Science.gov

Sample records for endophytic actinomycetes isolated

  1. Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity.

    PubMed

    Verma, Vijay C; Gond, Surendra K; Kumar, Anuj; Mishra, Ashish; Kharwar, Ravindra N; Gange, Alan C

    2009-05-01

    Endophytic actinomycetes from Azadirachta indica A. Juss. were screened and evaluated for their anti-microbial activity against an array of pathogenic fungi and bacteria. A total of 55 separate isolates were obtained from 20 plants, and 60% of these showed inhibitory activity against one or more pathogenic fungi and bacteria. Actinomycetes were most commonly recovered from roots (54.5% of all isolates), followed by stems (23.6%), and leaves (21.8%). The dominant genus was Streptomyces (49.09% of all isolates), while Streptosporangium (14.5%), Microbispora (10.9%), Streptoverticillium (5.5%), Sacchromonospora sp. (5.5%), and Nocardia (3.6%) were also recovered. Streptomyces isolates AzR 006, 011, and 031 (all from roots) had acute activity against Pseudomonas fluorescens, while AzR027, 032, and 051 (also all from roots) showed activity against Escherichia coli. Meanwhile, an isolate of Nocardia sp. from leaves (AzL025) showed antagonism against Bacillus subtilis. Overall, 32 of the 55 were found to have broad spectrum significant antimicrobial activity, while about 4% of them showed strong and acute inhibition to pathogenic fungi and bacteria. Isolates of Streptomyces AzR031, 008, and 047, Nocardia sp. AzL025, and Streptosporangium sp. AzR 021 and 048 are of particular interest because they showed significant antagonistic activity against root pathogens, including Pythium and Phytophthora sp. Thus, many of the isolates recovered from A. indica in this study may be used in developing potential bio-control agents against a range of pathogenic fungi and bacteria and in the production of novel natural antimicrobial compounds. These results not only further our understanding of plant-microbe interactions but also indicate that there is an untapped resource of endophytic microorganisms that could be exploited in the biotechnological, medicinal, and agricultural industries.

  2. Saccharopolyspora tripterygii sp. nov., an endophytic actinomycete isolated from the stem of Tripterygium hypoglaucum.

    PubMed

    Li, Jie; Zhao, Guo-Zhen; Qin, Sheng; Huang, Hai-Yu; Zhu, Wen-Yong; Xu, Li-Hua; Li, Wen-Jun

    2009-12-01

    An endophytic actinomycete, designated strain YIM 65359(T), was isolated from a surface-sterilized stem sample of Tripterygium hypoglaucum collected from Yunnan province, south-west China. The morphological and chemotaxonomic properties of the new isolate were consistent with those of members of the genus Saccharopolyspora. Analysis of 16S rRNA gene sequences revealed that the new isolate was most closely related to 'Saccharopolyspora endophytica' YIM 61095 (98.6 %), Saccharopolyspora flava AS4.1520(T) (97.6 %) and Saccharopolyspora spinosa DSM 44228(T) (97.0 %). The results of DNA-DNA hybridizations (57.5 %, 44.9 % and 48.5 %, respectively) with the above micro-organisms, in combination with differences in the biochemical and physiological characteristics, suggested that strain YIM 65359(T) should be classified as a novel species of the genus Saccharopolyspora. The name Saccharopolyspora tripterygii sp. nov. is proposed for this novel species, with YIM 65359(T) (=CCTCC AA 208062(T)=DSM 45269(T)) as the type strain.

  3. Phytohabitans kaempferiae sp. nov., an endophytic actinomycete isolated from the leaf of Kaempferia larsenii.

    PubMed

    Niemhom, Nantawan; Chutrakul, Chanikul; Suriyachadkun, Chanwit; Thawai, Chitti

    2016-08-01

    A novel endophytic actinomycete, designated strain KK1-3T, which formed single spores and long chains of spores (more than 10 spores) was isolated from surface-sterilized Kaempferia larsenii leaf collected from Ubon Ratchathani province, Thailand. The isolate contained l-lysine, meso-diaminopimelic acid and hydroxyl diaminopimelic acid in the cell-wall peptidoglycan. The whole-cell sugars included glucose, mannose, rhamnose, ribose, galactose and xylose. The characteristic phospholipids were phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and phosphoglycolipids. The predominant menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The predominant cellular fatty acids were anteiso-C17 : 0 and iso-C16 : 0. The G+C content of the genomic DNA was 71 mol%. Phylogenetic analysis using 16S rRNA gene sequences revealed that strain KK1-3T should be classified as representing a member of the genus Phytohabitans. The similarity values of sequences between this strain and those of the closely related species, Phytohabitans houttuyneae K11-0057T (99.0 %), Phytohabitans suffuscus K07-0523T (98.9 %), Phytohabitans flavus K09-0627T (98.6 %) and Phytohabitans rumicisK11-0047T (98.1 %) were observed. The DNA-DNA hybridization result and some physiological and biochemical properties indicated that KK1-3T could be readily distinguished from its closest phylogenetic relatives. On the basis of these phenotypic and genotypic data, this strain represents a novel species, for which the name Phytohabitans kaempferiae sp. nov. is proposed. The type strain is strain KK1-3T (=BCC 66360T =NBRC 110005T). PMID:27126122

  4. Streptomyces bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).

    PubMed

    Li, Chuang; Jin, Pinjiao; Liu, Chongxi; Ma, Zhaoxu; Zhao, Junwei; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng

    2016-09-01

    A novel endophytic actinomycete, designated strain NEAU-HZ10(T) was isolated from moss and characterised using a polyphasic approach. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. Strain NEAU-HZ10(T) formed grayish aerial mycelia, which differentiated into straight to flexuous chains of cylindrical spores. The cell wall peptidoglycan was found to contain LL-diaminopimelic acid. Predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The polar lipid profile was found to consist of phosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-HZ10(T) belongs to the genus Streptomyces and exhibits high sequence similarity to Streptomyces cocklensis DSM 42063(T) (98.9 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-HZ10(T) clustered with S. cocklensis DSM 42063(T), Streptomyces yeochonensis CGMCC 4.1882(T) (98.7 %), Streptomyces paucisporeus CGMCC 4.2025(T) (98.4 %) and Streptomyces yanglinensis CGMCC 4.2023(T) (98.1 %). However, a combination of DNA-DNA hybridisation results and some phenotypic characteristics indicated that strain NEAU-HZ10(T) can be distinguished from its phylogenetically closely related strains. Therefore, it is proposed that strain NEAU-HZ10(T) represents a novel species of the genus Streptomyces for which the name Streptomyces bryophytorum sp. nov. is proposed. The type strain is NEAU-HZ10(T) (= CGMCC 4.7151(T) = DSM 42138(T)).

  5. Streptomyces bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).

    PubMed

    Li, Chuang; Jin, Pinjiao; Liu, Chongxi; Ma, Zhaoxu; Zhao, Junwei; Li, Jiansong; Wang, Xiangjing; Xiang, Wensheng

    2016-09-01

    A novel endophytic actinomycete, designated strain NEAU-HZ10(T) was isolated from moss and characterised using a polyphasic approach. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. Strain NEAU-HZ10(T) formed grayish aerial mycelia, which differentiated into straight to flexuous chains of cylindrical spores. The cell wall peptidoglycan was found to contain LL-diaminopimelic acid. Predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The polar lipid profile was found to consist of phosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. The major fatty acids were identified as iso-C16:0, anteiso-C15:0 and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-HZ10(T) belongs to the genus Streptomyces and exhibits high sequence similarity to Streptomyces cocklensis DSM 42063(T) (98.9 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-HZ10(T) clustered with S. cocklensis DSM 42063(T), Streptomyces yeochonensis CGMCC 4.1882(T) (98.7 %), Streptomyces paucisporeus CGMCC 4.2025(T) (98.4 %) and Streptomyces yanglinensis CGMCC 4.2023(T) (98.1 %). However, a combination of DNA-DNA hybridisation results and some phenotypic characteristics indicated that strain NEAU-HZ10(T) can be distinguished from its phylogenetically closely related strains. Therefore, it is proposed that strain NEAU-HZ10(T) represents a novel species of the genus Streptomyces for which the name Streptomyces bryophytorum sp. nov. is proposed. The type strain is NEAU-HZ10(T) (= CGMCC 4.7151(T) = DSM 42138(T)). PMID:27263023

  6. Actinoallomurus bryophytorum sp. nov., an endophytic actinomycete isolated from moss (Bryophyta).

    PubMed

    Li, Chuang; Wang, Haiyan; Jin, Pinjiao; Zheng, Weijia; Chu, Liyang; Liu, Chongxi; Li, Jiansong; Xiang, Wensheng; Wang, Xiangjing

    2015-08-01

    A novel endophytic actinomycete, strain NEAU-TX1-15(T), was isolated from moss, collected from Wuchang, Heilongjiang province, north China. A polyphasic taxonomic study was carried out to establish the status of strain NEAU-TX1-15(T). Morphological and chemotaxonomic properties of strain NEAU-TX1-15(T) are consistent with the description of the genus Actinoallomurus. Strain NEAU-TX1-15(T) was observed to form short spiral or looped spore chains on aerial hyphae. The cell wall peptidoglycan was found to contain lysine and meso-diaminopimelic acid. The major menaquinones were identified as MK-9(H6) and MK-9(H8). The only phospholipid identified was phosphatidylglycerol. The major fatty acid was identified as iso-C16:0. Analysis of the 16S rRNA gene sequence supports the assignment of the novel strain to the genus Actinoallomurus, as it exhibits 99.2 % gene sequence similarity to that of Actinoallomurus yoronensis NBRC 103686(T). However, the low level of DNA-DNA relatedness allowed the strain to be differentiated from its close relative. Moreover, strain NEAU-TX1-15(T) could also be differentiated from A. yoronensis NBRC 103686(T) and other Actinoallomurus species showing high 16S rRNA gene sequence similarity (>98.0 %) by cultural and physiological characteristics. Therefore, the combination of phenotypic and chemotaxonomic data, and the DNA-DNA hybridization value, indicated that strain NEAU-TX1-15(T) represents a novel species of the genus Actinoallomurus for which the name Actinoallomurus bryophytorum sp. nov. is proposed. The type strain is NEAU-TX1-15(T) (=CGMCC 4.7200(T) = JCM 30340(T)).

  7. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential.

    PubMed

    Passari, Ajit K; Mishra, Vineet K; Saikia, Ratul; Gupta, Vijai K; Singh, Bhim P

    2015-01-01

    Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n = 22, 52.3%) of actinomycetes was isolated from roots, followed by stems (n = 9, 21.4%), leaves (n = 6, 14.2%), flowers (n = 3, 7.1%), and petioles (n = 2, 4.7%). The genus Streptomyces was the most dominant among the isolates (66.6%) in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India). From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium, and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp., and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active

  8. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential

    PubMed Central

    Passari, Ajit K.; Mishra, Vineet K.; Saikia, Ratul; Gupta, Vijai K.; Singh, Bhim P.

    2015-01-01

    Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n = 22, 52.3%) of actinomycetes was isolated from roots, followed by stems (n = 9, 21.4%), leaves (n = 6, 14.2%), flowers (n = 3, 7.1%), and petioles (n = 2, 4.7%). The genus Streptomyces was the most dominant among the isolates (66.6%) in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India). From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium, and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp., and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active

  9. Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis.

    PubMed

    Qin, Sheng; Zhao, Guo-Zhen; Li, Jie; Zhu, Wen-Yong; Xu, Li-Hua; Li, Wen-Jun

    2009-10-01

    An actinomycete strain, designated YIM 61435(T), was isolated from leaves of Maytenus austroyunnanensis collected from a tropical rainforest in Xishuangbanna, Yunnan Province, south-west China. The isolate produced aerial mycelium with long, curved to hooked spore chains. The chemotaxonomic characteristics of the isolate were consistent with its assignment to the genus Actinomadura. Phylogenetic analysis using 16S rRNA gene sequences also indicated that this strain should be classified in the genus Actinomadura; however, it could be separated clearly from its closest neighbour, Actinomadura atramentaria DSM 43919(T). Furthermore, a combination of DNA-DNA hybridization results and significant differences in morphological and physiological characteristics indicate that strain YIM 61435(T) represents a novel species of the genus Actinomadura, for which the name Actinomadura flavalba sp. nov. is proposed. The type strain is YIM 61435(T) (=DSM 45200(T) =CCTCC AA 208017(T)).

  10. Complete genome sequence of Kibdelosporangium phytohabitans KLBMP 1111(T), a plant growth promoting endophytic actinomycete isolated from oil-seed plant Jatropha curcas L.

    PubMed

    Qin, Sheng; Feng, Wei-Wei; Xing, Ke; Bai, Juan-Luan; Yuan, Bo; Liu, Wei-Jie; Jiang, Ji-Hong

    2015-12-20

    Kibdelosporangium phytohabitans KLBMP 1111(T) is a plant growth promoting endophytic actinomycete isolated from the oil-seed plant Jatropha curcas L. collected from dry-hot valley, in Sichuan, China. The complete genome sequence of this actinomycete consists of one chromosome (11,759,770bp) with no plasmid. From the genome, we identified gene clusters responsible for polyketide and nonribosomal peptide synthesis of natural products, and genes related to the plant growth promoting, such as zeatin, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) and siderophore. The complete genome information may be useful to understand the beneficial interactions between K. phytohabitans KLBMP 1111(T) and host plants. PMID:26516119

  11. Streptomyces oryzae sp. nov., an endophytic actinomycete isolated from stems of rice plant.

    PubMed

    Mingma, Ratchanee; Duangmal, Kannika; Thamchaipenet, Arinthip; Trakulnaleamsai, Savitr; Matsumoto, Atsuko; Takahashi, Yoko

    2015-06-01

    An actinomycete strain S16-07(T), isolated from surface-sterilized stems of rice plant (Oryza sativa L.), was characterized using a polyphasic approach. Phylogenetic analysis of 16S rRNA gene sequences indicated affiliation of the strain belonged to the genus Streptomyces. The highest levels of sequence similarity were found with Streptomyces smyrnaeus SM3501(T) (97.7% similarity), S. abikoensis NBRC 13860(T) (97.6% similarity) and S. thermocarboxydovorans NBRC 16324(T) (97.5% similarity). The cell wall of strain S16-07(T) contained LL-diaminopimelic acid. The predominant menaquinones were MK-9(H₆) and MK-9(H₈). Phospholipids detected were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, hydroxy-phosphatidylethanolamine, hydroxy-phosphatidylmonomethylethanolamine and phosphatidylinositol mannosides. The major cellular fatty acids were ai-C(15:0), i-C(16:0) and ai-C(17:0). The G+C content of strain S16-07(T) was 70.4 mol%. On the basis of the phylogeny of the isolate and its differences from the most closely related species, the isolate S16-07(T) represents a novel species for which the name S. oryzae sp. nov. is proposed. The type strain is S16-07(T) (=BCC 60400(T)=NBRC 109761(T)).

  12. Saccharopolyspora gloriosae sp. nov., an endophytic actinomycete isolated from the stem of Gloriosa superba L.

    PubMed

    Qin, Sheng; Chen, Hua-Hong; Klenk, Hans-Peter; Kim, Chang-Jin; Xu, Li-Hua; Li, Wen-Jun

    2010-05-01

    A Gram-stain-positive, aerobic actinomycete, strain YIM 60513(T), was isolated from the stem of Gloriosa superba L. collected from tropical rainforest at Xishuangbanna, Yunnan Province, south-west China. 16S rRNA gene sequence analysis indicated that strain YIM 60513(T) belonged to the genus Saccharopolyspora and was closely related to Saccharopolyspora gregorii NCIB 12823(T) (99.1 % similarity) and Saccharopolyspora cebuensis SPE 10-1(T) (97.3 % similarity). Data for the predominant quinone [MK-9(H(4))], major fatty acids (iso-C(16 : 0), anteiso-C(17 : 0) and C(17 : 1) cis9) and G+C content of the genomic DNA (71.6 mol%) were similar to those for members of the genus Saccharopolyspora. The level of DNA-DNA relatedness between strain YIM 60513(T) and S. gregorii NCIB 12823(T) was 43 %. The combination of phylogenetic analysis, phenotypic differences, chemotaxonomic characteristics and DNA-DNA hybridization data supported the view that strain YIM 60513(T) should be distinguished from S. gregorii NCIB 12823(T) and S. cebuensis SPE 10-1(T). Strain YIM 60513(T) therefore represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora gloriosae sp. nov. is proposed. The type strain is YIM 60513(T) (=KCTC 19243(T) =CCTCC AA 207006(T)).

  13. Plantactinosporasoyae sp. nov., an endophytic actinomycete isolated from soybean root [Glycine max (L.) Merr].

    PubMed

    Guo, Xiaowei; Guan, Xuejiao; Liu, Chongxi; Jia, Feiyu; Li, Jiansong; Li, Jinmeng; Jin, Pinjiao; Li, Wenchao; Wang, Xiangjing; Xiang, Wensheng

    2016-07-01

    A novel actinomycete, designated strain NEAU-gxj3T, was isolated from soybean root [Glycine max (L.) Merr.] collected from Harbin, Heilongjiang Province, China, and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain NEAU-gxj3T showed highest similarity to those of Micromonospora equina Y22T (98.2 %) and Plantactinospora endophytica YIM 68255T (98.0 %). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that the isolate clustered with the members of the genus Plantactinospora. The chemotaxonomic properties of strain NEAU-gxj3Twere also consistent with those of members of the genus Plantactinospora. The cell wall contained meso-diaminopimelic acid and whole-cell sugars were xylose, glucose and galactose. The predominant menaquinones were MK-10(H6), MK-9(H8), MK-10(H2) and MK-10(H4). The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were identified as anteiso-C17 : 0, iso-C16 : 0, iso-C15 : 0 and C15 : 0. A combination of DNA-DNA hybridization result and some phenotypic characteristics indicated that strain NEAU-gxj3Tcould be differentiated clearly from its closest phylogenetic relatives. Therefore, the strain is concluded to represent a novel species of the genus Plantactinospora, for which the name Plantactinospora soyae sp. nov. is proposed. The type strain is NEAU-gxj3T (=CGMCC 4.7221T=DSM 46832T).

  14. Sphaerisporangium dianthi sp. nov., an endophytic actinomycete isolated from a root of Dianthus chinensis L.

    PubMed

    Xing, Jia; Liu, Chongxi; Zhang, Yuejing; He, Hairong; Zhou, Ying; Li, Lianjie; Zhao, Junwei; Liu, Shuanghe; Wang, Xiangjing; Xiang, Wensheng

    2015-01-01

    A novel actinomycete, designated strain NEAU-CY18(T), was isolated from the root of a Chinese medicinal plant Dianthus chinensis L and subjected to a polyphasic taxonomic study. The novel strain was found to develop spherical sporangia with non-motile spores on aerial mycelium. The cell-wall peptidoglycan was found to contain meso-diaminopimelic acid. The whole-cell sugars were identified as madurose, mannose, ribose, galactose and glucose. The phospholipid profile was found to contain diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylmethylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified phospholipid. The predominant menaquinones were identified as MK-9(H4), MK-9(H2) and MK-9(H6). The major fatty acids were identified as C17:0 10-methyl, iso-C16:0 and C16:0. EzTaxon-e analysis of the 16S rRNA gene sequence indicated that the strain belongs to the genus Sphaerisporangium and was most closely related to Sphaerisporangium cinnabarinum JCM 3291(T) (98.9 %) and Sphaerisporangium melleum JCM 13064(T) (98.3 %). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-CY18(T) forms a monophyletic clade with S. cinnabarinum JCM 3291(T), an association that was supported by a bootstrap value of 97 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. Comparisons of some phenotypic properties and low DNA-DNA relatedness values enabled the strain to be differentiated from S. cinnabarinum JCM 3291(T) and S. melleum JCM 13064(T). Therefore, it is concluded that strain NEAU-CY18(T) represents a novel Sphaerisporangium species, for which the name Sphaerisporangium dianthi sp. nov. is proposed. The type strain is NEAU-CY18(T) ( = CGMCC 4.7132(T) = DSM 46736(T)).

  15. Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.).

    PubMed

    Shen, Yue; Zhang, Yuejing; Liu, Chongxi; Wang, Xiangjing; Zhao, Junwei; Jia, Feiyu; Yang, Lingyu; Yang, Deguang; Xiang, Wensheng

    2014-11-01

    A novel actinomycete, designated strain NEAU-gq9(T), was isolated from corn root (Zea mays L.) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. On the basis of 16S rRNA gene sequence similarity studies, strain NEAU-gq9(T) was most closely related to Micromonospora zamorensis CR38(T) (99.3%), Micromonospora jinlongensis NEAU-GRX11(T) (99.2%), Micromonospora saelicesensis Lupac 09(T) (99.2%), Micromonospora chokoriensis 2-19(6)(T) (98.9%), Micromonospora coxensis 2-30-b(28)(T) (98.6%) and Micromonospora lupini Lupac 14N(T) (98.5%). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-gq9(T) is a member of the genus Micromonospora and supported the closest phylogenetic relationship to M. zamorensis CR38(T), M. jinlongensis NEAU-GRX11(T), M. saelicesensis Lupac 09(T), M. chokoriensis 2-19(6)(T) and M. lupini Lupac 14N(T). A combination of DNA-DNA hybridization, morphological and physiological characteristics indicated that the novel strain could be readily distinguished from the closest phylogenetic relatives. Therefore, it is proposed that strain NEAU-gq9(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora zeae sp. nov. is proposed. The type strain is NEAU-gq9(T) (=CGMCC 4.7092(T)=DSM 45882(T)).

  16. Nonomuraea syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels).

    PubMed

    Rachniyom, Hathairat; Matsumoto, Atsuko; Indananda, Chantra; Duangmal, Kannika; Takahashi, Yoko; Thamchaipenet, Arinthip

    2015-04-01

    A novel endophytic actinomycete, designated strain GKU 164(T), was isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels), collected at Khao Khitchakut National Park, Chantaburi province, Thailand. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain formed a distinct clade within the genus Nonomuraea , and was most closely related to Nonomuraea monospora PT708(T) (98.77% 16S rRNA gene sequence similarity) and Nonomuraea thailandensis KC-061(T) (98.73%). Strain GKU 164(T) formed a branched substrate and aerial hyphae that generated single spores with rough surfaces. The cell wall contained meso-diaminopimelic acid. The whole-cell sugars were madurose, galactose, mannose, ribose, rhamnose and glucose. The N-acyl type of muramic acid was acetyl. The predominant menaquinone was MK-9(H4) with minor amounts of MK-9(H6), MK-9(H2) and MK-9(H0). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositolmannosides, phosphatidylmonomethylethanolamine, hydroxy-phosphatidylmonomethylethanolamine, an unidentified aminophosphoglycolipid and four unknown phospholipids. The major fatty acids were iso-C(16 : 0) and 10-methyl C(17 : 0). The genomic DNA G+C content was 70.4 mol%. Significant differences in the morphological, chemotaxonomical, and biochemical data together with DNA-DNA relatedness values between strain GKU 164(T) and type strains of closely related species, clearly demonstrated that strain GKU 164(T) represents a novel species of the genus Nonomuraea , for which the name Nonomuraea syzygii sp. nov. is proposed. The type strain is GKU 164(T) ( = BCC 70457(T) = NBRC 110400(T)).

  17. Actinomadura syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels).

    PubMed

    Rachniyom, Hathairat; Matsumoto, Atsuko; Indananda, Chantra; Duangmal, Kannika; Takahashi, Yoko; Thamchaipenet, Arinthip

    2015-06-01

    The taxonomic position of an endophytic actinomycete, strain GKU 157T, isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels) collected at Khao Khitchakut National Park, Chantaburi province, Thailand, was determined using a polyphasic taxonomic approach. 16S rRNA gene sequence analysis revealed that strain GKU 157T belongs to the genus Actinomadura and formed a distinct phyletic line with Actinomadura chibensis NBRC 106107T (98.6 % similarity). Strain GKU 157T formed an extensively branched, non-fragmenting substrate mycelium and aerial hyphae that differentiated into hooked to short spiral chains of about 20 non-motile spores with a warty surface. The cell wall contained meso-diaminopimelic acid and the whole-cell sugars were galactose, glucose, madurose, mannose and ribose. The N-acyl type of muramic acid was acetyl. Mycolic acids were absent. The phospholipids included phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylinositol (PI), phosphatidylinositolmannoside (PIM) and two unknown phospholipids (PLs). The major menaquinone was MK-9(H6) and the predominant fatty acids were C16:0, iso-C16:0, C18:1ω9c, C18:0 and 10-methyl C18:0 (tuberculostearic acid). The genomic DNA G+C content was 73.1 mol%. A combination of DNA-DNA hybridization results and significant differences from related species in cultural, physiological and chemical characteristics indicated that strain GKU 157T represents a novel species of the genus Actinomadura, for which the name Actinomadura syzygii sp. nov. is proposed. The type strain is GKU 157T ( = BCC 70456T = NBRC 110399T).

  18. Microbispora sp. LGMB259 Endophytic Actinomycete Isolated from Vochysia divergens (Pantanal, Brazil) Producing β-Carbolines and Indoles with Biological Activity

    PubMed Central

    Savi, Daiani C.; Shaaban, Khaled A.; Vargas, Nathalia; Ponomareva, Larissa V.; Possiede, Yvelise M.; Thorson, Jon S.; Glienke, Chirlei; Rohr, Jürgen

    2014-01-01

    Endophytic actinomycetes encompass bacterial groups that are well known for the production of a diverse range of secondary metabolites. Vochysia divergens is a medicinal plant, common in the “Pantanal” region (Brazil) and was focus of many investigations, but never regarding its community of endophytic symbionts. During a screening program, an endophytic strain isolated from the V. divergens, was investigated for its potential to show biological activity. The strain was characterized as Microbispora sp. LGMB259 by spore morphology and molecular analyze using nucleotide sequence of the 16S rRNA gene. Strain LGMB259 was cultivated in R5A medium producing metabolites with significant antibacterial activity. The strain produced 4 chemically related β-carbolines, and 3 Indoles. Compound 1-Vinyl-β-carboline-3-carboxylic acid displayed potent activity against the Gram-positive bacterial strains Micrococcus luteus NRRL B-2618 and Kocuria rosea B-1106, and was highly active against two human cancer cell lines, namely the prostate cancer cell line PC3 and the non-small-cell lung carcinoma cell line A549, with IC50 values of 9.45 and 24.67 µM, respectively. 1-Vinyl-β-carboline-3-carboxylic acid also showed moderate activity against the yeast Saccharomyces cerevisiae ATCC204508, as well as the phytopathogenic fungiPhyllosticta citricarpa LGMB06 and Colletotrichum gloeosporioides FDC83. PMID:25385358

  19. Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara.

    PubMed

    Goudjal, Yacine; Toumatia, Omrane; Yekkour, Amine; Sabaou, Nasserdine; Mathieu, Florence; Zitouni, Abdelghani

    2014-01-20

    Thirty-four endophytic actinomycetes were isolated from the roots of native plants of the Algerian Sahara. Morphological and chemical studies showed that twenty-nine isolates belonged to the Streptomyces genus and five were non-Streptomyces. All isolates were screened for their in vitro antifungal activity against Rhizoctonia solani. The six that had the greatest pathogen inhibitory capacities were subsequently tested for their in vivo biocontrol potential on R. solani damping-off in sterilized and non-sterilized soils, and for their plant-growth promoting activities on tomato seedlings. In both soils, coating tomato seeds with antagonistic isolates significantly reduced (P<0.05) the severity of damping-off of tomato seedlings. Among the isolates tested, the strains CA-2 and AA-2 exhibited the same disease incidence reduction as thioperoxydicarbonic diamide, tetramethylthiram (TMTD) and no significant differences (P<0.05) were observed. Furthermore, they resulted in a significant increase in the seedling fresh weight, the seedling length and the root length of the seed-treated seedlings compared to the control. The taxonomic position based on 16S rDNA sequence analysis and phylogenetic studies indicated that the strains CA-2 and AA-2 were related to Streptomyces mutabilis NBRC 12800(T) (100% of similarity) and Streptomyces cyaneofuscatus JCM 4364(T) (100% of similarity), respectively.

  20. Continuing hunt for endophytic actinomycetes as a source of novel biologically active metabolites.

    PubMed

    Masand, Meeta; Jose, Polpass Arul; Menghani, Ekta; Jebakumar, Solomon Robinson David

    2015-12-01

    Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.

  1. Promicromonospora xylanilytica sp. nov., an endophytic actinomycete isolated from surface-sterilized leaves of the medicinal plant Maytenus austroyunnanensis.

    PubMed

    Qin, Sheng; Jiang, Ji-Hong; Klenk, Hans-Peter; Zhu, Wen-Yong; Zhao, Guo-Zhen; Zhao, Li-Xing; Tang, Shu-Kun; Xu, Li-Hua; Li, Wen-Jun

    2012-01-01

    A novel xylan-degrading actinomycete, strain YIM 61515(T), was isolated from surface-sterilized leaves of the medicinal plant Maytenus austroyunnanensis. Cells were Gram-positive and non-spore-forming, produced primary branches and formed white to yellowish white colonies on the media tested. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 61515(T) was most similar to Promicromonospora aerolata V54A(T) and Promicromonospora vindobonensis V45(T) (99.4 and 99.1% sequence similarity, respectively). The isolate formed a separate lineage in a cluster containing P. aerolata V54A(T). 16S rRNA gene sequence similarity between the isolate and other members of the genus Promicromonospora ranged from 96.3 to 98.4%. Chemotaxonomic data, including major menaquinones, fatty acid compositions and polar lipid profiles, supported the placement of strain YIM 61515(T) in the genus Promicromonospora. DNA-DNA relatedness, physiological and biochemical data showed that strain YIM 61515(T) could be distinguished from members of all known species of the genus Promicromonospora and therefore represented a novel species. The name Promicromonospora xylanilytica sp. nov. is proposed, with YIM 61515(T) (=DSM 21603(T)=CCTCC AA 208046(T)) as type strain.

  2. Antimicrobial biosynthetic potential and genetic diversity of endophytic actinomycetes associated with medicinal plants.

    PubMed

    Gohain, Anwesha; Gogoi, Animesh; Debnath, Rajal; Yadav, Archana; Singh, Bhim P; Gupta, Vijai K; Sharma, Rajeev; Saikia, Ratul

    2015-10-01

    Endophytic actinomycetes are one of the primary groups that share symbiotic relationships with medicinal plants and are key reservoir of biologically active compounds. In this study, six selective medicinal plants were targeted for the first time for endophytic actinomycetes isolation from Gibbon Wild Life Sanctuary, Assam, India, during winter and summer and 76 isolates were obtained. The isolates were found to be prevalent in roots followed by stem and leaves. 16S rRNA gene sequence analysis revealed 16 genera, including rare genera, Verrucosispora, Isoptericola and Kytococcus, which have never been previously reported as endophytic. The genus Streptomyces (66%) was dominant in both seasons. Shannon's diversity index showed that Azadirachta indica (1.49), Rauwolfia serpentina (1.43) and Emblica officinalis (1.24) were relatively good habitat for endophytic actinomycetes. Antimicrobial strains showed prevalence of polyketide synthase (PKS) type-II (85%) followed by PKS type-I (14%) encoded in the genomes. Expression studies showed 12-fold upregulation of PKSII gene in seventh day of incubation for Streptomyces antibioticus (EAAG90). Our results emphasize that the actinomycetes assemblages within plant tissue exhibited biosynthetic systems encoding for important biologically active compounds. PMID:26347302

  3. Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; He, Hairong; Liu, Chongxi; Zhang, Yuejing; Li, Chuang; Wang, Xiangjing; Xiang, Wensheng

    2014-10-01

    A novel actinomycete, designated strain NEAU-P5(T), was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5(T) showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2-19/6(T) (99.5%), and phylogenetically clustered with Micromonospora violae NEAU-zh8(T) (99.3%), M. saelicesensis Lupac 09(T) (99.0%), M. lupini Lupac 14N(T) (98.8%), M. zeae NEAU-gq9(T) (98.4%), M. jinlongensis NEAU-GRX11(T) (98.3%) and M. zamorensis CR38(T) (97.9%). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8(T). The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C(16:0), iso-C(15:0) and C(17:0). Furthermore, some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5(T) (=CGMCC 4.7098(T) = DSM 45885(T)). PMID:25082023

  4. Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.).

    PubMed

    Zhao, Junwei; Guo, Lifeng; He, Hairong; Liu, Chongxi; Zhang, Yuejing; Li, Chuang; Wang, Xiangjing; Xiang, Wensheng

    2014-10-01

    A novel actinomycete, designated strain NEAU-P5(T), was isolated from dandelion root (Taraxacum mongolicum Hand.-Mazz.). Strain NEAU-P5(T) showed closest 16S rRNA gene sequence similarity to Micromonospora chokoriensis 2-19/6(T) (99.5%), and phylogenetically clustered with Micromonospora violae NEAU-zh8(T) (99.3%), M. saelicesensis Lupac 09(T) (99.0%), M. lupini Lupac 14N(T) (98.8%), M. zeae NEAU-gq9(T) (98.4%), M. jinlongensis NEAU-GRX11(T) (98.3%) and M. zamorensis CR38(T) (97.9%). Phylogenetic analysis based on the gyrB gene sequence also indicated that the isolate clustered with the above type strains except M. violae NEAU-zh8(T). The cell-wall peptidoglycan consisted of meso-diaminopimelic acid and glycine. The major menaquinones were MK-9(H8), MK-9(H6) and MK-10(H2). The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were C(16:0), iso-C(15:0) and C(17:0). Furthermore, some physiological and biochemical properties and low DNA-DNA relatedness values enabled the strain to be differentiated from members of closely related species. Therefore, it is proposed that strain NEAU-P5(T) represents a novel species of the genus Micromonospora, for which the name Micromonospora taraxaci sp. nov. is proposed. The type strain is NEAU-P5(T) (=CGMCC 4.7098(T) = DSM 45885(T)).

  5. Biosynthetic Potential of Phylogenetically Unique Endophytic Actinomycetes from Tropical Plants▿ †

    PubMed Central

    Janso, Jeffrey E.; Carter, Guy T.

    2010-01-01

    The culturable diversity of endophytic actinomycetes associated with tropical, native plants is essentially unexplored. In this study, 123 endophytic actinomycetes were isolated from tropical plants collected from several locations in Papua New Guinea and Mborokua Island, Solomon Islands. Isolates were found to be prevalent in roots but uncommon in leaves. Initially, isolates were dereplicated to the strain level by ribotyping. Subsequent characterization of 105 unique strains by 16S rRNA gene sequence analysis revealed that 17 different genera were represented, and rare genera, such as Sphaerisporangium and Planotetraspora, which have never been previously reported to be endophytic, were quite prevalent. Phylogenetic analyses grouped many of the strains into clades distinct from known genera within Thermomonosporaceae and Micromonosporaceae, indicating that they may be unique genera. Bioactivity testing and liquid chromatography-mass spectrometry (LC-MS) profiling of crude fermentation extracts were performed on 91 strains. About 60% of the extracts exhibited bioactivity or displayed LC-MS profiles with spectra indicative of secondary metabolites. The biosynthetic potential of 29 nonproductive strains was further investigated by the detection of putative polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes. Despite their lack of detectable secondary metabolite production in fermentation, most were positive for type I (66%) and type II (79%) PKS genes, and all were positive for NRPS genes. These results suggest that tropical plants from New Guinea and the adjacent archipelago are hosts to unique endophytic actinomycetes that possess significant biosynthetic potential. PMID:20472734

  6. Endophytic Actinomycetes: A Novel Source of Potential Acyl Homoserine Lactone Degrading Enzymes

    PubMed Central

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces. PMID:23484156

  7. Endophytic actinomycetes: a novel source of potential acyl homoserine lactone degrading enzymes.

    PubMed

    Chankhamhaengdecha, Surang; Hongvijit, Suphatra; Srichaisupakit, Akkaraphol; Charnchai, Pattra; Panbangred, Watanalai

    2013-01-01

    Several Gram-negative pathogenic bacteria employ N-acyl-L-homoserine lactone (HSL) quorum sensing (QS) system to control their virulence traits. Degradation of acyl-HSL signal molecules by quorum quenching enzyme (QQE) results in a loss of pathogenicity in QS-dependent organisms. The QQE activity of actinomycetes in rhizospheric soil and inside plant tissue was explored in order to obtain novel strains with high HSL-degrading activity. Among 344 rhizospheric and 132 endophytic isolates, 127 (36.9%) and 68 (51.5%) of them, respectively, possessed the QQE activity. The highest HSL-degrading activity was at 151.30 ± 3.1 nmole/h/mL from an endophytic actinomycetes isolate, LPC029. The isolate was identified as Streptomyces based on 16S  rRNA gene sequence similarity. The QQE from LPC029 revealed HSL-acylase activity that was able to cleave an amide bond of acyl-side chain in HSL substrate as determined by HPLC. LPC029 HSL-acylase showed broad substrate specificity from C6- to C12-HSL in which C10HSL is the most favorable substrate for this enzyme. In an in vitro pathogenicity assay, the partially purified HSL-acylase efficiently suppressed soft rot of potato caused by Pectobacterium carotovorum ssp. carotovorum as demonstrated. To our knowledge, this is the first report of HSL-acylase activity derived from an endophytic Streptomyces.

  8. Isolation of cellulolytic actinomycetes from marine sediments

    SciTech Connect

    Veiga, M.; Esparis, A.; Fabregas, J.

    1983-07-01

    The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity. 13 references.

  9. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants.

    PubMed

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10-32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  10. In Vitro and In Vivo Plant Growth Promoting Activities and DNA Fingerprinting of Antagonistic Endophytic Actinomycetes Associates with Medicinal Plants

    PubMed Central

    Passari, Ajit Kumar; Mishra, Vineet Kumar; Gupta, Vijai Kumar; Yadav, Mukesh Kumar; Saikia, Ratul; Singh, Bhim Pratap

    2015-01-01

    Endophytic actinomycetes have shown unique plant growth promoting as well as antagonistic activity against fungal phytopathogens. In the present study forty-two endophytic actinomycetes recovered from medicinal plants were evaluated for their antagonistic potential and plant growth-promoting abilities. Twenty-two isolates which showed the inhibitory activity against at least one pathogen were subsequently tested for their plant-growth promoting activities and were compared genotypically using DNA based fingerprinting, including enterobacterial repetitive intergenic consensus (ERIC) and BOX repetitive elements. Genetic relatedness based on both ERIC and BOX-PCR generates specific patterns corresponding to particular genotypes. Exponentially grown antagonistic isolates were used to evaluate phosphate solubilization, siderophores, HCN, ammonia, chitinase, indole-3-acetic acid production, as well as antifungal activities. Out of 22 isolates, the amount of indole-3-acetic acid (IAA) ranging between 10–32 μg/ml was produced by 20 isolates and all isolates were positive for ammonia production ranging between 5.2 to 54 mg/ml. Among 22 isolates tested, the amount of hydroxamate-type siderophores were produced by 16 isolates ranging between 5.2 to 36.4 μg/ml, while catechols-type siderophores produced by 5 isolates ranging from 3.2 to 5.4 μg/ml. Fourteen isolates showed the solubilisation of inorganic phosphorous ranging from 3.2 to 32.6 mg/100ml. Chitinase and HCN production was shown by 19 and 15 different isolates, respectively. In addition, genes of indole acetic acid (iaaM) and chitinase (chiC) were successively amplified from 20 and 19 isolates respectively. The two potential strains Streptomyces sp. (BPSAC34) and Leifsonia xyli (BPSAC24) were tested in vivo and improved a range of growth parameters in chilli (Capsicum annuum L.) under greenhouse conditions. This study is the first published report that actinomycetes can be isolated as endophytes from within these

  11. Biogenic gold nanotriangles from Saccharomonospora sp., an endophytic actinomycetes of Azadirachta indica A. Juss.

    NASA Astrophysics Data System (ADS)

    Verma, Vijay C.; Anand, Swechha; Ulrichs, Christian; Singh, Santosh K.

    2013-04-01

    Microbial biofabrication is emerging as eco-friendly, simpler, and reproducible alternative to chemical synthesis of metals and semiconductor nanoparticles, allowing generation of rare geometrical forms such as nanotriangles and nanoprisms. Highly confined nanostructures like triangles/prisms are interesting class of nanoparticles due to their unique optical properties exploitable in biomedical diagnostics and biosensors. Here, we report for the first time a single-step biological protocol for the synthesis of gold nanotriangles using extract of endophytic actinomycetes Saccharomonospora sp., isolated from surface sterilized root tissues of Azadirachta indica A. Juss., when incubated with an aqueous solution of chloroaurate ions (AuCl- 4/1 mM). Thin, flat occasionally prismatic gold nanotriangles were produced when aqueous chloroaurate ions reacted with the cell-free extract as well as with the biomass of endophytic Saccharomonospora. It was evidenced from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis that proteins of 42 and 50 kD were involved in biosynthesis as well as in stabilization of the nanoparticles. The particle growth process was monitored by UV-vis spectroscopy, and the morphological characterization was carried out by transmission electron microscopy and atomic force microscopy together with X-ray powder diffractions. Although the exact mechanism for this shape-oriented synthesis is not clear so far, the possibility of achieving nanoparticle shape control in a microbial system is exciting.

  12. Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460(T).

    PubMed

    Inahashi, Yuki; Iwatsuki, Masato; Ishiyama, Aki; Namatame, Miyuki; Nishihara-Tsukashima, Aki; Matsumoto, Atsuko; Hirose, Tomoyasu; Sunazuka, Toshiaki; Yamada, Haruki; Otoguro, Kazuhiko; Takahashi, Yōko; Omura, Satoshi; Shiomi, Kazuro

    2011-04-01

    Three novel antitrypanosomal alkaloids, named spoxazomicins A-C, were isolated by silica gel column chromatography and HPLC from the culture broth of a new endophytic actinomycete species, Streptosporangium oxazolinicum K07-0460(T). The structures of the spoxazomicins were elucidated by NMR and X-ray crystal analyses and shown to be new types of pyochelin family antibiotic. Spoxazomicin A showed potent and selective antitrypanosomal activity with an IC₅₀ value of 0.11 μg ml⁻¹ in vitro without cytotoxicity against MRC-5 cells (IC₅₀=27.8 μg ml⁻¹). PMID:21386848

  13. Pseudonocardia antimicrobica sp. nov., a novel endophytic actinomycete associated with Artemisia annua L. (sweet wormwood).

    PubMed

    Zhao, Guo-Zhen; Li, Jie; Qin, Yu-Li; Miao, Cui-Ping; Wei, Da-Qiao; Zhang, Si; Xu, Li-Hua; Li, Wen-Jun

    2012-09-01

    A Gram-reaction-positive, non-motile, endophytic actinomycete, designated strain YIM 63235(T), was isolated from the surface-sterilized stems of Artemisia annua L., and characterized to determine its taxonomic position. The strain YIM 63235(T) formed well-differentiated aerial and substrate mycelia on media tested. The phylogenetic tree based on 16S rRNA gene sequences showed that the new isolate formed a distinct lineage within the genus Pseudonocardia, and the strain YIM 63235(T) was closely related to Pseudonocardia parietis 04-St-002(T) (99.1%). However, DNA-DNA relatedness demonstrated that strain YIM 63235(T) was distinct from the closest phylogenetic neighbor. The chemotaxonomic properties of strain YIM 63235(T) were consistent with those of the genus Pseudonocardia: the diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid and MK-8(H(4)) was the predominant menaquinone. The major fatty acids were iso-C(16:0) and iso-C(16:1) H. The DNA G+C content of strain YIM 63235(T) was 71.0 mol%. On the basis of the phenotypic and phylogenetic distinctiveness, the novel isolate was identified as representing a novel species of the genus Pseudonocardia, for which the name Pseudonocardia antimicrobica sp. nov. (type strain YIM 63235(T) =CCTCC AA 208080(T)=DSM 45303(T)) is proposed.

  14. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites.

  15. Rare actinomycetes Nocardia caishijiensis and Pseudonocardia carboxydivorans as endophytes, their bioactivity and metabolites evaluation.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida; Kulik, Andreas; Grond, Stephanie

    2016-04-01

    Two strains identified as Nocardia caishijiensis (SORS 64b) and Pseudonocardia carboxydivorans (AGLS 2) were isolated as endophytes from Sonchus oleraceus and Ageratum conyzoides respectively. The analysis of their extracts revealed them to be strongly bioactive. The N. caishijiensis extract gave an LC50 of 570 μg/ml(-1) in the brine shrimp cytotoxicity assay and an EC50 of 0.552 μg/ml(-1) in the DPPH antioxidant assay. Antimicrobial activity was observed against Methicillin resistant Staphlococcus aureus (MRSA) and Escherichia coli ATCC 25922 (14 mm), Klebsiella pneumoniae ATCC 706003 (13 mm), S. aureus ATCC 25923 (11 mm) and Candida tropicalis (20 mm). For the extract of P. carboxydivorans the EC50 was 0.670 μg/ml(-1) and it was observed to be more bioactive against Bacillus subtilis DSM 10 ATCC 6051 (21 mm), C. tropicalis (20 mm), S. aureus ATCC 25923 (17 mm), MRSA (17 mm), E. coli K12 (W1130) (16 mm) and Chlorella vulgaris (10 mm). The genotoxicity testing revealed a 20 mm zone of inhibition against the polA mutant strain E. coli K-12 AB 3027 suggesting damage to the DNA and polA genes. The TLC and bioautography screening revealed a diversity of active bands of medium polar and nonpolar compounds. Metabolite analysis by HPLC-DAD via UV/vis spectral screening suggested the possibility of stenothricin and bagremycin A in the mycelium extract of N. caishijiensis respectively. In the broth and mycelium extract of P. carboxydivorans borrelidin was suggested along with α-pyrone. The HPLC-MS revealed bioactive long chained amide derivatives such as 7-Octadecenamide, 9, 12 octadecandienamide. This study reports the rare actinomycetes N. caishijiensis and P. carboxydivorans as endophytes and evaluates their bioactive metabolites. PMID:26946375

  16. Microbispora bryophytorum sp. nov., an actinomycete isolated from moss (Bryophyta).

    PubMed

    Li, Chuang; Zhang, Yuejing; Liu, Chongxi; Wang, Haiyan; Zhao, Junwei; Li, Lianjie; Zhang, Zhongwen; Wang, Xiangjing; Xiang, Wensheng

    2015-04-01

    A novel endophytic actinomycete, designated strain NEAU-TX2-2(T), was isolated from moss and characterized using a polyphasic approach. The isolate was found to have morphological characteristics typical of the genus Microbispora . The isolate formed longitudinally paired spores on the tips of short sporophores that branched from aerial hyphae. Analysis of the 16S rRNA gene sequence supported the assignment of the novel strain to the genus Microbispora , and strain NEAU-TX2-2(T) exhibited 99.08 and 98.62% gene sequence similarities to Microbispora amethystogenes JCM 3021(T) and Microbispora rosea subsp. rosea JCM 3006(T), respectively. However two tree-making algorithms supported the position that strain NEAU-TX2-2(T) formed a distinct clade with M. rosea subsp. rosea JCM 3006(T). A low level of DNA-DNA relatedness allowed the isolate to be differentiated from M. amethystogenes JCM 3021(T) and M. rosea subsp. rosea JCM 3006(T). Moreover, strain NEAU-TX2-2(T) could also be distinguished from its closest phylogenetic relatives by morphological and physiological characteristics. Therefore, it is proposed that strain NEAU-TX2-2(T) represents a novel species of the genus Microbispora for which the name Microbispora bryophytorum sp. nov. is proposed. The type strain is NEAU-TX2-2(T) ( = CGMCC 4.7138(T) = DSM 46710(T)).

  17. Sphaerisporangium rufum sp. nov., an endophytic actinomycete from roots of Oryza sativa L.

    PubMed

    Mingma, Ratchanee; Duangmal, Kannika; Trakulnaleamsai, Savitr; Thamchaipenet, Arinthip; Matsumoto, Atsuko; Takahashi, Yoko

    2014-04-01

    An endophytic actinomycete, strain R10-82(T), isolated from surface-sterilized roots of rice (Oryza sativa L.) was studied using a polyphasic approach. Strain R10-82(T) produced branching substrate mycelia and developed spherical spore vesicles on aerial hyphae containing non-motile spores. The major cellular fatty acids were iso-C16 : 0, iso-C14 : 0 and 10-methyl C17 : 0. The predominant menaquinones were MK-9, MK-9(H2), MK-9(H4) and MK-9(H6). Rhamnose, ribose, madurose, mannose and glucose were detected in whole-cell hydrolysates. The diagnostic phospholipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol mannosides, hydroxylphosphatidylethanolamine and ninhydrin-positive phosphoglycolipids. These morphological and chemotaxonomic data were similar to those of the genus Sphaerisporangium. Analysis of the 16S rRNA gene sequence revealed that strain R10-82(T) was related most closely to Sphaerisporangium cinnabarinum JCM 3291(T) (98.3 % similarity). The DNA G+C content of strain R10-82(T) was 74 mol%. DNA-DNA relatedness data in combination with differences in the biochemical and physiological properties suggested that strain R10-82(T) should be classified as representing a novel species of the genus Sphaerisporangium, for which the name Sphaerisporangium rufum is proposed. The type strain is R10-82(T) ( = BCC 51287(T) = NBRC 109079(T)). An emended description of the genus Sphaerisporangium is also provided. PMID:24363300

  18. Microwave irradiation is a useful tool for improving isolation of actinomycetes from soil.

    PubMed

    Wang, D S; Xue, Q H; Zhu, W J; Zhao, J; Duan, J L; Shen, G H

    2013-01-01

    Actinomycetes are an important source of novel, biologically active compounds. New methods need to be developed for isolating previously unknown actinomycetes from soil. The objective of this experiment was to study microwave irradiation of soil as a means for isolating previously unknown actinomycetes. Soil samples were collected at ten elevations between 800 and 3670 m on Taibai Mountain, Shaanxi Province, China. Moistened soil samples were irradiated at 120 W heating power (2450 MHz) for 3 min using a household microwave oven. Irradiation increased total actinomycete, streptomycete, and antagonistic actinomycete counts on three types of culture media. Irradiation also increased the number of culturable actinomycete isolates. Some actinomycete isolates were culturable only after the soil was irradiated, whereas other isolates could not be cultured after irradiation. Irradiation of soil from elevations > 3000 m increased actinomycete counts significantly but had little effect on the number of culturable actinomycete isolates. In contrast, irradiation of samples from elevations < 3000 m had relatively little effect on actinomycete counts, but significantly increased the number of culturable actinomycete isolates. We used 16S rDNA sequence analysis to identify 14 actinomycete isolates that were only culturable after irradiation. Microwave irradiation of soil was helpful for isolating Streptomyces spp., Nocardia spp., Streptosporangium spp., and Lentzea spp. Slightly more than 90% of the identified actinomycete species were biologically active. In conclusion, microwave irradiation is a useful tool for isolating biologically active actinomycetes from soil. PMID:23718054

  19. Microwave irradiation is a useful tool for improving isolation of actinomycetes from soil.

    PubMed

    Wang, D S; Xue, Q H; Zhu, W J; Zhao, J; Duan, J L; Shen, G H

    2013-01-01

    Actinomycetes are an important source of novel, biologically active compounds. New methods need to be developed for isolating previously unknown actinomycetes from soil. The objective of this experiment was to study microwave irradiation of soil as a means for isolating previously unknown actinomycetes. Soil samples were collected at ten elevations between 800 and 3670 m on Taibai Mountain, Shaanxi Province, China. Moistened soil samples were irradiated at 120 W heating power (2450 MHz) for 3 min using a household microwave oven. Irradiation increased total actinomycete, streptomycete, and antagonistic actinomycete counts on three types of culture media. Irradiation also increased the number of culturable actinomycete isolates. Some actinomycete isolates were culturable only after the soil was irradiated, whereas other isolates could not be cultured after irradiation. Irradiation of soil from elevations > 3000 m increased actinomycete counts significantly but had little effect on the number of culturable actinomycete isolates. In contrast, irradiation of samples from elevations < 3000 m had relatively little effect on actinomycete counts, but significantly increased the number of culturable actinomycete isolates. We used 16S rDNA sequence analysis to identify 14 actinomycete isolates that were only culturable after irradiation. Microwave irradiation of soil was helpful for isolating Streptomyces spp., Nocardia spp., Streptosporangium spp., and Lentzea spp. Slightly more than 90% of the identified actinomycete species were biologically active. In conclusion, microwave irradiation is a useful tool for isolating biologically active actinomycetes from soil.

  20. Diversity and isolation of rare actinomycetes: an overview.

    PubMed

    Tiwari, Kavita; Gupta, Rajinder K

    2013-08-01

    A renewed interest in the development of new antimicrobial agents is urgently needed to combat the increasing number of antibiotic-resistant strains of pathogenic microorganisms. Actinomycetes continue to be the mainstream supplier of antibiotics used in industry. The likelihood of discovering a new compound with novel chemical structure can be increased with intensive efforts in isolating and screening of rare genera of microorganisms to include in natural-product-screening collections. An unexpected variety of rare actinomycetes is now being isolated worldwide from previously uninvestigated diverse natural habitats, using different selective isolation methods. These isolation efforts include methods to enhance growth (enrichment) of rare actinomycetes, and eliminate unwanted microorganisms (pretreatment). To speed up the strain isolation process, knowledge about the distribution of such unexploited groups of microorganisms must also be augmented. This is a summary of using these microorganisms as new potential biological resources, and a review of almost all of the selective isolation methods, including pretreatment and enrichment techniques that have been developed to date for the isolation of rare actinomycetes.

  1. [Isolation of Actinomycetes synthesizing proteases with thrombolytic activity].

    PubMed

    Lysenko, S V; Salivonik, S M

    1988-01-01

    Proteases with the thrombolytic activity were studied in 212 strains of actinomycetes isolated from different soils of the Soviet Union. The cultures belonged to the genera Micromonospora, Nocardia and Streptomyces. Proteases were synthesized by 41% of the studied actinomycetes and some of their strains completely dissolved in vitro artificially obtained blood thrombi within 120-240 min. In the Streptomyces genus, more active strains were found in the groups Flavus, Fradia and Globisporus. The groups Olivaceus, Violaceus and Viridis had less active strains. PMID:3062331

  2. Comparative analysis of chemical constituents, antimicrobial and antioxidant activities of ethylacetate extracts of Polygonum cuspidatum and its endophytic actinomycete, Streptomyces sp. A0916.

    PubMed

    Wang, Lei; Qiu, Peng; Long, Xiu-Feng; Zhang, Shuai; Zeng, Zhi-Gang; Tian, Yong-Qiang

    2016-02-01

    The present study investigated the chemical composition of ethylacetate extracts from an endophytic actinomycete Streptomyces sp. A0916 and its host Polygonum cuspidatum. A comparative analysis of the antimicrobial and antioxidant properties of the extracts was also conducted. 32 compounds of P. cuspidatum and 23 compounds of Streptomyces sp. A0916 were isolated and identified by GC/MS. Antimicrobial activities of the extracts were evaluated using eight microbial strains (3 Gram-positive bacteria, 3 Gram-negative bacteria, and 2 fungi). The Streptomyces sp. A0916 extracts showed a wide range of antimicrobial activities and presented greater antimicrobial effectiveness than the P. cuspidatum extracts. The minimum inhibitory concentration (MIC) of Streptomyces sp. A0916 extracts against the ampicillin-resistant strain Enterococcus faecium SIIA843 was 32 μg·mL(-1). Furthermore, the extracts had greater antimicrobial effect against Gram-positive bacteria than Gram-negative bacteria. Finally, the antioxidant activity of the Streptomyces sp. A0916 extracts was equal to that of the P. cuspidatum extracts. In conclusion, our results suggest that the endophytic actinomycetes of the medicinal plants are an important source of bioactive substances. PMID:26968677

  3. Isolation and screening of endophytes from the rhizomes of some Zingiberaceae plants for L-asparaginase production.

    PubMed

    Krishnapura, Prajna Rao; Belur, Prasanna D

    2016-01-01

    Endophytes are described as microorganisms that colonize the internal tissues of healthy plants without causing any disease. Endophytes isolated from medicinal plants have been attracting considerable attention due to their high biodiversity and their predicted potential to produce a plethora of novel compounds. In this study, an attempt was made to isolate endophytes from rhizomes of five medicinal plants of Zingiberaceae family, and to screen the endophytes for L-asparaginase activity. In total, 50 endophytes (14 bacteria, 22 actinomycetes, and 14 fungi) were isolated from Alpinia galanga, Curcuma amada, Curcuma longa, Hedychium coronarium, and Zingiber officinale; of these, 31 endophytes evidenced positive for L-asparaginase production. All the L-asparaginase-positive isolates showed L-asparaginase activity in the range of 54.17-155.93 U/mL in unoptimized medium. An endophytic fungus isolated from Curcuma amada, identified as Talaromyces pinophilus, was used for further experiments involving studies on the effect of certain nutritional and nonnutritional factors on L-asparaginase production in submerged fermentation. Talaromyces pinophilus initially gave an enzyme activity of 108.95 U/mL, but gradually reduced to 80 U/mL due to strain degeneration. Perhaps this is the first report ever on the production of L-asparaginase from endophytes isolated from medicinal plants of Zingiberaceae family. PMID:25830659

  4. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection.

    PubMed

    Jogaiah, Sudisha; Kurjogi, Mahantesh; Govind, Sharathchandra Ramasandra; Huntrike, Shekar Shetty; Basappa, Vedamurthy Ankala; Tran, Lam-Son Phan

    2016-01-01

    Native endophytic actinomycetes isolated from pearl millet roots were examined for their efficacy to protect pearl millet against downy mildew. Nineteen of 39 isolates were found to be proteolytic, of which 7 strains could directly suppress the sporangium formation of Sclerospora graminicola, the pearl millet downy mildew pathogen. Thus, mycelial suspensions containing either spores or cell-free extract of these 7 isolates were used for seed-coating and -soaking treatments to test for their induction of downy mildew resistance. Results indicated that seed-coating overall provided better protection to downy mildew than seed-soaking. In both treatments, the tested isolates demonstrated differential abilities in downy mildew disease protection, with Streptomyces griseus SJ_UOM-07-09 and Streptosporangium roseum SJ_UOM-18-09 showing the highest protection rates. Additionally, the levels of disease protection conferred by the actinomycetes were just slightly lower than that of the systemic fungicide Apron, suggesting their effectiveness. Further studies revealed that the more rapid root colonization by SJ_UOM-18-09 resulted in faster and higher induced resistance in comparison with SJ_UOM-07-09 under greenhouse conditions, indicating that SJ_UOM-18-09 was superior than SJ_UOM-07-09 in inducing resistance. Results from this study provide comprehensive information on biocontrol functions of SJ_UOM- 18-09 with great potential to control downy mildew disease in pearl millet. PMID:27499196

  5. Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection

    PubMed Central

    Jogaiah, Sudisha; Kurjogi, Mahantesh; Govind, Sharathchandra Ramasandra; Huntrike, Shekar Shetty; Basappa, Vedamurthy Ankala; Tran, Lam-Son Phan

    2016-01-01

    Native endophytic actinomycetes isolated from pearl millet roots were examined for their efficacy to protect pearl millet against downy mildew. Nineteen of 39 isolates were found to be proteolytic, of which 7 strains could directly suppress the sporangium formation of Sclerospora graminicola, the pearl millet downy mildew pathogen. Thus, mycelial suspensions containing either spores or cell-free extract of these 7 isolates were used for seed-coating and -soaking treatments to test for their induction of downy mildew resistance. Results indicated that seed-coating overall provided better protection to downy mildew than seed-soaking. In both treatments, the tested isolates demonstrated differential abilities in downy mildew disease protection, with Streptomyces griseus SJ_UOM-07-09 and Streptosporangium roseum SJ_UOM-18-09 showing the highest protection rates. Additionally, the levels of disease protection conferred by the actinomycetes were just slightly lower than that of the systemic fungicide Apron, suggesting their effectiveness. Further studies revealed that the more rapid root colonization by SJ_UOM-18-09 resulted in faster and higher induced resistance in comparison with SJ_UOM-07-09 under greenhouse conditions, indicating that SJ_UOM-18-09 was superior than SJ_UOM-07-09 in inducing resistance. Results from this study provide comprehensive information on biocontrol functions of SJ_UOM- 18-09 with great potential to control downy mildew disease in pearl millet. PMID:27499196

  6. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control. PMID:26137678

  7. [Isolation and antimicrobial activities of actinomycetes from vermicompost].

    PubMed

    Wang, Xue-jun; Yan, Shuang-lin; Min, Chang-li; Yang, Yan

    2015-02-01

    In this paper, actinomycetes were isolated from vermicompost by tablet coating method. Antimicrobial activities of actinomycetes were measured by the agar block method. Strains with high activity were identified based on morphology and biochemical characteristics, as well as 16S rDNA gene sequence analysis. The results showed that 26 strains of actinomycetes were isolated, 16 of them had antimicrobial activities to the test strains which accounts for 61.54% of all strains. Among the 16 strains, the strain QYF12 and QYF22 had higher antimicrobial activity to Micrococcus luteus, with a formed inhibition zone of 27 mm and 31 mm, respectively. While the strain QYF26 had higher antimicrobial activity to Bacillus subtilis, and the inhibition zone diameter was 21 mm. Based on the identification of strains with high activity, the strain QYF12 was identified as Streptomyces chartreusis, the strain QYF22 was S. ossamyceticus and the strain QYF26 was S. gancidicus. This study provided a theoretical basis for further separate antibacterial product used for biological control.

  8. Trehangelins A, B and C, novel photo-oxidative hemolysis inhibitors produced by an endophytic actinomycete, Polymorphospora rubra K07-0510.

    PubMed

    Nakashima, Takuji; Okuyama, Ryuki; Kamiya, Yoshiyuki; Matsumoto, Atsuko; Iwatsuki, Masato; Inahashi, Yuki; Yamaji, Kenzaburo; Takahashi, Yōko; Ōmura, Satoshi

    2013-06-01

    Three new natural products, designated trehangelins A, B and C, were isolated by solvent extraction, silica gel and octadecylsilyl silica gel column chromatographies and subsequent preparative HPLC from the cultured broth of an endophytic actinomycete strain, Polymorphospora rubra K07-0510. The trehangelins consisted of a trehalose moiety and two angelic acid moieties. Trehangelins A (IC50 value, 0.1 mg ml(-1)) and C (IC50 value, 0.4 mg ml(-1)), with symmetric structures, showed potent inhibitory activity against hemolysis of red blood cells induced by light-activated pheophorbide a. However, trehangelin B, with an asymmetric structure, displayed only a slight inhibition (IC50 value, 1.0 mg ml(-1)). PMID:23591606

  9. Isolation of mutants of the nitrogen-fixing actinomycete Frankia.

    PubMed

    Kakoi, Kentaro; Yamaura, Masatoshi; Kamiharai, Toshihito; Tamari, Daiki; Abe, Mikiko; Uchiumi, Toshiki; Kucho, Ken-Ichi

    2014-01-01

    Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5'-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia. PMID:24389412

  10. Isolation of Mutants of the Nitrogen-Fixing Actinomycete Frankia

    PubMed Central

    Kakoi, Kentaro; Yamaura, Masatoshi; Kamiharai, Toshihito; Tamari, Daiki; Abe, Mikiko; Uchiumi, Toshiki; Kucho, Ken-Ichi

    2014-01-01

    Frankia is a nitrogen (N)-fixing multicellular actinomycete which establishes root-nodule symbiosis with actinorhizal plants. Several aspects of Frankia N fixation and symbiosis are distinct, but genes involved in the specific features are largely unknown because of the lack of an efficient mutant screening method. In this study, we isolated mutants of Frankia sp. strain CcI3 using hyphae fragments mutagenized by chemical mutagens. Firstly, we isolated uracil auxotrophs as gain-of-function mutants resistant to 5-fluoroorotic acid (5-FOA). We obtained seven 5-FOA resistant mutants, all of which required uracil for growth. Five strains carried a frame shift mutation in orotidine-5′-phosphate decarboxylase gene and two carried an amino acid substitution in the orotate phosphoribosyltransferase gene. Secondly, we isolated mutants showing loss-of-function phenotypes. Mutagenized hyphae were fragmented by ultrasound and allowed to multiply at their tips. Hyphae were fragmented again and short fragments were enriched by filtration through 5 μm pores filters. Next-generation and Sanger sequencing revealed that colonies formed from the short hyphae fragments consisted of cells with an identical genotype. From the mutagenized colony population, we isolated three pigmentation mutants and a mutant with reduced N-fixation activity. These results indicate that our procedure is useful for the isolation of loss-of-function mutants using hyphae of Frankia. PMID:24389412

  11. Antimicrobial activity of endophytic fungi isolated from Swietenia macrophylla leaves.

    PubMed

    Ibrahim, Darah; Lee, Chong Chai; Sheh-Hong, Lim

    2014-02-01

    The endophytic fungi isolated from leaves of Swietenia macrophylla of different ages were examined for antimicrobial activity. The agar plug diffusion assay was used for primary screening, followed by the disc diffusion method. A total of 461 filamentous endophytic fungi were isolated and cultured to examine their antimicrobial properties. In the primary screen, 315 isolates (68.3%) exhibited activity against at least one of the test pathogenic microorganisms. The percentage of isolates exhibiting antimicrobial activity increased with leaf age. Endophytic fungal assemblages, as well as those isolates exhibiting antimicrobial properties appeared to increase with leaf age. The main antimicrobial compounds were produced extracellularly by the endophytic fungi. The results suggest that healthy leaves at older stages of growth can be a potential source for the isolation of endophytic fungi with antimicrobial properties.

  12. Isolation and Characterization of Actinomycete Antagonists of a Fungal Root Pathogen †

    PubMed Central

    Crawford, Don L.; Lynch, James M.; Whipps, John M.; Ousley, Margaret A.

    1993-01-01

    By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against

  13. Diversity of actinomycetes isolated from subseafloor sediments after prolonged low-temperature storage.

    PubMed

    Ulanova, Dana; Goo, Kian-Sim

    2015-05-01

    Subseafloor sediments present an untapped source of novel bacterial species with industrially important bioactivities. Subseafloor core samples collected during the Integrated Ocean Drilling Program Expeditions 315, 316, and 331 and stored in Kochi Core Center at -80 °C for 1 to 4 years were used for cultivation-based study of viable actinomycetes. In total, more than 100 actinomycete-like colonies were isolated from two deep-frozen subseafloor sediment samples. Isolated actinomycetes showed close similarity to known Actinotalea, Dietzia, Gordonia, Isoptericola, Microbacterium, Nocardia, Rhodococcus, Pseudonocardia, Streptomyces, and Tsukamurella species and were halotolerant. Bioactivity assays revealed that two of the isolates were producing potent antibacterial compound(s) and one isolate was having antifungal activity. Our study demonstrated that deep-frozen subseafloor core samples could be a potential source of viable actinomycetes, which may be used in drug discovery. PMID:25381631

  14. Isolation and identification of actinomycetes from a compost-amended soil with potential as biocontrol agents.

    PubMed

    Cuesta, Gonzalo; García-de-la-Fuente, Rosana; Abad, Manuel; Fornes, Fernando

    2012-03-01

    The search for new biocontrol strategies to inhibit the growth of phytopathogenic microorganisms has become widely widespread due to environmental concerns. Among actinomycetes, Streptomyces species have been extensively studied since they have been recognized as important sources of antibiotics. Actinomycete strains were isolated from a calcareous soil, 2 two-phase olive mill waste ('alperujo') composts, and the compost-amended soil by using selective media, and they were then co-cultured with 5 phytopathogenic fungi and 1 bacterium to perform an in vitro antagonism assay. Forty-nine actinomycete strains were isolated, 12 of them showing a great antagonistic activity towards the phytopathogenic microorganisms tested. Isolated strains were identified by 16S rDNA sequence analysis and phenotypic procedures. Eleven isolates concerned the genus Streptomyces and 1 actinomycete with chitinolytic activity belonged to the genus Lechevalieria. PMID:21190787

  15. A novel method to scale up fungal endophyte isolations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimations of species diversity are influenced by sampling intensity which in turn is influenced by methodology. For fungal endophyte diversity studies, the methodology includes surface-sterilization prior to isolation of endophytes. Surface-sterilization is an essential component of fungal endophy...

  16. Streptomyces aidingensis sp. nov., an actinomycete isolated from lake sediment.

    PubMed

    Xia, Zhan-Feng; Ruan, Ji-Sheng; Huang, Ying; Zhang, Li-Li

    2013-09-01

    A novel actinomycete strain, designated TRM 46012(T), was isolated from sediment of Aiding Lake in Tulufan Basin (42° 64' N 89° 26' E), north-west China. The strain was aerobic and Gram-staining-positive with an optimum NaCl concentration for growth of 0-5% (w/v). The isolate had sparse aerial mycelium and produced bud-shaped spores at the end of the aerial mycelium on ISP medium 4. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid and ribose as the major whole-cell sugar. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannoside, one unidentified phospholipid and three unidentified glycolipids. The predominant menaquinones were MK-9(H₆), MK-9(H₈) and MK-9(H₄). The major fatty acids were iso-C(16:0), anteiso-C(17:0) and anteiso-C(15:0). The G+C content of the DNA was 74.4 mol%. Phylogenetic analysis showed that strain TRM 46012(T) had 16S rRNA gene sequence similarity of 95.7% with the most closely related species with a validly published name, Streptomyces cheonanensis, and it could be distinguished from all species in the genus Streptomyces by using the data from this polyphasic taxonomic study. On the basis of these data, strain TRM 46012(T) should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces aidingensis sp. nov. is proposed. The type strain is TRM 46012(T) ( =CGMCC 4.5739(T) =NBRC 108211(T)). PMID:23456804

  17. Streptomyces aidingensis sp. nov., an actinomycete isolated from lake sediment.

    PubMed

    Xia, Zhan-Feng; Ruan, Ji-Sheng; Huang, Ying; Zhang, Li-Li

    2013-09-01

    A novel actinomycete strain, designated TRM 46012(T), was isolated from sediment of Aiding Lake in Tulufan Basin (42° 64' N 89° 26' E), north-west China. The strain was aerobic and Gram-staining-positive with an optimum NaCl concentration for growth of 0-5% (w/v). The isolate had sparse aerial mycelium and produced bud-shaped spores at the end of the aerial mycelium on ISP medium 4. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid and ribose as the major whole-cell sugar. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannoside, one unidentified phospholipid and three unidentified glycolipids. The predominant menaquinones were MK-9(H₆), MK-9(H₈) and MK-9(H₄). The major fatty acids were iso-C(16:0), anteiso-C(17:0) and anteiso-C(15:0). The G+C content of the DNA was 74.4 mol%. Phylogenetic analysis showed that strain TRM 46012(T) had 16S rRNA gene sequence similarity of 95.7% with the most closely related species with a validly published name, Streptomyces cheonanensis, and it could be distinguished from all species in the genus Streptomyces by using the data from this polyphasic taxonomic study. On the basis of these data, strain TRM 46012(T) should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces aidingensis sp. nov. is proposed. The type strain is TRM 46012(T) ( =CGMCC 4.5739(T) =NBRC 108211(T)).

  18. Isolation and identification of actinomycetes for production of novel extracellular glutaminase free L-asparaginase.

    PubMed

    Saxena, Akansha; Upadhyay, Ramraj; Kango, Naveen

    2015-12-01

    Over the recent years glutaminase free L-asparaginase has gained more importance due to better therapeutic properties for treatment of acute lymphoblastic leukemia. Actinomycetes are known for L-asparaginase activity. In the current study, 80 actinomycetes were isolated from various soil habitats by serial dilution technique. Presence of L-asparaginase was investigated in a total of 240 actinomycetes by tubed agar method using modified M-9 medium. A total of 165 actinomycetes were found positive for L-asparaginase activity. Among these, 57 actinomycetes producing larger zones of L-asparagine hydrolysis were further screened for their capacity to produce glutaminase-free L-asparaginase. Four L-glutaminase-free actinomycetes were found to be potential L-asparaginase producers. These actinomycetes were identified as Streptomyces cyaneus (SAP 1287, CFS 1560), S. exfoliates (CFS 1557) and S. phaeochromogenes (GS 1573) on the basis of morphological and biochemical identification studies. Maximum L-asparaginase activity (19.2 Uml(-1)) was observed in culture filtrate of S. phaeochromogenes under submerged fermentation. Results indicate that S. phaeochromogenes could be a potential source of glutaminase free L-asparaginase for commercial purpose. To the best of our knowledge, this is the first report on production of glutaminase free L-asparaginase from S. cyaneus, S. exfoliatus and S. phaeochromogenes. PMID:26742323

  19. Streptomyces lopnurensis sp. nov., an actinomycete isolated from soil.

    PubMed

    Zheng, Bei; Han, Xiao-Xue; Xia, Zhan-Feng; Wan, Chuan-Xing; Zhang, Li-Li

    2014-12-01

    A novel actinomycete, designated strain TRM 49590(T), was isolated from a soil sample from Lop Nur in Xinjiang Province, China. Strain TRM 49590(T) was aerobic, Gram-staining-positive, with an optimum NaCl concentration for growth of 1.5 % (w/v) and an optimum temperature for growth of 28-37 °C. The aerial mycelium was sparse, cylindrical and smooth-surfaced with irregular branches on ISP medium 4. The whole-cell sugars of strain TRM 49590(T) were ribose and glucose. The diagnostic diamino acid contained ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6) and MK-9(H8), with MK-9(H4) and MK-10(H6) present in smaller amounts. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 62.2 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TRM 49590(T) belongs to the genus Streptomyces with a sequence similarity of 97.16 % with the most closely related species Streptomyces sodiiphilus. Based on these observations, strain TRM 49590(T) is proposed to represent a novel species of the genus Streptomyces for which the name Streptomyces lopnurensis sp. nov. is suggested. The type strain is TRM 49590(T) ( = CCTCC AA 2013018(T) = NRRL B59109(T)). PMID:25253072

  20. Actinomycetes for Marine Drug Discovery Isolated from Mangrove Soils and Plants in China

    PubMed Central

    Hong, Kui; Gao, An-Hui; Xie, Qing-Yi; Gao, Hao; Zhuang, Ling; Lin, Hai-Peng; Yu, Hai-Ping; Li, Jia; Yao, Xin-Sheng; Goodfellow, Michael; Ruan, Ji-Sheng

    2009-01-01

    The mangrove ecosystem is a largely unexplored source for actinomycetes with the potential to produce biologically active secondary metabolites. Consequently, we set out to isolate, characterize and screen actinomycetes from soil and plant material collected from eight mangrove sites in China. Over 2,000 actinomycetes were isolated and of these approximately 20%, 5%, and 10% inhibited the growth of Human Colon Tumor 116 cells, Candida albicans and Staphylococcus aureus, respectively, while 3% inhibited protein tyrosine phosphatase 1B (PTP1B), a protein related to diabetes. In addition, nine isolates inhibited aurora kinase A, an anti-cancer related protein, and three inhibited caspase 3, a protein related to neurodegenerative diseases. Representative bioactive isolates were characterized using genotypic and phenotypic procedures and classified to thirteen genera, notably to the genera Micromonospora and Streptomyces. Actinomycetes showing cytotoxic activity were assigned to seven genera whereas only Micromonospora and Streptomyces strains showed anti-PTP1B activity. We conclude that actinomycetes isolated from mangrove habitats are a potentially rich source for the discovery of anti-infection and anti-tumor compounds, and of agents for treating neurodegenerative diseases and diabetes. PMID:19370169

  1. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery

    PubMed Central

    Sun, Wei; Zhang, Fengli; He, Liming; Karthik, Loganathan; Li, Zhiyong

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα) gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides. PMID:26483773

  2. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery.

    PubMed

    Sun, Wei; Zhang, Fengli; He, Liming; Karthik, Loganathan; Li, Zhiyong

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα) gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides.

  3. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges.

    PubMed

    Cheng, Cheng; MacIntyre, Lynsey; Abdelmohsen, Usama Ramadan; Horn, Hannes; Polymenakou, Paraskevi N; Edrada-Ebel, RuAngelie; Hentschel, Ute

    2015-01-01

    Marine sponge-associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes. PMID:26407167

  4. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges

    PubMed Central

    Cheng, Cheng; MacIntyre, Lynsey; Abdelmohsen, Usama Ramadan; Horn, Hannes; Polymenakou, Paraskevi N.; Edrada-Ebel, RuAngelie; Hentschel, Ute

    2015-01-01

    Marine sponge–associated actinomycetes are considered as promising sources for the discovery of novel biologically active compounds. In the present study, a total of 64 actinomycetes were isolated from 12 different marine sponge species that had been collected offshore the islands of Milos and Crete, Greece, eastern Mediterranean. The isolates were affiliated to 23 genera representing 8 different suborders based on nearly full length 16S rRNA gene sequencing. Four putatively novel species belonging to genera Geodermatophilus, Microlunatus, Rhodococcus and Actinomycetospora were identified based on a 16S rRNA gene sequence similarity of < 98.5% to currently described strains. Eight actinomycete isolates showed bioactivities against Trypanosma brucei brucei TC221 with half maximal inhibitory concentration (IC50) values <20 μg/mL. Thirty four isolates from the Milos collection and 12 isolates from the Crete collection were subjected to metabolomic analysis using high resolution LC-MS and NMR for dereplication purposes. Two isolates belonging to the genera Streptomyces (SBT348) and Micromonospora (SBT687) were prioritized based on their distinct chemistry profiles as well as their anti-trypanosomal activities. These findings demonstrated the feasibility and efficacy of utilizing metabolomics tools to prioritize chemically unique strains from microorganism collections and further highlight sponges as rich source for novel and bioactive actinomycetes. PMID:26407167

  5. Antibacterial Activities of Actinomycete Isolates Collected from Soils of Rajshahi, Bangladesh

    PubMed Central

    Rahman, Md. Ajijur; Islam, Mohammad Zahidul; Islam, Md. Anwar Ul

    2011-01-01

    This study was performed to isolate actinomycete colonies having antibacterial activity from soil samples collected from different places around Rajshahi, Bangladesh. Thirty actinomycete colonies were isolated in pure culture from five soil samples using Starch-casein-nitrate-agar medium. The isolates were grouped in five color series based on their aerial mycelia color and screened for their antibacterial activity against a range of test bacteria. Sixteen isolates (53.3%) were found to have moderate to high activity against four gram-positive and four gram-negative bacteria. Since many isolates showed inhibitory activity against indicator bacteria, it is suggestive that Bangladeshi soil could be an interesting source to explore for antibacterial secondary metabolites. PMID:21904683

  6. [Screening of antifungi endophytic actinomyces strains from salvia przewalskii in Tibean Plateau].

    PubMed

    Liu, Song-Qing; Jiang, Hua-Ming; Guan, Tong-Wei; Qi, Shan-Shan; Gu, Yun-Fu; Zhao, Ke; Wang, Xu; Zhang, Xiao-Ping

    2013-10-01

    Twenty-four endophytic actinomycetes strains were isolated from the Salvia przewalskii in Tibetan Plateau of China by tablet coating method. Fusarium moniliforme, Helminthosporium turcicum and Bipolaris maydis were selected as indicator fungi to test the antimicrobial activities of these endophytic actinomycetes by tablet confrontation method. The results showed that 21 strains can produce antimicrobial substances which accounts for 85.7% of the total separates number. Four strains of endogenous actinomyces have more obvious antifungi activity. According to results of morphology and culture properties and 16S rDNA sequences of endophytic actinomyces, it is concluded that all of the isolates were streptomycetes trains.

  7. Characterization of cellulases of fungal endophytes isolated from Espeletia spp.

    PubMed

    Cabezas, Luisa; Calderon, Carolina; Medina, Luis Miguel; Bahamon, Isabela; Cardenas, Martha; Bernal, Adriana Jimena; Gonzalez, Andrés; Restrepo, Silvia

    2012-12-01

    Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production. PMID:23274988

  8. Use of bacteriophage for the selective isolation of thermophilic actinomycetes from composted eucalyptus bark.

    PubMed

    Kurtböke, D I; Murphy, N E; Sivasithamparam, K

    1993-01-01

    A method was developed to reduce the numbers of thermophilic bacteria on isolation plates, which in turn facilitated the detection and isolation of thermophilic actinomycetes. The method involves exposing the test material to bacteriophage suspensions prior to inoculation on isolation plates. This method was applied to composted eucalyptus bark samples, which were then inoculated on R8 and 1/2 TSA + 0.2% casein hydrolysate agar plates. The phage susceptibility of thermophilic bacteria provided a selective means of reducing their numbers on isolation plates and hence increased the numbers of Thermomonospora, Saccharopolyspora rectivirgula, and thermophilic Streptomyces spp. on these media in comparison with the numbers recorded from control plates.

  9. Chromium(VI) resistance and removal by actinomycete strains isolated from sediments.

    PubMed

    Polti, Marta A; Amoroso, María J; Abate, Carlos M

    2007-03-01

    Forty-one isolated actinomycetes were used to study qualitative and semi-quantitative screening of chromium(VI) resistance. Chromate-removing activity was estimated using the Cr(VI) specific colorimetric reagent 1,5-diphenylcarbazide. Twenty percent of the isolates from El Cadillal (EC) and 14% of isolates from a copper filter plant (CFP) were able to grow at 13 mM of Cr(VI). All isolates from sugar cane (SCP) could grow up to Cr(VI) concentration of 17 mM. EC, CFP and SCP strains were able to remove 24%, 30% and more than 40% of Cr(VI), respectively. The highest and lowest Cr(VI) specific removal values were 75.5 mg g(-1) cell by M3 (CFP), and 1.5 mg g(-1) cell by C35 (EC) strains. Eleven Cr(VI) resistant strains were characterized and identified as species of the genera Streptomyces (10) and Amycolatopsis (1). Differences on actinomycete community composition between contaminated and non-contaminated soil were found. This study showed the potential capacity of actinomycetes as tools for Cr(VI) bioremediation. PMID:17182076

  10. Isolation and in vitro selection of actinomycetes strains as potential probiotics for aquaculture

    PubMed Central

    Bernal, Milagro García; Campa-Córdova, Ángel Isidro; Saucedo, Pedro Enrique; González, Marlen Casanova; Marrero, Ricardo Medina; Mazón-Suástegui, José Manuel

    2015-01-01

    Aim: This study was designed to describe a series of in vitro tests that may aid the discovery of probiotic strains from actinomycetes. Materials and Methods: Actinomycetes were isolated from marine sediments using four different isolation media, followed by antimicrobial activity and toxicity assessment by the agar diffusion method and the hemolysis of human blood cells, respectively. Extracellular enzymatic production was monitored by the hydrolysis of proteins, lipids and carbohydrates. Tolerance to different pH values and salt concentrations was also determined, followed by hydrophobicity analysis and genetic identification of the most promising strains. Results: Five out of 31 isolated strains showed antimicrobial activity against three Vibrio species. Three non-hemolytic strains (N7, RL8 and V4) among these active isolates yielded positive results in hydrophobicity tests and exhibited good growth at salt concentrations ranging from 0% to 10%, except strain RL8, which required a salt concentration >0.6%. Although these strains did not grow at pH<3, they showed different enzymatic activities. Phylogenetic analysis revealed that strains N7 and V4 have more than 99% identity with several Streptomyces species, whereas the closest matches to strain RL8 are Streptomyces panacagri and Streptomyces flocculus, with 98% and 98.2% similarity, respectively. Conclusion: Three actinomycetes strains showing probiotic-like properties were discovered using several in vitro tests that can be easily implemented in different institutions around the world. PMID:27047067

  11. Isolation and identification of fungal endophytes from grasses on the Oregon coast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes have been shown to improve abiotic and biotic stress response in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Endophytic fungi were isolated from thirty-four gra...

  12. Novel actinomycete and a cyanide-degrading pseudomonad isolated from industrial sludge

    SciTech Connect

    White, J.M.

    1987-01-01

    A novel actinomycete was the predominant filamentous microorganism in bulking activated sludge in a bench-scale reactor treating coke plant wastewater. The bacterium was isolated and identified as an actinomycete that is biochemically and morphologically similar to Amycolatopsis orientalis; however, a lack of DNA homology excludes true relatedness. At present, the isolate (NRRL B 16216) cannot be assigned to the recognized taxa of actinomycetes. Cyanide-degrading microorganisms were selected in chemostats maintained at a low dilution rate for several weeks. Cyanide alone or cyanide plus phenol were fully degraded when equilibrium was achieved, and increasing concentrations of cyanide were degraded until inhibition of cell division resulted in cell washout. An isolated non-fluorescent pseudomonad could be adapted to degrade high concentrations of cyanide and to utilize cyanide-nitrogen when phenol or lactate was the carbon source. Although one-carbon compounds such as methanol and methylamine were growth substrates, cyanide was not utilized as a carbon source. In the absence of cyanide, adaptation was gradually lost. Oxygen consumption of adapted cells was stimulated in the presence of cyanide whereas that of unadapted cells was depressed. Cyanide was degraded by growing or resting cells and by cell-free extracts. Cyanide degrading activity of cell-free extracts, lost upon dialysis, was fully restored with NAD(P)H.

  13. Phytoactinopolyspora endophytica gen. nov., sp. nov., a halotolerant filamentous actinomycete isolated from the roots of Glycyrrhiza uralensis F.

    PubMed

    Li, Li; Ma, Jin-Biao; Abdalla Mohamad, Osama; Li, Shan-Hui; Osman, Ghenijan; Li, Yan-Qiong; Guo, Jian-Wei; Hozzein, Wael N; Li, Wen-Jun

    2015-08-01

    A novel endophytic actinomycete, designated strain EGI 60009T, was isolated from the roots of Glycyrrhiza uralensis F. collected from Xinjiang Province, north-west China. The isolate was able to grow in the presence of 0-9% (w/v) NaCl. Strain EGI 60009T had particular morphological properties: the substrate mycelia fragmented into rod-like elements and aerial mycelia differentiated into short spore chains. ll-2, 6-Diaminopimelic acid was the cell-wall diamino acid and rhamnose, galactose and glucose were the cell-wall sugars. MK-9(H4) was the predominant menaquinone. The major fatty acids of strain EGI 60009T were iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0, iso-C17 : 0, iso-C17 : 1 and I/anteiso-C17 : 0 B. Mycolic acids were absent. The DNA G+C content of strain EGI 60009T was 70.4 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain EGI 60009T belongs to the family Jiangellaceae and formed a distinct clade in the phylogenetic tree. 16S rRNA gene sequence similarities between strain EGI 60009T and other members of the genera Jiangella and Haloactinopolyspora were 96.1-96.4 and 95.7-96.0%, respectively. Based on these results and supported by morphological, physiological and chemotaxonomic data and numerous phenotypic differences, a novel species of a new genus, Phytoactinopolyspora endophytica gen. nov., sp. nov., is proposed. The type strain of Phytoactinopolyspora endophytica is EGI 60009T ( = KCTC 29657T = CPCC204078T).

  14. Biological Characteristics and Antimicrobial Activity of Endophytic Streptomyces sp. TQR12-4 Isolated from Elite Citrus nobilis Cultivar Ham Yen of Vietnam

    PubMed Central

    Mai-Linh, Nguyen Vu; Hong-Lien, Nguyen Thi; Van Hieu, Nguyen

    2016-01-01

    Ham Yen orange (Citrus nobilis Lour) is the highly valuable commercial fruit of Vietnam. With the blooming of fruit production and farming area, this specialty crop is facing threats from several serious diseases; therefore the search for new effective biocontrollers is required to prevent the existing excessive use of fertilizers and plant protection chemicals. Endophytic actinomycetes are of great scientific interest due to their high potential of application in agriculture and pharmaceutical research. In this work, endophytic actinomycetes were isolated from a native orange species of Northeast mountainous province Tuyen Quang. Among 49 isolates obtained, the isolate TQR12-4 strongly inhibited test pathogens Colletotrichum truncatum, Geotrichum candidum, Fusarium oxysporum, and F. udum. This isolate gave comparatively high biomass yields on different substrates, for example, carboxy methyl cellulose, starch, protein, and chitin, within a wide range of temperature from 15 to 45°C and pH from 4 to 10. Sequence analysis of 16S rDNA gene showed that TQR12-4 shared 99% similarity to Streptomyces prasinopilosus; however, it slightly differed from the latter in spore morphology and hence was named as Streptomyces sp. TQR12-4. A thermostable antifungal substance of nonpeptide nature produced by Streptomyces sp. TQR12-4 had MIC against Fusarium udum of 100 μg/mL and 400 μg/mL respective to extract fractions X4 and X5. PMID:27795709

  15. Nonomuraea soli sp. nov., an actinomycete isolated from soil

    PubMed Central

    Cao, Yan-Ru; Jin, Rong-Xian; He, Wen-Xiang; Jiang, Cheng-Lin

    2012-01-01

    A straight-chain, spore-forming actinobacterium, strain YIM 120770T, was isolated from soil. Phylogenetic analysis on the basis of 16S rRNA gene sequence comparisons revealed that the isolate represents a distinct cluster within the clade comprising the genus Nonomuraea and is related most closely to Nonomuraea rhizophila YIM 67092T (96.5 % similarity). Cells of strain YIM 120770T grew in the presence of 0–3 % (w/v) NaCl, at 15–37 °C and at pH 7.0–8.0. The diagnostic amino acid was meso-diaminopimelic acid, cell hydrolysates contained madurose, glucose, mannose, ribose and galactose, the predominant cellular fatty acids were 10-methyl C17 : 0 and iso-C16 : 0, and the DNA G+C content was 66.4 mol%, data consistent with affiliation of strain YIM 120770T to the genus Nonomuraea. Strain YIM 120770T shared low levels of 16S rRNA gene sequence similarity (<97 %) with the type strains of recognized species of the genus Nonomuraea and could be differentiated from its closest phylogenetic relative based on phenotypic characteristics. These results suggested that strain YIM 120770T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea soli sp. nov. is proposed. The type strain is YIM 120770T ( = DSM 45533T = JCM 17347T). PMID:21890732

  16. Siderophore production by actinomycetes isolates from two soil sites in Western Australia.

    PubMed

    Lee, Joanna; Postmaster, Armin; Soon, Hooi Peng; Keast, David; Carson, Kerry C

    2012-04-01

    The actinomycetes are metabolically flexible soil micro-organisms capable of producing a range of compounds of interest, including siderophores. Siderophore production by actinomycetes sampled from two distinct and separate geographical sites in Western Australia were investigated and found to be generally similar in the total percentage of siderophore producers found. The only notable difference was the proportion of isolates producing catechol siderophores with only 3% found in site 1 (from the north-west of Western Australia and reportedly containing 40% magnetite) and 17% in site 2 (a commercial stone fruit orchard in the hills east of Perth with a soil base ranging from sandy loam to laterite). Further detailed characterization of isolates of interest identified a Streptomyces that produced extracellularly excreted enterobactin, the characteristic Enterobacteriaceae siderophore, and also revealed some of the conditions required for enterobactin production. Carriage of the entF gene, which codes for the synthetase responsible for the final assembly of the tri-cyclic structure of enterobactin, was confirmed by PCR in this isolate. Another separate Streptomyces produced a compound that matched the UV/VIS spectra of heterobactin, a siderophore previously only described in Rhodococcus and Nocardia. PMID:22038645

  17. Siderophore production by actinomycetes isolates from two soil sites in Western Australia.

    PubMed

    Lee, Joanna; Postmaster, Armin; Soon, Hooi Peng; Keast, David; Carson, Kerry C

    2012-04-01

    The actinomycetes are metabolically flexible soil micro-organisms capable of producing a range of compounds of interest, including siderophores. Siderophore production by actinomycetes sampled from two distinct and separate geographical sites in Western Australia were investigated and found to be generally similar in the total percentage of siderophore producers found. The only notable difference was the proportion of isolates producing catechol siderophores with only 3% found in site 1 (from the north-west of Western Australia and reportedly containing 40% magnetite) and 17% in site 2 (a commercial stone fruit orchard in the hills east of Perth with a soil base ranging from sandy loam to laterite). Further detailed characterization of isolates of interest identified a Streptomyces that produced extracellularly excreted enterobactin, the characteristic Enterobacteriaceae siderophore, and also revealed some of the conditions required for enterobactin production. Carriage of the entF gene, which codes for the synthetase responsible for the final assembly of the tri-cyclic structure of enterobactin, was confirmed by PCR in this isolate. Another separate Streptomyces produced a compound that matched the UV/VIS spectra of heterobactin, a siderophore previously only described in Rhodococcus and Nocardia.

  18. Bioactive isocoumarins isolated from the endophytic fungus Microdochium bolleyi.

    PubMed

    Zhang, Wen; Krohn, Karsten; Draeger, Siegfried; Schulz, Barbara

    2008-06-01

    Three new isocoumarin derivatives ( 2- 4) were isolated together with monocerin ( 1) from Microdochium bolleyi, an endophytic fungus from Fagonia cretica, a herbaceous plant of the semiarid coastal regions of Gomera. Compounds 2 and 3 are both 12-oxo epimers of 1, and 4 is a ring-opened derivative of 1. The structures were elucidated by detailed spectroscopic analysis and comparison with reported data. The absolute configurations were determined by a modified Mosher's method. Compounds 1, 3, and 4 showed good antifungal, antibacterial, and antialgal activities against Microbotryum violaceum, Escherichia coli, Bacillus megaterium, and Chlorella fusca. Compound 2 was moderately antifungal and antialgal. PMID:18510362

  19. [Isolation of endophytic fungi from Macleaya cordata and screening of sanguinarine-producing strains].

    PubMed

    Min, Chang-lil; Wang, Xue-jun; Zhao, Meng-fan; Chen, Wen-wei

    2014-11-01

    Endophytic fungi were isolated from Macleaya cordata growing in Dabie Mountain by agar-block method, and then the endophytic fungi were grouped into different types based on their morphological characteristics, and thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) were employed to determine whether the metabolic substances contained sanguinarine or not, and then preliminarily identified by morphological method. The results showed that the leaves hosted the largest number of endophytes (96 isolates) followed by the stems (57 isolates) and finally the roots (28 isolates), respectively. Based on morphological characteristics the endophytic fungi were grouped into 26 types in our study. TLC and HPLC results showed that there was sanguinarine in the metabolic substances of BLH 51 strain. According to the morphological characteristic, the BLH 51 strain was identified as Fusarium proliferatum. All these indicated that the medicinal plant M. cordata harbors abundant endophytes, which could be a new source for the search of active secondary metabolites.

  20. In vitro α-glucosidase inhibition and antioxidative potential of an endophyte species (Streptomyces sp. loyola UGC) isolated from Datura stramonium L.

    PubMed

    Nimal Christhudas, I V S; Praveen Kumar, P; Agastian, P

    2013-07-01

    Endophytic actinomycetes isolated from Datura stramonium L. was evaluated for its effects against in vitro α-glucosidase inhibition, antioxidant, and free radical scavenging activities. Based on microbial cultural characteristic and 16S rRNA sequencing, it was identified as Streptomyces sp. loyola UGC. The methanolic extract of endophytic actinomycetes (MeEA) shows remarkable inhibition of α-glucosidase (IC50 730.21 ± 1.33 μg/ml), scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) (IC50 435.31 ± 1.79 μg/ml), hydroxyl radical (IC50 350.21 ± 1.02 μg/ml), nitric oxide scavenging (IC50 800.12 ± 1.05 μg/ml), superoxide anion radical (IC50 220.31 ± 1.47 μg/ml), as well as a high and dose-dependent reducing power. The MeEA also showed a strong suppressive effect on rat liver lipid peroxidation. Antioxidants of β-carotene linoleate model system revels significantly lower than BHA. The total phenolic content of the extract was 176 mg of catechol equivalents/gram extract. Perusal of this study indicates MeEA can be used as natural resource of α-glucosidase inhibitor and antioxidants. PMID:23417059

  1. Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris)

    PubMed Central

    de Oliveira Costa, Leonardo Emanuel; de Queiroz, Marisa Vieira; Borges, Arnaldo Chaer; de Moraes, Celia Alencar; de Araújo, Elza Fernandes

    2012-01-01

    The common bean is one of the most important legumes in the human diet, but little is known about the endophytic bacteria associated with the leaves of this plant. The objective of this study was to characterize the culturable endophytic bacteria of common bean (Phaseolus vulgaris) leaves from three different cultivars (Vermelhinho, Talismã, and Ouro Negro) grown under the same field conditions. The density of endophytic populations varied from 4.5 x 102 to 2.8 x 103 CFU g-1 of fresh weight. Of the 158 total isolates, 36.7% belonged to the Proteobacteria, 32.9% to Firmicutes, 29.7% to Actinobacteria, and 0.6% to Bacteroidetes. The three P. vulgaris cultivars showed class distribution differences among Actinobacteria, Alphaproteobacteria and Bacilli. Based on 16S rDNA sequences, 23 different genera were isolated comprising bacteria commonly associated with soil and plants. The genera Bacillus, Delftia, Methylobacterium, Microbacterium, Paenibacillus, Staphylococcus and Stenotrophomonas were isolated from all three cultivars. To access and compare the community structure, diversity indices were calculated. The isolates from the Talismã cultivar were less diverse than the isolates derived from the other two cultivars. The results of this work indicate that the cultivar of the plant may contribute to the structure of the endophytic community associated with the common bean. This is the first report of endophytic bacteria from the leaves of P. vulgaris cultivars. Future studies will determine the potential application of these isolates in biological control, growth promotion and enzyme production for biotechnology. PMID:24031988

  2. [Isolation and diversity analyses of endophytic fungi from Paris polyphylla var. yunnanensis].

    PubMed

    Wang, Qian; Shen, Shi-Kang; Zhang, Ai-Li; Wu, Chun-Yan; Wu, Fu-Qin; Zhang, Xin-Jun; Wang, Yue-Hua

    2013-11-01

    The paper is aimed at studying the diversity of endophytic fungi community from Paris polyphylla var. yunnanensis, and to provide a scientific basis for the utilization value of the endophytic fungi as bioactive material resources. In the present study, endophytic fungi were isolated from roots, rhizomes and leaves of wild P. polyphylla var. yunnanensis collected from Baoshan, Heqing county and Songming city of Yunnan province, and identified and classified by morphological methods together with its ITS sequence analysis. Seven and forty-nine strains of endophytic fungi were isolated from P. polyphylla var. yunnanensis. They were identified belonging to 41 genus. In these 41 genus, 3 genus exist in root only, 12 genus only exist in rhizome and 8 genus only exist in leaf. There was difference in endophytic fungi isolated from different sample sites. Endophytic fungi diversity from rhizomes of Heqing site was the highest. Endophytic fungi similarity coefficient was low among different sites and tissues. Based on these results, it is reasonable to propose that endophytic fungi of P. polyphylla var. yannanensis from different tissue and different sample sites has a certain difference which is possibly relate to their different habitats, different structure and composition of each tissue.

  3. Amycolatopsis salitolerans sp. nov., a filamentous actinomycete isolated from a hypersaline habitat.

    PubMed

    Guan, Tong-Wei; Xia, Zhan-Feng; Tang, Shu-Kun; Wu, Nan; Chen, Zheng-Jun; Huang, Ying; Ruan, Ji-Sheng; Li, Wen-Jun; Zhang, Li-Li

    2012-01-01

    A novel actinomycete strain, designated TRM F103(T), was isolated from a hypersaline habitat of the Tarim basin in Xinjiang province, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Amycolatopsis and was most closely related to Amycolatopsis halophila YIM 93223(T) (99.3% 16S rRNA gene sequence similarity). However, DNA-DNA relatedness between these two strains, based on triplicate experiments, was only 31.6%. The isolate contained meso-diaminopimelic acid and ribose, glucose and galactose as the major whole-cell sugars. The predominant menaquinone was MK-8(H(4)). The major fatty acids were iso-C(16:0) and C(16:0). The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and glucosamine-containing phospholipids. The G+C content of the genomic DNA was 66.4 mol%. The phenotypic data clearly distinguished the isolate from its closest relatives. The combined phylogenetic, chemotaxonomic and phenotypic data indicate that the isolate represents a novel species of the genus Amycolatopsis. The proposed name is Amycolatopsis salitolerans sp. nov., with TRM F103(T) (=JCM 15899(T)=CCTCC AB 208326(T)) as the type strain. PMID:21317279

  4. Amycolatopsis salitolerans sp. nov., a filamentous actinomycete isolated from a hypersaline habitat.

    PubMed

    Guan, Tong-Wei; Xia, Zhan-Feng; Tang, Shu-Kun; Wu, Nan; Chen, Zheng-Jun; Huang, Ying; Ruan, Ji-Sheng; Li, Wen-Jun; Zhang, Li-Li

    2012-01-01

    A novel actinomycete strain, designated TRM F103(T), was isolated from a hypersaline habitat of the Tarim basin in Xinjiang province, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Amycolatopsis and was most closely related to Amycolatopsis halophila YIM 93223(T) (99.3% 16S rRNA gene sequence similarity). However, DNA-DNA relatedness between these two strains, based on triplicate experiments, was only 31.6%. The isolate contained meso-diaminopimelic acid and ribose, glucose and galactose as the major whole-cell sugars. The predominant menaquinone was MK-8(H(4)). The major fatty acids were iso-C(16:0) and C(16:0). The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and glucosamine-containing phospholipids. The G+C content of the genomic DNA was 66.4 mol%. The phenotypic data clearly distinguished the isolate from its closest relatives. The combined phylogenetic, chemotaxonomic and phenotypic data indicate that the isolate represents a novel species of the genus Amycolatopsis. The proposed name is Amycolatopsis salitolerans sp. nov., with TRM F103(T) (=JCM 15899(T)=CCTCC AB 208326(T)) as the type strain.

  5. Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments

    SciTech Connect

    Pasti-Grigsby, M.B.; Lewis, T.A.; Crawford, D.L.; Crawford, R.L.

    1996-03-01

    Biotransformation of TNT has been reported under both aerobic and anaerobic conditions. Actinomycetes are important decomposers in composts. This study examines the tolerance of acitomycete cultures, isolated from both TNT-contaminated and uncontaminated environments for different concentrations to TNT, determined how selected isolates transform TNT, and examined whether such TNT transformations were constitutive or induced by exposure to TNT. 33 refs., 1 figs., 1 tab.

  6. Actinophytocola sediminis sp. nov., an actinomycete isolated from a marine sediment.

    PubMed

    Zhang, Dao-Feng; Jiang, Zhao; Zhang, Xiao-Mei; Yang, Ling-Ling; Tian, Xin-Peng; Long, Li-Juan; Zhang, Si; Li, Wen-Jun

    2014-08-01

    A novel actinomycete strain, designated YIM M13705(T), was isolated from a marine sediment sample of the South China Sea and its characteristics were determined by a polyphasic approach. The slowly growing, Gram-stain-positive, aerobic strain produced branched substrate mycelium and aerial hyphae, and no diffusible pigment was produced on the media tested. At maturity, spore chains were formed on aerial hyphae and substrate mycelium was not fragmented. Whole-cell hydrolysates of the strain contained meso-diaminopimelic acid and galactose, glucose, ribose and rhamnose. The predominant menaquinones were MK-9(H4) and MK-10(H2). The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and ninhydrin-positive phosphoglycolipids. The major fatty acid was iso-C(16 : 0). The G+C content of the genomic DNA was 68.2 mol%. On the basis of 16S rRNA gene sequence, the strain was shown to be most closely related to species of the genus Actinophytocola. DNA-DNA hybridization relatedness values (<70%) of the isolate with its closest neighbour Actinophytocola xinjiangensis QAIII60(T) supported classification of the isolate as a representative of a novel species. On the basis of phylogenetic analysis, and phenotypic and genotypic data, it is concluded that the new isolate belongs to a novel species of the genus Actinophytocola, for which the name Actinophytocola sediminis sp. nov. (type strain YIM M13705(T) = DSM 45939(T) = BCRC 16956(T)) is proposed.

  7. A method to type the potential angucycline producers in actinomycetes isolated from marine sponges.

    PubMed

    Ouyang, Yongchang; Wu, Houbo; Xie, Lianwu; Wang, Guanghua; Dai, Shikun; Chen, Minjie; Yang, Keqian; Li, Xiang

    2011-05-01

    Angucyclines are aromatic polyketides with antimicrobial, antitumor, antiviral and enzyme inhibition activities. In this study, a new pair of degenerate primers targeting the cyclase genes that are involved in the aromatization of the first and/or second ring of angucycline, were designed and evaluated in a PCR protocol targeting the jadomycin cyclase gene of Streptomyces venezuelae ISP5230. The identity of the target amplicon was confirmed by sequencing. After validation, the primers were used to screen 49 actinomycete isolates from three different marine sponges to identify putative angucycline producers. Seven isolates were positively identified using this method. Sequence analysis of the positive amplicons confirmed their identity as putative angucycline cyclases with sequence highly similar to known angucycline cyclases. Phylogenetic analysis clustered these positives into the angucycline group of cyclases. Furthermore, amplifications of the seven isolates using ketosynthase-specific primers were positive, backing the results using the cyclase primers. Together these results provided strong support for the presence of angucycline biosynthetic genes in these isolates. The specific primer set targeting the cyclase can be used to identify putative angucycline producers among marine actinobacteria, and aid in the discovery of novel angucyclines.

  8. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    NASA Astrophysics Data System (ADS)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  9. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin.

    PubMed

    Eyberger, Amy L; Dondapati, Rajeswari; Porter, John R

    2006-08-01

    The lignan podophyllotoxin (1) is highly valued as the precursor to clinically useful anticancer drugs. Substantial drug development of this compound class continues, including potential new use for inflammatory disease. We have isolated two endophyte fungi, both strains of Phialocephala fortinii, from rhizomes of the plant Podophyllum peltatum. The fungi were identified through DNA sequencing and morphology. Both strains of fungi are slow-growing and produce 1 at low but measurable amounts in broth culture. The compound was confirmed through matching HPLC retention times, absorption spectra, and MS data to authentic 1. The yield of 1 has ranged from 0.5 to 189 microg/L in 4 weeks of culture. These fungi have implications for the sustained production of 1 independent of wild populations of the source plants.

  10. Fumigaclavine I, a new alkaloid isolated from endophyte Aspergillus terreus.

    PubMed

    Shen, Li; Zhu, Li; Luo, Qian; Li, Xiao-Wen; Xi, Ju-Qun; Kong, Gui-Mei; Song, Yong-Chun

    2015-12-01

    The present study was designed to isolate and purify chemical constituents from solid culture of endophyte Aspergillus terreus LQ, using silica gel column chromatography, gel filtration with Sephadex LH-20, and HPLC. Fumigaclavine I (1), a new alkaloid, was obtained, along with seven known compounds, including fumigaclavine C (2), rhizoctonic acid (3), monomethylsulochrin (4), chaetominine (5), spirotryprostatin A (6), asperfumoid (7), and lumichrome (8). The structure of compound 1 was elucidated by various spectroscopic analyses (UV, MS, 1D and 2D NMR). The in vitro cytotoxicity of compound 1 was determined by MTT assay in human hepatocarcinoma cell line SMMC-7721, showing weaker cytotoxicity, compared with cisplatin, a clinically used cancer chemotherapeutic agent. PMID:26721713

  11. Glycomyces tarimensis sp. nov., an actinomycete isolated from a saline-alkali habitat.

    PubMed

    Lv, Ling-Ling; Zhang, Yue-Feng; Zhang, Li-Li

    2015-05-01

    A novel actinomycete strain, designated TRM 45387(T), was isolated from a saline-alkali soil in Xinjiang Province (40° 22' N 79° 08' E), north-west China. The isolate was characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain TRM 45387(T) belonged to the genus Glycomyces and was closely related to Glycomyces arizonensis DSM 44726(T) (96.59% 16S rRNA gene sequence similarity). The G+C content of the DNA was 71.26 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid, and xylose, glucose, galactose, arabinose and ribose as the major whole-cell sugars. The diagnostic phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositolmannosides. The predominant menaquinone was MK-10(H6). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. On the basis of the evidence from this polyphasic study, a novel species, Glycomyces tarimensis sp. nov., is proposed. The type strain of Glycomyces tarimensis is TRM 45387(T) ( =CCTCC AA 2014007(T) =JCM 30184(T)). PMID:25713037

  12. Saccharopolyspora halotolerans sp. nov., a halophilic actinomycete isolated from a hypersaline lake.

    PubMed

    Lv, Ling-Ling; Zhang, Yue-Feng; Xia, Zhan-Feng; Zhang, Jing-Jing; Zhang, Li-Li

    2014-10-01

    A novel actinomycete strain, designated TRM 45123(T), was isolated from a hypersaline habitat in Xinjiang Province (40° 20' N 90° 49' E), north-west China. The isolate was characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain TRM 45123(T) belonged to the genus Saccharopolyspora and was closely related to Saccharopolyspora gloriosae (96.7% similarity). The G+C content of the DNA was 69.07 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and ribose as the major whole-cell sugars. The diagnostic phospholipids were phosphatidylethanolamine, phosphatidylcholine and phosphatidylglycerol. The predominant menaquinone was MK-9(H4). The major fatty acids were iso-C16 : 0, anteiso-C17:0, iso-C15:0 and anteiso-C15:0. On the basis of the evidence from this polyphasic study, a novel species, Saccharopolyspora halotolerans sp. nov., is proposed. The type strain of Saccharopolyspora halotolerans is TRM 45123(T) ( = CCTCC AA 2013006(T) = DSM 45990(T)). PMID:25061064

  13. Glycomyces tarimensis sp. nov., an actinomycete isolated from a saline-alkali habitat.

    PubMed

    Lv, Ling-Ling; Zhang, Yue-Feng; Zhang, Li-Li

    2015-05-01

    A novel actinomycete strain, designated TRM 45387(T), was isolated from a saline-alkali soil in Xinjiang Province (40° 22' N 79° 08' E), north-west China. The isolate was characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain TRM 45387(T) belonged to the genus Glycomyces and was closely related to Glycomyces arizonensis DSM 44726(T) (96.59% 16S rRNA gene sequence similarity). The G+C content of the DNA was 71.26 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid, and xylose, glucose, galactose, arabinose and ribose as the major whole-cell sugars. The diagnostic phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositolmannosides. The predominant menaquinone was MK-10(H6). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. On the basis of the evidence from this polyphasic study, a novel species, Glycomyces tarimensis sp. nov., is proposed. The type strain of Glycomyces tarimensis is TRM 45387(T) ( =CCTCC AA 2014007(T) =JCM 30184(T)).

  14. Saccharopolyspora halotolerans sp. nov., a halophilic actinomycete isolated from a hypersaline lake.

    PubMed

    Lv, Ling-Ling; Zhang, Yue-Feng; Xia, Zhan-Feng; Zhang, Jing-Jing; Zhang, Li-Li

    2014-10-01

    A novel actinomycete strain, designated TRM 45123(T), was isolated from a hypersaline habitat in Xinjiang Province (40° 20' N 90° 49' E), north-west China. The isolate was characterized using a polyphasic approach. 16S rRNA gene sequence analysis indicated that strain TRM 45123(T) belonged to the genus Saccharopolyspora and was closely related to Saccharopolyspora gloriosae (96.7% similarity). The G+C content of the DNA was 69.07 mol%. The isolate contained meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and ribose as the major whole-cell sugars. The diagnostic phospholipids were phosphatidylethanolamine, phosphatidylcholine and phosphatidylglycerol. The predominant menaquinone was MK-9(H4). The major fatty acids were iso-C16 : 0, anteiso-C17:0, iso-C15:0 and anteiso-C15:0. On the basis of the evidence from this polyphasic study, a novel species, Saccharopolyspora halotolerans sp. nov., is proposed. The type strain of Saccharopolyspora halotolerans is TRM 45123(T) ( = CCTCC AA 2013006(T) = DSM 45990(T)).

  15. Pseudonocardia antitumoralis sp. nov., a deoxynyboquinone-producing actinomycete isolated from a deep-sea sediment.

    PubMed

    Tian, Xin-Peng; Long, Li-Juan; Li, Su-Mei; Zhang, Jing; Xu, Ying; He, Jie; Li, Jie; Wang, Fa-Zuo; Li, Wen-Jun; Zhang, Chang-Sheng; Zhang, Si

    2013-03-01

    An aerobic actinomycete, designated SCSIO 01299(T), was isolated from a deep-sea sediment collected from the northern South China Sea at a depth of 3258 m. The isolate was found to be a natural producer of the synthesized antitumour agent deoxynyboquinone and its three new derivatives, pseudonocardians A, B and C. A blast search based on almost-complete 16S rRNA gene sequences showed that strain SCSIO 01299(T) had high sequence similarities with members of the genus Pseudonocardia. The 16S rRNA gene sequence phylogenetic tree revealed that strain SCSIO 01299(T) was a member of the genus Pseudonocardia. Phenotypic analysis, chemotaxonomy and DNA-DNA relatedness could readily distinguish the isolate from established members in this genus. It was concluded that strain SCSIO 01299(T) represents a novel species, for which the name Pseudonocardia antitumoralis sp. nov. is proposed. The type strain is SCSIO 01299(T) ( = DSM 45322(T)  = CCTCC M 2011255(T)).

  16. In Vitro Evaluation of Enzymatic and Antifungal Activities of Soil-Actinomycetes Isolates and Their Molecular Identification by PCR

    PubMed Central

    Keikha, Nasser; Ayatollahi Mousavi, Seyyed Amin; Nakhaei, Ali Reza; Yadegari, Mohammad Hossein; Shahidi Bonjar, Gholam Hossein; Amiri, Somayyeh

    2015-01-01

    Background: Human cutaneous infection caused by a homogeneous group of keratinophilic fungi called dermatophytes. These fungi are the most common infectious agents in humans that are free of any population and geographic area. Microsporum canis is a cause of dermatophytosis (Tinea) in recent years in Iran and atypical strain has been isolated in Iran. Its cases occur sporadically due to M. canis transmission from puppies and cats to humans. Since this pathogenic dermatophyte is eukaryotes, chemical treatment with antifungal drugs may also affect host tissue cells. Objectives: The aim of the current study was to find a new antifungal agent of soil-Actinomycetes from Kerman province against M. canis and Actinomycete isolates were identified by PCR. Materials and Methods: A number of hundred Actinomycete isolated strains were evaluated from soil of Kerman province, for their antagonistic activity against the M. canis. M. canis of the Persian Type Culture Collection (PTCC) was obtained from the Iranian Research Organization for Science and Technology (IROST). Electron microscope studies of these isolates were performed based on the physiological properties of these antagonists including lipase, amylase, protease and chitinase activities according to the relevant protocols and were identified using gene 16SrDNA. Results: In this study the most antagonist of Actinomycete isolates with antifungal activity against M. canis isolates of L1, D5, Ks1m, Km2, Kn1, Ks8 and Ks1 were shown in vitro. Electron microscopic studies showed that some fungal strains form spores, mycelia and spore chain. Nucleotide analysis showed that Ks8 had maximum homology (98%) to Streptomyces zaomyceticus strain xsd08149 and L1 displayed 100% homology to Streptomyces sp. HVG6 using 16SrDNA studies. Conclusions: Our findings showed that Streptomyces has antifungal effects against M. canis. PMID:26060560

  17. Procedure for isolating the endophyte from tall fescue and screening isolates for ergot alkaloids.

    PubMed

    Bacon, C W

    1988-11-01

    A procedure was developed to isolate and determine ergot alkaloid production by Acremonium coenophialum, the endophytic fungus of tall fescue. The procedure established that macerated leaf sheath or pith from inflorescence stem placed either in a liquid medium or on a corn meal-malt extract agar medium produced isolated mycelium and characteristic conidia within a 3- to 3.5-week period. Once isolated, each fungus was placed in another liquid medium, M104T, where competent strains produced total ergot alkaloids ranging from 38 to 797 mg/liter. Several isolates were negative for ergot alkaloid synthesis. The production of ergot alkaloids by individual isolates was unstable; isolates rapidly degenerated in their ability to produce ergot alkaloids during subculture. However, the procedure as presented allows the assessment of an isolate for ergot alkaloid synthesis during its initial isolation.

  18. Actinorugispora endophytica gen. nov., sp. nov., an actinomycete isolated from Daucus carota.

    PubMed

    Liu, Min-Jiao; Zhu, Wen-Yong; Li, Jie; Zhao, Guo-Zhen; Xiong, Zhi; Park, Dong-Jin; Hozzein, Wael N; Kim, Chang-Jin; Li, Wen-Jun

    2015-08-01

    An actinomycete strain, designated YIM 690008T, was isolated from Daucus carota collected from South Korea and its taxonomic position was investigated by using a polyphasic approach. The strain grew well on most media tested and no diffusible pigment was produced. The aerial mycelium formed wrinkled single spores and short spore chains, some of which were branched. The whole-cell hydrolysates contained meso-diaminopimelic acid, glucose, mannose, ribose, galactose and rhamnose. The predominant menaquinones were MK-10(H4), MK-10(H6), MK-10(H8) and MK-10(H2). The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannosides, some unknown phospholipids, glycolipids and polar lipids. The major fatty acids were i-C16 : 0, ai-C17 : 0 and C18 : 1ω9c. The DNA G+C content of the genomic DNA was 63.1 mol%. Phylogenetic analysis indicated that the isolate belongs to the family Nocardiopsaceae. However, based on phenotypic, chemotaxonomic and genotypic data, it was concluded that strain YIM 690008T represents a novel genus and novel species of the family Nocardiopsaceae, for which the name Actinorugispora endophytica gen. nov., sp. nov. (type strain YIM 690008T = DSM 46770T = JCM 30099T = KCTC 29480T) is proposed.

  19. Streptomyces roseoalbus sp. nov., an actinomycete isolated from soil in Yunnan, China.

    PubMed

    Xu, Li-Hua; Jiang, Yi; Li, Wen-Jun; Wen, Meng-Lang; Li, Ming-Gang; Jiang, Cheng-Lin

    2005-04-01

    An actinomycete strain was isolated from a soil sample collected from a secondary forest at Yongsheng of Yunnan province, China. The isolate, YIM 31634T, was identified by a polyphasic approach. The 16S rDNA sequence analysis showed that the strain YIM 31634T belongs to the genus Streptomyces, with closest similarity to Streptomyces olivochromogenes DSM 40451T (97.66% similarity). Sequence similarities between strain YIM 31634T and other Streptomyces species in the same subclade ranged from 97.59% (with Streptomyces resistomycificus DSM 40133T) to 97.22% (with Streptomyces mirabilis ATCC 27447T). Key phenotypic characteristics as well as chemotaxonomic features of the actinomyces were congruent with the description of the genus Streptomyces. On the basis of phenotypic and phylogenetic analyses, strain YIM31634T was recognized as a new species of the genus Streptomyces for which the name Streptomyces roseoalbus sp. nov. is proposed. The strain YIM 31634T has been deposited in the Chinese Center of Type Culture Collection as strain CCTCC M 203016T and in the Deutsche Sammlung von Mikroorganismen (DSM 41833T).

  20. Saccharopolyspora lacisalsi sp. nov., a novel halophilic actinomycete isolated from a salt lake in Xinjiang, China.

    PubMed

    Guan, Tong-Wei; Wu, Nan; Xia, Zhan-Feng; Ruan, Ji-Sheng; Zhang, Xiao-Ping; Huang, Ying; Zhang, Li-Li

    2011-05-01

    A novel actinomycete strain, designated TRM 40133(T), was isolated from a hypersaline habitat of Tarim basin in Xinjiang Province, north-west China. Its taxonomic status was determined using a polyphasic approach. Phylogenetic analysis based on an almost-complete 16S rRNA gene sequence of the strain showed that it formed a well-seperated sub-branch within the radiation of the genus Saccharopolyspora. The highest levels of 16S rRNA gene sequence similarity was found between the strain TRM 40133(T) and Saccharopolyspora qijiaojingensis YIM 91168(T) (96.5%). The chemotaxonomic characteristics of the isolate are typical for the genus Saccharopolyspora. It contained meso-DAP as the diagnostic diamino acid. Whole cell hydrolysate contained arabinose, xylose, ribose and glucose. The diagnostic phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and two unknown phospholipids. The main menaquinone was MK-9(H(6)) and MK-9(H(4)). No mycolic acid was detected. The predominant cellular fatty acids were iso-C(16:0) and anteiso-C(17:0). The G+C content of the genomic DNA was 68.2 mol%. In addition, the strain TRM 40133(T) had a phenotypic profile that readily distinguished it from the recognized representatives of the genus Saccharopolyspora. The strain TRM 40133(T) therefore represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora lacisalsi sp. nov. is proposed. The type strain is TRM 40133(T) (=KCTC 19987(T) =CCTCC AA 2010012(T)).

  1. Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil.

    PubMed

    Hozzein, Wael N; Goodfellow, Michael

    2008-11-01

    The taxonomic status of an unknown actinomycete isolated from a sand-dune soil was established using a polyphasic approach. Isolate S186(T) had chemotaxonomic and morphological properties consistent with its classification in the genus Nocardiopsis, grew on agar plates at NaCl concentrations of up to 15 % (w/v) and formed a distinct phyletic line in the Nocardiopsis 16S rRNA gene sequence tree. Its closest phylogenetic neighbours were Nocardiopsis chromatogenes, Nocardiopsis composta, Nocardiopsis gilva and Nocardiopsis trehalosi, with sequence similarity to the various type strains of 96.9 %, but it was readily distinguished from the type strains of these and related species using a range of phenotypic properties. It is apparent from the genotypic and phenotypic data that strain S186(T) belongs to a novel species of the genus Nocardiopsis, for which the name Nocardiopsis arabia sp. nov. is proposed. The type strain is S186(T) (=CGMCC 4.2057(T) =DSM 45083(T)).

  2. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products

    PubMed Central

    Mousa, Walaa K.; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N.

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

  3. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    PubMed

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

  4. Draft genome sequences of three chemically rich actinomycetes isolated from Mediterranean sponges.

    PubMed

    Horn, Hannes; Cheng, Cheng; Edrada-Ebel, RuAngelie; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2015-12-01

    Metabolomic analysis has shown the chemical richness of the sponge-associated actinomycetes Streptomyces sp. SBT349, Nonomureae sp. SBT364, and Nocardiopsis sp. SBT366. The genomes of these actinomycetes were sequenced and the genomic potential for secondary metabolism was evaluated. Their draft genomes have sizes of 8.0, 10, and 5.8 Mb having 687, 367, and 179 contigs with a GC content of 71.6, 70.7, and 72.7%, respectively. Moreover, antiSMASH 3.0 predicted 108, 149, and 75 secondary metabolite gene clusters, respectively which highlight the metabolic capacity of the three actinomycete species to produce diverse classes of natural products.

  5. Glycomyces fuscus sp. nov. and Glycomyces albus sp. nov., actinomycetes isolated from a hypersaline habitat.

    PubMed

    Han, Xiao-Xue; Luo, Xiao-Xia; Zhang, Li-Li

    2014-07-01

    Two actinomycete strains, designated TRM 49117(T) and TRM 49136(T), were isolated from a hypersaline habitat in Xinjiang Province, north-west China and were characterized taxonomically by using a polyphasic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain TRM 49117(T) had 93.93% similarity with the type strain Glycomyces halotolerans TRM 40137(T) (GenBank accession no. HQ651156) and TRM 49136(T) had 94.32% similarity with G. halotolerans TRM 40137(T). The 16S rRNA gene sequence similarity between the two new isolates was 93%. The isolates contained meso-diaminopimelic acid as the diagnostic diamino acid and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major cellular fatty acids. The predominant menaquinones of the isolates were MK-9(H4) and MK-9(H6). The whole-cell sugar patterns of these strains contained xylose and ribose, and strain TRM 49136(T) also contained arabinose. The polar lipid pattern of strain TRM 49117(T) comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylcholine, phosphatidylinositol and three additional unknown phospholipids. The polar lipid pattern of strain TRM 49136(T) comprised phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, glycolipids and two phosphoglycolipids of unknown composition. Genotypic and phenotypic data confirmed that strains TRM 49117(T) and TRM 49136(T) represent two novel species, clearly different from related species of the genus Glycomyces, for which the names Glycomyces fuscus sp. nov. (type strain TRM 49117(T) = CCTCC AA 2013003(T) = NRRL B-59998(T) = KACC 17682(T)) and Glycomyces albus sp. nov. (type strain TRM 49136(T) = CCTCC AA 2013004(T) = NRRL B-24927(T) = KACC 17681(T)) are proposed. PMID:24776532

  6. Actinophytocola sediminis sp. nov., an actinomycete isolated from a marine sediment.

    PubMed

    Zhang, Dao-Feng; Jiang, Zhao; Zhang, Xiao-Mei; Yang, Ling-Ling; Tian, Xin-Peng; Long, Li-Juan; Zhang, Si; Li, Wen-Jun

    2014-08-01

    A novel actinomycete strain, designated YIM M13705(T), was isolated from a marine sediment sample of the South China Sea and its characteristics were determined by a polyphasic approach. The slowly growing, Gram-stain-positive, aerobic strain produced branched substrate mycelium and aerial hyphae, and no diffusible pigment was produced on the media tested. At maturity, spore chains were formed on aerial hyphae and substrate mycelium was not fragmented. Whole-cell hydrolysates of the strain contained meso-diaminopimelic acid and galactose, glucose, ribose and rhamnose. The predominant menaquinones were MK-9(H4) and MK-10(H2). The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and ninhydrin-positive phosphoglycolipids. The major fatty acid was iso-C(16 : 0). The G+C content of the genomic DNA was 68.2 mol%. On the basis of 16S rRNA gene sequence, the strain was shown to be most closely related to species of the genus Actinophytocola. DNA-DNA hybridization relatedness values (<70%) of the isolate with its closest neighbour Actinophytocola xinjiangensis QAIII60(T) supported classification of the isolate as a representative of a novel species. On the basis of phylogenetic analysis, and phenotypic and genotypic data, it is concluded that the new isolate belongs to a novel species of the genus Actinophytocola, for which the name Actinophytocola sediminis sp. nov. (type strain YIM M13705(T) = DSM 45939(T) = BCRC 16956(T)) is proposed. PMID:24867173

  7. Glycomyces fuscus sp. nov. and Glycomyces albus sp. nov., actinomycetes isolated from a hypersaline habitat.

    PubMed

    Han, Xiao-Xue; Luo, Xiao-Xia; Zhang, Li-Li

    2014-07-01

    Two actinomycete strains, designated TRM 49117(T) and TRM 49136(T), were isolated from a hypersaline habitat in Xinjiang Province, north-west China and were characterized taxonomically by using a polyphasic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain TRM 49117(T) had 93.93% similarity with the type strain Glycomyces halotolerans TRM 40137(T) (GenBank accession no. HQ651156) and TRM 49136(T) had 94.32% similarity with G. halotolerans TRM 40137(T). The 16S rRNA gene sequence similarity between the two new isolates was 93%. The isolates contained meso-diaminopimelic acid as the diagnostic diamino acid and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major cellular fatty acids. The predominant menaquinones of the isolates were MK-9(H4) and MK-9(H6). The whole-cell sugar patterns of these strains contained xylose and ribose, and strain TRM 49136(T) also contained arabinose. The polar lipid pattern of strain TRM 49117(T) comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylcholine, phosphatidylinositol and three additional unknown phospholipids. The polar lipid pattern of strain TRM 49136(T) comprised phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, glycolipids and two phosphoglycolipids of unknown composition. Genotypic and phenotypic data confirmed that strains TRM 49117(T) and TRM 49136(T) represent two novel species, clearly different from related species of the genus Glycomyces, for which the names Glycomyces fuscus sp. nov. (type strain TRM 49117(T) = CCTCC AA 2013003(T) = NRRL B-59998(T) = KACC 17682(T)) and Glycomyces albus sp. nov. (type strain TRM 49136(T) = CCTCC AA 2013004(T) = NRRL B-24927(T) = KACC 17681(T)) are proposed.

  8. Culturable bacterial endophytes isolated from Mangrove tree (Rhizophora apiculata Blume) enhance seedling growth in Rice

    PubMed Central

    Deivanai, Subramanian; Bindusara, Amitraghata Santhanam; Prabhakaran, Guruswamy; Bhore, Subhash Janardhan

    2014-01-01

    Background: Endophytic bacteria do have several potential applications in medicine and in other various sectors of biotechnology including agriculture. Bacterial endophytes need to be explored for their potential applications in agricultural biotechnology. One of the potential applications of bacterial endophytes in agricultural is to enhance the growth of the agricultural crops. Hence, this study was undertaken to explore the plant growth promoting potential application of bacterial endophytes. Objective: The objective of this study was to examine the effect of endophytic bacteria from mangrove tree (Rhizophora apiculata Blume) for their efficacy in promoting seedling growth in rice. Materials and Methods: Eight endophytic bacterial isolates (EBIs) isolated from twig and petiole tissues of the mangrove were identified based on their 16S ribosomal ribonucleic acid (rRNA) gene sequence homology. Separately, surface sterilized paddy seeds were treated with cell-free broth and cell suspension of the EBIs. Rice seedlings were analyzed by various bioassays and data was recorded. Results: The gene sequences of the isolates were closely related to two genera namely, Bacillus and Pantoea. Inoculation of EBIs from R. apiculata with rice seeds resulted in accelerated root and shoot growth with significant increase in chlorophyll content. Among the isolates, Pantoea ananatis (1MSE1) and Bacillus amyloliquefaciens (3MPE1) had shown predominance of activity. Endophytic invasion was recognized by the non-host by rapid accumulation of reactive oxygen species (ROS) and was counteracted by the production of hydrogen peroxide (H2O2) and lipid peroxide. The results demonstrated that EBIs from mangrove tree can increase the fitness of the rice seedlings under controlled conditions. Conclusion: These research findings could be useful to enhance the seedling growth and could serve as foundation in further research on enhancing the growth of the rice crop using endophytic bacteria. PMID

  9. Micromonospora polyrhachis sp. nov., an actinomycete isolated from edible Chinese black ant (Polyrhachis vicina Roger).

    PubMed

    Xiang, Wensheng; Yu, Chao; Liu, Chongxi; Zhao, Junwei; Yang, Lingyu; Xie, Binjiao; Li, Lei; Hong, Kui; Wang, Xiangjing

    2014-02-01

    A novel actinomycete, designated strain NEAU-ycm2(T), was isolated from edible Chinese black ants (Polyrhachis vicina Roger) and characterized using a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. The 16S rRNA gene sequence of strain NEAU-ycm2(T) showed highest similarity to those of Micromonospora sonneratiae 274745(T) (99.12%), Micromonospora pattaloongensis TJ2-2(T) (98.85%), Micromonospora pisi GUI 15(T) (98.76%), Polymorphospora rubra TT 97-42(T) (98.42%) and Micromonospora eburnea LK2-10(T) (98.21%). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-ycm2(T) is a member of the genus Micromonospora and supported the close phylogenetic relationship to M. sonneratiae 274745(T), M. pattaloongensis JCM 12833(T) and M. pisi GUI 15(T). Furthermore, a combination of DNA-DNA hybridization and some physiological and biochemical properties indicated that the novel strain could be readily distinguished from its closest phylogenetic relatives. Therefore, it is proposed that NEAU-ycm2(T) represents a novel species of the genus of Micromonospora, for which the name Micromonospora polyrhachis sp. nov. is proposed. The type strain is NEAU-ycm2(T) ( = CGMCC 4.7100(T) = DSM 45886(T)).

  10. Nonomuraea solani sp. nov., an actinomycete isolated from eggplant root (Solanum melongena L.).

    PubMed

    Wang, Xiangjing; Zhao, Junwei; Liu, Chongxi; Wang, Jidong; Shen, Yue; Jia, Feiyu; Wang, Liang; Zhang, Ji; Yu, Chao; Xiang, Wensheng

    2013-07-01

    A novel actinomycete, designated strain NEAU-Z6(T), was isolated from eggplant (Solanum melongena L.) root. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain NEAU-Z6(T) belonged to the genus Nonomuraea, with highest sequence similarity to Nonomuraea monospora PT 708(T) (98.83 %), Nonomuraea rosea GW 12687(T) (98.55 %) and Nonomuraea rhizophila YIM 67092(T) (98.02 %). Sequence similarities between strain NEAU-Z6(T) and other species of the genus Nonomuraea ranged from 97.94 % (Nonomuraea candida HMC10(T)) to 96.30 % (Nonomuraea wenchangensis 210417(T)). Key morphological, physiological and chemotaxonomic characteristics of strain NEAU-Z6(T) were congruent with the description of the genus Nonomuraea. The G+C content of the genomic DNA was 64.51 mol%. DNA-DNA relatedness and comparative analysis of physiological, biochemical and chemotaxonomic data allowed genotypic and phenotypic differentiation of strain NEAU-Z6(T) from closely related species. Thus, strain NEAU-Z6(T) represents a novel species of the genus Nonomuraea, for which the name Nonomuraea solani sp. nov. is proposed. The type strain is NEAU-Z6(T) ( = CGMCC 4.7037(T) = DSM 45729(T)).

  11. Nocardioides alpinus sp. nov., a psychrophilic actinomycete isolated from alpine glacier cryoconite.

    PubMed

    Zhang, De-Chao; Schumann, Peter; Redzic, Mersiha; Zhou, Yu-Guang; Liu, Hong-Can; Schinner, Franz; Margesin, Rosa

    2012-02-01

    A gram-positive, non-motile, rod-shaped, psychrophilic actinomycete, designated strain Cr7-14(T), was isolated from alpine glacier cryoconite. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Cr7-14(T) was related to members of the genus Nocardioides and shared highest 16S rRNA gene sequence similarities with the type strains of Nocardioides furvisabuli (98.6 %), Nocardioides ganghwensis (98.2 %), Nocardioides oleivorans (98.1 %) and Nocardioides exalbidus (97.6 %). The predominant cellular fatty acids of strain Cr7-14(T) were C(17 : 1)ω8c (39.5 %) and iso-C(16 : 0) (32.4 %). The major menaquinone was MK-8(H(4)). The diagnostic diamino acid in the cell-wall peptidoglycan was ll-2,6-diaminopimelic acid. The predominant cell-wall sugars were galactose and rhamnose. The polar lipid pattern contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, four unknown glycolipids and two unknown polar lipids. The genomic DNA G+C content was 71.9 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness data, a novel species, Nocardioides alpinus sp. nov., is proposed, with Cr7-14(T) ( = DSM 23325(T) = LMG 26053(T) = CGMCC 1.10697(T)) as the type strain.

  12. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw.

    PubMed

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-06-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes.

  13. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw

    PubMed Central

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-01-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes. PMID:26273250

  14. Antifungal and proteolytic activities of endophytic fungi isolated from Piper hispidum Sw.

    PubMed

    Orlandelli, Ravely Casarotti; de Almeida, Tiago Tognolli; Alberto, Raiani Nascimento; Polonio, Julio Cesar; Azevedo, João Lúcio; Pamphile, João Alencar

    2015-06-01

    Endophytes are being considered for use in biological control, and the enzymes they secrete might facilitate their initial colonization of internal plant tissues and direct interactions with microbial pathogens. Microbial proteases are also biotechnologically important products employed in bioremediation processes, cosmetics, and the pharmaceutical, photographic and food industries. In the present study, we evaluated antagonism and competitive interactions between 98 fungal endophytes and Alternaria alternata, Colletotrichum sp., Phyllosticta citricarpa and Moniliophthora perniciosa. We also examined the proteolytic activities of endophytes grown in liquid medium and conducted cup plate assays. The results showed that certain strains in the assemblage of P. hispidum endophytes are important sources of antifungal properties, primarily Lasiodiplodia theobromae JF766989, which reduced phytopathogen growth by approximately 54 to 65%. We detected 28 endophytes producing enzymatic halos of up to 16.40 mm in diameter. The results obtained in the present study highlight the proteolytic activity of the endophytes Phoma herbarum JF766995 and Schizophyllum commune JF766994, which presented the highest enzymatic halo diameters under at least one culture condition tested. The increased activities of certain isolates in the presence of rice or soy flour as a substrate (with halos up to 17.67 mm in diameter) suggests that these endophytes have the potential to produce enzymes using agricultural wastes. PMID:26273250

  15. Streptomyces canalis sp. nov., an actinomycete isolated from an alkali-removing canal.

    PubMed

    Xie, Yu-Xuan; Han, Xiao-Xue; Luo, Xiao-Xia; Xia, Zhan-Feng; Wan, Chuan-Xing; Zhang, Li-Li

    2016-08-01

    A novel actinomycete strain, designated TRM 46794-61T, was isolated from an alkali-removing canal in 14th Farms of Xinjiang Production and Construction Corps, north-west China. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid. The whole-cell sugar patterns of the isolate contained ribose, mannose and glucose. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannoside and two unidentified phospholipids. The predominant menaquinones were MK-9(H2), MK-9(H4), MK-9(H6) and MK-9(H8). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The G+C content of the DNA was 70.4 mol%. Phylogenetic analysis showed that strain TRM 46794-61T had a 16S rRNA gene sequence similarity of 97.6 % with the most closely related species with a validly published name, Streptomyces aidingensis TRM 46012T, and it could be distinguished from all species in the genus Streptomyces based on data from this polyphasic taxonomic study. However, DNA-DNA hybridization studies between strain TRM 46794-61T and S.aidingensis TRM 46012T showed only 45.4 % relatedness. On the basis of these data, strain TRM 46794-61T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces canalis sp. nov. is proposed. The type strain is TRM 46794-61T (=CCTCC AA 2015006T=KCTC 39568T). PMID:27217157

  16. Phytoactinopolyspora alkaliphila sp. nov., an alkaliphilic actinomycete isolated from a saline-alkaline soil.

    PubMed

    Zhang, Yong-Guang; Lu, Xin-Hua; Ding, Yan-Bo; Zhou, Xing-Kui; Li, Li; Guo, Jian-Wei; Wang, Hong-Fei; Duan, Yan-Qing; Li, Wen-Jun

    2016-05-01

    An alkaliphilic, filamentous actinomycete, designated EGI 80629T, was isolated from a soil sample of Xinjiang, north-west China. Strain EGI 80629T grew at pH 6.0-11.0 (optimum pH 9.0-10.0) and in the presence of 0-13.0 % NaCl (optimum 3.0-5.0 %). The isolate formed fragmented substrate mycelia, and aerial hyphae with short spore chains with rod-like spores. Whole-cell hydrolysates of the isolate contained ll-diaminopimelic acid as the diagnostic diamino acid, and mannose and rhamnose as diagnostic sugars. The major fatty acids identified were iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 0. The predominant menaquinone was MK-9(H4), while the polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two phosphatidylinositol mannosides, five unknown phospholipids, three unknown phosphoglycolipids, one unknown glycolipid, four unknown polar lipids and one unknown aminophospholipid. The G+C content of the genomic DNA was 67.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80629T clustered with the genus Phytoactinopolyspora. The 16S rRNA gene sequence similarity between strain EGI 80629T and Phytoactinopolyspora endophytica EGI 60009T was 96.8 %. Based on morphological, chemotaxonomic and phylogenetic characteristics, strain EGI 80629T represents a novel species of the genus Phytoactinopolyspora, for which the name Phytoactinopolyspora alkaliphila sp. nov. is proposed. The type strain is EGI 80629T ( = CGMCC 4.7225T = KCTC 39701T). PMID:26920762

  17. Streptomyces canalis sp. nov., an actinomycete isolated from an alkali-removing canal.

    PubMed

    Xie, Yu-Xuan; Han, Xiao-Xue; Luo, Xiao-Xia; Xia, Zhan-Feng; Wan, Chuan-Xing; Zhang, Li-Li

    2016-08-01

    A novel actinomycete strain, designated TRM 46794-61T, was isolated from an alkali-removing canal in 14th Farms of Xinjiang Production and Construction Corps, north-west China. The isolate contained ll-diaminopimelic acid as the diagnostic diamino acid. The whole-cell sugar patterns of the isolate contained ribose, mannose and glucose. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannoside and two unidentified phospholipids. The predominant menaquinones were MK-9(H2), MK-9(H4), MK-9(H6) and MK-9(H8). The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The G+C content of the DNA was 70.4 mol%. Phylogenetic analysis showed that strain TRM 46794-61T had a 16S rRNA gene sequence similarity of 97.6 % with the most closely related species with a validly published name, Streptomyces aidingensis TRM 46012T, and it could be distinguished from all species in the genus Streptomyces based on data from this polyphasic taxonomic study. However, DNA-DNA hybridization studies between strain TRM 46794-61T and S.aidingensis TRM 46012T showed only 45.4 % relatedness. On the basis of these data, strain TRM 46794-61T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces canalis sp. nov. is proposed. The type strain is TRM 46794-61T (=CCTCC AA 2015006T=KCTC 39568T).

  18. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    PubMed

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems. PMID:25110630

  19. Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems.

    PubMed

    Imazaki, Iori; Kadota, Ikuo

    2015-09-01

    Plant tissues are a known habitat for two types of Fusarium species: plant pathogens and endophytes. Here, we investigated the molecular phylogeny and diversity of endophytic fusaria, because endophytes are not as well studied as pathogens. A total of 543 Fusarium isolates were obtained from the inside of tomato stems cultivated in soils mainly obtained from agricultural fields. We then determined partial nucleotide sequences of the translation elongation factor-1 alpha (EF-1α) genes of the isolates. Among the isolates from tomato, 24 EF-1α gene sequence types (EFST) were found: nine were classified as being from the Fusarium oxysporum species complex and its sister taxa (FOSC, 332 isolates), seven from the F. fujikuroi species complex (FFSC, 75 isolates) and eight from the F. solani species complex (FSSC, 136 isolates). To determine more characteristic details of the tomato isolates, we isolated 180 fusaria directly from soils and found 95% of them were nested within the FOSC (82 isolates; five EFSTs), FFSC (21 isolates; six FESTs) and FSSC (68 isolates; 11 EFSTs). These results suggested that the dominant Fusarium endophytes within tomato stems were members of the same three species complexes, which were also the dominant fusaria in the soils.

  20. Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems.

    PubMed

    Imazaki, Iori; Kadota, Ikuo

    2015-09-01

    Plant tissues are a known habitat for two types of Fusarium species: plant pathogens and endophytes. Here, we investigated the molecular phylogeny and diversity of endophytic fusaria, because endophytes are not as well studied as pathogens. A total of 543 Fusarium isolates were obtained from the inside of tomato stems cultivated in soils mainly obtained from agricultural fields. We then determined partial nucleotide sequences of the translation elongation factor-1 alpha (EF-1α) genes of the isolates. Among the isolates from tomato, 24 EF-1α gene sequence types (EFST) were found: nine were classified as being from the Fusarium oxysporum species complex and its sister taxa (FOSC, 332 isolates), seven from the F. fujikuroi species complex (FFSC, 75 isolates) and eight from the F. solani species complex (FSSC, 136 isolates). To determine more characteristic details of the tomato isolates, we isolated 180 fusaria directly from soils and found 95% of them were nested within the FOSC (82 isolates; five EFSTs), FFSC (21 isolates; six FESTs) and FSSC (68 isolates; 11 EFSTs). These results suggested that the dominant Fusarium endophytes within tomato stems were members of the same three species complexes, which were also the dominant fusaria in the soils. PMID:26298015

  1. Spatial and Temporal Variation in Fungal Endophyte Communities Isolated from Cultivated Cotton (Gossypium hirsutum)

    PubMed Central

    Ek-Ramos, María J.; Zhou, Wenqing; Valencia, César U.; Antwi, Josephine B.; Kalns, Lauren L.; Morgan, Gaylon D.; Kerns, David L.; Sword, Gregory A.

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  2. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii.

    PubMed

    Barzanti, Rita; Ozino, Francesca; Bazzicalupo, Marco; Gabbrielli, Roberto; Galardi, Francesca; Gonnelli, Cristina; Mengoni, Alessio

    2007-02-01

    We report the isolation and characterization of endophytic bacteria, endemic to serpentine outcrops of Central Italy, from a nickel hyperaccumulator plant, Alyssum bertolonii Desv. (Brassicaceae). Eighty-three endophytic bacteria were isolated from roots, stems, and leaves of A. bertolonii and classified by restriction analysis of 16S rDNA (ARDRA) and partial 16S rDNA sequencing in 23 different taxonomic groups. All isolates were then screened for siderophore production and for resistance to heavy metals. One isolate representative of each ARDRA group was then tested for plant tissue colonization ability in sterile culture. Obtained results pointed out that, despite the high concentration of heavy metals present in its tissues, A. bertolonii harbors an endophytic bacterial flora showing a high genetic diversity as well as a high level of resistance to heavy metals that could potentially help plant growth and Ni hyperaccumulation. PMID:17264998

  3. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination

    PubMed Central

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants. PMID:27252685

  4. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    PubMed

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants. PMID:27252685

  5. Saccharopolyspora lacisalsi sp. nov., a novel halophilic actinomycete isolated from a salt lake in Xinjiang, China.

    PubMed

    Guan, Tong-Wei; Wu, Nan; Xia, Zhan-Feng; Ruan, Ji-Sheng; Zhang, Xiao-Ping; Huang, Ying; Zhang, Li-Li

    2011-05-01

    A novel actinomycete strain, designated TRM 40133(T), was isolated from a hypersaline habitat of Tarim basin in Xinjiang Province, north-west China. Its taxonomic status was determined using a polyphasic approach. Phylogenetic analysis based on an almost-complete 16S rRNA gene sequence of the strain showed that it formed a well-seperated sub-branch within the radiation of the genus Saccharopolyspora. The highest levels of 16S rRNA gene sequence similarity was found between the strain TRM 40133(T) and Saccharopolyspora qijiaojingensis YIM 91168(T) (96.5%). The chemotaxonomic characteristics of the isolate are typical for the genus Saccharopolyspora. It contained meso-DAP as the diagnostic diamino acid. Whole cell hydrolysate contained arabinose, xylose, ribose and glucose. The diagnostic phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and two unknown phospholipids. The main menaquinone was MK-9(H(6)) and MK-9(H(4)). No mycolic acid was detected. The predominant cellular fatty acids were iso-C(16:0) and anteiso-C(17:0). The G+C content of the genomic DNA was 68.2 mol%. In addition, the strain TRM 40133(T) had a phenotypic profile that readily distinguished it from the recognized representatives of the genus Saccharopolyspora. The strain TRM 40133(T) therefore represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora lacisalsi sp. nov. is proposed. The type strain is TRM 40133(T) (=KCTC 19987(T) =CCTCC AA 2010012(T)). PMID:21461999

  6. Intraspecific variation in Burkholderia caledonica: Europe vs. Africa and soil vs. endophytic isolates.

    PubMed

    Verstraete, Brecht; Peeters, Charlotte; van Wyk, Braam; Smets, Erik; Dessein, Steven; Vandamme, Peter

    2014-05-01

    The best-known interaction between bacteria and plants is the Rhizobium-legume symbiosis, but other bacteria-plant interactions exist, such as between Burkholderia and Rubiaceae (coffee family). A number of bacterial endophytes in Rubiaceae are closely related to the soil bacterium Burkholderia caledonica. This intriguing observation is explored by investigating isolates from different geographic regions (Western Europe vs. sub-Saharan Africa) and from different niches (free-living bacteria in soil vs. endophytic bacteria in host plants). The multilocus sequence analysis shows five clades, of which clade 1 with two basal isolates deviates from the rest and is therefore not considered further. All other isolates belong to the species B. caledonica, but two genetically different groups are identified. Group A holds only European isolates and group B holds isolates from Africa, with the exception of one European isolate. Although the European and African isolates are considered one species, some degree of genetic differentiation is evident. Endophytic isolates of B. caledonica are found in certain members of African Rubiaceae, but only in group B. Within this group, the endophytes cannot be distinguished from the soil isolates, which indicates a possible exchange of bacteria between soil and host plant.

  7. Isolation and Characterization of Endophytic Colonizing Bacteria from Agronomic Crops and Prairie Plants†

    PubMed Central

    Zinniel, Denise K.; Lambrecht, Pat; Harris, N. Beth; Feng, Zhengyu; Kuczmarski, Daniel; Higley, Phyllis; Ishimaru, Carol A.; Arunakumari, Alahari; Barletta, Raúl G.; Vidaver, Anne K.

    2002-01-01

    Endophytic bacteria reside within plant hosts without causing disease symptoms. In this study, 853 endophytic strains were isolated from aerial tissues of four agronomic crop species and 27 prairie plant species. We determined several phenotypic properties and found approximately equal numbers of gram-negative and gram-positive isolates. In a greenhouse study, 28 of 86 prairie plant endophytes were found to colonize their original hosts at 42 days postinoculation at levels of 3.5 to 7.7 log10 CFU/g (fresh weight). More comprehensive colonization studies were conducted with 373 corn and sorghum endophytes. In growth room studies, none of the isolates displayed pathogenicity, and 69 of the strains were recovered from corn or sorghum seedlings at levels of 8.3 log10 CFU/plant or higher. Host range greenhouse studies demonstrated that 26 of 29 endophytes were recoverable from at least one host other than corn and sorghum at levels of up to 5.8 log10 CFU/g (fresh weight). Long-range dent corn greenhouse studies and field trials with 17 wild-type strains and 14 antibiotic-resistant mutants demonstrated bacterial persistence at significant average colonization levels ranging between 3.4 and 6.1 log10 CFU/g (fresh weight) up to 78 days postinoculation. Three prairie and three agronomic endophytes exhibiting the most promising levels of colonization and an ability to persist were identified as Cellulomonas, Clavibacter, Curtobacterium, and Microbacterium isolates by 16S rRNA gene sequence, fatty acid, and carbon source utilization analyses. This study defines for the first time the endophytic nature of Microbacterium testaceum. These microorganisms may be useful for biocontrol and other applications. PMID:11976089

  8. ISOLATION AND IDENTIFICATION OF AN ENDOPHYTIC FUNGUS PRODUCING PACLITAXEL FROM TAXUS WALLICHIANA VAR MAIREI.

    PubMed

    Zaiyou, Jian; Hongsheng, Wang; Ning, Wang; Li, Meng; Guifang, Xu

    2015-12-01

    The objective of this study was to isolate endophytic fungi producing paclitaxel from yew for the purpose of paclitaxel manufacture. Surface sterilized bark of Taxus wallichiana var. mairei was used as source material and potato dextrose agar culture medium was used in isolation of endophytic fungi. Fungal cultures were extracted with a mixture of chloroform / methanol (1:1, v/v) and the paclitaxel in the extracts was determined and authenticated with LC-MS. An endophytic fungus that produced paclitaxel was identified by ITS rDNA and 26S D1/D2 rDNA sequencing. The results showed that a total of 435 endophytic fungal strains were isolated from T. wallichiana var. mairei and purified. Only one of these strains produced paclitaxel and it belongs to Fusarium. The paclitaxel productivity in whole PDB culture and that in spent culture medium from this strain is 0.0153 mg/L and 0.0119 mg/L respectively. The paclitaxel content in dry mycelium is 0.27 mg/kg. This isolated endophytic fungus produced paclitaxel at a considerable level and shows potentiality as a producing strain for paclitaxel manufacture after strain improvement.

  9. Xylarenones C-E from an endophytic fungus isolated from Alibertia macrophylla.

    PubMed

    de Oliveira, Camila Martins; Silva, Geraldo Humberto; Regasini, Luis Octávio; Flausino, Otávio; López, Silvia Noelí; Abissi, Bárbara Marcondes; Berlinck, Roberto Gomes de Souza; Sette, Lara Durães; Bonugli-Santos, Rafaella Costa; Rodrigues, André; Bolzani, Vanderlan da Silva; Araujo, Angela Regina

    2011-06-24

    Xylarenones C-E (2-4), three new eremophilane sesquiterpenes, have been isolated from solid substrate cultures of a Camarops-like endophytic fungus isolated from Alibertia macrophylla. The structures were elucidated by analysis of spectroscopic data. Compounds were evaluated in subtilisin and pepsin protease assays, and compound 2 showed potent inhibitory activity against both proteases.

  10. Streptomyces rubrisoli sp. nov., neutrotolerant acidophilic actinomycetes isolated from red soil.

    PubMed

    Guo, Xiaoxuan; Zhang, Limin; Li, Xiaomin; Gao, Yongsheng; Ruan, Jisheng; Huang, Ying

    2015-09-01

    Three neutrotolerant, acidophilic actinomycete strains, designated FXJ1.526, FXJ1.725(T) and FXJ1.726, were isolated from red soil collected from Liujiazhan, Jiangxi Province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the three strains clustered together and their closest relative was Streptomyces ferralitis CGMCC 4.1985(T) (98.9-99.0% similarity). Multilocus sequence analysis confirmed their relationship to S. ferralitis and separated these strains as representing a novel species. Mean DNA-DNA hybridization values among strains FXJ1.526, FXJ1.725(T) and FXJ1.726 were 81.6 ± 3.5-87.2 ± 3.8%, and the values between the three strains and S. ferralitis CGMCC 4.1985(T) were well below 70%. The three strains also shared several phenotypic characteristics that were distinct from the closely related species. They grew at 21-50 °C, at pH 4.0-9.0 (with an optimal pH of 5.0) and with 0-3% (w/v) NaCl, and the major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0. On the basis of data from this polyphasic taxonomic study, it is proposed that strains FXJ1.526, FXJ1.725(T) and FXJ1.726 be classified as representatives of a novel species of the genus Streptomyces, with the name Streptomyces rubrisoli sp. nov. The type strain is FXJ1.725(T) ( = CGMCC 4.7025(T)= DSM 42083(T)).

  11. Streptomonospora algeriensis sp. nov., a halophilic actinomycete isolated from soil in Algeria.

    PubMed

    Meklat, Atika; Bouras, Noureddine; Riba, Amar; Zitouni, Abdelghani; Mathieu, Florence; Rohde, Manfred; Schumann, Peter; Spröer, Cathrin; Klenk, Hans-Peter; Sabaou, Nasserdine

    2014-08-01

    A halophilic actinomycete strain, designated H27(T), was isolated from a soil sample collected from a hypersaline habitat in Djelfa Province (North-Central Algeria), and then investigated using a polyphasic taxonomic approach. The strain was observed to produce poor aerial mycelium, which formed short chains of oval to cylindrical-shaped spores at maturity, and non fragmented substrate mycelium. The optimum NaCl concentration for growth was found to be 10-15 % (w/v) and the optimum growth temperature and pH were found to be 28-37 °C and 6-7, respectively. The diagnostic diamino acid in the cell-wall peptidoglycan was identified as meso-diaminopimelic acid. The predominant menaquinones of strain H27(T) were identified as MK-11 (H4) and MK-10 (H6). The major fatty acids were found to be iso-C16:0, anteiso-C17:0, 10 methyl C17:0 and 10 methyl C16:0. The diagnostic phospholipids detected were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol. The chemotaxonomic properties of strain H27(T) are consistent with those shared by members of the genus Streptomonospora. 16S rRNA gene sequence analysis indicated that strain H27(T) is most closely related to Streptomonospora alba DSM 44588(T) (98.8 %) and Streptomonospora flavalba DSM 45155(T) (98.7 %) whereas the DNA-DNA relatedness values between strain H27(T) and the two type strains were 17.1 and 57.9 %, respectively. Based on the combined genotypic and phenotypic evidence, it is proposed that strain H27(T) should be classified as representative of a novel species, for which the name Streptomonospora algeriensis sp. nov. is proposed. The type strain is H27(T) (=DSM 45604(T) =CCUG 63369(T) =MTCC 11563(T)).

  12. Nocardia halotolerans sp. nov., a halotolerant actinomycete isolated from saline soil.

    PubMed

    Moshtaghi Nikou, Mahdi; Ramezani, Mohaddaseh; Ali Amoozegar, Mohammad; Rasooli, Mehrnoosh; Harirchi, Sharareh; Shahzadeh Fazeli, Seyed Abolhasan; Schumann, Peter; Spröer, Cathrin; Ventosa, Antonio

    2015-09-01

    A novel halotolerant actinomycete, strain Chem15(T), was isolated from soil around Inche-Broun hypersaline wetland; its taxonomic position was determined based on a polyphasic approach. Strain Chem15(T) was strictly aerobic and tolerated NaCl up to 12.5%. The optimum temperature and pH for growth were 28-30 °C and pH 7.0-7.5, respectively. The cell wall of strain Chem15(T) contained meso-diaminopimelic acid as diamino acid and galactose, arabinose and ribose as whole-cell sugars. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannosides. The cellular fatty acids profile consisted of C16 : 0, iso-C18 : 0, C18 : 0 10-methyl and C18 : 1ω9c, and the major respiratory quinone was MK-8(H4cycl). The G+C content of the genomic DNA was 68.0 mol%. The novel strain constituted a distinct phyletic line within the genus Nocardia, based on 16S rRNA gene sequence analysis, and was closely associated with Nocardia sungurluensis DSM 45714(T) and Nocardia alba DSM 44684(T) (98.2 and 98.1% 16S rRNA gene sequence similarity, respectively). However DNA-DNA relatedness and phenotypic data demonstrated that strain Chem15(T) was clearly different from closely related species of the genus Nocardia. It is concluded that the organism should be classified as a representative of a novel species of the genus Nocardia, for which the name Nocardia halotolerans sp. nov. is proposed. The type strain is Chem15(T) ( = IBRC-M 10490(T) = LMG 28544(T)). PMID:26297293

  13. Microbispora camponoti sp. nov., a novel actinomycete isolated from the cuticle of Camponotus japonicus Mayr.

    PubMed

    Han, Chuanyu; Liu, Chongxi; Zhao, Junwei; Guo, Lifeng; Lu, Chang; Li, Jiansong; Jia, Feiyu; Wang, Xiangjing; Xiang, Wensheng

    2016-02-01

    A novel actinomycete, designated strain 2C-HV3(T), was isolated from the cuticle of Camponotus japonicus Mayr collected from Harbin, Heilongjiang province, north China and characterised using a polyphasic approach. The 16S rRNA gene sequence of strain 2C-HV3(T) showed that it has high sequence similarities with Microbispora bryophytorum NEAU-TX2-2(T) (99.9 %), Microbispora amethystogenes JCM 3021(T) (98.9 %) and Microbispora rosea subsp. rosea JCM 3006(T) (98.6 %). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences demonstrated that strain 2C-HV3(T) clusters with M. bryophytorum NEAU-TX2-2(T) using two tree-making algorithms. Moreover, key morphological and chemotaxonomic properties also confirmed the affiliation of strain 2C-HV3(T) to the genus Microbispora. Longitudinal paired spores were observed to be born on short sporophores branching from the aerial hyphae. The cell wall was found to contain meso-diaminopimelic acid as the diagnostic diamino acid; madurose was found in the whole cell hydrolysate. The polar lipid profile was found to consist of diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside, ninhydrin-positive glycophospholipids, an unidentified phospholipid and an unidentified glycolipid. The predominant menaquinones were identified as MK-9(H2) and MK-9(H4). The major fatty acids were identified as 10-methyl C17:0 and iso-C16:0. However, a combination of DNA-DNA hybridization results and some phenotypic characteristics demonstrated that strain 2C-HV3(T) can be distinguished from its closely related relatives. Consequently, it is proposed that strain 2C-HV3(T) represents a new species of the genus Microbispora, for which the name Microbispora camponoti sp. nov. is proposed. The type strain is 2C-HV3(T) (=CGMCC 4.7281(T) = DSM 100527(T)). PMID:26589683

  14. Nonomuraea indica sp. nov., novel actinomycetes isolated from lime-stone open pit mine, India.

    PubMed

    Quadri, Syed Raziuddin; Tian, Xin-Peng; Zhang, Jing; Li, Jie; Nie, Guo-Xing; Tang, Shu-Kun; Al Ruwaili, Jamal; Agsar, Dayanand; Li, Wen-Jun; Dastager, Syed G

    2015-08-01

    A Gram-positive, aerobic, nonmotile actinomycete strain designated DRQ-2(T) was isolated from the soil sample collected from lime-stone open pit mine from the Gulbarga region, Karnataka province, India. Strain DRQ-2(T) was identified as a member of the genus Nonomuraea by a polyphasic approach. Strain DRQ-2(T) could be differentiated from other members of the genus Nonomuraea on the basis of physiology and 16S rRNA gene sequence analysis. The 16S rRNA gene sequence similarity of strain DRQ-2(T) showed highest sequence similarity to Nonomuraea muscovyensis DSM 45913(T) (99.1%), N. salmonea DSM 43678(T) (98.2%) and N. maheshkhaliensis JCM 13929(T) with 98.0%, respectively. Chemotaxonomic properties showing predominant menaquinones of MK-9 (H4), MK-9(H2) and MK-9(H6), major polar lipids comprised diphosphatidylglycerol, phosphatidylmono methyl ethanolamine (PME), phosphatidylethanolamine (PE), hydroxy-PME (OH-PME), hydroxy PE (OH-PEE), phosphatidylglycerol (PG), ninhydrin-positive phosphoglycolipid and unknown phospholipid, fatty acids with major amounts of i-C16:0, ai-C15:0 and ai-C17:0 supported allocation of the strain to the genus Nonomuraea. Results of DNA-DNA hybridization and physiological tests allowed genotypic and phenotypic differentiation of strain DRQ-2(T) from closely related species. The genomic DNA G+C content of the organism was 72.5 mol%. On the basis of phenotypic, chemotypic and molecular characteristics, strain DRQ-2(T) represents a novel species of the genus Nonomuraea, for which the name N. indica sp. nov. is proposed, with type strain DRQ-2(T) (=NCIM 5480(T)= CCTCC AA 209050(T)). PMID:25783226

  15. Nonomuraea indica sp. nov., novel actinomycetes isolated from lime-stone open pit mine, India.

    PubMed

    Quadri, Syed Raziuddin; Tian, Xin-Peng; Zhang, Jing; Li, Jie; Nie, Guo-Xing; Tang, Shu-Kun; Al Ruwaili, Jamal; Agsar, Dayanand; Li, Wen-Jun; Dastager, Syed G

    2015-08-01

    A Gram-positive, aerobic, nonmotile actinomycete strain designated DRQ-2(T) was isolated from the soil sample collected from lime-stone open pit mine from the Gulbarga region, Karnataka province, India. Strain DRQ-2(T) was identified as a member of the genus Nonomuraea by a polyphasic approach. Strain DRQ-2(T) could be differentiated from other members of the genus Nonomuraea on the basis of physiology and 16S rRNA gene sequence analysis. The 16S rRNA gene sequence similarity of strain DRQ-2(T) showed highest sequence similarity to Nonomuraea muscovyensis DSM 45913(T) (99.1%), N. salmonea DSM 43678(T) (98.2%) and N. maheshkhaliensis JCM 13929(T) with 98.0%, respectively. Chemotaxonomic properties showing predominant menaquinones of MK-9 (H4), MK-9(H2) and MK-9(H6), major polar lipids comprised diphosphatidylglycerol, phosphatidylmono methyl ethanolamine (PME), phosphatidylethanolamine (PE), hydroxy-PME (OH-PME), hydroxy PE (OH-PEE), phosphatidylglycerol (PG), ninhydrin-positive phosphoglycolipid and unknown phospholipid, fatty acids with major amounts of i-C16:0, ai-C15:0 and ai-C17:0 supported allocation of the strain to the genus Nonomuraea. Results of DNA-DNA hybridization and physiological tests allowed genotypic and phenotypic differentiation of strain DRQ-2(T) from closely related species. The genomic DNA G+C content of the organism was 72.5 mol%. On the basis of phenotypic, chemotypic and molecular characteristics, strain DRQ-2(T) represents a novel species of the genus Nonomuraea, for which the name N. indica sp. nov. is proposed, with type strain DRQ-2(T) (=NCIM 5480(T)= CCTCC AA 209050(T)).

  16. Nocardiopsis terrae sp. nov., a halophilic actinomycete isolated from saline soil.

    PubMed

    Chen, Yi-Guang; Zhang, Yu-Qin; Tang, Shu-Kun; Liu, Zhu-Xiang; Xu, Li-Hua; Zhang, Li-Xin; Li, Wen-Jun

    2010-06-01

    A Gram-positive, moderately halophilic, facultatively alkaliphilic, catalase- and oxidase-positive, obligately aerobic, filamentous actinomycete strain, designated YIM 90022(T), was isolated from saline soil collected from the Qaidam Basin, north-west China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the new isolate was a member of the genus Nocardiopsis and the sequence similarities between the isolate and the type strains of members of the genus Nocardiopsis were in the range of 95.1-98.7%. Phenotypic and chemotaxonomic properties of this organism also indicated that strain YIM 90022(T) was a member of the genus Nocardiopsis. The strain grew well on most of the media tested, producing yellow-white to deep brown substrate mycelium and white aerial mycelium. Light gray to deep brown diffusible pigments were produced. The substrate mycelium was well developed and fragmented with age; the aerial mycelium produced long, straight to flexuous spore chains with non-motile, smooth-surfaced, rod-shaped spores on them. The strain grew in the presence of 1-15% (w/v) total salts (optimum, 3-5%) and at pH 6.0-10.5 (optimum, pH 8.5) and 10-45 degrees C (optimum, 30 degrees C). Whole-cell hydrolysates of strain YIM 90022(T) contained meso-diaminopimelic acid and no diagnostic sugars. The predominant menaquinones were MK-10(H(4)), MK-9(H(8)), MK-10(H(6)) and MK-10(H(8)). Polar lipids comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylmethylethanolamine. The major cellular fatty acids were iso-C(16:0), anteiso-C(17:0), 10-methyl-C(18:0) and 10-methyl-C(17:0). The DNA G + C content of strain YIM 90022(T) was 71.5 mol%. The combination of phylogenetic analysis, DNA-DNA relatedness data, phenotypic characteristics and chemotaxonomic data supported the suggestion that strain YIM 90022(T) represents a new species of the genus Nocardiopsis, for which the name Nocardiopsis terrae sp. nov. is proposed. The type strain is

  17. Endophytic Fungi Isolated from Coleus amboinicus Lour Exhibited Antimicrobial Activity

    PubMed Central

    Astuti, Puji; Sudarsono, Sudarsono; Nisak, Khoirun; Nugroho, Giri Wisnu

    2014-01-01

    Purpose: Coleus amboinicus is a medicinal plant traditionally used to treat various diseases such as throat infection, cough and fever, diarrhea, nasal congestion and digestive problems. The plant was explored for endophytic fungi producing antimicrobial agents. Methods: Screening for endophytic fungi producing antimicrobial agents was conducted using agar plug method and antimicrobial activity of promising ethyl acetate extracts was determined by disc diffusion assay. Thin layer chromatography (TLC) - bioautography was performed to localize the bioactive components within the extract. TLC visualization detection reagents were used to preliminary analyze phytochemical groups of the bioactive compounds. Results: Three endophytic fungi were obtained, two of them showed promising potential. Agar diffusion method showed that endophytic fungi CAL-2 exhibited antimicrobial activity against P. aeruginosa, B. subtilis, S. aureus and S. thypi, whilst CAS-1 inhibited the growth of B. subtilis. TLC bioautography of ethyl acetate extract of CAL-2 revealed at least three bands exhibited antimicrobial activity and at least two bands showed inhibition of B. subtilis growth. Preliminary analysis of the crude extracts suggests that bioactive compounds within CAL-2 extract are terpenoids, phenolics and phenyl propanoid compounds whilst the antimicrobial agents within CAS-1 extract are terpenoids, propylpropanoids, alkaloids or heterocyclic nitrogen compounds. Conclusion: These data suggest the potential of endophytic fungi of C. amboinicus as source for antimicrobial agents. PMID:25671195

  18. Molecular analysis of endophytic bacteria from the genus Bacillus isolated from tropical maize (Zea mays L.)

    PubMed Central

    Figueiredo, José Edson Fontes; Gomes, Eliane Aparecida; Guimarães, Claudia Teixeira; de Paula Lana, Ubiraci Gomes; Teixeira, Marta Aparecida; Lima, Guilherme Vitor Corrêa; Bressan, Wellington

    2009-01-01

    Endophytic bacteria play an important role in agriculture by improving plant performance and adaptation against biotic and abiotic stresses. In the present study molecular methods were used for identifying Bacillus endophytic bacteria isolated from Brazilian sweet corn. SDS-PAGE of whole-cell protein extract of forty-two isolates revealed a high number of scrutinable bands. Twenty-four isolates were identified in nine different groups of duplicated bacteria and eighteen were identified as unique. Some high-accumulated polipeptides with variable length were observed in almost isolates. Partial sequencing of 16S ribosomal gene revealed that all isolates are Bacillus sp. and among thirteen isolates with similar protein profiles, two were different strains. Among the forty-two isolates identified by rDNA sequencing, Bacillus subitilis and B. pumilus were the most frequenty species (15 and 12 isolates, respectively) followed by B. licheniformes (7 isolates), B. cereus (5 isolates) and B. amiloliquefascens (3 isolates). According to present results, SDS-PAGE technique could be used as a fast and cheap first tool for identifying inter-specific variation in maize endophytic bacterial collections while rDNA sequencing could be applied for analyzing intra-specific variation among isolates with similar protein profile as well as for taxonomic studies. PMID:24031395

  19. Nocardiopsis litoralis sp. nov., a halophilic marine actinomycete isolated from a sea anemone.

    PubMed

    Chen, Yi-Guang; Wang, Yong-Xia; Zhang, Yu-Qin; Tang, Shu-Kun; Liu, Zhi-Xiong; Xiao, Huai-Dong; Xu, Li-Hua; Cui, Xiao-Long; Li, Wen-Jun

    2009-11-01

    A Gram-positive, moderately halophilic, alkalitolerant, filamentous, aerobic actinomycete, designated strain JSM 073097(T), was isolated from a sea anemone collected from a tidal flat in the South China Sea. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the new isolate was a member of the genus Nocardiopsis and was most closely related to Nocardiopsis kunsanensis HA-9(T), Nocardiopsis xinjiangensis YIM 90004(T) and Nocardiopsis salina YIM 90010(T) (99.6, 98.5 and 98.1 % similarity, respectively). Phenotypic characteristics and chemotaxonomic data also indicated that strain JSM 073097(T) was a member of the genus Nocardiopsis. The strain grew well on most of the media tested, producing white to yellow-white substrate mycelium and white aerial mycelium and straight to flexuous hyphae. The substrate mycelium was well developed and fragmented with age; the aerial mycelium produced long, straight to flexuous spore chains with non-motile, smooth-surfaced, rod-shaped spores. The strain grew in the presence of 1-15 % (w/v) total salts and at pH 6.0-10.5 and 20-35 degrees C; optimum growth occurred in the presence of 5-7 % (w/v) total salts and at pH 8.5 and 25 degrees C. Whole-cell hydrolysates of strain JSM 073097(T) contained meso-diaminopimelic acid and no diagnostic sugars. The predominant menaquinones were MK-10(H(4)), MK-10(H(6)) and MK-10(H(8)). The major cellular fatty acids were iso-C(15 : 0), iso-C(16 : 0), anteiso-C(16 : 0) and 10-methyl C(18 : 0). Polar lipids comprised diphosphatidylglycerol, phosphatidylcholine and phosphatidylglycerol. The DNA G+C content of strain JSM 073097(T) was 70.4 mol%. The combination of phylogenetic analysis, DNA-DNA relatedness data, phenotypic characteristics and chemotaxonomic data supported the suggestion that strain JSM 073097(T) represents a novel species of the genus Nocardiopsis, for which the name Nocardiopsis litoralis sp. nov. is proposed. The type strain is JSM 073097(T) (=DSM 45168(T)=KCTC 19473

  20. Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite.

    PubMed

    Mesquini, Josiane A; Sawaya, Alexandra C H F; López, Begonã G C; Oliveira, Valéria M; Miyasaka, Natalia R S

    2015-12-01

    Atrazine is still one of the most used agricultural pesticides worldwide and it has been recognized as a major contaminant of surface and ground water. The aims of this research were to isolate an endophytic microorganism from leaves of sugarcane, evaluate its ability to degrade atrazine, and investigate the formation of metabolites. By sequencing of the 16S rRNA gene, the endophytic isolate atz2 was identified as Streptomyces sp. The reduction in atrazine concentration by Streptomyces sp. atz2 was 98 % and UHPLC-MS/MS analyses showed the appearance of an unknown metabolite observed as m/z 311. Ecotoxicity tests with an aquatic organism, Daphnia similis, confirmed that this metabolite was nontoxic. This mechanism of detoxification of atrazine is different from the ones of other free-living microorganisms that inhabit the soil or rhizosphere. The results show new aspects of atrazine detoxification, highlighting a new role of endophytic bacteria in plants. PMID:26467569

  1. Detoxification of Atrazine by Endophytic Streptomyces sp. Isolated from Sugarcane and Detection of Nontoxic Metabolite.

    PubMed

    Mesquini, Josiane A; Sawaya, Alexandra C H F; López, Begonã G C; Oliveira, Valéria M; Miyasaka, Natalia R S

    2015-12-01

    Atrazine is still one of the most used agricultural pesticides worldwide and it has been recognized as a major contaminant of surface and ground water. The aims of this research were to isolate an endophytic microorganism from leaves of sugarcane, evaluate its ability to degrade atrazine, and investigate the formation of metabolites. By sequencing of the 16S rRNA gene, the endophytic isolate atz2 was identified as Streptomyces sp. The reduction in atrazine concentration by Streptomyces sp. atz2 was 98 % and UHPLC-MS/MS analyses showed the appearance of an unknown metabolite observed as m/z 311. Ecotoxicity tests with an aquatic organism, Daphnia similis, confirmed that this metabolite was nontoxic. This mechanism of detoxification of atrazine is different from the ones of other free-living microorganisms that inhabit the soil or rhizosphere. The results show new aspects of atrazine detoxification, highlighting a new role of endophytic bacteria in plants.

  2. Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae).

    PubMed

    Rhoden, S A; Garcia, A; Rubin Filho, C J; Azevedo, J L; Pamphile, J A

    2012-01-01

    Various types of organisms, mainly fungi and bacteria, live within vegetal organs and tissues, without causing damage to the plant. These microorganisms, which are called endophytes, can be useful for biological control and plant growth promotion; bioactive compounds from these organisms may have medical and pharmaceutical applications. Trichilia elegans (Meliaceae) is a native tree that grows abundantly in several regions of Brazil. Preparations using the leaves, seeds, bark, and roots of many species of the Meliaceae family have been widely used in traditional medicine, and some members of the Trichilia genus are used in Brazilian popular medicine. We assessed the diversity of endophytic fungi from two wild specimens of T. elegans, collected from a forest remnant, by sequencing ITS1-5.8S-ITS2 of rDNA of the isolates. The fungi were isolated and purified; 97 endophytic fungi were found; they were separated into 17 morpho-groups. Of the 97 endophytic fungi, four genera (Phomopsis, Diaporthe, Dothideomycete, and Cordyceps) with 11 morpho-groups were identified. Phomopsis was the most frequent genus among the identified endophytes. Phylogenetic analysis showed two major clades: Sordariomycetes, which includes three genera, Phomopsis, Diaporthe, and Cordyceps, and the clade Dothideomycetes, which was represented by the order Pleosporales. PMID:22782630

  3. Whole-genome sequence of Enterobacter sp. strain SST3, an endophyte isolated from Jamaican sugarcane (Saccharum sp.) stalk tissue.

    PubMed

    Gan, Han Ming; McGroty, Sean E; Chew, Teong Han; Chan, Kok Gan; Buckley, Larry J; Savka, Michael A; Hudson, André O

    2012-11-01

    Enterobacter sp. strain SST3 is an endophytic bacterium isolated from Saccharum spp. Here we present its annotated draft genome that may shed light on its role as a bacterial endophyte of sugarcane. To our knowledge, this is the first genome announcement of a sugarcane-associated bacterium from the genus Enterobacter.

  4. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates.

    PubMed

    Oteino, Nicholas; Lally, Richard D; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J; Dowling, David N

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14-169 mM) and have moderate to high phosphate solubilization capacities (~400-1300 mg L(-1)). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  5. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  6. Thermoactinomyces guangxiensis sp. nov., a thermophilic actinomycete isolated from mushroom compost.

    PubMed

    Wu, Hao; Liu, Bin; Pan, Shangli

    2015-09-01

    A novel thermophilic actinomycete, designated strain CD-1(T), was isolated from mushroom compost in Nanning, Guangxi province, China. The strain grew at 37-55 °C (optimum 45-50 °C), pH 6.0-11.0 (optimum pH 7.0-9.0) and with 0-2.0% NaCl (optimum 0-1.0%), formed well-developed white aerial mycelium and pale-yellow vegetative mycelium, and single endospores (0.8-1.0 μm diameter) were borne on long sporophores (2-3 μm length). The endospores were spherical-polyhedron in shape with smooth surface. Based on its phenotypic and phylogenetic characteristics, strain CD-1(T) is affiliated to the genus Thermoactinomyces. It contained meso-diaminopimelic acid as the diagnostic diamino acid; the whole-cell sugars were ribose and glucose. Major fatty acids were iso-C15 :  0, C16 : 0, anteiso-C15  : 0 and iso-C17  : 0. MK-7 was the predominant menaquinone. The polar phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylethanolamine containing hydroxylated fatty acids, ninhydrin-positive glycophospholipid, an unknown phospholipid and glycolipids. The G+C content of the genomic DNA was 48.8%. 16S rRNA gene sequence analysis showed that the organism was closely related to Lihuaxuella thermophila YIM 77831(T) (95.69% sequence similarity), Thermoactinomyces daqus H-18(T) (95.49%), Laceyella putida KCTC 3666(T) (95.05%), Thermoactinomyces vulgaris KCTC 9076(T) (95.01%) and Thermoactinomyces intermedius JCM 3312(T) (94.55%). Levels of DNA-DNA relatedness between strain CD-1T and Lihuaxuella thermophila JCM 18059(T), Thermoactinomyces daqus DSM 45914(T), Laceyella putida JCM 8091(T), Thermoactinomyces vulgaris JCM 3162(T) and Thermoactinomyces intermedius JCM 3312(T) were low (22.8, 33.3, 24.7, 29.4 and 30.0%, respectively). A battery of phenotypic, genotypic and DNA-DNA relatedness data indicated that strain CD-1T represented a novel species of the genus Thermoactinomyces, for which the name Thermoactinomyces guangxiensis sp. nov

  7. Saccharopolyspora subtropica sp. nov., a thermophilic actinomycete isolated from soil of a sugar cane field.

    PubMed

    Wu, Hao; Liu, Bin; Pan, Shangli

    2016-05-01

    A novel thermophilic actinomycete, designated strain T3T, was isolated from a soil sample of a sugar cane field. The strain grew at 25-60 °C (optimum 37-50 °C), at pH 6.0-11.0 (optimum 7.0-9.0) and with 0-12.0 % (w/v) NaCl (optimum 0-7 %). The aerial mycelium was white and the vegetative mycelium was colourless to pale yellow. The substrate mycelium fragmented into rod-shaped elements after 4-5 days at 50 °C. The aerial mycelium formed flexuous chains of 5-20 spores per chain; the oval-shaped spores had spiny surfaces and were non-motile. The organism contained meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars consisted of arabinose, galactose and ribose. The cellular fatty acid profile consisted mainly of anteiso-C17 : 0, iso-C17 : 0 and iso-C16 : 0. The quinone system was composed predominantly of MK-9(H4). The phospholipids detected were diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, phosphatidylmethylethanolamine and ninhydrin-positive glycophospholipids. The DNA G+C content of strain T3T was 71.3 mol%. The organism showed a combination of morphological and chemotaxonomic properties typical of members of the genus Saccharopolyspora. In the 16S rRNA gene tree of Saccharopolyspora it formed a distinct phyletic line and was related most closely to Saccharopolyspora thermophila 216T. However, the phenotypic characteristics of strain T3T were significantly different from those of S. thermophila 216T and DNA-DNA hybridization revealed a low level of relatedness (28.6-32.3 %) between them. Based on the phenotypic and phylogenetic data, strain T3T represents a novel species in the genus Saccharopolyspora, for which the name Saccharopolyspora subtropica sp. nov. is proposed. The type strain is T3T ( = DSM 46801T = CGMCC 4.7206T). PMID:26882893

  8. Thermoactinomyces guangxiensis sp. nov., a thermophilic actinomycete isolated from mushroom compost.

    PubMed

    Wu, Hao; Liu, Bin; Pan, Shangli

    2015-09-01

    A novel thermophilic actinomycete, designated strain CD-1(T), was isolated from mushroom compost in Nanning, Guangxi province, China. The strain grew at 37-55 °C (optimum 45-50 °C), pH 6.0-11.0 (optimum pH 7.0-9.0) and with 0-2.0% NaCl (optimum 0-1.0%), formed well-developed white aerial mycelium and pale-yellow vegetative mycelium, and single endospores (0.8-1.0 μm diameter) were borne on long sporophores (2-3 μm length). The endospores were spherical-polyhedron in shape with smooth surface. Based on its phenotypic and phylogenetic characteristics, strain CD-1(T) is affiliated to the genus Thermoactinomyces. It contained meso-diaminopimelic acid as the diagnostic diamino acid; the whole-cell sugars were ribose and glucose. Major fatty acids were iso-C15 :  0, C16 : 0, anteiso-C15  : 0 and iso-C17  : 0. MK-7 was the predominant menaquinone. The polar phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylethanolamine containing hydroxylated fatty acids, ninhydrin-positive glycophospholipid, an unknown phospholipid and glycolipids. The G+C content of the genomic DNA was 48.8%. 16S rRNA gene sequence analysis showed that the organism was closely related to Lihuaxuella thermophila YIM 77831(T) (95.69% sequence similarity), Thermoactinomyces daqus H-18(T) (95.49%), Laceyella putida KCTC 3666(T) (95.05%), Thermoactinomyces vulgaris KCTC 9076(T) (95.01%) and Thermoactinomyces intermedius JCM 3312(T) (94.55%). Levels of DNA-DNA relatedness between strain CD-1T and Lihuaxuella thermophila JCM 18059(T), Thermoactinomyces daqus DSM 45914(T), Laceyella putida JCM 8091(T), Thermoactinomyces vulgaris JCM 3162(T) and Thermoactinomyces intermedius JCM 3312(T) were low (22.8, 33.3, 24.7, 29.4 and 30.0%, respectively). A battery of phenotypic, genotypic and DNA-DNA relatedness data indicated that strain CD-1T represented a novel species of the genus Thermoactinomyces, for which the name Thermoactinomyces guangxiensis sp. nov

  9. 12-Membered Resorcylic Acid Lactones Isolated from Saccharicola bicolor, an Endophytic Fungi from Bergenia purpurascens.

    PubMed

    Guo, Da-Le; Zhao, Min; Xiao, Shi-Ji; Xia, Bing; Wan, Bo; Gu, Yu-Cheng; Ding, Li-Sheng; Zhou, Yan

    2015-12-01

    Two new resorcylic acid lactones, 13-hydroxyhidroresorcylide (1) and 12-hydroxyhidroresorcylide (2), along with four known congeners (3-6) were isolated from Saccharicola bicolor, an endophytic fungus from Bergenia purpurascens. Their structures were elucidated by interpretation of the spectroscopic evidence.

  10. Metabolites from the endophytic fungus Sporormiella minimoides isolated from Hintonia latiflora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extract of the solid cultures of Sporormiella minimoides (Sporormiaceae) isolated as an endophytic fungus from Hintonia latiflora (Rubiaceae), yielded three polyketides, 3,6-dimethoxy-8-methyl-1H,6H-benzo[de]isochromene-1,9-dione, 3-hydroxy-1,6,10-trimethoxy-8-methyl-1H,3H-benzo[de]isochromen-9-o...

  11. (+)-Ascosalitoxin and vermelhotin, a calmodulin inhibitor, from an endophytic fungus isolated from Hintonia latiflora

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical investigation of the endophytic fungus 39140-2, isolated from the medicinal plant Hintonia latiflora, yielded the known polyketide vermelhotin (1) and a new salycilic aldehyde derivative, namely 9S,11R-(+)-ascosalitoxin (2). The structure and absolute configuration of the new compound was ...

  12. 12-Membered Resorcylic Acid Lactones Isolated from Saccharicola bicolor, an Endophytic Fungi from Bergenia purpurascens.

    PubMed

    Guo, Da-Le; Zhao, Min; Xiao, Shi-Ji; Xia, Bing; Wan, Bo; Gu, Yu-Cheng; Ding, Li-Sheng; Zhou, Yan

    2015-12-01

    Two new resorcylic acid lactones, 13-hydroxyhidroresorcylide (1) and 12-hydroxyhidroresorcylide (2), along with four known congeners (3-6) were isolated from Saccharicola bicolor, an endophytic fungus from Bergenia purpurascens. Their structures were elucidated by interpretation of the spectroscopic evidence. PMID:26882683

  13. Acremonium camptosporum isolated as an endophyte of Bursera simaruba from Yucatan Peninsula, Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper draws on morphological and molecular analyses to determinate the systematic position of an interesting endophytic fungus isolated from the leaves of Bursera simaruba, a tree of semideciduous dry tropical forest at El Eden Ecological Reserve. The cultured strain develops the characteristic...

  14. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds.

    PubMed

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  15. Morphological, Physiological, and Taxonomic Characterization of Actinobacterial Isolates Living as Endophytes of Cacao Pods and Cacao Seeds

    PubMed Central

    Tchinda, Romaric Armel Mouafo; Boudjeko, Thaddée; Simao-Beaunoir, Anne-Marie; Lerat, Sylvain; Tsala, Éric; Monga, Ernest; Beaulieu, Carole

    2016-01-01

    Vascular plants are commonly colonized by endophytic actinobacteria. However, very little is known about the relationship between these microorganisms and cacao fruits. In order to determine the physiological and taxonomic relationships between the members of this community, actinobacteria were isolated from cacao fruits and seeds. Among the 49 isolates recovered, 11 morphologically distinct isolates were selected for further characterization. Sequencing of the 16S rRNA gene allowed the partition of the selected isolates into three phylogenetic clades. Most of the selected endophytic isolates belonged to the Streptomyces violaceusniger clade. Physiological characterization was carried out and a similarity index was used to cluster the isolates. However, clustering based on physiological properties did not match phylogenetic lineages. Isolates were also characterized for traits commonly associated with plant growth-promoting bacteria, including antibiosis and auxin biosynthesis. All isolates exhibited resistance to geldanamycin, whereas only two isolates were shown to produce this antibiotic. Endophytes were inoculated on radish seedlings and most isolates were found to possess plant growth-promoting abilities. These endophytic actinobacteria inhibited the growth of various plant pathogenic fungi and/or bacteria. The present study showed that S. violaceusniger clade members represent a significant part of the actinobacterial community living as endophytes in cacao fruits and seeds. While several members of this clade are known to be geldanamycin producers and efficient biocontrol agents of plant diseases, we herein established the endophytic lifestyle of some of these microorganisms, demonstrating their potential as plant health agents. PMID:26947442

  16. Isolation, taxonomy, and antagonistic properties of halophilic actinomycetes in Saharan soils of Algeria.

    PubMed

    Meklat, Atika; Sabaou, Nasserdine; Zitouni, Abdelghani; Mathieu, Florence; Lebrihi, Ahmed

    2011-09-01

    The diversity of a population of 52 halophilic actinomycetes was evaluated by a polyphasic approach, which showed the presence of members of the Actinopolyspora, Nocardiopsis, Saccharomonospora, Streptomonospora, and Saccharopolyspora genera. One strain was considered to be a new member of the last genus, and several other strains seemed to be new species. Furthermore, 50% of strains were active against a broad range of indicators and contained genes encoding polyketide synthetases and nonribosomal peptide synthetases.

  17. Isolation, Taxonomy, and Antagonistic Properties of Halophilic Actinomycetes in Saharan Soils of Algeria ▿

    PubMed Central

    Meklat, Atika; Sabaou, Nasserdine; Zitouni, Abdelghani; Mathieu, Florence; Lebrihi, Ahmed

    2011-01-01

    The diversity of a population of 52 halophilic actinomycetes was evaluated by a polyphasic approach, which showed the presence of members of the Actinopolyspora, Nocardiopsis, Saccharomonospora, Streptomonospora, and Saccharopolyspora genera. One strain was considered to be a new member of the last genus, and several other strains seemed to be new species. Furthermore, 50% of strains were active against a broad range of indicators and contained genes encoding polyketide synthetases and nonribosomal peptide synthetases. PMID:21764956

  18. Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes.

    PubMed

    Ikeda, Angela Cristina; Bassani, Luciana Lange; Adamoski, Douglas; Stringari, Danyelle; Cordeiro, Vanessa Kava; Glienke, Chirlei; Steffens, Maria Berenice Reynaud; Hungria, Mariangela; Galli-Terasawa, Lygia Vitoria

    2013-01-01

    Maize is one of the most important crops worldwide, and in Brazil, the state of Paraná stands as its largest producer. The crop demands high inputs of N fertilizers, therefore all strategies aiming to optimize the grain production with lower inputs are very relevant. Endophytic bacteria have a high potential to increment maize grain yield by means of input via biological nitrogen fixation and/or plant growth promotion, in this last case increasing the absorption of water and nutrients by the plants. In this study, we established a collection of 217 endophytic bacteria, isolated from roots of four lineages and three hybrid genotypes of maize, and isolated in four different N-free culture media. Biochemical-comprising growth in different carbon sources, intrinsic tolerance to antibiotics, and biochemical tests for catalase, nitrate reductase, urease, and growth in N-free media in vitro-and genetic characterization by BOX-PCR revealed great variability among the isolates. Both commercial hybrids and homozygous lineages were broadly colonized by endophytes, and sequencing of the 16S rRNA gene revealed the presence of bacteria belonging to the genera Pantoea, Bacillus, Burkholderia, and Klebsiella. Qualitative differences in endophytic colonization were detected between lineages and hybrid genotypes.

  19. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle)

    PubMed Central

    Raja, Huzefa A.; Kaur, Amninder; El-Elimat, Tamam; Figueroa, Mario; Kumar, Rahul; Deep, Gagan; Agarwal, Rajesh; Faeth, Stanley H.; Cech, Nadja B.; Oberlies, Nicholas H.

    2015-01-01

    Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid–substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity. PMID:26000195

  20. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

    PubMed

    Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

    2016-01-01

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum. PMID:27598120

  1. Endophytic Fungi Isolated from Oil-Seed Crop Jatropha curcas Produces Oil and Exhibit Antifungal Activity

    PubMed Central

    Kumar, Susheel; Kaushik, Nutan

    2013-01-01

    Jatropha curcas L., a perennial plant grown in tropics and subtropics is popularly known for its potential as biofuel. The plant is reported to survive under varying environmental conditions having tolerance to stress and an ability to manage pest and diseases. The plant was explored for its endophytic fungi for use in crop protection. Endophytic fungi were isolated from leaf of Jatropha curcas, collected from New Delhi, India. Four isolates were identified as Colletotrichum truncatum, and other isolates were identified as Nigrospora oryzae, Fusarium proliferatum, Guignardia cammillae, Alternaria destruens, and Chaetomium sp. Dual plate culture bioassays and bioactivity assays of solvent extracts of fungal mycelia showed that isolates of Colletotrichum truncatum were effective against plant pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. Isolate EF13 had highest activity against S. sclerotiorum. Extracts of active endophytic fungi were prepared and tested against S. sclerotiorum. Ethyl acetate and methanol extract of C. truncatum EF10 showed 71.7% and 70% growth inhibition, respectively. Hexane extracts of C. truncatum isolates EF9, EF10, and EF13 yielded oil and the oil from EF10 was similar to oil of the host plant, i.e., J. curcas. PMID:23409154

  2. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity.

    PubMed

    Kumar, Susheel; Kaushik, Nutan

    2013-01-01

    Jatropha curcas L., a perennial plant grown in tropics and subtropics is popularly known for its potential as biofuel. The plant is reported to survive under varying environmental conditions having tolerance to stress and an ability to manage pest and diseases. The plant was explored for its endophytic fungi for use in crop protection. Endophytic fungi were isolated from leaf of Jatropha curcas, collected from New Delhi, India. Four isolates were identified as Colletotrichum truncatum, and other isolates were identified as Nigrospora oryzae, Fusarium proliferatum, Guignardia cammillae, Alternaria destruens, and Chaetomium sp. Dual plate culture bioassays and bioactivity assays of solvent extracts of fungal mycelia showed that isolates of Colletotrichum truncatum were effective against plant pathogenic fungi Fusarium oxysporum and Sclerotinia sclerotiorum. Isolate EF13 had highest activity against S. sclerotiorum. Extracts of active endophytic fungi were prepared and tested against S. sclerotiorum. Ethyl acetate and methanol extract of C. truncatum EF10 showed 71.7% and 70% growth inhibition, respectively. Hexane extracts of C. truncatum isolates EF9, EF10, and EF13 yielded oil and the oil from EF10 was similar to oil of the host plant, i.e., J. curcas.

  3. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    PubMed Central

    Alvarado, Johana; Bruce, David; Chertkov, Olga; De Hoff, Peter L.; Detter, John C.; Fujishige, Nancy A.; Goodwin, Lynne A.; Han, James; Han, Shunsheng; Ivanova, Natalia; Land, Miriam L.; Lum, Michelle R.; Milani-Nejad, Nima; Nolan, Matt; Pati, Amrita; Pitluck, Sam; Tran, Stephen S.; Woyke, Tanja; Valdés, Maria

    2013-01-01

    Micromonospora species live in diverse environments and exhibit a broad range of functions, including antibiotic production, biocontrol, and degradation of complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico. PMID:24072863

  4. Complete Genome Sequence of Micromonospora Strain L5, a Potential Plant-Growth-Regulating Actinomycete, Originally Isolated from Casuarina equisetifolia Root Nodules

    SciTech Connect

    Hirsch, A. M.; Alvarado, J.; Bruce, D.; Chertkov, O.; De Hoff, P. L.; Detter, J. C.; Fujishige, N. A.; Goodwin, L. A.; Han, J.; Han, S.; Ivanova, N.; Land, M. L.; Lum, M. R.; Milani-Nejad, N.; Nolan, M.; Pati, A.; Pitluck, S.; Tran, S. S.; Woyke, T.; Valdes, M.

    2013-08-29

    Micromonospora species live in diverse environments and exhibit a broad range of functions including antibiotic production, biocontrol, and ability to degrade complex polysaccharides. To learn more about these versatile actinomycetes, we sequenced the genome of strain L5, originally isolated from root nodules of an actinorhizal plant growing in Mexico.

  5. [Screening and identification of antioxidant endophytes from Lycium barbarum of Ningxia].

    PubMed

    Du, Xiao-ning; Dai, Jin-xia

    2015-10-01

    In this paper, 29 endophytes were isolated from different organs and tissues of Lycium barbarum of Ningxia by tablet coating method, 18 of them was fungi, and 11 of them was actinomycetes. The endophytes quantity in the different tissues were leaves > flowers > roots >fruits; The hydroxyl radical scavenging activities of 11 endophytes were investigated by Fenton reaction, and total antioxidant capacities of them were examined by a. total antioxidant capacity test kit; culture features and strain-specific sequence analysis were employed to explore the diversity of the 11 endophytes. The result showed that 5 fungi and 6 actinomycetes that having antioxidant activity could be phylogenetically classified into 3 genera, 3 genera and 3 families, respectively. The total antioxidant capacity and hydroxyl radical scavenging activity of the 11 endophytes showed distinct difference. The antioxidant activity of Aspergillus were stronger, among which total antioxidant capacity of fL1 was (188.5 ± 0.549) U · mL⁻¹ and the IC₅₀ was 0.3 mg · L⁻¹; the IC₅₀ of strain fL1 was 0.42 mg · L⁻¹ and the total antioxidant capacity of fL9 was (113.63 ± 1.021) U · mL⁻¹, all of them were stronger than the positive control Vit C. The experimental results indicated that endophytic fungi of L. barbarum of Ningxia have a great developing and application prospect for the development of antioxidant agent.

  6. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.

    PubMed

    Luo, Shenglian; Wan, Yong; Xiao, Xiao; Guo, Hanjun; Chen, Liang; Xi, Qiang; Zeng, Guangming; Liu, Chengbin; Chen, Jueliang

    2011-03-01

    Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant-endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities. PMID:20953602

  7. Taxonomic study of neutrotolerant acidophilic actinomycetes isolated from soil and description of Streptomyces yeochonensis sp. nov.

    PubMed

    Kim, Seung Bum; Seong, Chi Nam; Jeon, Soo Jin; Bae, Kyung Sook; Goodfellow, Michael

    2004-01-01

    Acidophilic actinomycete strains that represent the two major neutrotolerant clusters defined by numerical taxonomy (Seong, 1992) were the subject of a polyphasic taxonomic study. The centrotypes of each cluster, designated as strain JL164 (=KCTC 9924) of cluster 21 and strain CN732T (=KCTC 9926T=IMSNU 50114T=NRRL B-24245T) of cluster 13, were assigned initially to the genus Streptomyces on the basis of morphological and chemotaxonomic characteristics; this assignation was confirmed by 16S rRNA gene sequence data. Strain CN732T formed a distinct phyletic line within the Streptomyces tree, whereas strain JL164 was related closely to the type strain of Streptomyces mirabilis. It is evident from the present and previous studies that neutrotolerant acidophilic actinomycetes comprise taxonomically diverse groups within the variation encompassed by the genus Streptomyces. It is also apparent that strain CN732T and other members of cluster 13 merit recognition as a novel species, for which the name Streptomyces yeochonensis sp. nov. is proposed.

  8. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae.

    PubMed

    Na, Ren; Jiajia, Liu; Dongliang, Yang; Yingzi, Peng; Juan, Hong; Xiong, Liu; Nana, Zhao; Jing, Zhou; Yitian, Luo

    2016-11-01

    Vincamine, a monoterpenoid indole alkaloid which had been marketed as nootropic drugs for the treatment of cerebral insufficiencies, is widely found in plants of the Apocynaceae family. Nerium indicum is a plant belonging to the Apocynaceae family. So, the purpose of this research was designed to investigate the vincamine alkaloids producing endophytic fungi from Nerium indicum, Apocynaceae. 11 strains of endophytic fungi, isolated from the stems and roots of the plant, were grouped into 5 genera on the basis of morphological characteristics. All fungal isolates were fermented and their extracts were preliminary screened by Dragendorff's reagent and thin layer chromatography (TLC). One isolated strain CH1, isolated from the stems of Nerium indicum, had the same Rf value (about 0.56) as authentic vincamine. The extracts of strain CH1 were further analyzed by high performance liquid chromatography (HPLC) and liquid chromatograph-mass spectrometry (LC-MS), and the results showed that the strain CH1 could produce vincamine and vincamine analogues. The acetylcholinesterase (AchE) inhibitory activity assays using Ellman's method revealed that the metabolites of strain CH1 had significant AchE inhibitory activity with an IC50 value of 5.16μg/mL. The isolate CH1 was identified as Geomyces sp. based on morphological and molecular identification, and has been deposited in the China Center for Type Culture Collection (CCTCCM 2014676). This study first reported the natural compounds tabersonine and ethyl-vincamine from endophytic fungi CH1, Geomyces sp. In conclusion, the fungal endophytes from Nerium indicum can be used as alternative source for the production of vincamine and vincamine analogues. PMID:27664729

  9. Indentification of vincamine indole alkaloids producing endophytic fungi isolated from Nerium indicum, Apocynaceae.

    PubMed

    Na, Ren; Jiajia, Liu; Dongliang, Yang; Yingzi, Peng; Juan, Hong; Xiong, Liu; Nana, Zhao; Jing, Zhou; Yitian, Luo

    2016-11-01

    Vincamine, a monoterpenoid indole alkaloid which had been marketed as nootropic drugs for the treatment of cerebral insufficiencies, is widely found in plants of the Apocynaceae family. Nerium indicum is a plant belonging to the Apocynaceae family. So, the purpose of this research was designed to investigate the vincamine alkaloids producing endophytic fungi from Nerium indicum, Apocynaceae. 11 strains of endophytic fungi, isolated from the stems and roots of the plant, were grouped into 5 genera on the basis of morphological characteristics. All fungal isolates were fermented and their extracts were preliminary screened by Dragendorff's reagent and thin layer chromatography (TLC). One isolated strain CH1, isolated from the stems of Nerium indicum, had the same Rf value (about 0.56) as authentic vincamine. The extracts of strain CH1 were further analyzed by high performance liquid chromatography (HPLC) and liquid chromatograph-mass spectrometry (LC-MS), and the results showed that the strain CH1 could produce vincamine and vincamine analogues. The acetylcholinesterase (AchE) inhibitory activity assays using Ellman's method revealed that the metabolites of strain CH1 had significant AchE inhibitory activity with an IC50 value of 5.16μg/mL. The isolate CH1 was identified as Geomyces sp. based on morphological and molecular identification, and has been deposited in the China Center for Type Culture Collection (CCTCCM 2014676). This study first reported the natural compounds tabersonine and ethyl-vincamine from endophytic fungi CH1, Geomyces sp. In conclusion, the fungal endophytes from Nerium indicum can be used as alternative source for the production of vincamine and vincamine analogues.

  10. Screening of endophytic Streptomycetes isolated from Parthenium hysterophorus L. against nosocomial pathogens.

    PubMed

    Tanvir, Rabia; Sajid, Imran; Hasnain, Shahida

    2013-03-01

    Parthenium hysterophorus L. is an obnoxious weed of the family asteraceae recognized for its detrimental effects and significant economic losses to agriculture. In this study 42 endophytic streptomycetes strains were isolated from its roots and leaves. The isolates were identified by morphological, microscopic, biochemical and physiological characterization as members of genus Streptomyces. In 16S rRNA gene sequencing the selected isolates exhibited maximum similarity with Streptomyces rochei (99%), Streptomyces litmocidini (99%), Streptomyces enissocaesili (99%), Streptomyces djakartensis (99%), Streptomyces olivaceus (99%), Streptomyces spp (99%), Streptomyces plicatus (99%), Streptomyces geysiriensis (99%) and Streptomyces vinaceusdrappus (99%). In biological screening the crude extracts of 12 strains exhibited significant antimicrobial activity against multi drug resistant nosocomial pathogens including Pseudomonas, Enterobacter, Bacillus, Escherichia coli, Staphlococcus aureus and Candida albicans. In chemical screening by thin layer chromatography (TLC) the extracts exhibited an impressive diversity of the bioactive secondary metabolites. Additionally high performance liquid chromatography (HPLC-UV) chromatographs revealed many impressive peaks of unidentified bioactive metabolites. As such this is a first study reporting the isolation, identification and screening of endophytic Streptomyces from the invasive weed. The results provide an insight into an untapped endophytic environment yet to be explored which might be a promising source of lead antimicrobial agents.

  11. Isolation, Characterization, and Insecticidal Activity of an Endophyte of Drunken Horse Grass, Achnatherum inebrians

    PubMed Central

    Shi, YingWu; Zhang, Xuebing; Lou, Kai

    2013-01-01

    Endophytic microorganisms reside within plant tissues and have often been found to promote plant growth. In this study, endophytic microorganisms were isolated from the roots, stems, leaves, and seeds of healthy drunken horse grass, Achnatherum inebrians (Hance) Keng (Poales: Poaceae), through the use of a grinding separation method and identified by a dual approach of morphological and physiological observation and 16S rRNA gene-based (for bacteria) and internal transcribed sequence-based (for fungi) molecular identification. The endophytes were then inoculated into liquid media for fermentation, and their crude extracts were employed for insecticidal activity tests using slide disc immersion and nebulization methods. A total of 89 bacteria species, which were classified into eight genera, Bacillus, Pseudomonas, Actinomyces, Corynebacterium, Acinetobacter, Sphingomonas, Paenibacillus, and Phyllobacterium, and two fungi, Claviceps and Chaetomium, were isolated. Of these species, isolates Streptomyces albus (Rossi-Doria) Waksman and Henrici (Actinomycetales: Streptomycetaceae) (GA) and Claviceps purpurea (Fr.) Tul. (Hypocreales: Clavicipitaceae) (PF-2) were shown to produce mortality rates of more than 90% in the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), after first and second screenings. The isolates PF-2 and GA associated with A. inebrians had significant insecticidal activities towards A. gossypii Glover (Hemiptera: Aphididae) and may provide a new biological resource for exploring a new microbial insecticide. PMID:24784492

  12. Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum.

    PubMed

    Chithra, S; Jasim, B; Sachidanandan, P; Jyothis, M; Radhakrishnan, E K

    2014-03-15

    Many endophytic fungi have been reported with the biosynthetic potential to produce same or similar metabolites present in host plants. The adaptations that might have acquired by these fungi as a result of the long-term association with their host plants can be the possible basis of their biosynthetic potential. The bioactive compounds originated from endophytes are currently explored for their potential applications in pharmaceutical, agriculture and food industries. Piper nigrum, a plant of the Piperaceae is very remarkable because of the presence of the alkaloid piperine. Piperine has been reported to have broad bioactive properties ranging from antimicrobial, antidepressant, anti-inflammatory, antioxidative to anticancer activities. Interestingly, piperine also plays a vital role in increasing the bioavailability of many drugs which again is a promising property. The current study was carried out to identify piperine producing endophytic fungus from Piper nigrum L. By screening various endophytic fungi, the isolate which was identified as member of Colletotrichum gloeosporioides was found to have the ability to form piperine and was confirmed by HPLC and LCMS. Considering the broad bioactive potential of piperine, the piperine producing fungi identified in the study can expect to have much industrial potential.

  13. Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy

    PubMed Central

    Zhang, Yi; Mu, Jun; Feng, Yan; Kang, Yue; Zhang, Jia; Gu, Peng-Juan; Wang, Yu; Ma, Li-Fang; Zhu, Yan-Hua

    2009-01-01

    In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata. PMID:19597575

  14. Streptomonospora amylolytica sp. nov. and Streptomonospora flavalba sp. nov., two novel halophilic actinomycetes isolated from a salt lake.

    PubMed

    Cai, Man; Tang, Shu-Kun; Chen, Yi-Guang; Li, Yan; Zhang, Yu-Qin; Li, Wen-Jun

    2009-10-01

    Two novel halophilic, aerobic, catalase-positive but oxidase-negative, Gram-positive actinomycetes, designated YIM 91353(T) and YIM 91394(T), were isolated from a salt lake in the north-west of China. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the novel isolates should be assigned to the genus Streptomonospora. The phenotypic and chemotaxonomic characteristics of the isolates also matched those described for members of the genus Streptomonospora. The predominant menaquinones were MK-10(H(8)), MK-10(H(6)) and MK-9(H(8)), and meso-diaminopimelic acid was the diagnostic amino acid in the cell walls. The phospholipids of the isolates consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids of strain YIM 91353(T) were anteiso-C(17 : 0) and C(18 : 0), and of strain YIM 91394(T) were anteiso-C(17 : 0) and iso-C(16 : 0). The DNA G+C contents were 71.2 and 72.5 mol%, respectively. The combination of phylogenetic analysis, DNA-DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strains YIM 91353(T) and YIM 91394(T) each represent a novel species of the genus Streptomonospora, for which the names Streptomonospora amylolytica sp. nov. and Streptomonospora flavalba sp. nov. are proposed, with type strains YIM 91353(T) (=DSM 45171(T)=CCTCC AA 208048(T)) and YIM 91394(T) (=DSM 45155(T)=CCTCC AA 208047(T)), respectively.

  15. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media

    PubMed Central

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-01-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001–1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media. PMID:25997013

  16. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media.

    PubMed

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-07-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001-1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media.

  17. Plantactinospora endophytica sp. nov., an actinomycete isolated from Camptotheca acuminata Decne., reclassification of Actinaurispora siamensis as Plantactinospora siamensis comb. nov. and emended descriptions of the genus Plantactinospora and Plantactinospora mayteni.

    PubMed

    Zhu, Wen-Yong; Zhao, Li-Xing; Zhao, Guo-Zhen; Duan, Xue-Wei; Qin, Sheng; Li, Jie; Xu, Li-Hua; Li, Wen-Jun

    2012-10-01

    A novel endophytic actinomycete, designated strain YIM 68255(T), was isolated from healthy leaves of Camptotheca acuminata Decne. collected in Yunnan province, south-west China and characterized by using a polyphasic approach. The strain formed well-developed substrate mycelium, but no aerial mycelium. It grew at 10-45 °C, at pH 5-10 (optimum pH 7) and in the presence of 0-3 % (w/v) NaCl. The DNA G+C content was 73.0 mol%. Phylogenetic analyses showed that strain YIM 68255(T) belonged to the genus Plantactinospora. However, it exhibited some differences from Plantactinospora mayteni YIM 61359(T) and the level of DNA-DNA relatedness was 42.7 ± 1.3 %. Based on comparative analysis of physiological and chemotaxonomic data, it is proposed that strain YIM 68255(T) represents a novel species of the genus Plantactinospora, Plantactinospora endophytica sp. nov., with strain YIM 68255(T) ( = DSM 45387(T) = CCTCC AA 209047(T)) as the type strain. In addition, it is also proposed that Actinaurispora siamensis Thawai et al. 2010 be transferred to the genus Plantactinospora as Plantactinospora siamensis comb. nov. [type strain CM2-8(T) ( = JCM 15677(T) = BCC 34762(T))] based on chemotaxonomic characteristics and phylogenetic analysis. Emended descriptions of the genus Plantactinospora and Plantactinospora mayteni are also provided.

  18. Isolation and Identification of Endophytic Fungi from Actinidia macrosperma and Investigation of Their Bioactivities

    PubMed Central

    Lu, Yin; Chen, Chuan; Chen, Hong; Zhang, Jianfen; Chen, Weiqin

    2012-01-01

    Endophytic fungi from the Chinese medicinal plant Actinidia macrosperma were isolated and identified for the first time. This was the first study to evaluate their cytotoxic and antitumour activities against brine shrimp and five types of tumour cells, respectively. In total, 17 fungal isolates were obtained. Five different taxa were represented by 11 isolates, and six isolates were grouped into the species of Ascomycete Incertae sedis with limited morphological and molecular data. Cytotoxic activity has been found in most isolates except AM05, AM06, and AM10. The isolates AM07 (4.86 μg/mL), AM11 (7.71 μg/mL), and AM17 (14.88 μg/mL) exhibited significant toxicity against brine shrimp. The results of the MTT assay to assess antitumour activity revealed that 82.4% of isolate fermentation broths displayed growth inhibition (50% inhibitory concentration IC50< 100 μg/mL). Moreover, AM07, AM11, and AM17 showed strong antitumour activity in all the cell lines examined. These results suggest that endophytic fungi in A. macrosperma are valuable for the isolation and identification of novel cytotoxic and antitumour bioactive agents. PMID:22203869

  19. Comparative genomics of an endophytic Pseudomonas putida isolated from mango orchard.

    PubMed

    Asif, Huma; Studholme, David J; Khan, Asifullah; Aurongzeb, M; Khan, Ishtiaq A; Azim, M Kamran

    2016-01-01

    We analyzed the genome sequence of an endophytic bacterial strain Pseudomonas putida TJI51 isolated from mango bark tissues. Next generation DNA sequencing and short read de novo assembly generated the 5,805,096 bp draft genome of P. putida TJI51. Out of 6,036 protein coding genes in P. putida TJI51 sequences, 4,367 (72%) were annotated with functional specifications, while the remaining encoded hypothetical proteins. Comparative genome sequence analysis revealed that the P. putida TJI51genome contains several regions, not identified in so far sequenced P. putida genomes. Some of these regions were predicted to encode enzymes, including acetylornithine deacetylase, betaine aldehyde dehydrogenase, aldehyde dehydrogenase, benzoylformate decarboxylase, hydroxyacylglutathione hydrolase, and uroporphyrinogen decarboxylase. The genome of P. putida TJI51 contained three nonribosomal peptide synthetase gene clusters. Genome sequence analysis of P. putidaTJI51 identified this bacterium as an endophytic resident. The endophytic fitness might be linked with alginate, which facilitates bacterial colonization in plant tissues. Genome sequence analysis shed light on the presence of a diverse spectrum of metabolic activities and adaptation of this isolate to various niches. PMID:27560648

  20. Comparative genomics of an endophytic Pseudomonas putida isolated from mango orchard

    PubMed Central

    Asif, Huma; Studholme, David J.; Khan, Asifullah; Aurongzeb, M.; Khan, Ishtiaq A.; Azim, M. Kamran

    2016-01-01

    Abstract We analyzed the genome sequence of an endophytic bacterial strain Pseudomonas putida TJI51 isolated from mango bark tissues. Next generation DNA sequencing and short read de novo assembly generated the 5,805,096 bp draft genome of P. putida TJI51. Out of 6,036 protein coding genes in P. putida TJI51 sequences, 4,367 (72%) were annotated with functional specifications, while the remaining encoded hypothetical proteins. Comparative genome sequence analysis revealed that the P. putida TJI51genome contains several regions, not identified in so far sequenced P. putida genomes. Some of these regions were predicted to encode enzymes, including acetylornithine deacetylase, betaine aldehyde dehydrogenase, aldehyde dehydrogenase, benzoylformate decarboxylase, hydroxyacylglutathione hydrolase, and uroporphyrinogen decarboxylase. The genome of P. putida TJI51 contained three nonribosomal peptide synthetase gene clusters. Genome sequence analysis of P. putidaTJI51 identified this bacterium as an endophytic resident. The endophytic fitness might be linked with alginate, which facilitates bacterial colonization in plant tissues. Genome sequence analysis shed light on the presence of a diverse spectrum of metabolic activities and adaptation of this isolate to various niches. PMID:27560648

  1. Isolation and characterization of culturable seed-associated bacterial endophytes from gnotobiotically grown Marama bean seedlings.

    PubMed

    Chimwamurombe, Percy Maruwa; Grönemeyer, Jann Lasse; Reinhold-Hurek, Barbara

    2016-06-01

    Marama bean (Tylosema esculentum) is an indigenous non-nodulating legume to the arid agro-ecological parts of Southern Africa. It is a staple food for the Khoisan and Bantu people from these areas. It is intriguing how it is able to synthesize the high-protein content in the seeds since its natural habitat is nitrogen deficient. The aim of the study was to determine the presence of seed transmittable bacterial endophytes that may have growth promoting effects, which may be particularly important for the harsh conditions. Marama bean seeds were surface sterilized and gnotobiotically grown to 2 weeks old seedlings. From surface-sterilized shoots and roots, 123 distinct bacterial isolates were cultured using three media, and identified by BOX-PCR fingerprinting and sequence analyses of the 16S rRNA and nifH genes. Phylogenetic analyses of 73 putative endophytes assigned them to bacterial species from 14 genera including Proteobacteria (Rhizobium, Massilia, Kosakonia, Pseudorhodoferax, Caulobacter, Pantoea, Sphingomonas, Burkholderia, Methylobacterium), Firmicutes (Bacillus), Actinobacteria (Curtobacterium, Microbacterium) and Bacteroidetes (Mucilaginibacter, Chitinophaga). Screening for plant growth-promoting activities revealed that the isolates showed production of IAA, ACC deaminase, siderophores, endoglucanase, protease, AHLs and capacities to solubilize phosphate and fix nitrogen. This is the first report that marama bean seeds may harbor endophytes that can be cultivated from seedlings; in this community of bacteria, physiological characteristics that are potentially plant growth promoting are widespread. PMID:27118727

  2. Indentification of huperzine A-producing endophytic fungi isolated from Huperzia serrata.

    PubMed

    Dong, Li-Hui; Fan, San-Wei; Ling, Qing-Zhi; Huang, Bei-Bei; Wei, Zhao-Jun

    2014-03-01

    This present study was designed to investigate the production of huperzine A (HupA), an acetylcholine inhibitor, which was produced by an endophytic fungi isolated from Huperzia serrata. Screening of 94 endophytic fungal isolates obtained from plant H. serrata was carried out for the production of HupA. Their morphological characteristics were studied and rDNA sequence analysis was carried out. The cultures were grown in liquid culture medium and the extracted metabolites were analyzed by thin layer chromatography and high performance liquid chromatograph for the presence of HupA. The DPPH scavenging ratio and inhibition ratio of acetylcholinesterase (AchE) of the same were determined. 3 out of 94 strains i.e. S29, L44 and S94 showed significant AchE-inhibitory activity and antioxidant activity. Strain L44 which exhibited maximum yield of HupA (37.63 μg/g on dry weight basis) was identified as Trichoderma species by ITS sequence analysis. In conclusion, endophytic fungi from H. serrata can be used as a new resource of HupA.

  3. Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production.

    PubMed

    Bezerra, J D P; Santos, M G S; Svedese, V M; Lima, D M M; Fernandes, M J S; Paiva, L M; Souza-Motta, C M

    2012-05-01

    Opuntia ficus-indica Mill. (forage cactus) is farmed with relative success in the semi-arid region of the Brazilian northeast for commercial purposes, particularly as forage and food. Endophytic microorganisms are those that can be isolated inside plant tissues and can be a new source to production of enzymes with different potentialities. The objective of this study was to describe the richness of endophytic fungi from O. ficus-indica and to detect the capacity of these species to produce extracellular hydrolytic enzymes. Forty-four endophytic fungi species were isolated. Among them, the most commonly found were Cladosporium cladosporioides (20.43%) and C. sphaerospermum (15.99%). Acremonium terricola, Monodictys castaneae, Penicillium glandicola, Phoma tropica and Tetraploa aristata are being reported for the first time as endophytic fungi for Brazil. The majority of isolated fungi exhibited enzymatic potential. Aspergillus japonicus and P. glandicola presented pectinolytic activity. Xylaria sp. was the most important among the other 14 species with positive cellulase activity. All 24 isolates analysed were xylanase-positive. Protease was best produced by isolate PF103. The results indicate that there is a significant richness of endophytic fungi in O. ficus-indica, and that these isolates indicate promising potential for deployment in biotechnological processes involving production of pectinases, cellulases, xylanases and proteases.

  4. Bipolamides A and B, triene amides isolated from the endophytic fungus Bipolaris sp. MU34.

    PubMed

    Siriwach, Ratklao; Kinoshita, Hiroshi; Kitani, Shigeru; Igarashi, Yasuhiro; Pansuksan, Kanokthip; Panbangred, Watanalai; Nihira, Takuya

    2014-02-01

    As a result of the continued screening for new metabolites produced by endophytic fungi from Thai medicinal plants, two new triene fatty acid amides, bipolamides A (1) and B (2), were discovered from the endophytic fungus Bipolaris sp. MU34. The structures of all of the isolated compounds were elucidated on the basis of the spectroscopic data of NMR and MS. An antimicrobial assay revealed that bipolamide B (2) had moderate antifungal activity against Cladosporium cladosporioides FERMS-9, Cladosporium cucumerinum NBRC 6370, Saccharomyces cerevisiae ATCC 9804, Aspergillus niger ATCC 6275 and Rhisopus oryzae ATCC 10404, with Minimum inhibitory concentration (MIC) values of 16, 32, 32, 64 and 64 μg ml(-1), respectively.

  5. Effectiveness and toxicity of a novel isolated actinomycete strain Streptomyces sp. JS01 on a harmful alga Phaeocystis globosa.

    PubMed

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Cai, Guanjing; Chen, Zhangran; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2015-06-01

    An aquatic actinomycete capable of eliminating the brown tide causing marine alga Phaeocystis globosa was isolated from the surface sea water and the isolate named JS01 was characterized as Streptomyces on the basis of its 16S rRNA gene sequence. The supernatant of JS01 could lyse algal cells, implying that JS01 produced a latent alga-lytic compound. Considering this algicidal activity and the response of the algal cells, Chlorophyll a fluorescence decreased significantly in P. globosa in response to the JS01 supernatant when analyzed with flow cytometry. The algal cells experienced cell shrinkage and plasmolysis before disintegration after 72 h of treatment. The released algicide(s) were heat-tolerant, except above 121 °C, and fluctuation in pH variations; even so, algicidal activity was also over 60 %. The maximum toxicity of JS01 was on the seventh day of culture, and the relative luminosity was 0.49 at that time when detected by luminous bacteria Vibrio fischeri. These results indicated that the Streptomyces sp. JS01 could function as a potential controller of Phaeocystis globosa blooms. PMID:25638354

  6. Streptomyces polyrhachii sp. nov., a novel actinomycete isolated from an edible Chinese black ant (Polyrhachis vicina Roger).

    PubMed

    Yu, Chao; Liu, Chongxi; Wang, Xiangjing; Zhao, Junwei; Yang, Lingyu; Gao, Ruixia; Zhang, Yuejing; Xiang, Wensheng

    2013-12-01

    A novel actinomycete, designated strain NEAU-ycm1(T), was isolated from an edible Chinese black ant (Polyrhachis vicina Roger) and characterized with a polyphasic approach. The organism was found to have morphological and chemotaxonomic characteristics typical of streptomycetes. Phylogenetic analysis based on the almost complete 16S rRNA gene sequence show that the novel isolate belongs to the genus Streptomyces and forms a separate subclade. The closest phylogenetic relatives were identified as the type strains of Streptomyces intermedius NBRC 13049(T) (97.74 %), Streptomyces aureoverticillatus NRRL B-3326(T) (97.69 %), Streptomyces rutgersensis NBRC 12819(T) (97.68 %), Streptomyces gougerotii NBRC 3198(T) (97.68 %) and Streptomyces diastaticus subsp. diastaticus NBRC 3714(T) (97.68 %). Similarities to other type strains of the genus Streptomyces were lower than 97.55 %. A comparison between strain NEAU-ycm1(T) and the closest related Streptomyces type strains revealed that it is different from them in morphological, physiological and biochemical characteristics. Therefore, it is proposed that NEAU-ycm1(T) (=CGMCC 4.7094(T) = DSM 42102(T)) represents a novel species of the genus of Streptomyces, for which the name Streptomyces polyrhachii sp. nov. is proposed.

  7. Thermoactinospora rubra gen. nov., sp. nov., a thermophilic actinomycete isolated from Tengchong, Yunnan province, south-west China.

    PubMed

    Zhou, En-Min; Tang, Shu-Kun; Sjøholm, Carsten; Song, Zhao-Qi; Yu, Tian-Tian; Yang, Ling-Ling; Ming, Hong; Nie, Guo-Xing; Li, Wen-Jun

    2012-06-01

    Two novel Gram-positive, spore-forming, thermophilic actinomycetes, designated as strain YIM 77501(T) and YIM 77570, were isolated from a sandy soil sample collected at Tengchong National Volcanic Geological Park, Yunnan province, south-west China. Phylogenetic analysis based on the 16S rRNA gene sequences suggested that the two isolates fell within the family Streptosporangiaceae. The strains formed extensively branched substrate and aerial mycelia which carried masses of long, straight or irregular spore chains composed of warty ornamented spores. Cell walls of the two strains contained meso-diaminopimelic acid and glucose, galactose, mannose and ribose were detected as whole-cell sugars. The predominant menaquinones were MK-9(H(4)) and MK-9(H(6)). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, N-acetylglucosamine-containing phospholipids and phosphatidylinositol, phosphatidylinositolmannosides. The major cellular fatty acids were iso-C(16:0) and 10-methyl C(17:0). The DNA G+C content was 74-76 mol%. On the basis of the morphological and chemotaxonomic characteristics as well as the phylogenetic analysis, these strains represents a novel species of a new genus within the family Streptosporangiaceae, for which the name Thermoactinospora rubra gen. nov., sp. nov. is proposed. The type strain of T. rubra is YIM 77501(T) (=DSM 45614(T) = CCTCC AA 2011014(T)).

  8. Effectiveness and toxicity of a novel isolated actinomycete strain Streptomyces sp. JS01 on a harmful alga Phaeocystis globosa.

    PubMed

    Zhang, Huajun; Zhang, Su; Peng, Yun; Li, Yi; Cai, Guanjing; Chen, Zhangran; Zheng, Wei; Tian, Yun; Xu, Hong; Zheng, Tianling

    2015-06-01

    An aquatic actinomycete capable of eliminating the brown tide causing marine alga Phaeocystis globosa was isolated from the surface sea water and the isolate named JS01 was characterized as Streptomyces on the basis of its 16S rRNA gene sequence. The supernatant of JS01 could lyse algal cells, implying that JS01 produced a latent alga-lytic compound. Considering this algicidal activity and the response of the algal cells, Chlorophyll a fluorescence decreased significantly in P. globosa in response to the JS01 supernatant when analyzed with flow cytometry. The algal cells experienced cell shrinkage and plasmolysis before disintegration after 72 h of treatment. The released algicide(s) were heat-tolerant, except above 121 °C, and fluctuation in pH variations; even so, algicidal activity was also over 60 %. The maximum toxicity of JS01 was on the seventh day of culture, and the relative luminosity was 0.49 at that time when detected by luminous bacteria Vibrio fischeri. These results indicated that the Streptomyces sp. JS01 could function as a potential controller of Phaeocystis globosa blooms.

  9. Sciscionella marina gen. nov., sp. nov., a marine actinomycete isolated from a sediment in the northern South China Sea.

    PubMed

    Tian, Xin-Peng; Zhi, Xiao-Yang; Qiu, Yun-Qi; Zhang, Yu-Qin; Tang, Shu-Kun; Xu, Li-Hua; Zhang, Si; Li, Wen-Jun

    2009-02-01

    The taxonomic position of an actinomycete, designated SCSIO 00231(T), isolated from a sediment sample collected from the northern South China Sea, was determined by using a polyphasic approach. The organism formed fragmented substrate hyphae and sparse aerial mycelium on modified ISP 2 medium. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain SCSIO 00231(T) fell into the family Pseudonocardiaceae, in which it formed a distinct lineage and was loosely associated with Thermocrispum municipale DSM 44069(T), with 93 % similarity. The other closest phylogenetic neighbours were Saccharopolyspora erythraea NRRL 2338(T) (92.6 % similarity) and Amycolatopsis sacchari DSM 44468(T) (93.1 % similarity). The isolate had cell-wall type IV (meso-diaminopimelic acid and whole-cell sugars arabinose, galactose and glucose) and phospholipid type III. The predominant menaquinone was MK-9(H(4)). The G+C content of the genomic DNA was 69 mol%. Based on these data, strain SCSIO 00231(T) can be readily distinguished from previously described organisms and represents a new genus within the family Pseudonocardiaceae. The name Sciscionella gen. nov. is proposed, with the novel species Sciscionella marina sp. nov. The type strain of Sciscionella marina is SCSIO 00231(T) (=KCTC 19433(T) =CCTCC AA208009(T)).

  10. Isolation, diversity and acetylcholinesterase inhibitory activity of the culturable endophytic fungi harboured in Huperzia serrata from Jinggang Mountain, China.

    PubMed

    Wang, Ya; Lai, Zheng; Li, Xi-Xi; Yan, Ri-Ming; Zhang, Zhi-Bin; Yang, Hui-Lin; Zhu, Du

    2016-02-01

    Huperzia serrata has many important medicinal properties with proven pharmacological potential. Some of these properties may be mediated by its endophytic fungi. To test this hypothesis, in the present study, we provided a first insights into evaluating the species composition and acetylcholinesterase (AChE) inhibitory activity of the culturable endophytic fungi of H. serrata from the regional at Jinggang Mountain in southeastern China. A total number of 885 fungal isolates distributed across 44 genera and 118 putative species were obtained from 1422 fragments of fine H. serrata roots, stems and leaves base on ITS-rDNA sequences BLAST analysis. The endophytic fungi were phylogenetically diverse and species-rich, with high rate of colonization and isolation. The assemble of endophytic fungi consisted mainly of Ascomycota (97.15%), followed by Basidiomycota (1.92%) and unknown fungal species (0.90%). Colletotrichum (64.29%), Phyllosticta (3.39%), Hypoxylon (2.81%), Xylaria (2.25%) and Nigrospora (2.04%) were the most abundant genera, whereas the remaining genera were infrequent groups. Although, roots yielded low abundance strains, the diverse and species-rich were both higher than that of stems and leaves. In addition, out of the 247 endophytic fungi strains determinated, 221 fungal extracts showed AChE inhibition activities in vitro. Among them, 22 endophytic fungi strains achieved high inhibitory activity (≥50%) on AChE which belongs to 13 genera and five incertae sedis strains. Four endophytic fungi designated as JS4 (Colletotrichum spp.), FL14 (Ascomycota spp.), FL9 (Sarcosomataceae spp.) and FL7 (Dothideomycetes spp.) were displayed highly active (≥80%) against AChE, which the inhibition effects were even more intense than the positive control. Our findings highlight that H. serrata grown in Jinggang Mountain harbors a rich and fascinating endophytic fungus community with potential AChE inhibitory activity, which could further broaden the natural

  11. Optimization of protease production by endophytic fungus, Alternaria alternata, isolated from an Australian native plant.

    PubMed

    Zaferanloo, Bita; Quang, Trung D; Daumoo, Smita; Ghorbani, Mahmood M; Mahon, Peter J; Palombo, Enzo A

    2014-06-01

    Endophytes are recognised as potential sources of novel secondary metabolites, including enzymes and drugs, with applications in medicine, agriculture and industry. There is a growing need for new enzymes, including proteases, for use in industry that can function under a variety of conditions. In this study, three fungal endophytes (Alternaria alternata, Phoma herbarum and an unclassified fungus), were isolated from the Australian native plant, Eremophilia longifolia, and assessed for production of proteases. The lyophilised growth media obtained after fungal fermentation were analysed for protease production using enzyme activity assays. Protease production was optimised by assessing the effects of temperature, pH, carbon source and nitrogen source on activity. A. alternata showed the greatest protease activity in a wide range of pH (3-9). The broadest activity between 9 and 50 °C was observed at pH 7, suggesting a neutral protease. Overall, the optimum conditions were 37 °C and pH 7 with a maximum specific activity value of 69.86 BAEE units/mg. The characteristics demonstrated by this fungal endophyte showed that it is a potential source of an enzyme with particular application in the dairy industry. However, further studies of the tolerance to higher temperatures and pH will indicate whether the enzyme is suitable to such applications.

  12. Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew.

    PubMed

    Garyali, Sanjog; Kumar, Anil; Reddy, M Sudhakara

    2013-10-28

    Different endophytic fungi isolated from Himalayan Yew plants were tested for their ability to produce taxol. The BAPT gene (C-13 phenylpropanoid side chain-CoA acetyl transferase) involved in the taxol biosynthetic pathway was used as a molecular marker to screen taxol-producing endophytic fungi. Taxol extracted from fungal strain TBPJ-B was identified by HPLC and MS analysis. Strain TBPJ-B was identified as Fusarium redolens based on the morphology and internal transcribed spacer region of nrDNA analysis. HPLC quantification of fungal taxol showed that F. redolens was capable of producing 66 μg/l of taxol in fermentation broth. The antitumour activity of the fungal taxol was tested by potato disc tumor induction assay using Agrobacterium tumefaciens as the tumor induction agent. The present study results showed that PCR amplification of genes involved in taxol biosynthesis is an efficient and reliable method for prescreening taxol-producing fungi. We are reporting for the first time the production of taxol by F. redolens from Taxus baccata L. subsp. wallichiana (Zucc.) Pilger. This study offers important information and a new source for the production of the important anticancer drug taxol by endophytic fungus fermentation.

  13. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    PubMed Central

    Sunkar, Swetha; Nachiyar, C Valli

    2012-01-01

    Objective To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity. PMID:23593575

  14. Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale.

    PubMed

    Jasim, B; Anisha, C; Rohini, Sabu; Kurian, Jacob Manoj; Jyothis, Mathew; Radhakrishnan, E K

    2014-05-01

    Ginger (Zingiber officinale) is cultivated commercially in most parts of the world especially in India for its culinary and medicinal applications. One of the major challenges that limit the yield of ginger is rhizome rot disease caused by organisms including Pythium myriotylum. A feasible ecofriendly method is yet to be devised to prevent the plant from this threatening disease. Recent studies on plant microbiome show the possibility of having endophytic organisms with plant protective characteristics associated with the plants. Because of the uniquely evolved underground nature of the ginger rhizome and its peculiar survival in soil for a long time, many interesting endophytic microbes with plant protective characters can be well expected from it. In the current study, previously isolated endophytic Pseudomonas aeruginosa from ginger was investigated in detail for its effect on Pythium myriotylum. The rhizome protective effect of the organism was also studied by co-inoculation studies, which confirmed that Pseudomonas aeruginosa has very potent inhibitory effect on Pythium myriotylum. On further studies, the active antifungal compound was identified as phenazine 1-carboxylic acid.

  15. Diversity and Antimicrobial Activity of Culturable Endophytic Fungi Isolated from Moso Bamboo Seeds

    PubMed Central

    Cai, Chun-Ju; Fan, Li; Gao, Jian; Hou, Cheng-Lin

    2014-01-01

    Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is

  16. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds.

    PubMed

    Shen, Xiao-Ye; Cheng, Yan-Lin; Cai, Chun-Ju; Fan, Li; Gao, Jian; Hou, Cheng-Lin

    2014-01-01

    Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is

  17. The diversity and antimicrobial activity of Preussia sp. endophytes isolated from Australian dry rainforests.

    PubMed

    Mapperson, Rachel R; Kotiw, Michael; Davis, Rohan A; Dearnaley, John D W

    2014-01-01

    Limited knowledge currently exists regarding species diversity and antimicrobial activity of endophytic isolates of Preussia within Australia. This report describes endophytic Preussia species that were identified through molecular analysis of the internal transcribed spacer region. Screening for antimicrobial secondary metabolites was determined by testing crude ethyl acetate (EtOAc) extracts derived from fungal mycelia against a panel of ATCC type strains which included Bacillus cereus, Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Serratia marcescens, methicillin-resistant Staphylococcus aureus (MRSA) and the opportunist yeast pathogen Candida albicans. Subsequently, high-performance liquid chromatography generated fractions of bioactive EtOAc extracts which were subject to confirmatory testing using the Clinical and Laboratory Standards Institute reference microdilution antimicrobial activity assay. A total of 18 Preussia were isolated from nine host plants with 6/18 having a <97 % sequence similarity to other known species in Genbank, suggesting that they are new species. In preliminary screening, 13/18 Preussia isolates revealed antimicrobial activity against at least one of the microbes tested, whilst 6/18 isolates, including 4/6 putative new species showed specific antimicrobial activity against MRSA and C. albicans. These results highlight the antimicrobial potential of Australian Preussia spp. and also the importance of Australian dry rainforests as an untapped repository of potentially significant bioactive compounds.

  18. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars.

    PubMed

    Ji, Sang Hye; Gururani, Mayank Anand; Chun, Se-Chul

    2014-01-20

    We have isolated 576 endophytic bacteria from the leaves, stems, and roots of 10 rice cultivars and identified 12 of them as diazotrophic bacteria using a specific primer set of nif gene. Through 16S rDNA sequence analysis, nifH genes were confirmed in the two species of Penibacillus, three species of Microbacterium, three Bacillus species, and four species of Klebsiella. Rice seeds treated with these plant growth-promoting bacteria (PGPB) showed improved plant growth, increased height and dry weight and antagonistic effects against fungal pathogens. In addition, auxin and siderophore producing ability, and phosphate solubilizing activity were studied for the possible mechanisms of plant growth promotion. Among 12 isolates tested, 10 strains have shown higher auxin producing activity, 6 isolates were confirmed as strains with high siderophore producing activity while 4 isolates turned out to have high phosphate-solubilizing activity. These results strongly suggest that the endophytic diazotrophic bacteria characterized in this study could be successfully used to promote plant growth and inducing fungal resistance in plants.

  19. Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings.

    PubMed

    Ma, Hsiao-Yen; Song, Yong-Chun; Mao, Ying-Ying; Jiang, Ji-Hong; Tan, Ren-Xiang; Luo, Lan

    2006-04-01

    Two indole alkaloids were isolated from the culture of Aspergillus fumigatus (strain No. CY018), an endophytic fungus harboring inside the elder leaf of Cynodon dactylon. These two chemicals were identified as fumigaclavine C and fumitremorgin C. In screening the bioactivity of these two indole alkaloids, their vasorelaxant effects on isolated rat thoracic aortic rings were observed. The results showed that fumigaclavine C exhibited potent concentration-dependent vasorelaxant actions in isolated rat aortic rings pre-contracted by high K+ or phenylephrine (with EC50 values of 5.62 micromol/L and 1.58 micromol/L, respectively) whereas fumitremorgin C displayed a weaker vasorelaxation. A detailed investigation was therefore performed with fumigaclavine C. The vasorelaxing action of fumigaclavine C is independent of the presence of endothelium, suggesting its effect of vasorelaxation was not related to endothelial mediators. Blockage of L-type voltage-dependent calcium channels, activation of ATP-sensitive potassium channels and inhibition of Ca2+ release from intracellular Ca2+ stores may be involved in fumigaclavine C induced relaxation of rat isolated aortic rings. These results demonstrate that fumigaclavine C from the endophytic fungus has a potential capacity in vascular protection and thus may have therapeutic use in protection against cardiovascular disease. PMID:16557450

  20. Paenibacillus herberti sp. nov., an endophyte isolated from Herbertus sendtneri.

    PubMed

    Guo, Guan Nan; Zhou, Xun; Zhao, Ran; Chen, Xin Yao; Chen, Zhi Ling; Li, Xue Dong; Li, Yan Hong

    2015-09-01

    Strain R33(T), an endophyte recovered from Herbertus sendtneri, was identified as representing a novel species of the genus Paenibacillus by using a polyphasic taxonomic approach. The novel strain was observed to be a Gram-stain positive, aerobic, rod-shaped, motile and endospore-forming bacterium. The major polar lipids of strain R33(T) were identified as diphosphatidylglycerol, phosphatidylethanolamine, along with lesser amounts of phosphatidylglycerol, three unidentified aminophospholipids, two unidentified phospholipids and two unidentified lipids. The predominant isoprenoid quinone was identified as MK-7. The major fatty acids (>8.0 %) were found to be anteiso-C15:0 (40.0 %), C16:1 ω11c (9.4 %), C16:1 ω7c alcohol (8.5 %) and C16:0 (8.2 %). The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The G+C content of genomic DNA was determined to be 56.9 mol%. The 16S rRNA gene sequence similarities of strain R33(T) to other Paenibacillus species ranged from 91.6 to 97.2 %, with high similarities to Paenibacillus humicus PC-147(T) and Paenibacillus pasadenensis SAFN-007(T). The phylogenetic analyses based on 16S rRNA gene sequences and the partial rpoB gene confirmed that strain R33(T) belongs to the genus Paenibacillus. However, strain R33(T) shows differential molecular characteristics compared to other related Paenibacillus species based on 16S rDNA-RFLP analyses; the DNA-DNA relatedness values between strain R33(T) and P. humicus PC-147(T), and that between strain R33(T) and P. pasadenensis SAFN-007(T), were 35.0 ± 2.0 and 41.4 ± 0.9 %, respectively. Based on its phenotypic, chemotaxonomic and phylogenetic properties, strain R33(T) is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus herberti is proposed (type strain R33(T) = CGMCC 1.15042(T) = DSM 29849(T)). PMID:26155771

  1. Marinactinospora thermotolerans gen. nov., sp. nov., a marine actinomycete isolated from a sediment in the northern South China Sea.

    PubMed

    Tian, Xin-Peng; Tang, Shu-Kun; Dong, Jun-De; Zhang, Yu-Qin; Xu, Li-Hua; Zhang, Si; Li, Wen-Jun

    2009-05-01

    A novel marine actinomycete, designated SCSIO 00652(T), was isolated from a marine sediment collected from the northern South China Sea at a depth of 3865 m. The strain formed branched substrate mycelia and no fragmentation was found. Abundant aerial mycelia differentiated into long spore chains and the spores had a wrinkled surface. Growth occurred on ISP medium 2 with 0-5 % (w/v) NaCl and at 10-55 degrees C. The whole-cell hydrolysate contained meso-diaminopimelic acid and glucose as the whole-cell sugar. blast search results based on an almost-complete 16S rRNA gene sequence showed the novel strain had the highest similarity (96.5 %) with Nocardiopsis trehalosi VKM Ac-942(T). The phylogenetic tree of the family Nocardiopsaceae indicated that strain SCSIO 00652(T) formed a distinct lineage at the deepest branch with a high bootstrap value. Additionally, the profiles of menaquinones, phospholipids and fatty acids showed there were marked differences between strain SCSIO 00652(T) and the recognized genera of the family Nocardiopsaceae. Based on the polyphasic data, a new genus, Marinactinospora gen. nov., is proposed within the family Nocardiopsaceae with the type species Marinactinospora thermotolerans sp. nov. The type strain of the type species is SCSIO 00652(T) (=DSM 45154(T)=CCTCC AA 208041(T)).

  2. Plant Growth Promoting of Endophytic Sporosarcina aquimarina SjAM16103 Isolated from the Pneumatophores of Avicennia marina L.

    PubMed Central

    Janarthine, S. Rylo Sona; Eganathan, P.

    2012-01-01

    Endophytic Sporosarcina aquimarina SjAM16103 was isolated from the inner tissues of pneumatophores of mangrove plant Avicennia marina along with Bacillus sp. and Enterobacter sp. Endophytic S. aquimarina SjAM16103 was Gram variable, and motile bacterium measured 0.6–0.9 μm wide by 1.7–2.0 μm long and light orange-brown coloured in 3-day cultures on tryptone broth at 26°C. Nucleotide sequence of this strain has been deposited in the GenBank under accession number GU930359. This endophytic bacterium produced 2.37 μMol/mL of indole acetic acid and siderophore as it metabolites. This strain could solubilize phosphate molecules and fixes atmospheric nitrogen. Endophytic S. aquimarina SjAM16103 was inoculated into four different plants under in vitro method to analyse its growth-promoting activity and role inside the host plants. The growth of endophytic S. aquimarina SjAM16103 inoculated explants were highly significant than the uninoculated control explants. Root hairs and early root development were observed in the endophytic S. aquimarina SjAM16103 inoculated explants. PMID:22811715

  3. Anticancer activity of new depsipeptide compound isolated from an endophytic fungus.

    PubMed

    Verekar, Shilpa Amit; Mishra, Prabhu Dutt; Sreekumar, Eyyammadichiyil Sankaranarayanan; Deshmukh, Sunil Kumar; Fiebig, Heinz-Herbert; Kelter, Gerhard; Maier, Armin

    2014-10-01

    A novel depsipeptide (PM181110) was purified from an endophytic fungus Phomopsis glabrae isolated from the leaves of Pongamia pinnata (family Fabaceae). The chemical structure of PM181110 was elucidated using physiochemical properties, 2D NMR and other spectroscopic methods. PM181110 is very close in structure to FE399. The compound exhibited in vitro anticancer activity against 40 human cancer cell lines with a mean IC50 value of 0.089 μM and ex vivo efficacy towards 24 human tumor xenografts (mean IC50=0.245 μM). PMID:24824817

  4. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    PubMed Central

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-01-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of 1H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  5. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata.

    PubMed

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-07-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of (1)H and (13)C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  6. Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae).

    PubMed

    Chen, Juan; Wang, Hui; Guo, Shun-Xing

    2012-05-01

    The seed germination of orchids under natural conditions requires association with mycorrhizal fungi. Dendrobium nobile and Dendrobium chrysanthum are threatened orchid species in China where they are considered medicinal plants. For conservation and application of Dendrobium using symbiosis technology, we isolated culturable endophytic and mycorrhizal fungi colonized in the protocorms and adult roots of two species plants and identified them by morphological and molecular analyses (5.8S and nrLSU). Of the 127 endophytic fungi isolated, 11 Rhizoctonia-like strains were identified as Tulasnellales (three strains from protocorms of D. nobile), Sebacinales (three strains from roots of D. nobile and two strains from protocorms of D. chrysanthum) and Cantharellales (three strains from roots of D. nobile), respectively. In addition, species of Xylaria, Fusarium, Trichoderma, Colletotrichum, Pestalotiopsis, and Phomopsis were the predominant non-mycorrhizal fungi isolated, and their probable ecological roles in the Dendrobium plants are discussed. These fungal resources will be of great importance for the large-scale cultivation of Dendrobium plants using symbiotic germination technology and for the screening of bioactive metabolites from them in the future.

  7. Decolourisation of Synthetic Dyes by Endophytic Fungal Flora Isolated from Senduduk Plant (Melastoma malabathricum)

    PubMed Central

    Ngieng, Ngui Sing

    2013-01-01

    A total of twenty endophytic fungi successfully isolated from Melastoma malabathricum (Senduduk) were examined for their ability to decolourise azo dyes: Congo red, Orange G, and Methyl red and an anthraquinone dye, Remazol Brilliant Blue R. Initial screening on the glucose minimal media agar plates amended with 200 mg L−1 of each respective dye showed that only isolate MS8 was able to decolourise all of the four dyes. The isolate decolourised completely both the RBBR and Orange G in the agar medium within 8 days. Further quantitative analysis of the dye decolourisation by isolate MS8 in aqueous minimal medium showed that isolate MS8 was able to decolourise all the tested dyes at varying levels. Dye decolourisation by the isolate MS8 was determined to be 97% for RBBR, 33% for Orange G, 48% for Congo red, and 56% for Methyl red, respectively, within a period of 16 days. Molecular identification of the fungal isolate MS8 using primer ITS1 and ITS4 showed that isolate MS8 shared 99% sequence similarity with Marasmius cladophyllus, a Basidiomycete. The ability to decolourise different types of dyes by isolate MS8 thus suggested a possible application of this fungus in the decolourisation of dyestuff effluents. PMID:25937973

  8. New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera (L.) Vent.

    PubMed

    Zhang, Naidan; Zhang, Chunyan; Xiao, Xiao; Zhang, Qiaoyan; Huang, Baokang

    2016-04-01

    From the ethyl acetate extract of a culture of the endophytic fungus Alternaria species G7 in Broussonetia papyrifera, a new compound altertoxin IV (1) together with nine known compounds were isolated and identified by means of bioassay-guided fractionation. The structures of these compounds were established on the basis of spectroscopic methods, among which the absolute configuration of compound 1, a new tetrahydroperylenone derivative, was determined by means of X-Ray Crystallographic analysis. The isolated compounds were subjected to cytotoxic activity against three human cancer cell lines (A549, MG-63, and SMMC-7721). Compound 2 showed significant cytotoxic activities against tested cell lines, with IC50 values of 1.47, 2.11 and 7.34 μg/mL, respectively. Additionally, compound 4 also exhibited significant cytotoxic activities against cell lines MG-63 and SMMC-7721, with IC50 values of 0.53 and 2.92 μg/mL. Endophytic fungi Alternaria from B. papyrifera might be promising sources of natural bioactive and novel metabolites.

  9. Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum: biological activity and structure

    PubMed Central

    Santiago, Carolina; Sun, Lin; Munro, Murray Herbert Gibson; Santhanam, Jacinta

    2014-01-01

    Objective To study bioactivity and compounds produced by an endophytic Phoma sp. fungus isolated from the medicinal plant Cinnamomum mollissimum. Methods Compounds produced by the fungus were extracted from fungal broth culture with ethyl acetate. This was followed by bioactivity profiling of the crude extract fractions obtained via high performance liquid chromatography. The fractions were tested for cytotoxicity to P388 murine leukemic cells and antimicrobial activity against bacteria and pathogenic fungi. Compounds purified from active fractions which showed antibacterial, antifungal and cytotoxic activities were identified using capillary nuclear magnetic resonance analysis, mass spectrometry and admission to AntiMarin database. Results Three known compounds, namely 4-hydroxymellein, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one and 1-(2,6-dihydroxyphenyl) ethanone, were isolated from the fungus. The polyketide compound 4-hydroxymellein showed high inhibitory activity against P388 murine leukemic cells (94.6%) and the bacteria Bacillus subtilis (97.3%). Meanwhile, 4,8-dihydroxy-6-methoxy-3-methyl-3,4-dihydro-1H-isochromen-1-one, a benzopyran compound, demonstrated moderate inhibitory activity against P388 murine leukemic cells (48.8%) and the fungus Aspergillus niger (56.1%). The second polyketide compound, 1 (2,6-dihydroxyphenyl) ethanone was inactive against the tested targets. Conclusions These findings demonstrate the potential of endophytes as producers of pharmacologically important compounds, including polyketides which are major secondary metabolites in fungi. PMID:25183332

  10. Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity.

    PubMed

    Pan, Feng; Liu, Zheng-Qiong; Chen, Que; Xu, Ying-Wen; Hou, Kai; Wu, Wei

    2016-01-01

    The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4-8d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80°C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata. PMID:26991297

  11. Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity.

    PubMed

    Pan, Feng; Liu, Zheng-Qiong; Chen, Que; Xu, Ying-Wen; Hou, Kai; Wu, Wei

    2016-01-01

    The aim of this paper is to identify and investigate an endophytic fungus (strain 28) that was isolated from Houttuynia cordata Thunb, a famous and widely-used Traditional Chinese Medicine. Based on morphological methods and a phylogenetic analysis of ITS sequences, this strain was identified as Chaetomium globosum. An antifungal activity bioassay demonstrated that the crude ethyl acetate (EtOAc) extracts of strain 28 had a wide antifungal spectrum and strong antimicrobial activity, particularly against Exserohilum turcicum (Pass.) Leonard et Suggs, Botrytis cinerea persoon and Botrytis cinerea Pers. ex Fr. Furthermore, the fermentation conditions, extraction method and the heat stability of antifungal substances from strain 28 were also studied. The results showed that optimal antifungal activity can be obtained with the following parameters: using potato dextrose broth (PDB) as the base culture medium, fermentation for 4-8d (initial pH: 7.5), followed by extraction with EtOAc. The extract was stable at temperatures up to 80°C. This is the first report on the isolation of endophytic C. globosum from H. cordata to identify potential alternative biocontrol agents that could provide new opportunities for practical applications involving H. cordata.

  12. New cytotoxic compounds of endophytic fungus Alternaria sp. isolated from Broussonetia papyrifera (L.) Vent.

    PubMed

    Zhang, Naidan; Zhang, Chunyan; Xiao, Xiao; Zhang, Qiaoyan; Huang, Baokang

    2016-04-01

    From the ethyl acetate extract of a culture of the endophytic fungus Alternaria species G7 in Broussonetia papyrifera, a new compound altertoxin IV (1) together with nine known compounds were isolated and identified by means of bioassay-guided fractionation. The structures of these compounds were established on the basis of spectroscopic methods, among which the absolute configuration of compound 1, a new tetrahydroperylenone derivative, was determined by means of X-Ray Crystallographic analysis. The isolated compounds were subjected to cytotoxic activity against three human cancer cell lines (A549, MG-63, and SMMC-7721). Compound 2 showed significant cytotoxic activities against tested cell lines, with IC50 values of 1.47, 2.11 and 7.34 μg/mL, respectively. Additionally, compound 4 also exhibited significant cytotoxic activities against cell lines MG-63 and SMMC-7721, with IC50 values of 0.53 and 2.92 μg/mL. Endophytic fungi Alternaria from B. papyrifera might be promising sources of natural bioactive and novel metabolites. PMID:27001249

  13. Endophytic Bacteria Isolated from Common Bean (Phaseolus vulgaris) Exhibiting High Variability Showed Antimicrobial Activity and Quorum Sensing Inhibition.

    PubMed

    Lopes, Ralf Bruno Moura; Costa, Leonardo Emanuel de Oliveira; Vanetti, Maria Cristina Dantas; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2015-10-01

    Endophytic bacteria play a key role in the biocontrol of phytopathogenic microorganisms. In this study, genotypic diversity was analyzed via repetitive element PCR (rep-PCR) of endophytic isolates of the phylum Actinobacteria that were previously collected from leaves of cultivars of common bean (Phaseolus vulgaris). Considerable variability was observed, which has not been reported previously for this phylum of endophytic bacteria of the common bean. Furthermore, the ethanol extracts from cultures of various isolates inhibited the growth of pathogenic bacteria in vitro, especially Gram-positive pathogens. Extracts from cultures of Microbacterium testaceum BAC1065 and BAC1093, which were both isolated from the 'Talismã' cultivar, strongly inhibited most of the pathogenic bacteria tested. Bean endophytic bacteria were also demonstrated to have the potential to inhibit the quorum sensing of Gram-negative bacteria. This mechanism may regulate the production of virulence factors in pathogens. The ability to inhibit quorum sensing has also not been reported previously for endophytic microorganisms of P. vulgaris. Furthermore, M. testaceum with capacity to inhibit quorum sensing appears to be widespread in common bean. The genomic profiles of M. testaceum were also analyzed via pulsed-field gel electrophoresis, and greater differentiation was observed using this method than rep-PCR; in general, no groups were formed based on the cultivar of origin. This study showed for the first time that endophytic bacteria from common bean plants exhibit high variability and may be useful for the development of strategies for the biological control of diseases in this important legume plant.

  14. Endophytic Bacteria Isolated from Common Bean (Phaseolus vulgaris) Exhibiting High Variability Showed Antimicrobial Activity and Quorum Sensing Inhibition.

    PubMed

    Lopes, Ralf Bruno Moura; Costa, Leonardo Emanuel de Oliveira; Vanetti, Maria Cristina Dantas; de Araújo, Elza Fernandes; de Queiroz, Marisa Vieira

    2015-10-01

    Endophytic bacteria play a key role in the biocontrol of phytopathogenic microorganisms. In this study, genotypic diversity was analyzed via repetitive element PCR (rep-PCR) of endophytic isolates of the phylum Actinobacteria that were previously collected from leaves of cultivars of common bean (Phaseolus vulgaris). Considerable variability was observed, which has not been reported previously for this phylum of endophytic bacteria of the common bean. Furthermore, the ethanol extracts from cultures of various isolates inhibited the growth of pathogenic bacteria in vitro, especially Gram-positive pathogens. Extracts from cultures of Microbacterium testaceum BAC1065 and BAC1093, which were both isolated from the 'Talismã' cultivar, strongly inhibited most of the pathogenic bacteria tested. Bean endophytic bacteria were also demonstrated to have the potential to inhibit the quorum sensing of Gram-negative bacteria. This mechanism may regulate the production of virulence factors in pathogens. The ability to inhibit quorum sensing has also not been reported previously for endophytic microorganisms of P. vulgaris. Furthermore, M. testaceum with capacity to inhibit quorum sensing appears to be widespread in common bean. The genomic profiles of M. testaceum were also analyzed via pulsed-field gel electrophoresis, and greater differentiation was observed using this method than rep-PCR; in general, no groups were formed based on the cultivar of origin. This study showed for the first time that endophytic bacteria from common bean plants exhibit high variability and may be useful for the development of strategies for the biological control of diseases in this important legume plant. PMID:26202846

  15. Actinokineospora soli sp. nov., a thermotolerant actinomycete isolated from soil, and emended description of the genus Actinokineospora.

    PubMed

    Tang, Xia; Zhou, Yu; Zhang, Jing; Ming, Hong; Nie, Guo-Xing; Yang, Ling-Ling; Tang, Shu-Kun; Li, Wen-Jun

    2012-08-01

    A strain of thermotolerant actinomycete, designated YIM 75948(T), was isolated from a soil sample in Yunnan province, China. The strain grew at 25-55 °C (optimum 37 °C). The substrate mycelium and aerial mycelium produced on Czapek's agar were both pale yellow to white. The diagnostic diamino acid of the cell-wall peptidoglycan was meso-diaminopimelic acid, and the whole-cell sugars were mannose, ribose, glucose, galactose and arabinose. The major fatty acids were iso-C(15:0), iso-C(16:0) and C(16:0) and the predominant respiratory quinone was MK-9(H(4))(.) The polar lipids consisted of phosphatidylethanolamine, phosphatidylethanolamine with hydroxy fatty acids, diphosphatidylglycerol, phosphatidylinositol and two unidentified phospholipids. The genomic DNA G+C content was 73.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM 75948(T) belonged in the genus Actinokineospora and that its closest relative among recognized species was Actinokineospora fastidiosa DSM 43855(T) (97.6% sequence similarity). The mean level of DNA-DNA relatedness between the novel strain and A. fastidiosa DSM 43855(T) was, however, only 47.8%. Based on the phenotypic, chemotaxonomic and phylogenetic data and the results of the DNA-DNA hybridizations, strain YIM 75948(T) represents a novel species of the genus Actinokineospora for which the name Actinokineospora soli sp. nov. is proposed. The type strain is YIM 75948(T) ( =JCM 17695(T) =DSM 45613(T)). The description of the genus Actinokineospora is emended to reflect the fact that the genomic DNA G+C contents of A. fastidiosa DSM 43855(T) and the type strain of Actinokineospora soli sp. nov. recorded in the present study fell above the range given in previous descriptions of this genus.

  16. Complete Genome Sequence of Kosakonia sacchari Strain BO-1, an Endophytic Diazotroph Isolated from a Sweet Potato

    PubMed Central

    Shinjo, Rina; Uesaka, Kazuma; Ihara, Kunio; Loshakova, Kseniia; Mizuno, Yuri; Yano, Katsuya

    2016-01-01

    The complete genome sequence of the endophytic diazotroph Kosakonia sacchari, isolated from a sweet potato, was analyzed. The 4,902,106-bp genome with 53.7% G+C content comprises 4,638 open reading frames, including nif genes, 84 tRNAs, and seven complete rRNAs in a circular chromosome. PMID:27609910

  17. Complete Genome Sequence of Kosakonia sacchari Strain BO-1, an Endophytic Diazotroph Isolated from a Sweet Potato.

    PubMed

    Shinjo, Rina; Uesaka, Kazuma; Ihara, Kunio; Loshakova, Kseniia; Mizuno, Yuri; Yano, Katsuya; Tanaka, Aiko

    2016-09-08

    The complete genome sequence of the endophytic diazotroph Kosakonia sacchari, isolated from a sweet potato, was analyzed. The 4,902,106-bp genome with 53.7% G+C content comprises 4,638 open reading frames, including nif genes, 84 tRNAs, and seven complete rRNAs in a circular chromosome.

  18. Complete Genome Sequence of Kosakonia sacchari Strain BO-1, an Endophytic Diazotroph Isolated from a Sweet Potato.

    PubMed

    Shinjo, Rina; Uesaka, Kazuma; Ihara, Kunio; Loshakova, Kseniia; Mizuno, Yuri; Yano, Katsuya; Tanaka, Aiko

    2016-01-01

    The complete genome sequence of the endophytic diazotroph Kosakonia sacchari, isolated from a sweet potato, was analyzed. The 4,902,106-bp genome with 53.7% G+C content comprises 4,638 open reading frames, including nif genes, 84 tRNAs, and seven complete rRNAs in a circular chromosome. PMID:27609910

  19. Geodermatophilus arenarius sp. nov., a xerophilic actinomycete isolated from Saharan desert sand in Chad.

    PubMed

    Montero-Calasanz, M C; Göker, M; Pötter, G; Rohde, M; Spröer, C; Schumann, P; Gorbushina, A A; Klenk, H-P

    2012-11-01

    A novel Gram-positive, aerobic, actinobacterial strain, CF5/4(T), was isolated in 2007 during an environmental screening of arid desert soil in Ouré Cassoni, Chad. The isolate grew best in a temperature range of 28-40 °C and at pH 6.0-8.5, with 0-1 % (w/v) NaCl, forming brown-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G + C content of the novel strain was 75.9 mol %. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, diphosphatidylglycerol and a small amount of phosphatidylglycerol; MK-9(H(4)) was identified as the dominant menaquinone and galactose as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C(15:0) and iso-C(16:0). The 16S rRNA gene showed 96.2-98.3 % sequence identity with the three members of the genus Geodermatophilus: G. obscurus (96.2 %), G. ruber (96.5 %), and G. nigrescens (98.3 %). Based on the chemotaxonomic results, 16S rRNA gene sequence analysis and DNA-DNA hybridization with the type strain of G. nigrescens, the isolate is proposed to represent a novel species, Geodermatophilus arenarius (type strain CF5/4(T) = DSM 45418(T) = MTCC 11413(T) = CCUG 62763(T)).

  20. Amycolatopsis marina sp. nov., an actinomycete isolated from an ocean sediment.

    PubMed

    Bian, Jiang; Li, Yan; Wang, Jian; Song, Fu-Hang; Liu, Mei; Dai, Huan-Qin; Ren, Biao; Gao, Hong; Hu, Xinling; Liu, Zhi-Heng; Li, Wen-Jun; Zhang, Li-Xin

    2009-03-01

    A Gram-positive, aerobic, non-motile actinobacterium, designated strain Ms392A(T), was isolated from an ocean-sediment sample collected from the South China Sea. The isolate contained chemical markers that supported chemotaxonomic assignment to the genus Amycolatopsis. On the basis of an analysis of 16S rRNA gene sequence similarities, strain Ms392A(T) represents a novel subclade within the genus Amycolatopsis, with Amycolatopsis palatopharyngis 1BDZ(T) as its closest phylogenetic neighbour (99.4 % similarity). However, DNA-DNA hybridization demonstrated that strain Ms392A(T) was distinct from A. palatopharyngis AS 4.1729(T) (48.6 % relatedness). The polyphasic analysis demonstrated that the ocean isolate can be clearly distinguished from recognized species of the genus Amycolatopsis. Therefore, strain Ms392A(T) represents a novel species of the genus Amycolatopsis, for which the name Amycolatopsis marina sp. nov. is proposed. The type strain is Ms392A(T) (=CGMCC 4.3568(T) =NBRC 104263(T)).

  1. Nocardiopsis oceani sp. nov. and Nocardiopsis nanhaiensis sp. nov., actinomycetes isolated from marine sediment of the South China Sea.

    PubMed

    Pan, Hua-Qi; Zhang, Dao-Feng; Li, Li; Jiang, Zhao; Cheng, Juan; Zhang, Yong-Guang; Wang, Hong-Fei; Hu, Jiang-Chun; Li, Wen-Jun

    2015-10-01

    Two actinomycete strains, designated 10A08AT and 10A08BT, were isolated from marine sediment samples of the South China Sea and their taxonomic positions were determined by a polyphasic approach. The two Gram-stain-positive, aerobic strains produced branched substrate mycelium and aerial hyphae, and no diffusible pigment was produced in the media tested. At maturity, spore chains were formed on aerial hyphae and all mycelium fragmented with age. Whole-cell hydrolysates of both strains contained meso-diaminopimelic acid and no diagnostic sugars. Their predominant menaquinones (>10 %) were MK-9(H4), MK-9(H6) and MK-10(H6) for strain 10A08AT and MK-9(H4), MK-9(H6), MK-10(H4) and MK-10(H6) for strain 10A08BT. The polar lipids detected from the two strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and unknown phosphoglycolipids and phospholipids. The major fatty acids (>10 %) of both strains were iso-C16 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The genomic DNA G+C contents of strains 10A08AT and 10A08BT were 70.9 and 71.6 mol%, respectively. On the basis of 16S rRNA gene sequence similarities, the two strains were shown to be most closely related to species of the genus Nocardiopsis. DNA–DNA hybridization relatedness values of < 70 % between these two isolates and their closest neighbour, Nocardiopsis terrae YIM 90022T, and between the two strains supported the conclusion that they represent two novel species. Based on phylogenetic analysis and phenotypic and genotypic data, it is concluded that the two isolates belong to the genus Nocardiopsis, and the names Nocardiopsis oceani sp. nov. (type strain 10A08AT = DSM 45931T = BCRC 16951T) and Nocardiopsis nanhaiensis sp. nov. (type strain 10A08BT = CGMCC 47227T = BCRC 16952T) are proposed.

  2. Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba.

    PubMed

    Yuan, Yuan; Tian, Jun-Mian; Xiao, Jian; Shao, Qi; Gao, Jin-Ming

    2014-01-01

    Six known metabolites, adenosine (1), methyl β-D-ribofuranoside (2), adenine (3), 2'-deoxyadenosine (4), 3-methylpiperazine-2,5-dione (5) and 2'-deoxyuridine (6), were isolated from the extracts of the endophytic fungus Penicillium sp. YY-20 isolated from the root of Ginkgo biloba, and their structures were elucidated by spectroscopic methods. The antioxidant and growth-promoting activities of these compounds were first evaluated. The results indicated that compounds 1, 3 and 4 exhibited potential DPPH-scavenging activities compared with positive control. In addition, all the compounds (except 5) stimulated seed germination of Raphanus sativus, Brassica napus and Brassica chinensis but had weak stimulating effect on their root and hypocotyl growth. PMID:24144081

  3. Bioactive metabolites isolated from Penicillium sp. YY-20, the endophytic fungus from Ginkgo biloba.

    PubMed

    Yuan, Yuan; Tian, Jun-Mian; Xiao, Jian; Shao, Qi; Gao, Jin-Ming

    2014-01-01

    Six known metabolites, adenosine (1), methyl β-D-ribofuranoside (2), adenine (3), 2'-deoxyadenosine (4), 3-methylpiperazine-2,5-dione (5) and 2'-deoxyuridine (6), were isolated from the extracts of the endophytic fungus Penicillium sp. YY-20 isolated from the root of Ginkgo biloba, and their structures were elucidated by spectroscopic methods. The antioxidant and growth-promoting activities of these compounds were first evaluated. The results indicated that compounds 1, 3 and 4 exhibited potential DPPH-scavenging activities compared with positive control. In addition, all the compounds (except 5) stimulated seed germination of Raphanus sativus, Brassica napus and Brassica chinensis but had weak stimulating effect on their root and hypocotyl growth.

  4. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L.

    PubMed

    Xiao, Xiao; Luo, Shenglian; Zeng, Guangming; Wei, Wanzhi; Wan, Yong; Chen, Liang; Guo, Hanjun; Cao, Zhe; Yang, Lixia; Chen, Jueliang; Xi, Qiang

    2010-03-01

    A novel technology to obtain highly efficient biosorbent from the endophytes of a hyperaccumulator is reported. This technology is more convenient than the traditional method of obtaining biosorbents by experimentally screening many types of biomass by trial and error. Using this technology, endophytic fungus (EF) LSE10 was isolated from the cadmium hyperaccumulator Solanum nigrum L. It was identified as Microsphaeropsis sp. When cultured in vitro, the biomass yield of this EF was more than twice that of none-endophytic fungus (NEF) Rhizopus cohnii. Subsequently, it was used as a biosorbent for biosorption of cadmium from the aqueous solution. The results showed that the maximum biosorption capacity was 247.5mg/g (2.2 mmol/g) which was much higher than those of other adsorbents, including biosorbents and activated carbon. Carboxyl, amino, sulphonate and hydroxyl groups on EF LSE10 surface were responsible for the biosorption of cadmium. PMID:19854641

  5. Amycolatopsis rhabdoformis sp. nov., an actinomycete isolated from a tropical forest soil.

    PubMed

    Souza, Wallace Rafael; Silva, Rafael Eduardo; Goodfellow, Michael; Busarakam, Kanungnid; Figueiro, Fernanda Sales; Ferreira, Douglas; Rodrigues-Filho, Edson; Moraes, Luiz Alberto Beraldo; Zucchi, Tiago Domingues

    2015-06-01

    Strain SB026T was isolated from Brazilian rainforest soil and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological features consistent with its classification in the genus Amycolatopsis and formed a branch in the Amycolatopsis 16S rRNA gene tree together with Amycolatopsis bullii NRRL B-24847T, Amycolatopsis plumensis NRRL B-24324T, Amycolatopsis tolypomycina DSM 44544T and Amycolatopsis vancoresmycina NRRL B-24208T. It was related most closely to A. bullii NRRL B-24847T (99.0 % 16S rRNA gene sequence similarity), but was distinguished from this strain by a low level of DNA-DNA relatedness (~46 %) and discriminatory phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the isolate should be classified in the genus Amycolatopsis as representing a novel species, Amycolatopsis rhabdoformis sp. nov. The type strain is SB026T ( = CBMAI 1694T = CMAA 1285T = NCIMB 14900T).

  6. Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces.

    PubMed

    Eppard, M; Krumbein, W E; Koch, C; Rhiel, E; Staley, J T; Stackebrandt, E

    1996-07-01

    In an extended study on the biodiversity of rock-dwelling bacteria, the colony and cell morphology, physiology, protein patterns, and 16S rDNA sequences of 17 bacterial strains isolated from different surfaces of rocks, stones, and monuments and from various geographical locations were characterized. All except one strain, which was found to be a Bacillus, were members of the order Actinomycetales. The majority of the strains either were closely related to Geodermatophilus obscurus, which was also analyzed in this study, or formed a closely related sister taxon. All of these strains were isolated from the surface of marble in Namibia and Greece and from limestone from the Negev desert, Israel. One strain, G10, of Namibia origin was equidistantly related to Geodermatophilus obscurus, Frankia alni, Sporichthya polymorpha, and Acidothermus cellulolyticus. Three strains from rock varnish in the Mojave desert, California, were found to be highly related to Arthrobacter (formerly Micrococcus) agilis. All clusters could be confirmed from results of studies on morphological and physiological properties and from banding patterns of whole cell proteins. Based on the results of tests, four additional strains were assigned to the lineage defined by strain G10. PMID:8661940

  7. Morphological, physiological, and molecular characterization of actinomycetes isolated from dry soil, rocks, and monument surfaces.

    PubMed

    Eppard, M; Krumbein, W E; Koch, C; Rhiel, E; Staley, J T; Stackebrandt, E

    1996-07-01

    In an extended study on the biodiversity of rock-dwelling bacteria, the colony and cell morphology, physiology, protein patterns, and 16S rDNA sequences of 17 bacterial strains isolated from different surfaces of rocks, stones, and monuments and from various geographical locations were characterized. All except one strain, which was found to be a Bacillus, were members of the order Actinomycetales. The majority of the strains either were closely related to Geodermatophilus obscurus, which was also analyzed in this study, or formed a closely related sister taxon. All of these strains were isolated from the surface of marble in Namibia and Greece and from limestone from the Negev desert, Israel. One strain, G10, of Namibia origin was equidistantly related to Geodermatophilus obscurus, Frankia alni, Sporichthya polymorpha, and Acidothermus cellulolyticus. Three strains from rock varnish in the Mojave desert, California, were found to be highly related to Arthrobacter (formerly Micrococcus) agilis. All clusters could be confirmed from results of studies on morphological and physiological properties and from banding patterns of whole cell proteins. Based on the results of tests, four additional strains were assigned to the lineage defined by strain G10.

  8. Auraticoccus monumenti gen. nov., sp. nov., an actinomycete isolated from a deteriorated sandstone monument.

    PubMed

    Alonso-Vega, Pablo; Carro, Lorena; Martínez-Molina, Eustoquio; Trujillo, Martha E

    2011-05-01

    A Gram-type-positive, strictly aerobic actinobacterium, designated strain MON 2.2(T), was isolated from the surface of a sandstone monument. Cells with a coccoid shape, arranged in pairs or clusters, were non-motile and did not produce spores. The 10 closest 16S rRNA gene sequence matches (~95 % similarity) found in the public databases were uncultured actinobacteria, while the closest cultured members indicated a phylogenetic relationship with members of the family Propionibacteriaceae (92-95 % similarity). Subsequent phylogenetic analysis placed the new isolate within the radiation of the genera Friedmanniella and Microlunatus, but forming an independent branch. Chemotaxonomic markers were consistent with the classification of strain MON 2.2(T) in the family Propionibacteriaceae, amongst the genera containing ll-diaminopimelic acid in their peptidoglycan. Characteristic fatty acids iso-C(15 : 0) and anteiso-C(15 : 0) also supported its affiliation to this taxon; however, polar lipid and menaquinone compositions clearly differentiated strain MON 2.2(T) from other genera in the family. On the basis of these results and additional physiological data obtained in the present study, it is proposed that strain MON 2.2(T) be classified in a novel species in a new genus, for which the name Auraticoccus monumenti gen. nov., sp. nov. is proposed. The type strain of Auraticoccus monumenti is MON 2.2(T) ( = CECT 7672(T)  = DSM 23257(T)  = LMG 25551(T)).

  9. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity.

  10. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3.

    PubMed

    Liu, Min; Luo, Kun; Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  11. Isolation, Identification and Characteristics of an Endophytic Quinclorac Degrading Bacterium Bacillus megaterium Q3

    PubMed Central

    Wang, Yunsheng; Zeng, Aiping; Zhou, Xiaomao; Luo, Feng; Bai, Lianyang

    2014-01-01

    In this study, we isolated an endophytic quinclorac-degrading bacterium strain Q3 from the root of tobacco grown in quinclorac contaminated soil. Based on morphological characteristics, Biolog identification, and 16S rDNA sequence analysis, we identified strain Q3 as Bacillus megaterium. We investigated the effects of temperature, pH, inoculation size, and initial quinclorac concentration on growth and degrading efficiency of Q3. Under the optimal degrading condition, Q3 could degrade 93% of quinclorac from the initial concentration of 20 mg/L in seven days. We analyzed the degradation products of quinclorac using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The major degradation products by Q3 were different from those of previously identified quinclorac degrading strains, which suggests that Q3 may employ new pathways for quinclorac degradation. Our indoor pot experiments demonstrated that Q3 can effectively alleviate the quinclorac phytotoxicity in tobacco. As the first endophytic microbial that is capable of degrading quinclorac, Q3 can be a good bioremediation bacterium for quinclorac phytotoxicity. PMID:25244184

  12. Geodermatophilus poikilotrophi sp. nov.: a multitolerant actinomycete isolated from dolomitic marble.

    PubMed

    del Carmen Montero-Calasanz, Maria; Hofner, Benjamin; Göker, Markus; Rohde, Manfred; Spröer, Cathrin; Hezbri, Karima; Gtari, Maher; Schumann, Peter; Klenk, Hans-Peter

    2014-01-01

    A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia). The growth range was 15-35°C, at pH 5.5-9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4) was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1 ω8c and C16:1 ω7c. The 16S rRNA gene showed 97.4-99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (=DSM 44209T=CCUG 63018T). The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments. PMID:25114928

  13. Streptomyces manipurensis sp. nov., a novel actinomycete isolated from a limestone deposit site in Manipur, India.

    PubMed

    Nimaichand, Salam; Zhu, Wen-Yong; Yang, Ling-Ling; Ming, Hong; Nie, Guo-Xing; Tang, Shu-Kun; Ningthoujam, Debananda S; Li, Wen-Jun

    2012-06-01

    A novel actinobacterium, designated MBRL 201(T), was isolated from a sample collected from a limestone quarry at Hundung, Manipur, India. The strain was characterized using polyphasic taxonomy. Comparison of the 16S rRNA gene sequence of strain MBRL 201(T) and other Streptomyces species showed sequence similarities ranging from 93.0 to 99.6 % and strain MBRL 201(T) showed closest similarities to Streptomyces virginiae NBRC 12827(T) (99.6 %) and Streptomyces cinnamonensis NBRC 15873(T) (99.6 %). The DNA relatedness between MBRL 201(T) and the type strains of S. virginiae NBRC 12827(T) and S. cinnamonensis NBRC 15873(T) were 44.5 and 35.6 % respectively. Strain MBRL 201(T) contained LL: -diaminopimelic acid (A(2)pm) as the diagnostic diamino acid, with glucose as the main sugar, while small amounts of galactose, glucose, mannose, rhamnose, ribose and xylose were also present in cell-wall hydrolysates. The major fatty acids identified were anteiso-C(15:0) (38.9 %), iso-C(15:0) (19.9 %) and anteiso-C(17:1) (14.7 %). The predominant menaquinones detected were MK-9(H(6)) and MK-9(H(8)), while the polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositolmannosides, with other unknown phospholipids and lipids. The G+C content of the genomic DNA was 72.9 %. The phenotypic and genotypic data showed that strain MBRL 201(T) merits recognition as a representative of a novel species of the genus Streptomyces. It is proposed that the isolate should be classified in the genus Streptomyces as a novel species, Streptomyces manipurensis sp. nov. The type strain is MBRL 201(T) (=DSM 42029(T) = JCM 17351(T)).

  14. Geodermatophilus poikilotrophi sp. nov.: A Multitolerant Actinomycete Isolated from Dolomitic Marble

    PubMed Central

    Montero-Calasanz, Maria del Carmen; Hofner, Benjamin; Göker, Markus; Rohde, Manfred; Spröer, Cathrin; Hezbri, Karima; Gtari, Maher; Schumann, Peter; Klenk, Hans-Peter

    2014-01-01

    A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia). The growth range was 15–35°C, at pH 5.5–9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4) was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1ω8c and C16:1ω7c. The 16S rRNA gene showed 97.4–99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (= DSM 44209T = CCUG 63018T). The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments. PMID:25114928

  15. Geodermatophilus poikilotrophi sp. nov.: a multitolerant actinomycete isolated from dolomitic marble.

    PubMed

    del Carmen Montero-Calasanz, Maria; Hofner, Benjamin; Göker, Markus; Rohde, Manfred; Spröer, Cathrin; Hezbri, Karima; Gtari, Maher; Schumann, Peter; Klenk, Hans-Peter

    2014-01-01

    A novel Gram-reaction-positive, aerobic actinobacterium, tolerant to mitomycin C, heavy metals, metalloids, hydrogen peroxide, desiccation, and ionizing- and UV-radiation, designated G18T, was isolated from dolomitic marble collected from outcrops in Samara (Namibia). The growth range was 15-35°C, at pH 5.5-9.5 and in presence of 1% NaCl, forming greenish-black coloured colonies on GYM Streptomyces agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for other representatives of the genus Geodermatophilus. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and small amount of diphosphatidylglycerol. MK-9(H4) was the dominant menaquinone and galactose was detected as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids iso-C16:0 and iso-C15:0 and the unsaturated C17:1 ω8c and C16:1 ω7c. The 16S rRNA gene showed 97.4-99.1% sequence identity with the other representatives of genus Geodermatophilus. Based on phenotypic results and 16S rRNA gene sequence analysis, strain G18T is proposed to represent a novel species, Geodermatophilus poikilotrophi. Type strain is G18T (=DSM 44209T=CCUG 63018T). The INSDC accession number is HF970583. The novel R software package lethal was used to compute the lethal doses with confidence intervals resulting from tolerance experiments.

  16. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    PubMed

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens. PMID:20542109

  17. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent.

    PubMed

    de Oliveira, Margaroni Fialho; da Silva, Mariana Germano; Van Der Sand, Sueli T

    2010-09-01

    Tomato plants (Lycopersicon esculentum) are highly susceptible to phytopathogen attack. The resulting intensive application of pesticides on tomato crops can affect the environment and health of humans and animals. The objective of this study was to select potential biocontrol agents among actinobacteria from tomato plants, in a search for alternative phytopathogen control. We evaluated 70 endophytic actinobacteria isolated from tomato plants in southern Brazil, testing their antimicrobial activity, siderophore production, indoleacetic acid production, and phosphate solubility. The actinomycete isolate with the highest antimicrobial potential was selected using the agar-well diffusion method, in order to optimize conditions for the production of compounds with antimicrobial activity. For this study, six growth media (starch casein-SC, ISP2, Bennett's, Sahin, Czapek-Dox, and TSB), three temperatures (25 degrees C, 30 degrees C, and 35 degrees C) and different pH were tested. Of the actinobacteria tested, 88.6% showed antimicrobial activity against at least one phytopathogen, 72.1% showed a positive reaction for indoleacetic acid production, 86.8% produced siderophores and 16.2% showed a positive reaction for phosphate solubility. Isolate R18(6) was selected due to its antagonistic activity against all phytopathogenic microorganisms tested in this study. The best conditions for production were observed in the SC medium, at 30 degrees C and pH 7.0. The isolate R18(6) showed close biochemical and genetic similarity to Streptomyces pluricolorescens.

  18. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis.

    PubMed

    Pinheiro, Eduardo Antonio A; Carvalho, Josiwander Miranda; dos Santos, Diellem Cristina P; Feitosa, André de Oliveira; Marinho, Patrícia Santana B; Guilhon, Giselle Maria Skelding Pinheiro; de Souza, Afonso Duarte L; da Silva, Felipe Moura A; Marinho, Andrey Moacir do R

    2013-01-01

    Bauhinia guianensis is a typical plant in the Amazon region belonging to the family Leguminosea, used by local populations for the treatment of infectious and renal diseases. Previous work on the plant B. guianensis led to the isolation of substances with anti-inflammatory and analgesic activities. Thus, compounds isolated from B. guianensis with antimicrobial activities had not been identified. Given that there is a possibility of biological activity reported for a given plant being found in the endophytic fungi, we decided to isolate endophytic fungi from B. guianensis and test their antimicrobial activities. The alkaloids known as fumigaclavine C and pseurotin A were isolated by column chromatography and identified by 1D and 2D NMR techniques and mass spectrometry. The alkaloids are first reported as broad-spectrum antibacterial agents with good activity. PMID:23234304

  19. Natural Products from Mangrove Actinomycetes

    PubMed Central

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  20. A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates.

    PubMed

    Liu, Xiao Lei; Liu, Su Lin; Liu, Min; Kong, Bi He; Liu, Lei; Li, Yan Hong

    2014-01-01

    Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed.

  1. A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates

    PubMed Central

    Liu, Xiao Lei; Liu, Su Lin; Liu, Min; Kong, Bi He; Liu, Lei; Li, Yan Hong

    2014-01-01

    Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed. PMID:24948927

  2. Isolation and Characterization of an Endophytic Fungal Strain with Potent Antimicrobial and Termiticidal Activities From Port-Orford-Cedar.

    PubMed

    Sun, Liqing; Hse, Chung-Yun; Shupe, Todd; Sun, Mingjing; Wang, Xiaohua; Zhao, Kai

    2015-06-01

    Termites are responsible for an estimated US$1 billion annually in property damage, repairs, pest control, and prevention. There is an urgent need of finding a better alternative way to control and prevent termites. Port-Orford-Cedar (POC) has been known to have significant levels of natural durability and termiticidal activities due to its extractive contents. In this study, 25 endophytes including 22 fungal and 3 bacterial strains were isolated from the POC. Four strains, namely, HDZK-BYF21, HDZK-BYF1, HDZK-BYF2, and HDZK-BYB11, were chosen to test their termiticidal activities. The fermentation broth of strain HDZK-BYF21 displayed the potent antimicrobial and termiticidal activities. Morphological examination and 18 S rDNA sequence analysis demonstrated that strain HDZK-BYF21 belonged to the genus Aspergillus. This finding indicates the existence of an interesting chemical symbiosis between an endophytic fungus and its host. This is also the first report on endophytes isolated from the POC that may have potential termiticidal activities. Endophytes with termiticidal activities can be grown in bioreactor to provide an inexhaustible supply of bioactive compounds and thus can be exploited commercially.

  3. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi.

    PubMed

    Tao, Yi-wen; Lin, Yong-cheng; She, Zhi-gang; Lin, Min-ting; Chen, Pin-xian; Zhang, Jian-ye

    2015-01-01

    One known cyclic peptide, beauvericin, was isolated from the secondary metabolites of mangrove endophytic fungi Fusarium sp. (No. DZ27) in South China Sea. Its structure was determined by spectral analyses and comparisons with reference data from literatures. Beauvericin inhibited growth of KB and KBv200 cells potently with IC50 values of 5.76 ± 0.55 and 5.34 ± 0.09 μM, respectively. Furthermore, beauvericin induced apoptosis through mitochondrial pathway, including decrease of relative oxygen species generation, loss of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-9 and -3, and cleavage of PARP. Additionally, regulation of Bcl-2 or Bax was not involved in the apoptosis induced by beauvericin in KB and KBv200 cells. PMID:25641103

  4. Talarolutins A-D: Meroterpenoids from an endophytic fungal isolate of Talaromyces minioluteus.

    PubMed

    Kaur, Amninder; Raja, Huzefa A; Swenson, Dale C; Agarwal, Rajesh; Deep, Gagan; Falkinham, Joseph O; Oberlies, Nicholas H

    2016-06-01

    Four meroterpenoids [talarolutins A-D] and one known compound [purpurquinone A] were characterized from an endophytic fungal isolate of Talaromyces minioluteus (G413), which was obtained from the leaves of the medicinal plant milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)]. The structures of talarolutins A-D were determined by the analysis of various NMR and MS techniques. The relative and absolute configuration of talarolutin A was determined by X-ray diffraction analysis. A combination of NOESY data and comparisons of ECD spectra were employed to assign the relative and absolute configuration of the other analogs. Talarolutins B-D were tested for cytotoxicity against human prostate carcinoma (PC-3) cell line, antimicrobial activity, and induction of quinone reductase; no notable bioactivity was observed in any assay.

  5. Endophytic bacteria isolated from orchid and their potential to promote plant growth.

    PubMed

    Faria, Deise Cristina; Dias, Armando Cavalcante Franco; Melo, Itamar Soares; de Carvalho Costa, Francisco Eduardo

    2013-02-01

    Twelve endophytic bacteria were isolated from the meristem of in vitro Cymbidium eburneum orchid, and screened according to indole yield quantified by colorimetric assay, in vitro phosphate solubilization, and potential for plant growth promotion under greenhouse conditions. Eight strains with positive results were classified into the genus Paenibacillus by FAME profile, and evaluated for their ability to increase survival and promote the growth of in vitro germinated Cattleya loddigesii seedlings during the acclimatization process. The obtained results showed that all strains produced detectable indole levels and did not exhibit potential for solubilizing inorganic phosphate. Particularly, an increase of the total biomass and number of leaves was observed. Two strains of Paenibacillus macerans promoted plant growth under greenhouse conditions. None of the treatments had a deleterious effect on growth of inoculated plants. These results suggest that these bacterial effects could be potentially useful to promote plant growth during seedling acclimatization in orchid species other than the species of origin.

  6. Cladosporium cladosporioides XJ-AC03, an aconitine-producing endophytic fungus isolated from Aconitum leucostomum.

    PubMed

    Yang, Kai; Liang, Jie; Li, Qinfan; Kong, Xiangya; Chen, Rui; Jin, Yimin

    2013-05-01

    The endophytic fungus XJ-AC03, which was isolated from the healthy roots of Aconitum leucostomum, produced aconitine when grown in potato dextrose agar (PDA) medium. The presence of aconitine was confirmed by the chromatographic and spectroscopic analyses. The yield of aconitine was recorded as 236.4 μg/g by high performance liquid chromatography (HPLC). The mass spectrometry was shown to be identical to authentic aconitine. Further analysis with nuclear magnetic resonance (NMR) spectroscopy to show the chemical structure of the fungal aconitine indicated that the fungal aconitine produced an NMR spectrum identical to that of authentic aconitine. Strain XJ-AC03 was identified as Cladosporium cladosporioides by its characteristic culture morphology and ITS rDNA sequence analysis.

  7. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi.

    PubMed

    Tao, Yi-wen; Lin, Yong-cheng; She, Zhi-gang; Lin, Min-ting; Chen, Pin-xian; Zhang, Jian-ye

    2015-01-01

    One known cyclic peptide, beauvericin, was isolated from the secondary metabolites of mangrove endophytic fungi Fusarium sp. (No. DZ27) in South China Sea. Its structure was determined by spectral analyses and comparisons with reference data from literatures. Beauvericin inhibited growth of KB and KBv200 cells potently with IC50 values of 5.76 ± 0.55 and 5.34 ± 0.09 μM, respectively. Furthermore, beauvericin induced apoptosis through mitochondrial pathway, including decrease of relative oxygen species generation, loss of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-9 and -3, and cleavage of PARP. Additionally, regulation of Bcl-2 or Bax was not involved in the apoptosis induced by beauvericin in KB and KBv200 cells.

  8. Mangromicins, six new anti-oxidative agents isolated from a culture broth of the actinomycete, Lechevalieria aerocolonigenes K10-0216.

    PubMed

    Nakashima, Takuji; Kamiya, Yoshiyuki; Iwatsuki, Masato; Takahashi, Yōko; Ōmura, Satoshi

    2014-07-01

    We have been continually searching for novel chemical compounds from culture broths of various actinomycetes using a physicochemical screening system. During the course of this program, we have previously reported the discovery of two new natural products, designated mangromicins A and B, discovered in a broth of a rare actinomycete strain, Lechevalieria aerocolonigenes K10-0216. Mangromicins have a unique and rare structure, a cyclopentadecane skeleton with a tetrahydrofuran unit and a 5,6-dihydro-4-hydroxy-2-pyrone moiety. New mangromicin analogs were isolated by using an improved production medium. As a consequence, six analogs, together with mangromicins A and B, were isolated from a cultured broth of L. aerocolonigenes K10-0216. We named them mangromicins D, E, F, G, H and I. All mangromicins showed radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals and nitric oxide generated from LPS-stimulated RAW264.7 cells, a murine macrophage cell line. Among the analogs, mangromicins A and I showed the most potent DPPH radical scavenging activity and nitric oxide scavenging activity, respectively.

  9. [Screening and identification of antioxidant endophytes from Lycium barbarum of Ningxia].

    PubMed

    Du, Xiao-ning; Dai, Jin-xia

    2015-10-01

    In this paper, 29 endophytes were isolated from different organs and tissues of Lycium barbarum of Ningxia by tablet coating method, 18 of them was fungi, and 11 of them was actinomycetes. The endophytes quantity in the different tissues were leaves > flowers > roots >fruits; The hydroxyl radical scavenging activities of 11 endophytes were investigated by Fenton reaction, and total antioxidant capacities of them were examined by a. total antioxidant capacity test kit; culture features and strain-specific sequence analysis were employed to explore the diversity of the 11 endophytes. The result showed that 5 fungi and 6 actinomycetes that having antioxidant activity could be phylogenetically classified into 3 genera, 3 genera and 3 families, respectively. The total antioxidant capacity and hydroxyl radical scavenging activity of the 11 endophytes showed distinct difference. The antioxidant activity of Aspergillus were stronger, among which total antioxidant capacity of fL1 was (188.5 ± 0.549) U · mL⁻¹ and the IC₅₀ was 0.3 mg · L⁻¹; the IC₅₀ of strain fL1 was 0.42 mg · L⁻¹ and the total antioxidant capacity of fL9 was (113.63 ± 1.021) U · mL⁻¹, all of them were stronger than the positive control Vit C. The experimental results indicated that endophytic fungi of L. barbarum of Ningxia have a great developing and application prospect for the development of antioxidant agent. PMID:27062806

  10. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  11. Identification and characterization of the endophytic plant growth prompter Bacillus Cereus strain mq23 isolated from Sophora Alopecuroides root nodules

    PubMed Central

    Zhao, Longfei; Xu, Yajun; Sun, Ran; Deng, Zhenshan; Yang, Wenquan; Wei, Gehong

    2011-01-01

    Endophytes MQ23 and MQ23R isolated from Sophora alopecuroides root nodules were characterized by observing their ability to promote plant growth and employing molecular analysis techniques. Results showed that MQ23 and MQ23R are potential N2-fixing endophytes and belong to the same species as Bacillus cereus. MQ23 was shown to be able to produce siderophores, IAA, and demonstrate certain antifungal activity to plant pathogenic fungi. Co-inoculation with MQ23+MQ23II showed a more significant effect than inoculation alone in vitro for most of positive actions suggesting they have a cooperative interaction. Results of plant inoculation with endophytes indicated that the growth indexes of co-inoculated MQ23+MQ23II were higher than those of inoculated alone (p<0.05) (the exception being for root fresh weight) when compared to negative control. There have been little of any studies of nonrhizobial putative endophytes with growth-promotion attributes in S. alopecuroides root nodules. This could be exploited as potential bio-inoculants and biocontrol agents in agriculture. PMID:24031669

  12. Grass fungal endophytes and uses thereof

    DOEpatents

    Craven, Kelly

    2015-03-10

    The invention provides isolated fungal endophytes and synthetic combinations thereof with host grass plants. Methods for inoculating grass plant with the endophytes, for propagating the grass-endophyte combinations, and for producing feeds and biofuels from grass-endophyte combinations are also provided.

  13. Frequency distribution and assessment of genetic diversity of novel endophyte Alternaria alternata accessions isolated from Pongamia pinnata L.

    PubMed

    Tiwari, Kartikeya

    2013-10-01

    Thepresent study discusses the frequency distribution and genetic diversity of novel fungal endopyte Alternaria alternata within the Pongammia pinnata plant samples. A total of ten plant samples of Pongammia pinnata, Pierre. (Karanja) were collected from specific locations of Sanganer region of Rajasthan for the isolation of fungal endophytes. Of these, maximum frequency of Alternaria alternata (22.29%) were recorded which are morphologically similar but ecologically variant. Efficacy of randomly amplified polymorphic DNA (RAPD), were assessed in seventeen individuals of the primers was GCC 180 where as 10 bands were generated by GCC 181. The similarity coefficient matrix generated for the primers was subjected to algorithm UPGMA (Unweighted Pair Group Method Analysis) and clusters were generated using NTSYS 2.02 pc program. To stabilize the level of relatedness among the seventeen ecologically variant Alternaria alternata accessions, the dendrogram was constructed, which showed that all the isolates were diversified endophytically with in the plant Pongamia pinnata. PMID:24502162

  14. Detection and identification of novel actinomycetes.

    PubMed

    Williams, S T; Locci, R; Beswick, A; Kurtböke, D I; Kuznetsov, V D; Le Monnier, F J; Long, P F; Maycroft, K A; Palma, R A; Petrolini, B

    1993-10-01

    The actinomycetes are well known as a group of filamentous, Gram-positive bacteria that produce many useful secondary metabolites, including antibiotics and enzymes. Although they have been intensively studied for both theoretical and practical objectives, there is much scope for developing our basic knowledge of the means of detection and isolation of these microbes. This session concentrated on new methods for the detection and identification of novel actinomycetes from a range of environments. Approaches to the detection of actinomycetes ranged from investigations of neglected habitats and extreme environments (e.g. alkaline soils and oil drills) to the analysis of DNA extracted from the environment and use of specific phages. The continuing problems of the identification of actinomycete isolates were also considered. Topics discussed included use of phage typing, DNA probes, and correlation between phenetic and genotypic species of Streptomyces.

  15. Aminoglycoside Antibiotic-Inactivating Enzymes in Actinomycetes Similar to Those Present in Clinical Isolates of Antibiotic-Resistant Bacteria

    PubMed Central

    Benveniste, Raoul; Davies, Julian

    1973-01-01

    Various species of Streptomyces possess aminoglycoside-modifying enzymes. Streptomyces kanamyceticus contains an enzyme that acetylates the 6′-amino group of kanamycin A and B, gentamicin C1a, and neomycin. Streptomyces spectabilis produces an enzyme that acetylates the 2′-amino group of the hexose ring of gentamicin C1a. These enzymes catalyze reactions identical to those catalyzed by enzymes found in gram-negative bacteria containing R(antibiotic resistance)-factors. The discovery of these enzymes suggests the possibility of an evolutionary relationship between the aminoglycosideinactivating enzymes (produced by resistance determinants) in bacteria containing R-factors and similar enzymes found in the actinomycetes. PMID:4209515

  16. Microsphaerol and seimatorone: two new compounds isolated from the endophytic fungi, Microsphaeropsis sp. and Seimatosporium sp.

    PubMed

    Hussain, Hidayat; Root, Natalia; Jabeen, Farah; Al-Harrasi, Ahmed; Ahmad, Manzoor; Mabood, Fazal; Hassan, Zahid; Shah, Afzal; Green, Ivan R; Schulz, Barbara; Krohn, Karsten

    2015-02-01

    A new polychlorinated triphenyl diether named microsphaerol (1), has been isolated from the endophtic fungus Microsphaeropsis sp. An intensive phytochemical investigation of the endophytic fungus Seimatosporium sp., led to the isolation of a new naphthalene derivative named seimatorone (2) and eight known compounds, i.e., 1-(2,6-dihydroxyphenyl)-3-hydroxybutan-1-one (3), 1-(2,6-dihydroxyphenyl)butan-1-one (4), 1-(2-hydroxy-6-methoxyphenyl)butan-1-one (5), 5-hydroxy-2-methyl-4H-chromen-4-one (6), 2,3-dihydro-5-hydroxy-2-methyl-4H-chromen-4-one (7), 8-methoxynaphthalen-1-ol (8), nodulisporins A and B (9 and 10, resp.), and daldinol (11). The structures of 1 and 2 were elucidated by detailed spectroscopic analysis including (1) H- and (13) C-NMR, COSY, HMQC, HMBC, and HR-EI-MS, while the structures of the known compounds were deduced from comparison of their spectral data with those in the literature. Preliminary studies revealed that microsphaerol (1) showed good antibacterial activities against B. Megaterium and E. coli, and good antilagal and antifungal activities against C. fusca, M. violaceum, respectively. On the other hand, seimatorone (2) exhibited moderate antibacterial, antialgal, and antifungal activities.

  17. Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain.

    PubMed

    Rinu, K; Sati, Priyanka; Pandey, Anita

    2014-05-01

    An endophytic fungus has been isolated from the lateral roots of lentil (Lens esculenta Moench), growing under mountain ecosystem of Indian Himalayan Region (IHR). While the fungus was observed as fast growing with white scanty mycelium turning to turmeric brown in 5 days of incubation at 25 °C, it also produced a unique odor. The fungus exhibited growth between 4 and 30 °C (optimum 25 °C) and tolerated pH between 2.0 and 13.5 (optimum 4-6). Based on phenotypic (colony morphology and microscopy) and genotypic (18S rRNA analysis) characters, the fungus was identified as Trichoderma gamsii (99% similarity). The fungus was evaluated for its plant growth promotion and biocontrol properties. The fungus was found to be positive for phosphate solubilization, chitinase activity, and production of ammonia and salicylic acid, while the results for production of IAA, HCN, and siderophores were negative. Out of the seven phytopathogenic fungi tested, it showed antagonism against six. Bioassays conducted under green house using four test crops (two cereals and two legumes) showed its potential in plant growth promotion. The fungus has potential to be developed as a bioformulation for application under mountain ecosystem.

  18. [Isolation of two endophytic phenanthrene-degrading strains and their degradation capacity].

    PubMed

    Ni, Xue; Liu, Juan; Gao, Yan-Zheng; Zhu, Xue-Zhu; Sun, Kai

    2013-02-01

    Two endophytic bacterial strains, which could degrade high concentration (up to 200 mg.L-1) of phenanthrene in liquid, were isolated from plants grown in PAHs-contaminated soils by the selective. enrichment culture. According to the results of morphology, physiology and the phylogenetic analyses of 16S rDNA sequence, stain P1 was identified as Stenotrophomonas sp. , and strain P3 was identified as Pseudomonas sp.. Two strains were aerobic bacteria, the degradation rates of phenanthrene (100 mg.L-1) by strain P1 and strain P3 were all greater than 90% at 28 degrees C on the rotation shaker at 150 r.min-1 for 7 days. The degradation rates of phenanthrene by two strains were greater than 70% when cultivated under the conditions as: 20-30 degrees C , pH 6-8, 0%-4% NaCl, 10-30 mL/100 mL inventory. It suggested that the optimum culture condition was: 30 degrees C, pH 7.0, NaCl< or =4% , inventory < or = 30 mL/100 mL flask. Through comprehensive comparison analyses on the degradation capacity of two strains, it showed that the tolerance of strain P1 to high temperature was higher than that of str ain P3, while the tolerance of strain P3 to pH change and anoxic condition was higher than that of strain P1. PMID:23668150

  19. Prauserella endophytica sp. nov., an endophytic actinobacterium isolated from Tamarix taklamakanensis.

    PubMed

    Liu, Jia-Meng; Habden, Xugela; Guo, Lin; Tuo, Li; Jiang, Zhong-Ke; Liu, Shao-Wei; Liu, Xian-Fu; Chen, Li; Li, Rong-Feng; Zhang, Yu-Qin; Sun, Cheng-Hang

    2015-06-01

    A novel endophytic actinobacterium, designated strain SP28S-3(T), was isolated from a surface-sterilized stem of Tamarix taklamakanensis collected from the southern edge of Taklamakan desert, Xinjiang, China. Strain SP28S-3(T) was found to show chemotaxonomic and morphological properties consistent with its classification in the genus Prauserella. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphoglycolipid, phosphatidylcholine, phosphatidylinositol, a glycolipid, an aminolipid and unidentified phospholipids. The major fatty acids (>10 %) were identified as iso-C16:0 and C16:0. The genomic DNA G+C content was determined to be 69.7 mol%. Phylogenetic analysis of strain SP28S-3(T) clearly showed that the strain had the highest similarity of 16S rRNA gene sequence with Prauserella coralliicola SCSIO 11529(T) (99.9 %), followed by Prauserella marina DSM 45268(T) (97.0 %) and is affiliated with the genus Prauserella. The low level (47.8 ± 5.5 %) of DNA-DNA relatedness between strain SP28S-3(T) and P. coralliicola SCSIO 11529(T) combined with other polyphasic taxonomic evidence clearly support the conclusion that strain SP28S-3(T) represents a novel Prauserella species, for which the name Prauserella endophytica sp. nov. is proposed. The type strain is SP28S-3(T) (=DSM 46655(T) = CGMCC 4.7182 (T)).

  20. Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum

    PubMed Central

    Santiago, Carolina; Fitchett, Chris; Munro, Murray H. G.; Jalil, Juriyati; Santhanam, Jacinta

    2012-01-01

    An endophytic fungus isolated from the plant Cinnamomum mollissimum was investigated for the bioactivity of its metabolites. The fungus, similar to a Phoma sp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The bioactive extract fraction was purified further and characterized by nuclear magnetic resonance, mass spectral and X-ray crystallography analysis. A polyketide compound, 5-hydroxyramulosin, was identified as the constituent of the bioactive fungal extract fraction. This compound inhibited the fungal pathogen Aspergillus niger (IC50 1.56 μg/mL) and was cytotoxic against murine leukemia cells (IC50 2.10 μg/mL). 5-Hydroxyramulosin was the major compound produced by the endophytic fungus. This research suggests that fungal endophytes are a good source of bioactive metabolites which have potential applications in medicine. PMID:22454674

  1. Identification and Characterization of a New Erythromycin Biosynthetic Gene Cluster in Actinopolyspora erythraea YIM90600, a Novel Erythronolide-Producing Halophilic Actinomycete Isolated from Salt Field

    PubMed Central

    Chen, Dandan; Feng, Junyin; Huang, Lei; Zhang, Qinglin; Wu, Jiequn; Zhu, Xiangcheng; Duan, Yanwen; Xu, Zhinan

    2014-01-01

    Erythromycins (Ers) are clinically potent macrolide antibiotics in treating pathogenic bacterial infections. Microorganisms capable of producing Ers, represented by Saccharopolyspora erythraea, are mainly soil-dwelling actinomycetes. So far, Actinopolyspora erythraea YIM90600, a halophilic actinomycete isolated from Baicheng salt field, is the only known Er-producing extremophile. In this study, we have reported the draft genome sequence of Ac. erythraea YIM90600, genome mining of which has revealed a new Er biosynthetic gene cluster encoding several novel Er metabolites. This Er gene cluster shares high identity and similarity with the one of Sa. erythraea NRRL2338, except for two absent genes, eryBI and eryG. By correlating genotype and chemotype, the biosynthetic pathways of 3′-demethyl-erythromycin C, erythronolide H (EH) and erythronolide I have been proposed. The formation of EH is supposed to be sequentially biosynthesized via C-6/C-18 epoxidation and C-14 hydroxylation from 6-deoxyerythronolide B. Although an in vitro enzymatic activity assay has provided limited evidence for the involvement of the cytochrome P450 oxidase EryFAc (derived from Ac. erythraea YIM90600) in the catalysis of a two-step oxidation, resulting in an epoxy moiety, the attempt to construct an EH-producing Sa. erythraea mutant via gene complementation was not successful. Characterization of EryKAc (derived from Ac. erythraea YIM90600) in vitro has confirmed its unique role as a C-12 hydroxylase, rather than a C-14 hydroxylase of the erythronolide. Genomic characterization of the halophile Ac. erythraea YIM90600 will assist us to explore the great potential of extremophiles, and promote the understanding of EH formation, which will shed new insights into the biosynthesis of Er metabolites. PMID:25250723

  2. Description of Kibdelosporangium banguiense sp. nov., a novel actinomycete isolated from soil of the forest of Pama, on the plateau of Bangui, Central African Republic.

    PubMed

    Pascual, Javier; González, Ignacio; Estévez, Mar; Benito, Patricia; Trujillo, Martha E; Genilloud, Olga

    2016-05-01

    A novel actinomycete strain F-240,109(T) from the MEDINA collection was isolated from a soil sample collected in the forest of Pama, on the plateau of Bangui, Central African Republic. The strain was identified according to its 16S rRNA gene sequence as a new member of the genus Kibdelosporangium, being closely related to Kibdelosporangium aridum subsp. aridum (98.6 % sequence similarity), Kibledosporangium phytohabitans (98.3 %), Kibdelosporangium aridum subsp. largum (97.7 %), Kibdelosporangium philippinense (97.6 %) and Kibledosporangium lantanae (96.9 %). In order to resolve its precise taxonomic status, the strain was characterised through a polyphasic approach. The strain is a Gram-stain positive, aerobic, non-motile and catalase-positive actinomycete characterised by formation of extensively branched substrate mycelia and sparse brownish grey aerial mycelia with sporangium-like globular structures. The chemotaxonomic characterisation of strain F-240,109(T) corroborated its affiliation into the genus Kibdelosporangium. The peptidoglycan contains meso-diaminopimelic acid; the major menaquinone is MK-9(H4); the phospholipid profile contains high amounts of phosphatidylethanolamine, hydroxyphosphatidylethanolamine, diphosphatidylglycerol and an unidentified phospholipid; and the predominant cellular fatty acid methyl esters are iso-C16:0, iso-C14:0, iso-C15:0 and 2OH iso-C16:0. However, some key phenotypic differences regarding to its close relatives and DNA-DNA hybridization values indicate that strain F-240,109(T) represents a novel Kibdelosporangium species, for which the name Kibdelosporangium banguiense sp. nov. is proposed. The type strain is strain F-240,109(T) (=DSM 46670(T), =LMG 28181(T)). PMID:26936255

  3. An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due to the shrinkage and the cytosolic loss.

    PubMed

    Kumar, Vijay; Naik, Bindu; Gusain, Omprakash; Bisht, Gajraj S

    2014-01-01

    An actinomycetes strain designated as MN 2(6) was isolated from the solitary wasp mud nest. The isolate was identified using polyphasic taxonomy. It produced the extensive branched brown substrate and white aerial hyphae that changed into grayish black. The aerial mycelia produced the spiral spore chains with rugose spore surface. The growth was observed between temperature range of 27-37°C, pH 8-10 and below salt concentration of 6% (w/v). The comparative analysis of 16S rRNA gene sequence and phylogenetic relationship showed that strain MN 2(6) lies in clade with Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387(T), Streptomyces sporocinereus NBRC 100766(T) and Streptomyces demainii NRRL B-1478(T) with which it shares a 16S rRNA gene sequence similarity of 99.3%. The strain MN 2(6) can be differentiated from type strains based on phenotypic characteristics. The strain MN 2(6) showed most promising activity against Gram-positive, Gram-negative bacteria, acid-fast bacilli and Candida species suggesting broad-spectrum characteristics of the active metabolite. Evaluation of anti-candidal activity of the metabolite of strain MN 2(6) by scanning electron microscopy (SEM) revealed changed external morphology of yeast. It kills the Candida cells due to the shrinkage and the cytosolic loss. However, further studies are required to elucidate the structure of the active metabolite produced by the isolate MN 2(6).

  4. An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due to the shrinkage and the cytosolic loss

    PubMed Central

    Kumar, Vijay; Naik, Bindu; Gusain, Omprakash; Bisht, Gajraj S.

    2014-01-01

    An actinomycetes strain designated as MN 2(6) was isolated from the solitary wasp mud nest. The isolate was identified using polyphasic taxonomy. It produced the extensive branched brown substrate and white aerial hyphae that changed into grayish black. The aerial mycelia produced the spiral spore chains with rugose spore surface. The growth was observed between temperature range of 27–37°C, pH 8–10 and below salt concentration of 6% (w/v). The comparative analysis of 16S rRNA gene sequence and phylogenetic relationship showed that strain MN 2(6) lies in clade with Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T, Streptomyces sporocinereus NBRC 100766T and Streptomyces demainii NRRL B-1478T with which it shares a 16S rRNA gene sequence similarity of 99.3%. The strain MN 2(6) can be differentiated from type strains based on phenotypic characteristics. The strain MN 2(6) showed most promising activity against Gram-positive, Gram-negative bacteria, acid-fast bacilli and Candida species suggesting broad-spectrum characteristics of the active metabolite. Evaluation of anti-candidal activity of the metabolite of strain MN 2(6) by scanning electron microscopy (SEM) revealed changed external morphology of yeast. It kills the Candida cells due to the shrinkage and the cytosolic loss. However, further studies are required to elucidate the structure of the active metabolite produced by the isolate MN 2(6). PMID:25191320

  5. Endophyte isolate and host grass effects on Chaetocnema pulicaria (Coleoptera: Chrysomelidae) feeding.

    PubMed

    Ball, Olivier J P; Gwinn, Kimberly D; Pless, Charles D; Popay, Alison J

    2011-04-01

    Endophytic fungi belonging to the genus Neotyphodium, confer resistance to infected host grasses against insect pests. The effect of host species, and endophtye species and strain, on feeding and survival of the corn flea beetle, Chaetocnema pulicaria Melsheimer (Coleoptera: Chrysomelidae) was investigated. The grass-endophyte associations included natural and artificially derived associations producing varying arrays of common endophyte-related alkaloids or alkaloid groups, peramine, lolitrem B, ergovaline, and the lolines. Preference and nonpreference tests showed that C. pulicaria feeding and survival were reduced by infection of tall fescue with the wild-type strain of N. coenophialum, the likely mechanism being antixenosis rather than antibiosis. In the preference tests, endophyte and host species effects were observed. Of the 10 different Neotyphodium strains tested in artificially derived tall fescue associations, eight strongly deterred feeding by C. pulicaria, whereas the remaining two strains had little or no effect on feeding. Infection of tall fescue with another fungal symbiont, p-endophyte, had no effect. Perennial ryegrass, Lolium perenne L., infected with six strains of endophyte, was moderately resistant to C. pulicaria compared with endophyte-free grass, but four additional strains were relatively inactive. Six Neotyphodium-meadow fescue, Festuca pratensis Huds., associations, including the wild-type N. uncinatum-meadow fescue combination, were resistant, whereas three associations were not effective. Loline alkaloids seemed to play a role in antixenosis to C. pulicaria. Effects not attributable to the lolines or any other of the alkaloids examined also were observed. This phenomenon also has been reported in tests with other insects, and indicates the presence of additional insect-active factors.

  6. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H.

    PubMed

    Wang, Yuyan; Yang, Xiaoe; Zhang, Xincheng; Dong, Lanxue; Zhang, Jie; Wei, Yanyan; Feng, Ying; Lu, Lingli

    2014-02-26

    This study is to investigate the possibility of zinc (Zn) biofortification in the grains of rice (Oryza sativa L.) by inoculation of endophytic strains isolated from a Zn hyperaccumulator, Sedum alfredii Hance. Five endophytic strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12, Variovorax sp. SaNR1, and Enterobacter sp. SaCS20, isolated from S. alfredii, were inoculated in the roots of Japonica rice Nipponbare under hydroponic condition. Fluorescence images showed that endophytic strains successfully colonized rice roots after 72 h. Improved root morphology and plant growth of rice was observed after inoculation with endophytic strains especially SaMR12 and SaCS20. Under hydroponic conditions, endophytic inoculation with SaMR12 and SaCS20 increased Zn concentration by 44.4% and 51.1% in shoots, and by 73.6% and 83.4% in roots, respectively. Under soil conditions, endophytic inoculation with SaMR12 and SaCS20 resulted in an increase of grain yields and elevated Zn concentrations by 20.3% and 21.9% in brown rice and by 13.7% and 11.2% in polished rice, respectively. After inoculation of SaMR12 and SaCS20, rhizosphere soils of rice plants contained higher concentration of DTPA-Zn by 10.4% and 20.6%, respectively. In situ micro-X-ray fluorescence mapping of Zn confirmed the elevated Zn content in the rhizosphere zone of rice treated with SaMR12 as compared with the control. The above results suggested that endophytic microbes isolated from S. alfredii could successfully colonize rice roots, resulting in improved root morphology and plant growth, increased Zn bioavailability in rhizosphere soils, and elevated grain yields and Zn densities in grains.

  7. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H.

    PubMed

    Wang, Yuyan; Yang, Xiaoe; Zhang, Xincheng; Dong, Lanxue; Zhang, Jie; Wei, Yanyan; Feng, Ying; Lu, Lingli

    2014-02-26

    This study is to investigate the possibility of zinc (Zn) biofortification in the grains of rice (Oryza sativa L.) by inoculation of endophytic strains isolated from a Zn hyperaccumulator, Sedum alfredii Hance. Five endophytic strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12, Variovorax sp. SaNR1, and Enterobacter sp. SaCS20, isolated from S. alfredii, were inoculated in the roots of Japonica rice Nipponbare under hydroponic condition. Fluorescence images showed that endophytic strains successfully colonized rice roots after 72 h. Improved root morphology and plant growth of rice was observed after inoculation with endophytic strains especially SaMR12 and SaCS20. Under hydroponic conditions, endophytic inoculation with SaMR12 and SaCS20 increased Zn concentration by 44.4% and 51.1% in shoots, and by 73.6% and 83.4% in roots, respectively. Under soil conditions, endophytic inoculation with SaMR12 and SaCS20 resulted in an increase of grain yields and elevated Zn concentrations by 20.3% and 21.9% in brown rice and by 13.7% and 11.2% in polished rice, respectively. After inoculation of SaMR12 and SaCS20, rhizosphere soils of rice plants contained higher concentration of DTPA-Zn by 10.4% and 20.6%, respectively. In situ micro-X-ray fluorescence mapping of Zn confirmed the elevated Zn content in the rhizosphere zone of rice treated with SaMR12 as compared with the control. The above results suggested that endophytic microbes isolated from S. alfredii could successfully colonize rice roots, resulting in improved root morphology and plant growth, increased Zn bioavailability in rhizosphere soils, and elevated grain yields and Zn densities in grains. PMID:24447030

  8. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms.

    PubMed

    Bae, Hanhong; Roberts, Daniel P; Lim, Hyoun-Sub; Strem, Mary D; Park, Soo-Chul; Ryu, Choong-Min; Melnick, Rachel L; Bailey, Bryan A

    2011-03-01

    Endophytic Trichoderma isolates collected in tropical environments were evaluated for biocontrol activity against Phytophthora capsici in hot pepper (Capsicum annuum). Six isolates were tested for parasitic and antimicrobial activity against P. capsici and for endophytic and induced resistance capabilities in pepper. Isolates DIS 70a, DIS 219b, and DIS 376f were P. capsici parasites, while DIS 70a, DIS 259j, DIS 320c, and DIS 376f metabolites inhibited P. capsici. All six isolates colonized roots but were inefficient stem colonizers. DIS 259j, DIS 320c, and DIS 376f induced defense-related expressed sequence tags (EST) in 32-day-old peppers. DIS 70a, DIS 259j, and DIS 376f delayed disease development. Initial colonization of roots by DIS 259j or DIS 376f induced EST with potential to impact Trichoderma endophytic colonization and disease development, including multiple lipid transferase protein (LTP)-like family members. The timing and intensity of induction varied between isolates. Expression of CaLTP-N, encoding a LTP-like protein in pepper, in N. benthamiana leaves reduced disease development in response to P. nicotianae inoculation, suggesting LTP are functional components of resistance induced by Trichoderma species. Trichoderma isolates were endophytic on pepper roots in which, depending on the isolate, they delayed disease development by P. capsici and induced strong and divergent defense reactions.

  9. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death

    PubMed Central

    Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp—CrP14, obtained from stem tissues, and Talaromyces radicus—CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus—CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus—CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns. PMID:26697875

  10. An Endophytic Fungus, Talaromyces radicus, Isolated from Catharanthus roseus, Produces Vincristine and Vinblastine, Which Induce Apoptotic Cell Death.

    PubMed

    Palem, Padmini P C; Kuriakose, Gini C; Jayabaskaran, Chelliah

    2015-01-01

    Endophytic fungi isolated from Catharanthus roseus were screened for the production of vincristine and vinblastine. Twenty-two endophytic fungi isolated from various tissues of C. roseus were characterized taxonomically by sequence analysis of the internal transcribed spacer (ITS) region of rDNA and grouped into 10 genera: Alternaria, Aspergillus, Chaetomium, Colletotrichum, Dothideomycetes, Eutypella, Eutypa, Flavodon, Fusarium and Talaromyces. The antiproliferative activity of these fungi was assayed in HeLa cells using the MTT assay. The fungal isolates Eutypella sp--CrP14, obtained from stem tissues, and Talaromyces radicus--CrP20, obtained from leaf tissues, showed the strongest antiproliferative activity, with IC50 values of 13.5 μg/ml and 20 μg/ml, respectively. All 22 endophytic fungi were screened for the presence of the gene encoding tryptophan decarboxylase (TDC), the key enzyme in the terpenoid indole alkaloid biosynthetic pathway, though this gene could only be amplified from T. radicus--CrP20 (NCBI GenBank accession number KC920846). The production of vincristine and vinblastine by T. radicus--CrP20 was confirmed and optimized in nine different liquid media. Good yields of vincristine (670 μg/l) in modified M2 medium and of vinblastine (70 μg/l) in potato dextrose broth medium were obtained. The cytotoxic activity of partially purified fungal vincristine was evaluated in different human cancer cell lines, with HeLa cells showing maximum susceptibility. The apoptosis-inducing activity of vincristine derived from this fungus was established through cell cycle analysis, loss of mitochondrial membrane potential and DNA fragmentation patterns. PMID:26697875

  11. A novel antibacterial peptide active against peach crown gall (Agrobacterium tumefaciens) isolated from cyanide-tolerant actinomycetes G19.

    PubMed

    Wang, Shufang; Ji, Jinglin; Ma, Huanpu; Liu, Zhimin

    2015-01-01

    An antimicrobial peptide was extracted from the antagonistic actinomycetes G19. It was designated as G19-F. By using MALDI-TOF mass spectrometry, the molecular weight of G19-F was determined. The primary structure of the antimicrobial peptide was determined using N-terminal sequencing and mass spectrometry. Results showed that the peptide had eleven amino acids, with the sequence D-V-C-D-G-G-D-G-D-E-D, and a calculated molecular mass of 1,096 Da. G19-F showed antimicrobial activity against peach crown gall caused by Agrobacterium tumefaciens. The antimicrobial peptide maintained its activity after being heated to 100 °C and exhibited stability from pH 4 to 10. Its activity has also remained after ultraviolet irradiation. The mechanism by which G19-F inhibits A. tumefaciens was to increase permeability of the cell membrane and destroy the cell wall structure. Furthermore, as a novel peptide, it has a potential for cure A. tumefaciens infection. PMID:25358422

  12. Streptomyces oceani sp. nov., a new obligate marine actinomycete isolated from a deep-sea sample of seep authigenic carbonate nodule in South China Sea.

    PubMed

    Tian, Xin-Peng; Xu, Ying; Zhang, Jing; Li, Jie; Chen, Zhong; Kim, Chang-Jin; Li, Wen-Jun; Zhang, Chang-Sheng; Zhang, Si

    2012-08-01

    A novel aerobic actinomycete strain, designated as SCSIO 02100(T), was isolated from a deep sea sediment sample collected from Northern South China Sea at a depth of 578 m. This isolate requires sea water or a sodium-supplemented medium for growth. BLAST searches based on the almost full length of the 16S rRNA gene sequence, showed that strain SCSIO 02100(T) had the highest similarities with Streptomyces armeniacus (JCM 3070(T)) (97.1 %). Phylogenetic trees reconstructed on the basis of 16S rRNA gene sequences revealed that strain SCSIO 02100(T) formed a distinct lineage with S. nanshensis SCSIO 01066(T) with 96.9 % similarity. Further analysis of the polyphasic taxonomic data, including morphological, phenotypic and chemotaxonomic properties, showed that strain SCSIO 02100(T) could be readily distinguished from the most closely related members of the genus Streptomyces. Thus, based on the polyphasic taxonomic data, a novel species, Streptomyces oceani sp. nov., is proposed, with the type strain SCSIO 02100(T) (=DSM 42043(T) = CGMCC 4.7007(T)).

  13. Comparison of the chemistry and diversity of endophytes isolated from wild-harvested and greenhouse-cultivated yerba mansa (Anemopsis californica)

    PubMed Central

    Bussey, Robert O.; Kaur, Amninder; Todd, Daniel A.; Egan, Joseph M.; El-Elimat, Tamam; Graf, Tyler N.; Raja, Huzefa A.; Oberlies, Nicholas H.; Cech, Nadja B.

    2015-01-01

    With this study, we explored the identity and chemistry of fungal endophytes from the roots of yerba mansa [Anemopsis californica (Nutt.) Hook. & Arn. (Saururaceae)], a botanical traditionally used to treat infection. We compared the diversity of fungal endophytes isolated from a wild-harvested A. californica population, and those from plants cultivated for one year in a greenhouse environment. The wild-harvested population yielded thirteen fungal strains (eleven unique genotypes). Of the extracts prepared from these fungi, four inhibited growth of Staphylococcus aureus by >25% at 20 µg/mL, and three inhibited growth of Pseudomonas aeruginosa by ≥20% at 200 µg/mL. By comparison, A. californica roots after one year of cultivation in the greenhouse produced only two unique genotypes, neither of which displayed significant antimicrobial activity. The fungus Chaetomium cupreum isolated from wild-harvested A. californica yielded a new antimicrobial spirolactone, chaetocuprum (1). An additional fourteen known compounds were identified using LC-MS dereplication of the various fungal endophytes. This study provides new insights into the identity and chemistry of A. californica fungal endophytes, and demonstrates the importance of considering growing conditions when pursuing natural product drug discovery from endophytic fungi. PMID:25642298

  14. Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinonnii E5202H

    PubMed Central

    Shaw, Jeffery J; Spakowicz, Daniel J; Dalal, Rahul S; Davis, Jared H; Lehr, Nina A; Dunican, Brian F; Orellana, Esteban A; Narváez-Trujillo, Alexandra; Strobel, Scott A

    2015-01-01

    An endophytic fungus was isolated that produces a series of volatile natural products, including terpenes and odd chain polyenes. Phylogenetic analysis of the isolate using five loci suggests that it is closely related to Nigrograna mackinnonii CBS 674.75. The main component of the polyene series was purified and identified as (3E,5E,7E)-nona-1,3,5,7-tetraene (NTE), a novel natural product. Non-oxygenated hydrocarbons of this chain length are uncommon and desirable as gasoline-surrogate biofuels. The biosynthetic pathway for NTE production was explored using metabolic labeling and GCMS. Two-carbon incorporation 13C acetate suggests that it is derived from a polyketide synthase (PKS) followed by decarboxylation. There are several known mechanisms for such decarboxylation, though none have been discovered in fungi. Towards identifying the PKS responsible for the production of NTE, the genome of N. mackinnonii E5202H (ATCC SD-6839) was sequenced and assembled. Of the 32 PKSs present in the genome, 17 are predicted to contain sufficient domains for the production of NTE. These results exemplify the capacity of endophytic fungi to produce novel natural products that may have many uses, such as biologically derived fuels and commodity chemicals. PMID:25672844

  15. Molecular characterization by amplified ribosomal DNA restriction analysis and antimicrobial potential of endophytic fungi isolated from Luehea divaricata (Malvaceae) against plant pathogenic fungi and pathogenic bacteria.

    PubMed

    Bernardi-Wenzel, J; Garcia, A; Azevedo, J L; Pamphile, J A

    2013-01-01

    Luehea divaricata is an important plant in popular medicine; it is used for its depurative, anti-inflammatory, and other therapeutic activities. We evaluated the antimicrobial activity of endophytic fungi isolated from leaves of L. divaricata against phytopathogens and pathogenic bacteria, and characterized the isolates based on amplified ribosomal DNA restriction analysis (ARDRA). The in vitro antagonistic activity of these endophytes against the phytopathogen Alternaria alternata was assayed by dual culture technique. Based on this evaluation of antimicrobial activity, we extracted secondary metabolites from nine endophytic fungi by partitioning in ethyl acetate and methanol. These were tested against the phytopathogens A. alternata, Colletotrichum sp and Moniliophthora perniciosa, and against the human pathogenic bacteria Escherichia coli and Staphylococcus aureus. Molecular characterization by ARDRA technique was used for phylogenetic analysis, based on comparison with sequences in GenBank. The endophytes had varied effects on A. alternata. One isolate produced an inhibition halo against M. perniciosa and against E. coli. This antibiosis activity indicates a role in the protection of the plant against microbial pathogens in nature, with potential for pharmaceutical and agricultural applications. Based on ARDRA, the 13 isolates were grouped. We found three different haplotypes of Phomopsis sp, showing interspecific variability. It appears that examination of the microbial community associated with medicinal plants of tropical regions has potential as a useful strategy to look for species with biotechnological applications. PMID:24301768

  16. Anti-malarial Activities of Two Soil Actinomycete Isolates from Sabah via Inhibition of Glycogen Synthase Kinase 3β

    PubMed Central

    Dahari, Dhiana Efani; Salleh, Raifana Mohamad; Mahmud, Fauze; Chin, Lee Ping; Embi, Noor; Sidek, Hasidah Mohd

    2016-01-01

    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition

  17. Anti-malarial Activities of Two Soil Actinomycete Isolates from Sabah via Inhibition of Glycogen Synthase Kinase 3β.

    PubMed

    Dahari, Dhiana Efani; Salleh, Raifana Mohamad; Mahmud, Fauze; Chin, Lee Ping; Embi, Noor; Sidek, Hasidah Mohd

    2016-08-01

    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition

  18. Anti-malarial Activities of Two Soil Actinomycete Isolates from Sabah via Inhibition of Glycogen Synthase Kinase 3β

    PubMed Central

    Dahari, Dhiana Efani; Salleh, Raifana Mohamad; Mahmud, Fauze; Chin, Lee Ping; Embi, Noor; Sidek, Hasidah Mohd

    2016-01-01

    Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition

  19. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-06-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg.L-1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination.

  20. Chemical Assessment and Antimicrobial and Antioxidant Activities of Endophytic Fungi Extracts Isolated from Costus spiralis (Jacq.) Roscoe (Costaceae)

    PubMed Central

    Marson Ascêncio, Poliana Guerino; Ascêncio, Sérgio Donizeti; Aguiar, Aline Aires; Fiorini, Adriana; Pimenta, Raphael Sanzio

    2014-01-01

    Costus spiralis (Costaceae) is a species native to the Amazon region and is used in traditional medicine. The endophytic fungi used in this study were obtained from leaves of this plant. 13 strains were selected to obtain hydroethanolic extracts and were submitted to hydroalcoholic extraction and evaluated for antioxidant activity by DPPH (2,2-difenil-1-picrilhidrazil) and FRAP (ferric reducing antioxidant power), and all of the fungi had positive results. The antimicrobial action of crude extracts had a good range of activities. All extracts had inhibitory activities against the yeasts of Candida albicans and C. parapsilosis, with 125 to 500 μg/mL MIC. Eight extracts had antimicrobial activities against Bacillus subtilis (MIC from 62.4 to 125 μg/mL), 5 against Pseudomonas aeruginosa (MIC from 125 to 500 μg/mL), 2 against Salmonella enterica (MIC from 125 to 62.5 μg/mL), and 2 against Enterococcus faecalis (MIC from 500 to 125 μg/mL). The presence of secondary metabolites, including coumarins, was observed during chemical evaluation by thin layer chromatography. Total phenol content was estimated, and a strong positive correlation to antioxidant activity was observed, according to its Pearson coefficient. This is the first report of the bioactive potential of endophytic fungi isolated from the Costaceae family in Brazilian ecosystems. PMID:25587339

  1. Assessment of genetic diversity and distribution of endophytic fungal communities of Alternaria solani isolates associated with the dominant Karanja plants in Sanganer Region of Rajasthan.

    PubMed

    Tiwari, Kartikeya; Chittora, Manish

    2013-12-01

    Higher plants are ubiquitously colonized with fungal endophytes that often lack readily detectable structures. Current study examines the distribution of endophytic fungal communities within Karanja plants and diversity of novel fungal endophyte Alternaria solani isolates collected from different locations of Sanganer region of Rajasthan. Results confirmed that A. solani is a major fungal endophyte consortium associated with Karanja plants. PCR Amplified fragments using random amplified polymorphic DNA (RAPD) primers were subjected to unweighted pair group method analysis (UPGMA), which clearly distinguished twelve ecologically diverse A. solani isolates. A total of 58 RAPD loci were amplified, out of which 35 (60.34%) were polymorphic and 23 were monomorphic (39.66%) in nature. These polymorphic loci were identified with an average of 2.92 bands per primer. The efficacy of RAPD markers proved as an efficient marker system with respect to detection of polymorphism and number of loci scored and can be used for the identification of a particular isolates, thereby defining core collections and strengthening their exploitation in acquiring novel products produced by them. PMID:23888281

  2. Haloactinopolyspora alba gen. nov., sp. nov., a halophilic filamentous actinomycete isolated from a salt lake, with proposal of Jiangellaceae fam. nov. and Jiangellineae subord. nov.

    PubMed

    Tang, Shu-Kun; Zhi, Xiao-Yang; Wang, Yun; Shi, Rong; Lou, Kai; Xu, Li-Hua; Li, Wen-Jun

    2011-01-01

    A halophilic, filamentous actinomycete strain, designated YIM 93246(T), was isolated from a salt lake in Xinjiang province, north-west China, and subjected to polyphasic taxonomic characterization. The isolate grew in the presence of 7-23 % (w/v) NaCl, but not in the absence of NaCl. Strain YIM 93246(T) had particular morphological properties, forming aerial mycelium that had long spore chains and pseudosporangium-like, rhiziform spore aggregates at maturity. LL-DAP was the cell-wall diamino acid and glucosamine, mannose, glucose, arabinose and galactose were the cell-wall sugars. The major fatty acids were iso-C(16 : 0), anteiso-C(15 : 0) and anteiso-C(17 : 0). MK-9 (H(4)) was the predominant menaquinone and the genomic DNA G+C content was 70.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 93246(T) clustered with the genus Jiangella. The sequence similarities between strain YIM 93246(T) and Jiangella alba, Jiangella gansuensis and Jiangella alkaliphila were 96.9, 96.9 and 96.6 %, respectively. Based on morphological, physiological and chemotaxonomic differences, and phylogenetic analysis, a novel genus and species, Haloactinopolyspora alba gen. nov., sp. nov., is proposed. The type strain of the species is YIM 93246(T) (=DSM 45211(T)=KCTC 19409(T)). Additionally, phylogenetic analysis placed the genus Jiangella together with strain YIM 93246(T) within the order Actinomycetales as an independent lineage, clearly distinguished from other described suborders of the class Actinobacteria. Hence, based on phylogenetic characteristics, the genus Jiangella together with the newly proposed genus Haloactinopolyspora are proposed to be classified as Jiangellaceae fam. nov. and Jiangellineae subord. nov.

  3. Detection and Isolation of Epichloë Species, Fungal Endophytes of Grasses.

    PubMed

    Florea, Simona; Schardl, Christopher L; Hollin, Walter

    2015-01-01

    Epichloë species (including former Neotyphodium species) are endophytic fungi that significantly affect fitness of cool-season grass hosts, potentially by increasing nutrient uptake and resistance to drought, parasitism and herbivory. Epichloë species are obligately biotrophic, living in the intercellular spaces of their plant hosts, and spreading systemically throughout host aerial tissues. The reproduction of Epichloë species is versatile; some strains have both sexual and asexual modes of reproduction, but others are restricted to one or the other mode. The reproduction mode determines the dissemination mechanism, and the asexual species most important to agriculture are strictly seed-borne, cause no signs or symptoms, and are undetectable except by specialized microscopic, molecular or antigenic procedures. These procedures can be used to identify endophytes in a variety of plant tissues. Similar protocols can be modified to detect less common symbionts, such as the penicillate "p-endophytes," when they occur by themselves or together with Epichloë species. PMID:26237108

  4. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.).

    PubMed

    Tariq, Mohsin; Hameed, Sohail; Yasmeen, Tahira; Zahid, Mehwish; Zafar, Marriam

    2014-02-01

    Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation.

  5. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.).

    PubMed

    Tariq, Mohsin; Hameed, Sohail; Yasmeen, Tahira; Zahid, Mehwish; Zafar, Marriam

    2014-02-01

    Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation. PMID:24072498

  6. Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia.

    PubMed

    Nanthini, Jayaram; Chia, Kim-Hou; Thottathil, Gincy P; Taylor, Todd D; Kondo, Shinji; Najimudin, Nazalan; Baybayan, Primo; Singh, Siddharth; Sudesh, Kumar

    2015-11-20

    Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified. PMID:26376470

  7. Complete genome sequence of Streptomyces sp. strain CFMR 7, a natural rubber degrading actinomycete isolated from Penang, Malaysia.

    PubMed

    Nanthini, Jayaram; Chia, Kim-Hou; Thottathil, Gincy P; Taylor, Todd D; Kondo, Shinji; Najimudin, Nazalan; Baybayan, Primo; Singh, Siddharth; Sudesh, Kumar

    2015-11-20

    Streptomyces sp. strain CFMR 7, which naturally degrades rubber, was isolated from a rubber plantation. Whole genome sequencing and assembly resulted in 2 contigs with total genome size of 8.248 Mb. Two latex clearing protein (lcp) genes which are responsible for rubber degrading activities were identified.

  8. Endophytic Ability of Different Isolates of Entomopathogenic Fungi Beauveria bassiana (Balsamo) Vuillemin in Stem and Leaf Tissues of Maize (Zea mays L.).

    PubMed

    Renuka, S; Ramanujam, B; Poornesha, B

    2016-06-01

    The present study was conducted to examine the ability of six promising indigenous isolates of Beauveria bassiana (NBAII-Bb-5a, 7, 14, 19, 23 and 45) as an endophyte in maize stem and leaf tissues. Maize seedlings (var. Nithyashree) were inoculated with conidial suspensions and were examined for endophytic establishment in leaf and stems at different intervals during 15-90 days after treatment. All six isolates showed colonization in stem and leaf tissues with varying abilities of colonization and persistence. The mean percent colonization ranged from 7.41 to 20.37 % in older stem tissues and 3.70 to 21.29 % in young stem tissues and in leaf, it ranged from 6.46 to 27.78 % in older leaf tissues and 11.11 to 26.85 % in young leaf tissues. Among six isolates tested, Bb-23 isolate recorded the maximum mean colonization in older stem (20.37 %), older leaf (27.78 %) and in young stem (21.29 %). Bb-5a isolate showed maximum mean colonization in young leaf tissues (26.85 %). Persistence of inoculated fungal isolates decreased with increase in age of the plant. No physical symptoms of damage were observed in any of the B. bassiana treated plants. No colonization of B. bassiana was observed in the untreated control maize plants. The results obtained in plating and PCR techniques were similar with regard to the confirmation of endophytic establishment of B. bassiana. This study indicated the possibility of using B. bassiana as an endophyte in maize for management of maize stem borer, Chilo partellus.

  9. Endophytic Ability of Different Isolates of Entomopathogenic Fungi Beauveria bassiana (Balsamo) Vuillemin in Stem and Leaf Tissues of Maize (Zea mays L.).

    PubMed

    Renuka, S; Ramanujam, B; Poornesha, B

    2016-06-01

    The present study was conducted to examine the ability of six promising indigenous isolates of Beauveria bassiana (NBAII-Bb-5a, 7, 14, 19, 23 and 45) as an endophyte in maize stem and leaf tissues. Maize seedlings (var. Nithyashree) were inoculated with conidial suspensions and were examined for endophytic establishment in leaf and stems at different intervals during 15-90 days after treatment. All six isolates showed colonization in stem and leaf tissues with varying abilities of colonization and persistence. The mean percent colonization ranged from 7.41 to 20.37 % in older stem tissues and 3.70 to 21.29 % in young stem tissues and in leaf, it ranged from 6.46 to 27.78 % in older leaf tissues and 11.11 to 26.85 % in young leaf tissues. Among six isolates tested, Bb-23 isolate recorded the maximum mean colonization in older stem (20.37 %), older leaf (27.78 %) and in young stem (21.29 %). Bb-5a isolate showed maximum mean colonization in young leaf tissues (26.85 %). Persistence of inoculated fungal isolates decreased with increase in age of the plant. No physical symptoms of damage were observed in any of the B. bassiana treated plants. No colonization of B. bassiana was observed in the untreated control maize plants. The results obtained in plating and PCR techniques were similar with regard to the confirmation of endophytic establishment of B. bassiana. This study indicated the possibility of using B. bassiana as an endophyte in maize for management of maize stem borer, Chilo partellus. PMID:27570303

  10. Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp.

    PubMed Central

    Campos, Fernanda Fraga; Sales, Policarpo A; Romanha, Alvaro José; Araújo, Márcio SS; Siqueira, Ezequias P; Resende, Jarbas M; Alves, Tânia MA; Martins-Filho, Olindo A; dos Santos, Vera Lúcia; Rosa, Carlos A; Zani, Carlos L; Cota, Betania Barros

    2015-01-01

    Aiming to identify new sources of bioactive secondary metabolites, we isolated 82 endophytic fungi from stems and barks of the native Brazilian tree Caesalpinia echinata Lam. (Fabaceae). We tested their ethyl acetate extracts in several in vitro assays. The organic extracts from three isolates showed antibacterial activity against Staphylococcus aureus and Escherichia coli [minimal inhibitory concentration (MIC) 32-64 μg/mL]. One isolate inhibited the growth of Salmonella typhimurium (MIC 64 μg/mL) and two isolates inhibited the growth of Klebsiella oxytoca (MIC 64 μg/mL), Candida albicans and Candida tropicalis (MIC 64-128 μg/mL). Fourteen extracts at a concentration of 20 μg/mL showed antitumour activities against human breast cancer and human renal cancer cells, while two isolates showed anti-tumour activities against human melanoma cancer cells. Six extracts were able to reduce the proliferation of human peripheral blood mononuclear cells, indicating some degree of selective toxicity. Four isolates were able to inhibit Leishmania (Leishmania) amazonensis and one isolate inhibited Trypanosoma cruzi by at least 40% at 20 μg/mL. The trypanocidal extract obtained from Fusarium sp. [KF611679] culture was subjected to bioguided fractionation, which revealed beauvericin as the compound responsible for the observed toxicity of Fusarium sp. to T. cruzi. This depsipeptide showed a half maximal inhibitory concentration of 1.9 μg/mL (2.43 μM) in a T. cruzi cellular culture assay. PMID:25742265

  11. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.

    PubMed

    Luo, Sheng-lian; Chen, Liang; Chen, Jue-liang; Xiao, Xiao; Xu, Tao-ying; Wan, Yong; Rao, Chan; Liu, Cheng-bin; Liu, Yu-tang; Lai, Cui; Zeng, Guang-ming

    2011-11-01

    This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency. PMID:21868057

  12. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules.

    PubMed

    Zhao, Long Fei; Xu, Ya Jun; Ma, Zhan Qiang; Deng, Zhen Shan; Shan, Chang Juan; Wei, Ge Hong

    2013-01-01

    The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4-60 ºC for 15 min, had a wide range pH tolerance of 6.0-11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (μg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1-0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plant-growth promoting agent. PMID:24294262

  13. Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules

    PubMed Central

    Zhao, Long Fei; Xu, Ya Jun; Ma, Zhan Qiang; Deng, Zhen Shan; Shan, Chang Juan; Wei, Ge Hong

    2013-01-01

    The endophytic strain Zong1 isolated from root nodules of the legume Sophora alopecuroides was characterized by conducting physiological and biochemical tests employing gfp-marking, observing their plant growth promoting characteristics (PGPC) and detecting plant growth parameters of inoculation assays under greenhouse conditions. Results showed that strain Zong1 had an effective growth at 28 ºC after placed at 4–60 ºC for 15 min, had a wide range pH tolerance of 6.0–11.0 and salt tolerance up to 5% of NaCl. Zong1 was resistant to the following antibiotics (μg/mL): Phosphonomycin (100), Penicillin (100) and Ampicillin (100). It could grow in the medium supplemented with 1.2 mmol/L Cu, 0.1% (w/v) methylene blue and 0.1–0.2% (w/v) methyl red, respectively. Zong1 is closely related to Pseudomonas chlororaphis based on analysis the sequence of 16S rRNA gene. Its expression of the gfp gene indicated that strain Zong1 may colonize in root or root nodules and verified by microscopic observation. Furthermore, co-inoculation with Zong1 and SQ1 (Mesorhizobium sp.) showed significant effects compared to single inoculation for the following PGPC parameters: siderophore production, phosphate solubilization, organic acid production, IAA production and antifungal activity in vitro. These results suggest strains P. chlororaphi Zong1 and Mesorhizobium sp. SQ1 have better synergistic or addictive effect. It was noteworthy that each growth index of co-inoculated Zong1+SQ1 in growth assays under greenhouse conditions is higher than those of single inoculation, and showed a significant difference (p < 0.05) when compared to a negative control. Therefore, as an endophyte P. chlororaphis Zong1 may play important roles as a potential plant-growth promoting agent. PMID:24294262

  14. Draft Genome Sequence of the Endophytic Strain Rhodococcus kyotonensis KB10, a Potential Biodegrading and Antibacterial Bacterium Isolated from Arabidopsis thaliana

    PubMed Central

    Hong, Chi Eun; Jo, Sung Hee

    2016-01-01

    Rhodococcus kyotonensis KB10 is an endophytic bacterium isolated from Arabidopsis thaliana. The organism showed mild antibacterial activity against the phytopathogen Pseudomonas syringae pv. tomato DC3000. This study reports the genome sequence of R. kyotonensis KB10. This bacterium contains an ectoine biosynthesis gene cluster and has the potential to degrade nitroaromatic compounds. The identified bacterium may be a suitable biocontrol agent and degrader of environmental pollutants. PMID:27389269

  15. Isolation and characterization of new p-Terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087.

    PubMed

    Tian, Shou-Zheng; Pu, Xiang; Luo, Guoyong; Zhao, Li-Xing; Xu, Li-Hua; Li, Wen-Jun; Luo, Yinggang

    2013-03-27

    A new p-terphenyl 1 and a novel p-terphenyl derivative 3 bearing a benzothiazole moiety were isolated from halophilic actinomycete Nocardiopsis gilva YIM 90087, along with known p-terphenyl 2, antibiotic novobiocin 4, cyclodipeptides 5-13, and aromatic acids 14 and 15. Their structures were elucidated on the basis of the interpretation of spectral data and by comparison of the corresponding data with those reported previously. The p-terphenyl 1 showed antifungal activity against the three pathogenic fungi, including Fusarium avenaceum, Fusarium graminearum, and Fusarium culmorum, that caused Fusarium head blight with minimal inhibitory concentrations (MICs) of 8, 16, and 128 μg/mL, respectively. Compound 1 showed antifungal activity against Candida albicans with a MIC of 32 μg/mL and antibacterial activity against Bacillus subtilis with a MIC of 64 μg/mL. Novobiocin 4 showed antifungal activity against Pyricularia oryzae with a MIC of 16 μg/mL and antibacterial activity against B. subtilis with a MIC of 16 μg/mL and Staphylococcus aureus with a MIC of 64 μg/mL. The 1,1-diphenyl-2-picryl-hydrazyl assay suggested that 1, 3, and 4 exhibited 54.9% (2 mg/mL), 14.3% (4 mg/mL), and 47.7% (2 mg/mL) free radical scavenging activity, respectively. The positively charged 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)) scavenging assay indicated that 1, 3, 4, and 8 exhibited 68.6% (1 mg/mL), 28.4% (2 mg/mL), 78.2% (0.5 mg/mL), and 54.6% (2 mg/mL) ABTS(+•) scavenging capacity, respectively. The superoxide anion radical scavenging assay suggested that 4 exhibited 77.9% superoxide anion radical scavenging capacity at 2 mg/mL. N. gilva YIM 90087 is a new resource for novobiocin 4. PMID:23441911

  16. Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona.

    PubMed

    Zikmundová, M; Drandarov, K; Bigler, L; Hesse, M; Werner, C

    2002-10-01

    The biotransformation of the phytoanticipins 2-benzoxazolinone (BOA) and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) by four endophytic fungi isolated from Aphelandra tetragona was studied. Using high-performance liquid chromatography-mass spectrometry, several new products of acylation, oxidation, reduction, hydrolysis, and nitration were identified. Fusarium sambucinum detoxified BOA and HBOA to N-(2-hydroxyphenyl)malonamic acid. Plectosporium tabacinum, Gliocladium cibotii, and Chaetosphaeria sp. transformed HBOA to 2-hydroxy-N-(2-hydroxyphenyl)acetamide, N-(2-hydroxyphenyl)acetamide, N-(2-hydroxy-5-nitrophenyl)acetamide, N-(2-hydroxy-3-nitrophenyl)acetamide, 2-amino-3H-phenoxazin-3-one, 2-acetylamino-3H-phenoxazin-3-one, and 2-(N-hydroxy)acetylamino-3H-phenoxazin-3-one. BOA was not degraded by these three fungal isolates. Using 2-hydroxy-N-(2-hydroxyphenyl)[(13)C(2)]acetamide, it was shown that the metabolic pathway for HBOA and BOA degradation leads to o-aminophenol as a key intermediate.

  17. Production and characterization of a thermostable alpha-amylase from Nocardiopsis sp. endophyte of yam bean.

    PubMed

    Stamford, T L; Stamford, N P; Coelho, L C; Araújo, J M

    2001-01-01

    Thermostable amylolytic enzymes have been currently investigated to improve industrial processes of starch degradation. Studies on production of alpha-amylase by Nocardiopsis sp., an endophytic actinomycete isolated from yam bean (Pachyrhizus erosus L. Urban), showed that higher enzyme levels were obtained at the end of the logarithmic growth phase after incubation for 72 h at pH 8.6. Maximum activity of alpha-amylase was obtained at pH 5.0 and 70 degrees C. The isolated enzyme exhibited thermostable properties as indicated by retention of 100% of residual activity at 70 degrees C, and 50% of residual activity at 90 degrees C for 10 min. Extracellular enzyme from Nocardiopsis sp. was purified by fractional precipitation with ammonium sulphate. After 60% saturation produced 1130 U mg-1 protein and yield was 28% with purification 2.7-fold. The enzyme produced by Nocardiopsis sp. has potential for industrial applications. PMID:11131797

  18. Cultivation and detection of endophytic aerobic methanotrophs isolated from Sphagnum species as a perspective for environmental biotechnology

    PubMed Central

    2014-01-01

    Enriched cultures of microorganisms are an essential step in the production of inoculum of these organisms for biotechnology and bioengineering. The potential application of methanotrophic microorganisms for removal of methane produced from landfills and coal mines as well as biodegradation of toxic compounds has been widely studied. Therefore, searching for new sources of methanotrophs can contribute to increasing the possibilities of biotechnology and bioengineering. Enrichment cultures of endophytic methanotrophs from Sphagnum sp. were initiated in NMS medium, a most widely used medium for cultivation of methanotrophic bacteria from various environments proposed in 1970 by Whittenbury. Incubation was carried out at 10, 20, 30, and 37°C with vigorous shaking on a shaker (180 rpm). The source of carbon and energy for endophytes were methane at the concentration range between 1-20%. It appeared that the consortium of endophytic bacteria grew only at the temperature of 20 and 30°C. During the culture of endophytes, the measurements of gas concentration showed a steady loss of methane and oxygen, as well as accumulation of carbon dioxide as a CH4 oxidation product. The use of FISH has made characterization of endophytic consortia possible. It turned out that the population of endophytes consists of type I and II methanotrophs as well as associated non-methanotrophic bacteria. Furthermore, we determined the potential of the examined bacteria for methane oxidation, which ranged up to 4,7 μMCH4 per ml of the population of endophytes per day. PMID:25401064

  19. Aspergillus clavatus Y2H0002 as a New Endophytic Fungal Strain Producing Gibberellins Isolated from Nymphoides pe ltata in Fresh Water.

    PubMed

    You, Young-Hyun; Kwak, Tae Won; Kang, Sang-Mo; Lee, Myung-Chul; Kim, Jong-Guk

    2015-03-01

    Eighteen endophytic fungi with different colony morphologies were isolated from the roots of Nymphoides peltata growing in the Dalsung wetland. The fungal culture filtrates of the endophytic fungi were treated to Waito-c rice seedling to evaluate their plant growth-promoting activities. Culture filtrate of Y2H0002 fungal strain promoted the growth of the Waito-c rice seedlings. This strain was identified on the basis of sequences of the partial internal transcribed spacer region and the partial beta-tubulin gene. Upon chromatographic analysis of the culture filtrate of Y2H0002 strain, the gibberellins (GAs: GA1, GA3, and GA4) were detected and quantified. Molecular and morphological studies identified the Y2H0002 strain as belonging to Aspergillus clavatus. These results indicated that A. clavatus improves the growth of plants and produces various GAs, and may participate in the growth of plants under diverse environmental conditions.

  20. Aspergillus clavatus Y2H0002 as a New Endophytic Fungal Strain Producing Gibberellins Isolated from Nymphoides pe ltata in Fresh Water

    PubMed Central

    You, Young-Hyun; Kwak, Tae Won; Kang, Sang-Mo; Lee, Myung-Chul

    2015-01-01

    Eighteen endophytic fungi with different colony morphologies were isolated from the roots of Nymphoides peltata growing in the Dalsung wetland. The fungal culture filtrates of the endophytic fungi were treated to Waito-c rice seedling to evaluate their plant growth-promoting activities. Culture filtrate of Y2H0002 fungal strain promoted the growth of the Waito-c rice seedlings. This strain was identified on the basis of sequences of the partial internal transcribed spacer region and the partial beta-tubulin gene. Upon chromatographic analysis of the culture filtrate of Y2H0002 strain, the gibberellins (GAs: GA1, GA3, and GA4) were detected and quantified. Molecular and morphological studies identified the Y2H0002 strain as belonging to Aspergillus clavatus. These results indicated that A. clavatus improves the growth of plants and produces various GAs, and may participate in the growth of plants under diverse environmental conditions. PMID:25892921

  1. Isolation and Identification of the Antimicrobial Agent Beauvericin from the Endophytic Fusarium oxysporum 5-19 with NMR and ESI-MS/MS

    PubMed Central

    Ruan, Chuanfen; Bai, Xuelian; Zhang, Miao; Zhu, Shuangshuang; Jiang, Yingying

    2016-01-01

    Endophytic microbe has been proved to be one of rich sources of bioactive natural products with potential application for new drug and pesticide discovery. One cyclodepsipeptide, beauvericin, was firstly isolated from the fermentation broth of Fusarium oxysporum 5-19 endophytic on Edgeworthia chrysantha Linn. Its chemical structure was unambiguously identified by a combination of spectroscopic methods, such as HRESI-MS and 1H and 13C NMR. ESI-MS/MS was successfully used to elucidate the splitting decomposition route of the positive molecule ion of beauvericin. Antimicrobial results showed that this cyclodepsipeptide had inhibitory effect on three human pathogenic microbes, Candida albicans, Escherichia coli, and Staphylococcus aureus. In particular, beauvericin exhibited the strongest antimicrobial activity against S. aureus with MIC values of 3.91 μM, which had similar effect with that of the positive control amoxicillin. PMID:27413733

  2. The draft genome sequence of Mangrovibacter sp. strain MP23, an endophyte isolated from the roots of Phragmites karka.

    PubMed

    Behera, Pratiksha; Vaishampayan, Parag; Singh, Nitin K; Mishra, Samir R; Raina, Vishakha; Suar, Mrutyunjay; Pattnaik, Ajit K; Rastogi, Gurdeep

    2016-09-01

    Till date, only one draft genome has been reported within the genus Mangrovibacter. Here, we report the second draft genome shotgun sequence of a Mangrovibacter sp. strain MP23 that was isolated from the roots of Phargmites karka (P. karka), an invasive weed growing in the Chilika Lagoon, Odisha, India. Strain MP23 is a facultative anaerobic, nitrogen-fixing endophytic bacteria that grows optimally at 37 °C, 7.0 pH, and 1% NaCl concentration. The draft genome sequence of strain MP23 contains 4,947,475 bp with an estimated G + C content of 49.9% and total 4392 protein coding genes. The genome sequence has provided information on putative genes that code for proteins involved in oxidative stress, uptake of nutrients, and nitrogen fixation that might offer niche specific ecological fitness and explain the invasive success of P. karka in Chilika Lagoon. The draft genome sequence and annotation have been deposited at DDBJ/EMBL/GenBank under the accession number LYRP00000000. PMID:27508122

  3. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. PMID:27364359

  4. Asymmetric reduction of acetophenone into R-(+)-1-phenylethanol by endophytic fungus Neofusicoccum parvum BYEF07 isolated from Illicium verum.

    PubMed

    Li, Haiyun; Li, Ziyuan; Ruan, Guihua; Yu, Yankui; Liu, Xiongmin

    2016-05-13

    Seventy-nine strains of endophytic fungi isolated from the healthy leaves, twigs and fruits of Illicium verum were screened for the asymmetric reduction activities to acetophenone. Strain BYEF07, which showed relatively high reduction activities, has been classified as Neofusicoccum parvum, and the main product was confirmed to be (R)-(+)-1-phenylethanol by GC-MS and chiral HPLC methods. The bio-reduction conditions of acetophenone by cells of N. parvum BYEF07 were investigated in detail. Under the conditions of 1.8 g/L of acetophenone, 100 g/L of microorganism cells and 10 g/L of glucose in 40 mL Na2HPO4 KH2PO4 buffer solution at pH7.5, 30 °C and 150 rpm, after 48 h reaction, the production yield of 1-phenylethanol and enantiomeric excess value of (R)-(+)-1-phenylethanol were 78% and 96%, respectively. PMID:27038548

  5. Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source.

    PubMed

    Sia, Eliandra de Freitas; Marcon, Joelma; Luvizotto, Danice Mazzer; Quecine, Maria Carolina; Tsui, Sarina; Pereira, José Odair; Pizzirani-Kleiner, Aline Aparecida; Azevedo, João Lúcio

    2013-01-01

    Endophytic fungi live inside plants, apparently do not cause any harm to their hosts and may play important roles in defense and growth promotion. Fungal growth is a routine practice at microbiological laboratories, and the Potato Dextrose Agar (PDA) is the most frequently used medium because it is a rich source of starch. However, the production of potatoes in some regions of the world can be costly. Aiming the development of a new medium source to tropical countries, in the present study, we used leaves from the guarana (a tropical plant from the Amazon region) and the olive (which grows in subtropical and temperate regions) to isolate endophytic fungi using PDA and Manihot Dextrose Agar (MDA). Cassava (Manihot esculenta) was evaluated as a substitute starch source. For guarana, the endophytic incidence (EI) was 90% and 98% on PDA and MDA media, respectively, and 65% and 70% for olive, respectively. The fungal isolates were sequenced using the ITS- rDNA region. The fungal identification demonstrated that the isolates varied according to the host plant and media source. In the guarana plant, 13 fungal genera were found using MDA and six were found using PDA. In the olive plant, six genera were obtained using PDA and 4 were obtained using MDA. The multivariate analysis results demonstrated the highest fungal diversity from guarana when using MDA medium. Interestingly, some genera were isolated from one specific host or in one specific media, suggesting the importance of these two factors in fungal isolation specificity. Thus, this study indicated that cassava is a feasible starch source that could serve as a potential alternative medium to potato medium. PMID:25674409

  6. Endophytic fungi from the Amazonian plant Paullinia cupana and from Olea europaea isolated using cassava as an alternative starch media source.

    PubMed

    Sia, Eliandra de Freitas; Marcon, Joelma; Luvizotto, Danice Mazzer; Quecine, Maria Carolina; Tsui, Sarina; Pereira, José Odair; Pizzirani-Kleiner, Aline Aparecida; Azevedo, João Lúcio

    2013-01-01

    Endophytic fungi live inside plants, apparently do not cause any harm to their hosts and may play important roles in defense and growth promotion. Fungal growth is a routine practice at microbiological laboratories, and the Potato Dextrose Agar (PDA) is the most frequently used medium because it is a rich source of starch. However, the production of potatoes in some regions of the world can be costly. Aiming the development of a new medium source to tropical countries, in the present study, we used leaves from the guarana (a tropical plant from the Amazon region) and the olive (which grows in subtropical and temperate regions) to isolate endophytic fungi using PDA and Manihot Dextrose Agar (MDA). Cassava (Manihot esculenta) was evaluated as a substitute starch source. For guarana, the endophytic incidence (EI) was 90% and 98% on PDA and MDA media, respectively, and 65% and 70% for olive, respectively. The fungal isolates were sequenced using the ITS- rDNA region. The fungal identification demonstrated that the isolates varied according to the host plant and media source. In the guarana plant, 13 fungal genera were found using MDA and six were found using PDA. In the olive plant, six genera were obtained using PDA and 4 were obtained using MDA. The multivariate analysis results demonstrated the highest fungal diversity from guarana when using MDA medium. Interestingly, some genera were isolated from one specific host or in one specific media, suggesting the importance of these two factors in fungal isolation specificity. Thus, this study indicated that cassava is a feasible starch source that could serve as a potential alternative medium to potato medium.

  7. Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues.

    PubMed

    Zhu, Xuezhu; Jin, Li; Sun, Kai; Li, Shuang; Ling, Wanting; Li, Xuelin

    2016-01-01

    Endophytes are ubiquitous in plants, and they may have a natural capacity to biodegrade polycyclic aromatic hydrocarbons (PAHs). In our study, a phenanthrene-degrading endophytic Paenibacillus sp. PHE-3 was isolated from P. asiatica L. grown in a PAH-contaminated site. The effects of environmental variables on phenanthrene biodegradation by strain PHE-3 were studied, and the ability of strain PHE-3 to use high molecular weight PAH (HMW-PAH) as a sole carbon source was also evaluated. Our results indicated that pH value of 4.0-8.0, temperature of 30 °C-42 °C, initial phenanthrene concentration less than 100 mg·L(-1), and some additional nutrients are favorable for the biodegradation of phenanthrene by strain PHE-3. The maximum biodegradation efficiency of phenanthrene was achieved at 99.9% after 84 h cultivation with additional glutamate. Moreover, the phenanthrene biodegradation by strain PHE-3 was positively correlated with the catechol 2,3-dioxygenase activity (ρ = 0.981, p < 0.05), suggesting that strain PHE-3 had the capability of degrading HMW-PAHs. In the presence of other 2-, 3-ringed PAHs, strain PHE-3 effectively degraded HMW-PAHs through co-metabolism. The results of this study are beneficial in that the re-colonization potential and PAH degradation performance of endophytic Paenibacillus sp. PHE-3 may be applied towards reducing PAH contamination in plants. PMID:27347988

  8. Potential of Endophytic Bacterium Paenibacillus sp. PHE-3 Isolated from Plantago asiatica L. for Reduction of PAH Contamination in Plant Tissues

    PubMed Central

    Zhu, Xuezhu; Jin, Li; Sun, Kai; Li, Shuang; Ling, Wanting; Li, Xuelin

    2016-01-01

    Endophytes are ubiquitous in plants, and they may have a natural capacity to biodegrade polycyclic aromatic hydrocarbons (PAHs). In our study, a phenanthrene-degrading endophytic Paenibacillus sp. PHE-3 was isolated from P. asiatica L. grown in a PAH-contaminated site. The effects of environmental variables on phenanthrene biodegradation by strain PHE-3 were studied, and the ability of strain PHE-3 to use high molecular weight PAH (HMW-PAH) as a sole carbon source was also evaluated. Our results indicated that pH value of 4.0–8.0, temperature of 30 °C–42 °C, initial phenanthrene concentration less than 100 mg·L−1, and some additional nutrients are favorable for the biodegradation of phenanthrene by strain PHE-3. The maximum biodegradation efficiency of phenanthrene was achieved at 99.9% after 84 h cultivation with additional glutamate. Moreover, the phenanthrene biodegradation by strain PHE-3 was positively correlated with the catechol 2,3-dioxygenase activity (ρ = 0.981, p < 0.05), suggesting that strain PHE-3 had the capability of degrading HMW-PAHs. In the presence of other 2-, 3-ringed PAHs, strain PHE-3 effectively degraded HMW-PAHs through co-metabolism. The results of this study are beneficial in that the re-colonization potential and PAH degradation performance of endophytic Paenibacillus sp. PHE-3 may be applied towards reducing PAH contamination in plants. PMID:27347988

  9. Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L.

    PubMed

    Madhaiyan, Munusamy; Hu, Chuan Jiong; Kim, Soo-Jin; Weon, Hang-Yeon; Kwon, Soon-Wo; Ji, Lianghui

    2013-04-01

    A short rod-shaped Gram-stain-positive actinobacterium was isolated as an endophyte from the tissues of Jatropha curcas cv. KB27 and was investigated by means of a polyphasic taxonomic approach. An analysis of its 16S rRNA gene sequence indicated that strain S9-650(T) forms an individual line of descent and is related to certain members of the suborder Frankineae, order Actinomycetales (<95 % sequence similarity). Distance-matrix and neighbour-joining analyses set the branching point of the novel isolate between two clades, one being represented by members of the genera Frankia (family Frankiaceae) and Acidothermus (family Acidothermaceae) and the other by members of the genera Geodermatophilus, Blastococcus and Modestobacter (family Geodermatophilaceae). The organism had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The acyl type was found to be N-glycolylated. The major menaquinone was MK-9(H4) and the fatty acid profile was characterized by the predominance of iso-C16 : 0, C18 : 1ω9c, anteiso-C17 : 0 and C17 : 1ω8c. The polar lipids comprised diphosphatidylglycerol, an unidentified glycolipid, phospholipids and aminolipids. The G+C content of the genomic DNA was 71.2 mol%. The distinct phylogenetic position and the phenotypic markers that clearly separate the novel organism from all other members of the suborder Frankineae indicate that strain S9-650(T) represents a novel species in a new genus, for which the name Jatrophihabitans endophyticus gen. nov., sp. nov. is proposed. The type strain of the type species is S9-650(T) ( = DSM 45627(T) = KACC 16232(T)). PMID:22798659

  10. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus.

    PubMed

    Zhang, Yan-Feng; He, Lin-Yan; Chen, Zhao-Jin; Wang, Qing-Ya; Qian, Meng; Sheng, Xia-Fang

    2011-03-01

    One hundred Cu-resistant-endophytic bacteria were isolated from Cu-tolerant plants grown on Cu mine wasteland, of which, eight Cu-resistant and 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were obtained based on the ACC deaminase activity of the bacteria and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores and mineral phosphate solubilization. Ralstonia sp. J1-22-2, Pantoea agglomerans Jp3-3, and Pseudomonas thivervalensis Y1-3-9 with higher ACC deaminase activity (ranging from 213 to 370 μM α-ketobutyrate mg(-1)h(-1)) were evaluated for promoting plant growth and Cu uptake of rape grown in quartz sand containing 0, 2.5, and 5 mg kg(-1) of Cu in pot experiments. The eight bacteria were found to exhibit different multiple heavy metal resistance characteristics, to show different levels of ACC deaminase activity and to produce indole acetic acid. Seven bacteria produced siderophores and solubilized inorganic phosphate. Pot experiments showed that inoculation with the strains (J1-22-2, Jp3-3, and Y1-3-9) was found to increase the biomass of rape. Increases in above-ground tissue Cu contents of rape cultivated in 2.5 and 5 mg kg(-1) of Cu-contaminated substrates varied from 9% to 31% and from 3 to 4-fold respectively in inoculated-rape plants compared to the uninoculated control. The maximum Cu uptake of rape was observed after inoculation with P. agglomerans Jp3-3. The results show that metal-resistant and plant growth promoting endophytic bacteria play an important role in plant growth and Cu uptake which may provide a new endophytic bacterial-assisted phytoremediation of Cu-contaminated environment. PMID:21315404

  11. Isolation and characterization of putative endophytic bacteria antagonistic to Phoma tracheiphila and Verticillium albo-atrum.

    PubMed

    Kalai-Grami, Leila; Saidi, Sabrine; Bachkouel, Sarra; Ben Slimene, Imen; Mnari-Hattab, Monia; Hajlaoui, Mohamed Rebah; Limam, Ferid

    2014-09-01

    A collection of 200 bacterial isolates recovered from citrus plants (Citrus limon, Citrus sinensis, and Citrus reticulata), Medicago truncatula and Laurus nobilis, was established. In vitro screening indicated that 28 isolates exhibited an inhibitory activity against the vascular pathogens Phoma tracheiphila and Verticillium albo-atrum. Isolates were screened according to their hydrolytic activities, plant growth-promoting bacteria (PGPB) abilities, as well as for the presence of nonribosomal peptide synthetase (NRPS) genes responsible of the lipopeptide biosynthesis. The results were positive for 16 isolates which exhibited at least two PGPB activities and a single NRPS gene. Genetic diversity of the selected isolates was studied using random amplified polymorphic DNA (RAPD) and repetitive element PCR (REP) tools that showed clustering of strains into three major groups (I, II, and III) (i, ii, and iii), respectively. Clustering was further confirmed by the 16S rDNA sequencing that assigned nine isolates to Bacillus velezensis, four isolates to Bacillus methyltrophicus, one isolate to Bacillus amyloliquefaciens, and two isolates to Bacillus mojavensis. Organ-bacterial genotype interaction as well as positive correlation with NRPS genes are discussed. PMID:25074353

  12. Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies.

    PubMed

    Rouws, Luc Felicianus Marie; Leite, Jakson; de Matos, Gustavo Feitosa; Zilli, Jerri Edson; Coelho, Marcia Reed Rodrigues; Xavier, Gustavo Ribeiro; Fischer, Doreen; Hartmann, Anton; Reis, Verônica Massena; Baldani, José Ivo

    2014-08-01

    Brazilian sugarcane has been shown to obtain part of its nitrogen via biological nitrogen fixation (BNF). Recent reports, based on the culture independent sequencing of bacterial nifH complementary DNA (cDNA) from sugarcane tissues, have suggested that members of the Bradyrhizobium genus could play a role in sugarcane-associated BNF. Here we report on the isolation of Bradyrhizobium spp. isolates and a few other species from roots of sugarcane cultivar RB867515 by two cultivation strategies: direct isolation on culture media and capture of Bradyrhizobium spp. using the promiscuous legume Vigna unguiculata as trap-plant. Both strategies permitted the isolation of genetically diverse Bradyrhizobium spp. isolates, as concluded from enterobacterial repetitive intergenic consensus polymerase chain reaction (PCR) fingerprinting and 16S ribosomal RNA, nifH and nodC sequence analyses. Several isolates presented nifH phylotypes highly similar to nifH cDNA phylotypes detected in field-grown sugarcane by a culture-independent approach. Four isolates obtained by direct plate cultivation were unable to nodulate V. unguiculata and, based on PCR analysis, lacked a nodC gene homologue. Acetylene reduction assay showed in vitro nitrogenase activity for some Bradyrhizobium spp. isolates, suggesting that these bacteria do not require a nodule environment for BNF. Therefore, this study brings further evidence that Bradyrhizobium spp. may play a role in sugarcane-associated BNF under field conditions. PMID:24992534

  13. [Secondary Metabolites from Marine Microorganisms. I. Secondary Metabolites from Marine Actinomycetes].

    PubMed

    Orlova, T I; Bulgakova, V G; Polin, A N

    2015-01-01

    Review represents data on new active metabolites isolated from marine actinomycetes published in 2007 to 2014. Marine actinomycetes are an unlimited source of novel secondary metabolites with various biological activities. Among them there are antibiotics, anticancer compounds, inhibitors of biochemical processes.

  14. Interspecies variation of Kitasatospora recifensis endophytic from yam bean producing thermostable amylases in alternative media.

    PubMed

    Stamford, Tania Lucia Montenegro; Stamford, Thayza Christina Montenegro; Stamford, Newton Pereira; Santos, Carolina Etienne Rosália Silva; de Lyra, Maria do Carmo Catanho Pereira; Ha-Park, Yong; Bae, Jin-Won; Araújo, Janete Magali

    2007-12-01

    An endophytic actinomycete isolated from tubers of yam beam (Pachyrhizus erosus L. Urban) was classified as a novel species nominated Kitasatospora recifensis based in phenotypic and genotypic analysis (16S rDNA gene sequence). Monosporic culture using specific ISP2 media revealed three interspecies, which were identified by DNA southern hybridization (Wild strain 13817 W, Aerial Mycelium strain 13817 AM and Vegetative Mycelium strain 13817 VM). The strains were tested for the production of amylolitic enzymes in alternative media. Maximum yields for both enzymes were observed in starch-casein. Higher α-amylase was obtained with strain 13817 W in starch-urea, and amyloglucosidase with strain 13817 AM in starch-ammonium that are economic sources and may be important for industrial purposes. Type strain (DAUFPE 13817(T) = KCTC 9972(T )= DSM 44943(T)). PMID:27517827

  15. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand.

    PubMed

    Nutaratat, Pumin; Srisuk, Nantana; Arunrattiyakorn, Panarat; Limtong, Savitree

    2014-08-01

    A total of 1035 yeast isolates, obtained from rice and sugar cane leaves, were screened primarily for indole-3-acetic acid (IAA) production. Thirteen isolates were selected, due to their IAA production ranging from 1.2 to 29.3 mg g(-)(1) DCW. These isolates were investigated for their capabilities of calcium phosphate and ZnO(3) solubilisation, and also for production of NH(3), polyamine, and siderophore. Their 1-aminocyclopropane-1-carboxylate (ACC) deaminase, catalase and fungal cell wall-degrading enzyme activities were assessed. Their antagonism against rice fungal pathogens was also evaluated. Strain identification, based on molecular taxonomy, of the thirteen yeast isolates revealed that four yeast species - i.e. Hannaella sinensis (DMKU-RP45), Cryptococcus flavus (DMKU-RE12, DMKU-RE19, DMKU-RE67, and DMKU-RP128), Rhodosporidium paludigenum (DMKU-RP301) and Torulaspora globosa (DMKU-RP31) - were capable of high IAA production. Catalase activity was detected in all yeast strains tested. The yeast R. paludigenum DMKU-RP301 was the best IAA producer, yielding 29.3 mg g(-)(1) DCW, and showed the ability to produce NH3 and siderophore. Different levels of IAA production (7.2-9.7 mg g(-)(1) DCW) were found in four strains of C. flavus DMKU-RE12, DMKU-RE19, and DMKU-RE67, which are rice leaf endophytes, and strain DMKU-RP128, which is a rice leaf epiphyte. NH(3) production and carboxymethyl cellulase (CMCase) activity was also detected in these four strains. Antagonism to fungal plant pathogens and production of antifungal volatile compounds were exhibited in T. globosa DMKU-RP31, as well as a moderate level of IAA production (4.9 mg g(-)(1) DCW). The overall results indicated that T. globosa DMKU-RP31 might be used in two ways: enhancing plant growth and acting as a biocontrol agent. In addition, four C. flavus were also found to be strains of interest for optimal IAA production.

  16. "Omics" Tools for Better Understanding the Plant-Endophyte Interactions.

    PubMed

    Kaul, Sanjana; Sharma, Tanwi; K Dhar, Manoj

    2016-01-01

    Endophytes, which mostly include bacteria, fungi and actinomycetes, are the endosymbionts that reside asymptomatically in plants for at least a part of their life cycle. They have emerged as a valuable source of novel metabolites, industrially important enzymes and as stress relievers of host plant, but still many aspects of endophytic biology are unknown. Functions of individual endophytes are the result of their continuous and complex interactions with the host plant as well as other members of the host microbiome. Understanding plant microbiomes as a system allows analysis and integration of these complex interactions. Modern genomic studies involving metaomics and comparative studies can prove to be helpful in unraveling the gray areas of endophytism. A deeper knowledge of the mechanism of host infestation and role of endophytes could be exploited to improve the agricultural management in terms of plant growth promotion, biocontrol and bioremediation. Genome sequencing, comparative genomics, microarray, next gen sequencing, metagenomics, metatranscriptomics are some of the techniques that are being used or can be used to unravel plant-endophyte relationship. The modern techniques and approaches need to be explored to study endophytes and their putative role in host plant ecology. This review highlights "omics" tools that can be explored for understanding the role of endophytes in the plant microbiome. PMID:27446181

  17. LC-MS-Guided Isolation of Penicilfuranone A: A New Antifibrotic Furancarboxylic Acid from the Plant Endophytic Fungus Penicillium sp. sh18.

    PubMed

    Wang, Wei-Guang; Li, Ao; Yan, Bing-Chao; Niu, Shu-Bin; Tang, Jian-Wei; Li, Xiao-Nian; Du, Xue; Challis, Gregory L; Che, Yongsheng; Sun, Han-Dong; Pu, Jian-Xin

    2016-01-22

    Penicilfuranone A (1), a novel furancarboxylic acid, and its proposed biosynthetic precursor, gregatin A (2), were isolated from the cultures of the fungus Penicillium sp. sh18 endophytic to the stems of Isodon eriocalyx var. laxiflora guided by HPLC-MS. X-ray crystallography was applied to the structure determination of furancarboxylic acid for the first time, allowing unambiguous assignment of 1. Penicilfuranone A displays a significant antifibrotic effect in activated hepatic stellate cells via negative regulation of transforming growth factor-β (TGF-β)/Smad signaling. PMID:26677752

  18. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum.

    PubMed

    Sun, Jian-Fan; Lin, Xiuping; Zhou, Xue-Feng; Wan, Junting; Zhang, Tianyu; Yang, Bin; Yang, Xian-Wen; Tu, Zhengchao; Liu, Yonghong

    2014-06-01

    Five alkenyl phenol and benzaldehyde derivatives, pestalols A-E (1-5), as well as seven known compounds (6-12), were isolated from endophytic fungus Pestalotiopsis sp. AcBC2 derived from the Chinese mangrove plant Aegiceras corniculatum. Their structures were determined by spectroscopic analyses. Compounds 2 and 3 showed cytotoxicity against a panel of 10 tumor cell lines. Compounds 1-5, 8, 9, 11, and 12 showed inhibitory activities against Influenza A virus subtype (H3N2) and Swine Flu (H1N1) viruses. Compound 2 also showed inhibitory activity against tuberculosis.

  19. New depsidones and isoindolinones from the mangrove endophytic fungus Meyerozyma guilliermondii (HZ-Y2) isolated from the South China Sea.

    PubMed

    Chen, Senhua; Liu, Zhaoming; Liu, Yayue; Lu, Yongjun; He, Lei; She, Zhigang

    2015-01-01

    Three new depsidones, botryorhodines E-G (1-3), and two new isoindolinones, meyeroguillines A and B (7 and 9), along with five known compounds were isolated from an endophytic fungus Meyerozyma guilliermondii, derived from the mangrove plant Kandelia obovata. Their structures were elucidated by 1D and 2D NMR spectroscopy and high resolution mass spectrometry (HREIMS). Compounds 1-6 exhibited strong α-glucosidase inhibitory activity with IC50 values ranging from 2.1 to 13.3 μM. Moreover, kinetic studies of compounds 2 and 6 showed that both of them were noncompetitive inhibitors of α-glucosidase.

  20. Rohitukine, a chromone alkaloid and a precursor of flavopiridol, is produced by endophytic fungi isolated from Dysoxylum binectariferum Hook.f and Amoora rohituka (Roxb).Wight & Arn.

    PubMed

    Kumara, P Mohana; Soujanya, K N; Ravikanth, G; Vasudeva, R; Ganeshaiah, K N; Shaanker, R Uma

    2014-03-15

    Rohitukine, a chromone alkaloid, has gained considerable international attention in recent years because of its novel semi-synthetic derivative, flavopiridol and P-276-00. Both these molecules are in advanced stages of clinical development and trial for cancer treatment. Recently, flavopiridol was approved as an orphan drug for treatment of chronic lymphocytic leukemia cancer. The natural occurrence of rohitukine is restricted to only four plant species, Amoora rohituka and Dysoxylum binectariferum (both from the Meliaceae family) and from Schumanniophyton magnificum and Schumanniophyton problematicum (both from the Rubiaceae family). Recently, an endophytic fungi isolated from D. binectariferum was reported to produce rohitukine in culture. In this study, we report the production of rohitukine and its subsequent attenuation by endophytic fungi, Fusarium oxysporum (MTCC-11383), Fusarium oxysporum (MTCC-11384) and Fusarium solani (MTCC-11385), all isolated from D. binectariferum and Gibberella fujikuroi (MTCC-11382) isolated from Amoora rohituka. The fungal rohitukine which was analyzed by HPLC, LC-MS and LC-MS/MS was identical to reference rohitukine and that produced by the plant. The rohitukine content in the mycelial samples ranged from 192.78μg to 359.55μg100g(-1) of dry weight of and in broth it ranged from 14.10 to 71.90μg100ml(-1). In all the fungal cultures, the production declined from first to fourth sub-culture. Studies are underway to unravel the mechanism by which the fungi produce the host metabolite in culture.

  1. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera.

    PubMed

    Sgroy, Verónica; Cassán, Fabricio; Masciarelli, Oscar; Del Papa, María Florencia; Lagares, Antonio; Luna, Virginia

    2009-11-01

    This study was designed to isolate and characterize endophytic bacteria from halophyte Prosopis strombulifera grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion or stress homeostasis regulation. Isolates obtained from P. strombulifera were compared genotypically by BOX-polymerase chain reaction, grouped according to similarity, and identified by amplification and partial sequences of 16S DNAr. Isolates were grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, siderophores, and phytohormones, such as indole-3-acetic acid, zeatin, gibberellic acid and abscisic acid production, as well as antifungal, protease, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. A total of 29 endophytic strains were grouped into seven according to similarity. All bacteria were able to grow and to produce some phytohormone in chemically defined medium with or without addition of a nitrogen source. Only one was able to produce siderophores, and none of them solubilized phosphate. ACC deaminase activity was positive for six strains. Antifungal and protease activity were confirmed for two of them. In this work, we discuss the possible implications of these bacterial mechanisms on the plant growth promotion or homeostasis regulation in natural conditions.

  2. An ascomycetous endophyte isolated from Mentha piperita L.: biological features and molecular studies.

    PubMed

    Mucciarelli, Marco; Scannerini, Silvano; Bertea, Cinzia M; Maffei, Massimo

    2002-01-01

    A hyaline sterile fungus forming epiphyllous mycelial nets was isolated from meristem cultures of Mentha piperita. Histological studies indicated that the culture isolate is able to colonize stems and leaves with no damage to the host plant. In vitro-grown peppermint plants displayed enhanced vegetative growth when infected by the fungus, with mycelium extending from green tissues to growing rootlets. The production of very thin hyphae growing away from host meristems and the asymptomatic nature of the symbiosis were commonly observed in cultures, where the isolate never sporulated. No attribution to a precise morphospecies was therefore possible and the fungal culture was named sterile mycelium PGP-HSF. Through comparison of the 18 S rDNA sequence of the epibiont to those available in literature and in GenBank we were able to determine that the mutualist of peppermint is a member of the Pyrenomycetes, belonging to the subclass Sordariomycetidae. PMID:21156475

  3. Evaluation of endophytic colonization of Citrus sinensis and Catharanthus roseus seedlings by endophytic bacteria.

    PubMed

    Lacava, Paulo Teixeira; Araújo, Welington Luiz; Azevedo, João Lúcio

    2007-02-01

    Over the last few years, the endophytic bacterial community associated with citrus has been studied as an important component interacting with Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC). This bacterium may also colonize some model plants, such as Catharanthus roseus and Nicotiana clevelandii. In the present study, we compared the endophytic colonization of Citrus sinensis and Catharanthus roseus using the endophytic bacteria Klebsiella pneumoniae. We chose an appropriate strain, K. pneumoniae 342 (Kp342), labeled with the GFP gene. This strain was inoculated onto seedlings of C. sinensis and C. roseus. The isolation frequency was determined one week after the inoculation and the endophytic colonization of K. pneumoniae was observed using fluorescence microscopy. Although the endophytic bacterium was more frequently isolated from C. roseus than from C. sinensis, the colonization profiles for both host plants were similar, suggesting that C. roseus could be used as a model plant to study the interaction between endophytic bacteria and X. fastidiosa.

  4. Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata).

    PubMed

    Somjaipeng, Supunnika; Medina, Angel; Kwaśna, Hanna; Ordaz Ortiz, Jose; Magan, Naresh

    2015-11-01

    Endophytic fungi were isolated/screened from temperate Taxus baccata (Yew) for production of the anti-cancer drug taxol. Of 242 endophytic fungi isolated from surface-sterilised Yew tree twig segments, only two produced taxol in a defined liquid medium; confirmed by HPLC and LC-MS/MS analyses. They were identified by molecular means by sequencing of ITS1/ITS2 regions and shown to be Paraconiothyrium variabile and Epicoccum nigrum. They produced 1.75 and 1.32 μgL(-1) taxol respectively in a defined medium. Studies focussed on the P. variabile strain as it produced higher taxol amounts. Solute type (NaCl, KCl, Glucose, Glycerol, sorbitol), temperature (20, 25 and 30 (o)C) and water availability (water activity, aw; 0.90-0.99) on growth and taxol production by P. variabile was determined. Growth was similar on media with different solutes (1.0-1.25 mm d(-1)), optimum at 0.99 aw and 25 (o)C. In contrast, optimum taxol production was in a defined medium modified with KCl, at 0.98 aw and 20/25 (o)C, with approx. 2.3 and 7 μgL(-1) respectively. No taxol was produced at <0.96 aw, at 25-30 (o)C, and <0.94 aw at 20 (o)C. This suggests that taxol producing endophytic fungi are in English yew trees and may have potential for utilisation as cell factories for production of this pharmaceutically useful compound.

  5. Draft Genome Sequence of Three Endophyte Strains of Pseudomonas fluorescens Isolated from Miscanthus giganteus

    PubMed Central

    Moreira, António S.; Lloyd, Andrew; Lally, Richard D.; Galbally, Paul T.; Ryan, David

    2016-01-01

    We report here the draft genome sequence of three Pseudomonas fluorescens strains (L111, L228, and L321) isolated from Miscanthus giganteus. The draft genome analyses uncovered a group of genes involved in the biosynthesis of secondary metabolites and for plant growth promotion. PMID:27738024

  6. Viability studies on actinomycetes.

    PubMed

    Taddei, A; Tremarias, M M; Hartung de Capriles, C

    Eighty-nine Actinomycetes strains were tested for their viability, morphological and physiological characteristics after being kept under paraffin oil overlay and distilled water for a period between 10-30 years. Most of the studied strains belong to the "Lorenzo De Montemayor" collection. Almost all the recovered strains were 28-30 years old and had never been subcultured since the paraffin oil was overlaid. 71.4% of viable Streptomycetes strains had been kept on Sabouraud-dextrose agar and 28.6% were kept on Negroni and Bonfiglioli-medium. Streptomyces violaceusruber produced its characteristic pigment even after 28 years under these conditions. All of the recovered strains were tested for their biological activity, but only Streptomyces lavendulae showed growth-inhibition against Staphylococcus aureus and Bacillus subtilis.

  7. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance.

    PubMed

    Yaish, Mahmoud W; Antony, Irin; Glick, Bernard R

    2015-06-01

    Endophytic bacteria were isolated from date palm (Phoenix dactylifera L.) seedling roots, characterized and tested for their ability to help plants grow under saline conditions. Molecular characterization showed that the majority of these strains belonged to the genera Bacillus and Enterobacter and had different degrees of resistance to various antibiotics. Some of these strains were able to produce the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and the plant growth regulatory hormone indole-3-acetic acid (IAA). Some strains were also able to chelate ferric iron (Fe(3+)) and solubilize potassium (K(+)), phosphorus (PO 4 (3-) ) and zinc (Zn(2+)), and produce ammonia. The results also showed that ACC deaminase activity and IAA production was slightly increased in some strains in response to an increase in NaCl concentration in the growth media. Consistent with these results, selected strains such as PD-R6 (Paenibacillus xylanexedens) and PD-P6 (Enterobacter cloacae) were able to enhance canola root elongation when grown under normal and saline conditions as demonstrated by a gnotobiotic root elongation assay. These results suggest that the isolated and characterized endophytic bacteria can alter ethylene and IAA levels and also facilitate nutrient uptake in roots and therefore have the potential role to promote the growth and development of date palm trees growing under salinity stress. PMID:25860542

  8. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus).

    PubMed

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae; Choi, In-Geol; Kim, Ki Deok

    2016-06-16

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation.

  9. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus).

    PubMed

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae; Choi, In-Geol; Kim, Ki Deok

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  10. Draft Genome Sequence of Chryseobacterium sp. Strain GSE06, a Biocontrol Endophytic Bacterium Isolated from Cucumber (Cucumis sativus)

    PubMed Central

    Jeong, Jin-Ju; Park, Byeong Hyeok; Park, Hongjae

    2016-01-01

    Chryseobacterium sp. strain GSE06 is a biocontrol endophytic bacterium against the destructive soilborne oomycete Phytophthora capsici, which causes Phytophthora blight of pepper. Here, we present its draft genome sequence, which contains genes related to biocontrol traits, such as colonization, antimicrobial activity, plant growth promotion, and abiotic or biotic stress adaptation. PMID:27313310

  11. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    PubMed

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-01-01

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region. PMID:26214435

  12. Endophytic bacteria from Piper tuberculatum Jacq.: isolation, molecular characterization, and in vitro screening for the control of Fusarium solani f. sp piperis, the causal agent of root rot disease in black pepper (Piper nigrum L.).

    PubMed

    Nascimento, S B; Lima, A M; Borges, B N; de Souza, C R B

    2015-07-06

    Endophytic bacteria have been found to colonize internal tissues in many different plants, where they can have several beneficial effects, including defense against pathogens. In this study, we aimed to identify endophytic bacteria associated with roots of the tropical piperaceae Piper tuberculatum, which is known for its resistance to infection by Fusarium solani f. sp piperis, the causal agent of black pepper (Piper nigrum) root rot disease in the Amazon region. Based on 16S rRNA gene sequence analysis, we isolated endophytes belonging to 13 genera: Bacillus, Paenibacillus, Pseudomonas, Enterobacter, Rhizobium, Sinorhizobium, Agrobacterium, Ralstonia, Serratia, Cupriavidus, Mitsuaria, Pantoea, and Staphylococcus. The results showed that 56.52% of isolates were associated with the phylum Proteobacteria, which comprised α, β, and γ classes. Other bacteria were related to the phylum Firmicutes, including Bacillus, which was the most abundant genus among all isolates. Antagonistic assays revealed that Pt12 and Pt13 isolates, identified as Pseudomonas putida and Pseudomonas sp, respectively, were able to inhibit F. solani f. sp piperis growth in vitro. We describe, for the first time, the molecular identification of 23 endophytic bacteria from P. tuberculatum, among which two Pseudomonas species have the potential to control the pathogen responsible for root rot disease in black pepper in the Amazon region.

  13. Simulated acid rain affects birch leaf endophyte populations.

    PubMed

    Helander, M L; Neuvonen, S; Sieber, T; Petrini, O

    1993-11-01

    Endophytes were frequently isolated from mountain birch (Betula pubescens var. tortuosa (Ledeb.) Nyman) leaves at a subarctic site where natural air pollution is low. We tested whether simulated acid rain had any influence on the occurrence of endophytes. Dry controls with only ambient rain and irrigated controls treated with spring water of pH 6 were compared with acid treatments at pH 3 and pH 4, prepared by adding both sulphuric and nitric acids. Treatments began in 1985 and leaf samples were taken twice during the summer of 1992. Leaves were surface sterilized, five leaf disks from each leaf placed on malt extract agar, and growing colonies were counted and identified. The most frequently isolated endophyte from birch leaves was a Fusicladium anamorph of Venturia sp. (88% of all the isolates in July and 75% of all the isolates in August), followed by a sterile mycelium and Melanconium sp. The number of endophytes isolated and the species number increased from July to August. Endophytes were most frequently isolated from the basal part of the midrib. The percentage of colonization by endophytes was similar in short and long shoots. More endophytes were isolated from leaves of branches taken at 1 m height than at 2 m height. The stronger acid rain treatment (pH 3) reduced by approximately 25% the number of isolated endophytes in August. Treatments did not have any effect on species composition of endophyte assemblages in birch leaves.

  14. Isolation of Pyrrolocins A–C: cis- and trans-Decalin Tetramic Acid Antibiotics from an Endophytic Fungal-Derived Pathway

    PubMed Central

    2014-01-01

    Three new decalin-type tetramic acid analogues, pyrrolocins A (1), B (2), and C (3), were defined as products of a metabolic pathway from a fern endophyte, NRRL 50135, from Papua New Guinea. NRRL 50135 initially produced 1 but ceased its production before chemical or biological evaluation could be completed. Upon transfer of the biosynthetic pathway to a model host, 1–3 were produced. All three compounds are structurally related to equisetin-type compounds, with 1 and 3 having a trans-decalin ring system, while 2 has a cis-fused decalin. All were active against Mycobacterium tuberculosis, with the trans-decalin analogues 1 and 3 exhibiting lower MICs than the cis-decalin analogue 2. Here we report the isolation, structure elucidation, and antimycobacterial activities of 1–3 from the recombinant expression as well as the isolation of 1 from the wild-type fungus NRRL 50135. PMID:25351193

  15. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    PubMed

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  16. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    PubMed

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions. PMID:27447799

  17. Fungal endophytes limit pathogen damage in a tropical tree

    PubMed Central

    Arnold, A. Elizabeth; Mejía, Luis Carlos; Kyllo, Damond; Rojas, Enith I.; Maynard, Zuleyka; Robbins, Nancy; Herre, Edward Allen

    2003-01-01

    Every plant species examined to date harbors endophytic fungi within its asymptomatic aerial tissues, such that endophytes represent a ubiquitous, yet cryptic, component of terrestrial plant communities. Fungal endophytes associated with leaves of woody angiosperms are especially diverse; yet, fundamental aspects of their interactions with hosts are unknown. In contrast to the relatively species-poor endophytes that are vertically transmitted and act as defensive mutualists of some temperate grasses, the diverse, horizontally transmitted endophytes of woody angiosperms are thought to contribute little to host defense. Here, we document high diversity, spatial structure, and host affinity among foliar endophytes associated with a tropical tree (Theobroma cacao, Malvaceae) across lowland Panama. We then show that inoculation of endophyte-free leaves with endophytes isolated frequently from naturally infected, asymptomatic hosts significantly decreases both leaf necrosis and leaf mortality when T. cacao seedlings are challenged with a major pathogen (Phytophthora sp.). In contrast to reports of fungal inoculation inducing systemic defense, we found that protection was primarily localized to endophyte-infected tissues. Further, endophyte-mediated protection was greater in mature leaves, which bear less intrinsic defense against fungal pathogens than do young leaves. In vitro studies suggest that host affinity is mediated by leaf chemistry, and that protection may be mediated by direct interactions of endophytes with foliar pathogens. Together, these data demonstrate the capacity of diverse, horizontally transmitted endophytes of woody angiosperms to play an important but previously unappreciated role in host defense. PMID:14671327

  18. Friedmanniella endophytica sp. nov., an endophytic actinobacterium isolated from bark of Kandelia candel.

    PubMed

    Tuo, Li; Pan, Zhen; Li, Fei-Na; Lou, Inchio; Guo, Min; Lee, Simon Ming-Yuen; Chen, Li; Hu, Lin; Sun, Cheng-Hang

    2016-08-01

    A coccus-shaped, non-spore-forming actinobacterium, designated strain 4Q3S-3T, was isolated from surface-sterilized bark of the mangrove plant Kandelia candel collected from Cotai Ecological Zones in Macao, China, and tested by a polyphasic approach to clarify its taxonomic position. This actinobacterium was Gram-stain-positive and aerobic. Neither substrate nor aerial mycelia were formed, and no diffusible pigments were observed on the media tested. Strain 4Q3S-3T grew optimally without NaCl at 28-30 °C, pH 7.0-8.0. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain 4Q3S-3T belonged to the genus Friedmanniella and shared the highest 16S rRNA gene sequence similarity with Friedmanniellaflava W6T (96.57 %). The DNA G+C content of strain 4Q3S-3T was 69.5 mol%. The cell-wall peptidoglycan contained ll-2,6-diaminopimelic acid, and MK-9(H4) was the predominant menaquinone. The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, unidentified glycolipid, amino lipids and two unidentified phospholipids. The predominant fatty acids were anteiso-C15 : 0, iso-C16 : 0 and iso-C15 : 0. Based on phylogenetic, phenotypic and chemotaxonomic data, strain 4Q3S-3T represents a novel species of the genus Friedmanniella, for which the name Friedmanniella endophytica sp. nov. is proposed. The type strain is 4Q3S-3T (=DSM 100723T=CGMCC 4.7307T). PMID:27169592

  19. Microlunatus endophyticus sp. nov., an endophytic actinobacterium isolated from bark of Bruguiera sexangula.

    PubMed

    Tuo, Li; Li, Jing; Liu, Shao-Wei; Liu, Yang; Hu, Lin; Chen, Li; Jiang, Ming-Guo; Sun, Cheng-Hang

    2016-01-01

    A Gram-stain-positive, aerobic, coccoid, non-motile, non-spore-forming bacterium, designated strain S3Af-1T, was isolated from surface-sterilized bark of Bruguiera sexangula collected from Dongzhaigang National Nature Reserve in Hainan, China, and examined using a polyphasic approach to clarify its taxonomic position. This bacterium did not produce substrate mycelia or aerial hyphae, and no diffusible pigments were observed on the media tested. Strain S3Af-1T grew optimally without NaCl, at 28-30 °C and at pH 7.0.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S3Af-1T belonged to the genus Microlunatus and shared highest similarity with 'Microlunatus terrae' BS6 (97.43 %) and Microlunatus soli CC-12602T (97.08 %). DNA-DNA hybridization results indicated that the level of relatedness between strain S3Af-1T and M. soli CC-12602T was less than 70 %. The DNA G+C content of strain S3Af-1T was 67.1 mol%. The cell-wall peptidoglycan contained ll-2,6-diaminopimelic acid. MK-9(H6) and MK-9(H4) were the predominant menaquinones. Phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid, two unidentified phospholipids and other lipids were detected in the polar lipid extracts. The major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. On the basis of phylogenetic analysis, and phenotypic and chemotaxonomic characteristics, strain S3Af-1T represents a novel species of the genus Microlunatus, for which the name Microlunatus endophyticus sp. nov. is proposed. The type strain is S3Af-1T ( = DSM 100019T = CGMCC 4.7306T). PMID:26585772

  20. Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud.

    PubMed

    Song, Geun Cheol; Yasir, Muhammad; Bibi, Fehmida; Chung, Eu Jin; Jeon, Che Ok; Chung, Young Ryun

    2011-01-01

    A Gram-staining-positive, coccoid to rod-shaped bacterium, designated strain YC6903(T), was isolated from a halophytic plant (Carex scabrifolia Steud.) collected from sand dunes at Namhae Island, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain YC6903(T) grew optimally at 30 °C and at pH 8.0. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YC6903(T) belongs to the genus Nocardioides in the family Nocardioidaceae. Strain YC6903(T) was related most closely to Nocardioides pyridinolyticus OS4(T) (97.0 % 16S rRNA gene sequence similarity), Nocardioides dokdonensis FR1436(T) (96.6 %), Nocardioides aquiterrae GW-9(T) (96.6 %) and Nocardioides hankookensis DS-30(T) (96.6 %). The cell-wall peptidoglycan contained LL-diaminopimelic acid and MK-8(H(4)) was the major respiratory quinone. The mean (±SD) level of DNA-DNA relatedness between strain YC6903(T) and N. pyridinolyticus OS4(T) was 53.5±5.5 %. The predominant cellular fatty acid of strain YC6903(T) was iso-C(16 : 0) (28.9 %). The DNA G+C content was 71.7 mol%. Phenotypic, phylogenetic and chemotaxonomic data indicated that strain YC6903(T) represents a novel species of the genus Nocardioides, for which the name Nocardioides caricicola sp. nov. is proposed. The type strain is YC6903(T) (=KACC 13778(T) =DSM 22177(T)).

  1. Bioweathering and biotransformation of granitic rock minerals by actinomycetes.

    PubMed

    Abdulla, Hesham

    2009-11-01

    Actinomycetes inhabiting granitic rocks at St. Katherine, Egypt were investigated for their bioweathering potential. Actinomycete counts ranged between 174 and 360 colony forming units per gram. Counts were positively correlated to rock porosity (r = 0.65) and negatively correlated to rock salinity (r = -0.56). Sixty-six actinomycete isolates originating from rocks could be assigned into eight genera, with a high frequency of Nocardioides and Streptomyces. Organic acids were produced by 97% of the isolates. Strains belonging to Actinopolyspora, Actinomadura, Kitasatospora, Nocardioides, and Kibdelosporangium showed the highest acid production indices. Representatives from all eight genera could precipitate metals Cu, Fe, Zn, Cd, and Ag up to concentrations of 2.5 mM each. An actinomycete consortium of two Nocardioides strains and one Kibdelosporangium strain was studied for its potential to cause rock weathering in batch experiments. Results indicated a high ability of the consortium to leach the metals Cu, Zn, and Fe up to 2.6-, 2.1-, and 1.3-fold, respectively, compared to the control after 4 weeks. The pH significantly decreased after 1 week, which was parallel to an increased release of phosphate and sulfate reaching a 2.2- and 2.5-fold increase, respectively, compared to control. Highly significant weight loss (p = 0.005) was achieved by the consortium, indicating a potential multiple role of actinomycetes in weathering by acid production, metal leaching, and solubilization of phosphate and sulfate. This study emphasizes the diverse and unique abilities of actinomycetes inhabiting rock surfaces which could be of potential biotechnological applications, such as in the bioremediation of metal-contaminated environments and metal biorecovery.

  2. Acute exposure to ergot alkaloids from endophyte-infected tall fescue does not alter absorptive or barrier function of the isolated bovine ruminal epithelium.

    PubMed

    Foote, A P; Penner, G B; Walpole, M E; Klotz, J L; Brown, K R; Bush, L P; Harmon, D L

    2014-07-01

    Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in volatile fatty acids (VFA) absorption from the washed rumen of steers. Previous data also indicates that incubating an extract of endophyte-infected tall fescue seed causes an increase in the amount of VFA absorbed per unit of blood flow, which could result from an alteration in the absorptive or barrier function of the rumen epithelium. An experiment was conducted to determine the acute effects of an endophyte-infected tall fescue seed extract (EXT) on total, passive or facilitated acetate and butyrate flux across the isolated bovine rumen as well as the barrier function measured by inulin flux and tissue conductance (G t ). Flux of ergovaline across the rumen epithelium was also evaluated. Rumen tissue from the caudal dorsal sac of Holstein steers (n=6), fed a common diet, was collected and isolated shortly after slaughter and mounted between two halves of Ussing chambers. In vitro treatments included vehicle control (80% methanol, 0.5% of total volume), Low EXT (50 ng ergovaline/ml) and High EXT (250 ng ergovaline/ml). Results indicate that there is no effect of acute exposure to ergot alkaloids on total, passive or facilitated flux of acetate or butyrate across the isolate bovine rumen epithelium (P>0.51). Inulin flux (P=0.16) and G t (P>0.17) were not affected by EXT treatment, indicating no alteration in barrier function due to acute ergot alkaloid exposure. Ergovaline was detected in the serosal buffer of the High EXT treatment indicating that the flux rate is ~0.25 to 0.44 ng/cm2 per hour. Data indicate that specific pathways for VFA absorption and barrier function of the rumen epithelium are not affected by acute exposure to ergot alkaloids from tall fescue at the concentrations tested. Ergovaline has the potential to be absorbed from the rumen of cattle that

  3. Endophytic bacteria in Coffea arabica L.

    PubMed

    Vega, Fernando E; Pava-Ripoll, Monica; Posada, Francisco; Buyer, Jeffrey S

    2005-01-01

    Eighty-seven culturable endophytic bacterial isolates in 19 genera were obtained from coffee plants collected in Colombia (n = 67), Hawaii (n = 17), and Mexico (n = 3). Both Gram positive and Gram negative bacteria were isolated, with a greater percentage (68%) being Gram negative. Tissues yielding bacterial endophytes included adult plant leaves, various parts of the berry (e.g., crown, pulp, peduncle and seed), and leaves, stems, and roots of seedlings. Some of the bacteria also occurred as epiphytes. The highest number of bacteria among the berry tissues sampled was isolated from the seed, and includes Bacillus , Burkholderia , Clavibacter , Curtobacterium , Escherichia , Micrococcus , Pantoea , Pseudomonas , Serratia , and Stenotrophomonas . This is the first survey of the endophytic bacteria diversity in various coffee tissues, and the first study reporting endophytic bacteria in coffee seeds. The possible role for these bacteria in the biology of the coffee plant remains unknown.

  4. Azaphilones and p-terphenyls from the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2) isolated from the South China Sea.

    PubMed

    Huang, Hongbo; Feng, Xiaojun; Xiao, Ze'en; Liu, Lan; Li, Hanxiang; Ma, Lin; Lu, Yongjun; Ju, Jianhua; She, Zhigang; Lin, Yongcheng

    2011-05-27

    Eight secondary metabolites, including three new azaphilones (chermesinones A-C, 1-3), three new p-terphenyls (6'-O-desmethylterphenyllin, 4; 3-hydroxy-6'-O-desmethylterphenyllin, 5; 3''-deoxy-6'-O-desmethylcandidusin B, 7), and two known p-terphenyls (6, 8), were isolated from the culture of the mangrove endophytic fungus Penicillium chermesinum (ZH4-E2). Their structures were established by spectroscopic analysis. The absolute configuration of 1 was determined by X-ray crystallography. Terphenyls 4, 5, and 6 exhibited strong inhibitory effects against α-glucosidase with IC50 values of 0.9, 4.9, and 2.5 μM, respectively. Terphenyls 7 and 8 showed inhibitory activity toward acetylcholinesterase with IC50 values of 7.8 and 5.2 μM.

  5. Fungal endophyte diversity in Sarracenia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  6. Production of 3-nitropropionic acid by endophytic fungus Phomopsis longicolla isolated from Trichilia elegans A. JUSS ssp. elegans and evaluation of biological activity.

    PubMed

    Flores, Andressa Caroline; Pamphile, João Alencar; Sarragiotto, Maria Helena; Clemente, Edmar

    2013-05-01

    The compound 3-nitropropionic acid is a potent neurotoxic agent in animals and well-known as a potent inhibitor of Mycobacterium tuberculosis. In this research, we were able to extract this compound from the endophytic fungus, Phomopsis longicolla (FJ62759), isolated from Trichilia elegans A. JUSS ssp. elegans. The aim of this study was the isolation of secondary metabolites produced by P. longicolla, the chemical identification of these compounds and evaluation of their antimicrobial and insecticidal activity. To accomplish these goals, the fungus was cultured in BD broth for 25 days without agitation at 28 °C, and then the broth was separated from the mycelium. The supernatant was partitioned with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and butanol (BuOH) solvents resulting in 3 extracts. However, only the EtOAc extract was used for fractionation and chemical identification because it had the greatest mass. After common chromatographic procedures, the fractions were analyzed by nuclear magnetic resonance to elucidate the chemical components. This procedure resulted in the identification of 3-nitropropionic acid in the D fraction. Evaluation of the insecticidal and antimicrobial activity of this compound has been accomplished, and the results indicate good inhibition of the citrus pathogen Guignardia citricarpa and cocoa pathogen Moniliophthora perniciosa and slight inhibition of the human bacterial pathogens Micrococcus luteus, Salmonella typhi and slight inhibition of phytopathogenic bacteria Xanthomonas axonopodis pv. phaseoli. The evaluation of insecticide activity did not show mortality of the Diatraea saccharalis larvae by the metabolite 3-nitropropionic acid in the D fraction. The results suggest that P. longicolla is a bioactive metabolic producing endophytic fungus with biotechnological properties. PMID:23296917

  7. The role of dark septate endophytic fungal isolates in the accumulation of cesium by chinese cabbage and tomato plants under contaminated environments.

    PubMed

    Diene, Ousmane; Sakagami, Nobuo; Narisawa, Kazuhiko

    2014-01-01

    Following the 2011 Fukushima Daiichi Nuclear Power Plant accident, the preservation of the food chain from radionuclides contamination has become of crucial importance. The potential of Dark septate endophytic fungi in the management of Cs accumulation in plants under contaminated environments was investigated using Chinese cabbage and tomato plants. Four endophytic fungal isolates of different species, i.e. Pseudosigmoidea ibarakiensis I.4-2-1, Veronaeopsis simplex Y34, Helminthosporium velutinum 41-1, and as yet unidentified taxon 312-6 were tested In Vitro in two levels of Cs (5ppm and 10ppm). On the plant growth, the inoculation of the selected DSEs to both Chinese cabbage and tomato resulted in an increased biomass of up to 82% and 122%, respectively compared to control (non-inoculated) plants. With regards to the Cs accumulation, it varied with the host plant considered. In Chinese cabbage, DSEs inoculation caused higher Cs accumulation in above ground plant parts, whereas in tomato, Cs accumulation decreased significantly with three of the isolates tested, i.e., V. simplex Y34, P. ibarakiensis I.4-2-1, and the as yet unidentified taxon 312-6 suggesting low-risk transfer on the above ground plants parts as a result of high and negative plant reactions rather than high and positive reactions as it is the case with Chinese cabbage. These results suggested that DSEs can be recommended for use with Chinese cabbage to enhance phytoremediation of Cs in surrounding contaminated areas. With tomato, DSEs can be recommended for decreasing the accumulation of Cs in plants under contaminated environments.

  8. The Role of Dark Septate Endophytic Fungal Isolates in the Accumulation of Cesium by Chinese Cabbage and Tomato Plants under Contaminated Environments

    PubMed Central

    Diene, Ousmane; Sakagami, Nobuo; Narisawa, Kazuhiko

    2014-01-01

    Following the 2011 Fukushima Daiichi Nuclear Power Plant accident, the preservation of the food chain from radionuclides contamination has become of crucial importance. The potential of Dark septate endophytic fungi in the management of Cs accumulation in plants under contaminated environments was investigated using Chinese cabbage and tomato plants. Four endophytic fungal isolates of different species, i.e. Pseudosigmoidea ibarakiensis I.4-2-1, Veronaeopsis simplex Y34, Helminthosporium velutinum 41-1, and as yet unidentified taxon 312-6 were tested In Vitro in two levels of Cs (5ppm and 10ppm). On the plant growth, the inoculation of the selected DSEs to both Chinese cabbage and tomato resulted in an increased biomass of up to 82% and 122%, respectively compared to control (non-inoculated) plants. With regards to the Cs accumulation, it varied with the host plant considered. In Chinese cabbage, DSEs inoculation caused higher Cs accumulation in above ground plant parts, whereas in tomato, Cs accumulation decreased significantly with three of the isolates tested, i.e., V. simplex Y34, P. ibarakiensis I.4-2-1, and the as yet unidentified taxon 312-6 suggesting low-risk transfer on the above ground plants parts as a result of high and negative plant reactions rather than high and positive reactions as it is the case with Chinese cabbage. These results suggested that DSEs can be recommended for use with Chinese cabbage to enhance phytoremediation of Cs in surrounding contaminated areas. With tomato, DSEs can be recommended for decreasing the accumulation of Cs in plants under contaminated environments. PMID:25296037

  9. Biocontrol potential of endophytes harbored in Radula marginata (liverwort) from the New Zealand ecosystem.

    PubMed

    Kusari, Parijat; Kusari, Souvik; Spiteller, Michael; Kayser, Oliver

    2014-10-01

    Radula marginata and Cannabis sativa L. are two phylogenetically unrelated plant species containing structurally similar secondary metabolites like cannabinoids. The major objective of our work was the isolation, identification, biocontrol efficacies, biofilm forming potential and anti-biofilm ability of endophytic microbial community of the liverwort R. marginata, as compared to bacterial endophytic isolates harbored in C. sativa plants. A total of 15 endophytic fungal and 4 endophytic bacterial isolates were identified, including the presence of a bacterial endosymbiont within an endophytic fungal isolate. The endosymbiont was visible only when the fungus containing it was challenged with two phytopathogens Botrytis cinerea and Trichothecium roseum, highlighting a tripartite microbe-microbe interaction and biocontrol potency of endophytes under biotic stress. We also observed sixteen types of endophytic fungal-pathogen and twelve types of endophytic bacterial-pathogen interactions coupled to varying degree of growth inhibitions of either the pathogen or endophyte or both. This showed the magnitude of biocontrol efficacies of endophytes in aiding plant fitness benefits under different media (environmental) conditions. Additionally, it was ecologically noteworthy to find the presence of similar endophytic bacterial genera in both Radula and Cannabis plants, which exhibited similar functional traits like biofilm formation and general anti-biofilm activities. Thus far, our work underlines the biocontrol potency and defensive functional traits (in terms of antagonism and biofilm formation) of endophytes harbored in liverwort R. marginata as compared to the endophytic community of phylogenetically unrelated but phytochemically similar plant C. sativa. PMID:25100187

  10. Fungal endophyte diversity in Sarracenia.

    PubMed

    Glenn, Anthony; Bodri, Michael S

    2012-01-01

    Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers.

  11. Analysis of partial sequences of genes coding for 16S rRNA of actinomycetes isolated from Casuarina equisetifolia nodules in Mexico.

    PubMed Central

    Niner, B M; Brandt, J P; Villegas, M; Marshall, C R; Hirsch, A M; Valdés, M

    1996-01-01

    Filamentous bacteria isolated from surface-sterilized nodules of Casuarina equisetifolia trees in México were capable of reducing acetylene, a diagnostic test for nitrogenase, but were unable to nodulate their host. Analysis of partial 16S rRNA gene sequences suggests that the Mexican isolates are not Frankia strains but members of a novel clade. PMID:8702297

  12. Biosynthesis of Anti-Proliferative Gold Nanoparticles Using Endophytic Fusarium oxysporum Strain Isolated from Neem (A. indica) Leaves.

    PubMed

    Siddiqui, Ejaz Ahmad; Ahmad, Absar; Julius, Anju; Syed, Asad; Khan, Shadab; Kharat, Mahesh; Pai, Kalpana; Kadoo, Narendra; Gupta, Vidya

    2016-01-01

    Here we report a simple, rapid, environment friendly approach for the synthesis of gold nanoparticles using neem (Azadirachta indica A. Juss.) fungal endophyte, which based upon morphological and cultural characteristics was eventually identified as Fusarium oxysporum. The aqueous precursor (HAuCl4) solution when reacted with endophytic fungus resulted in the biosynthesis of abundant amounts of well dispersed gold nanoparticles of 10-40 nm with an average size of 22nm. These biosynthesized gold nanoparticles were then characterized by standard analytical techniques such as UV-Visible spectroscopy, X-ray diffraction, Transmission Electron Microscopy and Fourier Transform Infrared Spectroscopy. Cytotoxic activity of these nanoparticles was checked against three different cell types including breast cancer (ZR-75-1), Daudi (Human Burkitt's lymphoma cancer) and normal human peripheral blood mononuclear cells (PBMC), where it was found that our gold nanoparticles are anti-proliferative against cancer cells but completely safe toward normal cells. In addition to this, assessment of toxicity toward human RBC revealed less than 0.1 % hemolysis as compared to Triton X-100 suggesting safe nature of our biosynthesized gold nanoparticles on human cells. Also, our nanoparticles exhibited no anti-fungal (against Aspergillus niger) or anti-bacterial [against Gram positive (Bacillus subtilis & Staphylococcus aureus) and Gram negative (Escherichia coli & Pseudomonas aeruginosa) bacteria] activity thus suggesting their non-toxic, biocompatible nature. The present investigation opens up avenues for ecofriendly, biocompatible nanomaterials to be used in a wide variety of application such as drug delivery, therapeutics, theranostics and so on.

  13. Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus

    PubMed Central

    Singh, Dattu; Rathod, Vandana; Ninganagouda, Shivaraj; Hiremath, Jyothi; Singh, Ashish Kumar; Mathew, Jasmine

    2014-01-01

    Development of ecofriendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology because of its tremendous impetus in modulating metals into nanosize to their potential use for human benefits. In this study an endophytic fungus, Penicillium sp., isolated from healthy leaves of Curcuma longa (turmeric) was subjected to extracellular biosynthesis of silver nanoparticles (AgNps) and their activity against MDR E. coli and S. aureus. The biosynthesized AgNps optimization was studied and characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). Then produced AgNps were tested against MDR E. coli and S. aureus. The endophytic fungus Penicillium sp. from healthy leaves of C. longa (turmeric) was found to be a good producer of AgNps. Parametric optimization showed maximum absorbance of 420–425 nm at pH-7, 25°C with 1 mM AgNO3 concentration and 15–20 g of wet biomass. Further TEM revealed the formation of spherical, well-dispersed nanoparticles with size ranging between 25 and 30 nm and FTIR shows the bands at 1644 and 1538 cm−1 corresponding to the binding vibrations of amide I and II bands of proteins, respectively. Antibacterial activity against MDR E. coli and S. aureus showed good results showing maximum zone of inhibition of 17 mm and 16 mm, respectively, at 80 µL of AgNps. PMID:24639625

  14. Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus.

    PubMed

    Singh, Dattu; Rathod, Vandana; Ninganagouda, Shivaraj; Hiremath, Jyothi; Singh, Ashish Kumar; Mathew, Jasmine

    2014-01-01

    Development of ecofriendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology because of its tremendous impetus in modulating metals into nanosize to their potential use for human benefits. In this study an endophytic fungus, Penicillium sp., isolated from healthy leaves of Curcuma longa (turmeric) was subjected to extracellular biosynthesis of silver nanoparticles (AgNps) and their activity against MDR E. coli and S. aureus. The biosynthesized AgNps optimization was studied and characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). Then produced AgNps were tested against MDR E. coli and S. aureus. The endophytic fungus Penicillium sp. from healthy leaves of C. longa (turmeric) was found to be a good producer of AgNps. Parametric optimization showed maximum absorbance of 420-425 nm at pH-7, 25°C with 1 mM AgNO3 concentration and 15-20 g of wet biomass. Further TEM revealed the formation of spherical, well-dispersed nanoparticles with size ranging between 25 and 30 nm and FTIR shows the bands at 1644 and 1538 cm(-1) corresponding to the binding vibrations of amide I and II bands of proteins, respectively. Antibacterial activity against MDR E. coli and S. aureus showed good results showing maximum zone of inhibition of 17 mm and 16 mm, respectively, at 80 µL of AgNps.

  15. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt

    PubMed Central

    Sun, Xuepiao; Zheng, Peng; Zhang, Jiaming

    2015-01-01

    Banana Fusarium wilt (also known as Panama disease) is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4). Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt. PMID:26133557

  16. New Dimensions of Research on Actinomycetes: Quest for Next Generation Antibiotics

    PubMed Central

    Jose, Polpass Arul; Jha, Bhavanath

    2016-01-01

    Starting with the discovery of streptomycin, the promise of natural products research on actinomycetes has been captivating researchers and offered an array of life-saving antibiotics. However, most of the actinomycetes have received a little attention of researchers beyond isolation and activity screening. Noticeable gaps in genomic information and associated biosynthetic potential of actinomycetes are mainly the reasons for this situation, which has led to a decline in the discovery rate of novel antibiotics. Recent insights gained from genome mining have revealed a massive existence of previously unrecognized biosynthetic potential in actinomycetes. Successive developments in next-generation sequencing, genome editing, analytical separation and high-resolution spectroscopic methods have reinvigorated interest on such actinomycetes and opened new avenues for the discovery of natural and natural-inspired antibiotics. This article describes the new dimensions that have driven the ongoing resurgence of research on actinomycetes with historical background since the commencement in 1940, for the attention of worldwide researchers. Coupled with increasing advancement in molecular and analytical tools and techniques, the discovery of next-generation antibiotics could be possible by revisiting the untapped potential of actinomycetes from different natural sources. PMID:27594853

  17. New Dimensions of Research on Actinomycetes: Quest for Next Generation Antibiotics

    PubMed Central

    Jose, Polpass Arul; Jha, Bhavanath

    2016-01-01

    Starting with the discovery of streptomycin, the promise of natural products research on actinomycetes has been captivating researchers and offered an array of life-saving antibiotics. However, most of the actinomycetes have received a little attention of researchers beyond isolation and activity screening. Noticeable gaps in genomic information and associated biosynthetic potential of actinomycetes are mainly the reasons for this situation, which has led to a decline in the discovery rate of novel antibiotics. Recent insights gained from genome mining have revealed a massive existence of previously unrecognized biosynthetic potential in actinomycetes. Successive developments in next-generation sequencing, genome editing, analytical separation and high-resolution spectroscopic methods have reinvigorated interest on such actinomycetes and opened new avenues for the discovery of natural and natural-inspired antibiotics. This article describes the new dimensions that have driven the ongoing resurgence of research on actinomycetes with historical background since the commencement in 1940, for the attention of worldwide researchers. Coupled with increasing advancement in molecular and analytical tools and techniques, the discovery of next-generation antibiotics could be possible by revisiting the untapped potential of actinomycetes from different natural sources.

  18. New Dimensions of Research on Actinomycetes: Quest for Next Generation Antibiotics.

    PubMed

    Jose, Polpass Arul; Jha, Bhavanath

    2016-01-01

    Starting with the discovery of streptomycin, the promise of natural products research on actinomycetes has been captivating researchers and offered an array of life-saving antibiotics. However, most of the actinomycetes have received a little attention of researchers beyond isolation and activity screening. Noticeable gaps in genomic information and associated biosynthetic potential of actinomycetes are mainly the reasons for this situation, which has led to a decline in the discovery rate of novel antibiotics. Recent insights gained from genome mining have revealed a massive existence of previously unrecognized biosynthetic potential in actinomycetes. Successive developments in next-generation sequencing, genome editing, analytical separation and high-resolution spectroscopic methods have reinvigorated interest on such actinomycetes and opened new avenues for the discovery of natural and natural-inspired antibiotics. This article describes the new dimensions that have driven the ongoing resurgence of research on actinomycetes with historical background since the commencement in 1940, for the attention of worldwide researchers. Coupled with increasing advancement in molecular and analytical tools and techniques, the discovery of next-generation antibiotics could be possible by revisiting the untapped potential of actinomycetes from different natural sources. PMID:27594853

  19. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    PubMed Central

    Sreevidya, M.; Gopalakrishnan, S.; Kudapa, H.; Varshney, R.K.

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  20. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea.

    PubMed

    Sreevidya, M; Gopalakrishnan, S; Kudapa, H; Varshney, R K

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20°C to 40°C, pH range of 7-11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  1. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea.

    PubMed

    Sreevidya, M; Gopalakrishnan, S; Kudapa, H; Varshney, R K

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20°C to 40°C, pH range of 7-11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea.

  2. Studies on Actinomycetal Resources under Extreme Environments in the West of China

    NASA Astrophysics Data System (ADS)

    Li, W.

    2005-12-01

    s: Actinomycetes play a quite important role in natural ecological system and they are also profile producers of antibiotics, antitumor agents, enzymes, enzyme inhibitors and immunomodifiers. which have been widely applied in industry, agriculture, forestry and pharmaceutical industry. In the past, the research work on actinomycetes was mainly concentrated on that of common habitats. Actinomycetes resources under extreme environments (including extreme high and low temperature, extreme high or low pH, high salt concentration etc.) have received comparatively little attention from microbiologists. Actinomycetes are regarded as one kind of sideline microorganisms and those under extreme environments are better materials for biological evolution and phylogenetic development in research. There are much more unknown species and much more worth researching for actinomycetes under extreme environments. There are many extreme environmental resources in the west of China. For example, wide range snow-mountains, basified soil and lakes, widely distributed acid and alkaline hot-springs in Yunnan provinces; more than 73.3 million hektares basified soil and salt lakes in Xinjiang Province and many unusual environments in Qinghai Province and other western Provinces. They were mostly precious natural resources and were destroyed, relatively fewer can provided us with unique conditions for study on actinomycetal resources under extreme environments. In recent years, our main work was focusing on study of extremophilic actinomycetal resources in the west of China by using conventional cultivation-methods and culture-independent methods (PCR-clone and DGGE/TGGE, etc), Results showed that large amount of unknown microbial resources (including actinomycetal resources) existed in natural extreme environments. Additionally, lots of new taxa were isolated and characterized using a polyphasic approach. Further, we got some new compounds with different bioactivities from these

  3. Deacetyl-mycoepoxydiene, isolated from plant endophytic fungi Phomosis sp. demonstrates anti-microtubule activity in MCF-7 cells.

    PubMed

    Zhu, Shan-Shan; Zhang, Yu-Sheng; Sheng, Xie-Huang; Xu, Miao; Wu, Si-Si; Shen, Yue-Mao; Huang, Yao-Jian; Wang, Yi; Shi, Yan-Qiu

    2015-02-01

    Deacetyl-mycoepoxydiene (DM), a novel secondary metabolite produced by the plant endophytic fungi Phomosis sp., induced the reorganization of cytoskeleton in actively growing MCF-7 cells by promoting polymerization of tubulin. DM could induce cell cycle arrest at G2/M in MCF-7 cells. Additionally, DM-induced apoptosis was characterized with up-regulating caspase-3, Bax, caspase-9, parp, and p21 while down-regulating Bcl-2 activation. DM conferred dose- and time-dependent inhibitory effects upon cell proliferation of MCF-7 cells both in cultured cells and nude mice with human breast carcinoma xenografts. The results obtained from these in vitro and in vivo models provide new data revealing the potential for DM as a novel microtubule inhibitor.

  4. “Omics” Tools for Better Understanding the Plant–Endophyte Interactions

    PubMed Central

    Kaul, Sanjana; Sharma, Tanwi; K. Dhar, Manoj

    2016-01-01

    Endophytes, which mostly include bacteria, fungi and actinomycetes, are the endosymbionts that reside asymptomatically in plants for at least a part of their life cycle. They have emerged as a valuable source of novel metabolites, industrially important enzymes and as stress relievers of host plant, but still many aspects of endophytic biology are unknown. Functions of individual endophytes are the result of their continuous and complex interactions with the host plant as well as other members of the host microbiome. Understanding plant microbiomes as a system allows analysis and integration of these complex interactions. Modern genomic studies involving metaomics and comparative studies can prove to be helpful in unraveling the gray areas of endophytism. A deeper knowledge of the mechanism of host infestation and role of endophytes could be exploited to improve the agricultural management in terms of plant growth promotion, biocontrol and bioremediation. Genome sequencing, comparative genomics, microarray, next gen sequencing, metagenomics, metatranscriptomics are some of the techniques that are being used or can be used to unravel plant–endophyte relationship. The modern techniques and approaches need to be explored to study endophytes and their putative role in host plant ecology. This review highlights “omics” tools that can be explored for understanding the role of endophytes in the plant microbiome. PMID:27446181

  5. Pyrrolocin A, a 3-Decalinoyltetramic Acid with Selective Biological Activity, Isolated from Amazonian Cultures of the Novel Endophyte Diaporthales sp. E6927E.

    PubMed

    Patridge, Eric V; Darnell, Alicia; Kucera, Kaury; Phillips, Gillian M; Bokesch, Heidi R; Gustafson, Kirk R; Spakowicz, Daniel J; Zhou, Linda; Hungerford, William M; Plummer, Mark; Hoyer, Denton; Narváez-Trujillo, Alexandra; Phillips, Andrew J; Strobel, Scott A

    2015-10-01

    Natural products remain an important source of new therapeutics for emerging drug-resistant pathogens like Candida albicans, which particularly affects immunocompromised patients. A bioactive 3-decalinoyltetramic acid, pyrrolocin A, was isolated from extracts of a novel Amazonian fungal endophyte, E6927E, of the Diaporthales family. The structure of the natural product was solved using NMR and CD spectroscopy and it is structurally related to the fungal setins, equisetin and phomasetin, which are well-characterized tetramic acid antibiotics specific for Gram-positive organisms. We show that the compound inhibits growth of Staphylococcus aureus and Enterococcus faecalis. It shows selective and potent bioactivity against fungal strains, with an MIC of 4 μg/mL for C. albicans, 100 μg/mL for Aspergillus sp. and greater than 100 μg/mL for Saccharomyces cerevisiae. Further, the compound is less toxic to mammalian cells (IC50 = 150 μg/mL), with an inhibitory concentration greater than forty times that for C. albicans. Pyrrolocin A retained potent activity against eight out of seventeen strains of clinical Candida sp. isolates tested.

  6. Pyrrolocin A, a 3-Decalinoyltetramic Acid with Selective Biological Activity, Isolated from Amazonian Cultures of the Novel Endophyte Diaporthales sp. E6927E.

    PubMed

    Patridge, Eric V; Darnell, Alicia; Kucera, Kaury; Phillips, Gillian M; Bokesch, Heidi R; Gustafson, Kirk R; Spakowicz, Daniel J; Zhou, Linda; Hungerford, William M; Plummer, Mark; Hoyer, Denton; Narváez-Trujillo, Alexandra; Phillips, Andrew J; Strobel, Scott A

    2015-10-01

    Natural products remain an important source of new therapeutics for emerging drug-resistant pathogens like Candida albicans, which particularly affects immunocompromised patients. A bioactive 3-decalinoyltetramic acid, pyrrolocin A, was isolated from extracts of a novel Amazonian fungal endophyte, E6927E, of the Diaporthales family. The structure of the natural product was solved using NMR and CD spectroscopy and it is structurally related to the fungal setins, equisetin and phomasetin, which are well-characterized tetramic acid antibiotics specific for Gram-positive organisms. We show that the compound inhibits growth of Staphylococcus aureus and Enterococcus faecalis. It shows selective and potent bioactivity against fungal strains, with an MIC of 4 μg/mL for C. albicans, 100 μg/mL for Aspergillus sp. and greater than 100 μg/mL for Saccharomyces cerevisiae. Further, the compound is less toxic to mammalian cells (IC50 = 150 μg/mL), with an inhibitory concentration greater than forty times that for C. albicans. Pyrrolocin A retained potent activity against eight out of seventeen strains of clinical Candida sp. isolates tested. PMID:26669095

  7. Kribbella pittospori sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of an Australian native apricot tree, Pittosporum angustifolium.

    PubMed

    Kaewkla, Onuma; Franco, Christopher Milton Mathew

    2016-06-01

    An endophytic actinobacterium, strain PIP 158T, was isolated from the stem of a native apricot tree (Pittosporum angustifolium) collected from the grounds of Flinders University, Adelaide, Australia. As a result of a polyphasic taxonomic study, this strain was identified as a member of the genus Kribbella. This strain was a Gram-stain-positive, aerobic actinobacterium with well-developed substrate mycelia which were non-motile and with hyphae fragmenting into short to elongated rod-like elements. Phylogenetic evaluation based on 16S rRNA gene sequence analysis placed this isolate in the family Nocardioidaceae, being most closely related to Kribbella sandramycini ATCC 39419T and Kribbella albertanoniae BC640T which share a similarity of 99. 26 and 99.18 % with Kribbella hippodromi S1.4T, respectively. Chemotaxonomic data including cell-wall components, major menaquinones and major fatty acids confirmed the affiliation of strain PIP 158T to the genus Kribbella. The results of the phylogenetic analysis, including physiological and biochemical studies in combination with DNA-DNA hybridization, allowed the genotypic and phenotypic differentiation of strain PIP 158T from the closest related species with validly published names. The name proposed for the novel species is Kribbella pittospori sp. nov. The type strain is PIP 158T (=DSM 23717T=NRRL B-24813T). PMID:26978036

  8. Benadrostin, new inhibitor of poly(ADP-ribose) synthetase, produced by actinomycetes. I. Taxonomy, production, isolation, physico-chemical properties and biological activities.

    PubMed

    Aoyagi, T; Yoshida, S; Harada, S; Okuyama, A; Nakayama, C; Yoshida, T; Hamada, M; Takeuchi, T; Umezawa, H

    1988-08-01

    Benadrostin, a new inhibitor of poly(ADP-ribose) synthetase was discovered in the fermentation broth of Streptomyces flavovirens MH499-O'F1. It was purified by chromatography followed by solvent extraction and then isolated as colorless prisms. Benadrostin has the molecular formula of C8H5NO4. It was competitive with the substrate, and the inhibition constant (Ki) was 34 microM. PMID:3139601

  9. TA-3037A, a new inhibitor of glutathione S-transferase, produced by actinomycetes. I. Production, isolation, physico-chemical properties and biological activities.

    PubMed

    Komagata, D; Sawa, T; Muraoka, Y; Imada, C; Okami, Y; Takeuchi, T

    1992-07-01

    TA-3037A, a new inhibitor of glutathione S-transferase was discovered in the fermentation broth of Streptomyces sp. TA-3037. It was purified by chromatography followed by solvent extraction and then isolated as yellow needles. TA-3037A has the molecular formula of C16H11NO4. It was competitive with the substrate, and the inhibition constant (Ki) was 4.9 microM. PMID:1517156

  10. Phytotoxic Potential of Secondary Metabolites and Semisynthetic Compounds from Endophytic Fungus Xylaria feejeensis Strain SM3e-1b Isolated from Sapium macrocarpum.

    PubMed

    García-Méndez, Marbella Claudia; Macías-Ruvalcaba, Norma A; Lappe-Oliveras, Patricia; Hernández-Ortega, Simón; Macías-Rubalcava, Martha Lydia

    2016-06-01

    Bioactivity-directed fractionation of the combined culture medium and mycelium extract of the endophytic fungus Xylaria feejeensis strain SM3e-1b, isolated from Sapium macrocarpum, led to the isolation of three known natural products: (4S,5S,6S)-4-hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-enone or coriloxine, 1; 2-hydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, 2; and 2,6-dihydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione or fumiquinone B, 3. This is the first report of compound 3 being isolated from this species. Additionally, four new derivatives of coriloxine were prepared: (4R,5S,6R)-6-chloro-4,5-dihydroxy-3-methoxy-5-methylcyclohex-2-enone, 4; 6-hydroxy-5-methyl-3-(methylamino)cyclohexa-2,5- diene-1,4-dione, 5; (4R,5R,6R)-4,5-dihydroxy-3-methoxy-5-methyl-6-(phenylamino)cyclohex-2-enone, 6; and 2-((4-butylphenyl)amino)-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, 7. X-ray analysis allowed us to unambiguously determine the structures and absolute configuration of semisynthetic derivatives 4, 5, and 6. The phytotoxic activity of the three isolated natural products and the coriloxine derivatives is reported. Germination of the seed, root growth, and oxygen uptake of the seedlings of Trifolium pratense, Medicago sativa, Panicum miliaceum, and Amaranthus hypochondriacus were significantly inhibited by all of the tested compounds. In general, they were more effective inhibiting root elongation than suppressing the germination and seedling oxygen uptake processes as shown by their IC50 values.

  11. Phytotoxic Potential of Secondary Metabolites and Semisynthetic Compounds from Endophytic Fungus Xylaria feejeensis Strain SM3e-1b Isolated from Sapium macrocarpum.

    PubMed

    García-Méndez, Marbella Claudia; Macías-Ruvalcaba, Norma A; Lappe-Oliveras, Patricia; Hernández-Ortega, Simón; Macías-Rubalcava, Martha Lydia

    2016-06-01

    Bioactivity-directed fractionation of the combined culture medium and mycelium extract of the endophytic fungus Xylaria feejeensis strain SM3e-1b, isolated from Sapium macrocarpum, led to the isolation of three known natural products: (4S,5S,6S)-4-hydroxy-3-methoxy-5-methyl-5,6-epoxycyclohex-2-enone or coriloxine, 1; 2-hydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, 2; and 2,6-dihydroxy-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione or fumiquinone B, 3. This is the first report of compound 3 being isolated from this species. Additionally, four new derivatives of coriloxine were prepared: (4R,5S,6R)-6-chloro-4,5-dihydroxy-3-methoxy-5-methylcyclohex-2-enone, 4; 6-hydroxy-5-methyl-3-(methylamino)cyclohexa-2,5- diene-1,4-dione, 5; (4R,5R,6R)-4,5-dihydroxy-3-methoxy-5-methyl-6-(phenylamino)cyclohex-2-enone, 6; and 2-((4-butylphenyl)amino)-5-methoxy-3-methylcyclohexa-2,5-diene-1,4-dione, 7. X-ray analysis allowed us to unambiguously determine the structures and absolute configuration of semisynthetic derivatives 4, 5, and 6. The phytotoxic activity of the three isolated natural products and the coriloxine derivatives is reported. Germination of the seed, root growth, and oxygen uptake of the seedlings of Trifolium pratense, Medicago sativa, Panicum miliaceum, and Amaranthus hypochondriacus were significantly inhibited by all of the tested compounds. In general, they were more effective inhibiting root elongation than suppressing the germination and seedling oxygen uptake processes as shown by their IC50 values. PMID:27159617

  12. Micromonospora rifamycinica sp. nov., a novel actinomycete from mangrove sediment.

    PubMed

    Huang, Huiqin; Lv, Jiasen; Hu, Yonghua; Fang, Zhe; Zhang, Kaishan; Bao, Shixiang

    2008-01-01

    An actinomycete strain, AM105(T), that produces rifamycin, was isolated from mangrove sediment samples collected from the South China Sea. The strain showed closest 16S rRNA gene sequence similarity to Micromonospora matsumotoense (98.0%). Chemotaxonomic characteristics of the isolate coincided with members of the genus Micromonospora. The value of DNA-DNA relatedness to M. matsumotoense (53.6%) and phenotypic differences from phylogenetically related Micromonospora species indicated that this isolate belongs to a novel species, for which the name Micromonospora rifamycinica sp. nov. is proposed. The type strain is AM105(T) (=CGMCC 4.2495(T)=DSM 44983(T)).

  13. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation.

    PubMed

    Christian, Natalie; Sullivan, Courtney; Visser, Noelle D; Clay, Keith

    2016-10-01

    All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances. PMID:27341838

  14. Plant Host and Geographic Location Drive Endophyte Community Composition in the Face of Perturbation.

    PubMed

    Christian, Natalie; Sullivan, Courtney; Visser, Noelle D; Clay, Keith

    2016-10-01

    All plants form symbioses with endophytic fungi, which affect host plant health and function. Most endophytic fungi are horizontally transmitted, and consequently, local environment and geographic location greatly influence endophyte community composition. Growing evidence also suggests that identity of the plant host (e.g., species, genotype) can be important in shaping endophyte communities. However, little is known about how disturbances to plants affect their fungal symbiont communities. The goal of this study was to test if disturbances, from both natural and anthropogenic sources, can alter endophyte communities independent of geographic location or plant host identity. Using the plant species white snakeroot (Ageratina altissima; Asteraceae), we conducted two experiments that tested the effect of perturbation on endophyte communities. First, we examined endophyte response to leaf mining insect activity, a natural perturbation, in three replicate populations. Second, for one population, we applied fungicide to plant leaves to test endophyte community response to an anthropogenic perturbation. Using culture-based methods and Sanger sequencing of fungal isolates, we then examined abundance, diversity, and community structure of endophytic fungi in leaves subjected to perturbations by leaf mining and fungicide application. Our results show that plant host individual and geographic location are the major determinants of endophyte community composition even in the face of perturbations. Unexpectedly, we found that leaf mining did not impact endophyte communities in white snakeroot, but fungicide treatment resulted in small but significant changes in endophyte community structure. Together, our results suggest that endophyte communities are highly resistant to biotic and anthropogenic disturbances.

  15. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera.

    PubMed

    Che, Jinxin; Shi, Junling; Gao, Zhenhong; Zhang, Yan

    2016-01-01

    Alternaria sp. MG1, an endophytic fungus previously isolated from Merlot grape, produces resveratrol from glucose, showing similar metabolic flux to the phenylpropanoid biosynthesis pathway, currently found solely in plants. In order to identify the resveratrol biosynthesis pathway in this strain at the gene level, de novo transcriptome sequencing was conducted using Illumina paired-end sequencing. A total of 22,954,434 high-quality reads were assembled into contigs and 18,570 unigenes were identified. Among these unigenes, 14,153 were annotated in the NCBI non-redundant protein database and 5341 were annotated in the Swiss-Prot database. After KEGG mapping, 2701 unigenes were mapped onto 115 pathways. Eighty-four unigenes were annotated in major pathways from glucose to resveratrol, coding 20 enzymes for glycolysis, 10 for phenylalanine biosynthesis, 4 for phenylpropanoid biosynthesis, and 4 for stilbenoid biosynthesis. Chalcone synthase was identified for resveratrol biosynthesis in this strain, due to the absence of stilbene synthase. All the identified enzymes indicated a reasonable biosynthesis pathway from glucose to resveratrol via glycolysis, phenylalanine biosynthesis, phenylpropanoid biosynthesis, and stilbenoid pathways. These results provide essential evidence for the occurrence of resveratrol biosynthesis in Alternaria sp. MG1 at the gene level, facilitating further elucidation of the molecular mechanisms involved in this strain's secondary metabolism. PMID:27588016

  16. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera

    PubMed Central

    Che, Jinxin; Shi, Junling; Gao, Zhenhong; Zhang, Yan

    2016-01-01

    Alternaria sp. MG1, an endophytic fungus previously isolated from Merlot grape, produces resveratrol from glucose, showing similar metabolic flux to the phenylpropanoid biosynthesis pathway, currently found solely in plants. In order to identify the resveratrol biosynthesis pathway in this strain at the gene level, de novo transcriptome sequencing was conducted using Illumina paired-end sequencing. A total of 22,954,434 high-quality reads were assembled into contigs and 18,570 unigenes were identified. Among these unigenes, 14,153 were annotated in the NCBI non-redundant protein database and 5341 were annotated in the Swiss-Prot database. After KEGG mapping, 2701 unigenes were mapped onto 115 pathways. Eighty-four unigenes were annotated in major pathways from glucose to resveratrol, coding 20 enzymes for glycolysis, 10 for phenylalanine biosynthesis, 4 for phenylpropanoid biosynthesis, and 4 for stilbenoid biosynthesis. Chalcone synthase was identified for resveratrol biosynthesis in this strain, due to the absence of stilbene synthase. All the identified enzymes indicated a reasonable biosynthesis pathway from glucose to resveratrol via glycolysis, phenylalanine biosynthesis, phenylpropanoid biosynthesis, and stilbenoid pathways. These results provide essential evidence for the occurrence of resveratrol biosynthesis in Alternaria sp. MG1 at the gene level, facilitating further elucidation of the molecular mechanisms involved in this strain's secondary metabolism. PMID:27588016

  17. Salininema proteolyticum gen. nov., sp. nov., a halophilic rare actinomycete isolated from wetland soil, and emended description of the family Glycomycetaceae.

    PubMed

    Nikou, Mahdi Moshtaghi; Ramezani, Mohaddaseh; Amoozegar, Mohammad Ali; Rasouli, Mehrnoush; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; de la Haba, Rafael R; Ventosa, Antonio

    2015-10-01

    A Gram-stain-positive actinobacterial strain, Miq-4T, was isolated from soil around Meighan wetland in the centre of Iran. Strain Miq-4T was strictly aerobic, catalase- and oxidase-positive. The isolate grew in the presence of 3–15 % (w/v) NaCl, at 20–40 °C and pH 6.0–11.0. The optimum NaCl, temperature and pH for growth were 7.0 %, 30 °C and 7.0–8.5, respectively. The cell wall of strain Miq-4T contained meso-diaminopimelic acid as the diamino acid and glucose and ribose as the whole-cell sugars. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Strain Miq-4T synthesized cellular fatty acids of anteiso- and iso-branched types, including anteiso-C17 : 0, anteiso- C15 : 0 and iso-C16 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 68.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and characteristic patterns of 16S rRNA gene signature nucleotides revealed that strain Miq-4T belongs to the family Glycomycetaceae and showed the closest phylogenetic similarity with Haloglycomyces albus YIM 92370T (94.1 % 16S rRNA gene sequence similarity). On the basis of phylogenetic analysis and phenotypic and chemotaxonomic characteristics, strain Miq-4T represents a novel species of a new genus in the family Glycomycetaceae, for which the name Salininema proteoliyticum gen. nov., sp. nov. is proposed. The type strain of the type species is Miq-4T ( = IBRC-M 10908T = LMG 28391T). An emended description of the family Glycomycetaceae is also proposed in order to include features of the new genus. PMID:26219545

  18. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants.

    PubMed Central

    Benson, D R; Silvester, W B

    1993-01-01

    Frankia strains are N2-fixing actinomycetes whose isolation and cultivation were first reported in 1978. They induce N2-fixing root nodules on diverse nonleguminous (actinorhizal) plants that are important in ecological successions and in land reclamation and remediation. The genus Frankia encompasses a diverse group of soil actinomycetes that have in common the formation of multilocular sporangia, filamentous growth, and nitrogenase-containing vesicles enveloped in multilaminated lipid envelopes. The relatively constant morphology of vesicles in culture is modified by plant interactions in symbiosis to give a diverse array of vesicles shapes. Recent studies of the genetics and molecular genetics of these organisms have begun to provide new insights into higher-plant-bacterium interactions that lead to productive N2-fixing symbioses. Sufficient information about the relationship of Frankia strains to other bacteria, and to each other, is now available to warrant the creation of some species based on phenotypic and genetic criteria. Images PMID:8336669

  19. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    PubMed Central

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-01-01

    Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension (107 cfu/ml) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%), Bacillus methylotrophicus KACC 13105T (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%), and Bacillus tequilensis KACC 15944T (99.45%). The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC

  20. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  1. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  2. In silico analysis of the 16S rRNA gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops.

    PubMed

    Bredow, C; Azevedo, J L; Pamphile, J A; Mangolin, C A; Rhoden, S A

    2015-08-19

    Because of human population growth, increased food production and alternatives to conventional methods of biocontrol and development of plants such as the use of endophytic bacteria and fungi are required. One of the methods used to study microorganism diversity is sequencing of the 16S rRNA gene, which has several advantages, including universality, size, and availability of databases for comparison. The objective of this study was to analyze endophytic bacterial diversity in agricultural crops using published papers, sequence databases, and phylogenetic analysis. Fourteen papers were selected in which the ribosomal 16S rRNA gene was used to identify endophytic bacteria, in important agricultural crops, such as coffee, sugar cane, beans, corn, soybean, tomatoes, and grapes, located in different geographical regions (America, Europe, and Asia). The corresponding 16S rRNA gene sequences were selected from the NCBI database, aligned using the Mega 5.2 program, and phylogenetic analysis was undertaken. The most common orders present in the analyzed cultures were Bacillales, Enterobacteriales, and Actinomycetales and the most frequently observed genera were Bacillus, Pseudomonas, and Microbacterium. Phylogenetic analysis showed that only approximately 1.56% of the total sequences were not properly grouped, demonstrating reliability in the identification of microorganisms. This study identified the main genera found in endophytic bacterial cultures from plants, providing data for future studies on improving plant agriculture, biotechnology, endophytic bacterium prospecting, and to help understand relationships between endophytic bacteria and their interactions with plants.

  3. Genes Required for the Anti-fungal Activity of a Bacterial Endophyte Isolated from a Corn Landrace Grown Continuously by Subsistence Farmers Since 1000 BC

    PubMed Central

    Shehata, Hanan R.; Ettinger, Cassandra L.; Eisen, Jonathan A.; Raizada, Manish N.

    2016-01-01

    Endophytes are microbes that inhabit internal plant tissues without causing disease. Some endophytes are known to combat pathogens. The corn (maize) landrace Chapalote has been grown continuously by subsistence farmers in the Americas since 1000 BC, without the use of fungicides, and the crop remains highly valued by farmers, in part for its natural tolerance to pests. We hypothesized that the pathogen tolerance of Chapalote may, in part, be due to assistance from its endophytes. We previously identified a bacterial endophyte from Chapalote seeds, Burkholderia gladioli strain 3A12, for its ability to combat a diversity of crop pathogens, including Sclerotinia homoeocarpa, the most important fungal disease of creeping bentgrass, a relative of maize used here as a model system. Strain 3A12 represents a unique opportunity to understand the anti-fungal activities of an endophyte associated with a crop variety grown by subsistence farmers since ancient times. Here, microscopy combined with Tn5-mutagenesis demonstrates that the anti-fungal mode of action of 3A12 involves flagella-dependent swarming toward its pathogen target, attachment and biofilm-mediated microcolony formation. The mutant screen revealed that YajQ, a receptor for the secondary messenger c-di-GMP, is a critical signaling system that mediates this endophytic mobility-based defense for its host. Microbes from the traditional seeds of farmers may represent a new frontier in elucidating host–microbe mutualistic interactions. PMID:27757101

  4. In silico analysis of the 16S rRNA gene of endophytic bacteria, isolated from the aerial parts and seeds of important agricultural crops.

    PubMed

    Bredow, C; Azevedo, J L; Pamphile, J A; Mangolin, C A; Rhoden, S A

    2015-01-01

    Because of human population growth, increased food production and alternatives to conventional methods of biocontrol and development of plants such as the use of endophytic bacteria and fungi are required. One of the methods used to study microorganism diversity is sequencing of the 16S rRNA gene, which has several advantages, including universality, size, and availability of databases for comparison. The objective of this study was to analyze endophytic bacterial diversity in agricultural crops using published papers, sequence databases, and phylogenetic analysis. Fourteen papers were selected in which the ribosomal 16S rRNA gene was used to identify endophytic bacteria, in important agricultural crops, such as coffee, sugar cane, beans, corn, soybean, tomatoes, and grapes, located in different geographical regions (America, Europe, and Asia). The corresponding 16S rRNA gene sequences were selected from the NCBI database, aligned using the Mega 5.2 program, and phylogenetic analysis was undertaken. The most common orders present in the analyzed cultures were Bacillales, Enterobacteriales, and Actinomycetales and the most frequently observed genera were Bacillus, Pseudomonas, and Microbacterium. Phylogenetic analysis showed that only approximately 1.56% of the total sequences were not properly grouped, demonstrating reliability in the identification of microorganisms. This study identified the main genera found in endophytic bacterial cultures from plants, providing data for future studies on improving plant agriculture, biotechnology, endophytic bacterium prospecting, and to help understand relationships between endophytic bacteria and their interactions with plants. PMID:26345903

  5. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation.

    PubMed

    Chakraborty, Samrat; Ghosh, Mandakini; Chakraborti, Srijita; Jana, Sougata; Sen, Kalyan Kumar; Kokare, Chandrakant; Zhang, Lixin

    2015-08-01

    This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 μg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability.

  6. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation.

    PubMed

    Chakraborty, Samrat; Ghosh, Mandakini; Chakraborti, Srijita; Jana, Sougata; Sen, Kalyan Kumar; Kokare, Chandrakant; Zhang, Lixin

    2015-08-01

    This investigation aims to isolate an Actinomycetes strain producing a biosurfactant from the unexplored region of industrial and coal mine areas. Actinomycetes are selected for this study as their novel chemistry was not exhausted and they have tremendous potential to produce bioactive secondary metabolites. The biosurfactant was characterized and further needed to be utilized for pharmaceutical dosage form. Isolation, purification, screening, and characterization of the Actinomycetes A17 were done followed by its fermentation in optimized conditions. The cell-free supernatant was used for the extraction of the biosurfactant and precipitated by cold acetone. The dried precipitate was purified by TLC and the emulsification index, surface tension and CMC were determined. The isolated strain with preferred results was identified as Actinomycetes nocardiopsis A17 with high foam-forming properties. It gives lipase, amylase, gelatinase, and protease activity. The emulsification index was found to be 93±0.8 with surface tension 66.67 dyne/cm at the lowest concentration and cmc 0.6 μg/ml. These biosurfactants were characterized by Fourier transform infra red (FT-IR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). Therefore, it can be concluded that the biosurfactant produced by Actinomycetes nocardiopsis sp. strain A17 was found to have satisfactory results with high surface activity and emulsion-forming ability. PMID:25989147

  7. Fatty acid biosynthesis in actinomycetes

    PubMed Central

    Gago, Gabriela; Diacovich, Lautaro; Arabolaza, Ana; Tsai, Shiou-Chuan; Gramajo, Hugo

    2011-01-01

    All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multi-enzyme FAS II system and Corynebacterium species exclusively FAS I. In this review we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with anti-mycobacterial properties. PMID:21204864

  8. Alfalfa endophytes as novel sources of antimicrobial compounds that inhibit the growth of human and plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal endophytes may contribute to plant health and disease protection, yet little is known about their various roles in alfalfa. Also, endophytes from several plant species produce novel antimicrobial compounds that may be useful clinically. We isolated endophytic fungi from over 50 samples from s...

  9. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential

    PubMed Central

    Prieto-Davó, Alejandra; Dias, Tiago; Gomes, Sofia E.; Rodrigues, Sara; Parera-Valadez, Yessica; Borralho, Pedro M.; Pereira, Florbela; Rodrigues, Cecilia M. P.; Santos-Sanches, Ilda; Gaudêncio, Susana P.

    2016-01-01

    Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry. PMID:27774089

  10. Red Soils Harbor Diverse Culturable Actinomycetes That Are Promising Sources of Novel Secondary Metabolites

    PubMed Central

    Guo, Xiaoxuan; Liu, Ning; Li, Xiaomin; Ding, Yun; Shang, Fei; Gao, Yongsheng; Ruan, Jisheng

    2015-01-01

    Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds. PMID:25724963

  11. Actinomycetes from Red Sea Sponges: Sources for Chemical and Phylogenetic Diversity

    PubMed Central

    Abdelmohsen, Usama Ramadan; Yang, Chen; Horn, Hannes; Hajjar, Dina; Ravasi, Timothy; Hentschel, Ute

    2014-01-01

    The diversity of actinomycetes associated with marine sponges collected off Fsar Reef (Saudi Arabia) was investigated in the present study. Forty-seven actinomycetes were cultivated and phylogenetically identified based on 16S rRNA gene sequencing and were assigned to 10 different actinomycete genera. Eight putatively novel species belonging to genera Kocuria, Mycobacterium, Nocardia, and Rhodococcus were identified based on sequence similarity values below 98.2% to other 16S rRNA gene sequences available in the NCBI database. PCR-based screening for biosynthetic genes including type I and type II polyketide synthases (PKS-I, PKS-II) as well as nonribosomal peptide synthetases (NRPS) showed that 20 actinomycete isolates encoded each at least one type of biosynthetic gene. The organic extracts of nine isolates displayed bioactivity against at least one of the test pathogens, which were Gram-positive and Gram-negative bacteria, fungi, human parasites, as well as in a West Nile Virus protease enzymatic assay. These results emphasize that marine sponges are a prolific resource for novel bioactive actinomycetes with potential for drug discovery. PMID:24824024

  12. Impact of Endophytic Microorganisms on Plants, Environment and Humans

    PubMed Central

    Nair, Dhanya N.; Padmavathy, S.

    2014-01-01

    Endophytes are microorganisms (bacteria or fungi or actinomycetes) that dwell within robust plant tissues by having a symbiotic association. They are ubiquitously associated with almost all plants studied till date. Some commonly found endophytes are those belonging to the genera Enterobacter sp., Colletotrichum sp., Phomopsis sp., Phyllosticta sp., Cladosporium sp., and so forth. Endophytic population is greatly affected by climatic conditions and location where the host plant grows. They produce a wide range of compounds useful for plants for their growth, protection to environmental conditions, and sustainability, in favour of a good dwelling place within the hosts. They protect plants from herbivory by producing certain compounds which will prevent animals from further grazing on the same plant and sometimes act as biocontrol agents. A large amount of bioactive compounds produced by them not only are useful for plants but also are of economical importance to humans. They serve as antibiotics, drugs or medicines, or the compounds of high relevance in research or as compounds useful to food industry. They are also found to have some important role in nutrient cycling, biodegradation, and bioremediation. In this review, we have tried to comprehend different roles of endophytes in plants and their significance and impacts on man and environment. PMID:24587715

  13. Characterization of the melanin pigment of a cosmopolitan fungal endophyte.

    PubMed

    Suryanarayanan, Trichur S; Ravishankar, Jagadesa P; Venkatesan, Govindan; Murali, Thokur S

    2004-08-01

    Phyllosticta capitalensis (teleomorph Guignardia mangiferae) occurs as a foliar endophyte in woody trees belonging to different families of both temperate and tropical regions. We isolated this endophyte from plants in different habitats, such as mangroves, dry deciduous forest, moist deciduous forest and semi-evergreen forest. This endophyte was found to produce a black pigment that was characterized to be melanin based on uv-visible, IR and ESR spectra and chemical tests. Tricyclazole, a specific inhibitor of pentaketide melanin biosynthesis, inhibited synthesis of the pigment indicating it is a 1-8, dihydroxynaphthalene. This appears to be the first report of such a melanin in Phyllosticta or other foliar endophytes. Melanin in the hyphae of P. capitalensis may be responsible for the success of this fungus as a cosmopolitan endophyte, since melanin is known to enhance the survival capability of fungi in stressful environments.

  14. Fungal endophytes characterization from four species of Diplazium Swartz

    NASA Astrophysics Data System (ADS)

    Affina-Eliya, A. A.; Noraini, T.; Nazlina, I.; Ruzi, A. R.

    2014-09-01

    Four species on genus Diplazium namely Diplazium tomentosum, D. sorzogonense, D. asperum and D. accedens of Peninsular Malaysia were studied for presence of fungal endophyte. The objective of this study is to characterize fungal endophytes in the rhizome of four Diplazium species. The rhizome was surface sterilized and incubated to isolate fungal endophytes. Characterization of the colonies was performed by macroscopic morphological, microscopic identification, types of hyphae and mycelium, and spore structure. For isolation that produces spores, the structure of conidiophores and conidia were identified. From this study, four fungal have been isolated and determined as Aspergillus sp. (isolates AE 1), Aspergillus fumigatus (isolates AE 2), Aspergillus versicolor (isolates AE 3) and Verticillium sp. (isolates AE 4). The fungal isolates from this study were classified from the same family Moniliaceae.

  15. Search for endophytic diazotrophs in barley seeds

    PubMed Central

    Zawoznik, Myriam S.; Vázquez, Susana C.; Díaz Herrera, Silvana M.; Groppa, María D.

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR. PMID:25242949

  16. Search for endophytic diazotrophs in barley seeds.

    PubMed

    Zawoznik, Myriam S; Vázquez, Susana C; Díaz Herrera, Silvana M; Groppa, María D

    2014-01-01

    Eight endophytic isolates assigned to Pseudomonas, Azospirillum, and Bacillus genera according to pheno-genotypic features were retrieved from barley seeds under selective pressure for nitrogen-fixers. Genetic relationships among related isolates were investigated through RAPD. Six isolates displayed nitrogen-fixing ability, while all could biosynthesize indolacetic acid in vitro and showed no antibiosis effects against Azospirillum brasilense Az39, a recognized PGPR.

  17. Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds.

    PubMed

    Chen, Ling; Zhang, Qiao-Yan; Jia, Min; Ming, Qian-Liang; Yue, Wei; Rahman, Khalid; Qin, Lu-Ping; Han, Ting

    2016-05-01

    Plant endophytic fungi have been recognized as an important and novel resource of natural bioactive products, especially in anticancer application. This review mainly deals with the research progress on the production of anticancer compounds by endophytic fungi between 1990 and 2013. Anticancer activity is generally associated with the cytotoxicity of the compounds present in the endophytic fungi. All strains of endophytes producing antitumor chemicals were classified taxonomically and the genera of Pestalotiopsis and Aspergillus as well as the taxol producing endophytes were focused on. Classification of endophytic fungi producing antitumor compounds has received more attention from mycologists, and it can also lead to the discovery of novel compounds with antitumor activity due to phylogenetic relationships. In this review, the structures of the anticancer compounds isolated from the newly reported endophytes between 2010 and 2013 are discussed including strategies for the efficient production of the desired compounds. The purpose of this review is to provide new directions in endophytic fungi research including integrated information relating to its anticancer compounds.

  18. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants.

    PubMed

    Thakur, Abhinay; Kaur, Sanehdeep; Kaur, Amarjeet; Singh, Varinder

    2013-04-01

    Endophytic fungi, which live within host plant tissues without causing any visible symptom of disease, are important mediators of plant-herbivore interactions. These endophytes enhance resistance of host plant against insect herbivores mainly by productions of various alkaloid based defensive compounds in the plant tissue or through alterations of plant nutritional quality. Two endophytic fungi, i.e., Nigrospora sp. and Cladosporium sp., were isolated from Tinospora cordifolia (Thunb.) Miers, a traditional indian medicinal plant. Cauliflower (Brassica oleracea L.) plants were inoculated with these two endophytic fungi. The effect of endophyte infected and uninfected cauliflower plants were measured on the survival and development of Spodoptera litura (Fab.), a polyphagous pest. Endophyte infected cauliflower plants showed resistance to S. litura in the form of significant increase in larval and pupal mortality in both the fungi. Inhibitory effects of endophytic fungi also were observed on adult emergence, longevity, reproductive potential, as well as hatchability of eggs. Thus, it is concluded that antibiosis to S. litura could be imparted by artificial inoculation of endophytes and this could be used to develop alternative ecologically safe control strategies.

  19. Draft Genome Sequence of Endophytic Bacterium Enterobacter asburiae PDA134, Isolated from Date Palm (Phoenix dactylifera L.) Roots.

    PubMed

    Yaish, Mahmoud W

    2016-01-01

    In this report, a draft of the Enterobacter asburiae strain PDA134 genome was sequenced. This bacterial strain was isolated from the root tissue of a date palm, where it has the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) under salinity stress. PMID:27540071

  20. Draft Genome Sequence of Endophytic Bacterium Enterobacter asburiae PDA134, Isolated from Date Palm (Phoenix dactylifera L.) Roots

    PubMed Central

    2016-01-01

    In this report, a draft of the Enterobacter asburiae strain PDA134 genome was sequenced. This bacterial strain was isolated from the root tissue of a date palm, where it has the ability to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) under salinity stress. PMID:27540071

  1. Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel endophytic strain of Beauveria bassiana was isolated from leaf tissue of a wild tomato plant. This strain and two B. bassiana strains previously isolated from soil were evaluated for their ability to endophytically colonize tomatoes and subsequent in planta efficacy against Helicoverpa armig...

  2. Diversity and biosynthetic potential of culturable actinomycetes associated with marine sponges in the China Seas.

    PubMed

    Xi, Lijun; Ruan, Jisheng; Huang, Ying

    2012-01-01

    The diversity and secondary metabolite potential of culturable actinomycetes associated with eight different marine sponges collected from the South China Sea and the Yellow sea were investigated. A total of 327 strains were isolated and 108 representative isolates were selected for phylogenetic analysis. Ten families and 13 genera of Actinomycetales were detected, among which five genera represent first records isolated from marine sponges. Oligotrophic medium M5 (water agar) proved to be efficient for selective isolation, and "Micromonospora-Streptomyces" was proposed as the major distribution group of sponge-associated actinomycetes from the China Seas. Ten isolates are likely to represent novel species. Sponge Hymeniacidon perleve was found to contain the highest genus diversity (seven genera) of actinomycetes. Housekeeping gene phylogenetic analyses of the isolates indicated one ubiquitous Micromonospora species, one unique Streptomyces species and one unique Verrucosispora phylogroup. Of the isolates, 27.5% displayed antimicrobial activity, and 91% contained polyketide synthase and/or nonribosomal peptide synthetase genes, indicating that these isolates had a high potential to produce secondary metabolites. The isolates from sponge Axinella sp. contained the highest presence of both antimicrobial activity and NRPS genes, while those from isolation medium DNBA showed the highest presence of antimicrobial activity and PKS I genes.

  3. Production of bioactive compounds by actinomycetes and their antioxidant properties.

    PubMed

    Janardhan, Avilala; Kumar, Arthala Praveen; Viswanath, Buddolla; Saigopal, D V R; Narasimha, Golla

    2014-01-01

    An actinomycete was isolated from mangrove soil collected from Nellore region of Andhra Pradesh, India, and screened for its ability to produce bioactive compounds. The cultural, morphological, and biochemical characters and 16S rRNA sequencing suggest that the isolated strain is Nocardiopsis alba. The bioactive compounds produced by this strain were purified by column chromatography. The in vitro antioxidant capacity of the isolated compounds (fractions) was estimated and fraction F2 showed very near values to the standard ascorbic acid. The potential fraction obtained by column chromatography was subjected to HPLC for further purification, then this purified fraction F2 was examined by FTIR, NMR, and mass spectroscopy to elucidate its chemical structure. By spectral data, the structure of the isolated compound was predicted as "(Z)-1-((1-hydroxypenta-2,4-dien-1-yl)oxy)anthracene-9,10-dione."

  4. Marinactinones A-C, new γ-pyrones from marine actinomycete Marinactinospora thermotolerans SCSIO 00606.

    PubMed

    Wang, Fazuo; Tian, Xinpeng; Huang, Caiguo; Li, Qingxin; Zhang, Si

    2011-02-01

    Three new γ-pyrones named marinactinones A-C (1-3) were isolated from marine-derived actinomycete Marinactinospora thermotolerans SCSIO 00606. These structures were elucidated by extensive spectroscopic methods. All three new compounds were evaluated for cytotoxic effects on six cancer cell lines and inhibitory activities of DNA topoisomerase II. Compounds 1-3 exhibited moderate cytotoxicities against SW1990, HepG2 and SMCC-7721 cell lines, and compound 2 showed weak DNA topoisomerase II inhibition activity. This is the first report on the chemical constituents and their biological activities from Marinactinospora, a novel genus of marine actinomycetes.

  5. Structure of actinotetraose hexatiglate, a unique glucotetraose from an actinomycete bacterium.

    PubMed

    Rickards, R W; Rothschild, J M; Lacey, E

    1998-12-01

    An Actinomycete strain A499 belonging to the genera Amycolatopsis or Amycolata isolated from a Western Australian soil sample produced the cyclic decapeptide antibiotic quinaldopeptin (1), together with the actinotetraose hexatiglate (2), the hexa-ester of a novel non-reducing glucotetraose.

  6. Draft genome sequence of Gordonia neofelifaecis NRRL B-59395, a cholesterol-degrading actinomycete.

    PubMed

    Ge, Fanglan; Li, Wei; Chen, Guiying; Liu, Yuchang; Zhang, Guangxiang; Yong, Bin; Wang, Qiong; Wang, Nan; Huang, Zhumei; Li, Weitian; Wang, Jing; Wu, Cheng; Xie, Qian; Liu, Gang

    2011-09-01

    We report a draft sequence of the genome of Gordonia neofelifaecis NRRL B-59395, a cholesterol-degrading actinomycete isolated from fresh feces of a clouded leopard (Neofelis nebulosa). As predicted, the reported genome contains several gene clusters for cholesterol degradation. This is the second available genome sequence of the family Gordoniaceae.

  7. Acute exposure to ergot alkaloids from endophyte-infected tall fescue does not alter absorptive or barrier function of the isolated ruminal epithelium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ergot alkaloids in endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in VFA absorption from the washed rumen of steers. Previous data also indicates that incubating an extr...

  8. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    PubMed Central

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-01-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg−1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites. PMID:26184609

  9. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites.

    PubMed

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-07-17

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg(-1) were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 10(3) to 2.28 × 10(6) and 4.17 × 10(2) to 1.99 × 10(5), respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites.

  10. Diversity and distribution of 16S rRNA and phenol monooxygenase genes in the rhizosphere and endophytic bacteria isolated from PAH-contaminated sites

    NASA Astrophysics Data System (ADS)

    Peng, Anping; Liu, Juan; Ling, Wanting; Chen, Zeyou; Gao, Yanzheng

    2015-07-01

    This is the first investigation of the diversity and distribution of 16S rRNA and phenol monooxygenase (PHE) genes in endophytic and rhizosphere bacteria of plants at sites contaminated with different levels of PAHs. Ten PAHs at concentrations from 34.22 to 55.29 and 45.79 to 97.81 mg·kg-1 were measured in rhizosphere soils of Alopecurus aequalis Sobol and Oxalis corniculata L., respectively. The diversity of 16S rRNA and PHE genes in rhizosphere soils or plants changed with varying PAH pollution levels, as shown based on PCR-DGGE data. Generally, higher Shannon-Weiner indexes were found in mild or moderate contaminated areas. A total of 82 different bacterial 16S rRNA gene sequences belonging to five phyla; namely, Acfinobacteria, Proteobacteria, Chloroflexi, Cyanophyta, and Bacteroidetes, were obtained from rhizosphere soils. For the 57 identified PHE gene sequences, 18 were excised from rhizosphere bacteria and 39 from endophytic bacteria. The copy numbers of 16S rRNA and PHE genes in rhizosphere and endophytic bacteria varied from 3.83 × 103 to 2.28 × 106 and 4.17 × 102 to 1.99 × 105, respectively. The copy numbers of PHE genes in rhizosphere bacteria were significantly higher than in endophytic bacteria. Results increase our understanding of the diversity of rhizosphere and endophytic bacteria from plants grown in PAH-contaminated sites.

  11. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum.

    PubMed

    Li, Peiqin; Wu, Zhou; Liu, Tao; Wang, Yanan

    2016-01-01

    This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS) sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43), Margalef index D' (6.1351), Shannon-Wiener index H' (3.2743), Simpson diversity index Ds (0.9476), PIE index (0.9486), and evenness Pielou index J (0.8705) but a low dominant index λ (0.0524). Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ) method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds. PMID:27649145

  12. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum.

    PubMed

    Li, Peiqin; Wu, Zhou; Liu, Tao; Wang, Yanan

    2016-01-01

    This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS) sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43), Margalef index D' (6.1351), Shannon-Wiener index H' (3.2743), Simpson diversity index Ds (0.9476), PIE index (0.9486), and evenness Pielou index J (0.8705) but a low dominant index λ (0.0524). Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ) method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.

  13. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum

    PubMed Central

    Li, Peiqin; Wu, Zhou; Liu, Tao; Wang, Yanan

    2016-01-01

    This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS) sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43), Margalef index D′ (6.1351), Shannon–Wiener index H′ (3.2743), Simpson diversity index Ds (0.9476), PIE index (0.9486), and evenness Pielou index J (0.8705) but a low dominant index λ (0.0524). Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ) method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds. PMID:27649145

  14. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao.

    PubMed

    Bae, Hanhong; Sicher, Richard C; Kim, Moon S; Kim, Soo-Hyung; Strem, Mary D; Melnick, Rachel L; Bailey, Bryan A

    2009-01-01

    Theobroma cacao (cacao) is cultivated in tropical climates and is exposed to drought stress. The impact of the endophytic fungus Trichoderma hamatum isolate DIS 219b on cacao's response to drought was studied. Colonization by DIS 219b delayed drought-induced changes in stomatal conductance, net photosynthesis, and green fluorescence emissions. The altered expression of 19 expressed sequence tags (ESTs) (seven in leaves and 17 in roots with some overlap) by drought was detected using quantitative real-time reverse transcription PCR. Roots tended to respond earlier to drought than leaves, with the drought-induced changes in expression of seven ESTs being observed after 7 d of withholding water. Changes in gene expression in leaves were not observed until after 10 d of withholding water. DIS 219b colonization delayed the drought-altered expression of all seven ESTs responsive to drought in leaves by > or = 3 d, but had less influence on the expression pattern of the drought-responsive ESTs in roots. DIS 219b colonization had minimal direct influence on the expression of drought-responsive ESTs in 32-d-old seedlings. By contrast, DIS 219b colonization of 9-d-old seedlings altered expression of drought-responsive ESTs, sometimes in patterns opposite of that observed in response to drought. Drought induced an increase in the concentration of many amino acids in cacao leaves, while DIS 219b colonization caused a decrease in aspartic acid and glutamic acid concentrations and an increase in alanine and gamma-aminobutyric acid concentrations. With or without exposure to drought conditions, colonization by DIS 219b promoted seedling growth, the most consistent effects being an increase in root fresh weight, root dry weight, and root water content. Colonized seedlings were slower to wilt in response to drought as measured by a decrease in the leaf angle drop. The primary direct effect of DIS 219b colonization was promotion of root growth, regardless of water status, and an

  15. Bioproduction of Cinchona alkaloids by the endophytic fungus Diaporthe sp. associated with Cinchona ledgeriana.

    PubMed

    Maehara, Shoji; Simanjuntak, Partomuan; Kitamura, Chinami; Ohashi, Kazuyoshi; Shibuya, Hirotaka

    2012-01-01

    We report that an endophytic filamentous fungus species of the genus Diaporthe isolated from Cinchona ledgeriana (Rubiaceae) produces Cinchona alkaloids (quinine, quinidine, cinchonidine, and cinchonine) upon cultivation in a synthetic liquid medium. This study provides evidence that Cinchona alkaloids are produced not only in Cinchona plant cells, but also in the endophytic microbe cells, and will help to elucidate the relationship between endophytic microbes and their host plants.

  16. Wickerhamiella siamensis f.a., sp. nov., an endophytic and epiphytic yeast species isolated from sugar cane leaf.

    PubMed

    Khunnamwong, Pannida; Surussawadee, Janjira; Jindamorakot, Sasitorn; Limtong, Savitree

    2014-11-01

    Six strains representing a novel yeast species were isolated from tissue (DMKU-SE106(T), DMKU-SE110, DMKU-SE112 and DMKU-SE132) and the external surface (DMKU-SP335 and DMKU-SP406) of sugar cane leaves collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and sequence analysis of the D1/D2 region of the LSU rRNA gene and the internal transcribed spacer (ITS) region, the six strains were found to represent a single novel species of the genus Wickerhamiella although the formation of ascospores was not observed. The sequences of the D1/D2 region of the LSU rRNA gene and ITS region of the six strains differed from each other by 0-2 and 2-3 nt substitutions, respectively. The novel species was related most closely to Candida infanticola but with 4.5-4.6% nucleotide substitutions in the D1/D2 region of the LSU rRNA gene and 6.6-7.1% nucleotide substitutions in the ITS region. The name Wickerhamiella siamensis f.a., sp. nov. is proposed. The type strain is DMKU-SE106(T) ( =BCC 61185(T) =NBRC 109697(T) =CBS 13331(T)).

  17. Wickerhamiella siamensis f.a., sp. nov., an endophytic and epiphytic yeast species isolated from sugar cane leaf.

    PubMed

    Khunnamwong, Pannida; Surussawadee, Janjira; Jindamorakot, Sasitorn; Limtong, Savitree

    2014-11-01

    Six strains representing a novel yeast species were isolated from tissue (DMKU-SE106(T), DMKU-SE110, DMKU-SE112 and DMKU-SE132) and the external surface (DMKU-SP335 and DMKU-SP406) of sugar cane leaves collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and sequence analysis of the D1/D2 region of the LSU rRNA gene and the internal transcribed spacer (ITS) region, the six strains were found to represent a single novel species of the genus Wickerhamiella although the formation of ascospores was not observed. The sequences of the D1/D2 region of the LSU rRNA gene and ITS region of the six strains differed from each other by 0-2 and 2-3 nt substitutions, respectively. The novel species was related most closely to Candida infanticola but with 4.5-4.6% nucleotide substitutions in the D1/D2 region of the LSU rRNA gene and 6.6-7.1% nucleotide substitutions in the ITS region. The name Wickerhamiella siamensis f.a., sp. nov. is proposed. The type strain is DMKU-SE106(T) ( =BCC 61185(T) =NBRC 109697(T) =CBS 13331(T)). PMID:25168613

  18. Oceanobacillus endoradicis sp. nov., an endophytic bacterial species isolated from the root of Paris polyphylla Smith var. yunnanensis.

    PubMed

    Yang, Ling-Ling; Tang, Shu-Kun; Chu, Xiao; Jiang, Zhao; Xu, Li-Hua; Zhi, Xiao-Yang

    2016-07-01

    A bacterial strain, py1294(T), isolated from a root of Paris polyphylla Smith var. yunnanensis collected from Yunnan province, southwest China, was characterised by using a polyphasic approach to clarify its taxonomic position. Strain py1294(T) was found to be Gram-positive, aerobic, spore-forming, peritrichous flagella and rod shaped. Growth was found to occur in the presence of 0-8 % (w/v) NaCl (optimum 1-3 %), at pH 6.5-9.5 (optimum 8.0) and at 10-42 °C (optimum 30 °C). The major cellular fatty acids were identified as anteiso-C15:0, anteiso-C17:0, iso-C16:0 and iso-C14:0. The predominant quinone was identified as MK-7 and a minor amount of MK-6 was detected. The diagnostic polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain py1294(T) forms a well-supported clade with Oceanobacillus damuensis PT-20(T) (97.9 % sequence similarity) within the genus Oceanobacillus, although it also shares a high sequence similarity with Ornithinibacillus contaminans (97.5 %). Crucially, the DNA-DNA relatedness value between strain py1294(T) and O. damuensis PT-20(T) was 29.7 ± 3.2 %. The G+C content was determined to be 42.3 mol%. On the basis of the phylogenetic and phenotypic data, a novel species Oceanobacillus endoradicis sp. nov. is proposed, with py1294(T) (=DSM 100726(T) = KCTC 33731(T)) as the type strain. PMID:27059624

  19. Molecular insights on the biosynthesis of antitumour compounds by actinomycetes

    PubMed Central

    Olano, Carlos; Méndez, Carmen; Salas, José A.

    2011-01-01

    Summary Natural products are traditionally the main source of drug leads. In particular, many antitumour compounds are either natural products or derived from them. However, the search for novel antitumour drugs active against untreatable tumours, with fewer side‐effects or with enhanced therapeutic efficiency, is a priority goal in cancer chemotherapy. Microorganisms, particularly actinomycetes, are prolific producers of bioactive compounds, including antitumour drugs, produced as secondary metabolites. Structural genes involved in the biosynthesis of such compounds are normally clustered together with resistance and regulatory genes, which facilitates the isolation of the gene cluster. The characterization of these clusters has represented, during the last 25 years, a great source of genes for the generation of novel derivatives by using combinatorial biosynthesis approaches: gene inactivation, gene expression, heterologous expression of the clusters or mutasynthesis. In addition, these techniques have been also applied to improve the production yields of natural and novel antitumour compounds. In this review we focus on some representative antitumour compounds produced by actinomycetes covering the genetic approaches used to isolate and validate their biosynthesis gene clusters, which finally led to generating novel derivatives and to improving the production yields. PMID:21342461

  20. Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L.

    PubMed

    Xu, Huan; Zhang, Sheng; Cheng, Juan; Asem, Mipeshwaree Devi; Zhang, Meng-Yue; Manikprabhu, Deene; Zhang, Tian-Yuan; Wu, Ying-Ying; Li, Wen-Jun; Zhang, Yi-Xuan

    2016-05-01

    A Gram-stain-positive, aerobic and yellow actinobacterial strain, designated SYP-A7303T, was isolated from the root of Ginkgo biloba L. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain SYP-A7303T belongs to the genus Nocardioides. The 16S rRNA gene sequence of strain SYP-A7303T showed highest similarity to Nocardioides marinus CL-DD14T ( = JCM 15615T) (98.3 %) and Nocardioides aquiterrae GW-9T ( = JCM 11813T) (97.1 %), and less than 96.9 % to the type strains of other species of the genus Nocardioides. Strain SYP-A7303T grew optimally at 28 °C, pH 7.0 and in the absence of NaCl. It contained ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, with mannose, ribose, rhamnose, glucose and galactose as whole-cell sugars. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unknown lipid. The menaquinone was MK-8(H4) and the predominant cellular fatty acids were iso-C16 : 0, C18 : 1ω9c and C17 : 1ω8c. The DNA G+C content was 72 mol%. Mean DNA-DNA relatedness values between strain SYP-A7303T and the closely related strains N. marinus JCM 15615T and N. aquiterrae JCM 11813T were 62.5 ± 2.4 and 56.5 ± 3.5 %, respectively. Based on the morphological, physiological, biochemical and chemotaxonomic characteristics presented in this study, strain SYP-A7303T represents a novel species of the genus Nocardioides, for which the name Nocardioides ginkgobilobae sp. nov. is proposed. The type strain is SYP-A7303T ( = DSM 100492T = KCTC 39594T). PMID:26902329

  1. Acidophilic actinomycetes from rhizosphere soil: diversity and properties beneficial to plants.

    PubMed

    Poomthongdee, Nalin; Duangmal, Kannika; Pathom-aree, Wasu

    2015-02-01

    Three hundred and fifty-one isolates of actinomycetes were recovered from 21 rhizospheric soil samples using acidified media of pH 5.5. They were evaluated for their antifungal, siderophore production and phosphate solubilization activities. The total count of actinomycetes growing on acidified starch casein agar and Gause no. 1 agar were below 2.48 × 10(4) CFU g(-1) soil. Two hundred and twelve isolates were assigned to acidophiles and the remaining 139 isolates were neutrophiles. Of these actinomycetes, 57.8, 32.5 and 50.4%, showed antagonistic activity against three rice pathogenic fungi; Fusarium moniliforme, Helminthosporium oryzae and Rhizoctonia solani, respectively. More than half of the isolates (68.1%) inhibited at least one tested pathogenic fungus, whereas 25.9% exhibited antifungal activities against all tested fungi. Three hundred and thirty-eight isolates (96.3%) produced siderophore and 266 isolates (75.8%) solubilized phosphate. A greater proportion of the acidophilic actinomycetes exhibited antifungal, siderophore production and phosphate solubilization activity compared with the neutrophiles. Three hundred and twenty-five isolates (92.6%) were classified as streptomycetes based on their morphological characteristics and the presence of the LL-isomeric form of diaminopimelic acid in whole-cell hydrolysates. The 16S ribosomal RNA (rRNA) gene analysis of representative non-streptomycete strains showed that the isolates belonged to seven genera, that is, Allokutzneria, Amycolatopsis, Mycobacterium, Nocardia, Nonomuraea, Saccharopolyspora and Verrucosispora. The potential antifungal acidophilic isolates, R9-4, R14-1, R14-5 and R20-5, showed close similarity to Streptomyces misionensis NBRC 13063(T) (AB184285) in terms of morphological characteristics and 16S rRNA gene sequences.

  2. Effects of endophytic fungi on the ash dieback pathogen.

    PubMed

    Schlegel, Markus; Dubach, Vivanne; von Buol, Larissa; Sieber, Thomas N

    2016-09-01

    While Hymenoscyphus fraxineus causes dieback of the European ash (Fraxinus excelsior), flowering ash (F. ornus) appears resistant to the pathogen. To date, contributions of endophytic fungi to host resistance are unknown. The following hypotheses were tested: (i) endophytic fungi enhance the resistance of F. excelsior to the pathogen; (ii) resistance of F. ornus relies on its community of endophytic fungi. Two experiments were performed. (i) The effect of exudates of ash endophytes on the germination rate of H. fraxineus ascospores was studied in vitro Isolates of abundant Fraxinus leaf endophytes, such as Venturia fraxini, Paraconiothyrium sp., Boeremia exigua, Kretzschmaria deusta and Neofabraea alba inhibited ascospore germination. (ii) Ash seedlings inoculated in a climate chamber, with fungi sporulating on the previous year's leaf litter, were exposed to natural infections by the pathogen present in the forest. Non-inoculated seedlings were used as controls. Venturia spp. dominated the inoculated endophyte 'communities'. Subsequent exposure to H. fraxineus led to infection of F. excelsior leaves by the pathogen, but no differences in health status between pre-inoculated and non-inoculated seedlings were detected. Fraxinus ornus leaves experienced a low infection rate, independent of their colonization by endophytic fungi. These results did not support either hypothesis.

  3. Effects of endophytic fungi on the ash dieback pathogen.

    PubMed

    Schlegel, Markus; Dubach, Vivanne; von Buol, Larissa; Sieber, Thomas N

    2016-09-01

    While Hymenoscyphus fraxineus causes dieback of the European ash (Fraxinus excelsior), flowering ash (F. ornus) appears resistant to the pathogen. To date, contributions of endophytic fungi to host resistance are unknown. The following hypotheses were tested: (i) endophytic fungi enhance the resistance of F. excelsior to the pathogen; (ii) resistance of F. ornus relies on its community of endophytic fungi. Two experiments were performed. (i) The effect of exudates of ash endophytes on the germination rate of H. fraxineus ascospores was studied in vitro Isolates of abundant Fraxinus leaf endophytes, such as Venturia fraxini, Paraconiothyrium sp., Boeremia exigua, Kretzschmaria deusta and Neofabraea alba inhibited ascospore germination. (ii) Ash seedlings inoculated in a climate chamber, with fungi sporulating on the previous year's leaf litter, were exposed to natural infections by the pathogen present in the forest. Non-inoculated seedlings were used as controls. Venturia spp. dominated the inoculated endophyte 'communities'. Subsequent exposure to H. fraxineus led to infection of F. excelsior leaves by the pathogen, but no differences in health status between pre-inoculated and non-inoculated seedlings were detected. Fraxinus ornus leaves experienced a low infection rate, independent of their colonization by endophytic fungi. These results did not support either hypothesis. PMID:27364360

  4. Seasonal variation of bacterial endophytes in urban trees

    PubMed Central

    Shen, Shu Yi; Fulthorpe, Roberta

    2015-01-01

    Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila, and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons). The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus, and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia, and Sanguibacter spp. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests studies on endophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly. PMID:26042095

  5. Phenetic and functional characterization of endophytic root-nodule bacteria isolated from chickpea (Cicer arietinum L.) and mothbean (Vigna aconitifolia l.) of arid-and semi-arid regions of Rajasthan, India.

    PubMed

    Sharma, Saroj; Gaur, Rajarshi Kumar; Choudhary, Devendra Kumar

    2012-09-15

    In the present study we recovered endophytic root-nodule bacteria from chickpea (Cicer arietinumi L.) and mothbean (Vigna aconitifolia L.). Phenotypic and genotypic characterization of isolates was performed by employing biochemical and genetic approaches. Sequencing data showed that most isolates belonged to genus, Pseudomonas spp. being a dominant species. They also showed similarity with Rhizobium, Agrobacterium and Erwinia spp. Isolates were screened functionally for indole-3-acetic acid, siderophore production and inorganic phosphorus (Pi) solubilization. All isolates showed Pi solubilization except CJS-2. Nine isolates (CSS-1, CBS-1, CLS-3, CCS-1, CHS-1, VS-1, VL-1, VN-1, VN-2) were found positive for IAA production and eight isolates (CBS-1, CCS-1, CHS-2, CKS-2, CNS-2, VS-1, VJ-1) exhibited positive results for siderophore production. An understanding of the phonetic and functional diversity of these microbes that interact with plants will be worthwhile to fully achieve the biotechnological potential of efficient plant-microbe partnerships for a range of applications.

  6. Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes

    USGS Publications Warehouse

    Clay, Keith; Shearin, Zachery; Bourke, Kimberly; Bickford, Wesley A.; Kowalski, Kurt P.

    2016-01-01

    Plant–microbial interactions may play a key role in plant invasions. One common microbial interaction takes place between plants and fungal endophytes when fungi asymptomatically colonize host plant tissues. The objectives of this study were to isolate and sequence fungal endophytes colonizing non-native Phragmites australis in the Great Lakes region to evaluate variation in endophyte community composition among three host tissue types and three geographical regions. We collected entire ramets from multiple clones and populations, surface sterilized plant tissues, and plated replicate tissue samples from leaves, stems, and rhizomes on corn meal agar plates to culture and isolate fungal endophytes. Isolates were then subjected to Sanger sequencing of the ITS region of the nuclear ribosomal DNA. Sequences were compared to fungal databases to define operational taxonomic units (OTUs) that were analyzed statistically for community composition. In total, we obtained 173 endophyte isolates corresponding to 55 OTUs, 39 of which were isolated only a single time. The most common OTU corresponded most closely to Sarocladium strictum and comprised 25 % of all fungal isolates. More OTUs were found in stem tissues, but endophyte diversity was greatest in rhizome tissues. PERMANOVA analyses indicated significant differences in endophyte communities among tissue types, geographical regions, and the interaction between those factors, but no differences among individual ramets were detected. The functional role of the isolated endophytes is not yet known, but one genus isolated here (Stagonospora) has been reported to enhance Phragmites growth. Understanding the diversity and functions of Phragmites endophytes may provide targets for control measures based on disrupting host plant/endophyte interactions.

  7. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata).

    PubMed

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-02-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688

  8. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata).

    PubMed

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-02-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi.

  9. Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves.

    PubMed

    Orlandelli, R C; Alberto, R N; Rubin Filho, C J; Pamphile, J A

    2012-05-22

    Tropical and subtropical plants are rich in endophytic community diversity. Endophytes, mainly fungi and bacteria, inhabit the healthy plant tissues without causing any damage to the hosts. These fungi can be useful for biological control of pathogens and plant growth promotion. Some plants of the genus Piper are hosts of endophytic microorganisms; however, there is little information about endophytes on Piper hispidum, a medicinal shrub used as an insecticide, astringent, diuretic, stimulant, liver treatment, and for stopping hemorrhages. We isolated the fungal endophyte community associated with P. hispidum leaves from plants in a Brazilian forest remnant. The endophytic diversity was examined based on sequencing of the ITS1-5.8S-ITS2 region of rDNA. A high colonization frequency was obtained, as expected for tropical angiosperms. Isolated endophytes were divided into 66 morphogroups, demonstrating considerable diversity. We identified 21 isolates, belonging to 11 genera (Alternaria, Bipolaris, Colletotrichum, Glomerella, Guignardia, Lasiodiplodia, Marasmius, Phlebia, Phoma, Phomopsis, and Schizophyllum); one isolate was identified only to the order level (Diaporthales). Bipolaris was the most frequent genus among the identified endophytes. Phylogenetic analysis confirmed the molecular identification of some isolates to genus level while for others it was confirmed at the species level.

  10. Molecular Characterisation of Endophytic Fungi from Roots of Wild Banana (Musa acuminata)

    PubMed Central

    Zakaria, Latiffah; Jamil, Muhamad Izham Muhamad; Anuar, Intan Sakinah Mohd

    2016-01-01

    Endophytic fungi inhabit apparently healthy plant tissues and are prevalent in terrestrial plants, especially root tissues, which harbour a wide assemblage of fungal endophytes. Therefore, this study focused on the isolation and characterisation of endophytic fungi from the roots of wild banana (Musa acuminata). A total of 31 isolates of endophytic fungi were isolated from 80 root fragments. The endophytic fungi were initially sorted according to morphological characteristics and identified using the sequences of the translation elongation factor-1α (TEF-1α) gene of Fusarium spp. and the Internal Transcribed Spacer (ITS) regions of other fungi. The most common fungal isolates were species of the genus Fusarium, which were identified as F. proliferatum, Fusarium sp., F. solani species complex, and F. oxysporum. Other isolated endophytic fungi included Curvularia lunata, Trichoderma atroviride, Calonectria gracilis, Rhizoctonia solani, Bionectria ochroleuca, and Stromatoneurospora phoenix (Xylariceae). Several of the fungal genera, such as Fusarium, Trichoderma, Rhizoctonia, and Xylariceae, are among the common fungal endophytes reported in plants. This study showed that the roots of wild banana harbour a diverse group of endophytic fungi. PMID:27019688

  11. Antimicrobial activity and biodiversity of endophytic fungi in Dendrobium devonianum and Dendrobium thyrsiflorum from Vietnam.

    PubMed

    Xing, Yong-Mei; Chen, Juan; Cui, Jin-Long; Chen, Xiao-Mei; Guo, Shun-Xing

    2011-04-01

    Endophytic fungi are rich in orchids and have great impacts on their host plants. 53 endophytes (30 isolates from Dendrobium devonianum and 23 endophytic fungi from D. thyrsiflorum) were isolated, respectively, from roots and stems of Dendrobium species. All the fungi were identified by way of morphological and/or molecular biological methods. 30 endophytic fungi in D. devonianum were categorized into 11 taxa and 23 fungal endophytes in D. thyrsiflorum were grouped into 11 genera, respectively. Fusarium was the dominant species of the two Dendrobium species in common. Antimicrobial activity of ethanol extract of fermentation broth of these fungi was explored using agar diffusion test. 10 endophytic fungi in D. devonianum and 11 in D. thyrsiflorum exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among 6 pathogenic microbes (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus). Out of the fungal endophytes isolated from D. devonianum and D. thyrsiflorum, Phoma displayed strong inhibitory activity (inhibition zones in diameter >20 mm) against pathogens. Epicoccum nigrum from D. thyrsiflorum exhibited antibacterial activity even stronger than ampicillin sodium. Fusarium isolated from the two Dendrobium species was effective against the pathogenic bacterial as well as fungal pathogens. The study reinforced the assumption that endophytic fungi isolated from different Dendrobium species could be of potential antibacterial or antifungal resource.

  12. Diversity of endophytic fungal community associated with Piper hispidum (Piperaceae) leaves.

    PubMed

    Orlandelli, R C; Alberto, R N; Rubin Filho, C J; Pamphile, J A

    2012-01-01

    Tropical and subtropical plants are rich in endophytic community diversity. Endophytes, mainly fungi and bacteria, inhabit the healthy plant tissues without causing any damage to the hosts. These fungi can be useful for biological control of pathogens and plant growth promotion. Some plants of the genus Piper are hosts of endophytic microorganisms; however, there is little information about endophytes on Piper hispidum, a medicinal shrub used as an insecticide, astringent, diuretic, stimulant, liver treatment, and for stopping hemorrhages. We isolated the fungal endophyte community associated with P. hispidum leaves from plants in a Brazilian forest remnant. The endophytic diversity was examined based on sequencing of the ITS1-5.8S-ITS2 region of rDNA. A high colonization frequency was obtained, as expected for tropical angiosperms. Isolated endophytes were divided into 66 morphogroups, demonstrating considerable diversity. We identified 21 isolates, belonging to 11 genera (Alternaria, Bipolaris, Colletotrichum, Glomerella, Guignardia, Lasiodiplodia, Marasmius, Phlebia, Phoma, Phomopsis, and Schizophyllum); one isolate was identified only to the order level (Diaporthales). Bipolaris was the most frequent genus among the identified endophytes. Phylogenetic analysis confirmed the molecular identification of some isolates to genus level while for others it was confirmed at the species level. PMID:22653631

  13. Pervasive Effects of Wildfire on Foliar Endophyte Communities in Montane Forest Trees.

    PubMed

    Huang, Yu-Ling; Devan, M M Nandi; U'Ren, Jana M; Furr, Susan H; Arnold, A Elizabeth

    2016-02-01

    Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together, these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes.

  14. [Diversity and community structure of endophytic fungi from Taxus chinensis var. mairei].

    PubMed

    2014-07-01

    A total of 628 endophytic fungi were isolated from 480 tissue segments of needles and branches of Taxus chinensis var. mairei. According to morphological characteristics and ITS sequences, they represented 43 taxa in 28 genera, of which 10 Hyphomycetes, 20 Coelomycetes, 12 Ascomycetes and 1 unknown fungus. Phomopsis mali was confirmed as the dominant species. In accordance with relative frequency, Alternaria alternata, Aureobasidium pullulans, Colletotrichum boninense, C. gloeosporioides, Epicoccum nigrum , Fungal sp., Fusarium lateritium, Glomerella cingulata, Magnaporthales sp. , Nigrospora oryzae, Pestalotiopsis maculiformans, P. microspora, Peyronellaea glomerata and Xylaria sp. 1 were more common in T. chinensis var. mairei. T. chinensis var. mairei were severely infected by endophytic fungi. Endophytic fungi were found in 81 percent of plant tissues with a high diversity. Distribution ranges of endophytic fungi were influenced by tissue properties. The colonization rate, richness, diversity of endophytic fungi in needles were obviously lower than in branches, and kinds of endophytic fungi between branches were more similar than those in needles, thus endophytic fungi had tissue preference. In addition, tissue age influenced the community structure of endophytic fungi. The elder branch tissues were, the higher colonization rate, richness, diversity of endophytic fungi were. Systematic studying the diversity and community structure of endophytic fungi in T. chinensis var. mairei and clarifying their distribution regularity in plant tissues would offer basic data and scientific basis for their development and utilization. Discussing the presence of fungal pathogens in healthy plant tissues would be of positive significance for source protection of T. chinensis var. mairei.

  15. Mycobacterium and Aerobic Actinomycete Culture: Are Two Medium Types and Extended Incubation Times Necessary?

    PubMed Central

    Simner, Patricia J.; Doerr, Kelly A.; Steinmetz, Lory K.

    2016-01-01

    Mycobacterial cultures are historically performed using a liquid medium and a solid agar medium with an incubation period of up to 60 days. We performed a retrospective analysis of 21,494 mycobacterial and aerobic actinomycetes cultures performed over 10 months to determine whether two medium types remain necessary and to investigate whether culture incubation length can be shortened. Specimens were cultured using Bactec MGIT liquid medium and Middlebrook 7H11/S7H11 solid medium with incubation periods of 42 and 60 days, respectively. Time-to-positivity and the identity of isolates recovered from each medium were evaluated. A total of 1,205/21,494 cultures (6%) were positive on at least one medium. Of the 1,353 isolates recovered, 1,110 (82%) were nontuberculous mycobacteria, 145 (11%) were aerobic actinomycetes, and 98 (7%) were Mycobacterium tuberculosis complex. Assessing medium types, 1,121 isolates were recovered from solid medium cultures, 922 isolates were recovered from liquid medium cultures, and 690 isolates were recovered on both media. Liquid cultures were positive an average of 10 days before solid cultures when the two medium types were positive (P < 0.0001). Isolates detected on solid medium after 6 weeks of incubation included 65 (5%) nontuberculous mycobacteria, 4 (0.3%) aerobic actinomycetes, and 2 (0.2%) isolates from the M. tuberculosis complex. Medical chart review suggested that most of these later-growing isolates were insignificant, as the diagnosis was already known, or they were considered colonizers/contaminants. This study reaffirms the need for both liquid medium and solid medium for mycobacterial and aerobic actinomycetes culture and demonstrates that solid medium incubation times may be reduced to 6 weeks without significantly impacting sensitivity. PMID:26865689

  16. Screening of antibacterial producing actinomycetes from sediments of the caspian sea.

    PubMed

    Mohseni, Mojtaba; Norouzi, Hamed; Hamedi, Javad; Roohi, Aboulghasem

    2013-01-01

    Actinomycetes are interesting as a main producer of secondary metabolites and industrial antibiotics from marine environments. A total of 44 strains of actinomycetes were isolated from Caspian Sea sediments at a depth of 5-10 m. Preliminary screening was done using cross-streak method against 2 gram-positive and 4 gram-negative pathogen bacteria. The most potent strains MN2, MN3, MN38, MN39, MN40, MN41, and MN44 were used to extract the antibacterial substances. The antibacterial activities were performed using Kirby-Bauer disk diffusion method. Potent actinomycetes were screened for hydrolytic exoenzymatic activities (amylase and protease). All of the 24 isolates were active against at least to one of the test organisms. The MN38 strain showed activity against Staphylococcus aureus (20.0±0.5mm), Bacillus subtilis (27.0±0.2 mm), and Escherichia coli (20.0±0.3 mm). The MN39 strain was also active against E. coli (23.0±0.4mm), B. subtilis (23.0±0.2mm), Klebsiella pneumonia (24±0.1mm), whereas, the MN3 strain showed activity against Pseudomonas aeruginosa (20.0±0.2mm). The results of this investigation revealed that the marine actinomycetes of Caspian Sea sediments were potent source of novel antibiotics and bioactive compounds.

  17. Screening of Antibacterial Producing Actinomycetes from Sediments of the Caspian Sea

    PubMed Central

    Mohseni, Mojtaba; Norouzi, Hamed; Hamedi, Javad; Roohi, Aboulghasem

    2013-01-01

    Actinomycetes are interesting as a main producer of secondary metabolites and industrial antibiotics from marine environments. A total of 44 strains of actinomycetes were isolated from Caspian Sea sediments at a depth of 5-10 m. Preliminary screening was done using cross-streak method against 2 gram-positive and 4 gram-negative pathogen bacteria. The most potent strains MN2, MN3, MN38, MN39, MN40, MN41, and MN44 were used to extract the antibacterial substances. The antibacterial activities were performed using Kirby-Bauer disk diffusion method. Potent actinomycetes were screened for hydrolytic exoenzymatic activities (amylase and protease). All of the 24 isolates were active against at least to one of the test organisms. The MN38 strain showed activity against Staphylococcus aureus (20.0±0.5mm), Bacillus subtilis (27.0±0.2 mm), and Escherichia coli (20.0±0.3 mm). The MN39 strain was also active against E. coli (23.0±0.4mm), B. subtilis (23.0±0.2mm), Klebsiella pneumonia (24±0.1mm), whereas, the MN3 strain showed activity against Pseudomonas aeruginosa (20.0±0.2mm). The results of this investigation revealed that the marine actinomycetes of Caspian Sea sediments were potent source of novel antibiotics and bioactive compounds. PMID:24551793

  18. Marine actinomycete diversity and natural product discovery.

    PubMed

    Jensen, Paul R; Mincer, Tracy J; Williams, Philip G; Fenical, William

    2005-01-01

    Microbial natural products remain an important resource for drug discovery yet the microorganisms inhabiting the world's oceans have largely been overlooked in this regard. The recent discovery of novel secondary metabolites from taxonomically unique populations of marine actinomycetes suggests that these bacteria add an important new dimension to microbial natural product research. Continued efforts to characterize marine actinomycete diversity and how adaptations to the marine environment affect secondary metabolite production will create a better understanding of the potential utility of these bacteria as a source of useful products for biotechnology.

  19. Understanding and manipulating antibiotic production in actinomycetes.

    PubMed

    Bibb, Mervyn J

    2013-12-01

    Actinomycetes are prolific producers of natural products with a wide range of biological activities. Many of the compounds that they make (and derivatives thereof) are used extensively in medicine, most notably as clinically important antibiotics, and in agriculture. Moreover, these organisms remain a source of novel and potentially useful molecules, but maximizing their biosynthetic potential requires a better understanding of natural product biosynthesis. Recent developments in genome sequencing have greatly facilitated the identification of natural product biosynthetic gene clusters. In the present article, I summarize the recent contributions of our laboratory in applying genomic technologies to better understand and manipulate natural product biosynthesis in a range of different actinomycetes.

  20. Overproduction and biological activity of prodigiosin-like pigments from recombinant fusant of endophytic marine Streptomyces species.

    PubMed

    El-Bondkly, Ahmed M A; El-Gendy, Mervat M A; Bassyouni, Rasha H

    2012-11-01

    Thirty-four endophytic marine Actinomycetes isolates were recovered from the Egyptian marine sponge Latrunculia corticata, out of them 5 isolates (14.7 %) showed red single colonies on yeast-CzAPEK plates. Isolates under the isolation code NRC50 and NRC51 were observed with the strongest red biomass. After application of protoplast fusion between NRC50 and NRC51 isolates, 26 fusants were selected and produced widely different amounts of prodigiosin-like pigments (PLPs) on different fermentation media. Among them fusant NRCF69 produced 79 and 160.4 % PLPs more than parental strains NRC50 and NRC51, respectively. According to the analysis of 16S rDNA sequence (amplified, sequenced, and submitted to GenBank under Accession no. JN232405 and JN232406, respectively), together with their morphological and biochemical characteristics, parental strains NRC50 (P1) and NRC51 (P2) were identified as Streptomyces sp. and designated as Streptomyces sp. NRC50 and Streptomyces sp. NRC51. This study describes a low cost, effective production media by using peanut seed broth, sunflower oil broth or dairy processing wastewater broth alone, or supplemented with 0.5 % mannitol that supports the production of PLPs by the Streptomyces fusant NRCF69 under study (42.03, 40.11, 36.7 and 47 g L(-1), respectively). PLPs compounds exhibited significant cytotoxic activities against three human cancer cell lines: colon cancer cell line (HCT-116), liver cancer cell line (HEPG-2) and breast cancer cell line (MCF-7) and antimycotic activity against clinical dermatophyte isolates of Trichophyton, Microsporum and Epidermophyton.

  1. Preliminary Screening of Endophytic Fungi from Medicinal Plants in Malaysia for Antimicrobial and Antitumor Activity

    PubMed Central

    Radu, Son; Kqueen, Cheah Yoke

    2002-01-01

    The screening of antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, yeast and fungi was carried out on isopropanol extracts prepared from 121 isolates of endophytic fungi isolated from medicinal plants in Malaysia. Sensitivity was found to vary among the microorganisms. Bacillus subtilis, Saccharomyces cerevisiae and Alternaria sp. were susceptible to extracts from three, two and two isolates of endophytic fungi, respectively. None were found effective against Salmonella typhimurium. Sixteen endophytic fungal isolates tested were also found to exhibit antitumor activity in the yeast cell-based assay. PMID:22844221

  2. Establishing fungal entomopathogens as endophytes: towards endophytic biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria basssiana is a fungal entomopathogen with the ability to colonize plants endophytically. As an endophyte, B. bassiana may play a role in protecting plants from herbivory and disease. This protocol demonstrates two inoculation methods to establish B. bassiana endophytically in the common be...

  3. The defensive role of foliar endophytic fungi for a South American tree

    PubMed Central

    González-Teuber, Marcia

    2016-01-01

    Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum. Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature. PMID:27339046

  4. The defensive role of foliar endophytic fungi for a South American tree.

    PubMed

    González-Teuber, Marcia

    2016-01-01

    Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature. PMID:27339046

  5. The defensive role of foliar endophytic fungi for a South American tree.

    PubMed

    González-Teuber, Marcia

    2016-01-01

    Fungal endophytes colonize living internal plant tissues without causing any visible symptoms of disease. Endophytic fungi associated with healthy leaves may play an important role in the protection of hosts against herbivores and pathogens. In this study, the diversity of foliar endophytic fungi (FEF) of the southern temperate tree Embothrium coccineum (Proteaceae), as well as their role in plant protection in nature was determined. Fungal endophytes were isolated from 40 asymptomatic leaves by the culture method for molecular identification of the 18S rRNA gene. A relationship between FEF frequency and plant protection was evaluated in juveniles of E. coccineum Fungal endophyte frequency was estimated using real-time PCR analyses to determine endophyte DNA content per plant. A total of 178 fungal isolates were identified, with sequence data revealing 34 different operational taxonomic units (OTUs). A few common taxa dominated the fungal endophyte community, whereas most taxa qualified as rare. A significant positive correlation between plant protection (evaluated in terms of percentage of leaf damage) and FEF frequency was found. Furthermore, in vitro confrontation assays indicated that FEF were able to inhibit the growth of fungal pathogens. The data showed a relatively high diversity of fungal endophytes associated with leaves of E. coccineum, and suggest a positive relationship between fungal endophyte frequencies in leaves and host protection in nature.

  6. Influence of endophyte genotype on swainsonine concentrations in Oxytropis sericea.

    PubMed

    Cook, Daniel; Grum, Daniel S; Gardner, Dale R; Welch, Kevin D; Pfister, James A

    2013-01-01

    Locoism is a toxic syndrome of livestock caused by the ingestion of a subset of legumes belonging to the Astragalus and Oxytropis genera known as "locoweeds". Locoweeds contain the toxic indolizidine alkaloid swainsonine, which is produced by the endophytic fungi Undifilum species. Previously we reported that swainsonine concentrations differ between populations of Oxytropis sericea. We hypothesized that the genotype of the plant, endophyte, or an interaction of the two may be responsible for the differences in swainsonine concentration between populations of O. sericea. To test this hypothesis, plants derived from seeds collected at each location were grown in a common garden, Undifilum oxytropis isolates from each location were cultured and grown in a common environment, and a plant genotype by endophyte cross inoculation was performed. Here we show that the genotype of the endophyte is responsible for the differences in swainsonine concentrations observed in the two populations of O. sericea. PMID:23149419

  7. Fungal root endophytes of the carnivorous plant Drosera rotundifolia.

    PubMed

    Quilliam, Richard S; Jones, David L

    2010-06-01

    As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the growing season (spring and summer). We have used a culture-dependent method to isolate fungal endophytes and diagnostic polymerase chain reaction methods to determine arbuscular mycorrhizal fungi colonisation. All of the roots sampled contained culturable fungal root endophytes; additionally, we have provided molecular evidence that they also host arbuscular mycorrhizal fungi. Colonisation showed seasonal differences: Roots in the spring were colonised by Articulospora tetracladia, two isolates of uncultured ectomycorrhizal fungi, an unidentified species of fungal endophyte and Trichoderma viride, which was present in every plant sampled. In contrast, roots in the summer were colonised by Alatospora acuminata, an uncultured ectomycorrhizal fungus, Penicillium pinophilum and an uncultured fungal clone. Although the functional roles of fungal endophytes of D. rotundifolia are unknown, colonisation may (a) confer abiotic stress tolerance, (b) facilitate the acquisition of scarce nutrients particularly at the beginning of the growing season or (c) play a role in nutrient signalling between root and shoot.

  8. Actinomycetes in the rhizosphere of semidesert soils of Mongolia

    NASA Astrophysics Data System (ADS)

    Norovsuren, Zh.; Zenova, G. M.; Mosina, L. V.

    2007-04-01

    The population density of actinomycetes in the desert-steppe soil, rhizosphere, and the above-ground parts of plants varies from tens to hundreds of thousands of colony-forming units (CFU) per gram of substrate. The actinomycetal complexes of the brown desert-steppe soil without plant roots are more diverse in their taxonomic composition than the actinomycetal complexes in the rhizosphere and the aboveground parts of plants. Additionally to representatives of the Streptomyces and Micromonospora genera, actinomycetes from the Nocardia, Saccharopolyspora, Thermomonospora, and Actinomadura genera were identified in the soil. The population density of actinomycetes in the rhizosphere and in the soil reached hundreds of thousand CFU/g; it considerably exceeded the population density of actinomycetes in the aboveground parts of plants. The maximum population density of actinomycetes was determined in the rhizosphere of Asparagus gobicus, Salsola pestifera, and Cleistogenes songorica.

  9. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium

    PubMed Central

    Ho, Ying-Ning

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  10. Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant endophytic microorganisms may play an important role in plant evolution, development, and resistance to biotic and abiotic stresses. However, the use of these microorganisms to benefit agriculture is in its infancy. We isolated endophytic fungi from plum leaves, identified them using ITS1 an...

  11. Muscodor yucatenensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During a study on the fungal endophytic associations with some trees of the dry tropical forest of El Eden Ecological Reserve located in the northeast of the Yucatan Peninsula of Mexico, a new fungal species was isolated as an endophyte of a tree named chakah, chachah or huk´up by indigenous mayas. ...

  12. Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete.

    PubMed

    George, S P; Ahmad, A; Rao, M B

    2001-04-01

    A novel alkalothermophilic actinomycete having optimum growth at pH 9 and 50 degrees C was isolated from self-heating compost from the Barabanki district of Uttar Pradesh, India. Based on its morphology, susceptibility of spores to heat and novobiocin, guaninecytosine content of chromosomal DNA and cell wall composition, the organism was classified under Thermomonospora. The alkalothermophilic actinomycete produced 23 IU/ml carboxymethyl cellulase (CMCase). The CMCase was purified by fractional ammonium sulphate precipitation followed by cellulose affinity chromatography and Sephacryl S-200 gel filtration. The CMCase had a molecular weight of 38 KD and pI of 4.1. The enzyme exhibited optimum activity at pH 5 and temperature 50 degrees C. The CMCase showed pH stability in the range 7-10. The enzyme retained 100% activity at 50 degrees C for 72 h and had half-lives of 7 and 3 h at 60 degrees C and 70 degrees C, respectively. The CMCase was stable in the presence of commercial detergents such as Ariel, Henko and Surf Excel, indicating its potential as an additive to laundry detergents.

  13. Kineosporia mesophila sp. nov., isolated from surface-sterilized stems of Tripterygium wilfordii.

    PubMed

    Li, Jie; Zhao, Guo-Zhen; Huang, Hai-Yu; Qin, Sheng; Zhu, Wen-Yong; Xu, Li-Hua; Li, Wen-Jun

    2009-12-01

    An endophytic actinomycete strain, designated YIM 65293(T), was isolated from a surface-sterilized stem sample of Tripterygium wilfordii collected from Yunnan province, south-west China, and its taxonomic position was investigated. The chemical and morphological properties of the organism were consistent with those of the genus Kineosporia. Phylogenetic analysis indicated that the levels of 16S rRNA gene sequence similarity between strain YIM 65293(T) and other type strains of recognized members of the genus Kineosporia were 97.0-98.2 %. However, the DNA-DNA hybridization values, in combination with differences in phenotypic characteristics, revealed that the strain differed from recognized species of the genus Kineosporia. Therefore, strain YIM 65293(T) represents a novel species of the genus Kineosporia, for which the name Kineosporia mesophila sp. nov. is proposed. The type strain is YIM 65293(T) (=CCTCC AA 208061(T)=DSM 45271(T)).

  14. Actinomycetes: A Source of Lignocellulolytic Enzymes

    PubMed Central

    Saini, Anita; Aggarwal, Neeraj K.; Sharma, Anuja; Yadav, Anita

    2015-01-01

    Lignocellulose is the most abundant biomass on earth. Agricultural, forest, and agroindustrial activities generate tons of lignocellulosic wastes annually, which present readily procurable, economically affordable, and renewable feedstock for various lignocelluloses based applications. Lignocelluloses are the focus of present decade researchers globally, in an attempt to develop technologies based on natural biomass for reducing dependence on expensive and exhaustible substrates. Lignocellulolytic enzymes, that is, cellulases, hemicellulases, and lignolytic enzymes, play very important role in the processing of lignocelluloses which is prerequisite for their utilization in various processes. These enzymes are obtained from microorganisms distributed in both prokaryotic and eukaryotic domains including bacteria, fungi, and actinomycetes. Actinomycetes are an attractive microbial group for production of lignocellulose degrading enzymes. Various studies have evaluated the lignocellulose degrading ability of actinomycetes, which can be potentially implemented in the production of different value added products. This paper is an overview of the diversity of cellulolytic, hemicellulolytic, and lignolytic actinomycetes along with brief discussion of their hydrolytic enzyme systems involved in biomass modification. PMID:26793393

  15. Detection of polyketide synthase and nonribosomal peptide synthetase biosynthetic genes from antimicrobial coral-associated actinomycetes.

    PubMed

    Li, Jie; Dong, Jun-De; Yang, Jian; Luo, Xiong-Ming; Zhang, Si

    2014-10-01

    The diversity and properties of actinobacteria, predominant residents in coral holobionts, have been rarely documented. In this study, we aimed to explore the species diversity, antimicrobial activities and biosynthetic potential of culturable actinomycetes within the tissues of the scleractinian corals Porites lutea, Galaxea fascicularis and Acropora millepora from the South China Sea. A total of 70 strains representing 13 families and 15 genera of actinobacteria were isolated. The antimicrobial activity and biosynthetic potential of fifteen representative filamentous actinomycetes were estimated. Crude fermentation extracts of 6 strains exhibited comparable or greater activities against Vibrio alginolyticus than ciprofloxacin. Seven of the 15 actinomycetes strains possess type I polyketide synthases (PKS-I) and/or nonribosomal peptide synthetases (NRPS) genes. Nine tested strains possess type II polyketide synthases (PKS-II). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these PKS and NRPS gene screening positive strains belong to genera Nocardiopsis, Pseudonocardia, Streptomyces, Micromonospora, Amycolatopsis and Prauserella. One PKS-I and four NRPS fragments showed <70% similarity to their closest relatives, which suggested the novelty of these genes. This study helps uncover the genetic capacity of stony coral-associated actinomycetes to produce bioactive molecules.

  16. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines

    PubMed Central

    Ravikumar, S; Fredimoses, M; Gnanadesigan, M

    2012-01-01

    Objective To investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines. Methods In vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates. Results Of the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82) µg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 µg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (-57.6 kkal/mol). Conclusions The actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines. PMID:23569875

  17. Endophyte-mediated interactions between cauliflower, the herbivore Spodoptera litura, and the ectoparasitoid Bracon hebetor.

    PubMed

    Kaur, Tamanreet; Singh, Bahaderjeet; Kaur, Amarjeet; Kaur, Sanehdeep

    2015-10-01

    Fungal endosymbionts in plants may influence interactions among plants, herbivores and their parasitoids through the production of secondary metabolites. We used a lepidopteran pest and its generalist parasitoid to test the effect of endophyte-infected plants on a third trophic level. Endophytic fungi, Aspergillus flavus and Aspergillus niger, isolated from Acacia arabica, were used to infect cauliflower plants. We found that the presence of the endophyte in the plants significantly extended the development period of Spodoptera litura (Fab.) larvae. Feeding of the host on endophyte-infected plants further adversely affected the development and performance of its parasitoid, Bracon hebetor (Say). A negative impact was also recorded for longevity and fecundity of endophyte-naive parasitoid females due to the parasitization of host larvae fed on endophyte-infected plants. The presence of endophytes in the diet of the host larvae significantly prolonged the development of the parasitoid. A strong detrimental effect was also recorded for larval survival and emergence of parasitoid adults. The longevity and parasitism rate of female wasps were reduced significantly due to the ingestion of endophyte-infected cauliflower plants by S. litura larvae. Overall, we found that both endophytic fungi had a negative impact on the parasitoid.

  18. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest.

  19. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. PMID:26661903

  20. Exploring Arabidopsis thaliana Root Endophytes via Single-Cell Genomics

    SciTech Connect

    Lundberg, Derek; Woyke, Tanja; Tringe, Susannah; Dangl, Jeff

    2014-03-19

    Land plants grow in association with microbial communities both on their surfaces and inside the plant (endophytes). The relationships between microbes and their host can vary from pathogenic to mutualistic. Colonization of the endophyte compartment occurs in the presence of a sophisticated plant immune system, implying finely tuned discrimination of pathogens from mutualists and commensals. Despite the importance of the microbiome to the plant, relatively little is known about the specific interactions between plants and microbes, especially in the case of endophytes. The vast majority of microbes have not been grown in the lab, and thus one of the few ways of studying them is by examining their DNA. Although metagenomics is a powerful tool for examining microbial communities, its application to endophyte samples is technically difficult due to the presence of large amounts of host plant DNA in the sample. One method to address these difficulties is single-cell genomics where a single microbial cell is isolated from a sample, lysed, and its genome amplified by multiple displacement amplification (MDA) to produce enough DNA for genome sequencing. This produces a single-cell amplified genome (SAG). We have applied this technology to study the endophytic microbes in Arabidopsis thaliana roots. Extensive 16S gene profiling of the microbial communities in the roots of multiple inbred A. thaliana strains has identified 164 OTUs as being significantly enriched in all the root endophyte samples compared to their presence in bulk soil.

  1. Antimicrobial Metabolites from a Marine-Derived Actinomycete in Vietnam's East Sea.

    PubMed

    Thi, Quyen Vu; Tran, Van Hieu; Maia, Huong Doan Thi; Le, Cong Vinh; Hong, Minh Le Thi; Murphy, Brian T; Chau, Van Minh; Pham, Van Cuong

    2016-01-01

    Two new compounds, a quinoline alkaloid (1) and a 1,4-dioxane derivative (2), were isolated from culture broth of the marine-derived actinomycete Micromonospora sp. (strain G019) by bioassay-guided fractionation. This actinomycete strain was isolated from sediment, collected at Cát Bà Peninsula, Vietnam. The taxonomic identification was achieved by analysis of 16S rRNA gene sequences. On the basis of morphological and phylogenetic evidence, strain G019 was assigned to the genus Micromonospora. The structures of 1 and 2 were established by spectroscopic data analysis, including one- and two-dimensional NMR, and MS. Compound 1 was found to have antibacterial activity against Escherichia coli (MIC: 48 µg/mL), Salmonella enterica (MIC: 96 µg/mL) and Enterococcus faecalis (MIC: 128 µg/mL), while compound 2 showed inhibitory activity against Enterococcusfaecalis (MIC: 32 µg/mL) and Candida albicans (MIC: 64 µg/mL). PMID:26996018

  2. [Secondary metabolites of a marine actinomycete Streptomyces sp. (No. 195-02) from South China Sea].

    PubMed

    Li, Chun-Yuan; Ding, Wei-Jia; She, Zhi-Gang; Lin, Yong-Cheng

    2008-05-01

    The metabolites of a marine streptomyces sp. actinomycete (No. 195-02) were studied and eight compounds were isolated from the fermentation liquid, structures were elucidated by spectroscopy methods as p-hydroxy-benzonitrile (1), 2-methyl-furan-3-carboxylic acid(2), furan-2-carboxylic acid (3), cyclo(Phe-Phe) (4), cyclo(Leu-Ileu) (5), nicotinic acid (6), 2-(1H-indol-3-yl) acetic acid (7) and bis(2-ethylhexyl) phthalate (8). The compounds 1, 3 and 8 were firstly isolated from Streptomyces sp., compounds 4 -7 were firstly found from marine actinomycetes. Coumpouds 4 and 5 evidently inhibited the growth of cancer cell lines hepG2 and hep2 at the concentration of 50 microg/ml.

  3. New Benzoxazine Secondary Metabolites from an Arctic Actinomycete

    PubMed Central

    Moon, Kyuho; Ahn, Chan-Hong; Shin, Yoonho; Won, Tae Hyung; Ko, Keebeom; Lee, Sang Kook; Oh, Ki-Bong; Shin, Jongheon; Nam, Seung-Il; Oh, Dong-Chan

    2014-01-01

    Two new secondary metabolites, arcticoside (1) and C-1027 chromophore-V (2), were isolated along with C-1027 chromophore-III and fijiolides A and B (3–5) from a culture of an Arctic marine actinomycete Streptomyces strain. The chemical structures of 1 and 2 were elucidated through NMR, mass, UV, and IR spectroscopy. The hexose moieties in 1 were determined to be d-glucose from a combination of acid hydrolysis, derivatization, and gas chromatographic analyses. Arcticoside (1) and C-1027 chromophore-V (2), which have a benzoxazine ring, inhibited Candida albicans isocitrate lyase. Chromophore-V (2) exhibited significant cytotoxicity against breast carcinoma MDA-MB231 cells and colorectal carcinoma cells (line HCT-116), with IC50 values of 0.9 and 2.7 μM, respectively. PMID:24796308

  4. Melanogenic actinomycetes from rhizosphere soil-antagonistic activity against Xanthomonas oryzae and plant-growth-promoting traits.

    PubMed

    Muangham, Supattra; Pathom-Aree, Wasu; Duangmal, Kannika

    2015-02-01

    A total of 210 melanogenic actinomycetes were isolated from 75 rhizospheric soils using ISP6 and ISP7 agar supplemented with antifungal and antibacterial agents. Their morphological characteristics and the presence of ll-diaminopimelic acid in whole-cell hydrolyzates revealed that all isolates belonged to the genus Streptomyces. Their ability to inhibit the growth of 2 pathogenic rice bacteria, Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola, was observed using the agar overlay method. The results indicated that 61.9% of the isolates could inhibit at least one of the tested rice pathogens. Among these, isolate TY68-3 showed the highest antibacterial activity and siderophore production. The 16S rRNA gene sequence analysis of 46 representative isolates revealed that isolates with high similarity to Streptomyces bungoensis were frequently found. The present study indicated the potential of melanogenic actinomycetes for use as biocontrol agents against X. oryzae as well as their diversity in rhizospheric soils.

  5. Taxonomy and Polyphasic Characterization of Alkaline Amylase Producing Marine Actinomycete Streptomyces rochei BTSS 1001

    PubMed Central

    Acharyabhatta, Aparna; Kandula, Siva Kumar; Terli, Ramana

    2013-01-01

    Actinomycetes isolated from marine sediments along the southeast coast of Bay of Bengal were investigated for amylolytic activity. Marine actinomycete BTSS 1001 producing an alkaline amylase was identified from marine sediment of Diviseema coast, Bay of Bengal. The isolate produced alkaline amylase with maximum amylolytic activity at pH 9.5 at 50°C. The organism produced white to pale grey substrate mycelium and grayish aerial mycelium with pinkish brown pigmentation. A comprehensive study of morphological, physiological parameters, cultural characteristics, and biochemical studies was performed. The presence of iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and anteiso-C17 : 0 as the major cellular fatty acids, LL-diaminopimelic acid as the characteristic cell wall component, and menaquinones MK-9H(6) and MK-9H(8) as the major isoprenoid quinones is attributed to the strain BTSS 1001 belonging to the genus Streptomyces. Comparison of 16S rRNA gene sequences showed that strain BTSS 1001 exhibited the highest similarities to the type strains of Streptomyces rochei (99%), Streptomyces plicatus (99%), and Streptomyces enissocaesilis (99%). Using the polyphasic taxonomical approach and phenotypic characteristic studies, the isolate BTSS 1001 was characterized as marine actinomycete Streptomyces rochei. PMID:24489548

  6. Screening of actinomycetes from earthworm castings for their antimicrobial activity and industrial enzymes

    PubMed Central

    Kumar, Vijay; Bharti, Alpana; Negi, Yogesh Kumar; Gusain, Omprakash; Pandey, Piyush; Bisht, Gajraj Singh

    2012-01-01

    Actinomycetes from earthworm castings were isolated and screened for their antimicrobial activity and industrial enzymes. A total of 48 isolates were obtained from 12 samples of earthworm castings. Highest numbers of isolates were recovered from forest site (58.33 %) as compared to grassland (25%) and agricultural land (16.66%). The growth patterns, mycelial coloration of abundance actinomycetes were documented. The dominant genera Identified by cultural, morphological and physiological characteristics were Streptomyces (60.41%) followed by Streptosporangium (10.41%),Saccharopolyspora (6.25%) and Nocardia (6.25%). Besides these, other genera like Micromonospora, Actinomadura, Microbispora, Planobispora and Nocardiopsis were also recovered but in low frequency. Among the 48 isolates, 52.08% were found active against one or more test organisms. Out of 25 active isolates 16% showed activity against bacterial, human fungal as well as phytopathogens. Among 48 isolates 38, 32, 21, 20, 16 and 14 produced enzyme amylase, caseinase, cellulase, gelatinase, xylanase and lipase respectively while 10 isolates produced all the enzymes. More interestingly 2, 3, and 1 isolates produced amylase, xylanase and lipase at 45°C respectively. In the view of its antimicrobial activity as well as enzyme production capability the genus Streptomyces was dominant. The isolate EWC 7(2) was most promising on the basis of its interesting antimicrobial activity and was identified as Streptomyces rochei. The results of these findings have increased the scope of finding industrially important actinomycetes from earthworm castings and these organisms could be promising sources for industrially important molecules or enzymes. PMID:24031819

  7. Macroalgal Endophytes from the Atlantic Coast of Canada: A Potential Source of Antibiotic Natural Products?

    PubMed Central

    Flewelling, Andrew J.; Ellsworth, Katelyn T.; Sanford, Joseph; Forward, Erica; Johnson, John A.; Gray, Christopher A.

    2013-01-01

    As the need for new and more effective antibiotics increases, untapped sources of biodiversity are being explored in an effort to provide lead structures for drug discovery. Endophytic fungi from marine macroalgae have been identified as a potential source of biologically active natural products, although data to support this is limited. To assess the antibiotic potential of temperate macroalgal endophytes we isolated endophytic fungi from algae collected in the Bay of Fundy, Canada and screened fungal extracts for the presence of antimicrobial compounds. A total of 79 endophytes were isolated from 7 species of red, 4 species of brown, and 3 species of green algae. Twenty of the endophytes were identified to the genus or species level, with the remaining isolates designated codes according to their morphology. Bioactivity screening assays performed on extracts of the fermentation broths and mycelia of the isolates revealed that 43 endophytes exhibited antibacterial activity, with 32 displaying antifungal activity. Endophytic fungi from Bay of Fundy macroalgae therefore represent a significant source of antibiotic natural products and warrant further detailed investigation.

  8. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  9. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea.

    PubMed

    Martin, Rachael; Gazis, Romina; Skaltsas, Demetra; Chaverri, Priscila; Hibbett, David

    2015-01-01

    Research on fungal endophytes has expanded dramatically in recent years, but little is known about the diversity and ecological roles of endophytic basidiomycetes. Here we report the analysis of 310 basidiomycetous endophytes isolated from wild and planted populations of the rubber tree genus, Hevea. Species accumulation curves were nonasymptotic, as in the majority of endophyte surveys, indicating that more sampling is needed to recover the true diversity of the community. One hundred eighteen OTUs were delimited, representing nine orders of Basidiomycota (Agaricales, Atheliales, Auriculariales, Cantharellales, Hymenochaetales, Polyporales, Russulales, Septobasidiales, Tremellales). The diversity of basidiomycetous endophytes found inhabiting wild populations of Hevea was comparable to that present in plantations. However, when samples were segregated by tissue type, sapwood of wild populations was found to contain a higher number of species than sapwood of planted trees. Seventy-five percent of isolates were members of the Polyporales, the majority in the phlebioid clade. Most of the species belong to clades known to cause a white-rot type of wood decay. Two species in the insect-associated genus Septobasidium were isolated. The most frequently isolated genera included Bjerkandera, Ceriporia, Phanerochaete, Phlebia, Rigidoporus, Tinctoporellus, Trametes (Polyporales), Peniophora, Stereum (Russulales) and Coprinellus (Agaricales), all of which have been reported as endophytes from a variety of hosts, across wide geographic locations. Literature records on the geographic distribution and host association of these genera revealed that their distribution and substrate affinity could be extended if the endophytic niche was investigated as part of fungal biodiversity surveys. PMID:25572095

  10. Microbial endophytes: future challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endophytes are represented by a diverse group of prokaryotic (bacteria or cyanobacteria) or eukaryotic (fungi or parasitic vascular plants) organisms that form life-long associations within tissues of plants. Ecologically, these associations are usually viewed as advantageous although in some insta...

  11. Bacterial endophyte communities in the foliage of coast redwood and giant sequoia

    PubMed Central

    Carrell, Alyssa A.; Frank, Anna C.

    2015-01-01

    The endophytic bacterial microbiome, with an emerging role in plant nutrient acquisition and stress tolerance, is much less studied in natural plant populations than in agricultural crops. In a previous study, we found consistent associations between trees in the pine family and acetic acid bacteria (AAB) occurring at high relative abundance inside their needles. Our objective here was to determine if that pattern may be general to conifers, or alternatively, is more likely restricted to pines or conifers growing in nutrient limited and exposed environments. We used 16S rRNA pyrosequencing to characterize the foliar endophyte communities of two conifers in the Cupressaceae family: Two coast redwood (CR; Sequoia sempervirens) populations and one giant sequoia (GS; Sequoiadendron giganteum) population were sampled. Similar to the pines, the endophyte communities of the giant trees were dominated by Proteobacteria, Firmicutes, Acidobacteria, and Actinobacteria. However, although some major operational taxonomic units (OTUs) occurred at a high relative abundance of 10–40% in multiple samples, no specific group of bacteria dominated the endophyte community to the extent previously observed in high-elevation pines. Several of the dominating bacterial groups in the CR and GS foliage (e.g., Bacillus, Burkholderia, Actinomycetes) are known for disease- and pest suppression, raising the possibility that the endophytic microbiome protects the giant trees against biotic stress. Many of the most common and abundant OTUs in our dataset were most similar to 16S rRNA sequences from bacteria found in lichens or arctic plants. For example, an OTU belonging to the uncultured Rhizobiales LAR1 lineage, which is commonly associated with lichens, was observed at high relative abundance in many of the CR samples. The taxa shared between the giant trees, arctic plants, and lichens may be part of a broadly defined endophyte microbiome common to temperate, boreal, and tundra ecosystems

  12. Antimicrobial potential of Halophilic actinomycetes against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens.

    PubMed

    Aslam, Sana; Sajid, Imran

    2016-03-01

    A collection of forty halophilic actinomycetes isolated from water and mud samples of the saline lake at Kalar Kahar, salt range, Pakistan, was screened to investigate their antimicrobial potential against multi drug resistant (MDR) ventilator associated pneumonia causing bacterial pathogens. The isolates exhibited significant tolerance to alkaline conditions and grew well at pH 9-11. The taxonomic status of the isolated strains was determined by morphological, biochemical and physiological characterization and by 16s rRNA gene sequencing. The results revealed that majority of the isolates (90%) belong to the genus Streptomyces. Most of the isolates exhibited remarkable antimicrobial activity up to 20mm zone of inhibition against MDR ventilator associated pneumonia causing bacteria including Staphylococcus aureus, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Enterobacter and Acinetobacter spp. Additionally the isolates showed moderate to high cytotoxicity in the range of 40 to 80% larval mortality against Artemia salina in a micro well cytotoxicity assay. The chemical screening or the so called metabolic fingerprinting of the methanolic extracts of each isolate, by thin layer chromatography (TLC) using various staining reagents and by high performance liquid chromatography (HPLC-UV), indicated an impressive diversity of the compounds produced by these strains. The study reveals that these halophilic actinomycetes are a promising source of bioactive compounds. The preparative scale fermentation, isolation, purification and structure elucidation of the compounds produced by them may yield novel antimicrobial or chemotherapeutic agents. PMID:27087086

  13. Anti-microbial screening of endophytic fungi from Hypericum perforatum Linn.

    PubMed

    Zhang, Huawei; Ying, Chen; Tang, Yifei

    2014-09-01

    Anti-microbial properties of 21 endophytic fungal strains from Hypericum perforatum Linn. were evaluated against three human pathogens, Staphyloccocus aureus, Escherichia coli and Rhodotorula glutinis, and two phytopathogens, Rhizoctonia cerealis and Pyricularia grisea. The results indicated that the ethyl acetate extracts of endophytic fermentation broth had stronger anti-microbial activities than their fermentation broth. And the inhibitory effect of the endophytic extracts on human pathogens was better than those on phytopathogens. Among these endophytic fungi, strains GYLQ-10, GYLQ-24 and GYLQ-22 respectively showed the strongest activities against S. aureu, E. coli, R. glutinis. GYLQ-14 and GYLQ-22 exhibited the most pronounced effect on P. Grisea while both GYLQ-06 and GYLQ-08 had the strongest anti-microbial activities against R. cerealis. Till now, this study is the first report on the isolation of endophytic fungi from H. perforatum Linn. and their anti-microbial evaluation.

  14. Enhanced polyaromatic hydrocarbon degradation by adapted cultures of actinomycete strains.

    PubMed

    Bourguignon, Natalia; Isaac, Paula; Alvarez, Héctor; Amoroso, María J; Ferrero, Marcela A

    2014-12-01

    Fifteen actinomycete strains were evaluated for their potential use in removal of polycyclic aromatic hydrocarbons (PAH). Their capability to degrade of naphthalene, phenanthrene, and pyrene was tested in minimal medium (MM) and MM with glucose as another substrate. Degradation of naphthalene in MM was observed in all isolates at different rates, reaching maximum values near to 76% in some strains of Streptomyces, Rhodococcus sp. 016 and Amycolatopsis tucumanensis DSM 45259. Maximum values of degradation of phenanthrene in MM occurred in cultures of A. tucumanensis DSM 45259 (36.2%) and Streptomyces sp. A12 (20%), while the degradation of pyrene in MM was poor and only significant with Streptomyces sp. A12 (4.3%). Because of the poor performance when growing on phenanthrene and pyrene alone, Rhodococcus sp. 20, Rhodococcus sp. 016, A. tucumanensis DSM 45259, Streptomyces sp. A2, and Streptomyces sp. A12 were challenged to an adaptation schedule of successive cultures on a fresh solid medium supplemented with PAHs, decreasing concentration of glucose in each step. As a result, an enhanced degradation of PAHs by adapted strains was observed in the presence of glucose as co-substrate, without degradation of phenanthrene and pyrene in MM while an increase to up to 50% of degradation was seen with these strains in glucose amended media. An internal fragment of the catA gene, which codes for catechol 1,2-dioxygenase, was amplified from both Rhodococcus strains, showing the potential for degradation of aromatic compounds via salycilate. These results allow us to propose the usefulness of these actinomycete strains for PAH bioremediation in the environment. PMID:25205070

  15. Molecular Characterization and Analysis of Antimicrobial Activity of Endophytic Fungi From Medicinal Plants in Saudi Arabia

    PubMed Central

    Gashgari, Rukaia; Gherbawy, Youssuf; Ameen, Fuad; Alsharari, Salam

    2016-01-01

    Background: Endophytic fungi, which have been reported in numerous plant species, are important components of the forest community and contribute significantly to the diversity of natural ecosystems. Objectives: The current study aimed to evaluate and characterize, at the molecular level, the diversity and antimicrobial activities of endophytic fungi from medicinal plants in Saudi Arabia. Materials and Methods: Fungi growing on plant segments were isolated and identified based on morphological and molecular characteristics. The isolates were grouped into 35 distinct operational taxonomic units, based on the sequence of the internal transcribed spacer regions in the rRNA gene. The colonization frequency and the dominant fungi percentage of these endophytic fungi were calculated. A dual culture technique was adopted to investigate the antifungal activity of these endophytes. Results: Tamarix nilotica showed the highest endophytic diversity with a relative frequency of 27.27%, followed by Cressa cretica with a relative frequency of 19.27%. The most frequently isolated species was Penicillium chrysogenum with an overall colonization rate of 98.57%. Seven out of 35 endophytic fungi exhibited strong antifungal activity to all plant fungal pathogens tested. P. chrysogenum, Fusarium oxysporum, and F. nygamai exhibited the highest inhibition against the human pathogenic bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Aspergillus sydowii, P. chrysogenum, and Eupenicillium crustaceum showed strong antimicrobial activity against Enterococcus faecalis. Conclusions: The antimicrobial activity of these endophytic microorganisms could be exploited in biotechnology, medicine, and agriculture. PMID:27099679

  16. Inhibition of norsolorinic acid accumulation to Aspergillus parasiticus by marine actinomycetes

    NASA Astrophysics Data System (ADS)

    Yan, Peisheng; Shi, Cuijuan; Shen, Jihong; Wang, Kai; Gao, Xiujun; Li, Ping

    2014-11-01

    Thirty-six strains of marine actinomycetes were isolated from a sample of marine sediment collected from the Yellow Sea and evaluated in terms of their inhibitory activity on the growth of Aspergillus parasiticus and the production of norsolorinic acid using dual culture plate assay and agar diffusion methods. Among them, three strains showed strong antifungal activity and were subsequently identified as Streptomyces sp. by 16S rRNA gene sequencing analysis. The supernatant from the fermentation of the MA01 strain was extracted sequentially with chloroform and ethyl acetate, and the activities of the extracts were determined by tip culture assay. The assay results show that both extracts inhibited mycelium growth and toxin production, and the inhibitory activities of the extracts increased as their concentrations increased. The results of this study suggest that marine actinomycetes are biologically important for the control of mycotoxins, and that these bacteria could be used as novel biopesticides against mycotoxins.

  17. Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill.

    PubMed

    Kandalepas, Demetra; Blum, Michael J; Van Bael, Sunshine A

    2015-01-01

    Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH) oil spill on endophyte diversity and abundance in Spartina alterniflora - the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill. PMID:25923203

  18. Shifts in Symbiotic Endophyte Communities of a Foundational Salt Marsh Grass following Oil Exposure from the Deepwater Horizon Oil Spill

    PubMed Central

    Kandalepas, Demetra; Blum, Michael J.; Van Bael, Sunshine A.

    2015-01-01

    Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of <