kainate receptors (KARs), a subfamily of glutamate receptors that modulate neurite outgrowth and regulate glutamate release at the DRG–dorsal horn synapse. The putative KAR auxiliary subunit Neuropilin- and tolloid-like 2 (Neto2) is also expressed in DRG. We show here that it is a developmentally downregulated but dynamic component of KARs in these neurons, that it contributes to regulated neurite regrowth in adult neurons, and that it is increased in adult mice after nerve injury. Our data confirm Neto2 as a KAR auxiliary subunit and expand our knowledge of the molecular composition of KARs in nociceptive neurons, a key piece in understanding the mechanistic contribution of KAR signaling to pain-processing circuits. PMID:28235897
The roles of special proresolving mediators in pain relief.
Zhang, Lan-Yu; Jia, Ming-Rui; Sun, Tao
2018-02-08
The resolution of acute inflammation, once thought to be a passive process, is now recognized as an active one. The productions of endogenous special proresolving mediators (SPMs) are involved in this process. SPMs, including lipoxins, resolvins, protectins, and maresins, are endogenous lipid mediators generated from ω-6 arachidonic acid or ω-3 poly-unsaturated fatty acids during the resolution phase of acute inflammation. They have potent anti-inflammatory and proresolving actions in various inflammatory disorders. Due to the potent proresolving and anti-inflammatory effects, SPMs are also used for pain relief. This review focuses on the mechanisms by which SPMs act on their respective G-protein-coupled receptors in immune cells and nerve cells to normalize pain via regulating inflammatory mediators, transient receptor potential ion channels, and central sensitization. SPMs may offer novel therapeutic approaches for preventing and treating pain conditions associated with inflammation.
Solinski, Hans Jürgen; Petermann, Franziska; Rothe, Kathrin; Boekhoff, Ingrid; Gudermann, Thomas; Breit, Andreas
2013-01-01
Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain. PMID:23505557
Arendt-Nielsen, Lars; Egsgaard, Line Lindhardt; Petersen, Kristian Kjær
2016-08-01
The COX-2 inhibitor etoricoxib modulates the peripheral and central nociceptive mechanisms in animals. This interaction has not been studied in patients with pain. This randomized, double-blind, placebo-controlled, 2-way crossover, 4-week treatment study investigated the pain mechanisms modulated by etoricoxib in patients with painful knee osteoarthritis. Patients were randomized to group A (60 mg/d etoricoxib followed by placebo) or B (placebo followed by 60 mg/d etoricoxib). The quantitative, mechanistic pain biomarkers were pressure pain thresholds, temporal summation (TS), and conditioning pain modulation. Clinical readouts were Brief Pain Inventory, WOMAC, painDETECT questionnaire (PD-Q), and time and pain intensity during walking and stair climbing. Etoricoxib as compared with placebo significantly modulated the pressure pain thresholds (P = 0.012, localized sensitization) at the knee and leg (control site) (P = 0.025, spreading sensitization) and TS assessed from the knee (P = 0.038) and leg (P = 0.045). Conditioning pain modulation was not modulated. The Brief Pain Inventory (pain scores), PD-Q, WOMAC, and walking and stair climbing tests were all significantly improved by etoricoxib. Based on a minimum of 30% or 50% pain alleviation (day 0-day 28), responders and nonresponders were defined. The nonresponders showed a significant association between increased facilitation of TS and increased pain alleviation. None of the other parameters predicted the degree of pain alleviation. Generally, a responder to etoricoxib has the most facilitated TS. In conclusion, etoricoxib (1) modulated central pain modulatory mechanisms and (2) improved pain and function in painful osteoarthritis. Stronger facilitation of TS may indicate a better response to etoricoxib, supporting the central mode-of-action of the drug.
Advances Towards The Discovery of GPR55 Ligands.
Morales, Paula; Jagerovic, Nadine
2016-01-01
The G-protein-coupled receptor 55 (GPR55) was identified in 1999. It was proposed as a novel member of the endocannabinoid system due to the fact that some endogenous, plant-derived and synthetic cannabinoid ligands act on GPR55. However, the complexity of the cellular downstream signaling pathways related to GPR55 activation delayed the discovery of selective GPR55 ligands. It was only a few years ago that the high throughput screening of libraries of pharmaceutical companies and governmental organizations allowed to identify selective GPR55 agonists and antagonists. Since then, several GPR55 modulator scaffolds have been reported. The relevance of GPR55 has been explored in diverse physiological and pathological processes revealing its role in inflammation, neuropathic pain, bone physiology, diabetes and cancer. Considering GPR55 as a new promising therapeutic target, there is a clear need for new selective and potent GPR55 modulators. This review will address a current structural update of GPR55 ligands.
[Current concepts in pathophysiology of CRPS I].
Nickel, F T; Maihöfner, C
2010-02-01
Knowledge about the pathophysiology underlying the complex regional pain syndrome (CRPS) has increased over the last years. Classically, CRPS has been considered to be mainly driven by sympathetic dysfunction with sympathetically maintained pain being its major pathogenetic mechanism. Currently, the disease is understood as result of a complex interplay between altered somatosensory, motor, autonomic and inflammatory systems. Peripheral and central sensitization is a common feature in CRPS as in other neuropathic pain syndromes. One important mechanism is the sensitization of spinal dorsal horn cells via activation of postsynaptic NMDA-receptors by chronic C-fiber input. Differential activity of endogenous pain modulating systems may play a pivotal role in the development of CRPS, too. Neuronal plasticity of the somatosensory cortex accounts for central sensory signs. Also the motor system is subject to central adaptive changes in patients with CRPS. Calcitonin-gene related peptide (CGRP) and substance P mediate neurogenic inflammation. Additionally other proinflammatory cytokines involved in the inflammatory response in CRPS have been identified. In terms of the sympathetic nervous system, recent evidence rather points to a sensitization of adrenergic receptors than to increased efferent sympathetic activity. Particularly the expression of alpha (1)-adrenoceptors on nociceptive C-fibers may play a major role. These pathophysiological ideas do not exclude each other. In fact they complement one another. The variety of the involved systems may explain the versatile clinical picture of CRPS. Georg Thieme Verlag KG Stuttgart, New York.
Stover, Joshua D; Farhang, Niloofar; Berrett, Kristofer C; Gertz, Jason; Lawrence, Brandon; Bowles, Robby D
2017-09-06
Back pain is a major contributor to disability and has significant socioeconomic impacts worldwide. The degenerative intervertebral disc (IVD) has been hypothesized to contribute to back pain, but a better understanding of the interactions between the degenerative IVD and nociceptive neurons innervating the disc and treatment strategies that directly target these interactions is needed to improve our understanding and treatment of back pain. We investigated degenerative IVD-induced changes to dorsal root ganglion (DRG) neuron activity and utilized CRISPR epigenome editing as a neuromodulation strategy. By exposing DRG neurons to degenerative IVD-conditioned media under both normal and pathological IVD pH levels, we demonstrate that degenerative IVDs trigger interleukin (IL)-6-induced increases in neuron activity to thermal stimuli, which is directly mediated by AKAP and enhanced by acidic pH. Utilizing this novel information on AKAP-mediated increases in nociceptive neuron activity, we developed lentiviral CRISPR epigenome editing vectors that modulate endogenous expression of AKAP150 by targeted promoter histone methylation. When delivered to DRG neurons, these epigenome-modifying vectors abolished degenerative IVD-induced DRG-elevated neuron activity while preserving non-pathologic neuron activity. This work elucidates the potential for CRISPR epigenome editing as a targeted gene-based pain neuromodulation strategy. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Therapeutic potential of cannabis in pain medicine.
Hosking, R D; Zajicek, J P
2008-07-01
Advances in cannabis research have paralleled developments in opioid pharmacology whereby a psychoactive plant extract has elucidated novel endogenous signalling systems with therapeutic significance. Cannabinoids (CBs) are chemical compounds derived from cannabis. The major psychotropic CB delta-9-tetrahydrocannabinol (Delta(9)-THC) was isolated in 1964 and the first CB receptor (CB(1)R) was cloned in 1990. CB signalling occurs via G-protein-coupled receptors distributed throughout the body. Endocannabinoids are derivatives of arachidonic acid that function in diverse physiological systems. Neuronal CB(1)Rs modulate synaptic transmission and mediate psychoactivity. Immune-cell CB(2) receptors (CB(2)R) may down-regulate neuroinflammation and influence cyclooxygenase-dependent pathways. Animal models demonstrate that CBRs play a fundamental role in peripheral, spinal, and supraspinal nociception and that CBs are effective analgesics. Clinical trials of CBs in multiple sclerosis have suggested a benefit in neuropathic pain. However, human studies of CB-mediated analgesia have been limited by study size, heterogeneous patient populations, and subjective outcome measures. Furthermore, CBs have variable pharmacokinetics and can manifest psychotropism. They are currently licensed as antiemetics in chemotherapy and can be prescribed on a named-patient basis for neuropathic pain. Future selective peripheral CB(1)R and CB(2)R agonists will minimize central psychoactivity and may synergize opioid anti-nociception. This review discusses the basic science and clinical aspects of CB pharmacology with a focus on pain medicine.
Panteleev, Sergey S; Martseva, Alexandra А; Lyubashina, Olga А
2015-02-15
Irritable bowel syndrome (IBS) is one of the most widespread functional gastrointestinal disorders characterized by abdominal pain. A key pathophysiological mechanism of abdominal pain is associated with disturbances of serotonergic transmission in feedback control loops of endogenous pain modulation in which the ventrolateral medulla (VLM) plays an important role. The receptors to serotonin (5-HT), and particularly the serotonin 3 (5-HT3) receptors have been extensively used as a potential target for abdominal pain treatment of IBS patients due to antinociceptive features of the 5-HT3 receptor antagonists. The precise mechanisms underlying the antinociceptive action of these antagonists remain unclear. The main objective of our study was to evaluate the involvement of the 5-HT3 receptors in abdominal pain transmission within the VLM. Experiments were carried out on urethane-anaesthetized rats using the animal model of abdominal pain. Noxious colorectal distension (CRD) with a pressure of 80mmHg induced a significant increase in VLM neuron-evoked activity and depressor reactions (171.1±12.7% and 64±1.8% to baseline, accordingly). Selective blockade of the 5-HT3 receptors with granisetron at doses of 1.0 or 2.0mg/kg (i.v) resulted in long-lasting (90min) dose-dependent inhibition of VLM neuron-evoked activity and depressor reactions. When brainstem dorsal surface applications of granisetron (10 or 20µM) were used, the changes were more pronounced. These results suggest involvement of the 5-HT3 receptors in abdominal pain transmission within the VLM, which will be discussed in relation to the central antinociceptive effect of granisetron. Copyright © 2015 Elsevier B.V. All rights reserved.
Muscle pain perception and sympathetic nerve activity to exercise during opioid modulation
NASA Technical Reports Server (NTRS)
Cook, D. B.; O'Connor, P. J.; Ray, C. A.
2000-01-01
The purpose of this experiment was to examine the effects of the endogenous opioid system on forearm muscle pain and muscle sympathetic nerve activity (MSNA) during dynamic fatiguing exercise. Twelve college-age men (24 +/- 4 yr) performed graded (1-min stages; 30 contractions/min) handgrip to fatigue 1 h after the ingestion of either 60 mg codeine, 50 mg naltrexone, or placebo. Pain (0-10 scale) and exertion (0-10 and 6-20 scales) intensities were measured during the last 15 s of each minute of exercise and every 15 s during recovery. MSNA was measured continuously from the peroneal nerve in the left leg. Pain threshold occurred earlier [1.8 +/- 1, 2. 2 +/- 1, 2.2 +/- 1 J: codeine, naltrexone, and placebo, respectively] and was associated with a lower rating of perceived exertion (RPE) (2.7 +/- 2, 3.6 +/- 2, 3.8 +/- 2: codeine, naltrexone, and placebo, respectively) in the codeine condition compared with either the naltrexone or placebo conditions. There were no main effects (i.e., drugs) or interaction (i.e., drugs x time) for either forearm muscle pain or RPE during exercise [pain: F (2, 22) = 0.69, P = 0.51]. There was no effect of drug on MSNA, heart rate, or blood pressure during baseline, exercise, or recovery. Peak exercise MSNA responses were 21 +/- 1, 21 +/- 2.0, and 21 +/- 2.0 bursts/30 s for codeine, naltrexone, and placebo conditions, respectively. Peak mean arterial pressure responses were 135 +/- 4, 131 +/- 3, and 132 +/- 4 mmHg for codeine, naltrexone, and placebo conditions, respectively. It is concluded that neither 60 mg codeine nor 50 mg naltrexone has an effect on forearm muscle pain, exertion, or MSNA during high- intensity handgrip to fatigue.
Cancer pain and current theory for pain control.
Kahan, Brian
2014-05-01
This article discusses current trends in managing cancer pain, with specific regard to opioid transmission, descending pathway inhabitation, and ways to facilitate the endogenous antinociceptive chemicals in the human body. Various techniques for opioid and nonopioid control of potential pain situations of patients with cancer are discussed. The benefits of using pharmacogenetics to assess the appropriate medications are addressed. Finally, specific treatment of abdominal cancer pain using radiofrequency lesioning is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Mood influences supraspinal pain processing separately from attention.
Villemure, Chantal; Bushnell, M Catherine
2009-01-21
Studies show that inducing a positive mood or diverting attention from pain decreases pain perception. Nevertheless, induction manipulations, such as viewing interesting movies or performing mathematical tasks, often influence both emotional and attentional states. Imaging studies have examined the neural basis of psychological pain modulation, but none has explicitly separated the effects of emotion and attention. Using odors to modulate mood and shift attention from pain, we previously showed that the perceptual consequences of changing mood differed from those of altering attention, with mood primarily altering pain unpleasantness and attention preferentially altering pain intensity. These findings suggest that brain circuits involved in pain modulation provoked by mood or attention are partially separable. Here we used functional magnetic resonance imaging to directly compare the neurocircuitry involved in mood- and attention-related pain modulation. We manipulated independently mood state and attention direction, using tasks involving heat pain and pleasant and unpleasant odors. Pleasant odors, independent of attentional focus, induced positive mood changes and decreased pain unpleasantness and pain-related activity within the anterior cingulate (ACC), medial thalamus, and primary and secondary somatosensory cortices. The effects of attentional state were less robust, with only the activity in anterior insular cortex (aIC) showing possible attentional modulation. Lateral inferior frontal cortex [LinfF; Brodmann's area (BA) 45/47] activity correlated with mood-related modulation, whereas superior posterior parietal (SPP; BA7) and entorhinal activity correlated with attention-related modulation. ACC activity covaried with LinfF and periacqueductal gray activity, whereas aIC activity covaried with SPP activity. These findings suggest that separate neuromodulatory circuits underlie emotional and attentional modulation of pain.
ERIC Educational Resources Information Center
Moharic, Metka
2010-01-01
Transcutaneous electrical nerve stimulation (TENS) is one of the therapies for painful neuropathy. Its analgesic mechanisms probably involve the gate control theory, the physiological block and the endogenous pain inhibitory system. The aim of the study was to determine whether TENS improves small fibre function diminished because of painful…
Christian, Catherine A.
2013-01-01
Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors. PMID:23843428
Christian, Catherine A; Huguenard, John R
2013-10-01
Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors.
A user’s guide to cannabinoid therapies in oncology
Maida, V.; Daeninck, P.J.
2016-01-01
“Cannabinoid” is the collective term for a group of chemical compounds that either are derived from the Cannabis plant, are synthetic analogues, or occur endogenously. Although cannabinoids interact mostly at the level of the currently recognized cannabinoid receptors, they might have cross reactivity, such as at opioid receptors. Patients with malignant disease represent a cohort within health care that have some of the greatest unmet needs despite the availability of a plethora of guideline-driven disease-modulating treatments and pain and symptom management options. Cannabinoid therapies are varied and versatile, and can be offered as pharmaceuticals (nabilone, dronabinol, and nabiximols), dried botanical material, and edible organic oils infused with cannabis extracts. Cannabinoid therapy regimens can be creative, involving combinations of all of the aforementioned modalities. Patients with malignant disease, at all points of their disease trajectory, could be candidates for cannabinoid therapies whether as monotherapies or as adjuvants. The most studied and established roles for cannabinoid therapies include pain, chemotherapy-induced nausea and vomiting, and anorexia. Moreover, given their breadth of activity, cannabinoids could be used to concurrently optimize the management of multiple symptoms, thereby reducing overall polypharmacy. The use of cannabinoid therapies could be effective in improving quality of life and possibly modifying malignancy by virtue of direct effects and in improving compliance or adherence with disease-modulating treatments such as chemotherapy and radiation therapy. PMID:28050136
Emotional modulation of pain and spinal nociception in fibromyalgia.
Rhudy, Jamie L; DelVentura, Jennifer L; Terry, Ellen L; Bartley, Emily J; Olech, Ewa; Palit, Shreela; Kerr, Kara L
2013-07-01
Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (eg, depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in 4 blocks; 2 blocks assessed only physiological-emotional reactions (ie, pleasure/arousal ratings, corrugator electromyography, startle modulation, skin conductance) in the absence of pain, and 2 blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (eg, reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all 3 groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Kato, Daiki; Suto, Takashi; Obata, Hideaki; Saito, Shigeru
2018-06-20
Although endogenous analgesia plays an important role in controlling pain states, chronic pain patients exhibit decreased endogenous analgesia compared to healthy individuals. In rats, noxious stimulus-induced analgesia (NSIA), which is an indicator of endogenous analgesia, diminished 6 weeks after spinal nerve ligation (SNL6W). A recent study in rats with deleted noradrenergic fibers demonstrated that the noradrenergic fibers were essential to NSIA. It has also been reported that brain-derived neurotrophic factor increased spinal noradrenergic fibers. Therefore, this study examined the effect of TrkB activation, which is the receptor for brain-derived neurotrophic factor, on impaired NSIA in SNL6W rats. In addition, we also examined the effect of endogenous analgesia on acute incisional pain. After 5 daily intraperitoneal injections of 7,8-dihydroxyflavone (7,8-DHF, TrkB agonist, 5 mg/kg), NSIA was examined by measuring the withdrawal threshold increment in the left (contralateral to nerve ligation) hindpaw at 30 minutes after capsaicin injection (250 μg) in the forepaw. K252a (TrkB antagonist, 2 μg) was administrated intrathecally for 5 days. Idazoxan (α2 adrenoceptor antagonist, 30 μg), atropine (muscarinic antagonist, 30 μg), and propranolol (nonselective β adrenoceptor antagonist, 30 μg) were administered intrathecally for 15 minutes before capsaicin injection. Microdialysis and immunohistochemistry were performed to examine the noradrenergic plasticity in the spinal dorsal horn. A hindpaw incision was performed on the left (contralateral to nerve ligation) hindpaw. Data were analyzed by 1-way analyses of variance or 2-way repeated-measures 1-way analysis of variance followed by a Student t test with Bonferroni correction. Five daily intraperitoneal injections of 7,8-DHF restored the attenuated NSIA in SNL6W rats (n = 7, P = .002; estimated treatment effect [95% CI]: 62.9 [27.0-98.7] g), with this effect blocked by 5 daily intrathecal coadministrations of K252a (n = 6, P < .001; -57.8 [-78.3 to -37.2] g). This effect was also inhibited by a single intrathecal administration of idazoxan (n = 8, P < .001; -61.6 [-92.4 to -30.9] g) and atropine (n = 8, P = .003; -52.6 [-73.3 to -31.9] g), but not by propranolol. Furthermore, 7,8-DHF increased the noradrenergic fiber in the spinal dorsal horn and the noradrenaline release in response to the capsaicin injection in the forepaw in SNL6W rats. In addition, repeated injections of 7,8-DHF prevented delayed recovery from incisional pain in SNL6W rats. Spinal activation of TrkB may recover the attenuated endogenous analgesia by improving the adrenergic plasticity, thereby leading to prevention of pain prolongation after surgery.
Emotional modulation of pain and spinal nociception in fibromyalgia
Rhudy, Jamie L.; DelVentura, Jennifer L.; Terry, Ellen L.; Bartley, Emily J.; Olech, Ewa; Palit, Shreela; Kerr, Kara L.
2013-01-01
Fibromyalgia (FM) is characterized by widespread pain, as well as affective disturbance (e.g., depression). Given that emotional processes are known to modulate pain, a disruption of emotion and emotional modulation of pain and nociception may contribute to FM. The present study used a well-validated affective picture-viewing paradigm to study emotional processing and emotional modulation of pain and spinal nociception. Participants were 18 individuals with FM, 18 individuals with rheumatoid arthritis (RA), and 19 healthy pain-free controls (HC). Mutilation, neutral, and erotic pictures were presented in four blocks; two blocks assessed only physiological-emotional reactions (i.e., pleasure/arousal ratings, corrugator EMG, startle modulation, skin conductance) in the absence of pain and two blocks assessed emotional reactivity and emotional modulation of pain and the nociceptive flexion reflex (NFR, a physiological measure of spinal nociception) evoked by suprathreshold electric stimulations over the sural nerve. In general, mutilation pictures elicited displeasure, corrugator activity, subjective arousal, and sympathetic activation, whereas erotic pictures elicited pleasure, subjective arousal, and sympathetic activation. However, FM was associated with deficits in appetitive activation (e.g., reduced pleasure/arousal to erotica). Moreover, emotional modulation of pain was observed in HC and RA, but not FM, even though all three groups evidenced modulation of NFR. Additionally, NFR thresholds were not lower in the FM group, indicating a lack of spinal sensitization. Together, these results suggest that FM is associated with a disruption of supraspinal processes associated with positive affect and emotional modulation of pain, but not brain-to-spinal cord circuitry that modulates spinal nociceptive processes. PMID:23622762
Pain perception and hypnosis: findings from recent functional neuroimaging studies.
Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; Serata, Daniele; Caltagirone, Saverio Simone; Savoja, Valeria; Piacentino, Daria; Callovini, Gemma; Manfredi, Giovanni; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo
2015-01-01
Hypnosis modulates pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. By reviewing functional neuroimaging studies focusing on pain perception under hypnosis, the authors aimed to identify brain activation-deactivation patterns occurring in hypnosis-modulated pain conditions. Different changes in brain functionality occurred throughout all components of the pain network and other brain areas. The anterior cingulate cortex appears to be central in modulating pain circuitry activity under hypnosis. Most studies also showed that the neural functions of the prefrontal, insular, and somatosensory cortices are consistently modified during hypnosis-modulated pain conditions. Functional neuroimaging studies support the clinical use of hypnosis in the management of pain conditions.
NASA Astrophysics Data System (ADS)
Staikopoulos, Vasiliki; Gosnell, Martin E.; Anwer, Ayad G.; Mustafa, Sanam; Hutchinson, Mark R.; Goldys, Ewa M.
2016-12-01
Fluorescence-based bio-imaging methods have been extensively used to identify molecular changes occurring in biological samples in various pathological adaptations. Auto-fluorescence generated by endogenous fluorescent molecules within these samples can interfere with signal to background noise making positive antibody based fluorescent staining difficult to resolve. Hyperspectral imaging uses spectral and spatial imaging information for target detection and classification, and can be used to resolve changes in endogenous fluorescent molecules such as flavins, bound and free NADH and retinoids that are involved in cell metabolism. Hyperspectral auto-fluorescence imaging of spinal cord slices was used in this study to detect metabolic differences within pain processing regions of non-pain versus sciatic chronic constriction injury (CCI) animals, an established animal model of peripheral neuropathy. By using an endogenous source of contrast, subtle metabolic variations were detected between tissue samples, making it possible to distinguish between animals from non-injured and injured groups. Tissue maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant tissue regions with compromised mitochondrial function. Taken together, our results demonstrate that hyperspectral imaging provides a new non-invasive method to investigate central changes of peripheral neuropathic injury and other neurodegenerative disease models, and paves the way for novel cellular characterisation in health, disease and during treatment, with proper account of intrinsic cellular heterogeneity.
Prediction of chronic post-operative pain: pre-operative DNIC testing identifies patients at risk.
Yarnitsky, David; Crispel, Yonathan; Eisenberg, Elon; Granovsky, Yelena; Ben-Nun, Alon; Sprecher, Elliot; Best, Lael-Anson; Granot, Michal
2008-08-15
Surgical and medical procedures, mainly those associated with nerve injuries, may lead to chronic persistent pain. Currently, one cannot predict which patients undergoing such procedures are 'at risk' to develop chronic pain. We hypothesized that the endogenous analgesia system is key to determining the pattern of handling noxious events, and therefore testing diffuse noxious inhibitory control (DNIC) will predict susceptibility to develop chronic post-thoracotomy pain (CPTP). Pre-operative psychophysical tests, including DNIC assessment (pain reduction during exposure to another noxious stimulus at remote body area), were conducted in 62 patients, who were followed 29.0+/-16.9 weeks after thoracotomy. Logistic regression revealed that pre-operatively assessed DNIC efficiency and acute post-operative pain intensity were two independent predictors for CPTP. Efficient DNIC predicted lower risk of CPTP, with OR 0.52 (0.33-0.77 95% CI, p=0.0024), i.e., a 10-point numerical pain scale (NPS) reduction halves the chance to develop chronic pain. Higher acute pain intensity indicated OR of 1.80 (1.28-2.77, p=0.0024) predicting nearly a double chance to develop chronic pain for each 10-point increase. The other psychophysical measures, pain thresholds and supra-threshold pain magnitudes, did not predict CPTP. For prediction of acute post-operative pain intensity, DNIC efficiency was not found significant. Effectiveness of the endogenous analgesia system obtained at a pain-free state, therefore, seems to reflect the individual's ability to tackle noxious events, identifying patients 'at risk' to develop post-intervention chronic pain. Applying this diagnostic approach before procedures that might generate pain may allow individually tailored pain prevention and management, which may substantially reduce suffering.
Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.
Geva, Nirit; Defrin, Ruth
2018-04-01
The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.
ACTH-like peptides increase pain sensitivity and antagonize opiate analgesia
NASA Technical Reports Server (NTRS)
Heybach, J. P.; Vernikos, J.
1981-01-01
The role of the pituitary and of ACTH in pain sensitivity was investigated in the rat. Pain sensitivity was assessed by measuring paw-lick and jump latencies in response to being placed on a grid at 55 C. Hypophysectomy reduced pain sensitivity, and this effect was reversed by the intracerebroventricular (ICV) injection of the opiate antagonist naloxone. Similarly, the analgesia produced by a dose of morphine was antagonized by the administration of ACTH or alpha-MSH. The peripheral injection of ACTH or alpha-MSH in normal rats did not increase pain sensitivity. However, ACTH administered ICV increased pain sensivity within 10 min. The results indicate that the pituitary is the source of an endogenous opiate antagonist and hyperalgesic factor and that this factor is ACTH or an ACTH-like peptide. This activity resides in the N-terminal portion of the ACTH molecule since ACTH sub 4-10 is not active in this respect, nor does this activity require a free N-terminal serine since alpha-MSH appears to be almost as potent as the ACTH sub 1-24 peptide. It is concluded that ACTH-like peptides of pituitary origin act as endogenous hyperalgesic and opiate antagonistic factors.
Linnstaedt, Sarah D; Hu, JunMei; Bortsov, Andrey V; Soward, April C; Swor, Robert; Jones, Jeffrey; Lee, David; Peak, David; Domeier, Robert; Rathlev, Niels; Hendry, Phyllis; McLean, Samuel A
2015-07-01
The μ-opioid receptor 1 (OPRM1) binds endogenous opioids. Increasing evidence suggests that endogenous OPRM1 agonists released at the time of trauma may contribute to the development of posttraumatic musculoskeletal pain (MSP). In this prospective observational study, we evaluated the hypothesis that individuals with an AG or GG genotype at the OPRM1 A118 G allele, which results in a reduced response to opioids, would have less severe MSP 6 weeks after motor vehicle collision (MVC). Based on previous evidence, we hypothesized that this effect would be sex-dependent and most pronounced among women with substantial peritraumatic distress. European American men and women ≥ 18 years of age presenting to the emergency department after MVC and discharged to home after evaluation (N = 948) were enrolled. Assessments included genotyping and 6-week evaluation of overall MSP severity (0-10 numeric rating scale). In linear regression modeling, a significant A118 G Allele × Sex interaction was observed: an AG/GG genotype predicted reduced MSP severity among women with substantial peritraumatic distress (β = -.925, P = .014) but not among all women. In contrast, men with an AG/GG genotype experienced increased MSP severity at 6 weeks (β = .827, P = .019). Further studies are needed to understand the biologic mechanisms mediating observed sex differences in A118 G effects. These results suggest a sex-dependent mechanism by which an emotional response to trauma (distress) contributes to a biologic mechanism (endogenous opioid release) that increases MSP in the weeks after stress exposure. These results also support the hypothesis that endogenous opioids influence pain outcomes differently in men and women. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Van Oosterwijck, Jessica; Nijs, Jo; Meeus, Mira; Van Loo, Michel; Paul, Lorna
2012-03-01
A controlled experimental study was performed to examine the efficacy of the endogenous pain inhibitory systems and whether this (mal)functioning is associated with symptom increases following exercise in patients with chronic whiplash-associated disorders (WAD). In addition, 2 types of exercise were compared. Twenty-two women with chronic WAD and 22 healthy controls performed a submaximal and a self-paced, physiologically limited exercise test on a cycle ergometer with cardiorespiratory monitoring on 2 separate occasions. Pain pressure thresholds (PPT), health status, and activity levels were assessed in response to the 2 exercise bouts. In chronic WAD, PPT decreased following submaximal exercise, whereas they increased in healthy subjects. The same effect was established in response to the self-paced, physiologically limited exercise, with exception of the PPT at the calf which increased. A worsening of the chronic WAD symptom complex was reported post-exercise. Fewer symptoms were reported in response to the self-paced, physiologically limited exercise. These observations suggest abnormal central pain processing during exercise in patients with chronic WAD. Submaximal exercise triggers post-exertional malaise, while a self-paced and physiologically limited exercise will trigger less severe symptoms, and therefore seems more appropriate for chronic WAD patients. The results from this exercise study suggest impaired endogenous pain inhibition during exercise in people with chronic WAD. This finding highlights the fact that one should be cautious when evaluating and recommending exercise in people with chronic WAD, and that the use of more individual, targeted exercise therapies is recommended. Copyright © 2012 American Pain Society. Published by Elsevier Inc. All rights reserved.
Opioid receptors and their ligands in the musculoskeletal system and relevance for pain control.
Spetea, Mariana
2013-01-01
Interest in opioid drugs like morphine, as the oldest and most potent pain-killing agents known, has been maintained through the years. One of the most frequent chronic pain sensations people experience is associated with pathological conditions of the musculoskeletal system. Chronic musculoskeletal pain is a major health problem, and an adequate management requires understanding of both peripheral and central components, with more attention drawn to the former. Intense experimental and clinical research activities resulted in important knowledge on the mechanisms and functions of the endogenous opioid system located in the periphery. This review describes the occurrence and distribution of endogenous opioids and their receptors in the musculoskeletal system, and their role in pain control in musculoskeletal disorders, such as rheumatoid arthritis and osteoarthritis. Using different techniques, including immunohistochemistry, electron microscopy or radioimmunoassay, expression of enkephalins, dynorphin, β-endorphin, and endomorphins was demonstrated in musculoskeletal tissues of animals and humans. Localization of opioid peptides was found in synovial membrane, periosteum, bone and bone marrow, loose connective tissue, the paratenon and musculotendinous junction of the achilles tendon. Animal and human studies have also demonstrated expression of µ, δ and κ opioid receptor proteins in musculoskeletal tissues using radioligand binding assays, autoradiography, electrophysiology, immunohistochemistry and Western blotting. Opioid receptor gene expression was reported based on polymerase chain reaction and in situ hybridization techniques. Combining morphological and quantitative approaches, important evidence that the musculoskeletal apparatus is equipped with a peripheral opioid system is provided. Demonstration of the occurrence of an endogenous opioid system in bone and joint tissues represents an essential step for defining novel pharmacological strategies to attain peripheral control of pain in musculoskeletal disorders.
Thompson, Brandon J.; Sanchez-Covarrubias, Lucy; Zhang, Yifeng; Laracuente, Mei-Li; Vanderah, Todd W.; Ronaldson, Patrick T.; Davis, Thomas P.
2013-01-01
Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4–1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp–mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy. PMID:24019224
The plasticity of descending controls in pain: translational probing.
Bannister, Kirsty; Dickenson, A H
2017-07-01
Descending controls, comprising pathways that originate in midbrain and brainstem regions and project onto the spinal cord, have long been recognised as key links in the multiple neural networks that interact to produce the overall pain experience. There is clear evidence from preclinical and clinical studies that both peripheral and central sensitisation play important roles in determining the level of pain perceived. Much emphasis has been put on spinal cord mechanisms in central excitability, but it is now becoming clear that spinal hyperexcitability can be regulated by descending pathways from the brain that originate from predominantly noradrenergic and serotonergic systems. One pain can inhibit another. In this respect diffuse noxious inhibitory controls (DNIC) are a unique form of endogenous descending inhibitory pathway since they can be easily evoked and quantified in animals and man. The spinal pharmacology of pathways that subserve DNIC are complicated; in the normal situation these descending controls produce a final inhibitory effect through the actions of noradrenaline at spinal α 2 -adrenoceptors, although serotonin, acting on facilitatory spinal 5-HT 3 receptors, influences the final expression of DNIC also. These descending pathways are altered in neuropathy and the effects of excess serotonin may now become inhibitory through activation of spinal 5-HT 7 receptors. Conditioned pain modulation (CPM) is the human counterpart of DNIC and requires a descending control also. Back and forward translational studies between DNIC and CPM, gauged between bench and bedside, are key for the development of analgesic therapies that exploit descending noradrenergic and serotonergic control pathways. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Racial Bias in Neural Response for Pain Is Modulated by Minimal Group
Shen, Fengtao; Hu, Yang; Fan, Mingxia; Wang, Huimin; Wang, Zhaoxin
2018-01-01
Whether empathic racial bias could be modulated is a subject of intense interest. The present study was carried out to explore whether empathic racial bias for pain is modulated by minimal group. Chinese/Western faces with neutral expressions receiving painful (needle penetration) or non-painful (Q-tip touch) stimulation were presented. Participants were asked to rate the pain intensity felt by Chinese/Western models of ingroup/outgroup members. Their implicit racial bias were also measured. Two lines of evidence indicated that the anterior cingulate cortex (ACC) was modulated by racial bias: (1) Chinese models elicited stronger activity than Western did in the ACC, and (2) activity in the ACC was modulated by implicit racial bias. Whereas the right anterior insula (rAI) were modulated by ingroup bias, in which ingroup member elicited stronger activity than outgroup member did. Furthermore, activity in the ACC was modulated by activity of rAI (i.e., ingroup bias) in the pain condition, while activity in the rAI was modulated by activity of ACC (i.e., racial bias) in the nopain condition. Our results provide evidence that there are different neural correlates for racial bias and ingroup bias, and neural racial bias for pain can be modulated by minimal group. PMID:29379429
Racial Bias in Neural Response for Pain Is Modulated by Minimal Group.
Shen, Fengtao; Hu, Yang; Fan, Mingxia; Wang, Huimin; Wang, Zhaoxin
2017-01-01
Whether empathic racial bias could be modulated is a subject of intense interest. The present study was carried out to explore whether empathic racial bias for pain is modulated by minimal group. Chinese/Western faces with neutral expressions receiving painful (needle penetration) or non-painful (Q-tip touch) stimulation were presented. Participants were asked to rate the pain intensity felt by Chinese/Western models of ingroup/outgroup members. Their implicit racial bias were also measured. Two lines of evidence indicated that the anterior cingulate cortex (ACC) was modulated by racial bias: (1) Chinese models elicited stronger activity than Western did in the ACC, and (2) activity in the ACC was modulated by implicit racial bias. Whereas the right anterior insula (rAI) were modulated by ingroup bias, in which ingroup member elicited stronger activity than outgroup member did. Furthermore, activity in the ACC was modulated by activity of rAI (i.e., ingroup bias) in the pain condition, while activity in the rAI was modulated by activity of ACC (i.e., racial bias) in the nopain condition. Our results provide evidence that there are different neural correlates for racial bias and ingroup bias, and neural racial bias for pain can be modulated by minimal group.
Endogenous opiates and behavior: 2014.
Bodnar, Richard J
2016-01-01
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). Copyright © 2015 Elsevier Inc. All rights reserved.
Madaus, Stacy M; Lim, Lionel S
2016-10-01
Chronic pain is an international healthcare crisis that affects an estimated 1.5 billion individuals worldwide, but pain management is not emphasized in the medical school curriculum, and thus supplemental education is essential. The Portal of Geriatric Online Education (POGOe) is a free repository of teaching modules for use by geriatric educators and learners. This article highlights three teaching modules available on this site: It's My Old Back Again: An Approach to Diagnosing and Managing Back Pain in the Older Adult (POGOe ID: 21670), Computer Based Learning Workbook, Third Edition module on Pain Management (POGOe ID: 21036), and Aging Q3 Curriculum on Pain Management of Older Adult Patients (POGOe ID: 21187). These modules were chosen based on their ability to address the major topics that the International Association for the Study of Pain proposes should be included in medical school curricula: mulitdimensional nature of pain, pain assessment and measurement, management of pain, and clinical conditions resulting in pain in older adults. They were also selected for their ability to be adapted for interprofessional education and how well they integrate basic science and clinical principles. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Victoria, Nicole C; Murphy, Anne Z
2016-01-01
Approximately 1 in 6 infants are born prematurely each year. Typically, these infants spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10-18 painful and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia are administered less than 25% of the time. Unalleviated pain during the perinatal period is associated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in stress and pain behavior occur, and whether such alterations can be prevented by appropriate analgesia at the time of insult, remains unclear. Work in our lab using a rodent model of early life pain suggests that inflammatory pain experienced on the day of birth blunts adult responses to stress- and pain-provoking stimuli, and dysregulates the hypothalamic pituitary adrenal (HPA) axis in part through a permanent upregulation in central endogenous opioid tone. This review focuses on the long-term impact of neonatal inflammatory pain on adult anxiety- and stress-related responses, and underlying neuroanatomical changes in the context of endogenous pain control and the HPA axis. These two systems are in a state of exaggerated developmental plasticity early in postnatal life, and work in concert to respond to noxious or aversive stimuli. We present empirical evidence from animal and clinical studies, and discuss historical perspectives underlying the lack of analgesia/anesthetic use for early life pain in the modern NICU. Copyright © 2015 Elsevier Inc. All rights reserved.
Victoria, Nicole C.; Murphy, Anne Z.
2016-01-01
Approximately 1 in 6 infants are born prematurely each year. Typically, these infants spend 25 days in the Neonatal Intensive Care Unit (NICU) where they experience 10–18 painful and inflammatory procedures each day. Remarkably, pre-emptive analgesics and/or anesthesia are administered less than 25% of the time. Unalleviated pain during the perinatal period is associated with permanent decreases in pain sensitivity, blunted cortisol responses and high rates of neuropsychiatric disorders. To date, the mechanism(s) by which these long-term changes in stress and pain behavior occur, and whether such alterations can be prevented by appropriate analgesia at the time of insult, remains unclear. Work in our lab using a rodent model of early life pain suggests that inflammatory pain experienced on the day of birth blunts adult responses to stress- and pain-provoking stimuli, and dysregulates the hypothalamic pituitary adrenal (HPA) axis in part through a permanent upregulation in central endogenous opioid tone. This review focuses on the long-term impact of neonatal inflammatory pain on adult anxiety- and stress-related responses, and underlying neuroanatomical changes in the context of endogenous pain control and the HPA axis. These two systems are in a state of exaggerated developmental plasticity early in postnatal life, and work in concert to respond to noxious or aversive stimuli. We present empirical evidence from animal and clinical studies, and discuss historical perspectives underlying the lack of analgesia/anesthetic use for early life pain in the modern NICU. PMID:26210872
Stress-evoked opioid release inhibits pain in major depressive disorder.
Frew, Ashley K; Drummond, Peter D
2008-10-15
To determine whether stress-evoked release of endogenous opioids might account for hypoalgesia in major depressive disorder (MDD), the mu-opioid antagonist naltrexone (50mg) or placebo was administered double-blind to 24 participants with MDD and to 31 non-depressed controls. Eighty minutes later participants completed a painful foot cold pressor test and, after a 5-min interval, began a 25-min arithmetic task interspersed with painful electric shocks. Ten minutes later participants completed a second cold pressor test. Negative affect was greater in participants with MDD than in non-depressed controls throughout the experiment, and increased significantly in both groups during mental arithmetic. Before the math task, naltrexone unmasked direct linear relationships between severity of depression, negative affect while resting quietly, and cold-induced pain in participants with MDD. In contrast, facilitatory effects of naltrexone on cold- and shock-induced pain were greatest in controls with the lowest depression scores. Naltrexone strengthened the relationship between negative affect and shock-induced pain during the math task, particularly in the depressed group, and heightened anxiety in both groups toward the end of the task. Thus, mu-opioid activity apparently masked a positive association between negative affect and pain in the most distressed participants. These findings suggest that psychological distress inhibits pain via stress-evoked release of opioid peptides in severe cases of MDD. In addition, tonic endogenous opioid neurotransmission could inhibit depressive symptoms and pain in people with low depression scores.
Sucrose-induced analgesia during early life modulates adulthood learning and memory formation.
Nuseir, Khawla Q; Alzoubi, Karem H; Alabwaini, Jehad; Khabour, Omar F; Kassab, Manal I
2015-06-01
This study is aimed at examining the long-term effects of chronic pain during early life (postnatal day 0 to 8weeks), and intervention using sucrose, on cognitive functions during adulthood in rats. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution or paracetamol was administered for analgesia before the paw prick. Control groups include tactile stimulation to account for handling and touching the paws, and sucrose alone was used. All treatments were started on day one of birth and continued for 8weeks. At the end of the treatments, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM), as well as pain threshold via foot-withdrawal response to a hot plate apparatus. Additionally, the hippocampus was dissected, and blood was collected. Levels of neurotrophins (BDNF, IGF-1 and NT-3) and endorphins were assessed using ELISA. The results show that chronic noxious stimulation resulted in comparable foot-withdrawal latency between noxious and tactile groups. On the other hand, pretreatment with sucrose or paracetamol increased pain threshold significantly both in naive rats and noxiously stimulated rats (P<0.05). Chronic pain during early life impaired short-term memory, and sucrose treatment prevented such impairment (P<0.05). Sucrose significantly increased serum levels of endorphin and enkephalin. Chronic pain decreased levels of BDNF in the hippocampus and this decrease was prevented by sucrose and paracetamol treatments. Hippocampal levels of NT-3 and IGF-1 were not affected by any treatment. In conclusion, chronic pain induction during early life induced short memory impairment, and pretreatment with sucrose prevented this impairment via mechanisms that seem to involve BDNF. As evident in the results, sucrose, whether alone or in the presence of pre-noxious stimulation, increases pain threshold in such circumstances; most likely via a mechanism that involves an increase in endogenous opioids. Copyright © 2015 Elsevier Inc. All rights reserved.
Granovsky, Yelena; Yarnitsky, David
2013-01-01
Experimental pain stimuli can be used to simulate patients’ pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests—conditioned pain modulation (CPM) and temporal summation (TS). Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine. PMID:24228167
Granovsky, Yelena; Yarnitsky, David
2013-01-01
Experimental pain stimuli can be used to simulate patients' pain experience. We review recent developments in psychophysical pain testing, focusing on the application of the dynamic tests-conditioned pain modulation (CPM) and temporal summation (TS). Typically, patients with clinical pain of various types express either less efficient CPM or enhanced TS, or both. These tests can be used in prediction of incidence of acquiring pain and of its intensity, as well as in assisting the correct choice of analgesic agents for individual patients. This can help to shorten the commonly occurring long and frustrating process of adjusting analgesic agents to the individual patients. We propose that evaluating pain modulation can serve as a step forward in individualizing pain medicine.
Efficient conditioned pain modulation despite pain persistence in painful diabetic neuropathy.
Granovsky, Yelena; Nahman-Averbuch, Hadas; Khamaisi, Mogher; Granot, Michal
2017-05-01
Alleviation of pain, by either medical or surgical therapy, is accompanied by transition from less efficient, or pro-nociceptive, to efficient conditioned pain modulation (CPM). Spontaneous decrease or resolution of pain with disease progression is reported for some patients with painful diabetic neuropathy (PDN). To explore whether CPM changes similarly in parallel to spontaneous resolution of pain in PDN patients. In this cross-sectional study, thirty-three patients with PDN underwent psychophysical assessment of pain modulation on the forearm, remote from the clinical pain. Pain duration was not correlated with neuropathic pain intensity, yet, it correlated with CPM efficiency; patients with longer pain duration had same pain level, but more efficient CPM than those with short-pain duration (ρ = -0.417; P = 0.025, Spearman correlation). Patients with pain more than 2 years (median split) expressed efficient CPM that was not different from that of healthy controls. These patients also had lower temporal summation of pain than the short-pain duration patients group ( P < 0.05). The 2 patient groups did not differ in clinical pain characteristics or use of analgesics. Pro-nociception, expressed by less efficient CPM and high temporal summation that usually accompanies clinical painful conditions, seems to "normalize" with chronicity of the pain syndrome. This is despite continuing pain, suggesting that pro-nociceptivity in pain syndromes is multifactorial. Because the pain modulation profile affects success of therapy, this suggests that different drugs might express different efficacy pending on duration of the pain in patients with PDN.
Pronociceptive pain modulation in patients with painful chemotherapy-induced polyneuropathy.
Nahman-Averbuch, Hadas; Yarnitsky, David; Granovsky, Yelena; Sprecher, Elliot; Steiner, Mariana; Tzuk-Shina, Tzahala; Pud, Dorit
2011-08-01
Several chemotherapy agents induce polyneuropathy that is painful for some patients, but not for others. We assumed that these differences might be attributable to varying patterns of pain modulation. The aim of the present study was to evaluate pain modulation in such patients. Twenty-seven patients with chemotherapy-induced polyneuropathy were tested for detection thresholds (cold, warm, and mechanical) in both the forearm and foot, as well as for heat pain threshold, mechanical temporal summation (TS), and conditioned pain modulation (CPM; also known as the diffuse noxious inhibitory control-like effect), which were tested in the upper limbs. Positive correlations were found between clinical pain levels and both TS (r=0.52, P=0.005) and CPM (r=0.40, P=0.050) for all patients. In addition, higher TS was associated with less efficient CPM (r=0.56, P=0.004). The group of patients with painful polyneuropathy (n=12) showed a significantly higher warm detection threshold in the foot (P=0.03), higher TS (P<0.01), and less efficient CPM (P=0.03) in comparison to the group with nonpainful polyneuropathy. The painfulness of polyneuropathy is associated with a "pronociceptive" modulation pattern, which may be primary to the development of pain. The higher warm sensory thresholds in the painful polyneuropathy group suggest that the severity of polyneuropathy may be another factor in determining its painfulness. Copyright © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.
Triathletes Lose Their Advantageous Pain Modulation under Acute Psychosocial Stress.
Geva, Nirit; Pruessner, Jens; Defrin, Ruth
2017-02-01
Triathletes, who constantly engage in intensely stressful sport, were recently found to exhibit greater pain tolerance and more efficient pain inhibition capabilities than nonathletes. However, pain inhibition correlated negatively with retrospective reports of mental stress during training and competition. The aim of the current study was to test pain inhibition capabilities of triathletes under acute, controlled psychological stress manipulation. Participants were 25 triathletes and ironman triathletes who underwent the measurement of pain threshold, pain intolerance, tonic suprathreshold pain, and conditioned pain modulation before and during exposure to the Montreal Imaging Stress Task (MIST). Perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol levels were obtained as indices of stress. The MIST induced a significant stress reaction manifested in the subjective and objective indices. Overall, a significant reduction in pain threshold and in conditioned pain modulation efficacy was observed after the MIST, which reached the baseline levels observed previously in nonathletes. Paradoxically, the magnitude of this stress-induced hyperalgesia (SIH) correlated negatively with the magnitude of the stress response; low-stress responders exhibited greater SIH than high-stress responders. The results suggest that under acute psychological stress, triathletes not only react with SIH and a reduction in pain modulation but also lose their advantageous pain modulation over nonathletes. The stronger the stress response recorded, the weaker the SIH. It appears that triathletes are not resilient to stress, responding with an increase in the sensitivity to pain as well as a decrease in pain inhibition. The possible effects of athletes' baseline pain profile and stress reactivity on SIH are discussed.
Klein, Rebecca; Mahlberg, Nicolas; Ohren, Maurice; Ladwig, Anne; Neumaier, Bernd; Graf, Rudolf; Hoehn, Mathias; Albrechtsen, Morten; Rees, Stephen; Fink, Gereon Rudolf; Rueger, Maria Adele; Schroeter, Michael
2016-12-01
The neural cell adhesion molecule (NCAM)-derived peptide FG loop (FGL) modulates synaptogenesis, neurogenesis, and stem cell proliferation, enhances cognitive capacities, and conveys neuroprotection after stroke. Here we investigated the effect of subcutaneously injected FGL on cellular compartments affected by degeneration and regeneration after stroke due to middle cerebral artery occlusion (MCAO), namely endogenous neural stem cells (NSC), oligodendrocytes, and microglia. In addition to immunohistochemistry, we used non-invasive positron emission tomography (PET) imaging with the tracer [ 18 F]-fluoro-L-thymidine ([ 18 F]FLT) to visualize endogenous NSC in vivo. FGL significantly increased endogenous NSC mobilization in the neurogenic niches as evidenced by in vivo and ex vivo methods, and it induced remyelination. Moreover, FGL affected neuroinflammation. Extending previous in vitro results, our data show that the NCAM mimetic peptide FGL mobilizes endogenous NSC after focal ischemia and enhances regeneration by amplifying remyelination and modulating neuroinflammation via affecting microglia. Results suggest FGL as a promising candidate to promote recovery after stroke.
Emotional modulation of pain: is it the sensation or what we recall?
Godinho, Fabio; Magnin, Michel; Frot, Maud; Perchet, Caroline; Garcia-Larrea, Luis
2006-11-01
Emotions modulate pain perception, although the mechanisms underlying this phenomenon remain unclear. In this study, we show that intensity reports significantly increased when painful stimuli were concomitant to images showing human pain, whereas pictures with identical emotional values but without somatic content failed to modulate pain. Early somatosensory responses (<200 ms) remained unmodified by emotions. Conversely, late responses showed a significant enhancement associated with increased pain ratings, localized to the right prefrontal, right temporo-occipital junction, and right temporal pole. In contrast to selective attention, which enhances pain ratings by increasing sensory gain, emotions triggered by seeing other people's pain did not alter processing in SI-SII (primary and second somatosensory areas), but may have biased the transfer to, and the representation of pain in short-term memory buffers (prefrontal), as well as the affective assignment to this representation (temporal pole). Memory encoding and recall, rather than sensory processing, appear to be modulated by empathy with others' physical suffering.
Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy.
Yarnitsky, David; Granot, Michal; Nahman-Averbuch, Hadas; Khamaisi, Mogher; Granovsky, Yelena
2012-06-01
This study aims to individualize the selection of drugs for neuropathic pain by examining the potential coupling of a given drug's mechanism of action with the patient's pain modulation pattern. The latter is assessed by the conditioned pain modulation (CPM) and temporal summation (TS) protocols. We hypothesized that patients with a malfunctioning pain modulation pattern, such as less efficient CPM, would benefit more from drugs augmenting descending inhibitory pain control than would patients with a normal modulation pattern of efficient CPM. Thirty patients with painful diabetic neuropathy received 1 week of placebo, 1 week of 30 mg/d duloxetine, and 4 weeks of 60 mg/d duloxetine. Pain modulation was assessed psychophysically, both before and at the end of treatment. Patient assessment of drug efficacy, assessed weekly, was the study's primary outcome. Baseline CPM was found to be correlated with duloxetine efficacy (r=0.628, P<.001, efficient CPM is marked negative), such that less efficient CPM predicted efficacious use of duloxetine. Regression analysis (R(2)=0.673; P=.012) showed that drug efficacy was predicted only by CPM (P=.001) and not by pretreatment pain levels, neuropathy severity, depression level, or patient assessment of improvement by placebo. Furthermore, beyond its predictive value, the treatment-induced improvement in CPM was correlated with drug efficacy (r=-0.411, P=.033). However, this improvement occurred only in patients with less efficient CPM (16.8±16.0 to -1.1±15.5, P<.050). No predictive role was found for TS. In conclusion, the coupling of CPM and duloxetine efficacy highlights the importance of pain pathophysiology in the clinical decision-making process. This evaluative approach promotes personalized pain therapy. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Drinovac Vlah, V; Filipović, B; Bach-Rojecky, L; Lacković, Z
2018-03-01
Although botulinum toxin type A (BT-A) is approved for chronic migraine treatment, its site and mechanism of action are still elusive. Recently our group discovered that suppression of CGRP release from dural nerve endings might account for antimigraine action of pericranially injected BT-A. We demonstrated that central antinociceptive effect of BT-A in sciatic region involves endogenous opioid system as well. Here we investigated possible interaction of BT-A with endogenous opioid system within the trigeminal region. In orofacial formalin test we investigated the influence of centrally acting opioid antagonist naltrexone (2 mg/kg, s.c.) versus peripherally acting methylnaltrexone (2 mg/kg, s.c.) on BT-A's (5 U/kg, s.c. into whisker pad) or morphine's (6 mg/kg, s.c.) antinociceptive effect and the effect on dural neurogenic inflammation (DNI). DNI was assessed by Evans blue-plasma protein extravasation. Naltrexone abolished the effect of BT-A on pain and dural plasma protein extravasation, whereas peripherally acting methylnaltrexone did not change either BT-A's effect on pain or its effect on dural extravasation. Naltrexone abolished the antinociceptive and anti-inflammatory effects of morphine, as well. However, methylnaltrexone decreased the antinociceptive effect of morphine only partially in the second phase of the test and had no significant effect on morphine-mediated reduction in DNI. Morphine acts on pain in trigeminal region both peripherally and centrally, whereas the effect on dural plasma protein extravasation seems to be only centrally mediated. However, the interaction of BT-A with endogenous opioid system, with consequent inhibition of nociceptive transmission as well as the DNI, occurs primarily centrally. Botulinum toxin type A (BT-A)'s axonal transport and potential transcytosis suggest that its antinociceptive effect might involve diverse neurotransmitters at different sites of trigeminal system. Here we discovered that the reduction in pain and accompanying DNI involves the interaction of BT-A with central endogenous opioid system (probably at the level of trigeminal nucleus caudalis). © 2017 European Pain Federation - EFIC®.
Efficient conditioned pain modulation despite pain persistence in painful diabetic neuropathy
Granovsky, Yelena; Nahman-Averbuch, Hadas; Khamaisi, Mogher; Granot, Michal
2017-01-01
Abstract Introduction: Alleviation of pain, by either medical or surgical therapy, is accompanied by transition from less efficient, or pro-nociceptive, to efficient conditioned pain modulation (CPM). Spontaneous decrease or resolution of pain with disease progression is reported for some patients with painful diabetic neuropathy (PDN). Objectives: To explore whether CPM changes similarly in parallel to spontaneous resolution of pain in PDN patients. Methods: In this cross-sectional study, thirty-three patients with PDN underwent psychophysical assessment of pain modulation on the forearm, remote from the clinical pain. Results: Pain duration was not correlated with neuropathic pain intensity, yet, it correlated with CPM efficiency; patients with longer pain duration had same pain level, but more efficient CPM than those with short-pain duration (ρ = −0.417; P = 0.025, Spearman correlation). Patients with pain more than 2 years (median split) expressed efficient CPM that was not different from that of healthy controls. These patients also had lower temporal summation of pain than the short-pain duration patients group (P < 0.05). The 2 patient groups did not differ in clinical pain characteristics or use of analgesics. Conclusion: Pro-nociception, expressed by less efficient CPM and high temporal summation that usually accompanies clinical painful conditions, seems to “normalize” with chronicity of the pain syndrome. This is despite continuing pain, suggesting that pro-nociceptivity in pain syndromes is multifactorial. Because the pain modulation profile affects success of therapy, this suggests that different drugs might express different efficacy pending on duration of the pain in patients with PDN. PMID:29392208
Torta, D M; Legrain, V; Mouraux, A; Valentini, E
2017-04-01
Several studies have used neuroimaging techniques to investigate brain correlates of the attentional modulation of pain. Although these studies have advanced the knowledge in the field, important confounding factors such as imprecise theoretical definitions of attention, incomplete operationalization of the construct under exam, and limitations of techniques relying on measuring regional changes in cerebral blood flow have hampered the potential relevance of the conclusions. Here, we first provide an overview of the major theories of attention and of attention in the study of pain to bridge theory and experimental results. We conclude that load and motivational/affective theories are particularly relevant to study the attentional modulation of pain and should be carefully integrated in functional neuroimaging studies. Then, we summarize previous findings and discuss the possible neural correlates of the attentional modulation of pain. We discuss whether classical functional neuroimaging techniques are suitable to measure the effect of a fluctuating process like attention, and in which circumstances functional neuroimaging can be reliably used to measure the attentional modulation of pain. Finally, we argue that the analysis of brain networks and spontaneous oscillations may be a crucial future development in the study of attentional modulation of pain, and why the interplay between attention and pain, as examined so far, may rely on neural mechanisms shared with other sensory modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of agmatine on acute and mononeuropathic pain.
Aricioglu, Feyza; Korcegez, Eylem; Bozkurt, Ayhan; Ozyalcin, Suleyman
2003-12-01
Agmatine is a polycationic amine synthesized from L-arginine by arginine decarboxylase in brain and several tissues. It binds to N-methyl-D-aspartate (NMDA) subtype of glutamatergic, alpha(2)-adrenergic and imidazoline (I) receptors. The present study was designed to investigate effect of agmatine on acute and mononeuropathic pain after chronic constriction injury (CCI). CCI was created by four loose ligations around the right sciatic nerve. The analgesic threshold in rats was evaluated by using thermal hyperalgesia/allodynia (THA) at 4 degrees C. The evaluations were made preoperatively, on postoperative day 15, and after drug administration. Agmatine (10, 20, 40, 80, and 100 mg/kg) was administered intraperitoneally for 5 days beginning on postoperative day 15. Agmatine significantly reduced the hyperalgesia in all doses applied. When agmatine was injected intraperitoneally (10, 20, 40, 80, and 100 mg/kg), it increased the nociceptive threshold in the tail-immersion test in a dose-dependent manner, but it had no effect in the hot-plate test. This effect of agmatine in the tail-immersion test was blocked by both yohimbine (1 mg/kg) and idazoxan (0.5 mg/kg). When agmatine was administered intracerebroventricularly (25-200 microg/10 microL), it increased the nociceptive threshold in the hot-plate but not in the tail-immersion test. We conclude that agmatine, an endogenous substance derived from arginine, can modulate both acute and chronic pain.
Powanda, M C; Beisel, W R
1982-04-01
We postulate that leukocyte endogenous mediator/endogenous pyrogen/lymphocyte-activating factor (LEM/EP/LAF) integrates the host's nonspecific and specific immune responses to infection by virtue of the panoply of physiological and metabolic activities it is capable of eliciting. The alterations in systemic metabolism modulated by LEM/EP/LAF, although apparently of value to the host in the defense against infection and the repair of tissue damage, result in negative nutrient balances. Severe infections, alone or in conjunction with injury, may result in malnutrition unless the patient is adequately nourished. Preexisting nutritional deficits can compromise host resistance to infection, in part by preventing production of LEM/EP/LAF. Additional studies of the sequelae of LEM/EP/LAF action and effects of nutrition on host resistance to infection appear warranted.
Estrogens and the risk of complex regional pain syndrome (CRPS).
de Mos, M; Huygen, F J P M; Stricker, B H Ch; Dieleman, J P; Sturkenboom, M C J M
2009-01-01
Since complex regional pain syndrome (CRPS) shows a clear female predominance, we investigated the association between the cumulative as well as current exposure to estrogens, and CRPS. A population-based case-control study was conducted in the Integrated Primary Care Information (IPCI) project in the Netherlands. Cases were identified from electronic records (1996-2005) and included if they were confirmed during a visit (using International Association for the Study of Pain Criteria), or had been diagnosed by a specialist. Controls were matched to cases on gender, age, calendar time, and injury. Measures of cumulative endogenous estrogen exposure were obtained by questionnaire and included age of menarche and menopause, menstrual life, and cumulative months of pregnancy and breast-feeding. Current estrogen exposure at CRPS onset was retrieved from the electronic medical records and determined by current pregnancy or by the use of oral contraceptive (OC) drugs or hormonal replacement therapy (HRT). Hundred and forty-three female cases (1493 controls) were included in analyses on drug use and pregnancies, while cumulative endogenous estrogen exposure was studied in 53 cases (58 controls) for whom questionnaire data were available. There was no association between CRPS and either cumulative endogenous estrogen exposure, OC, or HRT use. CRPS onset was increased during the first 6 months after pregnancy (OR: 5.6, 95%CI: 1.0-32.4), although based on small numbers. We did not find an association between CRPS onset and cumulative endogenous estrogen exposure or current OC or HRT use, but more powered studies are needed to exclude potential minor associations.
Spontaneous resolution of avascular necrosis of femoral heads following cure of Cushing's syndrome.
Pazderska, A; Crowther, S; Govender, P; Conlon, K C; Sherlock, M; Gibney, J
2016-01-01
Avascular necrosis (AVN) is a rare presenting feature of endogenous hypercortisolism. If left untreated, complete collapse of the femoral head may ensue, necessitating hip replacement in up to 70% of patients. The majority of the described patients with AVN due to endogenous hypercortisolaemia required surgical intervention. A 36-year-old female, investigated for right leg pain, reported rapid weight gain, bruising and secondary amenorrhoea. She had abdominal adiposity with violaceous striae, facial plethora and hirsutism, atrophic skin, ecchymosis and proximal myopathy. Investigations confirmed cortisol excess (cortisol following low-dose 48h dexamethasone suppression test 807nmol/L; 24h urinary free cortisol 1443nmol (normal<290nmol)). Adrenocorticotrophic hormone (ACTH) was <5.0pg/mL. CT demonstrated subtle left adrenal gland hypertrophy. Hypercortisolaemia persisted after left adrenalectomy. Histology revealed primary pigmented micronodular adrenal disease. Post-operatively, right leg pain worsened and left leg pain developed, affecting mobility. MRI showed bilateral femoral head AVN. She underwent right adrenalectomy and steroid replacement was commenced. Four months after surgery, leg pain had resolved and mobility was normal. Repeat MRI showed marked improvement of radiological abnormalities in both femoral heads, consistent with spontaneous healing of AVN. We report a case of Cushing's syndrome due to primary pigmented nodular adrenocortical disease, presenting with symptomatic AVN of both hips. This was managed conservatively from an orthopaedic perspective. Following cure of hypercortisolaemia, the patient experienced excellent recovery and remains symptom free 4 years after adrenalectomy. This is the first report of a favourable outcome over long-term follow-up of a patient with bilateral AVN of the hip, which reversed with treatment of endogenous hypercortisolaemia. AVN of femoral head can be a presenting feature of hypercortisolism, both endogenous and exogenous.Rarely, treatment of hypercortisolaemia can reverse AVN without the need for orthopaedic intervention.Primary pigmented nodular adrenal disease is a rare cause of ACTH-independent Cushing's syndrome.
Mazzei-Silva, Elaine Cristina; de Oliveira, Rithiele Cristina; dos Anjos Garcia, Tayllon; Falconi-Sobrinho, Luiz Luciano; Almada, Rafael Carvalho; Coimbra, Norberto Cysne
2014-08-01
This study investigated the intrinsic connections of a key-structure of the endogenous pain inhibitory system, the pedunculopontine tegmental nucleus (PPTN), in post-ictal antinociceptive process through synaptic inactivation of the PPTN with cobalt chloride. Male Wistar rats (n = 6 or 7 per group), weighing 250-280 g, had the tail-flick baseline recorded and were submitted to a stereotaxic surgery for the introduction of a guide-cannula aiming at the PPTN. After 5 days of postoperative recovery, cobalt chloride (1 mM/0.2 µL) or physiological saline (0.2 µL) were microinjected into the PPTN and after 5 min, the tail-withdrawal latency was measured again at 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and 120 min after seizures evoked by intraperitoneal injection of pentylenetetrazole (64 mg/kg). The synaptic inactivation of PPTN decreased the post-ictal antinociceptive phenomenon, suggesting the involvement of PPTN intrinsic connections in the modulation of pain, during tonic-clonic seizures. These results showed that the PPTN may be crucially involved in the neural network that organizes the post-ictal analgesia. © 2014 Wiley Periodicals, Inc.
Dysfunctional pain modulation in somatoform pain disorder patients.
Klug, Stefanie; Stefanie, Klug; Anderer, Peter; Peter, Anderer; Saletu-Zyhlarz, Gerda; Gerda, Saletu-Zyhlarz; Freidl, Marion; Marion, Freidl; Saletu, Bernd; Bernd, Saletu; Prause, Wolfgang; Wolfgang, Prause; Aigner, Martin; Martin, Aigner
2011-06-01
To date, pain perception is thought to be a creative process of modulation carried out by an interplay of pro- and anti-nociceptive mechanisms. Recent research demonstrates that pain experience constitutes the result of top-down processes represented in cortical descending pain modulation. Cortical, mainly medial and frontal areas, as well as subcortical structures such as the brain stem, medulla and thalamus seem to be key players in pain modulation. An imbalance of pro- and anti-nociceptive mechanisms are assumed to cause chronic pain disorders, which are associated with spontaneous pain perception without physiologic scaffolding or exaggerated cortical activation in response to pain exposure. In contrast to recent investigations, the aim of the present study was to elucidate cortical activation of somatoform pain disorder patients during baseline condition. Scalp EEG, quantitative Fourier-spectral analyses and LORETA were employed to compare patient group (N = 15) to age- and sex-matched controls (N = 15) at rest. SI, SII, ACC, SMA, PFC, PPC, insular, amygdale and hippocampus displayed significant spectral power reductions within the beta band range (12-30 Hz). These results suggest decreased cortical baseline arousal in somatoform pain disorder patients. We finally conclude that obtained results may point to an altered baseline activity, maybe characteristic for chronic somatoform pain disorder.
Conditioned pain modulation in women with irritable bowel syndrome
USDA-ARS?s Scientific Manuscript database
Evidence suggests that patients with irritable bowel syndrome (IBS) are more vigilant to pain-associated stimuli. The aims of this study were to compare women with IBS (n = 20) to healthy control (HC, n = 20) women on pain sensitivity, conditioned pain modulation (CPM) efficiency, and salivary corti...
Wang, Pan; Zhu, Bao-Ting
2017-04-05
Animal studies have shown that endogenous estrogens such as 17β-estradiol (E 2 ) can modulate lipid profiles in vivo, and this effect is generally thought to be mediated by the estrogen receptors (ERs). The present study sought to test a hypothesis that some of the endogenous estrogen metabolites that have very weak estrogenic activity may exert some of their modulating effects on lipid metabolism in an ER-independent manner. Using ovariectomized female rats as an in vivo model, we found that 4-hydroxyestradiol (4-OH-E 2 ) has a markedly stronger effect in reducing the adipocyte size and serum cholesterol level in rats compared to E 2 , despite the weaker estrogenic activity of 4-OH-E 2 . Moreover, when E 2 or 4-OH-E 2 is used in combination with ICI-182,780 (an ER antagonist), some of their lipid-modulating effects are not blocked by this antiestrogen. Interestingly, two of the O-methylation metabolites of 4-OH-E 2 , namely, 4-methoxyestradiol and 4-methoxyestrone, which have much weaker estrogenic activity, were also found to have similar lipid-modulating effects compared to 4-OH-E 2 . Mechanistically, up-regulation of the expression of leptin, cytochrome P450 7A1 and LXRα genes is observed in the liver of animals treated with E 2 or 4-OH-E 2 , and the up-regulation is essentially not inhibited by co-treatment with ICI-182,780. These results demonstrate that some of the endogenous E 2 metabolites are functionally important modulators of lipid metabolic profiles in vivo. In addition, our findings indicate that an ER-independent pathway likely mediates some of the lipid-modulating effects of endogenous estrogens and their metabolic derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.
Russell, A L; McCarty, M F
2000-10-01
In the author's clinical experience, concurrent treatment with DL-phenylalanine (DLPA) often appears to potentiate pain relief and also ease depression in patients receiving opiates for chronic non-malignant pain. An analysis of this phenomenon suggests that it may be mediated, at least in part, by up-regulation of the 'endogenous analgesia system' (EAS), a neural pathway that projects caudally from medullary nuclei to the dorsal horn of the spinal column; when stimulated by chronic pain or therapeutic measures such as opiates or acupuncture, the EAS suppresses activation of second-order pain-receptive neurons in the dorsal horn, and thereby alleviates pain. Since serotonin and enkephalins are key neurotransmitters in the EAS, it is reasonable to predict that measures which promote serotonin activity (such as 5-hydroxytryptophan and serotonin-reuptake inhibitors) as well as enkephalin activity (such as D-phenylalanine, an enkephalinase inhibitor) should potentiate EAS-mediated analgesia - a view consistent with much previous medical research. Comprehensive support of the EAS with well-tolerated nutrients and pharmaceuticals may amplify the analgesic efficacy of chronic opiate therapy, while enabling dosage reductions that minimize opiate side-effects. Analogously, this approach may complement the efficacy of acupuncture and other analgesic measures that activate the EAS. Copyright 2000 Harcourt Publishers Ltd.
Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.
2013-01-01
In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737
Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R
2013-11-01
In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.
Endogenous endophthalmitis with an unusual infective agent: Actinomyces neuii.
Graffi, Shmuel; Peretz, Avi; Naftali, Modi
2012-01-01
To report an unusual case of a patient with endogenous endophthalmitis caused by Actinomyces neuii. A 69-year-old woman in an immunosuppressed state and who had a previous history of periappendicular abscess presented with bilateral red painful eyes. The diagnosis was confirmed by culture and pan-bacterial polymerase chain reaction drawn from anterior chamber sample. On admission, the patient underwent an intravitreal injection of vancomycin combined with ceftazidime. Following a 3-week treatment of intravenous penicillin and topical sulfacetamide sodium, the patient recovered fully. Actinomyces neuii can cause endogenous endophthalmitis. Intravenous penicillin G is an effective treatment leading to favorable prognosis.
The cerebral signature for pain perception and its modulation.
Tracey, Irene; Mantyh, Patrick W
2007-08-02
Our understanding of the neural correlates of pain perception in humans has increased significantly since the advent of neuroimaging. Relating neural activity changes to the varied pain experiences has led to an increased awareness of how factors (e.g., cognition, emotion, context, injury) can separately influence pain perception. Tying this body of knowledge in humans to work in animal models of pain provides an opportunity to determine common features that reliably contribute to pain perception and its modulation. One key system that underpins the ability to change pain intensity is the brainstem's descending modulatory network with its pro- and antinociceptive components. We discuss not only the latest data describing the cerebral signature of pain and its modulation in humans, but also suggest that the brainstem plays a pivotal role in gating the degree of nociceptive transmission so that the resultant pain experienced is appropriate for the particular situation of the individual.
Descending pain modulation in irritable bowel syndrome (IBS): a systematic review and meta-analysis.
Chakiath, Rosemary J; Siddall, Philip J; Kellow, John E; Hush, Julia M; Jones, Mike P; Marcuzzi, Anna; Wrigley, Paul J
2015-12-10
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder. While abdominal pain is a dominant symptom of IBS, many sufferers also report widespread hypersensitivity and present with other chronic pain conditions. The presence of widespread hypersensitivity and extra-intestinal pain conditions suggests central nervous dysfunction. While central nervous system dysfunction may involve the spinal cord (central sensitisation) and brain, this review will focus on one brain mechanism, descending pain modulation. We will conduct a comprehensive search for the articles indexed in the databases Ovid MEDLINE, Ovid Embase, Ovid PsycINFO and Cochrane Central Register of Controlled Trial (CENTRAL) from their inception to August 2015, that report on any aspect of descending pain modulation in irritable bowel syndrome. Two independent reviewers will screen studies for eligibility, assess risk of bias and extract relevant data. Results will be tabulated and, if possible, a meta-analysis will be carried out. The systematic review outlined in this protocol aims to summarise current knowledge regarding descending pain modulation in IBS. PROSPERO CRD42015024284.
Evaluating an Innovative eLearning Pain Education Interprofessional Resource: A Pre-Post Study.
Watt-Watson, Judy; McGillion, Michael; Lax, Leila; Oskarsson, Jon; Hunter, Judith; MacLennan, Cameron; Knickle, Kerry; Victor, J Charles
2018-06-20
The challenges of moving the pain education agenda forward are significant worldwide, and resources, including online, are needed to help educators in curriculum development. Online resources are available but with insufficient evaluation in the context of prelicensure pain education. Therefore, this pre-post study examined the impact of an innovative eLearning model: the Pain Education Interprofessional Resource (PEIR) on usability, pain knowledge, beliefs, and understanding of pain assessment skills including empathy. Participants were students (N = 96) recruited from seven prelicensure health sciences programs at the University of Toronto. They worked through three multifaceted modules, developed by an interprofessional team, that followed a patient with acute to persistent postsurgical pain up to one year. Module objectives, content, and assessment were based on International Association for the Study of Pain Pain Curricula domains and related pain core competencies. Multimedia interactive components focused on pain mechanisms and key pain care issues. Outcome measures included previously validated tools; data were analyzed in SPSS. Online exercises provided concurrent individual feedback throughout all modules. The completion rate for modules and online assessments was 100%. Overall usability scores (SD) were strong 4.27/5 (0.56). On average, pain knowledge scores increased 20% (P < 0.001). The Pain Assessment Skills Tool was sensitive to differences in student and expert pain assessment evaluation ratings and was useful as a tool to deliver formative feedback while engaged in interactive eLearning about pain assessment. PEIR is an effective eLearning program with high student ratings for educational design and usability that significantly improved pain knowledge and understanding of collaborative care.
Enhancing acupuncture by low dose naltrexone.
Hesselink, Jan M Keppel; Kopsky, David J
2011-06-01
To find appropriate and effective treatment options for chronic pain syndromes is a challenging task. Multimodal treatment approach has been gaining acceptance for chronic pain. However, combining treatments, such as acupuncture, with rational pharmacology is still in its infancy. Acupuncture influences the opioid and cannabinoid system through releasing endogenous receptor ligands. Low dose naltrexone also acts on both these systems, and upregulates the opioid and cannabinoid receptors. The authors hypothesise that low dose naltrexone could enhance the pain-relieving effect of acupuncture.
Targeting central plasticity: a new direction of finding painkillers.
Zhuo, Min
2005-01-01
It is well documented that sensory transmission, including pain, receives endogenous inhibitory modulatory influences at dorsal horn of the spinal cord. Recent results, from behavioral to molecular studies, demonstrate that injury caused plastic changes in forebrain areas. In addition to encoding pain, these supraspinal areas may also affect pain transmission in the spinal cord level by activating "top-down" descending facilitatory systems. In this review, I provide review of evidence related to these new progresses, from human brain imaging to work from genetically mutant mice.
Louw-du Toit, Renate; Perkins, Meghan S.; Snoep, Jacky L.; Storbeck, Karl-Heinz; Africander, Donita
2016-01-01
Progestins used in contraception and hormone replacement therapy are synthetic compounds designed to mimic the actions of the natural hormone progesterone and are classed into four consecutive generations. The biological actions of progestins are primarily determined by their interactions with steroid receptors, and factors such as metabolism, pharmacokinetics, bioavailability and the regulation of endogenous steroid hormone biosynthesis are often overlooked. Although some studies have investigated the effects of select progestins on a few steroidogenic enzymes, studies comparing the effects of progestins from different generations are lacking. This study therefore explored the putative modulatory effects of progestins on de novo steroid synthesis in the adrenal by comparing the effects of select progestins from the respective generations, on endogenous steroid hormone production by the H295R human adrenocortical carcinoma cell line. Ultra-performance liquid chromatography/tandem mass spectrometry analysis showed that the fourth-generation progestins, nestorone (NES), nomegestrol acetate (NoMAC) and drospirenone (DRSP), unlike the progestins selected from the first three generations, modulate the biosynthesis of several endogenous steroids. Subsequent assays performed in COS-1 cells expressing human 3βHSD2, suggest that these progestins modulate the biosynthesis of steroid hormones by inhibiting the activity of 3βHSD2. The Ki values determined for the inhibition of human 3βHSD2 by NES (9.5 ± 0.96 nM), NoMAC (29 ± 7.1 nM) and DRSP (232 ± 38 nM) were within the reported concentration ranges for the contraceptive use of these progestins in vivo. Taken together, our results suggest that newer, fourth-generation progestins may exert both positive and negative physiological effects via the modulation of endogenous steroid hormone biosynthesis. PMID:27706226
Fricchione, Gregory; Stefano, George B
2005-05-01
Evidence suggests that the placebo response is related to the tonic effects of constitutive nitric oxide in neural, vascular and immune tissues. Constitutive nitric oxide levels play a role in the modulation of dopamine outflow in the nigrostriatal movement and the mesolimbic and mesocortical reward and motivation circuitries. Endogenous morphine, which stimulates constitutive nitric oxide, may be an important signal molecule working at mu receptors on gamma aminobutyric acid B interneurons to disinhibit nigral and tegmental dopamine output. We surmise that placebo induced belief will activate the prefrontal cortex with downstream stimulatory effects on these dopamine systems as well as on periaqueductal grey opioid output neurons. Placebo responses in Parkinson's disease, depression and pain disorder may result. In addition, mesolimbic/mesocortical control of the stress response systems may provide a way for the placebo response to benefit other medical conditions.
Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.
Hulse, R P; Beazley-Long, N; Hua, J; Kennedy, H; Prager, J; Bevan, H; Qiu, Y; Fernandes, E S; Gammons, M V; Ballmer-Hofer, K; Gittenberger de Groot, A C; Churchill, A J; Harper, S J; Brain, S D; Bates, D O; Donaldson, L F
2014-11-01
Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event - leading to the preferential expression of VEGF-A165b over VEGF165a - prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy. Copyright © 2014. Published by Elsevier Inc.
Bessaguet, Flavien; Magy, Laurent; Desmoulière, Alexis; Demiot, Claire
2016-01-01
The prevalence rate of chronic pain is 15% to 25% in adults while the therapeutic arsenal is still insufficient, especially in relieving neuropathic pain. Peripheral pain transmission is conducted by the small Aδ and C sensory nerve fibres. They express elements from the renin-angiotensin-aldosterone system (RAAS), a well-known blood pressure regulator. Recently, studies have demonstrated the role of angiotensin II, its derivatives and aldosterone in the modulation of pain perception, by interacting with receptors expressed by sensory nerve fibres or through the central nervous system. Here, we assess the effects of RAAS modulators in the conduction of pain with molecular, preclinical and clinical approaches, in normal or pathological conditions. Currently, some clinical studies have been carried out on the pain-relieving effect of RAAS modulators and suggest their potential in the management of chronic, inflammatory or neuropathic pain.
Rhudy, Jamie L; Martin, Satin L; Terry, Ellen L; Delventura, Jennifer L; Kerr, Kara L; Palit, Shreela
2012-11-01
Emotion can modulate pain and spinal nociception, and correlational data suggest that cognitive-emotional processes can facilitate wind-up-like phenomena (ie, temporal summation of pain). However, there have been no experimental studies that manipulated emotion to determine whether within-subject changes in emotion influence temporal summation of pain (TS-pain) and the nociceptive flexion reflex (TS-NFR, a physiological measure of spinal nociception). The present study presented a series of emotionally charged pictures (mutilation, neutral, erotic) during which electric stimuli at 2 Hz were delivered to the sural nerve to evoke TS-pain and TS-NFR. Participants (n=46 healthy; 32 female) were asked to rate their emotional reactions to pictures as a manipulation check. Pain outcomes were analyzed using statistically powerful multilevel growth curve models. Results indicated that emotional state was effectively manipulated. Further, emotion modulated the overall level of pain and NFR; pain and NFR were highest during mutilation and lowest during erotic pictures. Although pain and NFR both summated in response to the 2-Hz stimulation series, the magnitude of pain summation (TS-pain) and NFR summation (TS-NFR) was not modulated by picture-viewing. These results imply that, at least in healthy humans, within-subject changes in emotions do not promote central sensitization via amplification of temporal summation. However, future studies are needed to determine whether these findings generalize to clinical populations (eg, chronic pain). Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Gradin, Maria; Schollin, Jens
2005-04-01
It has been demonstrated clearly that sweet-tasting solutions given before a painful intervention can reduce pain among newborns. There is no fully accepted explanation for this effect, but activation of endogenous opioids has been suggested as a possible mechanism. The aim of this study was to obtain deeper knowledge of the underlying mechanism by investigating whether administration of an opioid antagonist would reduce the effect of orally administered glucose at heel stick among term newborns. A randomized, placebo-controlled, double-blind trial with a validated, neonatal, pain-rating scale. The trial included 30 term newborns undergoing heel stick, who were assigned randomly to 1 of 2 groups, ie, group I, with naloxone hydrochloride (opioid antagonist) 0.01 mg/kg administered intravenously before oral administration of 1 mL of 30% glucose, or group II, with a corresponding amount of placebo (saline solution) administered intravenously before oral administration of glucose. Pain-related behavior during blood sampling was measured with the Premature Infants Pain Profile. Crying time and heart rate were also recorded. The 2 groups did not differ significantly in Premature Infant Pain Profile scores during heel stick. The median crying time during the first 3 minutes was 14 seconds (range: 0-174 seconds) for the naloxone group and 105 seconds (range: 0-175 seconds) for the placebo group. There was no significant difference in heart rate between the 2 groups. Administration of an opioid antagonist did not decrease the analgesic effect of orally administered glucose given before blood sampling.
Opiates Modulate Noxious Chemical Nociception through a Complex Monoaminergic/Peptidergic Cascade
Mills, Holly; Ortega, Amanda; Law, Wenjing; Hapiak, Vera; Summers, Philip; Clark, Tobias
2016-01-01
The ability to detect noxious stimuli, process the nociceptive signal, and elicit an appropriate behavioral response is essential for survival. In Caenorhabditis elegans, opioid receptor agonists, such as morphine, mimic serotonin, and suppress the overall withdrawal from noxious stimuli through a pathway requiring the opioid-like receptor, NPR-17. This serotonin- or morphine-dependent modulation can be rescued in npr-17-null animals by the expression of npr-17 or a human κ opioid receptor in the two ASI sensory neurons, with ASI opioid signaling selectively inhibiting ASI neuropeptide release. Serotonergic modulation requires peptides encoded by both nlp-3 and nlp-24, and either nlp-3 or nlp-24 overexpression mimics morphine and suppresses withdrawal. Peptides encoded by nlp-3 act differentially, with only NLP-3.3 mimicking morphine, whereas other nlp-3 peptides antagonize NLP-3.3 modulation. Together, these results demonstrate that opiates modulate nociception in Caenorhabditis elegans through a complex monoaminergic/peptidergic cascade, and suggest that this model may be useful for dissecting opiate signaling in mammals. SIGNIFICANCE STATEMENT Opiates are used extensively to treat chronic pain. In Caenorhabditis elegans, opioid receptor agonists suppress the overall withdrawal from noxious chemical stimuli through a pathway requiring an opioid-like receptor and two distinct neuropeptide-encoding genes, with individual peptides from the same gene functioning antagonistically to modulate nociception. Endogenous opioid signaling functions as part of a complex, monoaminergic/peptidergic signaling cascade and appears to selectively inhibit neuropeptide release, mediated by a α-adrenergic-like receptor, from two sensory neurons. Importantly, receptor null animals can be rescued by the expression of the human κ opioid receptor, and injection of human opioid receptor ligands mimics exogenous opiates, highlighting the utility of this model for dissecting opiate signaling in mammals. PMID:27194330
Analgesic effect of the neuropeptide cortistatin in murine models of arthritic inflammatory pain.
Morell, Maria; Souza-Moreira, Luciana; Caro, Marta; O'Valle, Francisco; Forte-Lago, Irene; de Lecea, Luis; Gonzalez-Rey, Elena; Delgado, Mario
2013-05-01
To investigate the role of the antiinflammatory neuropeptide cortistatin in chronic pain evoked by joint inflammation. Thermal and mechanical hyperalgesia was evoked in mouse knee joints by intraplantar injection of tumor necrosis factor α and intraarticular infusion of Freund's complete adjuvant, and the analgesic effects of cortistatin, administered centrally, peripherally, and systemically, were assessed. In addition, the effects of cortistatin on the production of nociceptive peptides and the activation of pain signaling were assayed in dorsal root ganglion cultures and in inflammatory pain models. The role of endogenous cortistatin in pain sensitization and perpetuation of chronic inflammatory states was evaluated in cortistatin-deficient mice. Finally, the effect of noxious/inflammatory stimuli in the production of cortistatin by the peripheral nociceptive system was assayed in vitro and in vivo. Expression of cortistatin was observed in peptidergic nociceptors of the peripheral nociceptive system, and endogenous cortistatin was found to participate in the tuning of pain sensitization, especially in pathologic inflammatory conditions. Results showed that cortistatin acted both peripherally and centrally to reduce the tactile allodynia and heat hyperalgesia evoked by arthritis and peripheral tissue inflammation in mice, via mechanisms that were independent of its antiinflammatory action. These mechanisms involved direct action on nociceptive neurons and regulation of central sensitization. The analgesic effects of cortistatin in murine arthritic pain were linked to binding of the neuropeptide to somatostatin and ghrelin receptors, activation of the G protein subunit Gαi , impairment of ERK signaling, and decreased production of calcitonin gene-related peptide in primary nociceptors. These findings indicate that cortistatin is an antiinflammatory factor with potent analgesic effects that may offer a new approach to pain therapy in pathologic inflammatory states, including osteoarthritis and rheumatoid arthritis. Copyright © 2013 by the American College of Rheumatology.
Tamam, Sofina; Ahmad, Asma Hayati
2017-01-01
Pain is modulated by various factors, the most notable of which is emotions. Since love is an emotion, it can also modulate pain. The answer to the question of whether it enhances or reduces pain needs to be determined. A review was conducted of animal and human studies in which this enigmatic emotion and its interaction with pain was explored. Recent advances in neuroimaging have revealed similarities in brain activation relating to love and pain. At the simplest level, this interaction can be explained by the overlapping network structure in brain functional connectivity, although the explanation is considerably more complex. The effect of love can either result in increased or decreased pain perception. An explanation of the interaction between pain and love relates to the functional connectivity of the brain and to the psychological construct of the individual, as well as to his or her ability to engage resources relating to emotion regulation. In turn, this determines how a person relates to love and reacts to pain. PMID:28814928
Lopes, Synara C; da Silva, Ana Virginia L; Arruda, Bruno Rodrigues; Morais, Talita C; Rios, Jeison Barros; Trevisan, Maria Teresa S; Rao, Vietla S; Santos, Flávia A
2013-09-01
This study aimed to assess the possible systemic antinociceptive activity of mangiferin and to clarify the underlying mechanism, using the acute models of chemical (acetic acid, formalin, and capsaicin) and thermal (hot-plate and tail-flick) nociception in mice. Mangiferin at oral doses of 10 to 100 mg/kg evidenced significant antinociception against chemogenic pain in the test models of acetic acid-induced visceral pain and in formalin- and capsaicin-induced neuro-inflammatory pain, in a naloxone-sensitive manner, suggesting the participation of endogenous opiates in its mechanism. In capsaicin test, the antinociceptive effect of mangiferin (30 mg/kg) was not modified by respective competitive and non-competitive transient receptor potential vanilloid 1 (TRPV1) antagonists, capsazepine and ruthenium red, or by pretreatment with L-NAME, a non-selective nitric oxide synthase inhibitor, or by ODQ, an inhibitor of soluble guanylyl cyclase. However, mangiferin effect was significantly reversed by glibenclamide, a blocker of K(ATP) channels and in animals pretreated with 8-phenyltheophylline, an adenosine receptor antagonist. Mangiferin failed to modify the thermal nociception in hot-plate and tail-flick test models, suggesting that its analgesic effect is only peripheral but not central. The orally administered mangiferin (10-100 mg/kg) was well tolerated and did not impair the ambulation or the motor coordination of mice in respective open-field and rota-rod tests, indicating that the observed antinociception was unrelated to sedation or motor abnormality. The findings of this study suggest that mangiferin has a peripheral antinociceptive action through mechanisms that involve endogenous opioids, K(ATP)-channels and adenosine receptors. Copyright © 2013 Elsevier Inc. All rights reserved.
Kringel, Dario; Lippmann, Catharina; Parnham, Michael J; Kalso, Eija; Ultsch, Alfred; Lötsch, Jörn
2018-06-19
Human genetic research has implicated functional variants of more than one hundred genes in the modulation of persisting pain. Artificial intelligence and machine learning techniques may combine this knowledge with results of genetic research gathered in any context, which permits the identification of the key biological processes involved in chronic sensitization to pain. Based on published evidence, a set of 110 genes carrying variants reported to be associated with modulation of the clinical phenotype of persisting pain in eight different clinical settings was submitted to unsupervised machine-learning aimed at functional clustering. Subsequently, a mathematically supported subset of genes, comprising those most consistently involved in persisting pain, was analyzed by means of computational functional genomics in the Gene Ontology knowledgebase. Clustering of genes with evidence for a modulation of persisting pain elucidated a functionally heterogeneous set. The situation cleared when the focus was narrowed to a genetic modulation consistently observed throughout several clinical settings. On this basis, two groups of biological processes, the immune system and nitric oxide signaling, emerged as major players in sensitization to persisting pain, which is biologically highly plausible and in agreement with other lines of pain research. The present computational functional genomics-based approach provided a computational systems-biology perspective on chronic sensitization to pain. Human genetic control of persisting pain points to the immune system as a source of potential future targets for drugs directed against persisting pain. Contemporary machine-learned methods provide innovative approaches to knowledge discovery from previous evidence. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Alpha Power Modulates Perception Independently of Endogenous Factors.
Brüers, Sasskia; VanRullen, Rufin
2018-01-01
Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and perception is not a mere consequence of fluctuations in endogenous factors.
Quantifying the time scales over which exogenous and endogenous conditions affect soil respiration
USDA-ARS?s Scientific Manuscript database
Understanding how exogenous and endogenous factors and aboveground-belowground linkages modulate carbon dynamics is difficult because of influences of antecedent conditions. For example, there are variable lags between aboveground assimilation and belowground efflux, and the duration of antecedent p...
Endogenous Cortisol: Acute Modulation of Cytokine Gene Expression in Bovine PBMCs
USDA-ARS?s Scientific Manuscript database
Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar, Neuroimmunomod 2009;16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expres...
Di Cesare Mannelli, Lorenzo; Pacini, Alessandra; Corti, Francesca; Boccella, Serena; Luongo, Livio; Esposito, Emanuela; Cuzzocrea, Salvatore; Maione, Sabatino; Calignano, Antonio; Ghelardini, Carla
2015-01-01
Neurotoxicity is a main side effect of the anticancer drug oxaliplatin. The development of a neuropathic syndrome impairs quality of life and potentially results in chemotherapy dose reductions and/or early discontinuation. In the complex pattern of molecular and morphological alterations induced by oxaliplatin in the nervous system, an important activation of glia has been preclinically evidenced. N-Palmitoylethanolamine (PEA) modulates glial cells and exerts antinociceptive effects in several animal models. In order to improve the therapeutic chances for chemotherapy-dependent neuropathy management, the role of PEA was investigated in a rat model of oxaliplatin-induced neuropathy (2.4 mg kg-1 daily, intraperitoneally). On day 21, a single administration of PEA (30 mg kg-1 i.p.) was able to reduce oxaliplatin-dependent pain induced by mechanical and thermal stimuli. The repeated treatment with PEA (30 mg kg-1 daily i.p. for 21 days, from the first oxaliplatin injection) prevented lowering of pain threshold as well as increased pain on suprathreshold stimulation. Ex vivo histological and molecular analysis of dorsal root ganglia, peripheral nerves and spinal cord highlighted neuroprotective effects and glia-activation prevention induced by PEA repeated administration. The protective effect of PEA resulted in the normalization of the electrophysiological activity of the spinal nociceptive neurons. Finally, PEA did not alter the oxaliplatin-induced mortality of the human colon cancer cell line HT-29. The efficacy of PEA in neuropathic pain control and in preventing nervous tissue alteration candidates this endogenous compound as disease modifying agent. These characteristics, joined to the safety profile, suggest the usefulness of PEA in chemotherapy-induced neuropathy. PMID:26039098
Hormones in pain modulation and their clinical implications for pain control: a critical review.
Chen, Xueyin; Zhang, Jinyuan; Wang, Xiangrui
2016-07-01
Recently, more and more studies have found that pain generation, transmission and modulation are under hormonal regulation. Indeed, hormonal dysregulation is a common component of chronic pain syndromes. Studies have attempted to determine whether the relationship between the pain and its perception and hormones is a causative relationship and how these processes interrelate. This review summarizes and analyzes the current experimental data and provides an overview of the studies addressing these questions. The relationship between pain perception and endocrine effects suggests that hormones can be used as important biomarkers of chronic pain syndromes and/or be developed into therapeutic agents in the fight against pain.
Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J
2002-09-01
gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.
Effect of harmane on mononeuropathic pain in rats.
Aricioglu, Feyza; Korcegez, Eylem; Ozyalcin, Suleyman
2003-12-01
This study was designed to investigate the effect of the endogenous beta-carboline, harmane, on neuropathic pain produced by chronic constriction injury (CCI) of the sciatic nerve. Thermal allodynia evaluations were made preoperatively, postoperatively on the fifteenth day, and after harmane administration. Harmane (1, 2.5, 5, 10, or 20 mg/kg) was administered intraperitoneally for 5 days beginning from postoperative day 15. Treatment with harmane had a profound anti-allodynic effect in a dose-dependent manner. In conclusion, harmane might provide a new approach to treatment of neuropathic pain.
Recommendations on practice of conditioned pain modulation (CPM) testing.
Yarnitsky, D; Bouhassira, D; Drewes, A M; Fillingim, R B; Granot, M; Hansson, P; Landau, R; Marchand, S; Matre, D; Nilsen, K B; Stubhaug, A; Treede, R D; Wilder-Smith, O H G
2015-07-01
Protocols for testing conditioned pain modulation (CPM) vary between different labs/clinics. In order to promote research and clinical application of this tool, we summarize the recommendations of interested researchers consensus meeting regarding the practice of CPM and report of its results. © 2014 European Pain Federation - EFIC®
Acute modulation of cytokine gene expression in bovine PBMCs by endogenous cortisol
USDA-ARS?s Scientific Manuscript database
Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar, Neuroimmunomod 2009;16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expres...
Chen, Chih-Chung; Johnson, Mark I
2009-10-01
Frequency-modulated transcutaneous electrical nerve stimulation (TENS) delivers currents that fluctuate between preset boundaries over a fixed period of time. This study compared the effects of constant-frequency TENS and frequency-modulated TENS on blunt pressure pain in healthy human volunteers. Thirty-six participants received constant-frequency TENS (80 pps), frequency-modulated TENS (20 to 100 pps), and placebo (no current) TENS at a strong nonpainful intensity in a randomized cross-over manner. Pain threshold was taken from the forearm using pressure algometry. There were no statistical differences between constant-frequency TENS and frequency-modulated TENS after 20 minutes (OR = 1.54; CI, 0.29, 8.23, P = 1.0). Both constant-frequency TENS and frequency-modulated TENS were superior to placebo TENS (OR = 59.5, P < .001 and OR = 38.5, P < .001, respectively). Frequency-modulated TENS does not influence hypoalgesia to any greater extent than constant-frequency TENS when currents generate a strong nonpainful paraesthesia at the site of pain. The finding that frequency-modulated TENS and constant-frequency TENS were superior to placebo TENS provides further evidence that a strong yet nonpainful TENS intensity is a prerequisite for hypoalgesia. This study provides evidence that TENS, delivered at a strong nonpainful intensity, increases pain threshold to pressure algometry in healthy participants over and above that seen with placebo (no current) TENS. Frequency-modulated TENS does not increase hypoalgesia to any appreciable extent to that seen with constant-frequency TENS.
Supratentorial lesions contribute to trigeminal neuralgia in multiple sclerosis.
Fröhlich, Kilian; Winder, Klemens; Linker, Ralf A; Engelhorn, Tobias; Dörfler, Arnd; Lee, De-Hyung; Hilz, Max J; Schwab, Stefan; Seifert, Frank
2018-06-01
Background It has been proposed that multiple sclerosis lesions afflicting the pontine trigeminal afferents contribute to trigeminal neuralgia in multiple sclerosis. So far, there are no imaging studies that have evaluated interactions between supratentorial lesions and trigeminal neuralgia in multiple sclerosis patients. Methods We conducted a retrospective study and sought multiple sclerosis patients with trigeminal neuralgia and controls in a local database. Multiple sclerosis lesions were manually outlined and transformed into stereotaxic space. We determined the lesion overlap and performed a voxel-wise subtraction analysis. Secondly, we conducted a voxel-wise non-parametric analysis using the Liebermeister test. Results From 12,210 multiple sclerosis patient records screened, we identified 41 patients with trigeminal neuralgia. The voxel-wise subtraction analysis yielded associations between trigeminal neuralgia and multiple sclerosis lesions in the pontine trigeminal afferents, as well as larger supratentorial lesion clusters in the contralateral insula and hippocampus. The non-parametric statistical analysis using the Liebermeister test yielded similar areas to be associated with multiple sclerosis-related trigeminal neuralgia. Conclusions Our study confirms previous data on associations between multiple sclerosis-related trigeminal neuralgia and pontine lesions, and showed for the first time an association with lesions in the insular region, a region involved in pain processing and endogenous pain modulation.
Reticular Formation and Pain: The Past and the Future
Martins, Isabel; Tavares, Isaura
2017-01-01
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the “dynamic pain connectome” with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain. PMID:28725185
Reticular Formation and Pain: The Past and the Future.
Martins, Isabel; Tavares, Isaura
2017-01-01
The involvement of the reticular formation (RF) in the transmission and modulation of nociceptive information has been extensively studied. The brainstem RF contains several areas which are targeted by spinal cord afferents conveying nociceptive input. The arrival of nociceptive input to the RF may trigger alert reactions which generate a protective/defense reaction to pain. RF neurons located at the medulla oblongata and targeted by ascending nociceptive information are also involved in the control of vital functions that can be affected by pain, namely cardiovascular control. The RF contains centers that belong to the pain modulatory system, namely areas involved in bidirectional balance (decrease or enhancement) of pain responses. It is currently accepted that the imbalance of pain modulation towards pain facilitation accounts for chronic pain. The medullary RF has the peculiarity of harboring areas involved in bidirectional pain control namely by the existence of specific neuronal populations involved in antinociceptive or pronociceptive behavioral responses, namely at the rostroventromedial medulla (RVM) and the caudal ventrolateral medulla (VLM). Furthermore the dorsal reticular nucleus (also known as subnucleus reticularis dorsalis; DRt) may enhance nociceptive responses, through a reverberative circuit established with spinal lamina I neurons and inhibit wide-dynamic range (WDR) neurons of the deep dorsal horn. The components of the triad RVM-VLM-DRt are reciprocally connected and represent a key gateway for top-down pain modulation. The RVM-VLM-DRt triad also represents the neurobiological substrate for the emotional and cognitive modulation of pain, through pathways that involve the periaqueductal gray (PAG)-RVM connection. Collectively, we propose that the RVM-VLM-DRt triad represents a key component of the "dynamic pain connectome" with special features to provide integrated and rapid responses in situations which are life-threatening and involve pain. The new available techniques in neurobiological studies both in animal and human studies are producing new and fascinating data which allow to understand the complex role of the RF in pain modulation and its integration with several body functions and also how the RF accounts for chronic pain.
Ion channel blockers for the treatment of neuropathic pain.
Colombo, Elena; Francisconi, Simona; Faravelli, Laura; Izzo, Emanuela; Pevarello, Paolo
2010-05-01
Neuropathic pain, a severe chronic pain condition characterized by a complex pathophysiology, is a largely unmet medical need. Ion channels, which underlie cell excitability, are heavily implicated in the biological mechanisms that generate and sustain neuropathic pain. This review highlights the biological evidence supporting the involvement of voltage-, proton- and ligand-gated ion channels in the neuropathic pain setting. Ion channel modulators at different research or development stages are reviewed and referenced. Ion channel modulation is one of the main avenues to achieve novel, improved neuropathic pain treatments. Voltage-gated sodium and calcium channel and glutamate receptor modulators are likely to produce new, improved agents in the future. Rationally targeting subtypes of known ion channels, tackling recently discovered ion channel targets or combining drugs with different mechanism of action will be primary sources of new drugs in the longer term.
Sapir, Shimon; Pud, Dorit
2008-01-01
To assess the effect of tonic pain stimulation on auditory processing of speech-relevant acoustic signals in healthy pain-free volunteers. Sixty university students, randomly assigned to either a thermal pain stimulation (46 degrees C/6 min) group (PS) or no pain stimulation group (NPS), performed a rate change detection task (RCDT) involving sinusoidally frequency-modulated vowel-like signals. Task difficulty was manipulated by changing the rate of the modulated signals (henceforth rate). Perceived pain intensity was evaluated using a visual analog scale (VAS) (0-100). Mean pain rating was approximately 33 in the PS group and approximately 3 in the NPS group. Pain stimulation was associated with poorer performance on the RCDT, but this trend was not statistically significant. Performance worsened with increasing rate of signal modulation in both groups (p < 0.0001), with no pain by rate interaction. The present findings indicate a trend whereby mild or moderate pain appears to affect auditory processing of speech-relevant acoustic signals. This trend, however, was not statistically significant. It is possible that more intense pain would yield more pronounced (deleterious) effects on auditory processing, but this needs to be verified empirically.
Sex differences in the relationships between parasympathetic activity and pain modulation.
Nahman-Averbuch, Hadas; Dayan, Lior; Sprecher, Elliot; Hochberg, Uri; Brill, Silviu; Yarnitsky, David; Jacob, Giris
2016-02-01
Higher parasympathetic activity is related to lower pain perception in healthy subjects and pain patients. We aimed to examine whether this relationship depends on sex, in healthy subjects. Parasympathetic activity was assessed using time- and frequency-domain heart rate variability indices and deep breathing ratio. Pain perception parameters, consisting of heat pain thresholds and pain ratings of supra-thresholds stimuli, as well as pain modulation parameters of mechanical temporal summation, pain adaptation, offset analgesia and conditioned pain modulation (CPM) response were examined. Forty healthy subjects were examined (20 men). Women demonstrated higher parasympathetic activity compared to men (high frequency power of 0.55±0.2 and 0.40±0.2, respectively, p=0.02) and less pain reduction in the offset analgesia paradigm (-35.4±29.1 and -55.0±31.2, respectively, p=0.046). Separate slopes models analyses revealed sex differences such that a significant negative correlation was observed between higher rMSSD (the root mean square of successive differences) and higher pain adaptation in men (r=-0.649, p=0.003) but not in women (r=0.382, p=0.106). Similarly, a significant negative correlation was found between higher rMSSD and higher efficiency of the CPM response in men (r=-0.510, p=0.026) but not in women (r=0.406, p=0.085). Sex hormones levels, psychological factors or baseline autonomic activity can be possible explanations for these sex differences. Future autonomic interventions destined to change pain modulation should consider sex as an important intervening factor. Copyright © 2015 Elsevier Inc. All rights reserved.
Linnman, Clas; Catana, Ciprian; Petkov, Mike P; Chonde, Daniel Burje; Becerra, Lino; Hooker, Jacob; Borsook, David
2018-01-01
Pain interventions with no active ingredient, placebo, are sometimes effective in treating chronic pain conditions. Prior studies on the neurobiological underpinnings of placebo analgesia indicate endogenous opioid release and changes in brain responses and functional connectivity during pain anticipation and pain experience in healthy subjects. Here, we investigated placebo analgesia in healthy subjects and in interictal migraine patients (n = 9) and matched healthy controls (n = 9) using 11 C-diprenoprhine Positron Emission Tomography (PET) and simultaneous functional Magnetic Resonance Imaging (fMRI). Intravenous saline injections (the placebo) led to lower pain ratings, but we did not find evidence for an altered placebo response in interictal migraine subjects as compared to healthy subjects.
Development of allosteric modulators of GPCRs for treatment of CNS disorders.
Nickols, Hilary Highfield; Conn, P Jeffrey
2014-01-01
The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as "bitopic" ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. © 2013.
Grinberg, Keren; Granot, Michal; Lowenstein, Lior; Abramov, Liora; Weissman-Fogel, Irit
2018-05-25
A patient's personal interpretations of a health threat or "illness perceptions" (IPs) are associated with their clinical outcomes. This study explored whether IPs are associated with pain severity and ability to modulate pain in women with chronic pelvic pain syndrome (CPPS), as well as the predictive value of IPs on Myofascial Physical Therapy (MPT) success. Illness Perceptions Questionnaire - Revised (IPQ-R), mechanical and heat pain thresholds, mechanical temporal summation (mTS), and conditioned pain modulation (CPM) were evaluated in CPPS patients (n=39) before, and 3 months after MPT. CPPS severity was obtained by the Brief Pain Inventory (BPI). Stronger perceptions of illness chronicity were correlated with less efficient CPM (r=0.488, P=0.002) and increased mechanical pain intensity (r=0.405, P=0.02). Lower perceptions of control over illness were associated with enhanced mTS (r=0.399, P=0.01). Higher BPI scores were correlated with emotional representations ("negative emotional representations") and severe consequences due to CPPS. Regression analyses revealed that negative IPs predict less efficient MPT. Cognitive representations play a unique role in CPPS expression and MPT outcomes. The interplay between negative IPs and a pro-nociceptive modulation profile, mediated by enhanced facilitatory and reduced inhibitory processes, may be involved in the manifestation of CPPS.
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases
2017-01-01
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity. PMID:28154473
Le Roy, Chloé; Laboureyras, Emilie; Gavello-Baudy, Stéphanie; Chateauraynaud, Jérémy; Laulin, Jean-Paul; Simonnet, Guy
2011-10-01
Although stress induces analgesia, there is evidence that stressful events may exacerbate pain syndromes. Here, we studied the effects of 1 to 3 prestressful events (days 0, 2, and 7), such as non-nociceptive environmental stress, on inflammatory hyperalgesia induced by a carrageenan injection (day 14) in 1 rat hind paw. Changes in nociceptive threshold were evaluated by the paw pressure vocalization test. The higher the number of stress sessions presented to the rats, the greater was the inflammatory hyperalgesia. Blockade of opioid receptors by naltrexone before each stress inhibited stress-induced analgesia and suppressed the exaggerated inflammatory hyperalgesia. Stressed versus nonstressed animals could be discriminated by their response to a fentanyl ultra-low dose (fULD), that produced hyperalgesia or analgesia, respectively. This pharmacological test permitted the prediction of the pain vulnerability level of prestressed rats because fULD analgesic or hyperalgesic indices were positively correlated with inflammatory hyperalgesic indices (r(2) = .84). In prestressed rats, fULD-induced hyperalgesia and the exaggerated inflammatory hyperalgesia were prevented NMDA receptor antagonists. This study provides some preclinical evidence that pain intensity is not only the result of nociceptive input level but is also dependent on the individual history, especially prior life stress events associated with endogenous opioid release. Based on these preclinical data, it would be of clinical interest to evaluate whether prior stressful events may also affect further pain sensation in humans. Moreover, this preclinical model could be a good tool for evaluating new therapeutic strategies for relieving pain hypersensitivity. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch
Ramsden, Christopher E.; Domenichiello, Anthony F.; Yuan, Zhi-Xin; Sapio, Matthew R.; Keyes, Gregory S.; Mishra, Santosh K.; Gross, Jacklyn R.; Majchrzak-Hong, Sharon; Zamora, Daisy; Horowitz, Mark S.; Davis, John M.; Sorokin, Alexander V.; Dey, Amit; LaPaglia, Danielle M.; Wheeler, Joshua J.; Vasko, Michael R.; Mehta, Nehal N.; Mannes, Andrew J.; Iadarola, Michael J.
2018-01-01
Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy-or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene–related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber–mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch. PMID:28831021
USDA-ARS?s Scientific Manuscript database
Cortisol suppresses many aspects of immune function. However, recent publications suggest acute cortisol exposure may actually enhance immune function (Dhabhar. 2009. Neuroimmunomod. 16:300). The objective of this study was to determine the influence of acute increases in endogenous cortisol on expr...
Cerebellar Secretin Modulates Eyeblink Classical Conditioning
ERIC Educational Resources Information Center
Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.; Green, John T.
2014-01-01
We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received…
Claes, Nathalie; Vlaeyen, Johan W S; Crombez, Geert
2016-09-01
Previous research shows that goal-directed behavior might be modulated by cues that predict (dis)similar outcomes. However, the literature investigating this modulation with pain outcomes is scarce. Therefore, this experiment investigated whether environmental cues predicting pain or reward modulate defensive pain responding. Forty-eight healthy participants completed a joystick movement task with two different movement orientations. Performing one movement was associated with a painful stimulus, whereas performance of another movement was associated with reward, i.e. lottery tickets. In a subsequent task, participants learned to associate three different cues withpain, reward, or neither of the two. Next, these cues were integrated in the movement task. This study demonstrates that in general, aversive cues enhance and appetitive cues reduce pain-related fear. Furthermore, we found that incongruence between the outcomes predicted by the movement and the cue results in more oscillatory behavior, i.e., participants were more willing to perform a painful movement when a cue predicting reward was simultaneously presented, and vice versa. Similarly, when given a choice, participants preferred to perform the reward movement, unless there was an incongruence between the outcomes predicted by the movements and cues. Taken together, these results provide experimental evidence that environmental cues are capable of modulating pain-related fear and avoidance behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonpainful wide-area compression inhibits experimental pain.
Honigman, Liat; Bar-Bachar, Ofrit; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena
2016-09-01
Compression therapy, a well-recognized treatment for lymphoedema and venous disorders, pressurizes limbs and generates massive non-noxious afferent sensory barrages. The aim of this study was to study whether such afferent activity has an analgesic effect when applied on the lower limbs, hypothesizing that larger compression areas will induce stronger analgesic effects, and whether this effect correlates with conditioned pain modulation (CPM). Thirty young healthy subjects received painful heat and pressure stimuli (47°C for 30 seconds, forearm; 300 kPa for 15 seconds, wrist) before and during 3 compression protocols of either SMALL (up to ankles), MEDIUM (up to knees), or LARGE (up to hips) compression areas. Conditioned pain modulation (heat pain conditioned by noxious cold water) was tested before and after each compression protocol. The LARGE protocol induced more analgesia for heat than the SMALL protocol (P < 0.001). The analgesic effect interacted with gender (P = 0.015). The LARGE protocol was more efficient for females, whereas the MEDIUM protocol was more efficient for males. Pressure pain was reduced by all protocols (P < 0.001) with no differences between protocols and no gender effect. Conditioned pain modulation was more efficient than the compression-induced analgesia. For the LARGE protocol, precompression CPM efficiency positively correlated with compression-induced analgesia. Large body area compression exerts an area-dependent analgesic effect on experimental pain stimuli. The observed correlation with pain inhibition in response to robust non-noxious sensory stimulation may suggest that compression therapy shares similar mechanisms with inhibitory pain modulation assessed through CPM.
Grinberg, Keren; Granot, Michal; Lowenstein, Lior; Abramov, Liora; Weissman-Fogel, Irit
2017-06-01
Provoked vestibulodynia (PVD) and painful bladder syndrome (PBS), subgroups of chronic pelvic pain syndromes (CPPS), are considered to share common biophysiological peripheral mechanisms. In addition, indications of a pronociceptive pain profile coexisting with psychological vulnerability suggest common dysfunctional pain processing and pain modulation in these 2 subgroups of CPPS. We therefore aimed at comparing the pain profile and psychological traits of patients with PVD and PBS to see whether the pain profile contributes to intersubject variability of clinical pain symptoms. Patients with PVD (n = 18) and PBS (n = 21) were compared with healthy controls (n = 20) in their responses to (1) pain psychophysical tests applied to both referred (suprapubis) and remote (hand) body areas and (2) pain-related psychological factors (pain catastrophizing, depression, anxiety, and somatization). We found a similar pronociceptive pain profile in the 2 subgroups of CPPS-enhanced facilitation (ie, hyperalgesia in the referred body area [P < 0.001]) and inefficient inhibition (ie, reduced conditioned pain modulation [P < 0.001] that were associated with both enhanced pain ratings evoked during trigger point examination [P < 0.037]) and higher Brief Pain Inventory ratings (P = 0.002). The latter was also correlated with pain catastrophizing (r = 0.504, P = 0.001) and depression symptoms (r = 0.361, P = 0.024). The findings suggest common mechanisms underlying a dysfunctional nociceptive system in both PVD and PBS. The intersubject variability in the level of dysfunction and its association with disease severity recommends a personalized pain treatment that may alleviate daily pain and dysfunction in patients with CPPS.
da Silva, Mariana Moreira; Albertini, Regiane; Leal-Junior, Ernesto Cesar Pinto; de Tarso Camillo de Carvalho, Paulo; Silva, José Antonio; Bussadori, Sandra Kalil; de Oliveira, Luis Vicente Franco; Casarin, Cezar Augusto Souza; Andrade, Erinaldo Luiz; Bocalini, Danilo Sales; Serra, Andrey Jorge
2015-06-04
Fibromyalgia (FM) is a syndrome most prevalent in women, in whom it is characterized mainly by chronic pain. An important issue is that many patients with FM are reported to have temporomandibular dysfunction (TMD), and the coexistence of these pathologies generates a clinical outcome of high complexity. The literature is unclear regarding an effective therapy for reducing pain in patients with both comorbidities. Exercise training and phototherapy (low-level laser therapy with light-emitting diode) are two of the approaches used to treat pain. Thus, the aim of this study is to assess the potential role of exercise training plus phototherapy in reducing chronic pain in women with FM and TMD. A further aim is to determine whether the interventions can improve quality of life and modulate endogenous serotonin. A randomized controlled clinical trial will be conducted. It will involve 60 women ≥ 35 years of age with a diagnosis of FM and TMD. After recruitment, patients will be randomly allocated to one of four groups: a control group (no intervention), a group that will receive a phototherapy intervention (PHO), a group that will be prescribed muscle-stretching, aerobic, and facial exercises (EXT), or a group that will receive phototherapy plus exercise interventions (PHO + EXT). The trial will last 10 weeks, and the following outcomes will be evaluated on two separate occasions (baseline and within 24 h after the last day of the protocol). Pain intensity will be analyzed using a visual analogue scale and the McGill Pain Questionnaire, and pain thresholds will be punctuated using a digital algometer. FM symptoms will be assessed using the Fibromyalgia Impact Questionnaire, and quality of life will be determined with the 36-item Short Form Health Survey. Serotonin levels will be evaluated in salivary samples using a competitive enzyme-linked immunosorbent assay. This is the first randomized controlled trial in which the role of phototherapy, exercise training, and a combination of these interventions will be evaluated for chronic pain in patients with FM and TMD. The results will offer valuable clinical evidence for objective assessment of the potential benefits and risks of procedures. ClinicalTrials.gov Identifier: NCT02279225. Registered 27 October 2014.
Task modulations of racial bias in neural responses to others' suffering.
Sheng, Feng; Liu, Qiang; Li, Hong; Fang, Fang; Han, Shihui
2014-03-01
Recent event related brain potential research observed a greater frontal activity to pain expressions of racial in-group than out-group members and such racial bias in neural responses to others' suffering was modulated by task demands that emphasize race identity or painful feeling. However, as pain expressions activate multiple brain regions in the pain matrix, it remains unclear which part of the neural circuit in response to others' suffering undergoes modulations by task demands. We scanned Chinese adults, using functional MRI, while they categorized Asian and Caucasian faces with pain or neutral expressions in terms of race or identified painful feelings of each individual face. We found that pain vs. neutral expressions of Asian but not Caucasian faces activated the anterior cingulate (ACC) and anterior insular (AI) activity during race judgments. However, pain compared to race judgments increased ACC and AI activity to pain expressions of Caucasian but not Asian faces. Moreover, race judgments induced increased activity in the dorsal medial prefrontal cortex whereas pain judgments increased activity in the bilateral temporoparietal junction. The results suggest that task demands emphasizing an individual's painful feeling increase ACC/AI activities to pain expressions of racial out-group members and reduce the racial bias in empathic neural responses. © 2013.
Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer
Elmholdt, Else-Marie; Skewes, Joshua; Dietz, Martin; Møller, Arne; Jensen, Martin S.; Roepstorff, Andreas; Wiech, Katja; Jensen, Troels S.
2017-01-01
Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping. Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70–89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during religious prayer in a large parietofrontal network relative to the secular condition. Naloxone had no significant effect on ratings or neural activity. Our results thus indicate that, under these conditions, pain modulation by prayer is not opioid-dependent. Further studies should employ an optimized design to explore whether reduced engagement of the frontoparietal system could indicate that prayer may attenuate pain through a reduction in processing of pain stimulus saliency and prefrontal control rather than through known descending pain inhibitory systems. PMID:28701940
Reduced Pain Sensation and Reduced BOLD Signal in Parietofrontal Networks during Religious Prayer.
Elmholdt, Else-Marie; Skewes, Joshua; Dietz, Martin; Møller, Arne; Jensen, Martin S; Roepstorff, Andreas; Wiech, Katja; Jensen, Troels S
2017-01-01
Previous studies suggest that religious prayer can alter the experience of pain via expectation mechanisms. While brain processes related to other types of top-down modulation of pain have been studied extensively, no research has been conducted on the potential effects of active religious coping. Here, we aimed at investigating the neural mechanisms during pain modulation by prayer and their dependency on the opioidergic system. Twenty-eight devout Protestants performed religious prayer and a secular contrast prayer during painful electrical stimulation in two fMRI sessions. Naloxone or saline was administered prior to scanning. Results show that pain intensity was reduced by 11% and pain unpleasantness by 26% during religious prayer compared to secular prayer. Expectancy predicted large amounts (70-89%) of the variance in pain intensity. Neuroimaging results revealed reduced neural activity during religious prayer in a large parietofrontal network relative to the secular condition. Naloxone had no significant effect on ratings or neural activity. Our results thus indicate that, under these conditions, pain modulation by prayer is not opioid-dependent. Further studies should employ an optimized design to explore whether reduced engagement of the frontoparietal system could indicate that prayer may attenuate pain through a reduction in processing of pain stimulus saliency and prefrontal control rather than through known descending pain inhibitory systems.
Nociceptive transmission and modulation via P2X receptors in central pain syndrome.
Kuan, Yung-Hui; Shyu, Bai-Chuang
2016-05-26
Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.
Jenkins, M Sue; Bean, W Geinor; Luke, Karl
2014-02-01
Chronic pain is a long-term condition, which has a major impact on patients, carers and the health service. Despite the Chief Medical Officer setting chronic pain and its management as a national priority in 2008, the utilisation of health services by patients with long-term conditions is increasing, people with pain-related problems are not seen early enough and pain-related attendances to accident and emergency departments is increasing. Early assessment with appropriate evidence-based intervention and early recognition of when to refer to specialist and specialised services is key to addressing the growing numbers suffering with chronic pain. Pain education is recommended in many guidelines, as part of the process to address pain in these issues. Cardiff University validated an e-learning, master's level pain management module for healthcare professionals working in primary and community care. The learning outcomes revolve around robust early assessment and management of chronic pain in primary and community care and the knowledge when to refer on. The module focuses on the biopsychosocial aspects of pain and its management, using a blog as an online case study assessment for learners to demonstrate their knowledge, understanding and application to practice. The module has resulted in learners developing evidence-based recommendations, for pain management in clinical practice.
Bogdanov, Volodymyr B.; Viganò, Alessandro; Noirhomme, Quentin; Bogdanova, Olena V.; Guy, Nathalie; Laureys, Steven; Renshaw, Perry F.; Dallel, Radhouane; Phillips, Christophe; Schoenen, Jean
2017-01-01
The mechanisms underlying conditioned pain modulation (CPM) are multifaceted. We searched for a link between individual differences in prefrontal cortex activity during multi-trial heterotopic noxious cold conditioning and modulation of the cerebral response to phasic heat pain. In 24 healthy female subjects, we conditioned laser heat stimuli to the left hand by applying alternatively ice-cold or lukewarm compresses to the right foot. We compared pain ratings with cerebral fMRI BOLD responses. We also analyzed the relation between CPM and BOLD changes produced by the heterotopic cold conditioning itself, as well as the impact of anxiety and habituation of cold-pain ratings. Specific cerebral activation was identified in precuneus and left posterior insula/SII, respectively, during early and sustained phases of cold application. During cold conditioning, laser pain decreased (n = 7), increased (n = 10) or stayed unchanged (n = 7). At the individual level, the psychophysical effect was directly proportional to the cold-induced modulation of the laser-induced BOLD response in left posterior insula/SII. The latter correlated with the BOLD response recorded 80 s earlier during the initial 10-s phase of cold application in anterior cingulate, orbitofrontal and lateral prefrontal cortices. High anxiety and habituation of cold pain were associated with greater laser heat-induced pain during heterotopic cold stimulation. The habituation was also linked to the early cold-induced orbitofrontal responses. We conclude that individual differences in conditioned pain modulation are related to different levels of prefrontal cortical activation by the early part of the conditioning stimulus, possibly due to different levels in trait anxiety. PMID:25461267
Nakajima, Motohiro; Al'Absi, Mustafa
2014-10-01
Chronic smoking has been linked with alterations in endogenous pain regulation. These alterations may be pronounced when individuals quit smoking because nicotine withdrawal produces a variety of psychological and physiological symptoms. Smokers interested in quitting (n = 98) and nonsmokers (n = 37) completed a laboratory session including cold pressor test (CPT) and heat thermal pain. Smokers set a quit date and completed the session after 48 h of abstinence. Participants completed the pain assessments once after rest and once after stress. Cardiovascular and nicotine withdrawal measures were collected. Smokers showed blunted cardiovascular responses to stress relative to nonsmokers. Only nonsmokers had greater pain tolerance to CPT after stress than after rest. Lower systolic blood pressure was related to lower pain tolerance. These findings suggest that smoking withdrawal is associated with blunted stress response and increased pain sensitivity. Copyright © 2014 Society for Psychophysiological Research.
Amir, Lisa H; Jones, Lester E; Buck, Miranda L
2015-03-01
New mothers frequently experience breastfeeding problems, in particular nipple pain. This is often attributed to compression, skin damage, infection or dermatitis. To outline an integrated approach to breastfeeding pain assessment that seeks to enhance current practice. Our clinical reasoning model resolves the complexity of pain into three categories: local stimulation, external influences and central modulation. Tissue pathology, damage or inflammation leads to local stimulation of nociceptors. External influences such as creams and breast pumps, as well as factors related to the mother, the infant and the maternal-infant interaction, may exacerbate the pain. Central nervous system modulation includes the enhancement of nociceptive transmission at the spinal cord and modification of the descending inhibitory influences. A broad range of factors can modulate pain through central mechanisms including maternal illness, exhaustion, lack of support, anxiety, depression or history of abuse. General practitioners (GPs) can use this model to explain nipple pain in complex settings, thus increasing management options for women.
Rab7-a novel redox target that modulates inflammatory pain processing.
Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim
2017-07-01
Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.
Paungmali, Aatit; Joseph, Leonard H; Sitilertpisan, Patraporn; Pirunsan, Ubon; Uthaikhup, Sureeporn
2017-11-01
Lumbopelvic stabilization training (LPST) may provide therapeutic benefits on pain modulation in chronic nonspecific low back pain conditions. This study aimed to examine the effects of LPST on pain threshold and pain intensity in comparison with the passive automated cycling intervention and control intervention among patients with chronic nonspecific low back pain. A within-subject, repeated-measures, crossover randomized controlled design was conducted among 25 participants (7 males and 18 females) with chronic nonspecific low back pain. All the participants received 3 different types of experimental interventions, which included LPST, the passive automated cycling intervention, and the control intervention randomly, with 48 hours between the sessions. The pressure pain threshold (PPT), hot-cold pain threshold, and pain intensity were estimated before and after the interventions. Repeated-measures analysis of variance showed that LPST provided therapeutic effects as it improved the PPT beyond the placebo and control interventions (P < 0.01). The pain intensity under the LPST condition was significantly better than that under the passive automated cycling intervention and controlled intervention (P < 0.001). Heat pain threshold under the LPST condition also showed a significant trend of improvement beyond the control (P < 0.05), but no significant effects on cold pain threshold were evident. Lumbopelvic stabilization training may provide therapeutic effects by inducing pain modulation through an improvement in the pain threshold and reduction in pain intensity. LPST may be considered as part of the management programs for treatment of chronic low back pain. © 2017 World Institute of Pain.
Fairbanks, Carolyn A; Peterson, Cristina D; Speltz, Rebecca H; Riedl, Maureen S; Kitto, Kelley F; Dykstra, Jaclyn A; Braun, Patrick D; Sadahiro, Masato; Salton, Stephen R; Vulchanova, Lucy
2014-07-01
VGF (nonacronymic) is a granin-like protein that is packaged and proteolytically processed within the regulated secretory pathway. VGF and peptides derived from its processing have been implicated in neuroplasticity associated with learning, memory, depression, and chronic pain. In sensory neurons, VGF is rapidly increased following peripheral nerve injury and inflammation. Several bioactive peptides generated from the C-terminus of VGF have pronociceptive spinal effects. The goal of the present study was to examine the spinal effects of the peptide TLQP-21 and determine whether it participates in spinal mechanisms of persistent pain. Application of exogenous TLQP-21 induced dose-dependent thermal hyperalgesia in the warm-water immersion tail-withdrawal test. This hyperalgesia was inhibited by a p38 mitogen-activated protein kinase inhibitor, as well as inhibitors of cyclooxygenase and lipoxygenase. We used immunoneutralization of TLQP-21 to determine the function of the endogenous peptide in mechanisms underlying persistent pain. In mice injected intradermally with complete Freund adjuvant, intrathecal treatment with anti-TLQP-21 immediately prior to or 5hours after induction of inflammation dose-dependently inhibited tactile hypersensitivity and thermal hyperalgesia. Intrathecal anti-TL21 administration also attenuated the development and maintenance of tactile hypersensitivity in the spared nerve injury model of neuropathic pain. These results provide evidence that endogenous TLQP-21 peptide contributes to the mechanisms of spinal neuroplasticity after inflammation and nerve injury. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Baumgarten, Thomas J.; Oeltzschner, Georg; Hoogenboom, Nienke; Wittsack, Hans-Jörg; Schnitzler, Alfons; Lange, Joachim
2016-01-01
Neuronal oscillatory activity in the beta band (15–30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillations. It remains unclear, however, if GABA concentrations also influence beta peak frequencies and whether this influence is present in the sensorimotor cortex at rest and without pharmacological modulation. In the present study, we investigated the relation between endogenous GABA concentration (measured by magnetic resonance spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. GABA concentrations and beta band oscillations were measured for left and right sensorimotor and occipital cortex areas. A significant positive linear correlation between GABA concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no significant correlations were found for the right sensorimotor and the occipital cortex. The results show a novel connection between endogenous GABA concentration and beta peak frequency at rest. This finding supports previous results that demonstrated a connection between oscillatory beta activity and pharmacologically modulated GABA concentration in the sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-handed sample, the correlation between beta band oscillations and endogenous GABA concentrations is evident only in the left sensorimotor cortex. PMID:27258089
Postoperative pain management techniques in hip and knee arthroplasty.
Parvizi, Javad; Porat, Manny; Gandhi, Kishor; Viscusi, Eugene R; Rothman, Richard H
2009-01-01
Adequate control of postoperative pain following hip and knee arthroplasty can be a challenging task fraught with potential complications. Postoperative pain is perceived by the patient via a complex network and a multitude of molecular messengers in both the peripheral and central nervous systems. This allows the physician to modulate pain via an array of medications that act on different sites within the body. Using both contemporary and traditional pain modulators, the delivery and timing of these medications can affect postoperative pain and, ultimately, rehabilitation of the arthroplasty patient. Current techniques for controlling pain use both multimodal and preemptive analgesia to improve the outcome of the surgery while minimizing the potential adverse effects of the medications given.
Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins
Li, Yingxue; Lefever, Mark R; Muthu, Dhanasekaran; Bidlack, Jean M; Bilsky, Edward J; Polt, Robin
2012-01-01
Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood–brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates. PMID:22300099
Expectancy Effects on Conditioned Pain Modulation Are Not Influenced by Naloxone or Morphine.
France, Christopher R; Burns, John W; Gupta, Rajnish K; Buvanendran, Asokumar; Chont, Melissa; Schuster, Erik; Orlowska, Daria; Bruehl, Stephen
2016-08-01
Recent studies suggest that participant expectations influence pain ratings during conditioned pain modulation testing. The present study extends this work by examining expectancy effects among individuals with and without chronic back pain after administration of placebo, naloxone, or morphine. This study aims to identify the influence of individual differences in expectancy on changes in heat pain ratings obtained before, during, and after a forearm ischemic pain stimulus. Participants with chronic low back pain (n = 88) and healthy controls (n = 100) rated heat pain experience (i.e., "test stimulus") before, during, and after exposure to ischemic pain (i.e., "conditioning stimulus"). Prior to testing, participants indicated whether they anticipated that their heat pain would increase, decrease, or remain unchanged during ischemic pain. Analysis of the effects of expectancy (pain increase, decrease, or no change), drug (placebo, naloxone, or morphine), and group (back pain, healthy) on changes in heat pain revealed a significant main effect of expectancy (p = 0.001), but no other significant main effects or interactions. Follow-up analyses revealed that individuals who expected lower pain during ischemia reported significantly larger decreases in heat pain as compared with those who expected either no change (p = 0.004) or increased pain (p = 0.001). The present findings confirm that expectancy is an important contributor to conditioned pain modulation effects, and therefore significant caution is needed when interpreting findings that do not account for this individual difference. Opioid mechanisms do not appear to be involved in these expectancy effects.
Hua, Susan; Cabot, Peter J
2010-09-01
Peripheral mechanisms of endogenous pain control are significant. In peripheral inflamed tissue, an interaction between immune-cell-derived opioids and opioid receptors localized on sensory nerve terminals results in potent, clinically measurable analgesia. Opioid peptides and the mRNA encoding their precursor proteins are present in immune cells. These cells 'home' preferentially to injured tissue, where they secrete opioids to reduce pain. Investigation of the mechanisms underlying the migration of opioid-containing immune cells to inflamed tissue is an active area of research, with recent data demonstrating the importance of cell adhesion molecules in leukocyte adhesion to both the endothelium in vascular transmigration and to neurons within peripheral inflamed tissue. This review summarizes the physiological mechanisms and clinical significance of this unique endogenous peripheral analgesic pathway and discusses therapeutic implications for the development of novel targeted peripheral analgesics. Copyright 2010 Elsevier Ltd. All rights reserved.
Impaired conditioned pain modulation in youth with functional abdominal pain
Morris, Matthew C.; Walker, Lynn S.; Bruehl, Stephen; Stone, Amanda L.; Mielock, Alyssa S.; Rao, Uma
2016-01-01
Functional abdominal pain (FAP) is associated with enhanced pain responsiveness. Although impaired conditioned pain modulation (CPM) characterizes adults with a variety of chronic pain conditions, relatively little is known about CPM in youth with FAP. The present study assessed CPM to evoked thermal pain in 140 youth (ages 10 to 17), 63 of whom had FAP and 77 of whom were healthy controls. Multilevel models demonstrated weaker CPM effects in FAP than healthy youth, as evident in slower within-person decreases in pain ratings during the conditioning phase. Weaker CPM effects were associated with greater somatic symptom severity and functional disability. Pain responses in FAP youth were heterogeneous, with 43% of youth showing an unexpected increase in pain ratings during the conditioning phase, suggesting sensitization rather than CPM-related pain inhibition. These findings highlight directions for future research on the emergence and maintenance of FAP in youth. PMID:27389918
Impaired conditioned pain modulation in youth with functional abdominal pain.
Morris, Matthew C; Walker, Lynn S; Bruehl, Stephen; Stone, Amanda L; Mielock, Alyssa S; Rao, Uma
2016-10-01
Functional abdominal pain (FAP) is associated with enhanced pain responsiveness. Although impaired conditioned pain modulation (CPM) characterizes adults with a variety of chronic pain conditions, relatively little is known about CPM in youth with FAP. This study assessed CPM to evoked thermal pain in 140 youth (ages 10-17), 63 of whom had FAP and 77 of whom were healthy controls. Multilevel models demonstrated weaker CPM effects in youth with FAP than in healthy youth, as evident in slower within-person decreases in pain ratings during the conditioning phase. Weaker CPM effects were associated with greater somatic symptom severity and functional disability. Pain responses in youth with FAP were heterogeneous, with 43% of youth showing an unexpected increase in pain ratings during the conditioning phase, suggesting sensitization rather than CPM-related pain inhibition. These findings highlight directions for future research on the emergence and maintenance of FAP in youth.
Effects of centrally administered endocannabinoids and opioids on orofacial pain perception in rats.
Zubrzycki, Marek; Janecka, Anna; Liebold, Andreas; Ziegler, Mechthild; Zubrzycka, Maria
2017-11-01
Endocannabinoids and opioids play a vital role in mediating pain-induced analgesia. The specific effects of these compounds within the orofacial region are largely unknown. In this study, we tried to determine whether an increase in cannabinoid and opioid concentration in the CSF affects impulse transmission between the motor centres localized in the vicinity of the third and fourth cerebral ventricles. The study objectives were realized on rats using a method that allows the recording of the amplitude of evoked tongue jerks (ETJ) in response to noxious tooth pulp stimulation. The amplitude of ETJ was a measure of the effect of neurotransmitters on neural structures. Perfusion of cerebral ventricles with anandamide (AEA), endomorphin-2 (EM-2), URB597, an inhibitor of fatty acid amide hydrolase (FAAH) and JZL195, a dual inhibitor of FAAH and monoacylglycerol lipase (MAGL) reduced the ETJ amplitude. The antinociceptive effect of AEA, EM-2, URB597 and JZL195 was blocked by CB 1 receptor antagonist, AM251 and by μ receptor-antagonist, β-funaltrexamine. In contrast to AEA, 2-arachidonoylglycerol alone did not decrease ETJ amplitude. We demonstrated that in the orofacial area, analgesic activity is modulated by AEA and that EM-2-induced antinociception was mediated by μ and CB 1 receptors. The action of AEA and EM-2 is tightly regulated by FAAH and FAAH/MAGL, by preventing the breakdown of endogenous cannabinoids in regions where they are produced on demand. Therefore, the current findings support the therapeutic potential of FAAH and FAAH/MAGL inhibitors as novel pharmacotherapeutic agents for orofacial pain. © 2017 The British Pharmacological Society.
Nonpainful wide-area compression inhibits experimental pain
Honigman, Liat; Bar-Bachar, Ofrit; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena
2016-01-01
Abstract Compression therapy, a well-recognized treatment for lymphoedema and venous disorders, pressurizes limbs and generates massive non-noxious afferent sensory barrages. The aim of this study was to study whether such afferent activity has an analgesic effect when applied on the lower limbs, hypothesizing that larger compression areas will induce stronger analgesic effects, and whether this effect correlates with conditioned pain modulation (CPM). Thirty young healthy subjects received painful heat and pressure stimuli (47°C for 30 seconds, forearm; 300 kPa for 15 seconds, wrist) before and during 3 compression protocols of either SMALL (up to ankles), MEDIUM (up to knees), or LARGE (up to hips) compression areas. Conditioned pain modulation (heat pain conditioned by noxious cold water) was tested before and after each compression protocol. The LARGE protocol induced more analgesia for heat than the SMALL protocol (P < 0.001). The analgesic effect interacted with gender (P = 0.015). The LARGE protocol was more efficient for females, whereas the MEDIUM protocol was more efficient for males. Pressure pain was reduced by all protocols (P < 0.001) with no differences between protocols and no gender effect. Conditioned pain modulation was more efficient than the compression-induced analgesia. For the LARGE protocol, precompression CPM efficiency positively correlated with compression-induced analgesia. Large body area compression exerts an area-dependent analgesic effect on experimental pain stimuli. The observed correlation with pain inhibition in response to robust non-noxious sensory stimulation may suggest that compression therapy shares similar mechanisms with inhibitory pain modulation assessed through CPM. PMID:27152691
Horvath, Gyongyi; Kekesi, Gabriella; Tuboly, Gabor; Benedek, Gyorgy
2007-06-25
A very interesting and rapidly developing field of pain research is related to the roles of different endogenous ligands. This study determined the antinociceptive interactions of triple and quadruple combinations of different endogenous ligands (endomorphin-1, adenosine, agmatine and kynurenic acid) on carrageenan-induced inflammatory pain model at the spinal level. Intrathecal infusion (60 min) of these drugs alone, in double, triple or quadruple combinations, was followed by a 60-min observation period. During the infusion, antihyperalgesic effect of 0.3 microg/min endomorphin-1 was higher in the triple combinations than those in the double combinations. After cessation of drug administration, only the combination of 0.3 microg/min endomorphin-1, 1 microg/min agmatine, and 0.3 microg/min adenosine was more effective than the double combinations. In quadruple combinations, the antinociceptive effects of both 0.1 and 0.3 microg/min endomorphin-1 were significantly potentiated by the otherwise ineffective triple combination of adenosine, agmatine, and kynurenic acid. No side effects could be observed at these doses. These results demonstrate that triple and quadruple combinations of these endogenous ligands caused more effective antihyperalgesia compared with double combinations. Accordingly, the doses of these substances could be further reduced, thus, reinforcing the view that complex activation and/or inhibition of different systems can be sufficiently effective in blocking nociception without adverse effects. Because all of these drugs had effects on various receptors and systems, the possible types of these interactions were discussed.
Boger, Dale L.; Sato, Haruhiko; Lerner, Aaron E.; Hedrick, Michael P.; Fecik, Robert A.; Miyauchi, Hiroshi; Wilkie, Gordon D.; Austin, Bryce J.; Patricelli, Matthew P.; Cravatt, Benjamin F.
2000-01-01
The development of exceptionally potent inhibitors of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of oleamide (an endogenous sleep-inducing lipid), and anandamide (an endogenous ligand for cannabinoid receptors) is detailed. The inhibitors may serve as useful tools to clarify the role of endogenous oleamide and anandamide and may prove to be useful therapeutic agents for the treatment of sleep disorders or pain. The combination of several features—an optimal C12–C8 chain length, π-unsaturation introduction at the corresponding arachidonoyl Δ8,9/Δ11,12 and oleoyl Δ9,10 location, and an α-keto N4 oxazolopyridine with incorporation of a second weakly basic nitrogen provided FAAH inhibitors with Kis that drop below 200 pM and are 102–103 times more potent than the corresponding trifluoromethyl ketones. PMID:10805767
Acute psychosocial stress reduces pain modulation capabilities in healthy men.
Geva, Nirit; Pruessner, Jens; Defrin, Ruth
2014-11-01
Anecdotes on the ability of individuals to continue to function under stressful conditions despite injuries causing excruciating pain suggest that acute stress may induce analgesia. However, studies exploring the effect of acute experimental stress on pain perception show inconsistent results, possibly due to methodological differences. Our aim was to systematically study the effect of acute stress on pain perception using static and dynamic, state-of-the-art pain measurements. Participants were 29 healthy men who underwent the measurement of heat-pain threshold, heat-pain intolerance, temporal summation of pain, and conditioned pain modulation (CPM). Testing was conducted before and during exposure to the Montreal Imaging Stress Task (MIST), inducing acute psychosocial stress. Stress levels were evaluated using perceived ratings of stress and anxiety, autonomic variables, and salivary cortisol. The MIST induced a significant stress reaction. Although pain threshold and pain intolerance were unaffected by stress, an increase in temporal summation of pain and a decrease in CPM were observed. These changes were significantly more robust among individuals with stronger reaction to stress ("high responders"), with a significant correlation between the perception of stress and the performance in the pain measurements. We conclude that acute psychosocial stress seems not to affect the sensitivity to pain, however, it significantly reduces the ability to modulate pain in a dose-response manner. Considering the diverse effects of stress in this and other studies, it appears that the type of stress and the magnitude of its appraisal determine its interactions with the pain system. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Weiner, Debra K; Morone, Natalia E; Spallek, Heiko; Karp, Jordan F; Schneider, Michael; Washburn, Carol; Dziabiak, Michael P; Hennon, John G; Elnicki, D Michael
2014-06-01
The Institute of Medicine has highlighted the urgent need to close undergraduate and graduate educational gaps in treating pain. Chronic low back pain (CLBP) is one of the most common pain conditions, and older adults are particularly vulnerable to potential morbidities associated with misinformed treatment. An e-learning case-based interactive module was developed at the University of Pittsburgh Center of Excellence in Pain Education, one of 12 National Institutes of Health-designated centers, to teach students important principles for evaluating and managing CLBP in older adults. A team of six experts in education, information technology, pain management, and geriatrics developed the module. Teaching focused on common errors, interactivity, and expert modeling and feedback. The module mimicked a patient encounter using a standardized patient (the older adult with CLBP) and a pain expert (the patient provider). Twenty-eight medical students were not exposed to the module (Group 1) and 27 were exposed (Group 2). Their clinical skills in evaluating CLBP were assessed using an objective structured clinical examination (OSCE). Mean scores were 62.0 ± 8.6 for Group 1 and 79.5 ± 10.4 for Group 2 (P < .001). Using an OSCE pass-fail cutoff score of 60%, 17 of 28 Group 1 students (60.7%) and 26 of 27 Group 2 students (96.3%) passed. The CLBP OSCE was one of 10 OSCE stations in which students were tested at the end of a Combined Ambulatory Medicine and Pediatrics Clerkship. There were no between-group differences in performance on eight of the other nine OSCE stations. This module significantly improved medical student clinical skills in evaluating CLBP. Additional research is needed to ascertain the effect of e-learning modules on more-advanced learners and on improving the care of older adults with CLBP. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Weiner, Debra K.; Morone, Natalia E.; Spallek, Heiko; Karp, Jordan F.; Schneider, Michael; Washburn, Carol; Dziabiak, Michael P.; Hennon, John G.; Elnicki, D. Michael
2015-01-01
The Institute of Medicine has highlighted the urgent need to close undergraduate and graduate educational gaps in treating pain. Chronic low back pain (CLBP) is one of the most common pain conditions, and older adults are particularly vulnerable to potential morbidities associated with misinformed treatment. An e-learning case-based interactive module was developed at the University of Pittsburgh Center of Excellence in Pain Education, one of 12 National Institutes of Health–designated centers, to teach students important principles for evaluating and managing CLBP in older adults. A team of six experts in education, information technology, pain management, and geriatrics developed the module. Teaching focused on common errors, interactivity, and expert modeling and feedback. The module mimicked a patient encounter using a standardized patient (the older adult with CLBP) and a pain expert (the patient provider). Twenty-eight medical students were not exposed to the module (Group 1) and 27 were exposed (Group 2). Their clinical skills in evaluating CLBP were assessed using an objective structured clinical examination (OSCE). Mean scores were 62.0 ± 8.6 for Group 1 and 79.5 ± 10.4 for Group 2 (P < .001). Using an OSCE pass–fail cutoff score of 60%, 17 of 28 Group 1 students (60.7%) and 26 of 27 Group 2 students (96.3%) passed. The CLBP OSCE was one of 10 OSCE stations in which students were tested at the end of a Combined Ambulatory Medicine and Pediatrics Clerkship. There were no between-group differences in performance on eight of the other nine OSCE stations. This module significantly improved medical student clinical skills in evaluating CLBP. Additional research is needed to ascertain the effect of e-learning modules on more-advanced learners and on improving the care of older adults with CLBP. PMID:24833496
Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan
2012-12-01
Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.
Development of allosteric modulators of GPCRs for treatment of CNS disorders
Nickols, Hilary Highfield; Conn, P. Jeffrey
2013-01-01
The discovery of allosteric modulators of G protein-coupled receptors (GPCRs) provides a promising new strategy with potential for developing novel treatments for a variety of central nervous system (CNS) disorders. Traditional drug discovery efforts targeting GPCRs have focused on developing ligands for orthosteric sites which bind endogenous ligands. Allosteric modulators target a site separate from the orthosteric site to modulate receptor function. These allosteric agents can either potentiate (positive allosteric modulator, PAM) or inhibit (negative allosteric modulator, NAM) the receptor response and often provide much greater subtype selectivity than do orthosteric ligands for the same receptors. Experimental evidence has revealed more nuanced pharmacological modes of action of allosteric modulators, with some PAMs showing allosteric agonism in combination with positive allosteric modulation in response to endogenous ligand (ago-potentiators) as well as “bitopic” ligands that interact with both the allosteric and orthosteric sites. Drugs targeting the allosteric site allow for increased drug selectivity and potentially decreased adverse side effects. Promising evidence has demonstrated potential utility of a number of allosteric modulators of GPCRs in multiple CNS disorders, including neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, as well as psychiatric or neurobehavioral diseases such as anxiety, schizophrenia, and addiction. PMID:24076101
Leaky gate model: intensity-dependent coding of pain and itch in the spinal cord
Sun, Shuohao; Xu, Qian; Guo, Changxiong; Guan, Yun; Liu, Qin; Dong, Xinzhong
2017-01-01
SUMMARY Coding of itch versus pain has been heatedly debated for decades. However, the current coding theories (labeled line, intensity and selectivity theory) cannot accommodate all experimental observations. Here we identified a subset of spinal interneurons, labeled by gastrin releasing peptide (Grp), that receive direct synaptic input from both pain and itch primary sensory neurons. When activated, these Grp+ neurons generated rarely-seen simultaneous robust pain and itch responses that were intensity-dependent. Accordingly, we propose a “leaky gate” model, in which Grp+ neurons transmit both itch and weak pain signals, however upon strong painful stimuli the recruitment of endogenous opioids works to close this gate, reducing overwhelming pain generated by parallel pathways. Consistent with our model, loss of these Grp+ neurons increased pain responses while itch was decreased. Our new model serves as an example of non-monotonic coding in the spinal cord and better explains observations in human psychophysical studies. PMID:28231466
Gibson, Stephen J; Farrell, Michael
2004-01-01
To better understand the nature of age differences in pain and nociception with the aging of the worlds' population. The evidence from numerous neurophysiologic and psychological studies suggest a small, but demonstrable age-related impairment in the early warning functions of pain. The increase in pain perception threshold and the widespread change in the structure and function of peripheral and CNS nociceptive pathways may place the older person at greater risk of injury. Moreover, the reduced efficacy of endogenous analgesic systems, a decreased tolerance of pain and the slower resolution of postinjury hyperalgesia may make it more difficult for the older adult to cope, once injury has occurred. These age-related changes may be best conceptualized as a reduced capacity in the functional reserve of the pain system, at both ends of the intensity spectrum. The clinical implications are obvious; older persons are likely to be especially vulnerable to the negative impacts of pain and pain associated events.
Mecs, Laszlo; Tuboly, Gabor; Nagy, Endre; Benedek, Gyorgy; Horvath, Gyongyi
2009-10-01
Several data suggest that both opioid and N-methyl-d-aspartate (NMDA) receptors are localized at the peripheral level, and drugs acting on these receptors may produce antinociception after topical administration; however, the antinociceptive effect of endogenous ligands at these receptors is poorly clarified. Our goal in this study was to determine the antinociceptive potency of the endogenous opioid peptide, endomorphin-1 (EM1), and the endogenous NMDA receptor antagonist, kynurenic acid (KYNA), and their interaction at the peripheral level in the rat inflamed joint model. Mechanical hypersensitivity was produced by injection of carrageenan (300 microg/20 microL) into the tibiotarsal joint of the right hind leg. The mechanical pain threshold was assessed by von Frey filaments (0.064-110 g). EM1 (30, 100, and 200 microg), KYNA (30, 100, 200, and 400 microg), and their combinations in a fixed-dose ratio (1:1) were injected into the inflamed joint, and the pain threshold was determined repeatedly for 75 min after the drug administrations. Neither EM1 nor KYNA administered to the inflamed joint influenced the pain threshold at the noninflamed side. Both ligands produced dose-dependent antihyperalgesia, and the highest doses caused a prolonged effect. EM1 had higher potency (30% effective dose [ED(30)] and 50% effective dose [ED(50)] values were 112 microg [confidence interval {CI}: 80-146] and 167 microg [CI: 135-220], respectively) compared with KYNA (ED(30) and ED(50) values were 204 microg [CI: 160-251] and 330 microg [CI: 280-407], respectively). The antinociceptive effect of EM1 was prevented by subcutaneous naltrexone pretreatment. The coadministration of EM1 with KYNA caused an enhanced and/or prolonged antinociceptive effect. The ED(30) and ED(50) values of the combination were 141 microg [CI: 83-182] and 231 microg [CI: 190-293], respectively, which did not differ significantly from the theoretically additive values (ED(30) and ED(50) values were 145 microg [CI: 68-237] and 220 microg [CI: 144-230], respectively), thus the interaction between these ligands is additive. None of the treatments caused any sign of side effects. Peripherally administered endogenous opioid agonist and NMDA receptor antagonist ligands might be beneficial in inflammatory pain. Because both drugs barely cross the blood-brain barrier, their local administration causes no central side effects.
Modulation of thermal pain-related brain activity with virtual reality: evidence from fMRI.
Hoffman, Hunter G; Richards, Todd L; Coda, Barbara; Bills, Aric R; Blough, David; Richards, Anne L; Sharar, Sam R
2004-06-07
This study investigated the neural correlates of virtual reality analgesia. Virtual reality significantly reduced subjective pain ratings (i.e. analgesia). Using fMRI, pain-related brain activity was measured for each participant during conditions of no virtual reality and during virtual reality (order randomized). As predicted, virtual reality significantly reduced pain-related brain activity in all five regions of interest; the anterior cingulate cortex, primary and secondary somatosensory cortex, insula, and thalamus (p<0.002, corrected). Results showed direct modulation of human brain pain responses by virtual reality distraction. Copyright 2004 Lippincott Williams and Wilkins
Hypergravity modulates behavioral nociceptive responses in rats
NASA Astrophysics Data System (ADS)
Kumei, Y.; Shimokawa, R.; Toda, K.; Kawauchi, Y.; Makita, K.; Terasawa, M.; Ohya, K.; Shimokawa, H.
Hypergravity (2G) exposure elevated the nociceptive threshold (pain suppression) concomitantly with evoked neuronal activity in the hypothalamus. Young Wistar male rats were exposed to 2G by centrifugal rotation for 10 min. Before and after 2G exposure, the nociceptive threshold was measured as the withdrawal reflex by using the von Frey type needle at a total of 8 sites of each rat (nose, four quarters, upper and lower back, tail), and then rats were sacrificed. Fos expression was examined immunohistochemically in the hypothalamic slices of the 2G-treated rats. When rats were exposed to 2G hypergravity, the nociceptive threshold was significantly elevated to approximately 150 to 250% of the 1G baseline control levels in all the examination sites. The 2G hypergravity remarkably induced Fos expression in the paraventricular and arcuate nuclei of the hypothalamus. The analgesic effects of 2G hypergravity were attenuated by naloxone pretreatment. Data indicate that hypergravity induces analgesic effects in rats, mediated through hypothalamic neuronal activity in the endogenous opioid system and hypothalamo-pituitary-adrenal axis.
Chiurchiù, Valerio; van der Stelt, Mario; Centonze, Diego; Maccarrone, Mauro
2018-01-01
Multiple sclerosis is the most common inflammatory demyelinating disease of the central nervous system, caused by an autoimmune response against myelin that eventually leads to progressive neurodegeneration and disability. Although the knowledge on its underlying neurobiological mechanisms has considerably improved, there is a still unmet need for new treatment options, especially for the progressive forms of the disease. Both preclinical and clinical data suggest that cannabinoids, derived from the Cannabis sativa plant, may be used to control symptoms such as spasticity and chronic pain, whereas only preclinical data indicate that these compounds and their endogenous counterparts, i.e. the endocannabinoids, may also exert neuroprotective effects and slow down disease progression. Here, we review the preclinical and clinical studies that could explain the therapeutic action of cannabinoid-based medicines, as well as the medical potential of modulating endocannabinoid signaling in multiple sclerosis, with a link to other neuroinflammatory disorders that share common hallmarks and pathogenetic features. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Multisteric TRPV1 nocisensor: a target for analgesics.
Szolcsányi, János; Sándor, Zoltán
2012-12-01
Cloning of the transient receptor potential vanilloid type 1 (TRPV1), the heat-gated cation channel/capsaicin receptor expressed by sensory neurons, has opened the door for development of new types of analgesics that selectively act on nociceptors. Here we summarize mutagenetic evidence for selective loss of responsiveness to vanilloids, protons, and heat stimuli to provide clues for avoiding on-target side effects of hyperthermia and burn risk. It is suggested that the complex chemoceptive thermosensor function of TRPV1 (which is modulated by depolarizing stimuli) can be attributed to multisteric gating functions. In this way, it forms the prototype of a new class of ion channels different from the canonical voltage-gated and ligand-gated ones. Several endogenous lipid ligands activate and inhibit TRPV1 and its gating initiates sensory transducer and mediator-releasing functions. Second generation TRPV1 antagonists that do not induce hyperthermia are under development, and a dermal capsaicin patch is already on the market for long-term treatment of neuropathic pain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb.
Izzo, Angelo A; Borrelli, Francesca; Capasso, Raffaele; Di Marzo, Vincenzo; Mechoulam, Raphael
2009-10-01
Delta(9)-tetrahydrocannabinol binds cannabinoid (CB(1) and CB(2)) receptors, which are activated by endogenous compounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain perception, and of cardiovascular, gastrointestinal and liver functions). The well-known psychotropic effects of Delta(9)-tetrahydrocannabinol, which are mediated by activation of brain CB(1) receptors, have greatly limited its clinical use. However, the plant Cannabis contains many cannabinoids with weak or no psychoactivity that, therapeutically, might be more promising than Delta(9)-tetrahydrocannabinol. Here, we provide an overview of the recent pharmacological advances, novel mechanisms of action, and potential therapeutic applications of such non-psychotropic plant-derived cannabinoids. Special emphasis is given to cannabidiol, the possible applications of which have recently emerged in inflammation, diabetes, cancer, affective and neurodegenerative diseases, and to Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity.
Bruno, Agostino; Lembo, Francesca; Novellino, Ettore; Stornaiuolo, Mariano; Marinelli, Luciana
2014-01-01
Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1orthosteric ligands. The assay is based on the use of T1117, a fluorescent analogue of AM251. We prove that T1117 binds endogenous and recombinant CB1 receptors with nanomolar affinity. Moreover, T1117 binding to CB1 is sensitive to the allosteric ligand ORG27569 and thus it is applicable to the discovery of new allosteric drugs. The herein presented assay constitutes a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators. PMID:24441508
Drug Management of Visceral Pain: Concepts from Basic Research
Davis, Mellar P.
2012-01-01
Visceral pain is experienced by 40% of the population, and 28% of cancer patients suffer from pain arising from intra- abdominal metastasis or from treatment. Neuroanatomy of visceral nociception and neurotransmitters, receptors, and ion channels that modulate visceral pain are qualitatively or quantitatively different from those that modulate somatic and neuropathic pain. Visceral pain should be recognized as distinct pain phenotype. TRPV1, Na 1.8, and ASIC3 ion channels and peripheral kappa opioid receptors are important mediators of visceral pain. Mu agonists, gabapentinoids, and GABAB agonists reduce pain by binding to central receptors and channels. Combinations of analgesics and adjuvants in animal models have supra-additive antinociception and should be considered in clinical trials. This paper will discuss the neuroanatomy, receptors, ion channels, and neurotransmitters important to visceral pain and provide a basic science rationale for analgesic trials and management. PMID:22619712
From pulses to pain relief: an update on the mechanisms of rTMS-induced analgesic effects.
Moisset, X; de Andrade, D C; Bouhassira, D
2016-05-01
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique that allows cortical stimulation. Recent studies have shown that rTMS of the primary motor cortex or dorsolateral prefrontal cortex decreases pain in various pain conditions. The aim of this review was to summarize the main characteristics of rTMS-induced analgesic effects and to analyse the current data on its mechanisms of action. Medline, PubMed and Web of Science were searched for studies on the analgesic effects and mechanisms of rTMS-induced analgesic effects. Studies on epidural motor cortex stimulation (EMCS) were also included when required, as several mechanisms of action are probably shared between both techniques. Stimulation site and stimulation parameters have a major impact on rTMS-related analgesic effects. Local cortical stimulation is able to elicit changes in the functioning of distant brain areas. These modifications outlast the duration of the rTMS session and probably involve LTP-like mechanisms via its influence on glutamatergic networks. Analgesic effects seem to be correlated to restoration of normal cortical excitability in chronic pain patients and depend on pain modulatory systems, in particular endogenous opioids. Dopamine, serotonin, norepinephrine and GABAergic circuitry may also be involved in its effects, as well as rostrocaudal projections. rTMS activates brain areas distant from the stimulation site. LTP-like mechanisms, dependence on endogenous opioids and increase in concentration of neurotransmitters (monoamines, GABA) have all been implicated in its analgesic effects, although more studies are needed to fill in the still existing gaps in the understanding of its mechanisms of action. © 2015 European Pain Federation - EFIC®
IB4(+) nociceptors mediate persistent muscle pain induced by GDNF.
Alvarez, Pedro; Chen, Xiaojie; Bogen, Oliver; Green, Paul G; Levine, Jon D
2012-11-01
Skeletal muscle is a well-known source of glial cell line-derived neurotrophic factor (GDNF), which can produce mechanical hyperalgesia. Since some neuromuscular diseases are associated with both increased release of GDNF and intense muscle pain, we explored the role of GDNF as an endogenous mediator in muscle pain. Intramuscularly injected GDNF induced a dose-dependent (0.1-10 ng/20 μl) persistent (up to 3 wk) mechanical hyperalgesia in the rat. Once hyperalgesia subsided, injection of prostaglandin E(2) at the site induced a prolonged mechanical hyperalgesia (>72 h) compared with naïve rats (<4 h; hyperalgesic priming). Selective neurotoxic destruction of IB4(+) nociceptors attenuated both GDNF hyperalgesia and hyperalgesic priming. Ergonomic muscular injury induced by eccentric exercise or mechanical vibration increased muscle GDNF levels at 24 h, a time point where rats also exhibited marked muscle hyperalgesia. Intrathecal antisense oligodeoxynucleotides to mRNA encoding GFRα1, the canonical binding receptor for GDNF, reversibly inhibited eccentric exercise- and mechanical vibration-induced muscle hyperalgesia. Finally, electrophysiological recordings from nociceptors innervating the gastrocnemius muscle in anesthetized rats, revealed significant increase in response to sustained mechanical stimulation after local GDNF injection. In conclusion, these data indicate that GDNF plays a role as an endogenous mediator in acute and induction of chronic muscle pain, an effect likely to be produced by GDNF action at GFRα1 receptors located in IB4(+) nociceptors.
High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity
Fitzgibbon, Marie; Finn, David P.
2016-01-01
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction. PMID:26342110
The impact of anthropometric parameters on the incidence of low back pain.
Celan, Dusan; Turk, Zmago
2005-06-01
Endogenic factors as one of possible reasons for low back pain were investigated and discussed in this study. The study included 122 male bus drivers, average age 44.2 years, average period of active service 24.4 years. The following anthropometric indexes have been calculated: Quetelet's index, percentage of body fat, relative body weight, Olivier's typologic index, Lorenz's constitution index and muscle index. According to inquiry form regarding history of low back pain the subjects were divided in two groups: 36 had no low back pain history and 76 had a history of recurrent low back pain. The results showed statistically nonsignificant differences in the anthropometric parameters and the calculated indexes between these two groups of subjects. The chosen subject sample showed that nutritional status, body build, constitution and muscular development are not associated with the incidence of low back pain.
Hopes for the Future of Pain Control.
Bannister, Kirsty; Kucharczyk, Mateusz; Dickenson, Anthony H
2017-12-01
Here we aim to present an accessible review of the pharmacological targets for pain management, and succinctly discuss the newest trends in pain therapy. A key task for current pain pharmacotherapy is the identification of receptors and channels orchestrating nociception. Notwithstanding peripheral alterations in the receptors and channels following pathophysiological events, the modulatory mechanisms in the central nervous system are also fundamental to the regulation of pain perception. Bridging preclinical and clinical studies of peripheral and central components of pain modulation, we present the different types of pain and relate these to pharmacological interventions. We firstly highlight the roles of several peripheral nociceptors, such as NGF, CGRP, sodium channels, and TRP-family channels that may become novel targets for therapies. In the central nervous system, the roles of calcium channels and gabapentinoids as well as NMDA receptors in generating excitability are covered including ideas on central sensitization. We then turn to central modulatory systems and discuss opioids and monoamines. We aim to explain the importance of central sensitization and the dialogue of the spinal circuits with the brain descending modulatory controls before discussing a mechanism-based effectiveness of antidepressants in pain therapy and their potential to modulate the descending controls. Emphasizing the roles of conditioned pain modulation and its animal's equivalent, diffuse noxious inhibitory controls, we discuss these unique descending modulations as a potential tool for understanding mechanisms in patients suffering from pain. Mechanism-based therapy is the key to picking the correct treatments and recent clinical studies using sensory symptoms of patients as surrogates for underlying mechanisms can be used to subgroup patients and reveal actions of drugs that may be lost when studying heterogenous groups of patients. Key advances in the understanding of basic pain principles will impact our thinking about therapy targets. The complexity of pain syndromes will require tailored pharmacological drugs, often in combination or through drugs with more than one action, and often psychotherapy, to fully control pain.
Modulation of pain by estrogens.
Craft, Rebecca M
2007-11-01
It has become increasingly apparent that women suffer a disproportionate amount of pain during their lifetime compared to men. Over the past 15 years, a growing number of studies have suggested a variety of causes for this sex difference, from cellular to psychosocial levels of analysis. From a biological perspective, sexual differentiation of pain appears to occur similarly to sexual differentiation of other phenomena: it results in large part from organizational and activational effects of gonadal steroid hormones. The focus of this review is the activational effects of a single group of ovarian hormones, the estrogens, on pain in humans and animals. The effects of estrogens (estradiol being the most commonly examined) on experimentally induced acute pain vs. clinical pain are summarized. For clinical pain, the review is limited to a few syndromes for which there is considerable evidence for estrogenic involvement: migraine, temporomandibular disorder (TMD) and arthritis. Because estrogens can modulate the function of the nervous, immune, skeletal, and cardiovascular systems, estrogenic modulation of pain is an exceedingly complex, multi-faceted phenomenon, with estrogens producing both pro- and antinociceptive effects that depend on the extent to which each of these systems of the body is involved in a particular type of pain. Forging a more complete understanding of the myriad ways that estrogens can ameliorate vs. facilitate pain will enable us to better prevent and treat pain in both women and men.
Optogenetic exploration and modulation of pain processing.
Xie, Yu-Feng; Wang, Jing; Bonin, Robert P
2018-08-01
Intractable pain is the single most common cause of disability, affecting more than 20% of the population world-wide. There is accordingly a global effort to decipher how changes in nociceptive processing in the peripheral and central nervous systems contribute to the onset and maintenance of chronic pain. The past several years have brought rapid progress in the adaptation of optogenetic approaches to study and manipulate the activity of sensory afferents and spinal cord neurons in freely behaving animals, and to investigate cortical processing and modulation of pain responses. This review discusses methodological advances that underlie this recent progress, and discusses practical considerations for the optogenetic modulation of nociceptive sensory processing. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Dissociable influences of opiates and expectations on pain
Atlas, Lauren Y.; Whittington, Robert A.; Lindquist, Martin A.; Wielgosz, Joe; Sonty, Nomita; Wager, Tor D.
2012-01-01
Placebo treatments and opiate drugs are thought to have common effects on the opioid system and pain-related brain processes. This has created excitement about the potential for expectations to modulate drug effects themselves. If drug effects differ as a function of belief, this would challenge the assumptions underlying the standard clinical trial. We conducted two studies to directly examine the relationship between expectations and opioid analgesia. We administered the opioid agonist remifentanil to human subjects during experimental thermal pain and manipulated participants’ knowledge of drug delivery using an open-hidden design. This allowed us to test drug effects, expectancy (knowledge) effects, and their interactions on pain reports and pain-related responses in the brain. Remifentanil and expectancy both reduced pain, but drug effects on pain reports and fMRI activity did not interact with expectancy. Regions associated with pain processing showed drug-induced modulation during both Open and Hidden conditions, with no differences in drug effects as a function of expectation. Instead, expectancy modulated activity in frontal cortex, with a separable time course from drug effects. These findings reveal that opiates and placebo treatments both influence clinically relevant outcomes and operate without mutual interference. PMID:22674280
Social context and perceived agency affects empathy for pain: an event-related fMRI investigation.
Akitsuki, Yuko; Decety, Jean
2009-08-15
Studying of the impact of social context on the perception of pain in others is important for understanding the role of intentionality in interpersonal sensitivity, empathy, and implicit moral reasoning. Here we used an event-related fMRI with pain and social context (i.e., the number of individuals in the stimuli) as the two factors to investigate how different social contexts and resulting perceived agency modulate the neural response to the perception of pain in others. Twenty-six healthy participants were scanned while presented with short dynamic visual stimuli depicting painful situations accidentally caused by or intentionally caused by another individual. The main effect of perception of pain was associated with signal increase in the aMCC, insula, somatosensory cortex, SMA and PAG. Importantly, perceiving the presence of another individual led to specific hemodynamic increase in regions involved in representing social interaction and emotion regulation including the temporoparietal junction, medial prefrontal cortex, inferior frontal gyrus, and orbitofrontal cortex. Furthermore, the functional connectivity pattern between the left amygdala and other brain areas was modulated by the perceived agency. Our study demonstrates that the social context in which pain occurs modulate the brain response to other's pain. This modulation may reflect successful adaptation to potential danger present in a social interaction. Our results contribute to a better understanding of the neural mechanisms underpinning implicit moral reasoning that concern actions that can harm other people.
Involvement of α2-adrenoceptors in inhibitory and facilitatory pain modulation processes.
Vo, L; Drummond, P D
2016-03-01
In healthy humans, high-frequency electrical stimulation (HFS) of the forearm not only produces hyperalgesia at the site of stimulation but also reduces sensitivity to pressure-pain on the ipsilateral side of the forehead. In addition, HFS augments the ipsilateral trigeminal nociceptive blink reflex and intensifies the ipsilateral component of conditioned pain modulation. The aim of this study was to determine whether α2-adrenoceptors mediate these ipsilateral nociceptive influences. The α2-adrenoceptor antagonist yohimbine was administered to 22 participants in a double-blind, placebo-controlled crossover study. In each session, thermal and mechanical sensitivity in the forearms and forehead was assessed before and after HFS. In addition, the combined effect of HFS and yohimbine on the nociceptive blink reflex and on conditioned pain modulation was explored. In this paradigm, the conditioning stimulus was cold pain in the ipsilateral or contralateral temple, and the test stimulus was electrically evoked pain in the forearm. Blood pressure and electrodermal activity increased for several hours after yohimbine administration, consistent with blockade of central α2-adrenoceptors. Yohimbine not only augmented the nociceptive blink reflex ipsilateral to HFS but also intensified the inhibitory influence of ipsilateral temple cooling on electrically evoked pain at the HFS-treated site in the forearm. Yohimbine had no consistent effect on primary or secondary hyperalgesia in the forearm or on pressure-pain in the ipsilateral forehead. These findings imply involvement of α2-adrenoceptors both in ipsilateral antinociceptive and pronociceptive pain modulation processes. However, a mechanism not involving α2-adrenoceptors appears to mediate analgesia in the ipsilateral forehead after HFS. © 2015 European Pain Federation - EFIC®
Kozlov, Andrey P.; Nizhnikov, Michael E.; Kramskaya, Tatiana. A.; Varlinskaya, Elena I.; Spear, Norman E.
2013-01-01
Numerous findings in adult and infant rats have shown that the endogenous opioid system is involved in control of ethanol consumption and its reinforcing effects. Opioid systems are also involved in reactivity to social isolation with several factors (age, duration, and type of isolation) affecting this modulation. The present study investigated the effects of a selective mu – opioid antagonist CTOP (0, 0.1, 0.5 mg/kg), ethanol (0, 0.5 g/kg), and the interaction of the two drugs on the behavioral consequences of two types of social isolation given to preweanling rats: 1) short–term social isolation from littermates (STSI, duration 8 minutes) and 2) relatively long-term (5 hours) isolation (LTSI) from the dam and littermates. Voluntary intake of saccharin, locomotion, rearing activity, paw licking, and grooming were assessed during an 8 – min. intake test. Thermal nociceptive reactivity was also measured before and after the testing session with normalized differences in pre- and post-test latencies of paw withdrawal from a hot plate (49 °C) used as an index of isolation-induced analgesia (IIA). The results indicate that pharmacological blockade of mu-opioid receptors by CTOP substantially attenuated ethanol’s anxiolytic effects on the developing rat’s reactions to social isolation. Some of these stress-attenuating effects of CTOP were observed only in animals exposed to short-term isolation (STSI) but not in pups isolated for 5 hours (LTSI). Ethanol selectively increased saccharin intake during STSI in females and CTOP blocked this effect. Ethanol decreased the magnitude of analgesia associated with STSI but had no effect on pain reactivity during LTSI. CTOP by itself did not affect IIA or saccharin intake in sober animals. The findings of the present experiments indicate that the anxiolytic effects of 0.5 g/kg ethanol on pups exposed to STSI are modulated by endogenous opioid activity. PMID:23182856
Intergroup relationships do not reduce racial bias in empathic neural responses to pain.
Contreras-Huerta, Luis Sebastian; Hielscher, Emily; Sherwell, Chase S; Rens, Natalie; Cunnington, Ross
2014-11-01
Perceiving the pain of others activates similar neural structures to those involved in the direct experience of pain, including sensory and affective-motivational areas. Empathic responses can be modulated by race, such that stronger neural activation is elicited by the perception of pain in people of the same race compared with another race. In the present study, we aimed to identify when racial bias occurs in the time course of neural empathic responses to pain. We also investigated whether group affiliation could modulate the race effect. Using the minimal group paradigm, we assigned participants to one of two mixed-race teams. We examined event-related potentials from participants when viewing members of their own and the other team receiving painful or non-painful touch. We identified a significant racial bias in early ERP components at N1 over frontal electrodes, where Painful stimuli elicited a greater negative shift relative to Non-Painful stimuli in response to own race faces only. A long latency empathic response was also found at P3, where there was significant differentiation between Painful and Non-Painful stimuli regardless of Race or Group. There was no evidence that empathy-related brain activity was modulated by minimal group manipulation. These results support a model of empathy for pain that consists of early, automatic bias towards own-race empathic responses and a later top-down cognitive evaluation that does not differentiate between races and may ultimately lead to unbiased behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.
Contextual modulation of pain sensitivity utilising virtual environments
Smith, Ashley; Carlow, Klancy; Biddulph, Tara; Murray, Brooke; Paton, Melissa; Harvie, Daniel S
2017-01-01
Background: Investigating psychological mechanisms that modulate pain, such as those that might be accessed by manipulation of context, is of great interest to researchers seeking to better understand and treat pain. The aim of this study was to better understand the interaction between pain sensitivity, and contexts with inherent emotional and social salience – by exploiting modern immersive virtual reality (VR) technology. Methods: A within-subjects, randomised, double-blinded, repeated measures (RM) design was used. In total, 25 healthy participants were exposed to neutral, pleasant, threatening, socially positive and socially negative contexts, using an Oculus Rift DK2. Pressure pain thresholds (PPTs) were recorded in each context, as well as prior to and following the procedure. We also investigated whether trait anxiety and pain catastrophisation interacted with the relationship between the different contexts and pain. Results: Pressure pain sensitivity was not modulated by context (p = 0.48). Anxiety and pain catastrophisation were not significantly associated with PPTs, nor did they interact with the relationship between context and PPTs. Conclusion: Contrary to our hypothesis, socially and emotionally salient contexts did not influence pain thresholds. In light of other research, we suggest that pain outcomes might only be tenable to manipulation by contextual cues if they specifically manipulate the meaning of the pain-eliciting stimulus, rather than manipulate psychological state generally – as per the current study. Future research might exploit immersive VR technology to better explore the link between noxious stimuli and contexts that directly alter its threat value. PMID:28491299
[The endogenous opioid system and drug addiction].
Maldonado, R
2010-01-01
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Learned control over spinal nociception in patients with chronic back pain.
Krafft, S; Göhmann, H-D; Sommer, J; Straube, A; Ruscheweyh, R
2017-10-01
Descending pain inhibition suppresses spinal nociception, reducing nociceptive input to the brain. It is modulated by cognitive and emotional processes. In subjects with chronic pain, it is impaired, possibly contributing to pain persistence. A previously developed feedback method trains subjects to activate their descending inhibition. Participants are trained to use cognitive-emotional strategies to reduce their spinal nociception, as quantified by the nociceptive flexor reflex (RIII reflex), under visual feedback about their RIII reflex size. The aim of the present study was to test whether also subjects with chronic back pain can achieve a modulation of their descending pain inhibition under RIII feedback. In total, 33 subjects with chronic back pain received either true (n = 18) or sham RIII feedback (n = 15), 15 healthy control subjects received true RIII feedback. All three groups achieved significant RIII suppression, largest in controls (to 76 ± 26% of baseline), intermediate in chronic back pain subjects receiving true feedback (to 82 ± 13%) and smallest in chronic back pain subjects receiving sham feedback (to 89 ± 14%, all p < 0.05). However, only chronic pain subjects receiving true feedback significantly improved their descending inhibition over the feedback training, quantified by the conditioned pain modulation effect (test pain reduction of baseline before training: to 98 ± 26%, after: to 80 ± 21%, p < 0.01). Our results show that subjects with chronic back pain can achieve a reduction of their spinal nociception and improve their descending pain inhibition under RIII feedback training. Subjects with chronic back pain can learn to control their spinal nociception, quantified by the RIII reflex, when they receive feedback about the RIII reflex. © 2017 European Pain Federation - EFIC®.
Reiner, Keren; Granot, Michal; Soffer, Eliran; Lipsitz, Joshua Dan
2016-04-01
Research shows that mindfulness meditation (MM) affects pain perception; however, studies have yet to measure patterns of change over time. We examined effects of MM on perception of experimental heat pain using multiple psychophysical indices, including pattern of change in response to tonic painful stimuli. We also tested the potential moderating role of baseline mindfulness. Forty participants were randomly assigned to a brief MM training or control group. We assessed: a) heat pain threshold (HPT), b) temperature which induces pain at a fixed, target intensity level, and c) response pattern over time to tonic heat pain. Compared to control group, the MM group showed increased HPT and more rapid attenuation of pain intensity for tonic pain stimuli. Moderation analyses indicated that baseline mindfulness moderated effects of MM on HPT. A brief MM intervention appears to affect perception of experimental pain both by increasing pain threshold and accelerating modulation of response. Findings may help elucidate mechanisms of MM for chronic pain. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hypnotic analgesia reduces brain responses to pain seen in others.
Braboszcz, Claire; Brandao-Farinelli, Edith; Vuilleumier, Patrik
2017-08-29
Brain responses to pain experienced by oneself or seen in other people show consistent overlap in the pain processing network, particularly anterior insula, supporting the view that pain empathy partly relies on neural processes engaged by self-nociception. However, it remains unresolved whether changes in one's own pain sensation may affect empathic responding to others' pain. Here we show that inducing analgesia through hypnosis leads to decreased responses to both self and vicarious experience of pain. Activations in the right anterior insula and amygdala were markedly reduced when participants received painful thermal stimuli following hypnotic analgesia on their own hand, but also when they viewed pictures of others' hand in pain. Functional connectivity analysis indicated that this hypnotic modulation of pain responses was associated with differential recruitment of right prefrontal regions implicated in selective attention and inhibitory control. Our results provide novel support to the view that self-nociception is involved during empathy for pain, and demonstrate the possibility to use hypnotic procedures to modulate higher-level emotional and social processes.
Management of Osteoarthritis with Avocado/Soybean Unsaponifiables
Christiansen, Blaine A.; Bhatti, Simrit; Goudarzi, Ramin
2015-01-01
Osteoarthritis (OA) is a painful and life-altering disease that severely limits the daily activities of millions of Americans, and it is one of the most common causes of disability in the world. With obesity on the rise and the world’s population living longer, the prevalence of OA is expected to increase dramatically in the coming decades, generating burdensome socioeconomic costs. This review summarizes current pharmaceutical, nonpharmaceutical, and prospective new treatments for OA, with primary focus on the dietary supplement avocado/soybean unsaponifiables (ASU). ASU modulates OA pathogenesis by inhibiting a number of molecules and pathways implicated in OA. Anticatabolic properties prevent cartilage degradation by inhibiting the release and activity of matrix metalloproteinases and increasing tissue inhibitors of these catabolic enzymes. ASU also inhibits fibrinolysis by stimulating the expression of plasminogen activator inhibitor. Anabolic properties promote cartilage repair by stimulating collagen and aggrecan synthesis via inhibition of inflammatory cytokines such as interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor, ERK, and prostaglandin E2. Chondroprotective effects are mediated by correcting growth factor abnormalities, increasing TGF-β, and decreasing vascular endothelial growth factor (VEGF) in synovial fluid. ASU also inhibits cholesterol absorption and endogenous cholesterol biosynthesis, which mediate reactive oxygen species pathology in chondrocytes. At the clinical level, ASU reduces pain and stiffness while improving joint function, resulting in decreased dependence on analgesics. PMID:25621100
FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network
Qin, Wei; Tian, Jie; Bai, Lijun; Pan, Xiaohong; Yang, Lin; Chen, Peng; Dai, Jianping; Ai, Lin; Zhao, Baixiao; Gong, Qiyong; Wang, Wei; von Deneen, Karen M; Liu, Yijun
2008-01-01
Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation. PMID:19014532
You, H-J; Lei, J; Niu, N; Yang, L; Fan, X-L; Tjølsen, A; Li, Q
2013-03-01
Recently, we hypothesized that supraspinal structures may have important functions in discriminating between noxious mechanically and heat mediated nociception through distinct functions: facilitation and inhibition. In this study, conducted in conscious rats, we explored the role of different thalamic nuclei: the mediodorsal (MD) nucleus, the central medial (CM) nucleus, the submedius (SM) nucleus, the ventralmedial (VM) nucleus and the ventral posterolateral (VPL) nucleus, in the descending control of secondary and contralateral mechanical hyperalgesia and heat hypoalgesia occurring in intramuscularly hypertonic (HT, 5.8%) saline-induced muscle nociception. We found that the MD nuclei participated in the descending facilitation of mechanical hyperalgesia, and that the VM nuclei were specifically involved in the descending inhibition of heat hypoalgesia. Neither descending facilitation nor descending inhibition was affected after electrolytic lesion of the thalamic CM, SM, and VPL nuclei. This descending facilitatory and inhibitory modulation of nociception was strengthened by glutamate, and weakened by GABA, microinjected into the thalamic MD and VM nuclei. It is suggested that (1) thalamic MD nucleus and VM nucleus form two distinct endogenous systems in the control of noxious mechanically and heat evoked responses, and (2) the strengthening of descending inhibition and the weakening of descending facilitation by means of up regulation and down regulation of appropriate receptor expression in the VM and MD nuclei may provide a new strategic policy in treating pathological pain. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W
2014-10-01
The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
Fichna, J; Sobczak, M; Mokrowiecka, A; Cygankiewicz, A I; Zakrzewski, P K; Cenac, N; Sałaga, M; Timmermans, J-P; Vergnolle, N; Małecka-Panas, E; Krajewska, W M; Storr, M
2014-11-01
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, defined by the presence of loose stools and abdominal pain. In search for a novel anti-IBS-D therapy, here we investigated the nociceptin receptor (NOP)-dependent effects in the GI tract. A novel potent and selective NOP agonist SCH 221510 was used in the study. The effect of NOP activation on mouse intestinal motility was characterized in vitro and in vivo, in physiological conditions and in animal models of hypermotility and diarrhea. Well-established mouse models of visceral pain were used to characterize the antinociceptive effect of the NOP activation. To provide additional evidence that the endogenous nociceptin system is a relevant target for IBS, NOP expression and nociceptin levels were quantified in serum and colonic biopsies from IBS-D patients. SCH 221510 produced a potent NOP-mediated inhibitory effect on mouse intestinal motility in vitro and in vivo in physiological conditions. The NOP agonist displayed an antidiarrheal and analgesic action after oral administration in animal models mimicking the symptoms of IBS-D. Studies on human samples revealed a strong decrease in endogenous nociceptin system expression in IBS-D patients compared with healthy controls. Collectively, mouse and human data suggest that the endogenous nociceptin system is involved in IBS-D and may become a target for anti-IBS-D treatments using potent and selective synthetic NOP agonists. © 2014 John Wiley & Sons Ltd.
Emerging targets and therapeutic approaches for the treatment of osteoarthritis pain.
Rahman, Wahida; Dickenson, Anthony H
2015-06-01
Osteoarthritis is a complex and often painful disease that is inadequately controlled with current analgesics. This review discusses emerging targets and therapeutic approaches that may lead to the development of better analgesics. Aberrant excitability in peripheral and central pain pathways drives osteoarthritis pain, reversing this via modulation of nerve growth factor, voltage-gated sodium channel, voltage-gated calcium channel and transient receptor potential vanilloid one activity, and increasing inhibitory mechanisms through modulation of cannabinoid and descending modulatory systems hold promise for osteoarthritis pain therapy. Somatosensory phenotyping of chronic pain patients, as a surrogate of putative pain generating mechanisms, may predict patient response to treatment. Identification of new targets will inform and guide future research, aiding the development of more effective analgesics. Future clinical trial designs should implement sensory phenotyping of patients, as an inclusion or stratification criterion, in order to establish an individualized, mechanism-based treatment of osteoarthritis pain.
Zeidan, F.; Grant, J.A.; Brown, C.A.; McHaffie, J.G.; Coghill, R.C.
2013-01-01
The cognitive modulation of pain is influenced by a number of factors ranging from attention, beliefs, conditioning, expectations, mood, and the regulation of emotional responses to noxious sensory events. Recently, mindfulness meditation has been found attenuate pain through some of these mechanisms including enhanced cognitive and emotional control, as well as altering the contextual evaluation of sensory events. This review discusses the brain mechanisms involved in mindfulness meditation-related pain relief across different meditative techniques, expertise and training levels, experimental procedures, and neuroimaging methodologies. Converging lines of neuroimaging evidence reveal that mindfulness meditation-related pain relief is associated with unique appraisal cognitive processes depending on expertise level and meditation tradition. Moreover, it is postulated that mindfulness meditation-related pain relief may share a common final pathway with other cognitive techniques in the modulation of pain. PMID:22487846
Ge, Hong-You; Vangsgaard, Steffen; Omland, Øyvind; Madeleine, Pascal; Arendt-Nielsen, Lars
2014-12-06
Musculoskeletal pain from the upper extremity and shoulder region is commonly reported by computer users. However, the functional status of central pain mechanisms, i.e., central sensitization and conditioned pain modulation (CPM), has not been investigated in this population. The aim was to evaluate sensitization and CPM in computer users with and without chronic musculoskeletal pain. Pressure pain threshold (PPT) mapping in the neck-shoulder (15 points) and the elbow (12 points) was assessed together with PPT measurement at mid-point in the tibialis anterior (TA) muscle among 47 computer users with chronic pain in the upper extremity and/or neck-shoulder pain (pain group) and 17 pain-free computer users (control group). Induced pain intensities and profiles over time were recorded using a 0-10 cm electronic visual analogue scale (VAS) in response to different levels of pressure stimuli on the forearm with a new technique of dynamic pressure algometry. The efficiency of CPM was assessed using cuff-induced pain as conditioning pain stimulus and PPT at TA as test stimulus. The demographics, job seniority and number of working hours/week using a computer were similar between groups. The PPTs measured at all 15 points in the neck-shoulder region were not significantly different between groups. There were no significant differences between groups neither in PPTs nor pain intensity induced by dynamic pressure algometry. No significant difference in PPT was observed in TA between groups. During CPM, a significant increase in PPT at TA was observed in both groups (P < 0.05) without significant differences between groups. For the chronic pain group, higher clinical pain intensity, lower PPT values from the neck-shoulder and higher pain intensity evoked by the roller were all correlated with less efficient descending pain modulation (P < 0.05). This suggests that the excitability of the central pain system is normal in a large group of computer users with low pain intensity chronic upper extremity and/or neck-shoulder pain and that increased excitability of the pain system cannot explain the reported pain. However, computer users with higher pain intensity and lower PPTs were found to have decreased efficiency in descending pain modulation.
Social hierarchy modulates neural responses of empathy for pain
Feng, Chunliang; Li, Zhihao; Feng, Xue; Wang, Lili; Tian, Tengxiang
2016-01-01
Recent evidence indicates that empathic responses to others’ pain are modulated by various situational and individual factors. However, few studies have examined how empathy and underlying brain functions are modulated by social hierarchies, which permeate human society with an enormous impact on social behavior and cognition. In this study, social hierarchies were established based on incidental skill in a perceptual task in which all participants were mediumly ranked. Afterwards, participants were scanned with functional magnetic resonance imaging while watching inferior-status or superior-status targets receiving painful or non-painful stimulation. The results revealed that painful stimulation applied to inferior-status targets induced higher activations in the anterior insula (AI) and anterior medial cingulate cortex (aMCC), whereas these empathic brain activations were significantly attenuated in response to superior-status targets’ pain. Further, this neural empathic bias to inferior-status targets was accompanied by stronger functional couplings of AI with brain regions important in emotional processing (i.e. thalamus) and cognitive control (i.e. middle frontal gyrus). Our findings indicate that emotional sharing with others’ pain is shaped by relative positions in a social hierarchy such that underlying empathic neural responses are biased toward inferior-status compared with superior-status individuals. PMID:26516169
Fernández-Carvajal, Asia; Fernández-Ballester, Gregorio; Devesa, Isabel; González-Ros, José Manuel; Ferrer-Montiel, Antonio
2011-01-01
One approach to develop successful pain therapies is the modulation of dysfunctional ion channels that contribute to the detection of thermal, mechanical and chemical painful stimuli. These ion channels, known as thermoTRPs, promote the sensitization and activation of primary sensory neurons known as nociceptors. Pharmacological blockade and genetic deletion of thermoTRP have validated these channels as therapeutic targets for pain intervention. Several thermoTRP modulators have progressed towards clinical development, although most failed because of the appearance of unpredicted side effects. Thus, there is yet a need to develop novel channel modulators with improved therapeutic index. Here, we review the current state-of-the art and illustrate new pharmacological paradigms based on TRPV1 that include: (i) the identification of activity-dependent modulators of this thermoTRP channel; (ii) the design of allosteric modulators that interfere with protein-protein interaction involved in the functional coupling of stimulus sensing and gate opening; and (iii) the development of compounds that abrogate the inflammation-mediated increase of receptor expression in the neuronal surface. These new sites of action represent novel strategies to modulate pathologically active TRPV1, while minimizing an effect on the TRPV1 subpopulation involved in physiological and protective roles, thus increasing their potential therapeutic use. PMID:24288041
Endogenous Klebsiella endophthalmitis associated with liver abscess: first case report from iran.
Dehghani, A R; Masjedi, A; Fazel, F; Ghanbari, H; Akhlaghi, M; Karbasi, N
2011-01-07
To report the first case of endogenous Klebsiella endophthalmitis associated with liver abscess in Iran. A 79-year-old man was referred to our hospital due to severe pain and visual loss in the left eye. On physical examination, conjunctival hyperemia, corneal edema, hypopyon and severe vitreous cellular reaction were identified in the left eye; however, yellowish conjunctival discoloration was more apparent in the right eye. Abdominal CT scan showed a right liver lobe abscess that was confirmed by sonographically guided percutaneous liver mass biopsy. Blood, vitreous and liver mass aspirate cultures revealed Klebsiella pneumoniae growth. The patient was thus diagnosed with endogenous Klebsiella endophthalmitis secondary to bacteremia associated with liver abscess. This report suggests that, rather than being confined to Taiwan, endogenous endophthalmitis secondary to a liver abscess due to K. pneumoniae may be a global problem. Therefore, physicians should be aware of the possibility of endophthalmitis whenever a patient with K. pneumoniae liver abscess complains of ocular symptoms.
Proteolysis controls endogenous substance P levels.
Mitchell, Andrew J; Lone, Anna Mari; Tinoco, Arthur D; Saghatelian, Alan
2013-01-01
Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP(1-9)-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels.
The multiplicity of spinal AA-5-HT anti-nociceptive action in a rat model of neuropathic pain.
Malek, Natalia; Kostrzewa, Magdalena; Makuch, Wioletta; Pajak, Agnieszka; Kucharczyk, Mateusz; Piscitelli, Fabiana; Przewlocka, Barbara; Di Marzo, Vincenzo; Starowicz, Katarzyna
2016-09-01
There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects. Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration. We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels. Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Torres-Reverón, Annelyn; Palermo, Karylane; Hernández-López, Anixa; Hernández, Siomara; Cruz, Myrella L.; Thompson, Kenira J.; Flores, Idhaliz; Appleyard, Caroline B.
2016-01-01
Studies have examined how endometriosis interacts with the nervous system, but little attention has been paid to opioidergic systems, which are relevant to pain signaling. We used the autotransplantation rat model of endometriosis and allowed to progress for 60 days. The brain was collected and examined for changes in endogenous opioid peptides, mu opioid receptors (MORs), and the N-methyl-d-aspartate subunit receptor (NR1) in the periaqueductal gray (PAG), since both of these receptors can regulate PAG activity. No changes in endogenous opioid peptides in met- and leu-enkephalin or β-endorphin levels were observed within the PAG. However, MOR immunoreactivity was significantly decreased in the ventral PAG in the endometriosis group. Endometriosis reduced by 20% the number of neuronal profiles expressing MOR and reduced by 40% the NR1 profiles. Our results suggest that endometriosis is associated with subtle variations in opioidergic and glutamatergic activity within the PAG, which may have implications for pain processing. PMID:27089914
Epiregulin and EGFR interactions are involved in pain processing
Martin, Loren J.; Smith, Shad B.; Khoutorsky, Arkady; Magnussen, Claire A.; Samoshkin, Alexander; Sorge, Robert E.; Cho, Chulmin; Yosefpour, Noosha; Sivaselvachandran, Sivaani; Tohyama, Sarasa; Cole, Tiffany; Khuong, Thang M.; Mir, Ellen; Gibson, Dustin G.; Wieskopf, Jeffrey S.; Sotocinal, Susana G.; Austin, Jean Sebastien; Meloto, Carolina B.; Gitt, Joseph H.; Sonenberg, Nahum; Greenspan, Joel D.; Fillingim, Roger B.; Slade, Gary D.; Knott, Charles; Dubner, Ronald; Nackley, Andrea G.; Ribeiro-da-Silva, Alfredo; Neely, G. Gregory; Maixner, William; Zaykin, Dmitri V.; Mogil, Jeffrey S.; Diatchenko, Luda
2017-01-01
The EGFR belongs to the well-studied ErbB family of receptor tyrosine kinases. EGFR is activated by numerous endogenous ligands that promote cellular growth, proliferation, and tissue regeneration. In the present study, we have demonstrated a role for EGFR and its natural ligand, epiregulin (EREG), in pain processing. We show that inhibition of EGFR with clinically available compounds strongly reduced nocifensive behavior in mouse models of inflammatory and chronic pain. EREG-mediated activation of EGFR enhanced nociception through a mechanism involving the PI3K/AKT/mTOR pathway and matrix metalloproteinase-9. Moreover, EREG application potentiated capsaicin-induced calcium influx in a subset of sensory neurons. Both the EGFR and EREG genes displayed a genetic association with the development of chronic pain in several clinical cohorts of temporomandibular disorder. Thus, EGFR and EREG may be suitable therapeutic targets for persistent pain conditions. PMID:28783046
NASA Astrophysics Data System (ADS)
Pagnoni, Giuseppe; Porro, Carlo A.
2014-09-01
Pain is a phenomenologically complex experience whose sensory and psychological dimensions are deeply intertwined. In their perspective article, Fabbro and Crescentini [1] review the physiological and neural mechanisms underlying nociception and its cognitive modulation within the broader concept of suffering, which includes psychological pain [2] in its culturally mediated and existentially nuanced forms. The tight link between affective and cognitive processes, on the one hand, and pain, on the other, is illustrated by examining in turn the placebo effect, empathy for other people's afflictions, clinical depression, and the role that mindfulness-based practices may play in alleviating suffering.
Peptidase modulation of airway effects of neuropeptides.
Lilly, C M; Drazen, J M; Shore, S A
1993-09-01
SP and NKA are potent endogenous bronchoconstrictors, whereas VIP is a potent endogenous bronchodilator. There is abundant evidence that these neuropeptides are released in the lung in a variety of conditions and that they have the capacity to modulate the bronchoactivity of the same stimuli that release them. On many occasions, their bronchoactive effects are masked by their degradation at or near the site of their release. However, when the microenvironment is modified to decrease their cleavage, they can express enhanced physiologic effects. Although it appears that the human asthmatic lung may be an environment in which the effects of neuropeptides can be amplified, the role of neuropeptides in the pathogenesis of airway obstruction remains speculative.
Zhao, Liting; Xiao, Ying; Weng, Rui-Xia; Liu, Xuelian; Zhang, Ping-An; Hu, Chuang-Ying; Yu, Shan P.; Xu, Guang-Yin
2017-01-01
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder characterized by chronic abdominal pain and alteration of bowel movements. The pathogenesis of visceral hypersensitivity in IBS patients remains largely unknown. Hydrogen sulfide (H2S) is reported to play an important role in development of visceral hyperalgesia. However, the role of H2S at spinal dorsal horn level remains elusive in visceral hypersensitivity. The aim of this study is designed to investigate how H2S takes part in visceral hypersensitivity of adult rats with neonatal colonic inflammation (NCI). Visceral hypersensitivity was induced by neonatal colonic injection of diluted acetic acid. Expression of an endogenous H2S synthesizing enzyme cystathionine β-synthetase (CBS) was determined by Western blot. Excitability and synaptic transmission of neurons in the substantia gelatinosa (SG) of spinal cord was recorded by patch clamping. Here, we showed that expression of CBS in the spinal dorsal horn was significantly upregulated in NCI rats. The frequency of glutamatergic synaptic activities in SG was markedly enhanced in NCI rats when compared with control rats. Application of NaHS increased the frequency of both spontaneous and miniature excitatory post-synaptic currents of SG neurons in control rats through a presynaptic mechanism. In contrast, application of AOAA, an inhibitor of CBS, dramatically suppressed the frequency of glutamatergic synaptic activities of SG neurons of NCI rats. Importantly, intrathecal injection of AOAA remarkably attenuated visceral hypersensitivity of NCI rats. These results suggest that H2S modulates pain signaling likely through a presynaptic mechanism in SG of spinal dorsal horn, thus providing a potential therapeutic strategy for treatment for chronic visceral pain in patients with IBS. PMID:29046639
Barbosa, Cindy; Xiao, Yucheng; Johnson, Andrew J.; Xie, Wenrui; Strong, Judith A.; Zhang, Jun-Ming; Cummins, Theodore R.
2017-01-01
Nav1.6 and Nav1.6 mediated resurgent currents have been implicated in several pain pathologies. However, our knowledge of how fast resurgent currents are modulated in neurons is limited. Our study explored the potential regulation of Nav1.6 mediated resurgent currents by isoforms of Fibroblast growth Factor Homologous factor 2 (FHF2) in an effort to address the gap in our knowledge. FHF2 isoforms colocalize with Nav1.6 in peripheral sensory neurons. Cell line studies suggest that these proteins differentially regulate inactivation. In particular, FHF2A mediates long-term inactivation, a mechanism proposed to compete with the open-channel blocker mechanism that mediates resurgent currents. On the other hand, FHF2B lacks the ability to mediate long-term inactivation and may delay inactivation favoring open-channel block. Based on these observations, we hypothesized that FHF2A limits resurgent currents, whereas, FHF2B enhances resurgent currents. Overall our results suggest that FHF2A negatively regulates fast resurgent current by enhancing long-term inactivation and delaying recovery. In contrast FHF2B positively regulated resurgent current and did not alter long-term inactivation. Chimeric constructs of FHF2A and Navβ4 (likely the endogenous open channel blocker in sensory neurons) exhibited differential effects on resurgent currents suggesting that specific regions within FHF2A and Navβ4 have important regulatory functions. Our data also indicate FHFAs and FHF2B isoform expression are differentially regulated in a radicular pain model and that associated neuronal hyperexcitability is substantially attenuated by a FHFA peptide. As such, these findings suggest that FHF2A and FHF2B regulate resurgent current in sensory neurons and may contribute to hyperexcitability associated with some pain pathologies. PMID:27999940
Wieseler-Frank, Julie; Jekich, Brian M; Mahoney, John H; Bland, Sondra T; Maier, Steven F; Watkins, Linda R
2007-07-01
Pain is enhanced in response to elevations of proinflammatory cytokines in spinal cerebrospinal fluid (CSF), following either intrathecal injection of these cytokines or intrathecal immune challenge with HIV-1 gp120 that induces cytokine release. Spinal cord glia have been assumed to be the source of endogenous proinflammatory cytokines that enhance pain. However, assuming that spinal cord glia are the sole source of CSF cytokines may be an underestimate, as the cellular composition of the meninges surrounding the spinal cord CSF space includes several cell types known to produce proinflammatory cytokines. The present experiments provide the first investigation of the immunocompetent nature of the spinal cord meninges. Here, we explore whether rat meninges are responsive to intrathecal gp120. These studies demonstrate that: (a) intrathecal gp120 upregulates meningeal gene expression of proinflammatory signals, including tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin 6 (IL-6), and inducible nitric oxide synthase (iNOS), and (b) intrathecal gp120 induces meningeal release of TNF-alpha, IL-1beta, and IL-6. In addition, stimulation of isolated meninges in vitro with gp120 induced the release of TNF-alpha and IL-1beta, indicating that the resident cells of the meninges are able to respond without immune cell recruitment. Taken together, these data document that the meninges are responsive to immunogenic stimuli in the CSF and that the meninges may be a source of immune products detected in CSF. The ability of the meninges to release to proinflammatory signals suggests a potential role in the modulation of pain.
Labus, Jennifer S; Dinov, Ivo D; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A; Joshi, Shantanu; Thompson, Paul M; Toga, Arthur W; Mayer, Emeran A
2014-01-01
Alterations in gray matter (GM) density/volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with differing chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at University of California, Los Angeles, Los Angeles, CA, USA, between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32±10 SD, 119 healthy controls [HCs], 30±10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between the group with IBS and the HC group. Relative to HCs, the IBS group had lower volumes in the bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found in the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for the Early Trauma Inventory global score, with the exception of the right amygdala and the left postcentral gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, in patients with IBS, the right cingulate gyrus and right thalamus were identified as being significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in patients with IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Li, Qin; Bartley, Aundrea F.
2017-01-01
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner. PMID:28053027
Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.
Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G
2017-11-01
γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.
Social touch modulates endogenous μ-opioid system activity in humans.
Nummenmaa, Lauri; Tuominen, Lauri; Dunbar, Robin; Hirvonen, Jussi; Manninen, Sandra; Arponen, Eveliina; Machin, Anna; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko
2016-09-01
In non-human primates, opioid-receptor blockade increases social grooming, and the endogenous opioid system has therefore been hypothesized to support maintenance of long-term relationships in humans as well. Here we tested whether social touch modulates opioidergic activation in humans using in vivo positron emission tomography (PET). Eighteen male participants underwent two PET scans with [11C]carfentanil, a ligand specific to μ-opioid receptors (MOR). During the social touch scan, the participants lay in the scanner while their partners caressed their bodies in a non-sexual fashion. In the baseline scan, participants lay alone in the scanner. Social touch triggered pleasurable sensations and increased MOR availability in the thalamus, striatum, and frontal, cingulate, and insular cortices. Modulation of activity of the opioid system by social touching might provide a neurochemical mechanism reinforcing social bonds between humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Malfliet, Anneleen; Leysen, Laurence; Pas, Roselien; Kuppens, Kevin; Nijs, Jo; Van Wilgen, Paul; Huysmans, Eva; Goudman, Lisa; Ickmans, Kelly
In the last decade, evidence regarding chronic pain has developed exponentially. Numerous studies show that many chronic pain populations show specific neuroplastic changes in the peripheral and central nervous system. These changes are reflected in clinical manifestations, like a generalized hypersensitivity of the somatosensory system. Besides a hypersensitivity of bottom-up nociceptive transmission, there is also evidence for top-down facilitation of pain due to malfunctioning of the endogenous descending nociceptive modulatory systems. These and other aspects of modern pain neuroscience are starting to be applied within daily clinical practice. However, currently the application of this knowledge is mostly limited to the general adult population with musculoskeletal problems, while evidence is getting stronger that also in other chronic pain populations these neuroplastic processes may contribute to the occurrence and persistence of the pain problem. Therefore, this masterclass article aims at giving an overview of the current modern pain neuroscience knowledge and its potential application in post-cancer, paediatric and sports-related pain problems. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.
Multi-spectral endogenous fluorescence imaging for bacterial differentiation
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.
2017-07-01
In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.
Expression of endogenous mouse APP modulates β-amyloid deposition in hAPP-transgenic mice.
Steffen, Johannes; Krohn, Markus; Schwitlick, Christina; Brüning, Thomas; Paarmann, Kristin; Pietrzik, Claus U; Biverstål, Henrik; Jansone, Baiba; Langer, Oliver; Pahnke, Jens
2017-06-20
Amyloid-β (Aβ) deposition is one of the hallmarks of the amyloid hypothesis in Alzheimer's disease (AD). Mouse models using APP-transgene overexpression to generate amyloid plaques have shown to model only certain parts of the disease. The extent to which the data from mice can be transferred to man remains controversial. Several studies have shown convincing treatment results in reducing Aβ and enhancing cognition in mice but failed totally in human. One model-dependent factor has so far been almost completely neglected: the endogenous expression of mouse APP and its effects on the transgenic models and the readout for therapeutic approaches.Here, we report that hAPP-transgenic models of amyloidosis devoid of endogenous mouse APP expression (mAPP-knockout / mAPPko) show increased amounts and higher speed of Aβ deposition than controls with mAPP. The number of senile plaques and the level of aggregated hAβ were elevated in mAPPko mice, while the deposition in cortical blood vessels was delayed, indicating an alteration in the general aggregation propensity of hAβ together with endogenous mAβ. Furthermore, the cellular response to Aβ deposition was modulated: mAPPko mice developed a pronounced and age-dependent astrogliosis, while microglial association to amyloid plaques was diminished. The expression of human and murine aggregation-prone proteins with differing amino acid sequences within the same mouse model might not only alter the extent of deposition but also modulate the route of pathogenesis, and thus, decisively influence the study outcome, especially in translational research.
Sakai, Daisuke; Dockery, Peter
2018-01-01
Painful intervertebral disc degeneration is mediated by inflammation that modulates glycosylation and induces hyperinnervation and sensory sensitization, which result in discogenic pain. Hyaluronic acid (HA) used as a therapeutic biomaterial can reduce inflammation and pain, but the effects of HA therapy on glycosylation and pain associated with disc degeneration have not been previously determined. We describe a novel rat model of pain induced by intervertebral disc injury, with validation of the pain phenotype by morphine treatment. Using this model, we assessed the efficacy of HA hydrogel for the alleviation of pain, demonstrating that it reduced nociceptive behavior, an effect associated with down-regulation of nociception markers and inhibition of hyperinnervation. Furthermore, HA hydrogel altered glycosylation and modulated key inflammatory and regulatory signaling pathways, resulting in attenuation of inflammation and regulation of matrix components. Our results suggest that HA hydrogel is a promising clinical candidate for the treatment of back pain caused by degenerated discs. PMID:29632893
Clinical presentation and manual therapy for upper quadrant musculoskeletal conditions
Isabel de-la-Llave-Rincón, Ana; Puentedura, Emilio J; Fernández-de-las-Peñas, César
2011-01-01
In recent years, increased knowledge of the pathogenesis of upper quadrant pain syndromes has translated to better management strategies. Recent studies have demonstrated evidence of peripheral and central sensitization mechanisms in different local pain syndromes of the upper quadrant such as idiopathic neck pain, lateral epicondylalgia, whiplash-associated disorders, shoulder impingement, and carpal tunnel syndrome. Therefore, a treatment-based classification approach where subjects receive matched interventions has been developed and, it has been found that these patients experience better outcomes than those receiving non-matched interventions. There is evidence suggesting that the cervical and thoracic spine is involved in upper quadrant pain. Spinal manipulation has been found to be effective for patients with elbow pain, neck pain, or cervicobrachial pain. Additionally, it is known that spinal manipulative therapy exerts neurophysiological effects that can activate pain modulation mechanisms. This paper exposes some manual therapies for upper quadrant pain syndromes, based on a nociceptive pain rationale for modulating central nervous system including trigger point therapy, dry needling, mobilization or manipulation, and cognitive pain approaches. PMID:23115473
Reward Circuitry Plasticity in Pain Perception and Modulation
DosSantos, Marcos F.; Moura, Brenda de Souza; DaSilva, Alexandre F.
2017-01-01
Although pain is a widely known phenomenon and an important clinical symptom that occurs in numerous diseases, its mechanisms are still barely understood. Owing to the scarce information concerning its pathophysiology, particularly what is involved in the transition from an acute state to a chronic condition, pain treatment is frequently unsatisfactory, therefore contributing to the amplification of the chronic pain burden. In fact, pain is an extremely complex experience that demands the recruitment of an intricate set of central nervous system components. This includes cortical and subcortical areas involved in interpretation of the general characteristics of noxious stimuli. It also comprises neural circuits that process the motivational-affective dimension of pain. Hence, the reward circuitry represents a vital element for pain experience and modulation. This review article focuses on the interpretation of the extensive data available connecting the major components of the reward circuitry to pain suffering, including the nucleus accumbens, ventral tegmental area, and the medial prefrontal cortex; with especial attention dedicated to the evaluation of neuroplastic changes affecting these structures found in chronic pain syndromes, such as migraine, trigeminal neuropathic pain, chronic back pain, and fibromyalgia. PMID:29209204
Endogenous Aspergillus endophthalmitis. Clinical features and treatment outcomes.
Weishaar, P D; Flynn, H W; Murray, T G; Davis, J L; Barr, C C; Gross, J G; Mein, C E; McLean, W C; Killian, J H
1998-01-01
This study evaluated the clinical features and treatment outcomes in patients with endogenous Aspergillus endophthalmitis. The study design was a multicenter retrospective chart review. Ten patients (12 eyes) with culture-proven endogenous Aspergillus endophthalmitis treated by 1 of the authors were studied. Intravitreous amphotericin B injection, pars plana vitrectomy, systemic amphotericin B therapy, and oral anti-fungal therapy were performed. Elimination of endogenous Aspergillus endophthalmitis and Snellen visual acuity, best corrected, were measured. All patients had a 1- to 3-day history of pain and marked loss of visual acuity in the involved eyes. Varying degrees of vitritis was present in all 12 eyes. In 8 of 12 eyes, a central macular chorioretinal inflammatory lesion was present. Four patients (six eyes) had associated pulmonary diseases and were receiving concurrent steroid therapy. One of these patients with chronic asthma also was abusing intravenous drugs. Overall, six patients (six eyes) had a history of intravenous drug abuse, whereas a seventh patient (one eye) was suspected of abusing intravenous drugs. Blood cultures and echocardiograms were negative for systemic aspergillosis. Management consisted of a pars plana vitrectomy in 10 of 12 eyes. Intravitreous amphotericin B was administered in 11 of 12 eyes. Systemic amphotericin B therapy was used in eight patients. One patient was treated with oral antifungal agents. In three eyes without central macular involvement, final visual acuities were 20/25 to 20/200. In eight eyes with initial central macular involvement, final visual acuities were 20/400 in three eyes and 5/200 or less in four eyes. Two painful eyes with marked inflammation, hypotony, and retinal detachment were enucleated. Endogenous Aspergillus endophthalmitis usually has an acute onset of intraocular inflammation and often has a characteristic chorioretinal lesion located in the macula. Although treatment with pars plana vitrectomy and intravitreous amphotericin B is capable of eliminating the ocular infection, the visual outcome generally is poor, especially when there is direct macular involvement.
Differential pain modulation in patients with peripheral neuropathic pain and fibromyalgia.
Gormsen, Lise; Bach, Flemming W; Rosenberg, Raben; Jensen, Troels S
2017-12-29
Background The definition of neuropathic pain has recently been changed by the International Association for the Study of Pain. This means that conditions such as fibromyalgia cannot, as sometimes discussed, be included in the neuropathic pain conditions. However, fibromyalgia and peripheral neuropathic pain share common clinical features such as spontaneous pain and hypersensitivity to external stimuli. Therefore, it is of interest to directly compare the conditions. Material and methods In this study we directly compared the pain modulation in neuropathic pain versus fibromyalgia by recording responses to a cold pressor test in 30 patients with peripheral neuropathic pain, 28 patients with fibromyalgia, and 26 pain-free age-and gender-matched healthy controls. Patients were asked to rate their spontaneous pain on a visual analog scale (VAS (0-100 mm) immediately before and immediately after the cold pressor test. Furthermore the duration (s) of extremity immersion in cold water was used as a measure of the pain tolerance threshold, and the perceived pain intensity at pain tolerance on the VAS was recorded on the extremity in the water after the cold pressor test. In addition, thermal (thermo tester) and mechanical stimuli (pressure algometer) were used to determine sensory detection, pain detection, and pain tolerance thresholds in different body parts. All sensory tests were done by the same examiner, in the same room, and with each subject in a supine position. The sequence of examinations was the following: (1) reaction time, (2) pressure thresholds, (3) thermal thresholds, and (4) cold pressor test. Reaction time was measured to ensure that psychomotoric inhibitions did not influence pain thresholds. Results Pain modulation induced by a cold pressor test reduced spontaneous pain by 40% on average in neuropathic pain patients, but increased spontaneous pain by 2.6% in fibromyalgia patients. This difference between fibromyalgia and neuropathic pain patients was significant (P < 0.002). Fibromyalgia patients withdrew their extremity from the cold water significantly earlier than neuropathic pain patients and healthy controls; however, they had a higher perceived pain intensity on the VAS than neuropathic pain patients and control subjects. Furthermore, neuropathic pain patients had a localized hypersensitivity to mechanical and thermal stimuli in the affected area of the body. In contrast, fibromyalgia patients displayed a general hypersensitivity to mechanical and thermal stimuli when the stimuli were rated by the VAS, and hypersensitivity to some of the sensory stimuli. Conclusions These findings are the first to suggest that a conditioning stimulus evoked by a cold pressor test reduced spontaneous ongoing pain in patients with peripheral neuropathic pain, but not in fibromyalgia patients when directly compared. The current study supports the notion that fibromyalgia and neuropathic pain are distinct pain conditions with separate sensory patterns and dysfunctions in pain-modulating networks. Fibromyalgia should therefore not, as sometimes discussed, be included in NP conditions. Implications On the basis of the findings, it is of interest to speculate on the underlying mechanisms. The results are consistent with the idea that peripheral neuropathic pain is primarily driven from damaged nerve endings in the periphery, while chronic fibromyalgia pain may be a central disorder with increased activity in pain-facilitating systems.
Antinociception by the anti-oxidized phospholipid antibody E06.
Mohammadi, Milad; Oehler, Beatrice; Kloka, Jan; Martin, Corinna; Brack, Alexander; Blum, Robert; Rittner, Heike L
2018-04-21
Reactive oxygen species (ROS) and their downstream molecules such as oxidized phospholipids (OxPL) and 4-hydroxynonenal (4-HNE) activate transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) ion channels in vivo and in vitro shaping thermal and mechanical hypersensitivity in inflammatory pain. E06/T15 is a monoclonal autoantibody against oxidized phosphatidylcholine (OxPC) used in diagnostics in arteriosclerosis. Recently, we provided evidence that E06 also ameliorates inflammatory pain. Here, we studied E06 for local treatment against hypersensitivity evoked by endogenous and exogenous TRPA1 and TRPV1 agonists. We utilized a combination of reflexive and complex behavioural pain measurements, live-cell calcium imaging, and OxPC-binding assays. Lipid peroxidation metabolite 4-HNE, hydrogen peroxide (H 2 O 2 ) as ROS source, allyl isothiocyanate (AITC) and capsaicin were used to activate respective receptors. All irritants induced thermal and mechanical hypersensitivity, spontaneous nocifensive and affective motivational behaviour, as well as calcium influx in HEK TRPA1 - or HEK TRPV1 -cells and dorsal root ganglion (DRG) neurons. E06 prevented prolonged mechanical hypersensitivity induced by all irritants except for H 2 O 2 . E06 did not alter immediate irritant-induced nocifensive or affective motivational behaviour. In vitro, E06 blocked only 4-HNE-induced calcium influx albeit 4-HNE did not bind to E06. After 1-3 h, all tested irritants elicited formation of OxPC in paw tissue. E06 ameliorates not only inflammatory pain but also prolonged hypersensitivity due to formation of OxPC. This supports the view that neutralizing certain OxPL as endogenous TRPA1/V1 activators may be valuable for pain therapy. This article is protected by copyright. All rights reserved.
A novel analgesic Isolated from a Traditional Chinese Medicine
Zhang, Yan; Wang, Chaoran; Wang, Lien; Parks, Gregory Scott; Zhang, Xiuli; Guo, Zhimou; Ke, Yanxiong; Li, Kang-Wu; Kim, Mi Kyeong; Vo, Benjamin; Borrelli, Emiliana; Ge, Guangbo; Yang, Ling; Wang, Zhiwei; Garcia-Fuster, M. Julia; Luo, Z. David; Liang, Xinmiao; Civelli, Olivier
2014-01-01
Summary Background Current pain management is limited, in particular, with regard to chronic pain. In an attempt to discover novel analgesics, we combined the approach developed to characterize traditional Chinese medicine (TCM), as part of the “herbalome” project, with the reverse pharmacology approach aimed at discovering new endogenous transmitters and hormones. Results In a plant used for centuries for its analgesic properties, we identify a compound, dehydrocorybulbine (DHCB) that is effective at alleviating thermally induced acute pain. We synthesize DHCB and show that it displays moderate dopamine receptor antagonist activities. By using selective pharmacological compounds and dopamine receptor knockout (KO) mice, we show that DHCB antinociceptive effect is primarily due to its interaction with D2 receptors, at least at low doses. We further show that DHCB is effective against inflammatory pain and injury-induced neuropathic pain and furthermore causes no antinociceptive tolerance. Conclusion Our study casts DHCB as a different type of analgesic compound and as a promising lead in pain management. PMID:24388848
Mariano, Timothy Y; Van't Wout, Mascha; Garnaat, Sarah L; Rasmussen, Steven A; Greenberg, Benjamin D
2016-04-01
Current chronic pain treatments target nociception rather than affective "suffering" and its associated functional and psychiatric comorbidities. The left dorsolateral prefrontal cortex (DLPFC) has been implicated in affective, cognitive, and attentional aspects of pain and is a primary target of neuromodulation for affective disorders. Transcranial direct current stimulation (tDCS) can non-invasively modulate cortical activity. The present study tests whether anodal tDCS targeting the left DLPFC will increase tolerability of acute painful stimuli vs cathodal tDCS. Forty tDCS-naive healthy volunteers received anodal and cathodal stimulation targeting the left DLPFC in two randomized and counterbalanced sessions. During stimulation, each participant performed cold pressor (CP) and breath holding (BH) tasks. We measured pain intensity with the Defense and Veterans Pain Rating Scale (DVPRS) before and after each task. Mixed ANOVA revealed no main effect of stimulation polarity for mean CP threshold, tolerance, or endurance, or mean BH time (allP > 0.27). However, DVPRS rise associated with CP was significantly smaller with anodal vs cathodal tDCS (P = 0.024). We further observed a significant tDCS polarity × stimulation order interaction (P = 0.042) on CP threshold, suggesting task sensitization. Although our results do not suggest that polarity of tDCS targeting the left DLPFC differentially modulates the tolerability of CP- and BH-related pain distress in healthy volunteers, there was a significant effect on DVPRS pain ratings. This contrasts with our previous findings that tDCS targeting the left dorsal anterior cingulate cortex showed a trend toward higher mean CP tolerance with cathodal vs anodal stimulation. The present results may suggest tDCS-related effects on nociception or DLPFC-mediated attention, or preferential modulation of the affective valence of pain as captured by the DVPRS. Sham-controlled clinical studies are needed. © 2015 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Verma, Sneha K.; Liu, Brent J.; Chun, Sophia; Gridley, Daila S.
2014-03-01
Many US combat personnel have sustained nervous tissue trauma during service, which often causes Neuropathic pain as a side effect and is difficult to manage. However in select patients, synapse lesioning can provide significant pain control. Our goal is to determine the effectiveness of using Proton Beam radiotherapy for treating spinal cord injury (SCI) related neuropathic pain as an alternative to invasive surgical lesioning. The project is a joint collaboration of USC, Spinal Cord Institute VA Healthcare System, Long Beach, and Loma Linda University. This is first system of its kind that supports integration and standardization of imaging informatics data in DICOM format; clinical evaluation forms outcomes data and treatment planning data from the Treatment planning station (TPS) utilized to administer the proton therapy in DICOM-RT format. It also supports evaluation of SCI subjects for recruitment into the clinical study, which includes the development, and integration of digital forms and tools for automatic evaluation and classification of SCI pain. Last year, we presented the concept for the patient recruitment module based on the principle of Bayesian decision theory. This year we are presenting the fully developed patient recruitment module and its integration to other modules. In addition, the DICOM module for integrating DICOM and DICOM-RT-ION data is also developed and integrated. This allows researchers to upload animal/patient study data into the system. The patient recruitment module has been tested using 25 retrospective patient data and DICOM data module is tested using 5 sets of animal data.
Tiwari, Vinod; Guan, Yun; Raja, Srinivasa N.
2014-01-01
During neuropathic pain, glial cells (mainly astrocytes and microglia) become activated and initiate a series of signaling cascades that modulate pain processing at both spinal and supraspinal levels. It has been generally accepted that glial cell activation contributes to neuropathic pain because glia release proinflammatory cytokines, chemokines, and factors such as calcitonin gene-related peptide, substance P, and glutamate, which are known to facilitate pain signaling. However, recent research has shown that activation of glia also leads to some beneficial outcomes. Glia release anti-inflammatory factors that protect against neurotoxicity and restore normal pain. Accordingly, use of glial inhibitors might compromise the protective functions of glia in addition to suppressing their detrimental effects. With a better understanding of how different conditions affect glial cell activation, we may be able to promote the protective function of glia and pave the way for future development of novel, safe, and effective treatments of neuropathic pain. PMID:24820245
Mindful Yoga Pilot Study Shows Modulation of Abnormal Pain Processing in Fibromyalgia Patients.
Carson, James W; Carson, Kimberly M; Jones, Kim D; Lancaster, Lindsay; Mist, Scott D
2016-01-01
Published findings from a randomized controlled trial have shown that Mindful Yoga training improves symptoms, functional deficits, and coping abilities in individuals with fibromyalgia and that these benefits are replicable and can be maintained 3 months post-treatment. The aim of this study was to collect pilot data in female fibromyalgia patients (n = 7) to determine if initial evidence indicates that Mindful Yoga also modulates the abnormal pain processing that characterizes fibromyalgia. Pre- and post-treatment data were obtained on quantitative sensory tests and measures of symptoms, functional deficits, and coping abilities. Separation test analyses indicated significant improvements in heat pain tolerance, pressure pain threshold, and heat pain after-sensations at post-treatment. Fibromyalgia symptoms and functional deficits also improved significantly, including physical tests of strength and balance, and pain coping strategies. These findings indicate that further investigation is warranted into the effect of Mindful Yoga on neurobiological pain processing.
Future directions for the management of pain in osteoarthritis
Sofat, Nidhi; Kuttapitiya, Anasuya
2014-01-01
Osteoarthritis (OA) is the predominant form of arthritis worldwide, resulting in a high degree of functional impairment and reduced quality of life owing to chronic pain. To date, there are no treatments that are known to modify disease progression of OA in the long term. Current treatments are largely based on the modulation of pain, including NSAIDs, opiates and, more recently, centrally acting pharmacotherapies to avert pain. This review will focus on the rationale for new avenues in pain modulation, including inhibition with anti-NGF antibodies and centrally acting analgesics. The authors also consider the potential for structure modification in cartilage/bone using growth factors and stem cell therapies. The possible mismatch between structural change and pain perception will also be discussed, introducing recent techniques that may assist in improved patient phenotyping of pain subsets in OA. Such developments could help further stratify subgroups and treatments for people with OA in future. PMID:25018771
Future directions for the management of pain in osteoarthritis.
Sofat, Nidhi; Kuttapitiya, Anasuya
2014-04-01
Osteoarthritis (OA) is the predominant form of arthritis worldwide, resulting in a high degree of functional impairment and reduced quality of life owing to chronic pain. To date, there are no treatments that are known to modify disease progression of OA in the long term. Current treatments are largely based on the modulation of pain, including NSAIDs, opiates and, more recently, centrally acting pharmacotherapies to avert pain. This review will focus on the rationale for new avenues in pain modulation, including inhibition with anti-NGF antibodies and centrally acting analgesics. The authors also consider the potential for structure modification in cartilage/bone using growth factors and stem cell therapies. The possible mismatch between structural change and pain perception will also be discussed, introducing recent techniques that may assist in improved patient phenotyping of pain subsets in OA. Such developments could help further stratify subgroups and treatments for people with OA in future.
Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J
2013-03-26
Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain tissues support emerging, exploitable commonalities between in vivo and in vitro preparations. We conclude that experimental manipulation of endogenous cholinergic tone could offer a novel opportunity to improve the use of cortical cultures for studies of network-level mechanisms in a manner that remains largely consistent with its functional role.
Suzan, Erica; Treister, Roi; Pud, Dorit; Haddad, May; Eisenberg, Elon
2015-01-01
Conditioned pain modulation (CPM) and offset analgesia (OA) are considered to represent paradigms of descending inhibitory pain modulation in humans. This study tested the effects of hydromorphone therapy on descending inhibitory pain modulation, as measured by changes from baseline in the magnitudes of CPM and OA. Prospective evaluation. Institute of Pain Medicine, Rambam Health Care Campus. Patients with chronic radicular pain. Thirty patients received 4 weeks of oral hydromorphone treatment at an individually titrated dose (mean ± standard deviation dose of 11.6 ± 4.8 mg/day). CPM and OA were assessed before and after hydromorphone treatment. CPM was assessed by subtracting the response to a painful phasic heat stimulus administered simultaneously with a conditioning cold pain stimulus, from the response to the same heat stimulus administered alone. The OA paradigm consisted of a three-temperature stimuli train (T1 = 49°C [5 seconds], T2 = 50°C [5 seconds], and T3 = 49°C [20 seconds]). The magnitude of OA was quantified by subtracting minimal pain scores obtained during T3 from the maximal pain scores obtained during T2. CPM scores changed from a baseline of 17.7 ± 20.6 to 21 ± 20.4 following treatment, and OA scores changed from 7.8 ± 20.5 to 9.7 ± 14.6. Wilcoxon signed rank test indicated that these changes were not significant (CPM: P = 0.22; OA: P = 0.44). McNemar test revealed that the percentage of patients who exhibited a change in the direction of CPM or OA in response to hydromorphone treatment was not significant (CPM: P = 0.37; OA: P = 0.48). These results suggest that the descending inhibitory pain modulation, as manifested in humans by CPM and OA, is unlikely to be mediated by hydromorphone therapy. Wiley Periodicals, Inc.
Endogenous opiates and behavior: 2007.
Bodnar, Richard J
2008-12-01
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Analgesic effect of clobazam in chronic low-back pain but not in experimentally induced pain.
Schliessbach, J; Vuilleumier, P H; Siegenthaler, A; Bütikofer, L; Limacher, A; Juni, P; Zeilhofer, H U; Arendt-Nielsen, L; Curatolo, M
2017-09-01
Chronic pain is frequently associated with hypersensitivity of the nervous system, and drugs that increase central inhibition are therefore a potentially effective treatment. Benzodiazepines are potent modulators of GABAergic neurotransmission and are known to exert antihyperalgesic effects in rodents, but translation into patients are lacking. This study investigates the effect of the benzodiazepine clobazam in chronic low-back pain in humans. The aim of this study is to explore the effect of GABA modulation on chronic low-back pain and on quantitative sensory tests. In this double-blind cross-over study, 49 patients with chronic low-back pain received a single oral dose of clobazam 20 mg or active placebo tolterodine 1 mg. Pain intensity on the 0-10 numeric rating scale and quantitative sensory tests were assessed during 2 h after drug intake. Pain intensity in the supine position was significantly reduced by clobazam compared to active placebo (60 min: 2.9 vs. 3.5, p = 0.008; 90 min: 2.7 vs. 3.3, p = 0.024; 120 min: 2.4 vs. 3.1, p = 0.005). Pain intensity in the sitting position was not significantly different between groups. No effects on quantitative sensory tests were observed. This study suggests that clobazam has an analgesic effect in patients with chronic low-back pain. Muscle relaxation or sedation may have contributed to the effect. Development of substances devoid of these side effects would offer the potential to further investigate the antihyperalgesic action of GABAergic compounds. Modulation of GABAergic pain-inhibitory pathways may be a potential future therapeutic target. © 2017 European Pain Federation - EFIC®.
Mehta, V; Snidvongs, S; Ghai, B; Langford, R; Wodehouse, T
2017-06-01
Quantitative sensory testing (QST) has been used to predict the outcome of epidural steroid injections in lumbosacral radicular pain and has the potential to be an important tool in the selection of appropriate treatment (such as epidural steroid injections vs surgery) for patients with chronic radicular pain. In addition, QST assists in identification of the pain pathways of peripheral and central sensitization in selected groups of patients. Twenty-three patients were given dorsal root ganglion (DRG) infiltration with local anaesthesia and steroid ('DRG block'), and those who demonstrated at least 50% pain relief were offered pulsed radiofrequency (PRF) to the DRG. Questionnaires and QST scores were measured before the DRG blocks and at 1 week and 3 months after their procedure. Those who received PRF also answered questionnaires and underwent QST measurements at 1 week and 3 months after their procedure. There was a significant increase in pressure pain threshold scores after DRG blocks. A reduced conditioned pain modulation response was seen before DRG, which increased after the procedure. Ten out of 23 patients underwent PRF to the DRG, and an increase in pressure pain threshold scores after PRF was observed. The conditioned pain modulation response was maintained in this group and increased after PRF. The study demonstrates that patients with unilateral radicular low back pain who receive dorsal root ganglion interventions show changes in pressure pain thresholds and conditioned pain modulation that are consistent with a 'normalization' of peripheral and central sensitization. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Decreased Pain Perception by Unconscious Emotional Pictures
Peláez, Irene; Martínez-Iñigo, David; Barjola, Paloma; Cardoso, Susana; Mercado, Francisco
2016-01-01
Pain perception arises from a complex interaction between a nociceptive stimulus and different emotional and cognitive factors, which appear to be mediated by both automatic and controlled systems. Previous evidence has shown that whereas conscious processing of unpleasant stimuli enhances pain perception, emotional influences on pain under unaware conditions are much less known. The aim of the present study was to investigate the modulation of pain perception by unconscious emotional pictures through an emotional masking paradigm. Two kinds of both somatosensory (painful and non-painful) and emotional stimulation (negative and neutral pictures) were employed. Fifty pain-free participants were asked to rate the perception of pain they were feeling in response to laser-induced somatosensory stimuli as faster as they can. Data from pain intensity and reaction times were measured. Statistical analyses revealed a significant effect for the interaction between pain and emotional stimulation, but surprisingly this relationship was opposite to expected. In particular, lower pain intensity scores and longer reaction times were found in response to negative images being strengthened this effect for painful stimulation. Present findings suggest a clear pain perception modulation by unconscious emotional contexts. Attentional capture mechanisms triggered by unaware negative stimulation could explain this phenomenon leading to a withdrawal of processing resources from pain. PMID:27818642
Decreased Pain Perception by Unconscious Emotional Pictures.
Peláez, Irene; Martínez-Iñigo, David; Barjola, Paloma; Cardoso, Susana; Mercado, Francisco
2016-01-01
Pain perception arises from a complex interaction between a nociceptive stimulus and different emotional and cognitive factors, which appear to be mediated by both automatic and controlled systems. Previous evidence has shown that whereas conscious processing of unpleasant stimuli enhances pain perception, emotional influences on pain under unaware conditions are much less known. The aim of the present study was to investigate the modulation of pain perception by unconscious emotional pictures through an emotional masking paradigm. Two kinds of both somatosensory (painful and non-painful) and emotional stimulation (negative and neutral pictures) were employed. Fifty pain-free participants were asked to rate the perception of pain they were feeling in response to laser-induced somatosensory stimuli as faster as they can. Data from pain intensity and reaction times were measured. Statistical analyses revealed a significant effect for the interaction between pain and emotional stimulation, but surprisingly this relationship was opposite to expected. In particular, lower pain intensity scores and longer reaction times were found in response to negative images being strengthened this effect for painful stimulation. Present findings suggest a clear pain perception modulation by unconscious emotional contexts. Attentional capture mechanisms triggered by unaware negative stimulation could explain this phenomenon leading to a withdrawal of processing resources from pain.
Social hierarchy modulates neural responses of empathy for pain.
Feng, Chunliang; Li, Zhihao; Feng, Xue; Wang, Lili; Tian, Tengxiang; Luo, Yue-Jia
2016-03-01
Recent evidence indicates that empathic responses to others' pain are modulated by various situational and individual factors. However, few studies have examined how empathy and underlying brain functions are modulated by social hierarchies, which permeate human society with an enormous impact on social behavior and cognition. In this study, social hierarchies were established based on incidental skill in a perceptual task in which all participants were mediumly ranked. Afterwards, participants were scanned with functional magnetic resonance imaging while watching inferior-status or superior-status targets receiving painful or non-painful stimulation. The results revealed that painful stimulation applied to inferior-status targets induced higher activations in the anterior insula (AI) and anterior medial cingulate cortex (aMCC), whereas these empathic brain activations were significantly attenuated in response to superior-status targets' pain. Further, this neural empathic bias to inferior-status targets was accompanied by stronger functional couplings of AI with brain regions important in emotional processing (i.e. thalamus) and cognitive control (i.e. middle frontal gyrus). Our findings indicate that emotional sharing with others' pain is shaped by relative positions in a social hierarchy such that underlying empathic neural responses are biased toward inferior-status compared with superior-status individuals. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Um, JungIn; Lee, Ji-Hyung; Jung, Da-Woon; Williams, Darren R
2018-04-01
Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.
Kennedy, Lisa M; Grishok, Alla
2014-05-01
Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning.
Kennedy, Lisa M.; Grishok, Alla
2014-01-01
Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning. PMID:24558261
2013-01-01
Background Several chronic pain populations have demonstrated decreased conditioned pain modulation (CPM). However there is still a need to investigate the stability of CPM paradigms before the measure can be recommended for implementation. The purpose of the present study was to assess whether shoulder pain intensity and gender influence CPM stability within and between sessions. Methods This study examined two different musculoskeletal pain models, clinical shoulder pain and an experimental model of shoulder pain induced with eccentric exercise in healthy participants. Patients in the clinical cohort (N = 134) were tested before surgery and reassessed 3 months post-surgery. The healthy cohort (N = 190) was examined before inducing pain at the shoulder, and 48 and 96 hours later. Results Our results provide evidence that 1) stability of inhibition is not related to changes in pain intensity, and 2) there are sex differences for CPM stability within and between days. Conclusions Fluctuation of pain intensity did not significantly influence CPM stability. Overall, the more stable situations for CPM were females from the clinical cohort and males from the healthy cohort. PMID:23758907
Ionotropic glutamate receptors contribute to pain transmission and chronic pain.
Zhuo, Min
2017-01-01
Investigation of the synaptic mechanisms for sensory transmission and modulation provide us with critical information about the transmission of painful sensation as well as the basic mechanisms of chronic pain. Recent studies consistently demonstrate that glutamatergic synapses not only play an important role in sensory transmission, including pain and itch transmission, but also contribute to nociceptive sensitization at different levels of the brain. Different subtypes of glutamate receptors play selective roles in synaptic transmission and long-term potentiation (LTP), as well as synaptic modulation. Understanding the contribution of each subtype of glutamate receptors, and related downstream signaling pathways may provide a new opportunity to design better medicine for the treatment of different forms of chronic pain. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'. Copyright © 2016 Elsevier Ltd. All rights reserved.
Influence of prior information on pain involves biased perceptual decision-making.
Wiech, Katja; Vandekerckhove, Joachim; Zaman, Jonas; Tuerlinckx, Francis; Vlaeyen, Johan W S; Tracey, Irene
2014-08-04
Prior information about features of a stimulus is a strong modulator of perception. For instance, the prospect of more intense pain leads to an increased perception of pain, whereas the expectation of analgesia reduces pain, as shown in placebo analgesia and expectancy modulations during drug administration. This influence is commonly assumed to be rooted in altered sensory processing and expectancy-related modulations in the spinal cord, are often taken as evidence for this notion. Contemporary models of perception, however, suggest that prior information can also modulate perception by biasing perceptual decision-making - the inferential process underlying perception in which prior information is used to interpret sensory information. In this type of bias, the information is already present in the system before the stimulus is observed. Computational models can distinguish between changes in sensory processing and altered decision-making as they result in different response times for incorrect choices in a perceptual decision-making task (Figure S1A,B). Using a drift-diffusion model, we investigated the influence of both processes in two independent experiments. The results of both experiments strongly suggest that these changes in pain perception are predominantly based on altered perceptual decision-making. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Moon, Ji-Young; Choi, Sheu-Ran; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Hoon-Seong; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern
2015-10-01
We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Jun; Chen, Jian-min; Song, Cao-You; Liu, Wen-Yan; Wang, Gen; Wang, Cheng-hai; Lin, Bao-Chen
2006-01-19
Our previous study has proven that hypothalamic paraventricular nucleus (PVN) played a role in the antinociception. The central bioactive substances involving in the PVN regulating antinociception were investigated in the rat. The results showed that electrical stimulation of the PVN increased the pain threshold, and L-glutamate sodium injection into the PVN elevated the pain threshold, but the PVN cauterization decreased the pain threshold; pain stimulation raised the arginine vasopressin (AVP), not oxytocin (OXT), leucine-enkephalin (L-Ek), beta-endorphin (beta-Ep) and DynorphinA1-13 (DynA1-13) concentrations in the PVN tissue using micropunch method, heightened AVP, L-Ek, beta-Ep and DynA1-13, not OXT concentrations in the PVN perfuse liquid, and reduced the number of AVP-, not OXT, L-Ek, beta-Ep and DynA1-13-immunoreactive neurons in the PVN especially in the posterior magnocellular part of the PVN using immunocytochemistry. There was a negative relationship between the PVN AVP concentration and the pain threshold; pain stimulation enhanced the AVP, not OXT mRNA expression in the PVN using in situ hybridization and RT-PCR; intraventricular injection of anti-AVP serum completely reversed L-glutamate sodium injection into the PVN-induced antinociception, and administration of naloxone - the opiate peptide antagonist, partly blocked this L-glutamate sodium effect, but anti-OXT serum pretreatment did not influence this L-glutamate sodium effect; L-glutamate sodium injection into the PVN-induced analgesia was inhibited by V2 receptor antagonist - d(CH2)5[D-Ile2, Ile4, Ala-NH2(9)]AVP, not V1 receptor antagonist - d(CH2)5Tyr(Me)AVP. The data suggested that the PVN was limited to the central AVP, not OXT, which was through V2, not V1 receptors influencing the endogenous opiate peptide system, to regulate antinociception.
Katz, N. K.; Ryals, J. M.; Wright, D. E.
2014-01-01
Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8-weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N6-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of painful diabetic neuropathy. Moreover, central and peripheral activation of A1R significantly improved mechanical sensitivity, warranting further investigation into this important antinociceptive pathway as a novel therapeutic option for the treatment of painful diabetic neuropathy. PMID:25451280
Current advances in orthodontic pain
Long, Hu; Wang, Yan; Jian, Fan; Liao, Li-Na; Yang, Xin; Lai, Wen-Li
2016-01-01
Orthodontic pain is an inflammatory pain that is initiated by orthodontic force-induced vascular occlusion followed by a cascade of inflammatory responses, including vascular changes, the recruitment of inflammatory and immune cells, and the release of neurogenic and pro-inflammatory mediators. Ultimately, endogenous analgesic mechanisms check the inflammatory response and the sensation of pain subsides. The orthodontic pain signal, once received by periodontal sensory endings, reaches the sensory cortex for pain perception through three-order neurons: the trigeminal neuron at the trigeminal ganglia, the trigeminal nucleus caudalis at the medulla oblongata and the ventroposterior nucleus at the thalamus. Many brain areas participate in the emotion, cognition and memory of orthodontic pain, including the insular cortex, amygdala, hippocampus, locus coeruleus and hypothalamus. A built-in analgesic neural pathway—periaqueductal grey and dorsal raphe—has an important role in alleviating orthodontic pain. Currently, several treatment modalities have been applied for the relief of orthodontic pain, including pharmacological, mechanical and behavioural approaches and low-level laser therapy. The effectiveness of nonsteroidal anti-inflammatory drugs for pain relief has been validated, but its effects on tooth movement are controversial. However, more studies are needed to verify the effectiveness of other modalities. Furthermore, gene therapy is a novel, viable and promising modality for alleviating orthodontic pain in the future. PMID:27341389
Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations
Hawasli, Ammar H.; Kim, DoHyun; Ledbetter, Noah M.; Dahiya, Sonika; Barbour, Dennis L.; Leuthardt, Eric C.
2016-01-01
Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain. PMID:27445767
Lie, Marie Udnesseter; Matre, Dagfinn; Hansson, Per; Stubhaug, Audun; Zwart, John-Anker; Nilsen, Kristian Bernhard
2017-01-01
Abstract Introduction: The interest in conditioned pain modulation (CPM) as a clinical tool for measuring endogenously induced analgesia is increasing. There is, however, large variation in the CPM methodology, hindering comparison of results across studies. Research comparing different CPM protocols is needed in order to obtain a standardized test paradigm. Objectives: The aim of the study was to assess whether a protocol with phasic heat stimuli as test-stimulus is preferable to a protocol with tonic heat stimulus as test-stimulus. Methods: In this experimental crossover study, we compared 2 CPM protocols with different test-stimulus; one with tonic test-stimulus (constant heat stimulus of 120-second duration) and one with phasic test-stimuli (3 heat stimulations of 5 seconds duration separated by 10 seconds). Conditioning stimulus was a 7°C water bath in parallel with the test-stimulus. Twenty-four healthy volunteers were assessed on 2 occasions with minimum 1 week apart. Differences in the magnitude and test–retest reliability of the CPM effect in the 2 protocols were investigated with repeated-measures analysis of variance and by relative and absolute reliability indices. Results: The protocol with tonic test-stimulus induced a significantly larger CPM effect compared to the protocol with phasic test-stimuli (P < 0.001). Fair and good relative reliability was found with the phasic and tonic test-stimuli, respectively. Absolute reliability indices showed large intraindividual variability from session to session in both protocols. Conclusion: The present study shows that a CPM protocol with a tonic test-stimulus is preferable to a protocol with phasic test-stimuli. However, we emphasize that one should be cautious to use the CPM effect as biomarker or in clinical decision making on an individual level due to large intraindividual variability. PMID:29392240
Nerandzic, Vladimir; Mrozkova, Petra; Adamek, Pavel; Spicarova, Diana; Nagy, Istvan; Palecek, Jiri
2018-06-01
Endocannabinoids play an important role in modulating spinal nociceptive signalling, crucial for the development of pain. The cannabinoid CB 1 receptor and the TRPV1 cation channel are both activated by the endocannabinoid anandamide, a product of biosynthesis from the endogenous lipid precursor N-arachidonoylphosphatidylethanolamine (20:4-NAPE). Here, we report CB 1 receptor- and TRPV1-mediated effects of 20:4-NAPE on spinal synaptic transmission in control and inflammatory conditions. Spontaneous (sEPSCs) and dorsal root stimulation-evoked (eEPSCs) excitatory postsynaptic currents from superficial dorsal horn neurons in rat spinal cord slices were assessed. Peripheral inflammation was induced by carrageenan. Anandamide concentration was assessed by mass spectrometry. Application of 20:4-NAPE increased anandamide concentration in vitro. 20:4-NAPE (20 μM) decreased sEPSCs frequency and eEPSCs amplitude in control and inflammatory conditions. The inhibitory effect of 20:4-NAPE was sensitive to CB 1 receptor antagonist PF514273 (0.2 μM) in both conditions, but to the TRPV1 antagonist SB366791 (10 μM) only after inflammation. After inflammation, 20:4-NAPE increased sEPSCs frequency in the presence of PF514273 and this increase was blocked by SB366791. While 20:4-NAPE treatment inhibited the excitatory synaptic transmission in both naive and inflammatory conditions, peripheral inflammation altered the underlying mechanisms. Our data indicate that 20:4-NAPE application induced mainly CB 1 receptor-mediated inhibitory effects in naive animals while TRPV1-mediated mechanisms were also involved after inflammation. Increasing anandamide levels for analgesic purposes by applying substrate for its local synthesis may be more effective than systemic anandamide application or inhibition of its degradation. This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc. © 2017 The British Pharmacological Society.
Mariano, Timothy Y.; Wout, Mascha van't; Garnaat, Sarah L.; Rasmussen, Steven A.; Greenberg, Benjamin D.
2016-01-01
Objective Current chronic pain treatments target nociception rather than affective “suffering” and its associated functional and psychiatric comorbidities. Left dorsolateral prefrontal cortex (DLPFC) has been implicated in affective, cognitive, and attentional aspects of pain and is a primary target of neuromodulation for affective disorders. Transcranial direct current stimulation (tDCS) can noninvasively modulate cortical activity. The present study tests if anodal tDCS targeting left DLPFC will increase tolerability of acute painful stimuli versus cathodal tDCS. Methods Forty tDCS-naive healthy volunteers received anodal and cathodal stimulation targeting left DLPFC in two randomized and counterbalanced sessions. During stimulation, each participant performed cold pressor (CP) and breath holding (BH) tasks. We measured pain intensity with the Defense and Veterans Pain Rating Scale (DVPRS) before and after each task. Results Mixed ANOVA revealed no main effect of stimulation polarity for mean CP threshold, tolerance, or endurance, or mean BH time (all p > 0.27). However, DVPRS rise associated with CP was significantly smaller with anodal versus cathodal tDCS (p = 0.024). We further observed a significant tDCS polarity × stimulation order interaction (p = 0.042) on CP threshold suggesting task sensitization. Conclusions Although our results do not suggest that polarity of tDCS targeting left DLPFC differentially modulates tolerability of CP- and BH-related pain distress in healthy volunteers, there was a significant effect on DVPRS pain ratings. This contrasts with our previous findings that tDCS targeting left dorsal anterior cingulate cortex showed a trend towards higher mean CP tolerance with cathodal versus anodal stimulation. The present results may suggest tDCS-related effects on nociception or DLPFC-mediated attention, or preferential modulation of the affective valence of pain as captured by DVPRS. Sham-controlled clinical studies are needed. PMID:26814276
Partner Loss in Monogamous Rodents: Modulation of Pain and Emotional Behavior in Male Prairie Voles.
Osako, Yoji; Nobuhara, Reiko; Arai, Young-Chang P; Tanaka, Kenjiro; Young, Larry J; Nishihara, Makoto; Mitsui, Shinichi; Yuri, Kazunari
2018-01-01
Pain is modulated by psychosocial factors, and social stress-induced hyperalgesia is a common clinical symptom in pain disorders. To provide a new animal model for studying social modulation of pain, we examined pain behaviors in monogamous prairie voles experiencing partner loss. After cohabitation with novel females, males (n = 79) were divided into two groups on the basis of preference test scores. Half of the males of each group were separated from their partner (loss group), whereas the other half remained paired (paired group). Thus, males from both groups experienced social isolation. Open field tests, plantar tests, and formalin tests were then conducted on males to assess anxiety and pain-related behaviors. Loss males showing partner preferences (n = 20) displayed a significant increase in anxiety-related behavior in the open-field test (central area/total distance: 13.65% [1.58%] for paired versus 6.45% [0.87%] for loss; p < .001), a low threshold of thermal stimulus in the plantar test (withdrawal latencies: 9.69 [0.98] seconds for paired versus 6.15 [0.75] seconds for loss; p = .037), and exacerbated pain behaviors in the formalin test (total number of lifts: 40.33 [4.46] for paired versus 54.42 [1.91] for loss; p = .042) as compared with paired males (n = 20). Thermal thresholds in the plantar test significantly correlated with anxiety-related behavior in the open-field test (r = 0.64). No such differences were observed in the males that did not display partner preferences (r = 0.15). Results indicate that social bonds and their disruption, but not social housing without bonding followed by isolation, modulate pain and emotion in male prairie voles. The prairie vole is a useful model for exploring the neural mechanisms by which social relationships contribute to pain and nociceptive processing in humans.
Biasiotta, A; Peddireddy, A; Wang, K; Romaniello, A; Frati, A; Svensson, P; Arendt-Nielsen, L
2007-10-01
To investigate the influence of conditioning cutaneous nociceptive inputs by a new "pinch" model on the jaw-stretch reflex and the exteroceptive suppression periods (ES1 and ES2) in jaw muscles. The jaw-stretch reflex was evoked with the use of a custom-made muscle stretcher and electrical stimuli were used to evoke an early and late exteroceptive suppression period (ES1 and ES2) in the jaw-closing muscles. Electromyographic (EMG) activity was recorded bilaterally from the masseter and temporalis muscles. These brainstem reflexes were recorded in 19 healthy men (28.8+/-1.1 years) during three different conditions: one painful clip applied to the earlobe; one painful clip applied to the nostril, and four painful clips applied simultaneously to the earlobe, nostril, eyebrow, and lower lip. Pain intensity induced by the application of the clips was scored continuously by the subjects on a 100mm visual analogue scale (VAS). The highest VAS pain scores were evoked by placement of four clips (79+/-0.5mm). There was no significant modulation of the jaw-stretch reflex (ANOVAs: P=0.929), the ES1 (P=0.298) or ES2 (P=0.082) in any of the three painful conditions. Intense and tonic cutaneous pain could be elicited by this new "pinch" pain model; however, there was no significant modulation on either excitatory or inhibitory brainstem reflex responses. The novel observation that high-intensity pinch stimuli applied to the craniofacial region fail to modulate two different brainstem reflexes is in contrast to other experimental pain studies documented facilitation of the jaw-stretch reflexes or inhibition of exteroceptive suppression periods. The clinical implication of the present findings is that only some craniofacial pain conditions could be expected to show perturbation of the brainstem reflex responses.
Gopalakrishnan, Raghavan; Burgess, Richard C; Malone, Donald A; Lempka, Scott F; Gale, John T; Floden, Darlene P; Baker, Kenneth B; Machado, Andre G
2018-06-01
Poststroke pain syndrome (PSPS) is an often intractable disorder characterized by hemiparesis associated with unrelenting chronic pain. Although traditional analgesics have largely failed, integrative approaches targeting affective-cognitive spheres have started to show promise. Recently, we demonstrated that deep brain stimulation (DBS) of the ventral striatal area significantly improved the affective sphere of pain in patients with PSPS. In the present study, we examined whether electrophysiological correlates of pain anticipation were modulated by DBS that could serve as signatures of treatment effects. We recorded event-related fields (ERFs) of pain anticipation using magnetoencephalography (MEG) in 10 patients with PSPS preoperatively and postoperatively in DBS OFF and ON states. Simple visual cues evoked anticipation as patients awaited a painful (PS) or nonpainful stimulus (NPS) to the nonaffected or affected extremity. Preoperatively, ERFs showed no difference between PS and NPS anticipation to the affected extremity, possibly due to loss of salience in a network saturated by pain experience. DBS significantly modulated the early N1, consistent with improvements in affective networks involving restoration of salience and discrimination capacity. Additionally, DBS suppressed the posterior P2 (aberrant anticipatory anxiety) while enhancing the anterior N1 (cognitive and emotional regulation) in responders. DBS-induced changes in ERFs could potentially serve as signatures for clinical outcomes. NEW & NOTEWORTHY We examined the electrophysiological correlates of pain affect in poststroke pain patients who underwent deep brain stimulation (DBS) targeting the ventral striatal area under a randomized, controlled trial. DBS significantly modulated early event-related components, particularly N1 and P2, measured with magnetoencephalography during a pain anticipatory task, compared with baseline and the DBS-OFF condition, pointing to possible mechanisms of action. DBS-induced changes in event-related fields could potentially serve as biomarkers for clinical outcomes.
Endogenous Auxin and Ethylene in Pellia (Bryophyta) 1
Thomas, Robert J.; Harrison, Marcia A.; Taylor, Jane; Kaufman, Peter B.
1983-01-01
The occurrence of endogenous indole-3-acetic acid and ethylene in bryophyte tissue was tentatively demonstrated using gas chromatography, high performance liquid chromatography, and double-standard isotope dilution techniques. Rapidly elongating stalks (or setae) of Pellia epiphylla (L.) Corda sporophytes contain approximately 2.5 to 2.9 micrograms per gram fresh weight of putative free IAA. Ethylene released by setae increases during growth from 0.027 to 0.035 nanoliter per seta per hour. Application of 5 microliters per liter ethylene inhibits auxin-stimulated elongation growth of this tissue, a result which suggests that both endogenously produced compounds act in tandem as natural growth modulators. Images Fig. 1 PMID:16663227
Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides.
Pannell, Maria; Labuz, Dominika; Celik, Melih Ö; Keye, Jacqueline; Batra, Arvind; Siegmund, Britta; Machelska, Halina
2016-10-07
During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10 5 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the fluorescently labeled M0, M1, and M2 cells ex vivo showed that they remained in the nerve and preserved their phenotype. Perineural transplantation of M2 macrophages resulted in opioid-mediated amelioration of neuropathy-induced mechanical hypersensitivity, while M1 macrophages did not exacerbate pain. Therefore, rather than focusing on macrophage-induced pain generation, promoting opioid-mediated M2 actions may be more relevant for pain control.
Up-regulation of neural indicators of empathic concern in an offender population.
Arbuckle, Nathan L; Shane, Matthew S
2017-08-01
Empathic concern has traditionally been conceived of as a spontaneous reaction to others experiencing pain or distress. As such, the potential role of more deliberate control over empathic responses has frequently been overlooked. The present fMRI study evaluated the role of such deliberate control in empathic concern by examining the extent to which a sample of offenders recruited through probation/parole could voluntarily modulate their neural activity to another person in pain. Offenders were asked to either passively view pictures of other people in painful or non-painful situations, or to actively modulate their level of concern for the person in pain. During passive viewing of painful versus non-painful pictures, offenders showed minimal neural activity in regions previously linked to empathy for pain (e.g., dorsal anterior cingulate cortex and bilateral insula). However, when instructed to try to increase their concern for the person in pain, offenders demonstrated significant increases within these regions. These findings are consistent with recent theories of empathy as motivational in nature, and suggest that limitations in empathic concern may include a motivational component.
Walsh, Sharon L; Unterwald, Ellen M; Izenwasser, Sari
2010-05-01
Opioid receptors are critical therapeutic targets for medications development relevant to the treatment of drug dependence and pain. With recent advances in molecular neurobiology, it has become evident that the functional activity of opioid receptors, as ligand-regulated protein complexes, is modulated by multifarious intracellular and extracellular events, that there is genetic variation in coding for receptors, and that the activity of endogenous opioid systems may underlie actions common to other addictive disorders. This supplemental issue of Drug and Alcohol Dependence, arising from an invited symposium at the 71st Annual Meeting of the College on Problems of Drug Dependence, provides a series of contemporary reviews focused on recent advances in opioid neuropharmacology. Each speaker provides herein an invited comprehensive review of the state of knowledge on a specific topic in opioid neuropharmacology. Evans and colleagues describe the multi-faceted control of the opioid G-protein coupled receptor as a dynamic "sensor" complex and identify novel targets for drug development. von Zastrow focuses on opioid receptor-mediated events regulated by endocytosis and membrane trafficking through the endocytic pathway and differential responses to opioid agonists. Blendy and colleague provide a review of human association studies on the functional relevance of the mu opioid receptor variant, A118G, and presents data from the A112G knock-in model, an analogous mouse variant to A118G. Finally, Maldonado and colleagues provide a broader systems review from genetic, pharmacologic and behavioral studies implicating the endogenous opioid systems as a substrate for the mediation of substance use disorders spanning pharmacological classes.
The role of the endocannabinoid system in the brain-gut axis
Sharkey, Keith A.; Wiley, John W.
2016-01-01
The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic–pituitary–adrenal pathways via actions in specific brain regions—notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders. PMID:27133395
The Role of the Endocannabinoid System in the Brain-Gut Axis.
Sharkey, Keith A; Wiley, John W
2016-08-01
The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders. Copyright © 2016. Published by Elsevier Inc.
Al Oweidi, Abdelkarim S; Klasen, Joachim; Al-Mustafa, Mahmoud M; Abu-Halaweh, Sami A; Al-Zaben, Khaled R; Massad, Islam M; Qudaisat, Ibrahim Y
2010-06-01
Recent studies suggest that preemptive analgesia may be effective in reducing postoperative pain. One physiologic explanation may be interference with the endogenous opioid response. We investigated whether long-lasting preoperative preemptive analgesia may have an effect on the hormonal stress response after total hip replacement. 42 patients scheduled for elective hip replacement for coxarthrosis were randomized to receive, on the day before the operation, either 5 ml*h(-1) ropivacaine 0.2% (study group, n = 21) or 5 ml*h(-1) saline (control group, n = 21). Postoperative analgesia was achieved in both groups by patient-controlled epidural analgesia (PCEA) with ropivacaine 0.2%. The main outcome measure was the concentration of authentic beta-endorphin [1-31] in plasma up to 4 days after surgery. Additional parameters included concentrations of adrenocorticotrope hormone and cortisol. Both groups were comparable concerning preoperative parameters and pain scores. Epidural blocks were sufficient in all patients for operative analgesia. Preemptive analgesia was performed for 11-20 hours in both groups and led to significantly decreased pain scores before surgery. Preemptive analgesia with epidural ropivacaine did not lead to decreased concentrations of beta-endorphin [1-31] before the start of surgery or in the postoperative period. Furthermore, no differences could be detected in the time course of beta-endorphin and adrenocorticotrope hormone after surgery. However, cortisol concentrations differed significantly between groups before the operation, but showed a comparable rise after surgery. Differences in postoperative pain after preemptive analgesia do not seem to be due to an altered endogenous opioid response.
Irido-lenticular abscess as the initial sign of Candida albicans endogenous endophthalmitis.
Braich, Puneet S; Chang, Jonathan S; Albini, Thomas A; Schefler, Amy C
2011-12-08
A-33-year-old man presented with 9 days of conjunctival erythema, pain, and worsening vision in the left eye. Anterior segment examination was significant for a well-defined, cream-colored iridociliary mass. Ultrasound biomicroscopy demonstrated an iris lesion with ciliary body and lenticular involvement. The authors performed a pars plana vitrectomy and lensectomy with an iris biopsy. Culture of the vitreous cassette and iris mass yielded a diagnosis of Candida albicans endophthalmitis. Clinicians encountering an iris nodule with lenticular involvement, even in an immunocompetent adult, are urged to consider a diagnosis of an endogenous endophthalmitis secondary to C. albicans. Copyright 2011, SLACK Incorporated.
Nonpharmaceutical approaches to pain management.
Corti, Lisa
2014-03-01
A nonpharmaceutical approach to managing pain is one that does not employ a medication. The use of such approaches, in conjunction with pharmaceuticals as part of multimodal methods to managing pain, is becoming more popular as evidence is emerging to support their use. Cold therapy, for one, is used to reduce the inflammation and tissue damage seen in acute injuries and can be very effective at reducing acute pain. Incorporating the use of superficial heat therapy when treating pain associated with chronic musculoskeletal conditions is often employed as heat increases blood flow, oxygen delivery, and tissue extensibility. Acupuncture is gaining acceptance in veterinary medicine. Research is confirming that release of endogenous endorphins and enkephalins from the application of needles at specific points around the body can effectively control acute and chronic pain. The use of 2 newer therapies-extracorporeal shockwave therapy and platelet-rich plasma-represent an attempt to eliminate the causes of pain at the tissue level by promoting tissue healing and regeneration. Reviewed in this article, these therapies are intended to be used in conjunction with pharmaceuticals as part of a multimodal approach to pain management. Copyright © 2014 Elsevier Inc. All rights reserved.
Endogenous Opiates and Behavior: 2015.
Bodnar, Richard J
2017-02-01
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Endogenous opiates and behavior: 2013.
Bodnar, Richard J
2014-12-01
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses. Copyright © 2014 Elsevier Inc. All rights reserved.
Endogenous opiates and behavior: 2004.
Bodnar, Richard J; Klein, Gad E
2005-12-01
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Goudet, Cyril; Chapuy, Eric; Alloui, Abdelkrim; Acher, Francine; Pin, Jean-Philippe; Eschalier, Alain
2008-07-01
Glutamate plays a key role in modulation of nociceptive processing. This excitatory amino acid exerts its action through two distinct types of receptors, ionotropic and metabotropic glutamate receptors (mGluRs). Eight mGluRs have been identified and divided in three groups based on their sequence similarity, pharmacology and G-protein coupling. While the role of group I and II mGluRs is now well established, little is known about the part played by group III mGluRs in pain. In this work, we studied comparatively the involvement of spinal group III mGluR in modulation of acute, inflammatory and neuropathic pain. While intrathecal injection of ACPT-I, a selective group III mGluR agonist, failed to induce any change in vocalization thresholds of healthy animals submitted to mechanical or thermal stimuli, it dose-dependently inhibited the nociceptive behavior of rats submitted to the formalin test and the mechanical hyperalgesia associated with different animal models of inflammatory (carrageenan-treated and monoarthritic rats) or neuropathic pain (mononeuropathic and vincristine-treated rats). Similar effects were also observed following intrathecal injection of PHCCC, a positive allosteric modulator of mGlu4. Antihyperalgesia induced by ACPT-I was blocked either by LY341495, a nonselective antagonist of mGluR, by MAP4, a selective group III antagonist. This study provide new evidences supporting the role of spinal group III mGluRs in the modulation of pain perception in different pathological pain states of various etiologies but not in normal conditions. It more particularly highlights the specific involvement of mGlu4 in this process and may be a useful therapeutic approach to chronic pain treatment.
The Emerging Role of Epigenetics in Stroke
Qureshi, Irfan A.; Mehler, Mark F.
2013-01-01
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain. PMID:21403016
Improved Learning Outcomes After Flipping a Therapeutics Module: Results of a Controlled Trial.
Lockman, Kashelle; Haines, Stuart T; McPherson, Mary Lynn
2017-12-01
To evaluate the impact on learning outcomes of flipping a pain management module in a doctor of pharmacy curriculum. In a required first-professional-year pharmacology and therapeutics course at the University of Maryland School of Pharmacy, the pain therapeutics content of the pain management module was flipped. This redesign transformed the module from a largely lecture-based, instructor-centered model to a learner-centered model that included a variety of preclass activities and in-class active learning exercises. In spring 2015, the module was taught using the traditional model; in spring 2016, it was taught using the flipped model. The same end-of-module objective structured clinical exam (OSCE) and multiple-choice exam were administered in 2015 to the traditional cohort (TC; n = 156) and in 2016 to the flipped cohort (FC; n = 162). Cohort performance was compared. Learning outcomes improved significantly in the FC: The mean OSCE score improved by 12.33/100 points (P < .0001; 95% CI 10.28-14.38; effect size 1.33), and performance on the multiple-choice exam's therapeutics content improved by 5.07 percentage points (P < .0001; 95% CI 2.56-7.59; effect size 0.45). Student performance on exam items assessing higher cognitive levels significantly improved under the flipped model. Grade distribution on both exams shifted, with significantly more FC students earning an A or B and significantly fewer earning a D or F compared with TC students. Student performance on knowledge- and skill-based assessments improved significantly after flipping the therapeutics content of a pain management module.
Hathway, G J; Koch, S; Low, L; Fitzgerald, M
2009-01-01
Brainstem–spinal cord connections play an essential role in adult pain processing, and the modulation of spinal pain network excitability by brainstem nuclei is known to contribute to hyperalgesia and chronic pain. Less well understood is the role of descending brainstem pathways in young animals when pain networks are more excitable and exposure to injury and stress can lead to permanent modulation of pain processing. Here we show that up to postnatal day 21 (P21) in the rat, the rostroventral medulla of the brainstem (RVM) exclusively facilitates spinal pain transmission but that after this age (P28 to adult), the influence of the RVM shifts to biphasic facilitation and inhibition. Graded electrical microstimulation of the RVM at different postnatal ages revealed a robust shift in the balance of descending control of both spinal nociceptive flexion reflex EMG activity and individual dorsal horn neuron firing properties, from excitation to inhibition, beginning after P21. The shift in polarity of descending control was also observed following excitotoxic lesions of the RVM in adult and P21 rats. In adults, RVM lesions decreased behavioural mechanical sensory reflex thresholds, whereas the same lesion in P21 rats increased thresholds. These data demonstrate, for the first time, the changing postnatal influence of the RVM in spinal nociception and highlight the central role of descending brainstem control in the maturation of pain processing. PMID:19403624
Proteolysis Controls Endogenous Substance P Levels
Mitchell, Andrew J.; Lone, Anna Mari; Tinoco, Arthur D.; Saghatelian, Alan
2013-01-01
Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP 1–9-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels. PMID:23894327
Current methodological approaches in conditioned pain modulation assessment in pediatrics
Hwang, Philippe S; Ma, My-Linh; Spiegelberg, Nora; Ferland, Catherine E
2017-01-01
Conditioned pain modulation (CPM) paradigms have been used in various studies with healthy and non-healthy adult populations in an attempt to elucidate the mechanisms of pain processing. However, only a few studies so far have applied CPM in pediatric populations. Studies finding associations with chronic pain conditions suggest that deficiencies in underlying descending pain pathways may play an important role in the development and persistence of pain early in life. Twelve studies were identified using a PubMed search which examine solely pediatric populations, and these are reviewed with regard to demographics studied, methodological approaches, and conclusions reached. This review aimed to provide both clinicians and researchers with a brief overview of the current state of research regarding the use of CPM in children and adolescents, both healthy and clinical patients. The implications of CPM in experimental and clinical settings and its potential to aid in refining considerations to individualize treatment of pediatric pain syndromes will be discussed. PMID:29263694
Wallen, Gwenyth R; Middleton, Kimberly R; Ames, Nancy; Brooks, Alyssa T; Handel, Daniel
2014-01-01
Sickle cell disease (SCD) is the most common genetic disease in African-Americans, characterized by recurrent painful vaso-occlusive crises. Medical therapies for controlling or preventing crises are limited because of efficacy and/or toxicity. This is a randomized, controlled, single-crossover protocol of hypnosis for managing pain in SCD patients. Participants receive hypnosis from a trained hypnosis therapist followed by six weeks of self-hypnosis using digital media. Those in the control arm receive SCD education followed by a six-week waiting period before crossing over to the hypnosis arm of the study. Outcome measures include assessments of pain (frequency, intensity and quality), anxiety, coping strategies, sleep, depression, and health care utilization. To date, there are no published randomized, controlled trials evaluating the efficacy of hypnosis on SCD pain modulation in adults. Self-hypnosis for pain management may be helpful in modulating chronic pain, improving sleep quality, and decreasing use of narcotics in patients with SCD. TRIAL REGISTRATION ClinicalTrials.gov: NCT00393250 PMID:25520557
HYPNOTIZABILITY AND PAIN MODULATION: A Body-Mind Perspective.
Varanini, Maurizio; Balocchi, Rita; Carli, Giancarlo; Paoletti, Giulia; Santarcangelo, Enrica L
2018-01-01
The study investigated whether the cardiac activity and cognitive-emotional traits sustained by the behavioral inhibition/activation system (BIS/BAS) may contribute to hypnotizability-related pain modulation. Nociceptive stimulation (cold-pressor test) was administered to healthy participants with high (highs) and low (lows) hypnotizability in the presence and absence of suggestions for analgesia. Results showed that heart rate increased abruptly at the beginning of nociceptive stimulation in all participants. Then, only in highs heart rate decreased for the entire duration of hand immersion. During stimulation with suggestions of analgesia, pain threshold negatively correlated with heart rate. BIS/BAS activity partially accounted for the observed hypnotizability-related differences in the relation between cardiac interoception and pain experience.
Experimental teeth clenching in man.
Christensen, L V
1989-01-01
The thesis develops an electromyographic (EMG) method to quantify maximum voluntary teeth clenching (MVC), studies the onset and endurance of jaw muscle fatigue and pain from MVC, and explores the prevention of the discomforts through pharmacological and physical means. MVC, or maximum voluntary static work efforts by the elevator muscles of the mandible, was quantified by continuous (integral) functions of variations in both time and recruitment/rate coding of motor units in the masseter muscle. Fatigue was felt in the masseter muscle after about 30 seconds of MVC; differential calculus suggested that the appearance and disappearance of fatigue was associated with primarily recruitment and decruitment of masseteric motor units, respectively. About 60 seconds of MVC elicited a mild pain in the masseter and temporalis muscles; about 120 seconds of MVC induced a moderate pain and complete exhaustion of the isometrically contracting muscles. Although pain releasing maximum static work efforts are stable variables they cannot predict the pain magnitude of brief and prolonged MVC, probably because of modulations (recruitment/decruitment/rate coding) of masseteric motor units. It is suggested that the modulations begin with the onset of fatigue, are practically complete with the onset of pain, and are absent or negligible with an experience of exhaustion. A single oral dose of 1000 mg of ibuprofen did not affect the onset, endurance, and magnitude of pain from MVC. By contrast, 30 minutes of cooling (ice) of the masseter muscle effectively prevented the onset of pain; it also increased the masseteric EMG, credibly because of modulations of myoelectrical signals and, possibly, increased MVC efforts in the absence of pain.
Cerebral somatic pain modulation during autogenic training in fMRI.
Naglatzki, R P; Schlamann, M; Gasser, T; Ladd, M E; Sure, U; Forsting, M; Gizewski, E R
2012-10-01
Functional magnetic resonance imaging (fMRI) studies are increasingly employed in different conscious states. Autogenic training (AT) is a common clinically used relaxation method. The purpose of this study was to investigate the cerebral modulation of pain activity patterns due to AT and to correlate the effects to the degree of experience with AT and strength of stimuli. Thirteen volunteers familiar with AT were studied with fMRI during painful electrical stimulation in a block design alternating between resting state and electrical stimulation, both without AT and while employing the same paradigm when utilizing their AT abilities. The subjective rating of painful stimulation and success in modulation during AT was assessed. During painful electrical stimulation without AT, fMRI revealed activation of midcingulate, right secondary sensory, right supplementary motor, and insular cortices, the right thalamus and left caudate nucleus. In contrast, utilizing AT only activation of left insular and supplementary motor cortices was revealed. The paired t-test revealed pain-related activation in the midcingulate, posterior cingulate and left anterior insular cortices for the condition without AT, and activation in the left ventrolateral prefrontal cortex under AT. Activation of the posterior cingulate cortex and thalamus correlated with the amplitude of electrical stimulation. This study revealed an effect on cerebral pain processing while performing AT. This might represent the cerebral correlate of different painful stimulus processing by subjects who are trained in performing relaxation techniques. However, due to the absence of a control group, further studies are needed to confirm this theory. © 2012 European Federation of International Association for the Study of Pain Chapters.
Pacinian Signals Determine the Direction and Magnitude of the Effect of Vibration on Pain.
Hollins, Mark; Corsi, Christopher; Sloan, Page
2017-08-01
Although the ability of vibration to reduce pain has been extensively documented, an occasional participant reports that vibration increases pain. For pain patients, such reports may reflect pathophysiology, but this is unlikely in studies of experimental pain in healthy participants. In the present series of experiments on 27 pain-free individuals, we manipulated both the frequency (12, 50, and 80 Hz) and amplitude of vibration to more fully characterize vibratory pain modulation. The noxious stimulus was pressure applied to a finger, and vibration was delivered to the fleshy palmar pad at the base of the same finger. Subjects continuously reported pain on a Visual Analog Scale. Intermittent vibration was used to minimize peripheral vibratory adaptation. Pain records at 12 and 50 Hz were similar; pooling them revealed significant hypoalgesia at the highest amplitude. At 80 Hz, in contrast, the middle amplitude produced hypoalgesia, but a significant shift toward hyperalgesia occurred at the highest amplitude. The strong correlation ( r = .81) between the Pacinian-weighted power of a vibration and the absolute value of the pain modulation it produces indicates that the Pacinian system plays a key role in vibratory hypoalgesia or hyperalgesia.
Cui, Fang; Zhu, Xiangru; Luo, Yuejia
2017-08-01
Two hypotheses have been proposed regarding the response that is triggered by observing others' pain: the "empathizing hypothesis" and the "threat value of pain hypothesis." The former suggests that observing others' pain triggers an empathic response. The latter suggests that it activates the threat-detection system. In the present study, participants were instructed to observe pictures that showed an anonymous hand or foot in a painful or non-painful situation in a threatening or friendly social context. Event-related potentials were recorded when the participants passively observed these pictures in different contexts. We observed an interaction between context and picture in the early automatic N1 component, in which the painful pictures elicited a larger amplitude than the non-painful pictures only in the threatening context and not in the friendly context. We also observed an interaction between context and picture in the late P3 component, in which the painful pictures elicited a larger amplitude than the non-painful pictures only in the friendly context and not in the threatening context. These results indicate that specific social contexts can modulate the neural responses to observing others' pain. The "empathic hypothesis" and "threat value of pain hypothesis" are not mutually exclusive and do not contradict each other but rather work in different temporal stages.
Prostaglandin reductase-3 negatively modulates adipogenesis through regulation of PPARγ activity[S
Yu, Yu-Hsiang; Chang, Yi-Cheng; Su, Tseng-Hsiung; Nong, Jiun-Yi; Li, Chao-Chin; Chuang, Lee-Ming
2013-01-01
Adipocyte differentiation is a multistep program under regulation by several factors. Peroxisome proliferator-activated receptor γ (PPARγ) serves as a master regulator of adipogenesis. However, the endogenous ligand for PPARγ remained elusive until 15-keto-PGE2 was identified recently as an endogenous PPARγ ligand. In this study, we demonstrate that zinc-containing alcohol dehydrogenase 2 (ZADH2; here termed prostaglandin reductase-3, PTGR-3) is a new member of prostaglandin reductase family that converts 15-keto-PGE2 to 13,14-dihydro-15-keto-PGE2. Adipogenesis is accelerated when endogenous PTGR-3 is silenced in 3T3-L1 preadipocytes, whereas forced expression of PTGR-3 significantly decreases adipogenesis. PTGR-3 expression decreased during adipocyte differentiation, accompanied by an increased level of 15-keto-PGE2. 15-keto-PGE2 exerts a potent proadipogenic effect by enhancing PPARγ activity, whereas overexpression of PTGR-3 in 3T3-L1 preadipocytes markedly suppressed the proadipogenic effect of 15-keto-PGE2 by repressing PPARγ activity. Taken together, these findings demonstrate for the first time that PTGR-3 is a novel 15-oxoprostaglandin-Δ13-reductase and plays a critical role in modulation of normal adipocyte differentiation via regulation of PPARγ activity. Thus, modulation of PTGR-3 might provide a novel avenue for treating obesity and related metabolic disorders. PMID:23821743
[Design of an educational tool for Primary Care patients with chronic non-specific low back pain].
Díaz-Cerrillo, Juan Luis; Rondón-Ramos, Antonio
2015-02-01
Current scientific evidence on the management of chronic non-specific low back pain highlights the benefits of physical exercise. This goal is frequently undermined due to lack of education of the subjects on the multifactorial, benign, and non-specific nature of low back pain, which can lead to a chronic disease with genuine psychosocial risk factors. Its influence may not only interfere with individual decision to adopt more adaptive coping behaviors, but also with the endogenous mechanisms of pain neuromodulation. Thus, the educational strategies and control of these factors have become important objectives to be incorporated into the management of the disorder and research guidelines. This paper presents the theoretical models and the scientific basis on which it has based the design of an educational tool for patients with chronic non-specific low back pain treated in Primary Care physiotherapy. Structure, content and objectives are also presented. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
Ecological aspects of pain in sensory modulation disorder.
Bar-Shalita, T; Deutsch, L; Honigman, L; Weissman-Fogel, I
2015-01-01
Sensory Modulation Disorder (SMD) interferes with the daily life participation of otherwise healthy individuals and is characterized by over-, under- or seeking responsiveness to naturally occurring sensory stimuli. Previous laboratory findings indicate pain hyper-sensitivity in SMD individuals suggesting CNS alteration in pain processing and modulation. However, laboratory studies lack ecological validity, and warrant clinical completion in order to elicit a sound understanding of the phenomenon studied. Thus, this study explored the association between sensory modulation and pain in a daily life context in a general population sample. Daily life context of pain and sensations were measured in 250 adults (aged 23-40 years; 49.6% males) using 4 self-report questionnaires: Pain Sensitivity Questionnaire (PSQ) and Pain Catastrophizing Scale (PCS) to evaluate the sensory and cognitive aspects of pain; the Sensory Responsiveness Questionnaire (SRQ) to appraise SMD; and the Short Form - 36 Health Survey, version 2 (SF36) to assess health related Quality of Life (QoL). Thirty two individuals (12.8%) were found with over-responsiveness type of SMD, forming the SOR-SMD group. While no group differences (SOR-SMD vs. Non-SMD) were found, low-to-moderate total sample correlations were demonstrated between the SRQ-Aversive sub-scale and i) PSQ total (r=0.31, p<0.01) and sub-scales scores (r=0.27-0.28, p<0.01), as well as ii) PCS total and the sub-scales of Rumination and Helplessness scores (r=0.15, p<0.05). PSQ total and sub-scale scores were more highly correlated with SRQ-Aversive in the SOR-SMD group (r=0.57-0.68, p=0.03-<0.01) compared to Non-SMD group. The Physical Health - Total score (but not the Mental Health - Total) of the SF36 was lower for the SOR-SMD group (p=0.03), mainly due to the difference in the Body pain sub-scale (p=0.04). Results suggest that SOR-SMD is strongly associated with the sensory aspect of pain but weakly associated with the cognitive aspect. This indicates that SMD co-occurs with daily pain sensitivity, thus reducing QoL, but less with the cognitive-catastrophizing manifestation of pain perception. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reis, Michel Silva; Durigan, João Luiz Quagliotti; Arena, Ross; Rossi, Bruno Rafael Orsini; Mendes, Renata Gonçalves; Borghi-Silva, Audrey
2014-01-01
Fibromyalgia (FM) has been associated with cardiac autonomic abnormalities and pain. Heart rate variability (HRV) is reduced in FM with autonomic tone dominated by sympathetic activity. The purpose of this study was to evaluate the effects of one session of a posteroanterior glide technique on both autonomic modulation and pain in woman with FM. This was a controlled trial with immediate followup; twenty premenopausal women were allocated into 2 groups: (i) women diagnosed with FM (n = 10) and (ii) healthy women (n = 10). Both groups received one session of Maitland mobilization grade III posteroanterior central pressure glide, at 2 Hz for 60 s at each vertebral segment. Autonomic modulation was assessed by HRV and pain by a numeric pain scale before and after the intervention. For HRV analyses, heart rate and RR intervals were recorded for 10 minutes. FM subjects demonstrated reduced HRV compared to controls. Although the mobilization technique did not significantly reduce pain, it was able to improve HRV quantified by an increase in rMSSD and SD1 indices, reflecting an improved autonomic profile through increased vagal activity. In conclusion, women with FM presented with impaired cardiac autonomic modulation. One session of Maitland spine mobilization was able to acutely improve HRV. PMID:24991436
Blöchl, Maria; Franz, Marcel; Miltner, Wolfgang H R; Weiss, Thomas
2015-04-07
Attention has been shown to affect the neural processing of pain. However, the exact mechanisms underlying this modulation remain unknown. Here, we used a new method called pain steady-state evoked potentials (PSSEPs) to investigate whether selective spatial attention affects EEG responses to tonic painful stimuli. In general, steady-state evoked potentials reflect changes in the EEG spectrum at a certain frequency that correspond to the frequency of a train of applied stimuli. In this study, high intensity transcutaneous electrical stimulation was delivered to both hands simultaneously with 31 Hz and 37 Hz, respectively. Subject׳s attention was directed to one of the two trains of stimulation in order to detect a small gap that was occasionally interspersed into the stimulus trains. Thereby, they had to ignore the stimulation applied to the other hand. Results show that PSSEPs were induced at 31 Hz and 37 Hz at frontal and central electrodes. PSSEPs occurred contralaterally to the respective hand stimulated with that frequency. Surprisingly, the magnitude of PSSEPs was not modulated by spatial attention towards one of the two stimuli. Our results indicate that attention can hardly be shifted between two simultaneously applied tonic painful stimulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Koyama, Suguru; Xia, Jimmy; Leblanc, Brian W; Gu, Jianwen Wendy; Saab, Carl Y
2018-05-08
Paresthesia, a common feature of epidural spinal cord stimulation (SCS) for pain management, presents a challenge to the double-blind study design. Although sub-paresthesia SCS has been shown to be effective in alleviating pain, empirical criteria for sub-paresthesia SCS have not been established and its basic mechanisms of action at supraspinal levels are unknown. We tested our hypothesis that sub-paresthesia SCS attenuates behavioral signs of neuropathic pain in a rat model, and modulates pain-related theta (4-8 Hz) power of the electroencephalogram (EEG), a previously validated correlate of spontaneous pain in rodent models. Results show that sub-paresthesia SCS attenuates thermal hyperalgesia and power amplitude in the 3-4 Hz range, consistent with clinical data showing significant yet modest analgesic effects of sub-paresthesia SCS in humans. Therefore, we present evidence for anti-nociceptive effects of sub-paresthesia SCS in a rat model of neuropathic pain and further validate EEG theta power as a reliable 'biosignature' of spontaneous pain.
Enhanced pain perception prior to smoking cessation is associated with early relapse.
Nakajima, Motohiro; al'Absi, Mustafa
2011-09-01
Accumulated evidence suggests that nicotine induces analgesia, and endogenous pain regulatory mechanisms may be altered by chronic smoking. The extent to which individual differences in pain perception are related to smokers' ability to abstain from smoking has not been directly examined. Seventy-one smokers who were interested in quitting completed a pre-cessation laboratory session which included the cold pressor test (CPT). Pain ratings were collected during and after CPT. Also, mood changes, cardiovascular measures, and salivary cortisol samples were evaluated prior to, during, and after CPT. Participants attended 4 weekly follow-up assessment sessions after their quit day. Cox regression analysis revealed that higher pain ratings during and after CPT predicted greater risk for smoking relapse. These results remained significant after affective and physiological responses to CPT were controlled, suggesting that pain ratings prior to smoking cessation are potentially useful in identifying smokers who are at greater risk of early smoking relapse and may reflect underlying putative risk for nicotine dependence and relapse. Copyright © 2011 Elsevier B.V. All rights reserved.
Hartman, Nicholas D; Harper, Erin N; Leppert, Lauren M; Browning, Brittany M; Askew, Kim; Manthey, David E; Mahler, Simon A
We created and tested an educational intervention to support implementation of an institution wide QI project (the HEART Pathway) designed to improve care for patients with acute chest pain. Although online learning modules have been shown effective in imparting knowledge regarding QI projects, it is unknown whether these modules are effective across specialties and healthcare professions. Participants, including nurses, advanced practice clinicians, house staff and attending physicians (N = 486), were enrolled into an online, self-directed learning course exploring the key concepts of the HEART Pathway. The module was completed by 97% of enrollees (469/486) and 90% passed on the first attempt (422/469). Out of 469 learners, 323 completed the pretest, learning module and posttest in the correct order. Mean test scores across learners improved significantly from 74% to 89% from the pretest to the posttest. Following the intervention, the HEART Pathway was used for 88% of patients presenting to our institution with acute chest pain. Our data demonstrate that this online, self-directed learning module can improve knowledge of the HEART Pathway across specialties-paving the way for more efficient and informed care for acute chest pain patients.
Dissociable Neural Mechanisms Underlying the Modulation of Pain and Anxiety? An fMRI Pilot Study
Moseley, Graham Lorimer; Berna, Chantal; Ploner, Markus; Tracey, Irene
2014-01-01
The down-regulation of pain through beliefs is commonly discussed as a form of emotion regulation. In line with this interpretation, the analgesic effect has been shown to co-occur with reduced anxiety and increased activity in the ventrolateral prefrontal cortex (VLPFC), which is a key region of emotion regulation. This link between pain and anxiety modulation raises the question whether the two effects are rooted in the same neural mechanism. In this pilot fMRI study, we compared the neural basis of the analgesic and anxiolytic effect of two types of threat modulation: a “behavioral control” paradigm, which involves the ability to terminate a noxious stimulus, and a “safety signaling” paradigm, which involves visual cues that signal the threat (or absence of threat) that a subsequent noxious stimulus might be of unusually high intensity. Analgesia was paralleled by VLPFC activity during behavioral control. Safety signaling engaged elements of the descending pain control system, including the rostral anterior cingulate cortex that showed increased functional connectivity with the periaqueductal gray and VLPFC. Anxiety reduction, in contrast, scaled with dorsolateral prefrontal cortex activation during behavioral control but had no distinct neural signature during safety signaling. Our pilot data therefore suggest that analgesic and anxiolytic effects are instantiated in distinguishable neural mechanisms and differ between distinct stress- and pain-modulatory approaches, supporting the recent notion of multiple pathways subserving top-down modulation of the pain experience. Additional studies in larger cohorts are needed to follow up on these preliminary findings. PMID:25502237
Long-Term Modulation of Electrical Synapses in the Mammalian Thalamus
NASA Astrophysics Data System (ADS)
Landisman, Carole E.; Connors, Barry W.
2005-12-01
Electrical synapses are common between inhibitory neurons in the mammalian thalamus and neocortex. Synaptic modulation, which allows flexibility of communication between neurons, has been studied extensively at chemical synapses, but modulation of electrical synapses in the mammalian brain has barely been examined. We found that the activation of metabotropic glutamate receptors, via endogenous neurotransmitter or by agonist, causes long-term reduction of electrical synapse strength between the inhibitory neurons of the rat thalamic reticular nucleus.
Jung, Eun Sung; Park, Hye Min; Hyun, Seung Min; Shon, Jong Cheol; Singh, Digar; Liu, Kwang-Hyeon; Whon, Tae Woong; Bae, Jin-Woo; Hwang, Jae Sung; Lee, Choong Hwan
2017-01-01
The attenuating effects of green tea supplements (GTS) against the ultraviolet (UV) radiation induced skin damages are distinguished. However, the concomitant effects of GTS on the large intestinal microbiomes and associated metabolomes are largely unclear. Herein, we performed an integrated microbiome-metabolome analysis to uncover the esoteric links between gut microbiome and exo/endogenous metabolome maneuvered in the large intestine of UVB-exposed mice subjected to dietary GTS. In UVB-exposed mice groups (UVB), class Bacilli and order Bifidobacteriales were observed as discriminant taxa with decreased lysophospholipid levels compared to the unexposed mice groups subjected to normal diet (NOR). Conversely, in GTS fed UVB-exposed mice (U+GTS), the gut-microbiome diversity was greatly enhanced with enrichment in the classes, Clostridia and Erysipelotrichia, as well as genera, Allobaculum and Lachnoclostridium. Additionally, the gut endogenous metabolomes changed with an increase in amino acids, fatty acids, lipids, and bile acids contents coupled with a decrease in nucleobases and carbohydrate levels. The altered metabolomes exhibited high correlations with GTS enriched intestinal microflora. Intriguingly, the various conjugates of green tea catechins viz., sulfated, glucuronided, and methylated ones including their exogenous derivatives were detected from large intestinal contents and liver samples. Hence, we conjecture that the metabolic conversions for the molecular components in GTS strongly influenced the gut micro-environment in UVB-exposed mice groups, ergo modulate their gut-microbiome as well as exo/endogenous metabolomes.
Sekizawa, K; Tamaoki, J; Nadel, J A; Borson, D B
1987-10-01
To determine the role of endogenous enkephalinase (EC 3.4.24.11) in regulating peptide-induced contraction of airway smooth muscle, we studied the effect of the enkephalinase inhibitor, leucine-thiorphan (Leu-thiorphan), on responses of isolated ferret tracheal smooth muscle segments to substance P (SP) and to electrical field stimulation (EFS). Leu-thiorphan shifted the dose-response curve to SP to lower concentrations. Atropine or the SP antagonist [D-Pro2,D-Trp7,9]SP significantly inhibited SP-induced contractions in the presence of Leu-thiorphan. Leu-thiorphan increased the contractile responses to EFS dose dependently, an effect that was significantly inhibited by the SP antagonist [D-Pro2,D-Trp7,9]SP. SP, in a concentration that did not cause contraction, increased the contractile responses to EFS. This effect was augmented by Leu-thiorphan dose dependently and was not inhibited by hexamethonium or by phentolamine but was inhibited by atropine. Because contractile responses to acetylcholine were not significantly affected by SP or by Leu-thiorphan, the potentiating effects of SP were probably on presynaptic-postganglionic cholinergic neurotransmission. Captopril, bestatin, or leupeptin did not augment contractions, suggesting that enkephalinase was responsible for the effects. These results suggest that endogenous tachykinins modulate smooth muscle contraction and endogenous enkephalinase modulates contractions produced by endogenous or exogenous tachykinins and tachykinin-induced facilitation of cholinergic neurotransmission.
Triggering Descending Pain Inhibition by Observing Ourselves or a Loved-One in Pain.
Gougeon, Véronique; Gaumond, Isabelle; Goffaux, Philippe; Potvin, Stéphane; Marchand, Serge
2016-03-01
Recent studies demonstrate that empathy-evoked brain responses include the activation of brainstem structures responsible for triggering descending pain inhibition. Unfortunately, direct evidence linking empathy for pain and descending inhibitory controls (conditioned pain modulation) is lacking. This study, therefore, aimed to determine if the observation of ourselves or a loved-one in pain could activate descending pain inhibition without exposure to a noxious stimulation; which is otherwise required. Descending pain inhibition was triggered by immersing the right arm of participants (15 heterosexual couples; mean age±SE: 28.89±2.14) in a bath of cold water. The effects of empathy on descending pain inhibition were observed by immersing the right arm of participants in a bath of lukewarm water while having them watch a video of either themselves or their spouse during a previous nociceptive immersion. Immersion of the arm in a bath of lukewarm water without empathic (video) observation was also included as a control condition. A strong inhibitory response activated by the mere observation of the video of themselves or their spouse in pain without a nociceptive conditioning stimulus. Associative statistics also showed that strong pain catastrophizing responses while watching the video resulted in stronger pain inhibition. Moreover, high levels of empathy were associated with stronger pain inhibition, but only for women. This study showed that observing someone in pain triggers descending pain inhibition. Results also demonstrate how empathy and gender are affecting pain modulation mechanisms.
Holley, Amy Lewandowski; Wilson, Anna C.; Palermo, Tonya M.
2016-01-01
Strategies directed at the prevention of disabling pain have been suggested as a public health priority, making early identification of youth at risk for poor outcomes critical. At present limited information is available to predict which youth presenting with acute pain are at risk for persistence. The aims of this prospective longitudinal study were to identify biopsychosocial factors in the acute period that predict the transition to persistent pain in youth with new-onset musculoskeletal (MSK) pain complaints. Participants were 88 children and adolescents (age 10–17 years) presenting to the emergency department (n=47) or orthopedic clinic (n=41) for evaluation of a new MSK pain complaint (< 1 month duration). Youth presented for two study visits (T1 = <1 month post pain onset; T2 = 4 month follow-up) during which they completed questionnaires (assessing pain characteristics, psychological factors, sleep quality) and participated in a lab task assessing conditioned pain modulation (CPM). Regression analyses tested T1 predictors of longitudinal pain outcomes (pain persistence, pain-related disability, quality of life). Results revealed approximately 35% of youth had persistent pain at 4-month follow-up, with persistent pain predicted by poorer CPM and female sex. Higher depressive symptoms at T1 were associated with higher pain-related disability and poorer quality of life at T2. Findings highlight the roles of depressive symptoms and pain modulation in longitudinally predicting pain persistence in treatment-seeking youth with acute MSK pain, and suggest potential mechanisms in the transition from acute to chronic MSK pain in children and adolescents. PMID:28151835
Threatening social context facilitates pain-related fear learning.
Karos, Kai; Meulders, Ann; Vlaeyen, Johan W S
2015-03-01
This study investigated the effects of a threatening and a safe social context on learning pain-related fear, a key factor in the development and maintenance of chronic pain. We measured self-reported pain intensity, pain expectancy, pain-related fear (verbal ratings and eyeblink startle responses), and behavioral measures of avoidance (movement-onset latency and duration) using an established differential voluntary movement fear conditioning paradigm. Participants (N = 42) performed different movements with a joystick: during fear acquisition, movement in one direction (CS+) was followed by a painful stimulus (pain-US) whereas movement in another direction (CS-) was not. For participants in the threat group, an angry face was continuously presented in the background during the task, whereas in the safe group, a happy face was presented. During the extinction phase the pain-US was omitted. As compared to the safe social context, a threatening social context led to increased contextual fear and facilitated differentiation between CS+ and CS- movements regarding self-reported pain expectancy, fear of pain, eyeblink startle responses, and movement-onset latency. In contrast, self-reported pain intensity was not affected by social context. These data support the modulation of pain-related fear by social context. A threatening social context leads to stronger acquisition of (pain-related) fear and simultaneous contextual fear but does not affect pain intensity ratings. This knowledge may aid in the prevention of chronic pain and anxiety disorders and shows that social context might modulate pain-related fear without immediately affecting pain intensity itself. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Role of the primary motor cortex in the maintenance and treatment of pain in fibromyalgia.
Castillo Saavedra, Laura; Mendonca, Mariana; Fregni, Felipe
2014-09-01
Fibromyalgia is a highly prevalent, debilitating disease, characterized by chronic widespread pain. The mechanisms underlying pain are not completely understood, but it is believed to be associated with important neuroplastic changes in pain-related neural circuits. Although the involvement of the pain matrix in fibromyalgia is well established, another area that has been found to play a role in the maintenance and treatment of chronic pain is the primary motor cortex (M1). Maladaptive plasticity of M1 is a common finding in patients with chronic pain and many studies in animal models and in human subjects have shown that modulation of the activity of this cortical area induces significant analgesic effects. Furthermore, studies in other chronic pain syndromes have found alterations in baseline characteristics of M1, including an increase in cortical excitability and an abnormally enhanced response to incoming sensory stimuli. Given these findings, we hypothesize that M1 is a major modulator of pain in fibromyalgia and therefore its baseline activity reflects this strong feedback between M1 and pain-related neural areas. However, the feedback loop between M1 and the pain matrix is not enough to decrease pain in fibromyalgia per se, thus increasing its modulatory effect by engaging this network through different behavioral and modulatory techniques is a potentially beneficial treatment for pain in fibromyalgia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Valencia, Carolina; Kindler, Lindsay L.; Fillingim, Roger B.; George, Steven Z.
2011-01-01
Recent reports suggest deficits in conditioned pain modulation (CPM) and enhanced suprathreshold heat pain response (SHPR) potentially play a role in the development of chronic pain. The purpose of this study was to investigate whether central pain processing was altered in 2 musculoskeletal shoulder pain models. The goals of this study were to determine whether central pain processing: 1) differs between healthy subjects and patients with clinical shoulder pain, 2) changes with induction of exercise induced muscle pain (EIMP), and 3) changes 3 months after shoulder surgery. Fifty eight patients with clinical shoulder pain and 56 age and sex matched healthy subjects were included in these analyses. The healthy cohort was examined before inducing EIMP, and 48 and 96 hours later. The clinical cohort was examined before shoulder surgery and 3 months later. CPM did not differ between the cohorts, however; SHPR was elevated for patients with shoulder pain compared to healthy controls. Induction of acute shoulder pain with EIMP resulted in increased shoulder pain intensity but did not change CPM or SHPR. Three months following shoulder surgery clinical pain intensity decreased but CPM was unchanged from pre-operative assessment. In contrast SHPR was decreased and showed values comparable with healthy controls at 3 months. Therefore, the present study suggests that: 1) clinical shoulder pain is associated with measurable changes in central pain processing, 2) exercise-induced shoulder pain did not affect measures of central pain processing, and 3) elevated SHPR was normalized with shoulder surgery. Collectively our findings support neuroplastic changes in pain modulation were associated with decreases in clinical pain intensity only, and could be detected more readily with thermal stimuli. PMID:22208804
Rostral Ventral Medulla Cholinergic Mechanism in Pain-Induced Analgesia
Gear, Robert W.; Levine, Jon D.
2009-01-01
The ascending nociceptive control (ANC), a novel spinostriatal pain modulation pathway, mediates a form of pain-induced analgesia referred to as noxious stimulus-induced antinociception (NSIA). ANC includes specific spinal cord mechanisms as well as circuitry in nucleus accumbens, a major component of the ventral striatum. Here, using the trigeminal jaw-opening reflex (JOR) in the rat as a nociceptive assay, we show that microinjection of the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine into the rostral ventral medulla (RVM) blocks NSIA, implicating RVM as a potentially important link between ANC and the PAG – RVM – spinal descending pain modulation system. A circuit connecting nucleus accumbens to the RVM is proposed as a novel striato-RVM pathway. PMID:19699268
Jacobs, Zachary G; Elnicki, D Michael; Perera, Subashan; Weiner, Debra K
2018-01-05
To determine 1) the feasibility of implementing an e-learning module on chronic low back pain (CLBP) in an older adult into an existing internal medicine residency curriculum and 2) the impact of this module on resident attitudes, confidence, knowledge, and clinical skills relating to CLBP. Participants were assigned to complete either the online module (N = 73) or the Yale Office-based curriculum on CLBP (N = 70). Attitudes, confidence, and knowledge were evaluated pre- and postintervention via survey. A retrospective blinded chart review of resident clinic encounters was conducted, wherein diagnosis codes and physical exam documentation were rated as basic or advanced. There was no improvement in overall knowledge scores in either group (60% average on both metrics). There were tendencies for greater improvements in the intervention group compared with controls for confidence in managing fibromyalgia (2.4 to 2.9 vs 2.5 to 2.5, P = 0.06) and leg length discrepancy (1.8 to 2.5 vs 1.5 to 1.9, P = 0.05). Those exposed to the online module also showed an increase in the percentage of physical exam documentation rated as advanced following the intervention (13% to 32%, P = 0.006), whereas the control group showed no change (14% to 12%, P = 0.68). An online module on CLBP in the older adult was a feasible addition to an existing curriculum for internal medicine residents. The module positively and substantively impacted resident clinical behaviors, as evidenced by enhanced sophistication in physical exam documentation; it also was associated with improved confidence in certain aspects of chronic pain management. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
MUMPS Based Integration of Disparate Computer-Assisted Medical Diagnosis Modules
1989-12-12
modules use a Bayesian approach, while the Opthalmology module uses a Rule Based approach. In the current effort, MUMPS is used to develop an...Abdominal and Chest Pain modules use a Bayesian approach, while the Opthalmology module uses a Rule Based approach. In the current effort, MUMPS is used
Moont, Ruth; Crispel, Yonatan; Lev, Rina; Pud, Dorit; Yarnitsky, David
2012-01-30
Methods to cognitively distract subjects from pain and experimental paradigms to induce conditioned pain modulation (CPM; formerly termed diffuse noxious inhibitory controls or DNIC) have each highlighted activity changes in closely overlapping cortical areas. This is the first study, to our knowledge, to compare cortical activation changes during these 2 manipulations in the same experimental set-up. Our study sample included thirty healthy young right handed males capable of expressing CPM. We investigated brief consecutive time windows using 32-channel EEG-based sLORETA, to determine dynamic changes in localized cortical potentials evoked by phasic noxious heat stimuli to the left volar forearm. This was performed under visual cognitive distraction tasks and conditioning hot-water pain to the right hand (CPM), both individually and simultaneously. Previously we have shown that for CPM, there is increased activity in frontal cortical regions followed by reduced activation of the somatosensory areas, suggesting a pain inhibitory role for these frontal regions. We now observed that distraction caused a different extent of cortical activation; greater early activation of frontal areas (DLPFC, OFC and caudal ACC at 250-350 ms post-stimulus), yet lesser reduction in the somatosensory cortices, ACC, PCC and SMA after 350 ms post-stimulus, compared to CPM. Both CPM and distraction reduced subjective pain scores to a similar extent. Combining CPM and distraction further reduced pain ratings compared to CPM and distraction alone, supporting the dissimilarity of the mechanisms of pain modulation under these 2 manipulations. The results are discussed in terms of the differential functional roles of the prefrontal cortex. Copyright © 2011 Elsevier B.V. All rights reserved.
Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam
2016-04-01
It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Rosen, Marc I; Becker, William C; Black, Anne C; Martino, Steve; Edens, Ellen L; Kerns, Robert D
2018-05-22
High proportions of post-9/11 veterans have musculoskeletal disorders (MSDs), but engaging them in care early in their course of illness has been challenging. The service connection application is an ideal point of contact for referring veterans to early interventions for their conditions. Among MSD claimants who reported risky substance use, we pilot-tested a counseling intervention targeting pain and risky substance use called Screening Brief Intervention and Referral to Treatment-Pain Module (SBIRT-PM). Veterans were randomly assigned in a 2:1:1 ratio to SBIRT-PM, Pain Module counseling only, or treatment as usual (TAU). Participants assigned to either counseling arm were offered a single meeting with a study therapist with two follow-up telephone calls as needed. Participants completed outcome assessments at four and 12 weeks after randomization. Of 257 veterans evaluated, 101 reported risky substance use and were randomized. Counseling was attended by 75% of veterans offered it and was well received. VA pain-related services were used by 51% of participants in either of the pain-focused conditions but only by 27% in TAU (P < 0.04). Starting with average pain severity ratings of 5.1/10 at baseline, only minimal changes in mean pain severity were noted regardless of condition. Self-reported risky substance use was significantly lower over time in the SBIRT-PM condition relative to the two other conditions (P < 0.02). At week 12, proportions of veterans reporting risky substance use were 0.39, 0.69, and 0.71 for the SBIRT-PM, Pain Module counseling, and TAU conditions, respectively. SBIRT-PM shows promise as a way to engage veterans in pain treatment and reduce substance use.
2016-01-01
Background Low back pain (LBP) could be influenced by socio-cultural factors. Pain narratives are important to understand the influence of environment on patients with chronic LBP. There are few studies that have explored the experience of patients with chronic LBP in different socio-cultural environments. The aim of this study was to describe the experience of patients with chronic LBP in Spain and Brazil. Methods A qualitative phenomenology approach was implemented. Chronic LBP patients from the University Hospital of Salamanca (Spain), and/or Federal University of São Carlos (Brazil) were included, using purposeful sampling. Data were collected from 22 Spanish and 26 Brazilian patients during in-depth interviews and using researchers’ field notes and patients' personal diaries and letters. A thematic analysis was performed and the guidelines for reporting qualitative research were applied. Results Forty-eight patients with a mean age of 50.7 years (SD: ± 13.1 years) were included in the study. The themes identified included: a) ways of perceiving and expressing pain—the participants focused constantly on their pain and anything outside it was considered secondary; b) the socio-familial environment as a modulator of pain—most participants stated that no one was able to understand the pain they were experiencing; c) religion as a modulator of pain—all Brazilian patients stated that religious belief affected the experience of pain; and d) socio-economic and educational status as a modulator of pain—the study reported that economic factors influenced the experience of pain. Conclusions The influences of LBP can be determined based on the how a patient defines pain. Religion can be considered as a possible mechanism for patients to manage pain and as a form of solace. PMID:27434594
Courtney, Carol A; Steffen, Alana D; Fernández-de-Las-Peñas, César; Kim, John; Chmell, Samuel J
2016-03-01
An experimental laboratory study with a repeated-measures crossover design. Treatment effects of joint mobilization may occur in part by decreasing excitability of central nociceptive pathways. Impaired conditioned pain modulation (CPM) has been found experimentally in persons with knee and hip osteoarthritis, indicating impaired inhibition of central nociceptive pathways. We hypothesized increased effectiveness of CPM following application of joint mobilization, determined via measures of deep tissue hyperalgesia. To examine the effect of joint mobilization on impaired CPM. An examination of 40 individuals with moderate/severe knee osteoarthritis identified 29 (73%) with impaired CPM. The subjects were randomized to receive 6 minutes of knee joint mobilization (intervention) or manual cutaneous input only, 1 week apart. Deep tissue hyperalgesia was examined via pressure pain thresholds bilaterally at the knee medial joint line and the hand at baseline, postintervention, and post-CPM testing. Further, vibration perception threshold was measured at the medial knee epicondyle at baseline and post-CPM testing. Joint mobilization, but not cutaneous input intervention, resulted in a global increase in pressure pain threshold, indicated by diminished hyperalgesic responses to pressure stimulus. Further, CPM was significantly enhanced following joint mobilization. Diminished baseline vibration perception threshold acuity was enhanced following joint mobilization at the knee that received intervention, but not at the contralateral knee. Resting pain was also significantly lower following the joint intervention. Conditioned pain modulation was enhanced following joint mobilization, demonstrated by a global decrease in deep tissue pressure sensitivity. Joint mobilization may act via enhancement of descending pain mechanisms in patients with painful knee osteoarthritis.
Bouwense, Stefan A W; Olesen, Søren S; Drewes, Asbjørn M; Frøkjær, Jens B; van Goor, Harry; Wilder-Smith, Oliver H G
2013-01-01
The most dominant feature in chronic pancreatitis is intense abdominal pain. Changes in spinal and/or supraspinal central nervous system pain processing due to visceral nociceptive input play an important role in this pain. How altered pain processing is related to disease stage still needs study. Sixty chronic pancreatitis patients were compared to 15 healthy controls. Two subgroups of pancreatitis patients were defined based on the M-ANNHEIM severity index of chronic pancreatitis; i.e. moderate and severe. Pain detection and tolerance thresholds for pressure and electric stimuli were measured in six selected dermatomes (C5, T4, T10, L1, L4 and T10BACK). In addition, the conditioned pain modulation response to cold pressor task was determined. These measures were compared between the healthy controls and chronic pancreatitis patients. Severe pancreatitis patients showed lower pain thresholds than moderate pancreatitis patients or healthy volunteers. Healthy controls showed a significantly larger conditioned pain modulation response compared to all chronic pancreatitis patients taken together. The present study confirms that chronic pancreatitis patients show signs of altered central processing of nociception compared to healthy controls. The study further suggests that these changes, i.e. central sensitization, may be influenced by disease stage. These findings underline the need to take altered central pain processing into account when managing the pain of chronic pancreatitis.
Palm, Ulrich; Chalah, Moussa A; Padberg, Frank; Al-Ani, Tarik; Abdellaoui, Mohamed; Sorel, Marc; Dimitri, Dalia; Créange, Alain; Lefaucheur, Jean-Pascal; Ayache, Samar S
2016-01-01
Pain and cognitive impairment are frequent symptoms in patients with multiple sclerosis (MS). Neglecting experimental pain and paying attention to demanding tasks is reported to decrease the pain intensity. Little is known about the interaction between chronic neuropathic pain and attention disorders in MS. Recently, transcranial direct current stimulation (tDCS) was used to modulate various cognitive and motor symptoms in MS. We aimed to study the effects of transcranial random noise stimulation (tRNS), a form of transcranial electric stimulation, over the left dorsolateral prefrontal cortex (DLPFC) on attention and neuropathic pain in MS patients. 16 MS patients were included in a randomized, sham-controlled, cross-over study. Each patient randomly received two tRNS blocks, separated by three weeks of washout interval. Each block consisted of three consecutive daily sessions of either active or sham tRNS. The patients were evaluated for pain, attention and mood and further underwent an electrophysiological evaluation. Compared to sham, tRNS showed a trend to decrease the N2-P2 amplitudes of pain related evoked potentials and improve pain ratings. Attention performance and mood scales did not change after stimulations. This study suggests the role of tRNS in pain modulation, which could have been more evident with longer stimulation protocols.
Rühle, Paul F; Wunderlich, Roland; Deloch, Lisa; Fournier, Claudia; Maier, Andreas; Klein, Gerhart; Fietkau, Rainer; Gaipl, Udo S; Frey, Benjamin
2017-03-01
The pain-relieving effects of low-dose radon therapies on patients suffering from chronic painful inflammatory diseases have been described for centuries. Even though it has been suggested that low doses of radiation may attenuate chronic inflammation, the underlying mechanisms remain elusive. Thus, the RAD-ON01 study was initiated to examine the effects of radon spa therapy and its low doses of alpha radiation on the human immune system. In addition to an evaluation of pain parameters, blood was drawn from 100 patients suffering from chronic painful degenerative musculoskeletal diseases before as well as 6, 12, 18, and 30 weeks after the start of therapy. We verified significant long-term pain reduction for the majority of patients which was accompanied by modulations of the peripheral immune cells. Detailed immune monitoring was performed using a multicolor flow cytometry-based whole blood assay. After therapy, the major immune cells were only marginally affected. Nevertheless, a small but long-lasting increase in T cells and monocytes was observed. Moreover, neutrophils, eosinophils and, in particular, dendritic cells were temporarily modulated after therapy. Regarding the immune cell subsets, cytotoxic T and NK cells, in particular, were altered. However, the most prominent effects were identified in a strong reduction of the activation marker CD69 on T, B, and NK cells. Simultaneously, the percentage of HLA-DR + T cells was elevated after therapy. The RAD-ON01 study showed for the first time a modulation of the peripheral immune cells following standard radon spa therapy. These modulations are in line with attenuation of inflammation.
Li, Linling; Huang, Gan; Lin, Qianqian; Liu, Jia; Zhang, Shengli; Zhang, Zhiguo
2018-01-01
The level of pain perception is correlated with the magnitude of pain-evoked brain responses, such as laser-evoked potentials (LEP), across trials. The positive LEP-pain relationship lays the foundation for pain prediction based on single-trial LEP, but cross-individual pain prediction does not have a good performance because the LEP-pain relationship exhibits substantial cross-individual difference. In this study, we aim to explain the cross-individual difference in the LEP-pain relationship using inter-stimulus EEG (isEEG) features. The isEEG features (root mean square as magnitude and mean square successive difference as temporal variability) were estimated from isEEG data (at full band and five frequency bands) recorded between painful stimuli. A linear model was fitted to investigate the relationship between pain ratings and LEP response for fast-pain trials on a trial-by-trial basis. Then the correlation between isEEG features and the parameters of LEP-pain model (slope and intercept) was evaluated. We found that the magnitude and temporal variability of isEEG could modulate the parameters of an individual's linear LEP-pain model for fast-pain trials. Based on this, we further developed a new individualized fast-pain prediction scheme, which only used training individuals with similar isEEG features as the test individual to train the fast-pain prediction model, and obtained improved accuracy in cross-individual fast-pain prediction. The findings could help elucidate the neural mechanism of cross-individual difference in pain experience and the proposed fast-pain prediction scheme could be potentially used as a practical and feasible pain prediction method in clinical practice. PMID:29904336
Jastrowski Mano, Kristen E; Khan, Kimberly Anderson; Ladwig, Renee J; Weisman, Steven J
2011-06-01
To evaluate the psychometric properties of the Family Impact Module (FIM), a parent self-report measure of health-related quality of life (HRQOL) and family functioning, among parents of youth with chronic pain. Parents (N = 458) completed the FIM (Total Impact, HRQOL, and Family Functioning scales); parents and youth (N = 332) completed measures of pain catastrophizing, pediatric quality of life, and emotional/behavioral functioning. The FIM demonstrated strong internal consistency and item-total correlations. All FIM scales were positively associated with pain catastrophizing, functional disability, and emotional/behavioral problems; and inversely related to pediatric quality of life. Mothers reported significantly worse HRQOL than fathers. Mothers and fathers did not differ on reports of Family Functioning. HRQOL and Family Functioning did not differ as a function of pain diagnosis. The FIM appears to be a suitable measure of parent self-reported HRQOL and family functioning in pediatric chronic pain.
Zhou, Fang; Wang, Jia-You; Tian, En-Qi; Zhang, Li-Cai
2015-12-25
The present study was aimed to investigate the role of cerebrospinal fluid-contacting nucleus (CSF-CN) neurons in modulation of inflammatory pain and underlying mechanism. The inflammatory pain model was made by subcutaneous injection of the complete Freund's adjuvant (CFA) into the left hind paw of rats. The phosphorylation level of PKC (p-PKC) was examined by Western blot. Thermal withdrawal latency (TWL) of the rats was measured to assess inflammatory pain. The results showed that, compared with the sham controls, the inflammatory pain model rats showed shortened TWL on day 1, 3, and 7 after CFA injection, as well as increased level of p-PKC in CSF-CN neurons at 24 h after CFA injection. The administration of GF109203X, a PKC inhibitor, into lateral ventricle decreased the level of p-PKC protein expression and increased TWL in the model rats. These results suggest that blocking the PKC pathway in CSF-CN neurons may be an effective way to reduce or eliminate the inflammatory pain.
Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses.
Scott, David J; Stohler, Christian S; Egnatuk, Christine M; Wang, Heng; Koeppe, Robert A; Zubieta, Jon-Kar
2008-02-01
Placebo and nocebo effects, the therapeutic and adverse effects, respectively, of inert substances or sham procedures, represent serious confounds in the evaluation of therapeutic interventions. They are also an example of cognitive processes, particularly expectations, capable of influencing physiology. To examine the contribution of 2 different neurotransmitters, the endogenous opioid and the dopaminergic (DA) systems, to the development of placebo and nocebo effects. Using a within-subject design, subjects twice underwent a 20-minute standardized pain challenge, in the absence and presence of a placebo with expected analgesic properties. Studies were conducted in a university hospital setting. Twenty healthy men and women aged 20 to 30 years recruited by advertisement. Activation of DA and opioid neurotransmission by a pain stressor with and without placebo (changes in the binding potential of carbon 11 [11C]-labeled raclopride and [11C] carfentanil with positron emission tomography) and ratings of pain, affective state, and anticipation and perception of analgesia. Placebo-induced activation of opioid neurotransmission was detected in the anterior cingulate, orbitofrontal and insular cortices, nucleus accumbens, amygdala, and periaqueductal gray matter. Dopaminergic activation was observed in the ventral basal ganglia, including the nucleus accumbens. Regional DA and opioid activity were associated with the anticipated and subjectively perceived effectiveness of the placebo and reductions in continuous pain ratings. High placebo responses were associated with greater DA and opioid activity in the nucleus accumbens. Nocebo responses were associated with a deactivation of DA and opioid release. Nucleus accumbens DA release accounted for 25% of the variance in placebo analgesic effects. Placebo and nocebo effects are associated with opposite responses of DA and endogenous opioid neurotransmission in a distributed network of regions. The brain areas involved in these phenomena form part of the circuit typically implicated in reward responses and motivated behavior.
Differences between endogenous and exogenous emotion inhibition in the human brain.
Kühn, Simone; Haggard, Patrick; Brass, Marcel
2014-05-01
The regulation of emotions is an integral part of our mental health. It has only recently been investigated using brain imaging techniques. In most studies, participants are instructed by a cue to inhibit a specific emotional reaction. The aim of the present study was to investigate the alternative situation where a person decides to inhibit an emotion as an act of endogenous self-control. Healthy participants viewed highly arousing pictures with negative valence. In the endogenous condition, participants could freely choose on each trial to inhibit or feel the emotions elicited by the picture. In an exogenous condition, a visual cue instructed them to either feel or inhibit the emotion elicited by the picture. Participants' subjective ratings of intensity of experienced emotion showed an interaction effect between source of control (endogenous/exogenous) and feel/inhibit based on a stronger modulation between feel and inhibition for the endogenous compared to the exogenous condition. Endogenous inhibition of emotions was associated with dorso-medial prefrontal cortex activation, whereas exogenous inhibition was found associated with lateral prefrontal cortex activation. Thus, the brain regions for both endogenous and exogenous inhibition of emotion are highly similar to those for inhibition of motor actions in Brass and Haggard (J Neurosci 27:9141-9145, 2007), Kühn et al. (Hum Brain Mapp 30:2834-2843, 2009). Functional connectivity analyses showed that dorsofrontomedial cortex exerts greater control onto pre-supplementary motor area during endogenous inhibition compared to endogenous feel. This functional dissociation between an endogenous, fronto-medial and an exogenous, fronto-lateral inhibition centre has important implications for our understanding of emotion regulation in health and psychopathology.
Pooryasin, Atefeh; Fiala, André
2015-09-16
Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect aspects of mating behavior, but not food uptake. This demonstrates that individual serotoninergic neurons can modulate distinct types of behavior selectively. Copyright © 2015 the authors 0270-6474/15/3512792-21$15.00/0.
Arthropod toxins and their antinociceptive properties: From venoms to painkillers.
Monge-Fuentes, Victoria; Arenas, Claudia; Galante, Priscilla; Gonçalves, Jacqueline Coimbra; Mortari, Márcia Renata; Schwartz, Elisabeth Ferroni
2018-03-29
The complex process of pain control commonly involves the use of systemic analgesics; however, in many cases, a more potent and effective polypharmacological approach is needed to promote clinically significant improvement. Additionally, considering side effects caused by current painkillers, drug discovery is once more turning to nature as a source of more efficient therapeutic alternatives. In this context, arthropod venoms contain a vast array of bioactive substances that have evolved to selectively bind to specific pharmacological targets involved in the pain signaling pathway, playing an important role as pain activators or modulators, the latter serving as promising analgesic agents. The current review explores how the pain pathway works and surveys neuroactive compounds obtained from arthropods' toxins, which function as pain modulators through their interaction with specific ion channels and membrane receptors, emerging as promising candidates for drug design and development. Copyright © 2018 Elsevier Inc. All rights reserved.
Analgesic effectiveness of D-phenylalanine in chronic pain patients.
Walsh, N E; Ramamurthy, S; Schoenfeld, L; Hoffman, J
1986-07-01
Enkephalins are a biochemical pathway for endogenous analgesia. A number of compounds inhibit degradation of enkephalins within the body. One of these compounds, D-phenylalanine (DPA), has been shown to increase the pain threshold in animals. It is hypothesized that this naloxone reversible analgesia is induced by DPA blockage of enkephalin degradation by the enzyme carboxypeptidase A. Preliminary studies of chronic pain patients have shown a response rate to DPA from 32% to 75%. This study was a double-blind crossover evaluation of a randomized parallel design to determine the efficacy of DPA in 30 subjects with chronic pain from varied etiology which was unrelieved by multiple therapeutic interventions. Each patient received a stabilized therapeutic regimen during this study consisting of four weeks of either DPA 250 mg or lactose (placebo) orally four times a day. After four weeks the DPA and placebo groups were crossed over for an additional four weeks of treatment. Pain was quantified using a visual analog pain scale and a cold pressor test. Data from the pain questionnaires revealed more pain relief on DPA reported by 25% of the patients, more pain relief on placebo reported by 22% of the patients, and no difference in pain relief reported by 53% of the patients. Lowest pain level of the visual analog scale was reported by 47% of the patients on DPA and 53% on placebo. There appears to be no significant analgesic effect from D-phenylalanine in chronic pain patients when compared to placebo.
Lorås, H; Østerås, B; Torstensen, T A; Østerås, H
2015-09-01
The purpose of this narrative review is to present an overview and theoretical rationale of medical exercise therapy (MET) as a physiotherapeutic rehabilitation treatment for musculoskeletal pain conditions. Results from randomized controlled trials (RCTs) conducted on MET are also presented. Computerized searches for any RCTs were conducted on the MET concept in the databases PubMed, Medline, Embase and ISI Web of science up to 2013. Overall findings from five included MET RCTs are long-term (≥1 year) reductions in pain and improved physical and functional capabilities. These results are interpreted in the context of the biopsychosocial model, advancing the view of a dynamic interaction among physiologic, psychological and social factors that influence pain modulation. MET is a biopsychosocial treatment that reduces pain and improves activities of daily living in patients with a musculoskeletal pain condition. Pain modulation is a key feature of MET, and an important area for further research is to elucidate the specific mechanisms behind the treatment effects. Copyright © 2015 John Wiley & Sons, Ltd.
Jardines, Daniel; Botrè, Francesco; Colamonici, Cristiana; Curcio, Davide; Procida, Gemma; de la Torre, Xavier
2016-11-01
The detection of the abuse of pseudo-endogenous steroids (testosterone and/or its precursors) is currently based on the application of the steroid module of the World Anti-Doping Agency (WADA) Athletes' Biological Passport (ABP), implemented through ADAMS. Diagnostic metabolites are monitored for every athlete and statistically evaluated with a predictive Bayesian approach. In the case of suspicious samples, the data of the ABP are confirmed and the isotope ratio mass spectrometry (IRMS) test is activated. We have previously demonstrated that IRMS enables confirmation of the non-endogenous origin of pseudo-endogenous steroids in otherwise non-suspicious samples, after a longitudinal evaluation of the ABP, even after the inclusion of additional long-term diagnostic hydroxylated metabolites, and that the delta values of the parameters obtained during the IRMS confirmation process presented much less variability compared to the parameters of the ABP. The aim of the present work is to evaluate the application of the same methodology used for the evaluation of the ABP, on the delta values of the pseudo-endogenous steroids monitored. The effectiveness of the proposed model has been assessed on samples obtained after controlled administrations of oral androstenedione and transdermal testosterone. The results support the conclusion that, if applied, the longitudinal evaluation of the IRMS data allows the detection of positive samples that otherwise will be reported as atypical findings (ATF), improving the efficacy of the fight against doping in sport. This approach, by narrowing the individual acceptable range, could possibly improve the detection of the intake of preparations of synthetic origin with delta values close to or overlapping those of endogenously produced steroids. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Studies of Properties of Pain Networks as Predictors of Targets of Stimulation for Treatment of Pain
2011-12-05
H. (1999). Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain 82, 159–171. Rasche, D., Rinaldi, P. C., Young, R...distribution, and reproduction in other forums, pro- vided the original authors and source are credited. Frontiers in Integrative Neuroscience www.frontiersin.org December 2011 | Volume 5 | Article 80 | 7
Chen, Lei; Liu, Jin-cheng; Zhang, Xiao-nan; Guo, Yan-yan; Xu, Zhao-hui; Cao, Wei; Sun, Xiao-li; Sun, Wen-ji; Zhao, Ming-Gao
2008-06-01
Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain.
Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; De Rossi, Pietro; Angeletti, Gloria; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo
2015-12-01
Several studies reported that hypnosis can modulate pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. We conducted an Activation Likelihood Estimation (ALE) meta-analysis on functional neuroimaging studies of pain perception under hypnosis to identify brain activation-deactivation patterns occurring during hypnotic suggestions aiming at pain reduction, including hypnotic analgesic, pleasant, or depersonalization suggestions (HASs). We searched the PubMed, Embase and PsycInfo databases; we included papers published in peer-reviewed journals dealing with functional neuroimaging and hypnosis-modulated pain perception. The ALE meta-analysis encompassed data from 75 healthy volunteers reported in 8 functional neuroimaging studies. HASs during experimentally-induced pain compared to control conditions correlated with significant activations of the right anterior cingulate cortex (Brodmann's Area [BA] 32), left superior frontal gyrus (BA 6), and right insula, and deactivation of right midline nuclei of the thalamus. HASs during experimental pain impact both cortical and subcortical brain activity. The anterior cingulate, left superior frontal, and right insular cortices activation increases could induce a thalamic deactivation (top-down inhibition), which may correlate with reductions in pain intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laterality of pain: modulation by placebo and participants' paranormal belief.
Klemenz, Caroline; Regard, Marianne; Brugger, Peter; Emch, Oliver
2009-09-01
To investigate the effects of placebo and paranormal belief on the laterality of pain perception. The right hemisphere is dominantly involved in both the mediation of pain sensation and the belief in paranormal phenomena. We set out to assess a possible influence of long-term belief systems on placebo analgesia in response to unilateral nociceptive stimuli. Forty healthy participants (20 high and 20 low believers as indexed by the Magical Ideation Scale) underwent a placebo analgesia study measuring stimulus detection, pain threshold, and pain tolerance by electrostimulation on the right and left hand. Placebo treatment consisted of the application of a sham cream on the hands. Placebo had a positive influence on pain perception in the 3 variables. Enhanced pain sensitivity for the left side was only found for the disbelievers. Placebo treatment resulted in a double dissociation: in believers, it increased tolerance exclusively on the left side, in disbelievers on the right side. Our results confirm laterality effects in pain perception. However, only disbelievers conformed to the expected higher left-sided sensitivity. Placebo effects were dissociated between believers and disbelievers suggesting that short-term reactions to a placebo are modulated by a person's long-term belief system.
Endogenous modulation of human visual cortex activity improves perception at twilight.
Cordani, Lorenzo; Tagliazucchi, Enzo; Vetter, Céline; Hassemer, Christian; Roenneberg, Till; Stehle, Jörg H; Kell, Christian A
2018-04-10
Perception, particularly in the visual domain, is drastically influenced by rhythmic changes in ambient lighting conditions. Anticipation of daylight changes by the circadian system is critical for survival. However, the neural bases of time-of-day-dependent modulation in human perception are not yet understood. We used fMRI to study brain dynamics during resting-state and close-to-threshold visual perception repeatedly at six times of the day. Here we report that resting-state signal variance drops endogenously at times coinciding with dawn and dusk, notably in sensory cortices only. In parallel, perception-related signal variance in visual cortices decreases and correlates negatively with detection performance, identifying an anticipatory mechanism that compensates for the deteriorated visual signal quality at dawn and dusk. Generally, our findings imply that decreases in spontaneous neural activity improve close-to-threshold perception.
Lindstedt, Fredrik; Berrebi, Jonathan; Greayer, Erik; Lonsdorf, Tina B.; Schalling, Martin; Ingvar, Martin; Kosek, Eva
2011-01-01
Background Variation in the serotonin transporter (5-HTT) gene (SLC6A4) has been shown to influence a wide range of affective processes. Low 5-HTT gene-expression has also been suggested to increase the risk of chronic pain. Conditioned pain modulation (CPM) - i.e. ‘pain inhibits pain’ - is impaired in chronic pain states and, reciprocally, aberrations of CPM may predict the development of chronic pain. Therefore we hypothesized that a common variation in the SLC6A4 is associated with inter-individual variation in CPM. Forty-five healthy subjects recruited on the basis of tri-allelic 5-HTTLPR genotype, with inferred high or low 5-HTT-expression, were included in a double-blind study. A submaximal-effort tourniquet test was used to provide a standardized degree of conditioning ischemic pain. Individualized noxious heat and pressure pain thresholds (PPTs) were used as subjective test-modalities and the nociceptive flexion reflex (NFR) was used to provide an objective neurophysiological window into spinal processing. Results The low, as compared to the high, 5-HTT-expressing group exhibited significantly reduced CPM-mediated pain inhibition for PPTs (p = 0.02) and heat-pain (p = 0.02). The CPM-mediated inhibition of the NFR, gauged by increases in NFR-threshold, did not differ significantly between groups (p = 0.75). Inhibition of PPTs and heat-pain were correlated (Spearman’s rho = 0.35, p = 0.02), whereas the NFR-threshold increase was not significantly correlated with degree of inhibition of these subjectively reported modalities. Conclusions Our results demonstrate the involvement of the tri-allelic 5-HTTLPR genotype in explaining clinically relevant inter-individual differences in pain perception and regulation. Our results also illustrate that shifts in NFR-thresholds do not necessarily correlate to the modulation of experienced pain. We discuss various possible mechanisms underlying these findings and suggest a role of regulation of 5-HT receptors along the neuraxis as a function of differential 5-HTT-expression. PMID:21464942
Rehabilitation Medicine Approaches to Pain Management.
Cheville, Andrea L; Smith, Sean R; Basford, Jeffrey R
2018-06-01
Rehabilitation medicine offers strategies that reduce musculoskeletal pain, targeted approaches to alleviate movement-related pain, and interventions to optimize patients' function despite the persistence of pain. These approaches fall into four categories: modulating nociception, stabilizing and unloading painful structures, influencing pain perception, and alleviating soft tissue musculotendinous pain. Incorporating these interventions into individualized, comprehensive pain management programs offers the potential to empower patients and limit pain associated with mobility and required daily activities. Rehabilitative approach may be particularly helpful for patients with refractory movement-associated pain and functional vulnerability, and for those who do not wish for, or cannot, tolerate pharmacoanalgesia. Copyright © 2018 Elsevier Inc. All rights reserved.
Hauck, Michael; Metzner, Susanne; Rohlffs, Fiona; Lorenz, Jürgen; Engel, Andreas K
2013-04-01
Modern forms of music therapy are clinically established for various therapeutic or rehabilitative goals, especially in the treatment of chronic pain. However, little is known about the neuronal mechanisms that underlie pain modulation by music. Therefore, we attempted to characterize the effects of music therapy on pain perception by comparing the effects of 2 different therapeutic concepts, referred to as receptive and entrainment methods, on cortical activity recorded by magnetencephalography in combination with laser heat pain. Listening to preferred music within the receptive method yielded a significant reduction of pain ratings associated with a significant power reduction of delta-band activity in the cingulate gyrus, which suggests that participants displaced their focus of attention away from the pain stimulus. On the other hand, listening to self-composed "pain music" and "healing music" within the entrainment method exerted major effects on gamma-band activity in primary and secondary somatosensory cortices. Pain music, in contrast to healing music, increased pain ratings in parallel with an increase in gamma-band activity in somatosensory brain structures. In conclusion, our data suggest that the 2 music therapy approaches operationalized in this study seem to modulate pain perception through at least 2 different mechanisms, involving changes of activity in the delta and gamma bands at different stages of the pain processing system. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Reduced Modulation of Pain in Older Adults After Isometric and Aerobic Exercise.
Naugle, Kelly M; Naugle, Keith E; Riley, Joseph L
2016-06-01
Laboratory-based studies show that acute aerobic and isometric exercise reduces sensitivity to painful stimuli in young healthy individuals, indicative of a hypoalgesic response. However, little is known regarding the effect of aging on exercise-induced hypoalgesia (EIH). The purpose of this study was to examine age differences in EIH after submaximal isometric exercise and moderate and vigorous aerobic exercise. Healthy older and younger adults completed 1 training session and 4 testing sessions consisting of a submaximal isometric handgrip exercise, vigorous or moderate intensity stationary cycling, or quiet rest (control). The following measures were taken before and after exercise/quiet rest: 1) pressure pain thresholds, 2) suprathreshold pressure pain ratings, 3) pain ratings during 30 seconds of prolonged noxious heat stimulation, and 4) temporal summation of heat pain. The results revealed age differences in EIH after isometric and aerobic exercise, with younger adults experiencing greater EIH compared with older adults. The age differences in EIH varied across pain induction techniques and exercise type. These results provide evidence for abnormal pain modulation after acute exercise in older adults. This article enhances our understanding of the influence of a single bout of exercise on pain sensitivity and perception in healthy older compared with younger adults. This knowledge could help clinicians optimize exercise as a method of pain management. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Oosterwijck, Jessica Van; Marusic, Uros; De Wandele, Inge; Paul, Lorna; Meeus, Mira; Moorkens, Greta; Lambrecht, Luc; Danneels, Lieven; Nijs, Jo
2017-03-01
Patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are unable to activate brain-orchestrated endogenous analgesia (or descending inhibition) in response to exercise. This physiological impairment is currently regarded as one factor explaining post-exertional malaise in these patients. Autonomic dysfunction is also a feature of ME/CFS. This study aims to examine the role of the autonomic nervous system in exercise-induced analgesia in healthy people and those with ME/CFS, by studying the recovery of autonomic parameters following aerobic exercise and the relation to changes in self-reported pain intensity. A controlled experimental study. The study was conducted at the Human Physiology lab of a University. Twenty women with ME/CFS- and 20 healthy, sedentary controls performed a submaximal bicycle exercise test known as the Aerobic Power Index with continuous cardiorespiratory monitoring. Before and after the exercise, measures of autonomic function (i.e., heart rate variability, blood pressure, and respiration rate) were performed continuously for 10 minutes and self-reported pain levels were registered. The relation between autonomous parameters and self-reported pain parameters was examined using correlation analysis. Some relationships of moderate strength between autonomic and pain measures were found. The change (post-exercise minus pre-exercise score) in pain severity was correlated (r = .580, P = .007) with the change in diastolic blood pressure in the healthy group. In the ME/CFS group, positive correlations between the changes in pain severity and low frequency (r = .552, P = .014), and between the changes in bodily pain and diastolic blood pressure (r = .472, P = .036), were seen. In addition, in ME/CHFS the change in headache severity was inversely correlated (r = -.480, P = .038) with the change in high frequency heart rate variability. Based on the cross-sectional design of the study, no firm conclusions can be drawn on the causality of the relations. Reduced parasympathetic reactivation during recovery from exercise is associated with the dysfunctional exercise-induced analgesia in ME/CFS. Poor recovery of diastolic blood pressure in response to exercise, with blood pressure remaining elevated, is associated with reductions of pain following exercise in ME/CFS, suggesting a role for the arterial baroreceptors in explaining dysfunctional exercise-induced analgesia in ME/CFS patients.Key words: Aerobic exercise, aerobic power index, autonomic nervous system, exercise-induced analgesia, exercise-induced hypoalgesia, fibromyalgia, heart rate variability, stress-induced analgesia, pain.
Sullivan, Mark; Langford, Dale J; Davies, Pamela Stitzlein; Tran, Christine; Vilardaga, Roger; Cheung, Gifford; Yoo, Daisy; McReynolds, Justin; Lober, William B; Tauben, David; Vowles, Kevin E
2018-03-29
The objective of this study was to develop and pilot test a chronic pain empowerment and self-management platform, derived from acceptance and commitment therapy, in a pain specialty setting. A controlled, sequential, nonrandomized study design was used to accommodate intervention development and to test the efficacy of the PainTracker Self-Manager (PTSM) intervention (Web-based educational modules and outcome tracking combined with tailored patient coaching sessions and provider guidance). Generalized estimating equations evaluated changes over time (baseline, 3 months, 6 months) in pain self-efficacy (primary outcome), chronic pain acceptance (activity engagement and pain willingness), perceived efficacy in patient-provider interactions, pain intensity and interference, and overall satisfaction with pain treatment (secondary outcomes) between intervention (n = 48) and usual care control groups (n = 51). The full study sample (N = 99) showed greater improvements over time (significant Group × Time interactions) in pain self-efficacy and satisfaction with pain treatment. Among study completers (n = 82), greater improvement in activity engagement as well as pain intensity and interference were also observed. These preliminary findings support the efficacy of the PTSM intervention in a pain specialty setting. Further research is needed to refine and expand the PTSM intervention and to test it in a randomized trial in primary care settings. We developed a Web-based patient empowerment platform that combined acceptance and commitment therapy-based educational modules and tailored coaching sessions with longitudinal tracking of treatments and patient-reported outcomes, named PTSM. Pilot controlled trial results provide preliminary support for its efficacy in improving pain self-efficacy, activity engagement, pain intensity and interference, and satisfaction with pain treatment. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Confounding factors and genetic polymorphism in the evaluation of individual steroid profiling
Kuuranne, Tiia; Saugy, Martial; Baume, Norbert
2014-01-01
In the fight against doping, steroid profiling is a powerful tool to detect drug misuse with endogenous anabolic androgenic steroids. To establish sensitive and reliable models, the factors influencing profiling should be recognised. We performed an extensive literature review of the multiple factors that could influence the quantitative levels and ratios of endogenous steroids in urine matrix. For a comprehensive and scientific evaluation of the urinary steroid profile, it is necessary to define the target analytes as well as testosterone metabolism. The two main confounding factors, that is, endogenous and exogenous factors, are detailed to show the complex process of quantifying the steroid profile within WADA-accredited laboratories. Technical aspects are also discussed as they could have a significant impact on the steroid profile, and thus the steroid module of the athlete biological passport (ABP). The different factors impacting the major components of the steroid profile must be understood to ensure scientifically sound interpretation through the Bayesian model of the ABP. Not only should the statistical data be considered but also the experts in the field must be consulted for successful implementation of the steroidal module. PMID:24764553
Chen, Zhi-Ye; Ma, Lin
2014-04-01
To explore the role of marginal division of the human brain in the pain modulation. Resting functional magnetic resonance imaging was applied in a patient with right extremities pain caused by a malacia lesion in the left putamen and in 8 healthy volunteers. Marginal division was defined using manual drawing on structure images, and was applied to the computation of fuctional connectivity maps. The functional connectivities in the left marginal division showed an evident decrease in the patient when compared with healthy controls. These connectivities were mainly located in the bilateral head of caudate nucleus, putamen, and left globus pallidus. The marginal division may be involved in the pain modulation.
Kaimoto, T; Hatakeyama, Y; Takahashi, K; Imagawa, T; Tominaga, M; Ohta, T
2016-08-01
TRPA1 is a Ca-permeable nonselective cation channel expressed in sensory neurons and acts as a nocisensor. Recent reports show that some monoterpenes, a group of naturally occurring organic compounds, modulate TRP channel activity. Here, we report that limonene, being contained in citrus fruits and mushrooms, shows a unique bimodal action on TRPA1 channel. We examine the effects of limonene on sensory neurons from wild-type, TRPV1- and TRPA1-gene-deficient mice and on heterologously expressed channels in vitro. Molecular determinants were identified with using mutated channels. Cellular excitability is monitored with ratiometric Ca imaging. Nociceptive and analgesic actions of limonene are also examined in vivo. In wild-type mouse sensory neurons, limonene increased the intracellular Ca(2+) concentration ([Ca(2+) ]i ), which was inhibited by selective inhibitors of TRPA1 but not TRPV1. Limonene-responsive neurons highly corresponded to TRPA1 agonist-sensitive ones. Limonene failed to stimulate sensory neurons from the TRPA1 (-/-) mouse. Heterologously expressed mouse TRPA1 was activated by limonene. Intraplantar injection of limonene elicited acute pain, which was significantly less in TRPA1 (-/-) mice. Systemic administration of limonene reduced nociceptive behaviours evoked by H2 O2 . In both heterologously and endogenously expressed TRPA1, a low concentration of limonene significantly inhibited H2 O2 -induced TRPA1 activation. TRPA1 activation by limonene was abolished in H2 O2 -insensitive cysteine-mutated channels. Topically applied limonene stimulates TRPA1, resulting in elicitation of acute pain, but its systemic application inhibits nociception induced by oxidative stress. Because limonene is a safe compound, it may be utilized for pain control due to its inhibition of TRPA1 channels. What does this study add: Limonene, a monoterpene in essential oils of various plants, has been known for its antitumor and anti-inflammatory properties. However, molecular basis of their actions has not been identified. This study shows that limonene activates nociceptive TRPA1 and elicits acute pain, when it is topically applied. In addition, systemic application of limonene exerts inhibitory effects on nociception induced by an oxidative stress-induced TRPA1 activation. © 2016 European Pain Federation - EFIC®
Vazquez, Enrique; Hernandez, Norma; Escobar, William; Vanegas, Horacio
2005-06-28
Microinjection of dipyrone (metamizol) into the periaqueductal gray matter (PAG) in rats causes antinociception. This is mediated by endogenous opioidergic circuits located in the PAG itself, in the nucleus raphe magnus and adjacent structures, and in the spinal cord. The clinical relevance of these findings, however, is unclear. Therefore, in the present study, dipyrone was administered intravenously, and the involvement of endogenous opioidergic circuits in the so-induced antinociception was investigated. In rats, responses of dorsal spinal wide-dynamic range neurons to mechanical noxious stimulation of a hindpaw were strongly inhibited by intravenous dipyrone (200 mg/kg). This effect was abolished by microinjection of naloxone (0.5 microg/0.5 microl) into the ventrolateral and lateral PAG or into the nucleus raphe magnus or by direct application of naloxone (50 microg/50 microl) onto the spinal cord surface above the recorded neuron. These results show that dipyrone, a non-opioid analgesic with widespread use in Europe and Latin America, when administered in a clinically relevant fashion causes antinociception by activating endogenous opioidergic circuits along the descending pain control system.
Snider, Natasha T; Walker, Vyvyca J; Hollenberg, Paul F
2010-03-01
Arachidonoyl ethanolamide (anandamide) is an endogenous amide of arachidonic acid and an important signaling mediator of the endocannabinoid system. Given its numerous roles in maintaining normal physiological function and modulating pathophysiological responses throughout the body, the endocannabinoid system is an important pharmacological target amenable to manipulation directly by cannabinoid receptor ligands or indirectly by drugs that alter endocannabinoid synthesis and inactivation. The latter approach has the possible advantage of more selectivity, thus there is the potential for fewer untoward effects like those that are traditionally associated with cannabinoid receptor ligands. In that regard, inhibitors of the principal inactivating enzyme for anandamide, fatty acid amide hydrolase (FAAH), are currently in development for the treatment of pain and inflammation. However, several pathways involved in anandamide synthesis, metabolism, and inactivation all need to be taken into account when evaluating the effects of FAAH inhibitors and similar agents in preclinical models and assessing their clinical potential. Anandamide undergoes oxidation by several human cytochrome P450 (P450) enzymes, including CYP3A4, CYP4F2, CYP4X1, and the highly polymorphic CYP2D6, forming numerous structurally diverse lipids, which are likely to have important physiological roles, as evidenced by the demonstration that a P450-derived epoxide of anandamide is a potent agonist for the cannabinoid receptor 2. The focus of this review is to emphasize the need for a better understanding of the P450-mediated pathways of the metabolism of anandamide, because these are likely to be important in mediating endocannabinoid signaling as well as the pharmacological responses to endocannabinoid-targeting drugs.
Liu, Nai-Jiang; Gintzler, Alan R.
2014-01-01
Endomorphin 2 (EM2) is the predominant endogenous mu-opioid receptor (MOR) ligand in the spinal cord. Given its endogenous presence, antinociceptive responsiveness to the intrathecal application of EM2 most likely reflects its ability to modulate nociception when released in situ. In order to explore the physiological pliability of sex-dependent differences in spinal MOR-mediated antinociception, we investigated the antinociception produced by intrathecal EM2 in male, proestrus female, and diestrus female rats. Antinociception was reflected by changes in tail flick latency to radiant heat. In females, the spinal EM2 antinociceptive system oscillated between analgesically active and inactive states. During diestrus, when circulating estrogens are low, spinal EM2 antinociceptive responsiveness was minimal. In contrast, during proestrus, when circulating estrogens are high, spinal EM2 antinociception was robust and comparable in magnitude to that manifest by males. Furthermore, in proestrus females, spinal EM2 antinociception required spinal dynorphin and kappaopioid receptor activation, concomitant with MOR activation. This is required for neither spinal EM2 antinociception in males nor the antinociception elicited in proestrus females by spinal sufentanil or [d-Ala2,N-methyl-Phe4,Gly-ol5]-enkephalin, which are prototypic MOR-selective nonpeptide and peptide agonists, respectively. These results reveal that spinal EM2 antinociception and the signaling mechanisms used to produce it fundamentally differ in males and females. Perspective The inability to mount spinal EM2 antinociception during defined stages of the estrus (and presumably menstrual) cycle and impaired transition from spinal EM2 analgesically nonresponsive to responsive physiological states could be causally associated with the well-documented greater severity and frequency of chronic intractable pain syndromes in women vs men. PMID:24084000
An fMRI study measuring analgesia enhanced by religion as a belief system.
Wiech, Katja; Farias, Miguel; Kahane, Guy; Shackel, Nicholas; Tiede, Wiebke; Tracey, Irene
2008-10-15
Although religious belief is often claimed to help with physical ailments including pain, it is unclear what psychological and neural mechanisms underlie the influence of religious belief on pain. By analogy to other top-down processes of pain modulation we hypothesized that religious belief helps believers reinterpret the emotional significance of pain, leading to emotional detachment from it. Recent findings on emotion regulation support a role for the right ventrolateral prefrontal cortex (VLPFC), a region also important for driving top-down pain inhibitory circuits. Using functional magnetic resonance imaging in practicing Catholics and avowed atheists and agnostics during painful stimulation, here we show the existence of a context-dependent form of analgesia that was triggered by the presentation of an image with a religious content but not by the presentation of a non-religious image. As confirmed by behavioral data, contemplation of the religious image enabled the religious group to detach themselves from the experience of pain. Critically, this context-dependent modulation of pain specifically engaged the right VLPFC, whereas group-specific preferential liking of one of the pictures was associated with activation in the ventral midbrain. We suggest that religious belief might provide a framework that allows individuals to engage known pain-regulatory brain processes.
Conditioned pain modulation (CPM) in children and adolescents: Effects of sex and age
Tsao, Jennie C. I.; Seidman, Laura C.; Evans, Subhadra; Lung, Kirsten C.; Zeltzer, Lonnie K.; Naliboff, Bruce D.
2013-01-01
Conditioned pain modulation (CPM) refers to the diminution of perceived pain intensity for a test stimulus following application of a conditioning stimulus to a remote area of the body, and is thought to reflect the descending inhibition of nociceptive signals. Studying CPM in children may inform interventions to enhance central pain inhibition within a developmental framework. We assessed CPM in 133 healthy children (mean age = 13 years; 52.6% girls) and tested the effects of sex and age. Participants were exposed to four trials of a pressure test stimulus before, during, and after the application of a cold water conditioning stimulus. CPM was documented by a reduction in pressure pain ratings during cold water administration. Older children (12–17 years) exhibited greater CPM than younger (8–11 years) children. No sex differences in CPM were found. Lower heart rate variability (HRV) at baseline and after pain induction was associated with less CPM controlling for child age. The findings of greater CPM in the older age cohort suggest a developmental improvement in central pain inhibitory mechanisms. The results highlight the need to examine developmental and contributory factors in central pain inhibitory mechanisms in children to guide effective, age appropriate, pain interventions. PMID:23541066
Buruck, Gabriele; Wendsche, Johannes; Melzer, Marlen; Strobel, Alexander; Dörfel, Denise
2014-01-01
Psychosocial stress affects resources for adequate coping with environmental demands. A crucial question in this context is the extent to which acute psychosocial stressors impact empathy and emotion regulation. In the present study, 120 participants were randomly assigned to a control group vs. a group confronted with the Trier Social Stress Test (TSST), an established paradigm for the induction of acute psychosocial stress. Empathy for pain as a specific subgroup of empathy was assessed via pain intensity ratings during a pain-picture task. Self-reported emotion regulation skills were measured as predictors using an established questionnaire. Stressed individuals scored significantly lower on the appraisal of pain pictures. A regression model was chosen to find variables that further predict the pain ratings. These findings implicate that acute psychosocial stress might impair empathic processes to observed pain in another person and the ability to accept one's emotion additionally predicts the empathic reaction. Furthermore, the ability to tolerate negative emotions modulated the relation between stress and pain judgments, and thus influenced core cognitive-affective functions relevant for coping with environmental challenges. In conclusion, our study emphasizes the necessity of reducing negative emotions in terms of empathic distress when confronted with pain of another person under psychosocial stress, in order to be able to retain pro-social behavior. PMID:24910626
Electromagnetic information transfer through aqueous system.
Foletti, Alberto; Ledda, Mario; Lolli, Maria Grazia; Grimaldi, Settimio; Lisi, Antonella
2017-01-01
Several beneficial effects of the electromagnetic information transfer through aqueous system (EMITTAS) procedure have previously been reported in vitro. The clinical potential of this procedure has also started to be evaluated. Information flow in biological systems can be investigated through chemical and molecular approaches or by a biophysical approach focused on endogenous electrodynamic activities. Electromagnetic signals are endogenously generated at different levels of the biological organization and, likely, play an active role in synchronizing internal cell function or local/systemic adaptive response. Consequently, each adaptive response can be described by its specific electromagnetic pattern and, therefore, correlates with a unique and specific electromagnetic signature. A biophysical procedure synchronously integrating the EMITTAS procedure has already been applied for the treatment of articular pain, low-back pain, neck pain and mobility, fluctuating asymmetry, early-stage chronic kidney disease, refractory gynecological infections, minor anxiety and depression disorders. This clinical strategy involves a single treatment, since the EMITTAS procedure allows the patient to continue his/her own personal treatment at home by means of self-administration of the recorded aqueous system. A significant and long-lasting improvement has been reported, showing a potential beneficial use of this biophysical procedure in the management of common illnesses in an efficient, effective and personalized way. Data from recent studies suggest that aqueous systems may play a key role in providing the basis for recording, storing, transferring and retrieving clinically effective quanta of biological information. These features likely enable to trigger local and systemic self-regulation and self-regeneration potential of the organism.
Altered neural responses to heat pain in drug-naive patients with Parkinson disease.
Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike
2017-08-01
Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.
Hassan, Muhammad Abul; Fraser, Matthew; Conway, Bernard A; Allan, David B; Vuckovic, Aleksandra
2015-10-13
Central neuropathic pain has a prevalence of 40% in patients with spinal cord injury. Electroencephalography (EEG) studies showed that this type of pain has identifiable signatures, that could potentially be targeted by a neuromodulation therapy. The aim of the study was to investigate the putative mechanism of neurofeedback training on central neuropathic pain and its underlying brain signatures in patients with chronic paraplegia. Patients' EEG activity was modulated from the sensory-motor cortex, electrode location C3/Cz/C4/P4 in up to 40 training sessions Results. Six out of seven patients reported immediate reduction of pain during neurofeedback training. Best results were achieved with suppressing Ɵ and higher β (20-30 Hz) power and reinforcing α power at C4. Four patients reported clinically significant long-term reduction of pain (>30%) which lasted at least a month beyond the therapy. EEG during neurofeedback revealed a wide spread modulation of power in all three frequency bands accompanied with changes in the coherence most notable in the beta band. The standardized low resolution electromagnetic tomography analysis of EEG before and after neurofeedback therapy showed the statistically significant reduction of power in beta frequency band in all tested patients. Areas with reduced power included the Dorsolateral Prefrontal Cortex, the Anterior Cingulate Cortex and the Insular Cortex. Neurofeedback training produces both immediate and longer term reduction of central neuropathic pain that is accompanied with a measurable short and long term modulation of cortical activity. Controlled trials are required to confirm the efficacy of this neurofeedback protocol on treatment of pain. The study is a registered UKCRN clinical trial Nr 9824.
Dimov, Luiz Fabio; Toniolo, Elaine Flamia; Alonso-Matielo, Heloísa; de Andrade, Daniel Ciampi; Garcia-Larrea, Luis; Ballester, Gerson; Teixeira, Manoel Jacobsen; Dale, Camila Squarzoni
2018-07-02
Cortical electrical stimulation (CES) has shown to be an effective therapeutic alternative for neuropathic pain refractory to pharmacological treatment. The primary motor cortex(M1) was the main cortical target used in the vast majority of both invasive and non-invasive studies. Despite positive results M1-based approaches still fail to relieve pain in a significant proportion of individuals. It has been advocated that the direct stimulation of cortical areas directly implicated in the central integration of pain could increase the efficacy of analgesic brain stimulation. Here, we evaluated the behavioral effects of electrical stimulation of the insular cortex (ESI) on pain sensitivity in an experimental rat model of peripheral neuropathy, and have described the pathways involved. Animals underwent chronic constriction of the sciatic nerve in the right hind limb and had concentric electrodes implanted in the posterior dysranular insular cortex. Mechanical nociception responses were evaluated before and at the end of a 15-min session of ESI (60Hz, 210μs, 1V). ESI reversed mechanical hypersensitivity in the paw contralateral to the brain hemisphere stimulated, without inducing motor impairment in the open-field test. Pharmacological blockade of μ-opioid (MOR) or type 1-cannabinoid receptors (CB1R) abolished ESI-induced antinociceptive effects. Evaluation of CB1R and MOR spatial expression demonstrated differential modulation of CB1R and MOR in the periaqueductal gray matter (PAG) of ESI-treated rats in sub-areas involved in pain processing/modulation. These results indicate that ESI induces antinociception by functionally modulating opioid and cannabinoid systems in the PAG pain circuitry in rats with experimentally induced neuropathic pain. Copyright © 2017 Elsevier B.V. All rights reserved.
Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels
Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E.
2011-01-01
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ1- and σ2-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na+ channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na+ channel Nav1.5. Patch-clamp recording in this cell line tested Na+ current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ1-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ2-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ1-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions. PMID:21084640
Antagonist action of progesterone at σ-receptors in the modulation of voltage-gated sodium channels.
Johannessen, Molly; Fontanilla, Dominique; Mavlyutov, Timur; Ruoho, Arnold E; Jackson, Meyer B
2011-02-01
σ-Receptors are integral membrane proteins that have been implicated in a number of biological functions, many of which involve the modulation of ion channels. A wide range of synthetic ligands activate σ-receptors, but endogenous σ-receptor ligands have proven elusive. One endogenous ligand, dimethyltryptamine (DMT), has been shown to act as a σ-receptor agonist. Progesterone and other steroids bind σ-receptors, but the functional consequences of these interactions are unclear. Here we investigated progesterone binding to σ(1)- and σ(2)-receptors and evaluated its effect on σ-receptor-mediated modulation of voltage-gated Na(+) channels. Progesterone binds both σ-receptor subtypes in liver membranes with comparable affinities and blocks photolabeling of both subtypes in human embryonic kidney 293 cells that stably express the human cardiac Na(+) channel Na(v)1.5. Patch-clamp recording in this cell line tested Na(+) current modulation by the σ-receptor ligands ditolylguanidine, PB28, (+)SKF10047, and DMT. Progesterone inhibited the action of these ligands to varying degrees, and some of these actions were reduced by σ(1)-receptor knockdown with small interfering RNA. Progesterone inhibition of channel modulation by drugs was consistent with stronger antagonism of σ(2)-receptors. By contrast, progesterone inhibition of channel modulation by DMT was consistent with stronger antagonism of σ(1)-receptors. Progesterone binding to σ-receptors blocks σ-receptor-mediated modulation of a voltage-gated ion channel, and this novel membrane action of progesterone may be relevant to changes in brain and cardiovascular function during endocrine transitions.
van Selm, M J; Gibson, W I; Travers, M J; Moseley, G L; Hince, D; Wand, B M
2018-04-20
Visualizing one's own painful body part appears to have an effect on reported pain intensity. Furthermore, it seems that manipulating the size of the viewed image can determine the direction and extent of this phenomenon. When visual distortion has been applied to clinical populations, the analgesic effects have been in opposition to those observed in some experimental pain models. To help resolve this problem, we explored the effect of visualisation and magnification of the visual image on reported pain using a delayed onset muscle soreness (DOMS) pain model. We induced DOMS in the quadriceps of 20 healthy volunteers. Forty-eight hours later, participants performed a series of painful contractions of the DOMS-affected muscle under four randomised conditions: (1) Viewing the injured thigh; (2) Viewing the contralateral thigh; (3) Viewing a neutral object; and (4) Viewing the injured thigh through magnifying glasses. For each condition, participants rated their pain intensity during a series of painful contractions. We observed that direct visualisation of the injured thigh had no effect on pain intensity when compared to viewing the contralateral thigh or neutral object. However, magnification of the DOMS-affected leg during the performance of painful contractions caused participants to report more pain than when viewing the injured thigh normally. These results further demonstrate that the effect of visualisation varies between different pain conditions. These results may have implications for the integration of visual feedback into clinical practice. We present delayed onset muscle soreness as a model for exploring visually induced analgesia. Our findings suggest that this phenomenon is expressed differently in exogenous and endogenous experimental pain models. Further exploration may offer a potential pathway for the integration of visual analgesia into the management of clinical pain. © 2018 European Pain Federation - EFIC®.
Ethnicity is associated with alterations in oxytocin relationships to pain sensitivity in women
Grewen, Karen M.; Light, Kathleen C.; Mechlin, Beth; Girdler, Susan S.
2015-01-01
It is well established that African Americans (AA) experience greater pain associated with a variety of clinical conditions, and greater pain sensitivity to experimental pain tasks relative to non-Hispanic Whites (W). Notably, African Americans do not show the same relationships involving endogenous pain regulatory mechanisms and pain sensitivity documented in Caucasians, including positive associations between blood pressure, norepinephrine, cortisol and greater pain tolerance. Objectives The purpose of this study was to examine the relationship between plasma oxytocin (OT) and pain sensitivity and to explore the relation of OT to other factors known to influence pain perception. Design OT concentration and sensitivity to ischemic, cold pressor, and thermal pain tasks were assessed in African American (n=25) and non-Hispanic White (n=23) pre-menopausal women. Results African American women demonstrated significantly lower pain tolerance across tasks compared with Whites (F1,46 =6.31, p=0.0156) and also exhibited lower plasma OT levels (AA: 3.90, W: 7.05 pg/mL; p=0.0014). Greater OT levels were correlated with greater tolerance to ischemic pain (r=0.36, p=0.013) and accounted for a marginally significant portion of the ethnic difference in ischemic pain tolerance (B=+0.29, p=0.06). Greater OT was also correlated with greater tolerance of cold pressor pain (r=0.31, p=0.03); however, this association was no longer seen after the variance due to ethnicity was accounted for. Conclusion These data suggest that reduced oxytocinergic function may be one of multiple biological factors contributing to the greater sensitivity to experimental ischemic pain, and to the greater burden of some types of clinical pain experienced by African Americans compared with Whites. PMID:18568974
Novel Molecular Strategies and Targets for Opioid Drug Discovery for the Treatment of Chronic Pain
Olson, Keith M.; Lei, Wei; Keresztes, Attila; LaVigne, Justin; Streicher, John M.
2017-01-01
Opioid drugs like morphine and fentanyl are the gold standard for treating moderate to severe acute and chronic pain. However, opioid drug use can be limited by serious side effects, including constipation, tolerance, respiratory suppression, and addiction. For more than 100 years, we have tried to develop opioids that decrease or eliminate these liabilities, with little success. Recent advances in understanding opioid receptor signal transduction have suggested new possibilities to activate the opioid receptors to cause analgesia, while reducing or eliminating unwanted side effects. These new approaches include designing functionally selective ligands, which activate desired signaling cascades while avoiding signaling cascades that are thought to provoke side effects. It may also be possible to directly modulate downstream signaling through the use of selective activators and inhibitors. Separate from downstream signal transduction, it has also been found that when the opioid system is stimulated, various negative feedback systems are upregulated to compensate, which can drive side effects. This has led to the development of multi-functional molecules that simultaneously activate the opioid receptor while blocking various negative feedback receptor systems including cholecystokinin and neurokinin-1. Other novel approaches include targeting heterodimers of the opioid and other receptor systems which may drive side effects, and making endogenous opioid peptides druggable, which may also reduce opioid mediated side effects. Taken together, these advances in our molecular understanding provide a path forward to break the barrier in producing an opioid with reduced or eliminated side effects, especially addiction, which may provide relief for millions of patients. PMID:28356897
Labus, Jennifer; Dinov, Ivo D.; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A.; Joshi, Shantanu; Thompson, Paul M.; Toga, Arthur W.; Mayer, Emeran A.
2014-01-01
Alterations in gray matter (GM) density/ volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with different chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at UCLA between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32 ± 10 SD, 119 Healthy Controls [HCs], 30± 10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between IBS and HC groups. Relative to HCs, the IBS group had lower volumes in bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found for the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for Early Trauma Inventory global score with the exception of the right amygdala and the left post central gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, the right cingulate gyrus and right thalamus were identified as significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. PMID:24076048
Frequency modulation entrains slow neural oscillations and optimizes human listening behavior
Henry, Molly J.; Obleser, Jonas
2012-01-01
The human ability to continuously track dynamic environmental stimuli, in particular speech, is proposed to profit from “entrainment” of endogenous neural oscillations, which involves phase reorganization such that “optimal” phase comes into line with temporally expected critical events, resulting in improved processing. The current experiment goes beyond previous work in this domain by addressing two thus far unanswered questions. First, how general is neural entrainment to environmental rhythms: Can neural oscillations be entrained by temporal dynamics of ongoing rhythmic stimuli without abrupt onsets? Second, does neural entrainment optimize performance of the perceptual system: Does human auditory perception benefit from neural phase reorganization? In a human electroencephalography study, listeners detected short gaps distributed uniformly with respect to the phase angle of a 3-Hz frequency-modulated stimulus. Listeners’ ability to detect gaps in the frequency-modulated sound was not uniformly distributed in time, but clustered in certain preferred phases of the modulation. Moreover, the optimal stimulus phase was individually determined by the neural delta oscillation entrained by the stimulus. Finally, delta phase predicted behavior better than stimulus phase or the event-related potential after the gap. This study demonstrates behavioral benefits of phase realignment in response to frequency-modulated auditory stimuli, overall suggesting that frequency fluctuations in natural environmental input provide a pacing signal for endogenous neural oscillations, thereby influencing perceptual processing. PMID:23151506
Corrêa, Juliana Barbosa; Costa, Leonardo Oliveira Pena; de Oliveira, Naiane Teixeira Bastos; Sluka, Kathleen A; Liebano, Richard Eloin
2013-06-27
Low back pain is an important public health problem that is associated with poor quality of life and disability. Among the electrophysical treatments, interferential current (IFC) has not been studied in patients with low back pain in a high-quality randomised controlled trial examining not only pain, but pain mechanisms and function. A three-arm randomised controlled trial with patient and assessor blinded to the group allocation. One hundred fifty patients with chronic, nonspecific low back pain from outpatient physical therapy clinics in Brazil. The patients will be randomly allocated into 3 groups (IFC 1 kHz, IFC 4 kHz or Placebo IFC). The interferential current will be applied three days per week (30 minutes per session) over four weeks. Pain intensity. The pressure pain threshold, global impression of recovery, disability, function, conditioned pain modulation and temporal summation of pain, discomfort caused by the current. All outcomes will be measured at 4 weeks and 4 months after randomisation. The between-group differences will be calculated by using linear mixed models and Tukey's post-hoc tests. The use of a placebo group and double-blinding assessor and patients strengthen this study. The present study is the first to compare different IFC carrier frequencies in patients with chronic low back pain. Brazilian Registry of Clinical Trials: http://RBR-8n4hg2.
Effects of music engagement on responses to painful stimulation.
Bradshaw, David H; Chapman, C Richard; Jacobson, Robert C; Donaldson, Gary W
2012-06-01
We propose a theoretical framework for the behavioral modulation of pain based on constructivism, positing that task engagement, such as listening for errors in a musical passage, can establish a construction of reality that effectively replaces pain as a competing construction. Graded engagement produces graded reductions in pain as indicated by reduced psychophysiological arousal and subjective pain report. Fifty-three healthy volunteers having normal hearing participated in 4 music listening conditions consisting of passive listening (no task) or performing an error detection task varying in signal complexity and task difficulty. During all conditions, participants received normally painful fingertip shocks varying in intensity while stimulus-evoked potentials (SEP), pupil dilation responses (PDR), and retrospective pain reports were obtained. SEP and PDR increased with increasing stimulus intensity. Task performance decreased with increasing task difficulty. Mixed model analyses, adjusted for habituation/sensitization and repeated measures within person, revealed significant quadratic trends for SEP and pain report (Pchange<0.001) with large reductions from no task to easy task and smaller graded reductions corresponding to increasing task difficulty/complexity. PDR decreased linearly (Pchange<0.001) with graded task condition. We infer that these graded reductions in indicators of central and peripheral arousal and in reported pain correspond to graded increases in engagement in the music listening task. Engaging activities may prevent pain by creating competing constructions of reality that draw on the same processing resources as pain. Better understanding of these processes will advance the development of more effective pain modulation through improved manipulation of engagement strategies.
Nelson, Michael T; Joksovic, Pavle M; Su, Peihan; Kang, Ho-Won; Van Deusen, Amy; Baumgart, Joel P; David, Laurence S; Snutch, Terrance P; Barrett, Paula Q; Lee, Jung-Ha; Zorumski, Charles F; Perez-Reyes, Edward; Todorovic, Slobodan M
2007-11-14
T-type Ca2+ channels (T-channels) are involved in the control of neuronal excitability and their gating can be modulated by a variety of redox agents. Ascorbate is an endogenous redox agent that can function as both an anti- and pro-oxidant. Here, we show that ascorbate selectively inhibits native Ca(v)3.2 T-channels in peripheral and central neurons, as well as recombinant Ca(v)3.2 channels heterologously expressed in human embryonic kidney 293 cells, by initiating the metal-catalyzed oxidation of a specific, metal-binding histidine residue in domain 1 of the channel. Our biophysical experiments indicate that ascorbate reduces the availability of Ca(v)3.2 channels over a wide range of membrane potentials, and inhibits Ca(v)3.2-dependent low-threshold-Ca2+ spikes as well as burst-firing in reticular thalamic neurons at physiologically relevant concentrations. This study represents the first mechanistic demonstration of ion channel modulation by ascorbate, and suggests that ascorbate may function as an endogenous modulator of neuronal excitability.
Therapeutic Potential of Targeting the Ghrelin Pathway.
Colldén, Gustav; Tschöp, Matthias H; Müller, Timo D
2017-04-11
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems' metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Therapeutic Potential of Targeting the Ghrelin Pathway
Colldén, Gustav; Tschöp, Matthias H.; Müller, Timo D.
2017-01-01
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome. PMID:28398233
Modulation of the NMDA receptor by polyamines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, K.; Romano, C.; Dichter, M.A.
1991-01-01
Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been foundmore » to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.« less
Endogenous opiates and behavior: 2008.
Bodnar, Richard J
2009-12-01
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
The expanding field of cannabimimetic and related lipid mediators
Bradshaw, Heather B; Walker, J Michael
2005-01-01
The discovery of the endogenous cannabimimetic lipid mediators, anandamide and 2-arachidonoyl glycerol, opened the door to the discovery of other endogenous lipid mediators similar in structure and function. The majority of these compounds do not bind appreciably to known cannabinoid receptors; yet some of them produce cannabimimetic effects while others exert actions through novel mechanisms that remain to be elucidated. This review explores the growing diversity of recently discovered putative lipid mediators and their relationship to the endogenous cannabinoid system. The possibility that there remain many unidentified signalling lipids coupled with the evidence that many of these yield bioactive metabolites due to actions of known enzymes (e.g. cyclooxygenases, lipoxygenases, cytochrome P450s) suggests the existence of a large and complex family of lipid mediators about which only little is known at this time. The elucidation of the biochemistry and pharmacology of these compounds may provide therapeutic targets for a variety of conditions including sleep dysfunction, eating disorders, cardiovascular disease, as well as inflammation and pain. PMID:15655504
[Identification of mouse brain neuropeptides by high throughput mass spectrometry].
Shao, Xianfeng; Ma, Min; Chen, Ruibing; Jia, Chenxi
2018-04-25
Neuropeptides play an important role in the physiological functions of the human body. The physiological activities such as pain, sleep, mood, learning and memory are affected by neuropeptides. Neuropeptides mainly exist in the nerve tissue of the body, and a small amount of them are distributed in body fluid and organs. At present, analysis of large-scale identification of neuropeptides in whole brain tissue is still challenging. Therefore, high-throughput detection of these neuropeptides is greatly significant to understand the composition and function of neuropeptides. In this study, 1 830 endogenous peptides and 99 novel putative neuropeptides were identified by extraction of endogenous peptides from whole brain tissue of mice by liquid phase tandem mass spectrometry (LC-MS / MS). The identification of these endogenous peptides provides not only a reference value in the treatment and mechanism studies of diseases and the development of drugs, but also the basis for the study of a new neuropeptides and their functions.
Dalton, George D; Dewey, William L
2006-02-01
Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.
NASA Astrophysics Data System (ADS)
Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar
2014-05-01
Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00974f
Molecular Signatures of Chronic Pain Subtypes
2013-01-01
on August 4, 2011. Our project coordinator was in touch with Ms. Lesnow on December 21. We were asked to provide a breakdown of costs for the...49]. A few candidate gene polymorphisms have been linked to pain susceptibility, including catechol-O-methyltranferase ( COMT ). This gene modulates...nociceptive and inflammatory pain and has been linked to temporomandibular joint pain syndromes [50]. Even studies of COMT , however, have demonstrated
Modulating nitric oxide levels in dorsal root ganglion neurons of rat with low-level laser therapy
NASA Astrophysics Data System (ADS)
Zheng, Li-qin; Wang, Yu-hua; He, Yi-peng; Zhou, Jie; Yang, Hong-qin; Zhang, Yan-ding; Xie, Shu-sen
2015-05-01
Nitric oxide (NO) and nitric oxide synthase (NOS) have an important role in pain signaling transmission in animal models. Low-level laser therapy (LLLT) is known to have an analgesic effect, but the mechanism is unclear. The aim of the study is to investigate the influence of LLLT on NO release and NOS synthesis in dorsal root ganglion (DRG) neurons, in order to find whether LLLI can ameliorate pain through modulating NO production at the cellular level. The results show that in stress conditions, the laser irradiation at 658 nm can modulate NO production in DRG neurons with soma diameter of about 20 μm in a short time after illumination, and affect NOS synthesis in a dose-dependent manner. It is demonstrated that LLLT might treat pain by altering NO release directly and indirectly in DRG neurons.
Vieira, Graziela; Cavalli, Juliana; Gonçalves, Elaine C. D.; Gonçalves, Tainara R.; Laurindo, Larissa R.; Cola, Maíra; Dutra, Rafael C.
2017-01-01
Simvastatin is a lipid-lowering agent that blocks the production of cholesterol through inhibition of 3-hydroxy-methyl-glutaryl coenzyme A (HMG-CoA) reductase. In addition, recent evidence has suggested its anti-inflammatory and antinociceptive actions during inflammatory and pain disorders. Herein, we investigated the effects of simvastatin in an animal model of complex regional pain syndrome-type I, and its underlying mechanisms. Chronic post-ischemia pain (CPIP) was induced by ischemia and reperfusion (IR) injury of the left hind paw. Our findings showed that simvastatin inhibited mechanical hyperalgesia induced by CPIP model in single and repeated treatment schedules, respectively; however simvastatin did not alter inflammatory signs during CPIP model. The mechanisms underlying those actions are related to modulation of transient receptor potential (TRP) channels, especially TRMP8. Moreover, simvastatin oral treatment was able to reduce the nociception induced by acidified saline [an acid-sensing ion channels (ASICs) activator] and bradykinin (BK) stimulus, but not by TRPA1, TRPV1 or prostaglandin-E2 (PGE2). Relevantly, the antinociceptive effects of simvastatin did not seem to be associated with modulation of the descending pain circuits, especially noradrenergic, serotoninergic and dopaminergic systems. These results indicate that simvastatin consistently inhibits mechanical hyperalgesia during neuropathic and inflammatory disorders, possibly by modulating the ascending pain signaling (TRPM8/ASIC/BK pathways expressed in the primary sensory neuron). Thus, simvastatin open-up new standpoint in the development of innovative analgesic drugs for treatment of persistent pain, including CRPS-I. PMID:28928655
Neural correlates of endogenous attention, exogenous attention and inhibition of return in touch.
Jones, Alexander; Forster, Bettina
2014-07-01
Selective attention helps process the myriad of information constantly touching our body. Both endogenous and exogenous mechanisms are relied upon to effectively process this information; however, it is unclear how they relate in the sense of touch. In three tasks we contrasted endogenous and exogenous event-related potential (ERP) and behavioural effects. Unilateral tactile cues were followed by a tactile target at the same or opposite hand. Clear behavioural effects showed facilitation of expected targets both when the cue predicted targets at the same (endogenous predictive task) and opposite hand (endogenous counter-predictive task), and these effects also correlated with ERP effects of endogenous attention. In an exogenous task, where the cue was non-informative, inhibition of return (IOR) was observed. The electrophysiological results demonstrated early effects of exogenous attention followed by later endogenous attention modulations. These effects were independent in both the endogenous predictive and exogenous tasks. However, voluntarily directing attention away from a cued body part influenced the early exogenous marker (N80). This suggests that the two mechanisms are interdependent, at least when the task requires more demanding shifts of attention. The early marker of exogenous tactile attention, the N80, was not directly related to IOR, which may suggest that exogenous attention and IOR are not necessarily two sides of the same coin. This study adds valuable new insight into how we process and select information presented to our body, showing both independent and interdependent effects of endogenous and exogenous attention in touch. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Clinical Significance of Prostatic Calculi: A Review
2018-01-01
Prostatic calculi often occur in middle-aged and old men. Prostatic calculi are usually classified as primary/endogenous stones or secondary/extrinsic stones. Endogenous stones are commonly caused by obstruction of the prostatic ducts around the enlarged prostate by benign prostatic hyperplasia (BPH) or by chronic inflammation. Extrinsic stones occur mainly around the urethra, because they are caused by urine reflux. The exact prevalence of prostatic calculi is not known, and it has been reported to vary widely, from 7% to 70%. Most cases of prostatic calculi are not accompanied by symptoms. Therefore, most cases are found incidentally during the diagnosis of BPH using transrectal ultrasonography (TRUS). However, prostatic calculi associated with chronic prostatitis may be accompanied by chronic pelvic pain. Rare cases have been reported in which extrinsic prostatic calculi caused by urine reflux have led to voiding difficulty due to their size. More than 80% of prostatic calculi are composed of calcium phosphate. Prostatic calculi can be easily diagnosed using TRUS or computed tomography. Treatment is often unnecessary, but if an individual experiences difficulty in urination or chronic pain, prostatic calculi can be easily removed using a transurethral electroresection loop or holmium laser. PMID:29076299
Haywood, Adrian R; Hathway, Gareth J; Chapman, Victoria
2018-05-08
The mechanisms underlying the transition from acute nociceptive pain to centrally maintained chronic pain are not clear. We have studied the contributions of the peripheral and central nervous systems during the development of osteoarthritis (OA) pain. Male Sprague-Dawley rats received unilateral intra-articular injections of monosodium iodoacetate (MIA 1 mg) or saline, and weight-bearing (WB) asymmetry and distal allodynia measured. Subgroups of rats received intra-articular injections of, QX-314 (membrane impermeable local anaesthetic) + capsaicin, QX-314, capsaicin or vehicle on days 7, 14 or 28 post-MIA and WB and PWT remeasured. On days 7&14 post-MIA, but not day 28, QX-314 + capsaicin signficantly attenuated changes in WB induced by MIA, illustrating a crucial role for TRPV1 expressing nociceptors in early OA pain. The role of top-down control of spinal excitability was investigated. The mu-opioid receptor agonist DAMGO was microinjected into the rostroventral medulla, to activate endogenous pain modulatory systems, in MIA and control rats and reflex excitability measured using electromyography. DAMGO (3 ng) had a significantly larger inhibitory effect in MIA treated rats than in controls. These data show distinct temporal contribtuions of TRPV1 expressing nociceptors and opioidergic pain control systems at later timepoints.
Functional Results in Arthroscopic Treatment in Patients with Chronic Lateral Elbow Pain.
Phorkhar, Termphong; Chanlalit, Cholawish
2015-11-01
Modern surgery as elbow arthroscopic surgery is an accepted operation due to benefit in precise intra-articular lesion detection and minimally invasive surgery. To report the functional results when using arthroscopic surgery to treat chronic lateral elbow pain. The data was collected from 25 patients with chronic lateral elbow pain that failed in non-operative treatment and treated with elbow arthroscopic surgery. Five patients were excluded from this study due to diagnosed as instability that needed the ligament reconstruction. The etiology of pain were grouped in to tennis elbow (4 pts), plica (9 pts), tennis elbow combined with plica (4 pts) and cartilage lesion (3 pts). Thai quick DASH questionnaire was used to evaluate the functional results by comparing pre and post operation score and calculated statistic results with paired t-test by level of significance p < 0.05. The mean follow-up after surgery was 22 months by mean disability module pre and post-operative score is 68 and 18 respectively. In the occupation module was 74 and 25 respectively and in sports module was 81 and 17 respectively. All modules, scores was significant improved with p-value = 0.000, 0.000 and 0.004 respectively. The disability mean score in pre and post-operative along the diagnosis, tennis elbow mean score was 74 and 33, in plica lesion mean score was 65 and 11, combined lesions mean score was 60 and 18 and cartilage lesion mean score was 60 and 20. Approaching chronic lateral elbow pain with arthroscopy can maintain the signficant improvement of functional result in midterm follow-up.
Parabrachial complex links pain transmission to descending pain modulation.
Roeder, Zachary; Chen, QiLiang; Davis, Sophia; Carlson, Jonathan D; Tupone, Domenico; Heinricher, Mary M
2016-12-01
The rostral ventromedial medulla (RVM) has a well-documented role in pain modulation and exerts antinociceptive and pronociceptive influences mediated by 2 distinct classes of neurons, OFF-cells and ON-cells. OFF-cells are defined by a sudden pause in firing in response to nociceptive inputs, whereas ON-cells are characterized by a "burst" of activity. Although these reflex-related changes in ON- and OFF-cell firing are critical to their pain-modulating function, the pathways mediating these responses have not been identified. The present experiments were designed to test the hypothesis that nociceptive input to the RVM is relayed through the parabrachial complex (PB). In electrophysiological studies, ON- and OFF-cells were recorded in the RVM of lightly anesthetized male rats before and after an infusion of lidocaine or muscimol into PB. The ON-cell burst and OFF-cell pause evoked by noxious heat or mechanical probing were substantially attenuated by inactivation of the lateral, but not medial, parabrachial area. Retrograde tracing studies showed that neurons projecting to the RVM were scattered throughout PB. Few of these neurons expressed calcitonin gene-related peptide, suggesting that the RVM projection from PB is distinct from that to the amygdala. These data show that a substantial component of "bottom-up" nociceptive drive to RVM pain-modulating neurons is relayed through the PB. While the PB is well known as an important relay for ascending nociceptive information, its functional connection with the RVM allows the spinoparabrachial pathway to access descending control systems as part of a recurrent circuit.
Potential of Endocannabinoids to Control Bladder Pain.
Bjorling, Dale E; Wang, Zun-Yi
2018-01-01
Bladder-related pain is one of the most common forms of visceral pain, and visceral pain is among the most common complaints for which patients seek physician consultation. Despite extensive studies of visceral innervation and treatment of visceral pain, opioids remain a mainstay for management of bladder pain. Side effects associated with opioid therapy can profoundly diminish quality of life, and improved options for treatment of bladder pain remain a high priority. Endocannabinoids, primarily anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are endogenously-produced fatty acid ethanolamides with that induce analgesia. Animal experiments have demonstrated that inhibition of enzymes that degrade AEA or 2-AG have the potential to prevent development of visceral and somatic pain. Although experimental results in animal models have been promising, clinical application of this approach has proven difficult. In addition to fatty acid amide hydrolase (FAAH; degrades AEA) and monacylglycerol lipase (MAGL; degrades 2-AG), cyclooxygenase (COX) acts to metabolize endocannabinoids. Another potential limitation of this strategy is that AEA activates pro-nociceptive transient receptor potential vanilloid 1 (TRPV1) channels. Dual inhibitors of FAAH and TRPV1 or FAAH and COX have been synthesized and are currently undergoing preclinical testing for efficacy in providing analgesia. Local inhibition of FAAH or MAGL within the bladder may be viable options to reduce pain associated with cystitis with fewer systemic side effects, but this has not been explored. Further investigation is required before manipulation of the endocannabinoid system can be proven as an efficacious alternative for management of bladder pain.
Serratia marcescens endogenous endophthalmitis in an immunocompetent host
Memon, Muhammad; Raman, Vasant
2016-01-01
A systemically well 66-year-old white Caucasian man presented to the urgent care department with a short history of progressive pain and blurring of vision in his left eye. He denied a history of trauma, intraocular surgery or use of illicit drugs. He was diagnosed with endogenous endophthalmitis. Vitreous biopsy grew Serratia marcescens, a Gram negative bacteria. In spite of extensive investigation, there was no obvious source of infection. He had an indwelling urine catheter for prostate hypertrophy, but urine culture was negative. There was no evidence of immunocompromise. He was treated with systemic as well as intravitreal antibiotics. In spite of appropriate treatment, the patient lost vision. S. marcescens endophthalmitis, seen even in immunocompetent people, carries a poor visual prognosis. PMID:26791115
Serratia marcescens endogenous endophthalmitis in an immunocompetent host.
Memon, Muhammad; Raman, Vasant
2016-01-20
A systemically well 66-year-old white Caucasian man presented to the urgent care department with a short history of progressive pain and blurring of vision in his left eye. He denied a history of trauma, intraocular surgery or use of illicit drugs. He was diagnosed with endogenous endophthalmitis. Vitreous biopsy grew Serratia marcescens, a Gram negative bacteria. In spite of extensive investigation, there was no obvious source of infection. He had an indwelling urine catheter for prostate hypertrophy, but urine culture was negative. There was no evidence of immunocompromise. He was treated with systemic as well as intravitreal antibiotics. In spite of appropriate treatment, the patient lost vision. S. marcescens endophthalmitis, seen even in immunocompetent people, carries a poor visual prognosis. 2016 BMJ Publishing Group Ltd.
Ickmans, Kelly; Malfliet, Anneleen; De Kooning, Margot; Goudman, Lisa; Hubloue, Ives; Schmitz, Tom; Goubert, Dorien; Aguilar-Ferrandiz, Maria Encarnacion
2017-09-01
Individuals with chronic whiplash associated disorders (WAD) present persistent pain in the absence of structural pathology. In these people, altered central pain processing and central sensitization are observed. The role of personal factors, such as gender and age, on pain processing mechanisms in chronic WAD, however, is still unclear. This study investigated possible gender- and age-related differences in self-reported and experimental pain measurements in people with chronic WAD. Besides the exercise-induced response on pain measurements between gender and age subgroups was recorded. Case-control study. University Hospital, Brussels. Self-reported pain and experimental pain measurements (pressure pain thresholds [PPT], occlusion cuff pressure, temporal summation, and conditioned pain modulation) were performed in 52 individuals (26 chronic WAD patients and 26 healthy controls), before and after a submaximal cycle exercise. Lower PPTs and occlusion cuff pressures were shown in chronic WAD in comparison with healthy controls. No gender and age differences regarding PPTs, occlusion cuff pressures and conditioned pain modulation were found in chronic WAD. Within the chronic WAD group, men showed higher self-reported pain compared to women and younger adults showed enhanced generalized pain facilitation compared to older adults. In addition, chronic WAD patients are able to inhibit exercise-induced hyperalgesia, but no gender and age differences in pain response following exercise were found. This study was sufficiently powered to detect differences between the chronic WAD and control group. However, a sufficient power was not reached when patients were divided in age and gender groups. Furthermore, only mechanical stimuli were included in the experimental pain measurements. Besides, psychosocial factors were not taken into account. Some alterations of altered pain processing are present in chronic WAD patients, however not in response to exercise. No gender and age differences in pain measurements were observed in people with chronic WAD.Key words: Neck pain, whiplash associated disorders, chronic pain, personal factors, age, gender, central sensitization, exercise induced hyperalgesia, pressure pain thresholds, self reported pain.
Activity of masticatory muscles in subjects with different orofacial pain conditions.
Bodéré, Céline; Téa, Say Hack; Giroux-Metges, Marie Agnes; Woda, Alain
2005-07-01
The existence of a pathophysiological link between tonic muscle activity and chronic muscle pain is still being debated. The purpose of this retrospective, controlled study was to evaluate the electromyographic (EMG) activity of masticatory muscles in subjects with different orofacial pain conditions. The temporal and masseter EMG activity at rest and the masseteric reflex were recorded in two groups of patients with either myofascial pain (n=33) or neuropathic pain (n=20), one group of non-pain patients with disc derangement disorders (n=27) and one control group of healthy, asymptomatic subjects (n=32). The EMG activities of both muscles at rest were significantly higher in the pain patient groups compared to the asymptomatic control group. There was no significant difference between the disc derangement disorder group and the control group. The masseteric reflex amplitude was reduced in all patient groups when compared with the control group. In pain patient groups, the increased EMG activity at rest and the reduction of the masseteric reflex amplitude were equally distributed in the pain and non-pain sides. In addition, subjects presenting with bilateral pain showed higher EMG activity at rest than those with unilateral pain. These results suggested that the modulation of muscle activity was not the direct consequence of a peripheral nociceptive mechanism and seemed to indicate that a central mechanism was at work. The contrast between the increased EMG activity at rest and the reduction of the masseteric reflex amplitude may reflect modulations of motoneurones that differed in tonic versus phasic conditions in chronic pain patients.
Brain mediators of predictive cue effects on perceived pain
Atlas, Lauren Y.; Bolger, Niall; Lindquist, Martin A.; Wager, Tor D.
2010-01-01
Information about upcoming pain strongly influences pain experience in experimental and clinical settings, but little is known about the brain mechanisms that link expectation and experience. To identify the pathways by which informational cues influence perception, analyses must jointly consider both the effects of cues on brain responses and the relationship between brain responses and changes in reported experience. Our task and analysis strategy were designed to test these relationships. Auditory cues elicited expectations for low or high painful thermal stimulation, and we assessed how cues influenced human subjects’ pain reports and BOLD fMRI responses to matched levels of noxious heat. We used multi-level mediation analysis to identify brain regions that 1) are modulated by predictive cues, 2) predict trial-to-trial variations in pain reports, and 3) formally mediate the relationship between cues and reported pain. Cues influenced heat-evoked responses in most canonical pain-processing regions, including both medial and lateral pain pathways. Effects on several regions correlated with pre-task expectations, suggesting that expectancy plays a prominent role. A subset of pain-processing regions, including anterior cingulate cortex, anterior insula, and thalamus, formally mediated cue effects on pain. Effects on these regions were in turn mediated by cue-evoked anticipatory activity in the medial orbitofrontal cortex (OFC) and ventral striatum, areas not previously directly implicated in nociception. These results suggest that activity in pain-processing regions reflects a combination of nociceptive input and top-down information related to expectations, and that anticipatory processes in OFC and striatum may play a key role in modulating pain processing. PMID:20881115
Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex.
Jasmin, Luc; Rabkin, Samuel D; Granato, Alberto; Boudah, Abdennacer; Ohara, Peter T
2003-07-17
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.
Yu, Rongjun; Gollub, Randy L; Vangel, Mark; Kaptchuk, Ted; Smoller, Jordan W; Kong, Jian
2014-09-01
Our expectations about an event can strongly shape our subjective evaluation and actual experience of events. This ability, applied to the modulation of pain, has the potential to affect therapeutic analgesia substantially and constitutes a foundation for non-pharmacological pain relief. A typical example of such modulation is the placebo effect. Studies indicate that placebo may be regarded as a reward, and brain activity in the reward system is involved in this modulation process. In the present study, we combined resting-state functional magnetic resonance imaging (rs-fMRI) measures, genotype at a functional COMT polymorphism (Val158Met), and personality measures in a model to predict the magnitude of placebo conditioning effect indicated by subjective pain rating reduction to calibrated noxious stimuli. We found that the regional homogeneity (ReHo), an index of local neural coherence, in the ventral striatum, was significantly associated with conditioning effects on pain rating changes. We also found that the number of Met alleles at the COMT polymorphism was linearly correlated to the suppression of pain. In a fitted regression model, we found the ReHo in the ventral striatum, COMT genotype, and Openness scores accounted for 59% of the variance in the change in pain ratings. The model was further tested using a separate data set from the same study. Our findings demonstrate the potential of combining resting-state connectivity, genetic information, and personality to predict placebo effect. Copyright © 2014 Wiley Periodicals, Inc.
Pain modulation during drives through cold and hot virtual environments.
Mühlberger, Andreas; Wieser, Matthias J; Kenntner-Mabiala, Ramona; Pauli, Paul; Wiederhold, Brenda K
2007-08-01
Evidence exists that virtual worlds reduce pain perception by providing distraction. However, there is no experimental study to show that the type of world used in virtual reality (VR) distraction influences pain perception. Therefore, we investigated whether pain triggered by heat or cold stimuli is modulated by "warm "or "cold " virtual environments and whether virtual worlds reduce pain perception more than does static picture presentation. We expected that cold worlds would reduce pain perception from heat stimuli, while warm environments would reduce pain perception from cold stimuli. Additionally, both virtual worlds should reduce pain perception in general. Heat and cold pain stimuli thresholds were assessed outside VR in 48 volunteers in a balanced crossover design. Participants completed three 4-minute assessment periods: virtual "walks " through (1) a winter and (2) an autumn landscape and static exposure to (3) a neutral landscape. During each period, five heat stimuli or three cold stimuli were delivered via a thermode on the participant's arm, and affective and sensory pain perceptions were rated. Then the thermode was changed to the other arm, and the procedure was repeated with the opposite pain stimuli (heat or cold). We found that both warm and cold virtual environments reduced pain intensity and unpleasantness for heat and cold pain stimuli when compared to the control condition. Since participants wore a head-mounted display (HMD) in both the control condition and VR, we concluded that the distracting value of virtual environments is not explained solely by excluding perception of the real world. Although VR reduced pain unpleasantness, we found no difference in efficacy between the types of virtual world used for each pain stimulus.
N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1
Lawton, Samira K.; Xu, Fengyun; Tran, Alphonso; Wong, Erika; Schumacher, Mark; Wilhelmsen, Kevin
2017-01-01
N-Arachidonoyl dopamine (NADA) is an endogenous lipid that potently activates the transient receptor potential vanilloid 1 (TRPV1), which mediates pain and thermosensation. NADA is also an agonist of cannabinoid receptors 1 and 2. We have reported that NADA reduces the activation of cultured human endothelial cells by LPS and TNF-α. Thus far, in vivo studies using NADA have focused on its neurologic and behavioral roles. In this article, we show that NADA potently decreases in vivo systemic inflammatory responses and levels of the coagulation intermediary plasminogen activator inhibitor 1 in three mouse models of inflammation: LPS, bacterial lipopeptide, and polymicrobial intra-abdominal sepsis. We also found that the administration of NADA increases survival in endotoxemic mice. Additionally, NADA reduces blood levels of the neuropeptide calcitonin gene-related peptide but increases the neuropeptide substance P in LPS-treated mice. We demonstrate that the anti-inflammatory effects of NADA are mediated by TRPV1 expressed by nonhematopoietic cells and provide data suggesting that neuronal TRPV1 may mediate NADA’s anti-inflammatory effects. These results indicate that NADA has novel TRPV1-dependent anti-inflammatory properties and suggest that the endovanilloid system might be targeted therapeutically in acute inflammation. PMID:28701511
Glutamate and Its Receptors as Therapeutic Targets for Migraine.
Hoffmann, Jan; Charles, Andrew
2018-04-01
There is substantial evidence indicating a role for glutamate in migraine. Levels of glutamate are higher in the brain and possibly also in the peripheral circulation in migraine patients, particularly during attacks. Altered blood levels of kynurenines, endogenous modulators of glutamate receptors, have been reported in migraine patients. Population genetic studies implicate genes that are involved with glutamate signaling in migraine, and gene mutations responsible for familial hemiplegic migraine and other familial migraine syndromes may influence glutamate signaling. Animal studies indicate that glutamate plays a key role in pain transmission, central sensitization, and cortical spreading depression. Multiple therapies that target glutamate receptors including magnesium, topiramate, memantine, and ketamine have been reported to have efficacy in the treatment of migraine, although with the exception of topiramate, the evidence for the efficacy of these therapies is not strong. Also, because all of these therapies have other mechanisms of action, it is not possible to conclude that the efficacy of these drugs is entirely due to their effects on glutamate receptors. Further studies are needed to more clearly delineate the possible roles of glutamate and its specific receptor subtypes in migraine and to identify new ways of targeting glutamate for migraine therapy.
Shimoji, Koki; Takahashi, Norio; Nishio, Yasuyuki; Koyanagi, Mika; Aida, Sumihisa
2007-01-01
Objectives. Newly developed bidirectional modulated sine waves (BMW) might provide some derived benefit to patients with low back pain. Pain relief by transcutaneous electric nerve stimulation (TENS) with BMWs was tested. Materials and Methods. Analgesic effects of BMWs and conventional bidirectional pulsed waves on chronic back pain in 28 patients were compared, and effects of repeated TENS using BMWs on chronic back pain were investigated in 21 patients by means of a randomized double-blind, sham-controlled, parallel-group method. Pain intensity was assessed using numerical rating scale (NRS). Results. There was significant immediate reduction in NRS in patients receiving BMWs, and 60 min after treatment compared to sham TENS. Weekly repeated treatments using massage and TENS with BMWs for 5 weeks resulted in a decrease of NRS, but there were no significant differences between the TENS plus massage and sham TENS plus massage groups. Conclusions. This study shows that TENS with BMWs significantly inhibits chronic back pain, and treatment effects are attained within a day. The results also suggest that there were no statistically significant long-term effects of TENS with BMW in the repeated treatment.
Too Hard to Control: Compromised Pain Anticipation and Modulation in Mild Traumatic Brain Injury
2014-01-07
modulation) will be able to answer these questions. In a related prior study, quantitative sensory testing was conducted in moderate to severe TBI and...found significant loss of thermal and touch sensibility compared with healthy con- trols.67 Although detailed quantitative sensory testing was not...IA. Pain and post traumatic stress disorder ‚Äì Review of clinical and experimental evidence. Neuropharmacology 2012; 62: 586–597. 36 First MB, Spitzer
Decreased Empathic Responses to the ‘Lucky Guy’ in Love: The Effect of Intrasexual Competition
Zheng, Li; Wei, Chunli; Xu, Jialin; Wang, Qianfeng; Zhu, Lei; Roberts, Ian D.; Guo, Xiuyan
2016-01-01
People have a greater desire to date highly attractive partners, which induces intrasexual competition between same-sex individuals. The present study used functional magnetic resonance imaging to explore whether and how intrasexual competition modulates pain empathy for a same-sex rival and the underlying neural mechanism. Participants were scanned while processing the pain of a same-sex ‘lucky guy’ who had an attractive partner and one with a plain partner. The results revealed that participants reported lower pain intensity for the lucky guy. Neurally, reduced pain-related activations in anterior insula and anterior mid-cingulate cortex and increased activations in right superior frontal gyrus (SFG) and medial prefrontal gyrus (MPFC) were found for the lucky guy compared to the one with a plain partner. Right SFG and MPFC activations could predict participants’ subsequent pain intensity ratings for the lucky guy. These findings suggest intrasexual competition can modulate normal empathic responses. PMID:27242579
Do Proxies for the Neurotransmitter Cortisol Predict Adaptation to Life with Chronic Pain?
NASA Astrophysics Data System (ADS)
Deamond, Wade
Among the numerous difficulties encountered by chronic pain patients, impulsive and dysfunctional decision-making complicate their already difficult life situations yet remains relatively understudied. This study examined a recently published neurobiological decision making model that identifies eight specific neurotransmitters and hormones (Dopamine, Testosterone, Endogenous Opioids Glutamate, Serotonin, Norepinephrine, Cortisol, and GABA) linked to unsound decision making related to cognitive, motivational and emotional dysregulation (Nussbaum et al., 2011) (see Appendix 2). The Perceived Stress Scale (PSS), a proxy for the cortisol element in the pharmacological decision making model was analyzed for the neurotransmitter's relationship to functionality and quality of life in a group of 37 chronic pain patients. Participants were comprised of males and females ranging from 23 to 52 years of age and were classified with respect to levels of adjustment to living with chronic pain based on the Quality of Life Scale (QLS), the Dartmouth WONCA COOP Charts and the Global Assessment of Functioning (GAF). The Iowa Gambling Task (IGT) and Frontal System Behavioral Scale (FSBS) measured decision making related to immediate gratification and daily living respectively. Results suggest that emotional dysregulation, as measured by the PSS is a significant predictor for adaptation to life with chronic pain and the PSS is superior to predicting adaptation to life with chronic pain than reported levels of pain as measured by the McGill Pain Questionnaire.
Effect of coenzyme q10 on myopathic symptoms in patients treated with statins.
Caso, Giuseppe; Kelly, Patricia; McNurlan, Margaret A; Lawson, William E
2007-05-15
Treatment of hypercholesterolemia with statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) is effective in the primary and secondary prevention of cardiovascular disease. However, statin use is often associated with a variety of muscle-related symptoms or myopathies. Myopathy may be related in part to statin inhibition of the endogenous synthesis of coenzyme Q10, an essential cofactor for mitochondrial energy production. The aim of this study is to determine whether coenzyme Q10 supplementation would reduce the degree of muscle pain associated with statin treatment. Patients with myopathic symptoms were randomly assigned in a double-blinded protocol to treatment with coenzyme Q10 (100 mg/day, n = 18) or vitamin E (400 IU/day, n = 14) for 30 days. Muscle pain and pain interference with daily activities were assessed before and after treatment. After a 30-day intervention, pain severity decreased by 40% (p <0.001) and pain interference with daily activities decreased by 38% (p <0.02) in the group treated with coenzyme Q10. In contrast, no changes in pain severity (+9%, p = NS) or pain interference with daily activities (-11%, p = NS) was observed in the group treated with vitamin E. In conclusion, results suggest that coenzyme Q10 supplementation may decrease muscle pain associated with statin treatment. Thus, coenzyme Q10 supplementation may offer an alternative to stopping treatment with these vital drugs.
Bajor, Anna; Luhr, Anke; Brockmann, Dorothee; Suerbaum, Sebastian; Framme, Carsten; Sedlacek, Ludwig
2016-07-16
The majority of cases of endophthalmitis are caused by exogenous pathogens; only 5-10 % are of endogenous origin. One cause of these rare cases of endogenous endophthalmitis is Listeria monocytogenes. Twenty-six cases of endophthalmitis due to this pathogen have been published over the last twenty years. The aim of this review is to summarize the main risk factors and common clinical findings of endogenous endophthalmitis due to Listeria monocytogenes. We report on a 62-year-old female presenting with a sterile hypopyon iritis with secondary glaucoma and an underlying rheumatoid disease. In microbiological analysis we identified Listeria monocytogenes. Further we searched through all published cases for typical signs, risk factors, details of medical and surgical treatment and outcome of endogenous endophthalmitis due to this rare pathogen. Ocular symptoms in almost all of these published cases included pain, redness of the eye, and decreased vision. Main clinical features included elevated intraocular pressure and fibrinous anterior chamber reaction, as well as a dark hypopyon. While the infection is typically spread endogenously, neither an exogenous nor endogenous source of infection could be identified in most cases. Immunocompromised patients are at higher risk of being infected than immunocompetent patients. The clinical course of endophthalmitis caused by Listeria monocytogenes had different visual outcomes. In some cases, the infection led to enucleation, blindness, or strong visual loss, whereas most patients showed a tendency of visual improvement during therapy. Early diagnosis and treatment initiation are crucial factors in the outcome of endogenous endophthalmitis caused by Listeria monocytogenes. This possible differential diagnosis should be kept in mind while treating patients with presumable sterile hypopyon and anterior uveitis having a high intraocular pressure. A bacterial source should be considered with a prompt initiation of systemic antibiotic treatment, mainly in immunocompromised patients, who develop endogenous anterior uveitis. An appropriate microbiological sampling is essential to detect atypical microorganisms and to choose an effective antibiotic treatment.
Conditioned Pain Modulation in Women with Irritable Bowel Syndrome
Jarrett, Monica E.; Shulman, Robert J.; Cain, Kevin C.; Deechakawan, Wimon; Smith, Lynne T.; Richebé, Philippe; Eugenio, Margaret; Heitkemper, Margaret M.
2013-01-01
Evidence suggests that patients with irritable bowel syndrome (IBS) are more vigilant to pain-associated stimuli. The aims of this study were to compare women with IBS (n = 20) to healthy control (HC, n = 20) women on pain sensitivity, conditioned pain modulation (CPM) efficiency and salivary cortisol levels before and after the CPM test; and examine the relationship of CPM efficiency with gastrointestinal, somatic pain, and psychological distress symptoms in each group. Women, ages 20–42, gave consent, completed questionnaires and kept a symptom diary for 2 weeks. CPM efficiency was tested with a heat test stimulus and cold water condition stimulus in a laboratory between 8 and 10 a.m. on a follicular phase day. Salivary cortisol samples were collected just before and after the experimental testing. Compared to the HC group, women with IBS reported more days with gastrointestinal and somatic pain/discomfort, psychological distress, fatigue, and feeling stressed. During the CPM baseline testing women with IBS reported greater pain sensitivity compared to the HC group. In the IBS group, CPM efficiency was associated with the pain impact (PROMIS) measure, daily abdominal pain/discomfort, psychological distress, in particular anxiety. There was no group difference in salivary cortisol levels. Overall, women with IBS exhibit an increased sensitivity to thermal stimuli. Impaired CPM was present in a subset of women with IBS. PMID:24463504
Mercadíe, Lolita; Mick, Gérard; Guétin, Stéphane; Bigand, Emmanuel
2015-10-01
In fibromyalgia, pain symptoms such as hyperalgesia and allodynia are associated with fatigue. Mechanisms underlying such symptoms can be modulated by listening to pleasant music. We expected that listening to music, because of its emotional impact, would have a greater modulating effect on the perception of pain and fatigue in patients with fibromyalgia than listening to nonmusical sounds. To investigate this hypothesis, we carried out a 4-week study in which patients with fibromyalgia listened to either preselected musical pieces or environmental sounds when they experienced pain in active (while carrying out a physical activity) or passive (at rest) situations. Concomitant changes of pain and fatigue levels were evaluated. When patients listened to music or environmental sounds at rest, pain and fatigue levels were significantly reduced after 20 minutes of listening, with no difference of effect magnitude between the two stimuli. This improvement persisted 10 minutes after the end of the listening session. In active situations, pain did not increase in presence of the two stimuli. Contrary to our expectations, music and environmental sounds produced a similar relieving effect on pain and fatigue, with no benefit gained by listening to pleasant music over environmental sounds. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
The interactions of multisensory integration with endogenous and exogenous attention
Tang, Xiaoyu; Wu, Jinglong; Shen, Yong
2016-01-01
Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. PMID:26546734
The interactions of multisensory integration with endogenous and exogenous attention.
Tang, Xiaoyu; Wu, Jinglong; Shen, Yong
2016-02-01
Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Phillips, Jane L; Heneka, Nicole; Hickman, Louise; Lam, Lawrence; Shaw, Tim
2014-06-01
Pain is a complex multidimensional phenomenon moderated by consumer, provider and health system factors. Effective pain management cuts across professional boundaries, with failure to screen and assess contributing to the burden of unrelieved pain. To test the impact of an online pain assessment learning module on specialist palliative care nurses' pain assessment competencies, and to determine whether this education impacted positively on palliative care patients' reported pain ratings. A quasi-experimental pain assessment education pilot study utilising 'Qstream © ', an online methodology to deliver 11 case-based pain assessment learning scenarios, developed by an interdisciplinary expert panel and delivered to participants' work emails over a 28-day period in mid-2012. The 'Self-Perceived Pain Assessment Competencies' survey and chart audit data, including patient-reported pain intensity ratings, were collected pre-intervention (T1) and post-intervention (T2) and analysed using inferential statistics to determine key outcomes. Nurses working at two Australian inpatient specialist palliative care services in 2012. The results reported conform to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Guidelines. Participants who completed the education intervention ( n = 34) increased their pain assessment knowledge, assessment tool knowledge and confidence to undertake a pain assessment ( p < 0.001). Participants were more likely to document pain intensity scores in patients' medical records than non-participants (95% confidence interval = 7.3%-22.7%, p = 0.021). There was also a significant reduction in the mean patient-reported pain ratings between the admission and audit date at post-test of 1.5 (95% confidence interval = 0.7-2.3) units in pain score. This pilot confers confidence of the education interventions capacity to improve specialist palliative care nurses' pain assessment practices and to reduce patient-rated pain intensity scores.
Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo
2016-01-01
Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067
[The importance of regulation of endogenous methylarginine concentrations in clinical practice].
Kopieczna-Grzebieniak, Ewa; Goss, Małgorzata
2005-01-01
Endogenous methylarginines, the catabolism products of proteins containing post-translationally methylated arginine residues, are the modulators of arginine metabolism. Endogenous methylarginines compete with arginine about cationic aminoacid transporter and some of them, e.g. asymmetric dimethylarginine (ADMA) and N-mono-methylarginine (MMA), are competitive inhibitors of nitric oxide synthases. The changes of arginine metabolism, induced by these methylarginines, may have serious consequences, because arginine is the precursor of cell-signalling molecules such as NO, agmatine, glutamate and gamma-aminobutyric acid (GABA) and the regulatory molecules polyamines. ADMA has also prooxidant properties and increases endothelial adhesiveness for monocytes. Asymmetric methyl-arginines induce endothelial dysfunction, which may be reversed by L-arginine supplementation, what is defined as "arginine paradox". The increased plasma concentration of asymmetric methylarginines is induced by hypercholesterolemic or hyperhomocysteinemic diets and by rich sodium chloride intake. The high level of plasma asymmetric methyl-arginines accompanies atherosclerosis, hypertension, chronic renal failure, diabetes, insulin resistence, hyperthyreosis, schizophrenia and sclerosis multiplex. The causes of increased concentration ADMA and MMA in these diseases are just now discovered. The hope in the future is the modulation of methylarginines concentration by regulation of expression and activities of enzymes taking part in the metabolism of these substances, particularly of dimethyl-arginine dimethyl-aminotransferase. The main aim of the present study is to pay attention to possibility of the modulation of asymmetric methyl-arginines concentration, what may be a new way of synthase nitric oxide activity regulation in vivo and may be useful in future therapy of patologies in which synthesis of NO is troubled.
Imaging drugs with and without clinical analgesic efficacy.
Upadhyay, Jaymin; Anderson, Julie; Schwarz, Adam J; Coimbra, Alexandre; Baumgartner, Richard; Pendse, G; George, Edward; Nutile, Lauren; Wallin, Diana; Bishop, James; Neni, Saujanya; Maier, Gary; Iyengar, Smriti; Evelhoch, Jeffery L; Bleakman, David; Hargreaves, Richard; Becerra, Lino; Borsook, David
2011-12-01
The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK(1) receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts.
Imaging Drugs with and without Clinical Analgesic Efficacy
Upadhyay, Jaymin; Anderson, Julie; Schwarz, Adam J; Coimbra, Alexandre; Baumgartner, Richard; Pendse, G; George, Edward; Nutile, Lauren; Wallin, Diana; Bishop, James; Neni, Saujanya; Maier, Gary; Iyengar, Smriti; Evelhoch, Jeffery L; Bleakman, David; Hargreaves, Richard; Becerra, Lino; Borsook, David
2011-01-01
The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK1 receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts. PMID:21849979