Science.gov

Sample records for endoplasmic reticulum membrane

  1. Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    PubMed

    Saheki, Yasunori; De Camilli, Pietro

    2017-06-20

    The endoplasmic reticulum (ER) has a broad localization throughout the cell and forms direct physical contacts with all other classes of membranous organelles, including the plasma membrane (PM). A number of protein tethers that mediate these contacts have been identified, and study of these protein tethers has revealed a multiplicity of roles in cell physiology, including regulation of intracellular Ca(2+) dynamics and signaling as well as control of lipid traffic and homeostasis. In this review, we discuss the cross talk between the ER and the PM mediated by direct contacts. We review factors that tether the two membranes, their properties, and their dynamics in response to the functional state of the cell. We focus in particular on the role of ER-PM contacts in nonvesicular lipid transport between the two bilayers mediated by lipid transfer proteins.

  2. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites.

    PubMed

    Block, Maryse A; Jouhet, Juliette

    2015-08-01

    Glycerolipid synthesis in plant cells is characterized by an intense trafficking of lipids between the endoplasmic reticulum (ER) and chloroplasts. Initially, fatty acids are synthesized within chloroplasts and are exported to the ER where they are used to build up phospholipids and triacylglycerol. Ultimately, derivatives of these phospholipids return to chloroplasts to form galactolipids, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, the main and essential lipids of photosynthetic membranes. Lipid trafficking was proposed to transit through membrane contact sites (MCSs) connecting both organelles. Here, we review recent insights into ER-chloroplast MCSs and lipid trafficking between chloroplasts and the ER.

  3. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs

    PubMed Central

    Terasaki, Mark; Shemesh, Tom; Kasthuri, Narayanan; Klemm, Robin W.; Schalek, Richard; Hayworth, Kenneth J.; Hand, Arthur R.; Yankova, Maya; Huber, Greg; Lichtman, Jeff W.; Rapoport, Tom A.; Kozlov, Michael M.

    2013-01-01

    The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used novel staining and automated ultra-thin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell. PMID:23870120

  4. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs.

    PubMed

    Terasaki, Mark; Shemesh, Tom; Kasthuri, Narayanan; Klemm, Robin W; Schalek, Richard; Hayworth, Kenneth J; Hand, Arthur R; Yankova, Maya; Huber, Greg; Lichtman, Jeff W; Rapoport, Tom A; Kozlov, Michael M

    2013-07-18

    The endoplasmic reticulum (ER) often forms stacked membrane sheets, an arrangement that is likely required to accommodate a maximum of membrane-bound polysomes for secretory protein synthesis. How sheets are stacked is unknown. Here, we used improved staining and automated ultrathin sectioning electron microscopy methods to analyze stacked ER sheets in neuronal cells and secretory salivary gland cells of mice. Our results show that stacked ER sheets form a continuous membrane system in which the sheets are connected by twisted membrane surfaces with helical edges of left- or right-handedness. The three-dimensional structure of tightly stacked ER sheets resembles a parking garage, in which the different levels are connected by helicoidal ramps. A theoretical model explains the experimental observations and indicates that the structure corresponds to a minimum of elastic energy of sheet edges and surfaces. The structure allows the dense packing of ER sheets in the restricted space of a cell.

  5. Plant Endoplasmic Reticulum-Plasma Membrane Contact Sites.

    PubMed

    Wang, Pengwei; Hawes, Chris; Hussey, Patrick J

    2017-04-01

    The endoplasmic reticulum (ER) acts as a superhighway with multiple sideroads that connects the different membrane compartments including the ER to the plasma membrane (PM). ER-PM contact sites (EPCSs) are a common feature in eukaryotic organisms, but have not been studied well in plants owing to the lack of molecular markers and to the difficulty in resolving the EPCS structure using conventional microscopy. Recently, however, plant protein complexes required for linking the ER and PM have been identified. This is a further step towards understanding the structure and function of plant EPCSs. We highlight some recent studies in this field and suggest several hypotheses that relate to the possible function of EPCSs in plants.

  6. Retrograde transport of toxins across the endoplasmic reticulum membrane.

    PubMed

    Lord, J M; Deeks, E; Marsden, C J; Moore, K; Pateman, C; Smith, D C; Spooner, R A; Watson, P; Roberts, L M

    2003-12-01

    Several protein toxins, including the A chain of the plant protein ricin (RTA), enter mammalian cells by endocytosis and catalytically modify cellular components to disrupt essential cellular processes. In the case of ricin, the process inhibited is protein synthesis. In order to reach their cytosolic substrates, several toxins undergo retrograde transport to the ER (endoplasmic reticulum) before translocating across the ER membrane. To achieve this export, these toxins exploit the ERAD (ER-associated protein degradation) pathway but must escape, at least in part, the normal degradative fate of ERAD substrates in order to intoxicate the cell. Toxins that translocate from the ER have an unusually low lysine content that reduces the likelihood of ubiquitination and ubiquitin-mediated proteasomal degradation. We have changed the two lysyl residues normally present in RTA to arginyl residues. Their replacement in RTA did not have a significant stabilizing effect on the protein, suggesting that the endogenous lysyl residues are not sites for ubiquitin attachment. However, when four additional lysyl residues were introduced into RTA in a way that did not compromise the activity, structure or stability of the toxin, degradation was significantly enhanced. Enhanced degradation resulted from ubiquitination that predisposed the toxin to proteasomal degradation. Treatment with the proteasomal inhibitor lactacystin increased the cytotoxicity of the lysine-enriched RTA to a level approaching that of wild-type RTA.

  7. STUDIES ON THE ENDOPLASMIC RETICULUM

    PubMed Central

    Palade, George E.

    1955-01-01

    A survey of a large number of different cell types has indicated the presence of a network of membrane-bound cavities (the endoplasmic reticulum) in the cytoplasm of all cell types examined, with the exception of the mature erythrocyte. In its simplest form, encountered in seminal epithelia and in leucocytes, the reticulum consists mainly of interconnected strings of vesicles and appears to be randomly disposed in three dimensions. Local differentiations occur within the endoplasmic reticulum of all the cell types studied. The membrane limiting the cavities of the endoplasmic reticulum appears to be continuous with the cell membrane and the nuclear membranes. PMID:13278367

  8. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.

    PubMed

    Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V

    2016-06-01

    Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin.

    PubMed

    Tufi, R; Panaretakis, T; Bianchi, K; Criollo, A; Fazi, B; Di Sano, F; Tesniere, A; Kepp, O; Paterlini-Brechot, P; Zitvogel, L; Piacentini, M; Szabadkai, G; Kroemer, G

    2008-02-01

    Some chemotherapeutic agents can elicit apoptotic cancer cell death, thereby activating an anticancer immune response that influences therapeutic outcome. We previously reported that anthracyclins are particularly efficient in inducing immunogenic cell death, correlating with the pre-apoptotic exposure of calreticulin (CRT) on the plasma membrane surface of anthracyclin-treated tumor cells. Here, we investigated the role of cellular Ca(2+) homeostasis on CRT exposure. A neuroblastoma cell line (SH-SY5Y) failed to expose CRT in response to anthracyclin treatment. This defect in CRT exposure could be overcome by the overexpression of Reticulon-1C, a manipulation that led to a decrease in the Ca(2+) concentration within the endoplasmic reticulum lumen. The combination of Reticulon-1C expression and anthracyclin treatment yielded more pronounced endoplasmic reticulum Ca(2+) depletion than either of the two manipulations alone. Chelation of intracellular (and endoplasmic reticulum) Ca(2+), targeted expression of the ligand-binding domain of the IP(3) receptor and inhibition of the sarco-endoplasmic reticulum Ca(2+)-ATPase pump reduced endoplasmic reticulum Ca(2+) load and promoted pre-apoptotic CRT exposure on the cell surface, in SH-SY5Y and HeLa cells. These results provide evidence that endoplasmic reticulum Ca(2+) levels control the exposure of CRT.

  10. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes.

    PubMed

    Rapoport, Tom A

    2007-11-29

    A decisive step in the biosynthesis of many proteins is their partial or complete translocation across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. Most of these proteins are translocated through a protein-conducting channel that is formed by a conserved, heterotrimeric membrane-protein complex, the Sec61 or SecY complex. Depending on channel binding partners, polypeptides are moved by different mechanisms: the polypeptide chain is transferred directly into the channel by the translating ribosome, a ratcheting mechanism is used by the endoplasmic reticulum chaperone BiP, and a pushing mechanism is used by the bacterial ATPase SecA. Structural, genetic and biochemical data show how the channel opens across the membrane, releases hydrophobic segments of membrane proteins laterally into lipid, and maintains the membrane barrier for small molecules.

  11. Plasma membrane domains enriched in cortical endoplasmic reticulum function as membrane protein trafficking hubs.

    PubMed

    Fox, Philip D; Haberkorn, Christopher J; Weigel, Aubrey V; Higgins, Jenny L; Akin, Elizabeth J; Kennedy, Matthew J; Krapf, Diego; Tamkun, Michael M

    2013-09-01

    In mammalian cells, the cortical endoplasmic reticulum (cER) is a network of tubules and cisterns that lie in close apposition to the plasma membrane (PM). We provide evidence that PM domains enriched in underlying cER function as trafficking hubs for insertion and removal of PM proteins in HEK 293 cells. By simultaneously visualizing cER and various transmembrane protein cargoes with total internal reflectance fluorescence microscopy, we demonstrate that the majority of exocytotic delivery events for a recycled membrane protein or for a membrane protein being delivered to the PM for the first time occur at regions enriched in cER. Likewise, we observed recurring clathrin clusters and functional endocytosis of PM proteins preferentially at the cER-enriched regions. Thus the cER network serves to organize the molecular machinery for both insertion and removal of cell surface proteins, highlighting a novel role for these unique cellular microdomains in membrane trafficking.

  12. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane is constitutive in CaCo-2 cells and differs from the transport of plasma membrane cholesterol to the endoplasmic reticulum.

    PubMed

    Field, F J; Born, E; Murthy, S; Mathur, S N

    1998-02-01

    The transport of newly synthesized cholesterol from its site of synthesis, the endoplasmic reticulum, to the plasma membrane was studied in CaCo-2 cells. The appearance of newly synthesized cholesterol on the cell surface was rapid. By 30 min, 50% of the total labeled cholesterol was observed in the plasma membrane. The arrival of cholesterol at the plasma membrane was independent of new protein synthesis, a functional Golgi apparatus, or microtubular function. Progesterone, verapamil, and trifluoperazine, inhibitors of p-glycoprotein which are known to inhibit cholesterol transport from the plasma membrane to the endoplasmic reticulum, reduced the amount of newly synthesized cholesterol reaching the plasma membrane. The p-glycoprotein inhibitors, however, caused the accumulation of sterol intermediates in the plasma membrane, suggesting that sterol trafficking to the plasma membrane remained intact, but that trafficking from the plasma membrane to the endoplasmic reticulum was disrupted. In contrast, nigericin, another potent inhibitor of cholesterol movement from the plasma membrane to the endoplasmic reticulum, did not alter the transport of newly synthesized cholesterol to the plasma membrane. Moreover, promoting cholesterol transport from the plasma membrane to the endoplasmic reticulum by sphingomyelin hydrolysis or by micellar cholesterol influx did not alter the percent of newly synthesized cholesterol transported to the plasma membrane. Likewise, preventing plasma membrane cholesterol from reaching the endoplasmic reticulum by incubating cells with lysophosphatidylcholine, filipin, or digitonin did not alter the arrival of newly synthesized cholesterol to the plasma membrane. The results suggest that the amount of cholesterol moving to the plasma membrane from the endoplasmic reticulum is constitutive and regulated at the level of cholesterol synthesis and not at the level of the transport process. The pathways of cholesterol transport to and from the

  13. Transport of cholesterol from the endoplasmic reticulum to the plasma membrane

    PubMed Central

    1985-01-01

    We have studied the transport of newly synthesized cholesterol from the endoplasmic reticulum to the plasma membrane in Chinese hamster ovary cells using a cell fractionation assay. We found that transport is dependent on metabolic energy, but that the maintenance of the high differential concentration of cholesterol in the plasma membrane is not an energy-requiring process. We have tested a variety of inhibitors for their effect on cholesterol transport and found that cytochalasin B, colchicine, monensin, cycloheximide, and NH4Cl did not have any effect. The cholesterol transport process shows a sharp temperature dependence; it ceases at 15 degrees C, whereas cholesterol synthesis continues. When synthesis occurs at 15 degrees C, the newly synthesized cholesterol accumulates in the endoplasmic reticulum and in a low density, lipid-rich vesicle fraction. These results suggest that cholesterol is transported via a vesicular system. PMID:4040520

  14. The endoplasmic reticulum and casein-containing vesicles contribute to milk fat globule membrane

    PubMed Central

    Honvo-Houéto, Edith; Henry, Céline; Chat, Sophie; Layani, Sarah; Truchet, Sandrine

    2016-01-01

    During lactation, mammary epithelial cells secrete huge amounts of milk from their apical side. The current view is that caseins are secreted by exocytosis, whereas milk fat globules are released by budding, enwrapped by the plasma membrane. Owing to the number and large size of milk fat globules, the membrane surface needed for their release might exceed that of the apical plasma membrane. A large-scale proteomics analysis of both cytoplasmic lipid droplets and secreted milk fat globule membranes was used to decipher the cellular origins of the milk fat globule membrane. Surprisingly, differential analysis of protein profiles of these two organelles strongly suggest that, in addition to the plasma membrane, the endoplasmic reticulum and the secretory vesicles contribute to the milk fat globule membrane. Analysis of membrane-associated and raft microdomain proteins reinforces this possibility and also points to a role for lipid rafts in milk product secretion. Our results provide evidence for a significant contribution of the endoplasmic reticulum to the milk fat globule membrane and a role for SNAREs in membrane dynamics during milk secretion. These novel aspects point to a more complex model for milk secretion than currently envisioned. PMID:27535430

  15. Characterization of Ca2+ Transport in Purified Endoplasmic Reticulum Membrane Vesicles from Lepidium sativum L. Roots

    PubMed Central

    Buckhout, Thomas J.

    1984-01-01

    The characteristics of Ca2+ transport into endoplasmic reticulum vesicles isolated from roots of Lepidium sativum L. cv Krause have been investigated. The concentration of free Ca2+ and ATP needed for half-maximal activity were 2.5 and 73 micromolar, respectively, and the enzyme obeyed Michaelis-Menten-like kinetics. The pH maximum occurred at 7.5 and the activity was greatly reduced at either pH 7.0 or 8.0. The Ca2+-dependent modulation protein, calmodulin, was tested for its effect on Ca2+ transport into endoplasmic reticulum vesicles. Although the phenothiazine inhibitors chlorpromazine, fluphenazine, and trifluoperazine all inhibited Ca2+ transport activity with a half-maximal effect at approximately 35 micromolar, authentic bovine brain calmodulin did not alter the activity at concentrations of 0.5 to 8 micrograms per milliliter. Calmodulin also showed no influence on the time-dependent accumulation of Ca2+ into vesicles. The membranes did not contain endogenously bound calmodulin since washing with (ethylenebis[oxyethylenenitrile])tetraacetic acid or fluphenazine, treatments which disrupt calmodulin binding, did not alter Ca2+ transport activity. The inhibition of Ca2+ transport by phenothiazine drugs was likely related to their nonspecific interaction with the membrane. Thus, there was no indication that calmodulin regulated Ca2+ uptake into root endoplasmic reticulum. PMID:16663981

  16. Effects of HIV-1 Nef on retrograde transport from the plasma membrane to the endoplasmic reticulum.

    PubMed

    Johannes, Ludger; Pezo, Valérie; Mallard, Frédéric; Tenza, Danièle; Wiltz, Aimée; Saint-Pol, Agnès; Helft, Julie; Antony, Claude; Benaroch, Philippe

    2003-05-01

    HIV-1 Nef protein down-regulates several important immunoreceptors through interactions with components of the intracellular sorting machinery. Nef expression is also known to induce modifications of the endocytic pathway. Here, we analyzed the effects of Nef on retrograde transport, from the plasma membrane to the endoplasmic reticulum using Shiga toxin B-subunit (STxB). Nef expression inhibited access of STxB to the endoplasmic reticulum, but did not modify the surface expression level of STxB receptor, Gb3, nor its internalization rate as measured with a newly developed assay. Mutation of the myristoylation site or of a di-leucine motif of Nef involved in the interaction with the clathrin adaptor complexes AP1 and AP2 abolished the inhibition of retrograde transport. In contrast, mutations of Nef motifs known to interact with PACS-1, beta COP or a subunit of the v-ATPase did not modify the inhibitory activity of Nef on retrograde transport. Ultrastructural analysis revealed that Nef was present in clusters located on endosomal or Golgi membranes together with internalized STxB. Furthermore, in strongly Nef-expressing cells, STxB accumulated in endosomal structures that labeled with AP1. Our observations show that Nef perturbs retrograde transport between the early endosome and the endoplasmic reticulum. The potential transport steps targeted by Nef are discussed.

  17. Ultrafast glycerophospholipid-selective transbilayer motion mediated by a protein in the endoplasmic reticulum membrane.

    PubMed

    Buton, X; Morrot, G; Fellmann, P; Seigneuret, M

    1996-03-22

    A relatively rapid transbilayer motion of phospholipids in the microsomal membrane seems to be required due to their asymmetric synthesis in the cytoplasmic leaflet. Marked discrepancies exist with regard to the rate and specificity of this flip-flop process. To reinvestigate this problem, we have used both spin-labeled and radioactively labeled long chain phospholipids with a new fast translocation assay. Identical results were obtained with both types of probes. Transbilayer motion of glycerophospholipids was found to be much more rapid than previously reported (half-time less than 25 s) and to occur identically for phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine. Such transport is nonvectorial and leads to a symmetric transbilayer distribution of phospholipids. In contrast, transverse diffusion of sphingomyelin was 1 order of magnitude slower. Phospholipid flip-flop appears to occur by a protein-mediated transport process displaying saturable and competitive behavior. Proteolysis, chemical modification, and competition experiments suggest that this transport process may be related to that previously described in the endoplasmic reticulum for short-chain phosphatidylcholine (Bishop, W. R., and Bell, R. M. (1985) Cell 42, 51-60). The relationship between phospholipid flip-flop and nonbilayer structures occurring in the endoplasmic reticulum was also investigated by 31P-NMR. Several conditions were found under which the 31P isotropic NMR signal previously attributed to nonbilayer structures is decreased or abolished, whereas transbilayer diffusion is unaffected, suggesting that the flip-flop process is independent of such structures. It is concluded that flip-flop in the endoplasmic reticulum is mediated by a bidirectional protein transporter with a high efficiency for glycerophospholipids and a low efficiency for sphingomyelin. In vivo, the activity of this transporter would be able to redistribute all changes in phospholipid composition due

  18. Amyloid-β peptides are generated in mitochondria-associated endoplasmic reticulum membranes.

    PubMed

    Schreiner, Bernadette; Hedskog, Louise; Wiehager, Birgitta; Ankarcrona, Maria

    2015-01-01

    Extracellular aggregates of amyloid-β peptides (Aβ) are a hallmark in Alzheimer's disease (AD) brains. Recent findings suggest that Aβ is generated intracellularly and potential production sites include endosomes and trans-Golgi network. We determined the production of Aβ in subcellular fractions isolated from mouse brain. We found that a considerable amount of Aβ is produced at mitochondria-endoplasmic reticulum (ER) contact sites including outer mitochondrial membrane and mitochondria-associated ER membranes. Enhanced Aβ production at this site may disturb ER, mitochondrial and mitochondria-ER contact site function. This may be one key step in the cascade of events eventually leading to neurodegeneration in AD.

  19. Transbilayer movement of monohexosylsphingolipids in endoplasmic reticulum and Golgi membranes.

    PubMed

    Buton, Xavier; Hervé, Paulette; Kubelt, Janek; Tannert, Astrid; Burger, Koert N J; Fellmann, P; Müller, Peter; Herrmann, Andreas; Seigneuret, Michel; Devaux, Philippe F

    2002-10-29

    The transbilayer movement of glycosphingolipids has been characterized in Golgi, ER, plasma, and model membranes using spin-labeled and fluorescent analogues of the monohexosylsphingolipids glucosylceramide and galactosylceramide and of the dihexosylsphingolipid lactosylceramide. In large unilamellar lipid vesicles, monohexosylsphingolipids underwent a slow transbilayer diffusion (half-time between 2 and 5 h at 20 degrees C). Similarly, the inward redistribution of these sphingolipids in the plasma membrane of the hepatocyte-like cell line HepG2 and of erythrocytes was slow. However, in rat liver ER and Golgi membranes, we found a rapid transbilayer movement of spin-labeled monohexosylsphingolipids (half-time of approximately 3 min at 20 degrees C), which suggests the existence of a monohexosylsphingolipid flippase. The transbilayer movement of glucosylceramide in the Golgi and the ER displayed a saturable behavior, was inhibited by proteolysis, did not require Mg-ATP, and occurs in both directions. Treatment with DIDS inhibited the flip-flop of glucosylceramide but not that of phosphatidylcholine. These data suggest that the transbilayer movement of monoglucosylceramide in the ER and in the Golgi involves a protein that could be distinct from that previously evidenced for glycerophospholipids in the ER. In vivo, transbilayer diffusion should promote a symmetric distribution of monohexosylsphingolipids which are synthesized in the cytosolic leaflet. This should allow glucosylceramide rapid access to the lumenal leaflet where it is converted to lactosylceramide. No significant transbilayer movement of lactosylceramide occurred in both artificial and natural membranes over 1 h. Thus, lactosylceramide, in turn, is unable to diffuse to the cytosolic leaflet and remains at the lumenal leaflet where it undergoes the subsequent glycosylations.

  20. Evidence for a cholesterol transport pathway from lysosomes to endoplasmic reticulum that is independent of the plasma membrane.

    PubMed

    Underwood, K W; Jacobs, N L; Howley, A; Liscum, L

    1998-02-13

    We have studied the movement of low density lipoprotein (LDL)-derived cholesterol in cultured Chinese hamster ovary cells. Our hypothesis is that when LDL cholesterol is effluxed from lysosomes, the bulk of LDL cholesterol is mobilized to the plasma membrane, while another pathway delivers LDL cholesterol from lysosomes to acyl-CoA/cholesterol acyltransferase (ACAT) in the endoplasmic reticulum. Three lines of evidence support this model. First, LDL cholesterol transport to ACAT can be blocked without inhibiting the movement of cholesterol from lysosomes to plasma membrane or from plasma membrane to endoplasmic reticulum. Second, LDL cholesterol transport to ACAT is normal in a Chinese hamster ovary mutant with defective plasma membrane-to-ACAT movement. Third, LDL cholesterol is not diluted by the plasma membrane cholesterol pool before reaching ACAT. Our evidence supports a vesicular model of cholesterol transport from lysosomes to the endoplasmic reticulum that is independent of the plasma membrane.

  1. A Non-enveloped Virus Hijacks Host Disaggregation Machinery to Translocate across the Endoplasmic Reticulum Membrane

    PubMed Central

    Ravindran, Madhu Sudhan; Bagchi, Parikshit; Inoue, Takamasa; Tsai, Billy

    2015-01-01

    Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event. PMID:26244546

  2. Intrinsic membrane glycoproteins with cytosol-oriented sugars in the endoplasmic reticulum

    SciTech Connect

    Abeijon, C.; Hirschberg, C.B.

    1988-02-01

    The authors have examined the topography of N-acetylglucosamine-terminating glycoproteins in membranes from rat liver smooth and rough endoplasmic reticulum (SER and RER). It was found that some of these glycoproteins are intrinsic membrane proteins with their sugars facing the cytosolic rather than the luminal side. This conclusion was reached by using vesicles from the SER and RER that were sealed and of the same topographical orientation as in vivo. These vesicles were incubated with UDP-(/sup 14/C)galactose (which does not enter the vesicles) and saturating amounts of soluble galactosyltransferase from milk, an enzyme that does not penetrate the lumen of the vesicles and that specifically adds galactose to terminal N-acetylglucosamine in a ..beta..1-4 linkage. Radioactive galactose was mainly transferred to SER proteins of apparent molecular mass 56 and 110 kDa and to a lesser extent RER and SER proteins of apparent molecular mass 46 and 72 kDa. These proteins are intrinsic membrane proteins, based on the inability of sodium carbonate at pH 11.5 to remove them from the membranes. Studies with peptide N-glycosidase F and chemical ..beta..-elimination showed that the 56-kDa protein of the SER vesicles contained terminal N-acetylglucosamine in an O-linkage to the protein. The above results suggest that some sugars of glycoproteins in the endoplasmic reticulum may attain their final orientation in the membrane by mechanisms yet to be determined.

  3. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum

    PubMed Central

    1982-01-01

    A rapid and simple method for the isolation of membranes from subcellular organelles is described. The procedure consists of diluting the organelles in ice-cold 100 mM Na2CO3 followed by centrifugation to pellet the membranes. Closed vesicles are converted to open membrane sheets, and content proteins and peripheral membrane proteins are released in soluble form. Here we document the method by applying it to various subfractions of a rat liver microsomal fraction, prepared by continuous density gradient centrifugation according to Beaufay et al. (1974, J. Cell Biol. 61:213-231). The results confirm and extend those of previous investigators on the distribution of enzymes and proteins among the membranes of the smooth and rough endoplasmic reticulum. In the accompanying paper (1982, J. Cell Biol. 93:103-110) the procedure is applied to peroxisomes and mitochondria. PMID:7068762

  4. Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway.

    PubMed

    Denic, Vladimir; Dötsch, Volker; Sinning, Irmgard

    2013-08-01

    Hundreds of eukaryotic membrane proteins are anchored to membranes by a single transmembrane domain at their carboxyl terminus. Many of these tail-anchored (TA) proteins are posttranslationally targeted to the endoplasmic reticulum (ER) membrane for insertion by the guided-entry of TA protein insertion (GET) pathway. In recent years, most of the components of this conserved pathway have been biochemically and structurally characterized. Get3 is the pathway-targeting factor that uses nucleotide-linked conformational changes to mediate the delivery of TA proteins between the GET pretargeting machinery in the cytosol and the transmembrane pathway components in the ER. Here we focus on the mechanism of the yeast GET pathway and make a speculative analogy between its membrane insertion step and the ATPase-driven cycle of ABC transporters.

  5. Endoplasmic Reticulum Targeting and Insertion of Tail-Anchored Membrane Proteins by the GET Pathway

    PubMed Central

    Denic, Vladimir; Dötsch, Volker; Sinning, Irmgard

    2013-01-01

    Hundreds of eukaryotic membrane proteins are anchored to membranes by a single transmembrane domain at their carboxyl terminus. Many of these tail-anchored (TA) proteins are posttranslationally targeted to the endoplasmic reticulum (ER) membrane for insertion by the guided-entry of TA protein insertion (GET) pathway. In recent years, most of the components of this conserved pathway have been biochemically and structurally characterized. Get3 is the pathway-targeting factor that uses nucleotide-linked conformational changes to mediate the delivery of TA proteins between the GET pretargeting machinery in the cytosol and the transmembrane pathway components in the ER. Here we focus on the mechanism of the yeast GET pathway and make a speculative analogy between its membrane insertion step and the ATPase-driven cycle of ABC transporters. PMID:23906715

  6. Sch proteins are localized on endoplasmic reticulum membranes and are redistributed after tyrosine kinase receptor activation.

    PubMed Central

    Lotti, L V; Lanfrancone, L; Migliaccio, E; Zompetta, C; Pelicci, G; Salcini, A E; Falini, B; Pelicci, P G; Torrisi, M R

    1996-01-01

    The intracellular localization of Shc proteins was analyzed by immunofluorescence and immunoelectron microscopy in normal cells and cells expressing the epidermal growth factor receptor or the EGFR/erbB2 chimera. In unstimulated cells, the immunolabeling was localized in the central perinuclear area of the cell and mostly associated with the cytosolic side of rough endoplasmic reticulum membranes. Upon epidermal growth factor treatment and receptor tyrosine kinase activation, the immunolabeling became peripheral and was found to be associated with the cytosolic surface of the plasma membrane and endocytic structures, such as coated pits and endosomes, and with the peripheral cytosol. Receptor activation in cells expressing phosphorylation-defective mutants of Shc and erbB-2 kinase showed that receptor autophosphorylation, but not Shc phosphorylation, is required for redistribution of Shc proteins. The rough endoplasmic reticulum localization of Shc proteins in unstimulated cells and their massive recruitment to the plasma membrane, endocytic structures, and peripheral cytosol following receptor tyrosine kinase activation could account for multiple putative functions of the adaptor protein. PMID:8628261

  7. The coupling of plasma membrane calcium entry to calcium uptake by endoplasmic reticulum and mitochondria

    PubMed Central

    García-Sancho, Javier

    2014-01-01

    Abstract Cross-talk between organelles and plasma membrane Ca2+ channels is essential for modulation of the cytosolic Ca2+ ([Ca2+]C) signals, but such modulation may differ among cells. In chromaffin cells Ca2+ entry through voltage-operated channels induces calcium release from the endoplasmic reticulum (ER) that amplifies the signal. [Ca2+]C microdomains as high as 20–50 μm are sensed by subplasmalemmal mitochondria, which accumulate large amounts of Ca2+ through the mitochondrial Ca2+ uniporter (MCU). Mitochondria confine the high-Ca2+ microdomains (HCMDs) to beneath the plasma membrane, where exocytosis of secretory vesicles happens. Cell core [Ca2+]C is much smaller (1–2 μm). By acting as a Ca2+ sink, mitochondria stabilise the HCMD in space and time. In non-excitable HEK293 cells, activation of store-operated Ca2+ entry, triggered by ER Ca2+ emptying, also generated subplasmalemmal HCMDs, but, in this case, most of the Ca2+ was taken up by the ER rather than by mitochondria. The smaller size of the [Ca2+]C peak in this case (about 2 μm) may contribute to this outcome, as the sarco-endoplasmic reticulum Ca2+ ATPase has much higher Ca2+ affinity than MCU. It is also possible that the relative positioning of organelles, channels and effectors, as well as cytoskeleton and accessory proteins plays an important role. Key points Cross-talk between organelles and plasma membrane Ca2+ channels modulates cytosolic Ca2+ signals in different ways. In chromaffin cells Ca2+ entry through voltage-operated channels is amplified by Ca2+ release from the endoplasmic reticulum (ER) and generates subplasmalemmal high Ca2+ microdomains (HCMDs) as high as 20–50 μm, which trigger exocytosis. Subplasmalemmal mitochondria take up Ca2+ from HCMDs and avoid progression of the Ca2+ wave towards the cell core. In non-excitable HEK293 cells activation of store-operated Ca2+ entry triggered by ER Ca2+ emptying also generates subplasmalemmal HCMDs of about 2 μm. In this case

  8. Identification of Two Novel Endoplasmic Reticulum Body-Specific Integral Membrane Proteins1[W][OA

    PubMed Central

    Yamada, Kenji; Nagano, Atsushi J.; Nishina, Momoko; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2013-01-01

    The endoplasmic reticulum (ER) body, a large compartment specific to the Brassicales, accumulates β-glucosidase and possibly plays a role in the defense against pathogens and herbivores. Although the ER body is a subdomain of the ER, it is unclear whether any ER body-specific membrane protein exists. In this study, we identified two integral membrane proteins of the ER body in Arabidopsis (Arabidopsis thaliana) and termed them MEMBRANE PROTEIN OF ENDOPLASMIC RETICULUM BODY1 (MEB1) and MEB2. In Arabidopsis, a basic helix-loop-helix transcription factor, NAI1, and an ER body component, NAI2, regulate ER body formation. The expression profiles of MEB1 and MEB2 are similar to those of NAI1, NAI2, and ER body β-glucosidase PYK10 in Arabidopsis. The expression of MEB1 and MEB2 was reduced in the nai1 mutant, indicating that NAI1 regulates the expression of MEB1 and MEB2 genes. MEB1 and MEB2 proteins localize to the ER body membrane but not to the ER network, suggesting that these proteins are specifically recruited to the ER body membrane. MEB1 and MEB2 physically interacted with ER body component NAI2, and they were diffused throughout the ER network in the nai2 mutant, which has no ER body. Heterologous expression of MEB1 and MEB2 in yeast (Saccharomyces cerevisiae) suppresses iron and manganese toxicity, suggesting that MEB1 and MEB2 are metal transporters. These results indicate that the membrane of ER bodies has specific membrane proteins and suggest that the ER body is involved in defense against metal stress as well as pathogens and herbivores. PMID:23166355

  9. Lipid homeostasis is involved in plasma membrane and endoplasmic reticulum stress in Pichia pastoris.

    PubMed

    Zhang, Meng; Yu, Qilin; Liang, Chen; Zhang, Biao; Li, Mingchun

    2016-09-16

    Maintaining cellular lipid composition is essential for many cell processes. Our previous study has demonstrated that Spt23 is an important transcription factor within the cell and responsible for the regulation of fatty acid desaturase genes. Disruption of SPT23 results in increased lipid saturation. In the present study, we found that lipid saturation caused by SPT23 deletion exhibited a growth defect under ethanol stress and increased chitin contents. Ergosterol synthesis-related genes were up-regulated to protect cells from plasma membrane damage in the presence of ethanol. The cell wall stress caused by increased chitin contents could not be attenuated by up-regulation of phospholipids synthesis-related genes in spt23Δ. Besides, lipid saturation induced expression of unfolded protein response (UPR) genes and reactive oxygen species (ROS) accumulation followed by activation of the cellular antioxidant system, which is associated with endoplasmic reticulum functions. Taken together, our data suggested that lipid homeostasis has a close connection with cell responses to both plasma membrane stress and endoplasmic reticulum stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Expanded polyglutamine embedded in the endoplasmic reticulum causes membrane distortion and coincides with Bax insertion

    SciTech Connect

    Ueda, Masashi; Li, Shimo; Itoh, Masanori; Wang, Miao-xing; Hayakawa, Miki; Islam, Saiful; Tana; Nakagawa, Kiyomi; Chen, Huayue; Nakagawa, Toshiyuki

    2016-05-27

    The endoplasmic reticulum (ER) is important in various cellular functions, such as secretary and membrane protein biosynthesis, lipid synthesis, and calcium storage. ER stress, including membrane distortion, is associated with many diseases such as Huntington's disease. In particular, nuclear envelope distortion is related to neuronal cell death associated with polyglutamine. However, the mechanism by which polyglutamine causes ER membrane distortion remains unclear. We used electron microscopy, fluorescence protease protection assay, and alkaline treatment to analyze the localization of polyglutamine in cells. We characterized polyglutamine embedded in the ER membrane and noted an effect on morphology, including the dilation of ER luminal space and elongation of ER-mitochondria contact sites, in addition to the distortion of the nuclear envelope. The polyglutamine embedded in the ER membrane was observed at the same time as Bax insertion. These results demonstrated that the ER membrane may be a target of polyglutamine, which triggers cell death through Bax. -- Highlights: •We characterized polyglutamine embedded in the ER membrane. •The polyglutamine embedded in the ER membrane was observed at the same time as Bax insertion. •The ER membrane may be a target of polyglutamine, which triggers cell death.

  11. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells

    PubMed Central

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application. PMID:26121477

  12. Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells.

    PubMed

    Yu, Kyeong-Nam; Chang, Seung-Hee; Park, Soo Jin; Lim, Joohyun; Lee, Jinkyu; Yoon, Tae-Jong; Kim, Jun-Sung; Cho, Myung-Haing

    2015-01-01

    Nanomaterials are used in diverse fields including food, cosmetic, and medical industries. Titanium dioxide nanoparticles (TiO2-NP) are widely used, but their effects on biological systems and mechanism of toxicity have not been elucidated fully. Here, we report the toxicological mechanism of TiO2-NP in cell organelles. Human bronchial epithelial cells (16HBE14o-) were exposed to 50 and 100 μg/mL TiO2-NP for 24 and 48 h. Our results showed that TiO2-NP induced endoplasmic reticulum (ER) stress in the cells and disrupted the mitochondria-associated endoplasmic reticulum membranes (MAMs) and calcium ion balance, thereby increasing autophagy. In contrast, an inhibitor of ER stress, tauroursodeoxycholic acid (TUDCA), mitigated the cellular toxic response, suggesting that TiO2-NP promoted toxicity via ER stress. This novel mechanism of TiO2-NP toxicity in human bronchial epithelial cells suggests that further exhaustive research on the harmful effects of these nanoparticles in relevant organisms is needed for their safe application.

  13. STUDIES ON THE ENDOPLASMIC RETICULUM

    PubMed Central

    Porter, Keith R.; Yamada, Eichi

    1960-01-01

    Pigment epithelial cells of the frog's retina have been examined by methods of electron microscopy with special attention focused on the fine structure of the endoplasmic reticulum and the myeloid bodies. These cells, as reported previously, send apical prolongations into the spaces between the rod outer segments, and within these extensions, pigment migrates in response to light stimulation. The cytoplasm of these cells is filled with a compact lattice of membrane-limited tubules, the surfaces of which are smooth or particle-free. In this respect, the endoplasmic reticulum here resembles that encountered in cells which produce lipid-rich secretions. The myeloid bodies comprise paired membranes arranged in stacks shaped like biconvex lenses. At their margins the membranes are continuous with elements of the ER and in consequence of this the myeloid body is referred to as a differentiation of the reticulum. The paired membranes resemble in their thickness and spacings those which make up the outer segments; they are therefore regarded as intracellular photoreceptors of possible significance in the activation of pigment migration and other physiologic functions of these cells. The fuscin granules are enclosed in membranes which are also continuous with those of the ER. The granules seem to move independently of the prolongations in which they are contained. The report also describes the fine structure of the terminal bar apparatus, the fibrous layer intervening between the epithelium and the choroid blood vessels, and comments on the functions of the organelles depicted. PMID:13737277

  14. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane.

    PubMed Central

    Kutay, U; Ahnert-Hilger, G; Hartmann, E; Wiedenmann, B; Rapoport, T A

    1995-01-01

    Synaptobrevin/vesicle-associated membrane protein is one of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is proposed to provide specificity for the targeting and fusion of vesicles with the plasma membrane. It belongs to a class of membrane proteins which lack a signal sequence and contain a single hydrophobic segment close to their C-terminus, leaving most of the polypeptide chain in the cytoplasm (tail-anchored). We show that in neuroendocrine PC12 cells, synaptobrevin is not directly incorporated into the target organelle, synaptic-like vesicles. Rather, it is first inserted into the endoplasmic reticulum (ER) membrane and is then transported via the Golgi apparatus. Its insertion into the ER membrane in vitro occurs post-translationally, is dependent on ATP and results in a trans-membrane orientation of the hydrophobic tail. Membrane integration requires ER protein(s) different from the translocation components needed for proteins with signal sequences, thus suggesting a novel mechanism of insertion. Images PMID:7835332

  15. A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum

    PubMed Central

    Varadarajan, S; Bampton, E T W; Smalley, J L; Tanaka, K; Caves, R E; Butterworth, M; Wei, J; Pellecchia, M; Mitcheson, J; Gant, T W; Dinsdale, D; Cohen, G M

    2012-01-01

    Canonical endoplasmic reticulum (ER) stress, which occurs in many physiological and disease processes, results in activation of the unfolded protein response (UPR). We now describe a new, evolutionarily conserved cellular stress response characterised by a striking, but reversible, reorganisation of ER membranes that occurs independently of the UPR, resulting in impaired ER transport and function. This reorganisation is characterised by a dramatic redistribution and clustering of ER membrane proteins. ER membrane aggregation is regulated, in part, by anti-apoptotic BCL-2 family members, particularly MCL-1. Using connectivity mapping, we report the widespread occurrence of this stress response by identifying several structurally diverse chemicals from different pharmacological classes, including antihistamines, antimalarials and antipsychotics, which induce ER membrane reorganisation. Furthermore, we demonstrate the potential of ER membrane aggregation to result in pathological consequences, such as the long-QT syndrome, a cardiac arrhythmic abnormality, arising because of a novel trafficking defect of the human ether-a-go-go-related channel protein from the ER to the plasma membrane. Thus, ER membrane reorganisation is a feature of a new cellular stress pathway, clearly distinct from the UPR, with important consequences affecting the normal functioning of the ER. PMID:22955944

  16. Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum.

    PubMed

    Yuasa, Koji; Toyooka, Kiminori; Fukuda, Hiroo; Matsuoka, Ken

    2005-01-01

    We cloned a novel prolyl 4-hydroxylase (PH; EC 1.14.11.2) homolog cDNA from tobacco (Nicotiana tabacum) BY-2 cells based on expression sequence tag information. Like other PHs, this tobacco PH polypeptide has two conserved histidine residues, and it comprises 286 amino acids with a calculated molecular mass of 32 kDa. Interestingly, this protein and homologs in Arabidopsis and rice have predicted transmembrane sequences in their N-terminal regions. This PH homolog was expressed in BY-2 cells as a His-tagged protein, and the expressed protein showed PH activity. Incubation of membranes with high salt, urea, and protease with or without detergents indicated that this protein is an integral membrane protein with a type II configuration. Its membrane-anchored nature is specific for plants because no integral membrane PH has been found in animals. A membrane fractionation study and immunocytochemical studies indicate that this protein localizes in both the endoplasmic reticulum (ER) and Golgi apparatus. Analysis of this protein fused to green fluorescent protein indicated that basic amino acids in the cytoplasmic, N-terminal region of the PH play a role in its export from the ER.

  17. The GET System Inserts the Tail-Anchored Protein, SYP72, into Endoplasmic Reticulum Membranes.

    PubMed

    Srivastava, Renu; Zalisko, Benjamin E; Keenan, Robert J; Howell, Stephen H

    2017-02-01

    The Arabidopsis (Arabidopsis thaliana) genome encodes homologs of the Guided Entry of Tail (GET)-anchored protein system for the posttranslational insertion of tail-anchored (TA) proteins into endoplasmic reticulum (ER) membranes. In yeast, TA proteins are loaded onto the cytosolic targeting factor Get3 and are then delivered to the membrane-associated Get1/2 complex for insertion into ER membranes. The role of the GET system in Arabidopsis was investigated by monitoring the membrane insertion of a tail-anchored protein, SYP72, a syntaxin. SYP72 bound to yeast Get3 in vitro, forming a Get3-SYP72 fusion complex that could be inserted into yeast GET1/2-containing proteoliposomes. The Arabidopsis GET system functioned in vivo to insert TA proteins into ER membranes as demonstrated by the fact that the YFP-tagged SYP72 localized to the ER in wild-type plants but accumulated as cytoplasmic inclusions in get1, get3, or get4 mutants. The GET mutants get1 and get3 were less tolerant of ER stress agents and showed symptoms of ER stress even under unstressed conditions. Hence, the GET system is responsible for the insertion of TA proteins into the ER in Arabidopsis, and mutants with GET dysfunctions are more susceptible to ER stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes.

    PubMed

    Pfeffer, Stefan; Brandt, Florian; Hrabe, Thomas; Lang, Sven; Eibauer, Matthias; Zimmermann, Richard; Förster, Friedrich

    2012-09-05

    In eukaryotic cells, cotranslational protein translocation across the endoplasmic reticulum (ER) membrane requires an elaborate macromolecular machinery. While structural details of ribosomes bound to purified and solubilized constituents of the translocon have been elucidated in recent years, little structural knowledge of ribosomes bound to the complete ER protein translocation machinery in a native membrane environment exists. Here, we used cryoelectron tomography to provide a three-dimensional reconstruction of 80S ribosomes attached to functional canine pancreatic ER microsomes in situ. In the resulting subtomogram average at 31 Å resolution, we observe direct contact of ribosomal expansion segment ES27L and the membrane and distinguish several membrane-embedded and lumenal complexes, including Sec61, the TRAP complex and another large complex protruding 90 Å into the lumen. Membrane-associated ribosomes adopt a preferred three-dimensional arrangement that is likely specific for ER-associated polyribosomes and may explain the high translation efficiency of ER-associated ribosomes compared to their cytosolic counterparts.

  19. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.

    PubMed

    Farinha, Carlos M; Canato, Sara

    2017-01-01

    CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.

  20. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella.

    PubMed

    Allen, R D

    1973-02-01

    An electron microscope investigation of the interface between the myonemes of Vorticella convallaria and their associated endoplasmic reticulum (ER) has revealed structures of a complex morphology linking these two organelles. These structures are named "linkage complexes". Each complex contains a spindle-shaped midpiece which lies in a groove of the ER membrane. Microfilaments splay out from the tips of the midpiece and may come in contact with the inner alveolar sac membrane. Three to six raillike structures lie on each side of the midpiece and parallel it. The ER membrane appears to pass through the sides of the rails. In the lumen of the ER these rails are associated with a meshwork of filaments. A cradle of five rods lies within the groove under the midpiece. The ER membrane also passes through these rods which contact the same meshwork. In the scopular region and in the stalk the microfilaments from the midpiece form a bundle which passes into the lumen of modified basal bodies. These basal bodies are connected to the alveolar sac which, in the stalk, passes as a flattened tube along its length. The parts of the dissociated linkage complex are scattered throughout the spasmoneme of the stalk along membranes of the intraspasmonemal tubules. Thus, both stalk and body contractile bundles have linkage complexes that link their associated membrane systems to the microfibrils and, in turn, connect this membrane-microfibrillar interface to the pellicular membranes. The arrangement of the linkage complex suggests an involvement in the control of the transport of calcium ions between ER and microfibrils, and possibly the transfer of a message from the surface membranes to the sites of calcium release to trigger myonemal contraction.

  1. STRUCTURES LINKING THE MYONEMES, ENDOPLASMIC RETICULUM, AND SURFACE MEMBRANES IN THE CONTRACTILE CILIATE VORTICELLA

    PubMed Central

    Allen, Richard D.

    1973-01-01

    An electron microscope investigation of the interface between the myonemes of Vorticella convallaria and their associated endoplasmic reticulum (ER) has revealed structures of a complex morphology linking these two organelles. These structures are named "linkage complexes". Each complex contains a spindle-shaped midpiece which lies in a groove of the ER membrane. Microfilaments splay out from the tips of the midpiece and may come in contact with the inner alveolar sac membrane. Three to six raillike structures lie on each side of the midpiece and parallel it. The ER membrane appears to pass through the sides of the rails. In the lumen of the ER these rails are associated with a meshwork of filaments. A cradle of five rods lies within the groove under the midpiece. The ER membrane also passes through these rods which contact the same meshwork. In the scopular region and in the stalk the microfilaments from the midpiece form a bundle which passes into the lumen of modified basal bodies. These basal bodies are connected to the alveolar sac which, in the stalk, passes as a flattened tube along its length. The parts of the dissociated linkage complex are scattered throughout the spasmoneme of the stalk along membranes of the intraspasmonemal tubules. Thus, both stalk and body contractile bundles have linkage complexes that link their associated membrane systems to the microfibrils and, in turn, connect this membrane-microfibrillar interface to the pellicular membranes. The arrangement of the linkage complex suggests an involvement in the control of the transport of calcium ions between ER and microfibrils, and possibly the transfer of a message from the surface membranes to the sites of calcium release to trigger myonemal contraction. PMID:4630196

  2. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    SciTech Connect

    Fujimoto, Michiko; Hayashi, Teruo; Su, Tsung-Ping

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The endoplasmic reticulum subdomain termed MAM associates with mitochondria. Black-Right-Pointing-Pointer The biophysical role of lipids in the MAM-mitochondria association is unknown. Black-Right-Pointing-Pointer The in vitro membrane association assay was used to examine the role of lipids. Black-Right-Pointing-Pointer Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP{sub 3} receptor-mediated Ca{sup 2+} influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-{beta}-cyclodextrin (M{beta}C) significantly increases the association between MAMs and mitochondria, whereas M{beta}C saturated with cholesterol does not change the association. {sup 14}C-Serine pulse-labeling demonstrated that the treatment of living cells with M{beta}C decreases the level of de novo synthesized {sup 14}C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of

  3. GFP-LC3 labels organised smooth endoplasmic reticulum membranes independently of autophagy.

    PubMed

    Korkhov, Vladimir M

    2009-05-01

    Disruption of autophagy leads to accumulation of intracellular multilamellar inclusions morphologically similar to organised smooth endoplasmic reticulum (OSER) membranes. However, the relation of these membranous compartments to autophagy is unknown. The purpose of this study was to test whether OSER plays a role in the autophagic protein degradation pathway. Here, GFP-LC3 is shown to localise to the OSER membranes induced by calnexin expression both in transiently transfected HEK293 cells and in mouse embryo fibroblasts. In contrast to GFP-LC3, endogenous LC3 is excluded from these membranes under normal conditions as well as after cell starvation. Furthermore, YFP-Atg5, a protein essential for autophagy and known to reside on autophagic membranes, is excluded from the calnexin-positive inclusion structures. In cells devoid of Atg5, a protein essential for autophagy and known to reside on autophagic membranes, colocalisation of calnexin with GFP-LC3 within the multilamellar bodies is preserved. I show that calnexin, a protein enriched in the OSER, is not subject to autophagic or lysosomal degradation. Finally, GFP-LC3 targeting to these membranes is independent of its processing and insensitive to drugs modulating autophagic and lysosomal protein degradation. These observations are inconsistent with a role of autophagic/lysosomal degradation in clearance of multilamellar bodies comprising OSER. Furthermore, GFP-LC3, a fusion protein widely used as a marker for autophagic vesicles and pre-autophagic compartments, may be trapped in this compartment and this artefact must be taken into account if the construct is used to visualise autophagic membranes.

  4. Endoplasmic Reticulum-Golgi Intermediate Compartment Membranes and Vimentin Filaments Participate in Vaccinia Virus Assembly

    PubMed Central

    Risco, Cristina; Rodríguez, Juan R.; López-Iglesias, Carmen; Carrascosa, José L.; Esteban, Mariano; Rodríguez, Dolores

    2002-01-01

    Vaccinia virus (VV) has a complex morphogenetic pathway whose first steps are poorly characterized. We have studied the early phase of VV assembly, when viral factories and spherical immature viruses (IVs) form in the cytoplasm of the infected cell. After freeze-substitution numerous cellular elements are detected around assembling viruses: membranes, ribosomes, microtubules, filaments, and unidentified structures. A double membrane is clearly resolved in the VV envelope for the first time, and freeze fracture reveals groups of tubules interacting laterally on the surface of the viroplasm foci. These data strongly support the hypothesis of a cellular tubulovesicular compartment, related to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), as the origin of the first VV envelope. Moreover, the cytoskeletal vimentin intermediate filaments are found around viral factories and inside the viroplasm foci, where vimentin and the VV core protein p39 colocalize in the areas where crescents protrude. Confocal microscopy showed that ERGIC elements and vimentin filaments concentrate in the viral factories. We propose that modified cellular ERGIC membranes and vimentin intermediate filaments act coordinately in the construction of viral factories and the first VV form through a unique mechanism of viral morphogenesis from cellular elements. PMID:11799179

  5. STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites.

    PubMed

    Wilhelm, Léa P; Wendling, Corinne; Védie, Benoît; Kobayashi, Toshihide; Chenard, Marie-Pierre; Tomasetto, Catherine; Drin, Guillaume; Alpy, Fabien

    2017-05-15

    StAR-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that creates endoplasmic reticulum (ER)-endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill-defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3-mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER-endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER-anchored partner, Vesicle-associated membrane protein-associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER-endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  6. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    PubMed Central

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  7. Characterization of nuclear membranes and endoplasmic reticulum isolated from plant tissue

    PubMed Central

    1976-01-01

    Nuclei, nuclear membranes and rough endoplasmic reticulum (rER) were isolated from onion root tips and stems. Structural preservation and purity of the fractions was determined by electron microscopic and biochemical methods. Gross compositional data (protein, phospholipid, nonpolar lipids, sterols, RNA, DNA), phospholipid and fatty acid patterns, enzyme activities (ATPases, ADPase, IDPase, glucose-6- phosphatase, 5'-nucleotidase, acid phosphatase, and NADH- and NADPH- cytochrome C reductases), and cytochrome contents were determined. A stable, high salt-resistant attachment of some DNA with the nuclear membrane was observed as well as the association of some RNA with high salt-treated nuclear and rER membranes. The phospholipid pattern was identical for both nuclear and rER membranes and showed a predominance of lecithin (about 60%) and phosphatidyl ethanolamine (20-24%). Special care was necessary to minimize lipid degradation by phospholipases during isolations. Nonpolar lipids, mostly sterols and triglycerides, accounted for 35-45% of the membrane lipids. Sterol contents were relatively high in both membrane fractions (molar ratios of sterols to phospholipids ranged from 0.12 to 0.43). Sitosterol accounted for about 80% of the total sterols. Palmitic, oleic, and linoleic acids were the most prevalent acids in membrane-bound lipids as well as in storage lipids and occurred in similar proportions in phospholipids, triglycerides and free fatty acids of the membrane. About 80% of the fatty acids in membrane phospholipids and triglycerides were unsaturated. A cytochrome of the b5 type was characterized in these membranes, but P-450-like cytochromes could not be detected. Both NADH and NADPH-cytochrome c reductases were found in nuclear and rER membranes and appeared to be enriched in rER membranes. Among the phosphatases, Mg2+-ATPase and, to lesser extents, ADPase, IDPase and acid phosphatase activities occurred in the fractions, but significant amounts of

  8. Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with endoplasmic reticulum and mitochondrial membranes

    PubMed Central

    1982-01-01

    Membranes were isolated from highly purified peroxisomes, mitochondria, and rough and smooth microsomes of rat liver by the one-step Na2CO3 procedure described in the accompanying paper (1982, J. Cell Biol. 93:97-102). The polypeptide compositions of these membranes were determined by SDS PAGE and found to be greatly dissimilar. The peroxisomal membrane contains 12% of the peroxisomal protein and consists of three major polypeptides (21,700, 67,700 and 69,700 daltons) as well as some minor polypeptides. The major peroxisomal membrane proteins as well as most of the minor ones are absent from the endoplasmic reticulum (ER). Conversely, most ER proteins are absent from peroxisomes. By electron microscopy, purified peroxisomal membranes are approximately 6.8 nm thick and have a typical trilaminar appearance. The phospholipid/protein ratio of peroxisomal membranes is approximately 200 nmol/mg; the principal phospholipids are phosphatidyl choline and phosphatidyl ethanolamine as in ER and mitochondrial membranes. In contrast to the mitochondria, peroxisomal membranes contain no cardiolipin. All the membranes investigated contain a polypeptide band with a molecular mass of approximately 15,000 daltons. Whether this represents an exceptional common membrane protein or a coincidence is unknown. The implications of these results for the biogenesis of peroxisomes are discussed. PMID:7068748

  9. Role of Mitochondria-Associated Endoplasmic Reticulum Membrane in Inflammation-Mediated Metabolic Diseases.

    PubMed

    Thoudam, Themis; Jeon, Jae-Han; Ha, Chae-Myeong; Lee, In-Kyu

    2016-01-01

    Inflammation is considered to be one of the most critical factors involved in the development of complex metabolic diseases such as type 2 diabetes, cancer, and cardiovascular disease. A few decades ago, the discovery of mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) was followed by the identification of its roles in regulating cellular homeostatic processes, ranging from cellular bioenergetics to apoptosis. MAM provides an excellent platform for numerous signaling pathways; among them, inflammatory signaling pathways associated with MAM play a critical role in cellular defense during pathogenic infections and metabolic disorders. However, induction of MAM causes deleterious effects by amplifying mitochondrial reactive oxygen species generation through increased calcium transfer from the ER to mitochondria, thereby causing mitochondrial damage and release of mitochondrial components into the cytosol as damage-associated molecular patterns (DAMPs). These mitochondrial DAMPs rapidly activate MAM-resident inflammasome components and other inflammatory factors, which promote inflammasome complex formation and release of proinflammatory cytokines in pathological conditions. Long-term stimulation of the inflammasome instigates chronic inflammation, leading to the pathogenesis of metabolic diseases. In this review, we summarize the current understanding of MAM and its association with inflammation-mediated metabolic diseases.

  10. Role of Mitochondria-Associated Endoplasmic Reticulum Membrane in Inflammation-Mediated Metabolic Diseases

    PubMed Central

    Jeon, Jae-Han

    2016-01-01

    Inflammation is considered to be one of the most critical factors involved in the development of complex metabolic diseases such as type 2 diabetes, cancer, and cardiovascular disease. A few decades ago, the discovery of mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) was followed by the identification of its roles in regulating cellular homeostatic processes, ranging from cellular bioenergetics to apoptosis. MAM provides an excellent platform for numerous signaling pathways; among them, inflammatory signaling pathways associated with MAM play a critical role in cellular defense during pathogenic infections and metabolic disorders. However, induction of MAM causes deleterious effects by amplifying mitochondrial reactive oxygen species generation through increased calcium transfer from the ER to mitochondria, thereby causing mitochondrial damage and release of mitochondrial components into the cytosol as damage-associated molecular patterns (DAMPs). These mitochondrial DAMPs rapidly activate MAM-resident inflammasome components and other inflammatory factors, which promote inflammasome complex formation and release of proinflammatory cytokines in pathological conditions. Long-term stimulation of the inflammasome instigates chronic inflammation, leading to the pathogenesis of metabolic diseases. In this review, we summarize the current understanding of MAM and its association with inflammation-mediated metabolic diseases. PMID:28074080

  11. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM).

    PubMed

    Raturi, Arun; Simmen, Thomas

    2013-01-01

    More than a billion years ago, bacterial precursors of mitochondria became endosymbionts in what we call eukaryotic cells today. The true significance of the word "endosymbiont" has only become clear to cell biologists with the discovery that the endoplasmic reticulum (ER) superorganelle dedicates a special domain for the metabolic interaction with mitochondria. This domain, identified in all eukaryotic cell systems from yeast to man and called the mitochondria-associated membrane (MAM), has a distinct proteome, specific tethers on the cytosolic face and regulatory proteins in the ER lumen of the ER. The MAM has distinct biochemical properties and appears as ER tubules closely apposed to mitochondria on electron micrographs. The functions of the MAM range from lipid metabolism and calcium signaling to inflammasome formation. Consistent with these functions, the MAM is enriched in lipid metabolism enzymes and calcium handling proteins. During cellular stress situations, like an altered cellular redox state, the MAM alters its set of regulatory proteins and thus alters MAM functions. Notably, this set prominently comprises ER chaperones and oxidoreductases that connect protein synthesis and folding inside the ER to mitochondrial metabolism. Moreover, ER membranes associated with mitochondria also accommodate parts of the machinery that determines mitochondrial membrane dynamics and connect mitochondria to the cytoskeleton. Together, these exciting findings demonstrate that the physiological interactions between the ER and mitochondria are so bilateral that we are tempted to compare their relationship to the one of a married couple: distinct, but inseparable and certainly dependent on each other. In this paradigm, the MAM stands for the intracellular location where the two organelles tie the knot. Resembling "real life", the happy marriage between the two organelles prevents the onset of diseases that are characterized by disrupted metabolism and decreased lifespan

  12. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites.

    PubMed

    Fernández-Busnadiego, Rubén; Saheki, Yasunori; De Camilli, Pietro

    2015-04-21

    The close apposition between the endoplasmic reticulum (ER) and the plasma membrane (PM) plays important roles in Ca(2+) homeostasis, signaling, and lipid metabolism. The extended synaptotagmins (E-Syts; tricalbins in yeast) are ER-anchored proteins that mediate the tethering of the ER to the PM and are thought to mediate lipid transfer between the two membranes. E-Syt cytoplasmic domains comprise a synaptotagmin-like mitochondrial-lipid-binding protein (SMP) domain followed by five C2 domains in E-Syt1 and three C2 domains in E-Syt2/3. Here, we used cryo-electron tomography to study the 3D architecture of E-Syt-mediated ER-PM contacts at molecular resolution. In vitrified frozen-hydrated mammalian cells overexpressing individual E-Syts, in which E-Syt-dependent contacts were by far the predominant contacts, ER-PM distance (19-22 nm) correlated with the amino acid length of the cytosolic region of E-Syts (i.e., the number of C2 domains). Elevation of cytosolic Ca(2+) shortened the ER-PM distance at E-Syt1-dependent contacts sites. E-Syt-mediated contacts displayed a characteristic electron-dense layer between the ER and the PM. These features were strikingly different from those observed in cells exposed to conditions that induce contacts mediated by the stromal interaction molecule 1 (STIM1) and the Ca(2+) channel Orai1 as well as store operated Ca(2+) entry. In these cells the gap between the ER and the PM was spanned by filamentous structures perpendicular to the membranes. Our results define specific ultrastructural features of E-Syt-dependent ER-PM contacts and reveal their structural plasticity, which may impact on the cross-talk between the ER and the PM and the functions of E-Syts in lipid transport between the two bilayers.

  13. Endoplasmic Reticulum Stress and Obesity.

    PubMed

    Yilmaz, Erkan

    2017-01-01

    In recent years, the world has seen an alarming increase in obesity and closely associated with insulin resistance which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) play in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably other causes for obesity-related insulin resistance and inflammation. One of these appears to be endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.

  14. Processing of the rough endoplasmic reticulum membrane glycoproteins of rotavirus SA11

    PubMed Central

    1985-01-01

    The synthesis and oligosaccharide processing of the glycoproteins of SA11 rotavirus in infected Ma104 cells was examined. Rotavirus assembles in the rough endoplasmic reticulum (RER) and encodes two glycoproteins: VP7, a component of the outer viral capsid, and NCVP5, a nonstructural protein. A variety of evidence suggests the molecules are limited to the ER, a location consistent with the high mannose N-linked oligosaccharides modifying these proteins. VP7 and NCVP5 were shown to be integral membrane proteins. In an in vitro translation system supplemented with dog pancreas microsomes, they remained membrane associated after high salt treatment and sodium carbonate-mediated release of microsomal contents. In infected cells, the oligosaccharide processing of these molecules proceeded in a time-dependent manner. For VP7, Man8GlcNAc2 and Man6GlcNAc2 were the predominant intracellular species after a 5-min pulse with [3H]mannose and a 90 min chase, while in contrast, trimming of NCVP5 halted at Man8GlcNAc2. VP7 on mature virus was processed to Man5GlcNAc2. It is suggested that the alpha- mannosidase activities responsible for the formation of these structures reside in the ER. In the presence of the energy inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP), processing of VP7 and the vesicular stomatitis virus G protein was blocked at Man8GlcNAc2. After a 20-min chase of [3H]mannose-labeled molecules followed by addition of CCCP, trimming of VP7 could continue while processing of G protein remained blocked. Thus, an energy-sensitive translocation step within the ER may mark the divergence of the processing pathways of these glycoproteins. PMID:2995404

  15. A mutant cytochrome b5 with a lengthened membrane anchor escapes from the endoplasmic reticulum and reaches the plasma membrane.

    PubMed Central

    Pedrazzini, E; Villa, A; Borgese, N

    1996-01-01

    Many resident membrane proteins of the endoplasmic reticulum (ER) do not have known retrieval sequences. Among these are the so-called tail-anchored proteins, which are bound to membranes by a hydrophobic tail close to the C terminus and have most of their sequence as a cytosolically exposed N-terminal domain. Because ER tail-anchored proteins generally have short (< or = 17 residues) hydrophobic domains, we tested whether this feature is important for localization, using cytochrome b5 as a model. The hydrophobic domain of cytochrome b5 was lengthened by insertion of five amino acids (ILAAV), and the localization of the mutant was analyzed by immunofluorescence in transiently transfected mammalian cells. While the wild-type cytochrome was localized to the ER, the mutant was relocated to the surface. This relocation was not due to the specific sequence introduced, as demonstrated by the ER localization of a second mutant, in which the original length of the membrane anchor was restored, while maintaining the inserted ILAAV sequence. Experiments with brefeldin A and with cycloheximide demonstrated that the extended anchor mutant reached the plasma membrane by transport along the secretory pathway. We conclude that the short membrane anchor of cytochrome b5 is important for its ER residency, and we discuss the relevance of this finding for other ER tail-anchored proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8633042

  16. Glycosylation is essential for translocation of carp retinol-binding protein across the endoplasmic reticulum membrane

    SciTech Connect

    Devirgiliis, Chiara; Gaetani, Sancia; Apreda, Marianna; Bellovino, Diana . E-mail: bellovino@inran.it

    2005-07-01

    Retinoid transport is well characterized in many vertebrates, while it is still largely unexplored in fish. To study the transport and utilization of vitamin A in these organisms, we have isolated from a carp liver cDNA library retinol-binding protein, its plasma carrier. The primary structure of carp retinol-binding protein is very conserved, but presents unique features compared to those of the correspondent proteins isolated and characterized so far in other species: it has an uncleavable signal peptide and two N-glycosylation sites in the NH{sub 2}-terminal region of the protein that are glycosylated in vivo. In this paper, we have investigated the function of the carbohydrate chains, by constructing three mutants deprived of the first, the second or both carbohydrates. The results of transient transfection of wild type and mutant retinol-binding protein in Cos cells followed by Western blotting and immunofluorescence analysis have shown that the absence of both carbohydrate moieties blocks secretion, while the presence of one carbohydrate group leads to an inefficient secretion. Experiments of carp RBP mRNA in vitro translation in a reticulocyte cell-free system in the presence of microsomes have demonstrated that N-glycosylation is necessary for efficient translocation across the endoplasmic reticulum membranes. Moreover, when Cos cells were transiently transfected with wild type and mutant retinol-binding protein (aa 1-67)-green fluorescent protein fusion constructs and semi-permeabilized with streptolysin O, immunofluorescence analysis with anti-green fluorescent protein antibody revealed that the double mutant is exposed to the cytosol, thus confirming the importance of glycan moieties in the translocation process.

  17. LysoPC acyltransferase/PC transacylase activities in plant plasma membrane and plasma membrane-associated endoplasmic reticulum.

    PubMed

    Larsson, Karin E; Kjellberg, J Magnus; Tjellström, Henrik; Sandelius, Anna Stina

    2007-11-28

    The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER). The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER. The plant plasma membrane readily incorporated the acyl chain of acyl-CoA into phospholipids. Oleic acid was preferred over palmitic acid as substrate and acyl incorporation occurred predominantly into phosphatidylcholine (PC). Phospholipase A2 stimulated the reaction, as did exogenous lysoPC when administered in above critical micellar concentrations. AgNO3 was inhibitory. The lysophospholipid acylation reaction was higher in a membrane fraction that could be washed off the isolated plasma membranes after repeated freezing and thawing cycles in a medium with lowered pH. This fraction exhibited several ER-like characteristics. When plasma membranes isolated from transgenic Arabidopsis expressing green fluorescent protein in the ER lumen were observed by confocal microscopy, membranes of ER origin were associated with the isolated plasma membranes. We conclude that a lysoPC acylation activity is associated with plant plasma membranes and cannot exclude a PC transacylase activity. It is highly plausible that the enzyme(s) resides in a fraction of the ER, closely associated with the plasma membrane, or in both. We suggest that

  18. LysoPC acyltransferase/PC transacylase activities in plant plasma membrane and plasma membrane-associated endoplasmic reticulum

    PubMed Central

    Larsson, Karin E; Kjellberg, J Magnus; Tjellström, Henrik; Sandelius, Anna Stina

    2007-01-01

    Background The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER). The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER. Results The plant plasma membrane readily incorporated the acyl chain of acyl-CoA into phospholipids. Oleic acid was preferred over palmitic acid as substrate and acyl incorporation occurred predominantly into phosphatidylcholine (PC). Phospholipase A2 stimulated the reaction, as did exogenous lysoPC when administered in above critical micellar concentrations. AgNO3 was inhibitory. The lysophospholipid acylation reaction was higher in a membrane fraction that could be washed off the isolated plasma membranes after repeated freezing and thawing cycles in a medium with lowered pH. This fraction exhibited several ER-like characteristics. When plasma membranes isolated from transgenic Arabidopsis expressing green fluorescent protein in the ER lumen were observed by confocal microscopy, membranes of ER origin were associated with the isolated plasma membranes. Conclusion We conclude that a lysoPC acylation activity is associated with plant plasma membranes and cannot exclude a PC transacylase activity. It is highly plausible that the enzyme(s) resides in a fraction of the ER, closely associated with the plasma membrane

  19. Oncogenic and oncosuppressive signal transduction at mitochondria-associated endoplasmic reticulum membranes

    PubMed Central

    Marchi, Saverio; Giorgi, Carlotta; Oparka, Monika; Duszynski, Jerzy; Wieckowski, Mariusz R; Pinton, Paolo

    2014-01-01

    The different mechanisms employed by proto-oncogenes and tumor suppressors to regulate cell death pathways are strictly linked to their localization. In addition to the canonical control of apoptosis at a transcriptional/nuclear level, intracellular zones are emerging as pivotal sites for the activities of several proapoptotic and antiapoptotic factors. Here, we review the function of the endoplasmic reticulum-mitochondria interface as a primary platform for decoding danger signals as well as a structural accommodation for several regulator or effector proteins. PMID:27308328

  20. Plasma membrane-cytoskeleton-endoplasmic reticulum complexes in neurons and astrocytes.

    PubMed

    Lencesova, Lubomira; O'Neill, Andrea; Resneck, Wendy G; Bloch, Robert J; Blaustein, Mordecai P

    2004-01-23

    The possibility that certain integral plasma membrane (PM) proteins involved in Ca(2+) homeostasis form junctional units with adjacent endoplasmic reticulum (ER) in neurons and glia was explored using immunoprecipitation and immunocytochemistry. Rat brain membranes were solubilized with the mild, non-ionic detergent, IGEPAL CA-630. Na(+)/Ca(2+) exchanger type 1 (NCX1), a key PM Ca(2+) transporter, was immunoprecipitated from the detergent-soluble fraction. Several abundant PM proteins co-immunoprecipitated with NCX1, including the alpha2 and alpha3 isoforms of the Na(+) pump catalytic (alpha) subunit, and the alpha2 subunit of the dihydropyridine receptor. The adaptor protein, ankyrin 2 (Ank 2), and the cytoskeletal proteins, alpha-fodrin and beta-spectrin, also selectively co-immunoprecipitated with NCX1, as did the ER proteins, Ca(2+) pump type 2 (SERCA 2), and inositol-trisphosphate receptor type 1 (IP(3)R-1). In contrast, a number of other abundant PMs, adaptors, and cytoskeletal proteins did not co-immunoprecipitate with NCX1, including the Na(+) pump alpha1 isoform, PM Ca(2+) pump type 1 (PMCA1), beta-fodrin, and Ank 3. In reciprocal experiments, immunoprecipitation with antibodies to the Na(+) pump alpha2 and alpha3 isoforms, but not alpha1, co-immunoprecipitated NCX1; the antibodies to alpha1 did, however, co-immunoprecipitate PMCA1. Antibodies to Ank 2, alpha-fodrin, beta-spectrin and IP(3)R-1 all co-immunoprecipitated NCX1. Immunocytochemistry revealed partial co-localization of beta-spectrin with NCX1, Na(+) pump alpha3, and IP(3)R-1 in neurons and of alpha-fodrin with NCX1 and SERCA2 in astrocytes. The data support the idea that in neurons and glia PM microdomains containing NCX1 and Na(+) pumps with alpha2 or alpha3 subunits form Ca(2+) signaling complexes with underlying ER containing SERCA2 and IP(3)R-1. These PM and ER components appear to be linked through the cytoskeletal spectrin network, to which they are probably tethered by Ank 2.

  1. The Endoplasmic Reticulum Membrane J Protein C18 Executes a Distinct Role in Promoting Simian Virus 40 Membrane Penetration

    PubMed Central

    Bagchi, Parikshit; Walczak, Christopher Paul

    2015-01-01

    ABSTRACT The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C. P. Walczak, M. S. Ravindran, T. Inoue, and B. Tsai, PLoS Pathog 10:e1004007, 2014). We now find that SV40 also recruits C18 to the virus-induced B12/B14 foci. Importantly, the C18 foci harbor membrane penetration-competent SV40, further implicating this structure as the membrane penetration site. Consistent with this, a mutant SV40 that cannot penetrate the ER membrane and promote infection fails to induce C18 foci. C18 also regulates the recruitment of B12/B14 into the foci. In contrast to B14, C18's cytosolic Hsc70-binding J domain, but not the lumenal domain, is essential for its targeting to the foci; this J domain likewise is necessary to support SV40 infection. Knockdown-rescue experiments reveal that C18 executes a role that is not redundant with those of B12/B14 during SV40 infection. Collectively, our data illuminate C18's contribution to SV40 ER membrane penetration, strengthening the idea that SV40-triggered foci are critical for cytosol entry. IMPORTANCE Polyomaviruses (PyVs) cause devastating human diseases, particularly in immunocompromised patients. As this virus family continues to be a significant human pathogen, clarifying the molecular basis of their cellular entry pathway remains a high priority. To infect cells, PyV traffics from the cell surface to the ER, where it penetrates the ER membrane to reach the cytosol. In the cytosol, the virus moves to the nucleus to cause infection. ER-to-cytosol membrane penetration is a critical yet mysterious infection step. In

  2. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    PubMed

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  3. C-terminal, endoplasmic reticulum-lumenal domain of prosurfactant protein C - structural features and membrane interactions.

    PubMed

    Casals, Cristina; Johansson, Hanna; Saenz, Alejandra; Gustafsson, Magnus; Alfonso, Carlos; Nordling, Kerstin; Johansson, Jan

    2008-02-01

    Surfactant protein C (SP-C) constitutes the transmembrane part of prosurfactant protein C (proSP-C) and is alpha-helical in its native state. The C-terminal part of proSP-C (CTC) is localized in the endoplasmic reticulum lumen and binds to misfolded (beta-strand) SP-C, thereby preventing its aggregation and amyloid fibril formation. In this study, we investigated the structure of recombinant human CTC and the effects of CTC-membrane interaction on protein structure. CTC forms noncovalent trimers and supratrimeric oligomers. It contains two intrachain disulfide bridges, and its secondary structure is significantly affected by urea or heat only after disulfide reduction. The postulated Brichos domain of CTC, with homologs found in proteins associated with amyloid and proliferative disease, is up to 1000-fold more protected from limited proteolysis than the rest of CTC. The protein exposes hydrophobic surfaces, as determined by CTC binding to the environment-sensitive fluorescent probe 1,1'-bis(4-anilino-5,5'-naphthalenesulfonate). Fluorescence energy transfer experiments further reveal close proximity between bound 1,1'-bis(4-anilino-5,5'-naphthalenesulfonate) and tyrosine residues in CTC, some of which are conserved in all Brichos domains. CTC binds to unilamellar phospholipid vesicles with low micromolar dissociation constants, and differential scanning calorimetry and CD analyses indicate that membrane-bound CTC is less structurally ordered than the unbound protein. The exposed hydrophobic surfaces and the structural disordering that result from interactions with phospholipid membranes suggest a mechanism whereby CTC binds to misfolded SP-C in the endoplasmic reticulum membrane.

  4. Endoplasmic Reticulum-associated Degradation of Pca1p, a Polytopic Protein, via Interaction with the Proteasome at the Membrane.

    PubMed

    Smith, Nathan; Adle, David J; Zhao, Miaoyun; Qin, Xiaojuan; Kim, Heejeong; Lee, Jaekwon

    2016-07-15

    Endoplasmic reticulum-associated degradation (ERAD) plays a critical role in the destruction of terminally misfolded proteins at the secretory pathway. The system also regulates expression levels of several proteins such as Pca1p, a cadmium exporter in yeast. To gain better insight into the mechanisms underlying ERAD of Pca1p and other polytopic proteins by the proteasome in the cytosol, our study determined the roles for the molecular factors of ERAD in dislodging Pca1p from the endoplasmic reticulum (ER). Inactivation of the 20S proteasome leads to accumulation of ubiquitinated Pca1p in the ER membrane, suggesting a role for the proteasome in extraction of Pca1p from the ER. Pca1p formed a complex with the proteasome at the membrane in a Doa10p E3 ligase-dependent manner. Cdc48p is required for recruiting the proteasome to Pca1p. Although the Ufd2p E4 ubiquitin chain extension enzyme is involved in efficient degradation of Pca1p, Ufd2p-deficient cells did not affect the formation of a complex between Pca1p and the proteasome. Two other polytopic membrane proteins undergoing ERAD, Ste6*p and Hmg2p, also displayed the same outcomes observed for Pca1p. However, poly-ubiquitinated Cpy1*p, a luminal ERAD substrate, was detected in the cytosol independent of proteolytic activities of the proteasome. These results indicate that extraction and degradation of polytopic membrane proteins at the ER is a coupled event. This mechanism would relieve the cost of exposed hydrophobic domains in the cytosol during ERAD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. ERdj5 Reductase Cooperates with Protein Disulfide Isomerase To Promote Simian Virus 40 Endoplasmic Reticulum Membrane Translocation

    PubMed Central

    Inoue, Takamasa; Dosey, Annie; Herbstman, Jeffrey F.; Ravindran, Madhu Sudhan; Skiniotis, Georgios

    2015-01-01

    ABSTRACT The nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol before mobilizing into the nucleus to cause infection. Prior to ER membrane penetration, ER lumenal factors impart structural rearrangements to the virus, generating a translocation-competent virion capable of crossing the ER membrane. Here we identify ERdj5 as an ER enzyme that reduces SV40's disulfide bonds, a reaction important for its ER membrane transport and infection. ERdj5 also mediates human BK PyV infection. This enzyme cooperates with protein disulfide isomerase (PDI), a redox chaperone previously implicated in the unfolding of SV40, to fully stimulate membrane penetration. Negative-stain electron microscopy of ER-localized SV40 suggests that ERdj5 and PDI impart structural rearrangements to the virus. These conformational changes enable SV40 to engage BAP31, an ER membrane protein essential for supporting membrane penetration of the virus. Uncoupling of SV40 from BAP31 traps the virus in ER subdomains called foci, which likely serve as depots from where SV40 gains access to the cytosol. Our study thus pinpoints two ER lumenal factors that coordinately prime SV40 for ER membrane translocation and establishes a functional connection between lumenal and membrane events driving this process. IMPORTANCE PyVs are established etiologic agents of many debilitating human diseases, especially in immunocompromised individuals. To infect cells at the cellular level, this virus family must penetrate the host ER membrane to reach the cytosol, a critical entry step. In this report, we identify two ER lumenal factors that prepare the virus for ER membrane translocation and connect these lumenal events with events on the ER membrane. Pinpointing cellular components necessary for supporting PyV infection should lead to rational therapeutic strategies for preventing and treating Py

  6. Glucuronide transport across the endoplasmic reticulum membrane is inhibited by epigallocatechin gallate and other green tea polyphenols.

    PubMed

    Révész, Katalin; Tütto, Anna; Margittai, Eva; Bánhegyi, Gábor; Magyar, Judit E; Mandl, József; Csala, Miklós

    2007-01-01

    Toxic endogenous or exogenous compounds can be inactivated by various conjugation reactions. Glucuronidation (i.e. conjugation with glucuronate) is especially important due to the large number of drugs and chemical carcinogens that are detoxified through this pathway. Stable and harmless glucuronides can be reactivated by enzymatic hydrolysis thus inhibitors of glucuronidase activity reduce the risk of chemical carcinogenesis. The aim of this study was to reveal whether this mechanism contributes to the anti-cancer effect of green tea flavanols, which has been shown in various animal models. Therefore, we investigated the effect of these polyphenols on deglucuronidation in rat liver microsomes and in Hepa 1c1c7 mouse hepatoma cells, using 4-methylumbelliferyl glucuronide as model substrate. Tea flavanols inhibited beta-glucuronidase in intact vesicles, where glucuronide transport across the microsomal membrane is rate-limiting, but were almost ineffective in permeabilized vesicles. Epigallocatechin gallate, the major green tea flavanol was shown to have a concentration-dependent inhibitory effect on both beta-glucuronidase activity and glucuronide transport in native vesicles. Epigallocatechin gallate also inhibited beta-glucuronidase activity in native Hepa 1c1c7 mouse hepatoma cells, while failed to affect the enzyme in alamethicin-permeabilized cells, where the endoplasmic membrane barrier was eliminated. Our findings indicate that tea flavanols inhibit deglucuronidation in the endoplasmic reticulum at the glucuronide transport stage. This phenomenon might potentially contribute to the cancer-preventing dietary or pharmacological effect attributed to these catechins.

  7. The GET System Inserts the Tail-Anchored Protein, SYP72, into Endoplasmic Reticulum Membranes1[OPEN

    PubMed Central

    Zalisko, Benjamin E.; Keenan, Robert J.

    2017-01-01

    The Arabidopsis (Arabidopsis thaliana) genome encodes homologs of the Guided Entry of Tail (GET)-anchored protein system for the posttranslational insertion of tail-anchored (TA) proteins into endoplasmic reticulum (ER) membranes. In yeast, TA proteins are loaded onto the cytosolic targeting factor Get3 and are then delivered to the membrane-associated Get1/2 complex for insertion into ER membranes. The role of the GET system in Arabidopsis was investigated by monitoring the membrane insertion of a tail-anchored protein, SYP72, a syntaxin. SYP72 bound to yeast Get3 in vitro, forming a Get3-SYP72 fusion complex that could be inserted into yeast GET1/2-containing proteoliposomes. The Arabidopsis GET system functioned in vivo to insert TA proteins into ER membranes as demonstrated by the fact that the YFP-tagged SYP72 localized to the ER in wild-type plants but accumulated as cytoplasmic inclusions in get1, get3, or get4 mutants. The GET mutants get1 and get3 were less tolerant of ER stress agents and showed symptoms of ER stress even under unstressed conditions. Hence, the GET system is responsible for the insertion of TA proteins into the ER in Arabidopsis, and mutants with GET dysfunctions are more susceptible to ER stress. PMID:27923985

  8. A Cytosolic Chaperone Complexes with Dynamic Membrane J-Proteins and Mobilizes a Nonenveloped Virus out of the Endoplasmic Reticulum

    PubMed Central

    Walczak, Christopher Paul; Ravindran, Madhu Sudhan; Inoue, Takamasa; Tsai, Billy

    2014-01-01

    Nonenveloped viruses undergo conformational changes that enable them to bind to, disrupt, and penetrate a biological membrane leading to successful infection. We assessed whether cytosolic factors play any role in the endoplasmic reticulum (ER) membrane penetration of the nonenveloped SV40. We find the cytosolic SGTA-Hsc70 complex interacts with the ER transmembrane J-proteins DnaJB14 (B14) and DnaJB12 (B12), two cellular factors previously implicated in SV40 infection. SGTA binds directly to SV40 and completes ER membrane penetration. During ER-to-cytosol transport of SV40, SGTA disengages from B14 and B12. Concomitant with this, SV40 triggers B14 and B12 to reorganize into discrete foci within the ER membrane. B14 must retain its ability to form foci and interact with SGTA-Hsc70 to promote SV40 infection. Our results identify a novel role for a cytosolic chaperone in the membrane penetration of a nonenveloped virus and raise the possibility that the SV40-induced foci represent cytosol entry sites. PMID:24675744

  9. Interaction of caldesmon with endoplasmic reticulum membrane: effects on the mobility of phospholipids in the membrane and on the phosphatidylserine base-exchange reaction.

    PubMed Central

    Makowski, P; Makuch, R; Sikorski, A F; Jezierski, A; Pikula, S; Dabrowska, R

    1997-01-01

    We have previously demonstrated by tryptophan fluorescence the interaction of caldesmon with anionic phospholipid vesicles [Czurylo, Zborowski and Dabrowska (1993) Biochem. J. 291, 403-408]. In the present work we investigated the interaction of caldesmon with natural-membrane (rat liver endoplasmic reticulum) phospholipids by co-sedimentation assay. The results indicate that 1 mol of caldesmon binds approx. 170 mol of membrane phospholipids with a binding affinity constant of 7.3 x 10(6) M-1. The caldesmon-membrane phospholipid complex dissociates with increasing salt concentration and in the presence of Ca2+/calmodulin. As indicated by EPR measurements of membrane lipids labelled with 5-doxyl stearate and TEMPO-phosphatidylethanolamine, binding of caldesmon results in an increase in mobility of the acyl chains (in the region of carbon 5) and a decrease in polar headgroup mobility of phospholipids. Interaction of caldesmon with phospholipids is accompanied by inhibition of phosphatidylethanolamine synthesis via a phospholipid base-exchange reaction, with phosphatidylserine as substrate. This shows that, of the endoplasmic reticulum membrane phospholipids, the main target of caldesmon is phosphatidylserine. PMID:9371708

  10. Protein Translocation across the Rough Endoplasmic Reticulum

    PubMed Central

    Mandon, Elisabet C.; Trueman, Steven F.; Gilmore, Reid

    2013-01-01

    The rough endoplasmic reticulum is a major site of protein biosynthesis in all eukaryotic cells, serving as the entry point for the secretory pathway and as the initial integration site for the majority of cellular integral membrane proteins. The core components of the protein translocation machinery have been identified, and high-resolution structures of the targeting components and the transport channel have been obtained. Research in this area is now focused on obtaining a better understanding of the molecular mechanism of protein translocation and membrane protein integration. PMID:23251026

  11. Development of Endoplasmic Reticulum Stress during Experimental Oxalate Nephrolithiasis.

    PubMed

    Motin, Yu G; Lepilov, A V; Bgatova, N P; Zharikov, A Yu; Motina, N V; Lapii, G A; Lushnikova, E L; Nepomnyashchikh, L M

    2016-01-01

    Morphological and ultrastructural study of the kidney was performed in rats with oxalate nephrolithiasis. Specific features of endoplasmic reticulum stress were evaluated during nephrolithiasis and treatment with α-tocopherol. We observed the signs of endoplasmic reticulum stress with activation of proapoptotic pathways and injury to the cell lining in nephron tubules and collecting ducts. Ultrastructural changes were found in the organelles, nuclei, and cell membranes of epitheliocytes. A relationship was revealed between endoplasmic reticulum stress and oxidative damage, which developed at the early state of lithogenesis.

  12. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum.

    PubMed

    Axe, Elizabeth L; Walker, Simon A; Manifava, Maria; Chandra, Priya; Roderick, H Llewelyn; Habermann, Anja; Griffiths, Gareth; Ktistakis, Nicholas T

    2008-08-25

    Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain-containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.

  13. Targeting of OSBP-related protein 3 (ORP3) to endoplasmic reticulum and plasma membrane is controlled by multiple determinants

    SciTech Connect

    Lehto, Markku; Hynynen, Riikka; Karjalainen, Katja; Kuismanen, Esa; Hyvaerinen, Kati; Olkkonen, Vesa M. . E-mail: vesa.olkkonen@ktl.fi

    2005-11-01

    The intracellular targeting determinants of oxysterol binding protein (OSBP)-related protein 3 (ORP3) were studied using a series of truncated and point mutated constructs. The pleckstrin homology (PH) domain of ORP3 binds the phosphoinositide-3-kinase (PI3K) products, PI(3,4)P{sub 2} and PI(3,4,5)P{sub 3}. A functional PH domain and flanking sequences are crucial for the plasma membrane (PM) targeting of ORP3. The endoplasmic reticulum (ER) targeting of ORP3 is regulated the by a FFAT motif (EFFDAxE), which mediates interaction with VAMP-associated protein (VAP)-A. The targeting function of the FFAT motif dominates over that of the PH domain. In addition, the exon 10/11 region modulates interaction of ORP3 with the ER and the nuclear membrane. Analysis of a chimeric ORP3:OSBP protein suggests that ligand binding by the C-terminal domain of OSBP induces allosteric changes that activate the N-terminal targeting modules of ORP3. Notably, over-expression of ORP3 together with VAP-A induces stacked ER membrane structures also known as organized smooth ER (OSER). Moreover, lipid starvation promotes formation of dilated peripheral ER (DPER) structures dependent on the ORP3 protein. Based on the present data, we introduce a model for the inter-relationships of the functional domains of ORP3 in the membrane targeting of the protein.

  14. Superresolution Imaging Identifies That Conventional Trafficking Pathways Are Not Essential for Endoplasmic Reticulum to Outer Mitochondrial Membrane Protein Transport.

    PubMed

    Salka, Kyle; Bhuvanendran, Shivaprasad; Wilson, Kassandra; Bozidis, Petros; Mehta, Mansi; Rainey, Kristin; Sesaki, Hiromi; Patterson, George H; Jaiswal, Jyoti K; Colberg-Poley, Anamaris M

    2017-12-01

    Most nuclear-encoded mitochondrial proteins traffic from the cytosol to mitochondria. Some of these proteins localize at mitochondria-associated membranes (MAM), where mitochondria are closely apposed with the endoplasmic reticulum (ER). We have previously shown that the human cytomegalovirus signal-anchored protein known as viral mitochondria-localized inhibitor of apoptosis (vMIA) traffics from the ER to mitochondria and clusters at the outer mitochondrial membrane (OMM). Here, we have examined the host pathways by which vMIA traffics from the ER to mitochondria and clusters at the OMM. By disruption of phosphofurin acidic cluster sorting protein 2 (PACS-2), mitofusins (Mfn1/2), and dynamin related protein 1 (Drp1), we find these conventional pathways for ER to the mitochondria trafficking are dispensable for vMIA trafficking to OMM. Instead, mutations in vMIA that change its hydrophobicity alter its trafficking to mitochondria. Superresolution imaging showed that PACS-2- and Mfn-mediated membrane apposition or hydrophobic interactions alter vMIA's ability to organize in nanoscale clusters at the OMM. This shows that signal-anchored MAM proteins can make use of hydrophobic interactions independently of conventional ER-mitochondria pathways to traffic from the ER to mitochondria. Further, vMIA hydrophobic interactions and ER-mitochondria contacts facilitate proper organization of vMIA on the OMM.

  15. Endoplasmic reticulum membrane-sorting protein of lymphocytes (BAP31) is highly expressed in neurons and discrete endocrine cells.

    PubMed

    Manley, H A; Lennon, V A

    2001-10-01

    BAP31 is a transmembrane protein that associates with nascent membrane proteins in transit between endoplasmic reticulum (ER) and cis-Golgi. Its C-terminal dilysine (KKEE) motif, mediating return to the ER, is consistent with a role in early sorting of membrane proteins. An initiator caspase-binding site in the C-terminal domain of BAP31 is implicated in cytoplasmic membrane fragmentation events of apoptosis. Although BAP31 RNA is ubiquitous, the protein's anatomic localization has not been determined. To gain further insight into its possible functions, we localized BAP31 in primate tissues using monoclonal antibodies. Immunoreactivity was prominent in T- and B-lymphocytes in blood and in thymus, in cerebellar Purkinje neuron bodies and dendrites, in gonadotrophs of the anterior pituitary, ovarian thecal and follicular cells, active but not quiescent thyroid epithelium, adrenal cortex more than medulla, and proximal more than distal renal tubules. Blood vessels and skeletal muscle were nonreactive. The anatomic distribution of BAP31 and the nature of proteins identified thus far as its cargo exiting the ER, suggest an interaction with proteins assembling in macromolecular complexes en route to selected sites of exocytotic and signaling activities. Apoptotic associations in mature tissues could be physiological (lymphocytes, endocrine cells) or pathological (Purkinje neurons, renal tubules).

  16. Determination of the topology of endoplasmic reticulum membrane proteins using redox-sensitive green-fluorescence protein fusions.

    PubMed

    Tsachaki, Maria; Birk, Julia; Egert, Aurélie; Odermatt, Alex

    2015-07-01

    Membrane proteins of the endoplasmic reticulum (ER) are involved in a wide array of essential cellular functions. Identification of the topology of membrane proteins can provide significant insight into their mechanisms of action and biological roles. This is particularly important for membrane enzymes, since their topology determines the subcellular site where a biochemical reaction takes place and the dependence on luminal or cytosolic co-factor pools and substrates. The methods currently available for the determination of topology of proteins are rather laborious and require post-lysis or post-fixation manipulation of cells. In this work, we have developed a simple method for defining intracellular localization and topology of ER membrane proteins in living cells, based on the fusion of the respective protein with redox-sensitive green-fluorescent protein (roGFP). We validated the method and demonstrated that roGFP fusion proteins constitute a reliable tool for the study of ER membrane protein topology, using as control microsomal 11β-hydroxysteroid dehydrogenase (11β-HSD) proteins whose topology has been resolved, and comparing with an independent approach. We then implemented this method to determine the membrane topology of six microsomal members of the 17β-hydroxysteroid dehydrogenase (17β-HSD) family. The results revealed a luminal orientation of the catalytic site for three enzymes, i.e. 17β-HSD6, 7 and 12. Knowledge of the intracellular location of the catalytic site of these enzymes will enable future studies on their biological functions and on the role of the luminal co-factor pool.

  17. Fusion of the Endoplasmic Reticulum and Mitochondrial Outer Membrane in Rats Brown Adipose Tissue: Activation of Thermogenesis by Ca2+

    PubMed Central

    de Meis, Leopoldo; Ketzer, Luisa A.; da Costa, Rodrigo Madeiro; de Andrade, Ivone Rosa; Benchimol, Marlene

    2010-01-01

    Brown adipose tissue (BAT) mitochondria thermogenesis is regulated by uncoupling protein 1 (UCP 1), GDP and fatty acids. In this report, we observed fusion of the endoplasmic reticulum (ER) membrane with the mitochondrial outer membrane of rats BAT. Ca2+-ATPase (SERCA 1) was identified by immunoelectron microscopy in both ER and mitochondria. This finding led us to test the Ca2+ effect in BAT mitochondria thermogenesis. We found that Ca2+ increased the rate of respiration and heat production measured with a microcalorimeter both in coupled and uncoupled mitochondria, but had no effect on the rate of ATP synthesis. The Ca2+ concentration needed for half-maximal activation varied between 0.08 and 0.11 µM. The activation of respiration was less pronounced than that of heat production. Heat production and ATP synthesis were inhibited by rotenone and KCN. Liver mitochondria have no UCP1 and during respiration synthesize a large amount of ATP, produce little heat, GDP had no effect on mitochondria coupling, Ca2+ strongly inhibited ATP synthesis and had little or no effect on the small amount of heat released. These finding indicate that Ca2+ activation of thermogenesis may be a specific feature of BAT mitochondria not found in other mitochondria such as liver. PMID:20209153

  18. Vacuole Membrane Protein 1 Is an Endoplasmic Reticulum Protein Required for Organelle Biogenesis, Protein Secretion, and Development

    PubMed Central

    Calvo-Garrido, Javier; Carilla-Latorre, Sergio; Lázaro-Diéguez, Francisco; Egea, Gustavo

    2008-01-01

    Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1− Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1− cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised. PMID:18550798

  19. Integrated stereological and biochemical studies on hepatocytic membranes. I.V. Heterogeneous distribution of marker enzymes on endoplasmic reticulum membranes in fractions

    PubMed Central

    1980-01-01

    The purpose of the study was to consider quantitatively the relationships between the surface area of the endoplasmic reticulum (ER) and constituent marker enzyme activities, as they occur in fractions collected from rat liver homogenates. The ER surface area was estimated in five membrane-containing fractions by use of a combined cytochemical-stereological technique (5), while, at the same time, ER marker enzymes were assayed biochemically. Fraction/homogenate recoveries for the ER enzymes averaged 100%, total membrane surface area 98%, and ER surface area 96%. Relative specific activities, which compare the relative amounts of ER marker enzyme activities to the relative ER surface area in the membrane-containing fractions, indicate variable distributions for glucose-6-phosphatase and NADPH cytochrome c reductase, but not for esterase. PMID:6248565

  20. A Nucleotide Exchange Factor Promotes Endoplasmic Reticulum-to-Cytosol Membrane Penetration of the Nonenveloped Virus Simian Virus 40

    PubMed Central

    Inoue, Takamasa

    2015-01-01

    ABSTRACT The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases. PMID:25653441

  1. PIN6 auxin transporter at endoplasmic reticulum and plasma membrane mediates auxin homeostasis and organogenesis in Arabidopsis.

    PubMed

    Simon, Sibu; Skůpa, Petr; Viaene, Tom; Zwiewka, Marta; Tejos, Ricardo; Klíma, Petr; Čarná, Mária; Rolčík, Jakub; De Rycke, Riet; Moreno, Ignacio; Dobrev, Petre I; Orellana, Ariel; Zažímalová, Eva; Friml, Jiří

    2016-07-01

    Plant development mediated by the phytohormone auxin depends on tightly controlled cellular auxin levels at its target tissue that are largely established by intercellular and intracellular auxin transport mediated by PIN auxin transporters. Among the eight members of the Arabidopsis PIN family, PIN6 is the least characterized candidate. In this study we generated functional, fluorescent protein-tagged PIN6 proteins and performed comprehensive analysis of their subcellular localization and also performed a detailed functional characterization of PIN6 and its developmental roles. The localization study of PIN6 revealed a dual localization at the plasma membrane (PM) and endoplasmic reticulum (ER). Transport and metabolic profiling assays in cultured cells and Arabidopsis strongly suggest that PIN6 mediates both auxin transport across the PM and intracellular auxin homeostasis, including the regulation of free auxin and auxin conjugates levels. As evidenced by the loss- and gain-of-function analysis, the complex function of PIN6 in auxin transport and homeostasis is required for auxin distribution during lateral and adventitious root organogenesis and for progression of these developmental processes. These results illustrate a unique position of PIN6 within the family of PIN auxin transporters and further add complexity to the developmentally crucial process of auxin transport.

  2. A relay mechanism between EB1 and APC facilitate STIM1 puncta assembly at endoplasmic reticulum-plasma membrane junctions.

    PubMed

    Asanov, Alexander; Sherry, Ryan; Sampieri, Alicia; Vaca, Luis

    2013-09-01

    The assembly of STIM1 protein puncta near endoplasmic reticulum-plasma membrane (ER-PM) junctions is required for optimal activation of store-operated channels (SOC). The mechanisms controlling the translocation of STIM1 puncta to ER-PM junctions remain largely unknown. In the present study, we have explored the role of the microtubule binding protein adenomatous polyposis coli (APC), on STIM1 puncta and store-operated calcium entry (SOCE). APC-depleted cells showed reduced STIM1 puncta near ER-PM junctions, instead puncta is found at the ER surrounding the cell nucleus. Reduced STIM1 puncta near ER-PM junctions in APC-depleted cells correlates with a strong inhibition of SOCE and diminished Orai whole-cell currents. Immunoprecipitation and confocal microscopy co-localization studies indicate that, upon depletion of the ER, STIM1 dissociates from EB1 and associates to APC. Deletion analysis identified an APC-binding domain in the carboxyl terminus of STIM1 (STIM1 650-685). These results together position APC as an important element in facilitating the translocation of STIM1 puncta near ER-PM junctions, which in turn is required for efficient SOCE and Orai activation upon depletion of the ER.

  3. Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction.

    PubMed

    Sinai, A P; Webster, P; Joiner, K A

    1997-09-01

    The parasitophorous vacuole membrane (PVM) of the obligate intracellular protozoan parasite Toxoplasma gondii forms tight associations with host mitochondria and the endoplasmic reticulum (ER). We have used a combination of morphometric and biochemical approaches to characterize this unique phenomenon, which we term PVM-organelle association. The PVM is separated from associated mitochondria and ER by a mean distance of 12 and 18 nm, respectively. The establishment of PVM-organelle association is dependent on active parasite entry, but does not require parasite viability for its maintenance. Association is not a consequence of spatial constraints imposed on the growing vacuole. Morphometric analysis indicates that the extent of mitochondrial association with the PVM stays constant as the vacuole enlarges, whereas the extent of ER association decreases. Disruption of host cell microtubules partially blocks the establishment but not the maintenance of PVM-mitochondrial association, and has no significant effect on PVM-ER association. PVM-organelle association is maintained following disruption of infected host cells, as assessed by electron microscopy and by sub-cellular fractionation showing co-migration of fixed PVM and organelle markers. Taken together, the data suggest that a high affinity, potentially protein-protein interaction between parasite and organelle components is responsible for PVM-organelle association.

  4. Investigation of the Calcium-Transporting ATPases at the Endoplasmic Reticulum and Plasma Membrane of Red Beet (Beta vulgaris).

    PubMed Central

    Thomson, L. J.; Xing, T.; Hall, J. L.; Williams, L. E.

    1993-01-01

    Calcium-transporting ATPases were compared in endoplasmic reticulum (ER)- and plasma membrane-enriched fractions of red beet (Beta vulgaris L.) storage tissue by measuring 45Ca uptake and calcium-dependent phosphoenzyme formation. The plasma membrane fraction was prepared by aqueous two-phase partitioning of a microsomal fraction and collecting the upper phase. The ER-enriched fraction was obtained by submitting a sucrose-gradient ER-enriched fraction to aqueous two-phase partitioning and collecting the lower phase; this reduced contaminating plasma membrane, which partitioned into the upper phase. The ATP-dependent calcium uptake observed in both fractions was released by the calcium ionophore A23187. Calcium uptake showed saturation kinetics for calcium with Km values of 0.92 mmol m-3 for the ER fraction and 1.24 mmol m-3 for the plasma membrane fraction. Uptake into both fractions was inhibited by vanadate and erythrosin B, although the plasma membrane system was slightly more sensitive to both inhibitors. Cyclopiazonic acid and thapsigargin, at low concentrations, had no marked effect on uptake. The plasma membrane system was less substrate-specific for ATP than the ER system, since it was able to use GTP and ITP to drive calcium transport at up to 50% of the level obtained with ATP. Following phosphorylation with [[gamma]-32P]ATP, two high molecular mass, calcium-dependent phosphoproteins (119 and 124 kD) and a low molecular mass, calcium-independent phosphoprotein (17 kD) were observed in the plasma membrane fraction. The ER fraction showed one high molecular mass phosphoprotein (119 kD) in the presence of calcium and two low molecular mass phosphoproteins (17 and 20 kD) that showed no calcium dependence. The low molecular mass phosphoproteins were insensitive to hydroxyl-amine, but they did show turnover. The identity of these proteins is unknown, but they do not have the properties of phosphorylated intermediates of calcium-ATPases. In contrast, the high

  5. Tespa1 is a novel component of mitochondria-associated endoplasmic reticulum membranes and affects mitochondrial calcium flux.

    PubMed

    Matsuzaki, Hiroshi; Fujimoto, Takahiro; Tanaka, Masatoshi; Shirasawa, Senji

    2013-04-12

    Regulation of intracellular Ca(2+) concentration is critical in numerous biological processes. Inositol 1,4,5-trisphosphate receptor (IP3R) functions as the Ca(2+) release channel on endoplasmic reticulum (ER) membranes. Much attention has been dedicated to mitochondrial Ca(2+) uptake via mitochondria-associated ER membranes (MAM) which is involved in intracellular Ca(2+) homeostasis; however, the molecular mechanisms that link the MAM to mitochondria still remain elusive. We previously reported that Tespa1 (thymocyte-expressed, positive selection-associated gene 1) expressed in lymphocytes physically interacts with IP3R. In this study, we first performed double-immunocytochemical staining of Tespa1 with a mitochondrial marker or an ER marker on an acute T lymphoblastic leukemia cell line, Jurkat cells, by using anti-ATP synthase or anti-calnexin antibody, respectively, and demonstrated that Tespa1 was localized very close to mitochondria and the Tespa1 localization was overlapped with restricted portion of ER. Next, we examined the effects of Tespa1 on the T cell receptor (TCR) stimulation-induced Ca(2+) flux by using Ca(2+) imaging in Jurkat cells. Reduction of Tespa1 protein by Tespa1-specific siRNA diminished TCR stimulation-induced Ca(2+) flux into both mitochondria and cytoplasm through the analyses of the mitochondrial Ca(2+) indicator (Rhod-2) and the cytoplasmic Ca(2+) indicator (Fluo-4), respectively. Furthermore, co-immunoprecipitation assay in HEK293 cells revealed that exogenous Tespa1 protein physically interacted with a MAM-associated protein, GRP75 (glucose-regulated protein 75), but not with an outer mitochondrial membrane protein, VDAC1 (voltage-dependent anion channel 1). All these results suggested that Tespa1 will participate in the molecular link between IP3R-mediated Ca(2+) release and mitochondrial Ca(2+) uptake in the MAM compartment.

  6. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis.

    PubMed

    Yang, L; Guan, T; Gerace, L

    1997-06-16

    We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.

  7. Integral Membrane Proteins of the Nuclear Envelope Are Dispersed throughout the Endoplasmic Reticulum during Mitosis

    PubMed Central

    Yang, Li; Guan, Tinglu; Gerace, Larry

    1997-01-01

    We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin. PMID:9182656

  8. Direct Formation of Vaccinia Virus Membranes from the Endoplasmic Reticulum in the Absence of the Newly Characterized L2-Interacting Protein A30.5

    PubMed Central

    Maruri-Avidal, Liliana; Weisberg, Andrea S.

    2013-01-01

    Crescents consisting of a single lipoprotein membrane with an external protein scaffold comprise the initial structural elements of poxvirus morphogenesis. Crescents enlarge to form spherical immature virions, which enclose viroplasm consisting of proteins destined to form the cores of mature virions. Previous studies suggest that the L2 protein participates in the recruitment of endoplasmic reticulum (ER)-derived membranes to form immature virions within assembly sites of cytoplasmic factories. Here we show that L2 interacts with the previously uncharacterized 42-amino-acid A30.5 protein. An open reading frame similar in size to the one encoding A30.5 is at the same genome location in representatives of all chordopoxvirus genera. A30.5 has a putative transmembrane domain and colocalized with markers of the endoplasmic reticulum and with L2. By constructing a complementing cell line expressing A30.5, we isolated a deletion mutant virus that exhibits a defect in morphogenesis in normal cells. Large electron-dense cytoplasmic inclusions and clusters of scaffold protein-coated membranes that resemble crescents and immature virions devoid of viroplasm were seen in place of normal structures. Crescent-shaped membranes were continuous with the endoplasmic reticulum membrane and oriented with the convex scaffold protein-coated side facing the lumen, while clusters of completed spherical immature-virion-like forms were trapped within the expanded lumen. Immature-virion-like structures were more abundant in infected RK-13 cells than in BS-C-1 or HeLa cells, in which cytoplasmic inclusions were decorated with scaffold protein-coated membrane arcs. We suggest that the outer surface of the poxvirus virion is derived from the luminal side of the ER membrane. PMID:24027302

  9. The N-terminal anchor sequences of 11beta-hydroxysteroid dehydrogenases determine their orientation in the endoplasmic reticulum membrane.

    PubMed

    Odermatt, A; Arnold, P; Stauffer, A; Frey, B M; Frey, F J

    1999-10-01

    11beta-Hydroxysteroid dehydrogenase enzymes (11beta- HSD) regulate the ratio of active endogenous glucocorticoids to their inactive keto-metabolites, thereby controlling the access of glucocorticoids to their cognate receptors. In this study, the topology and intracellular localization of 11beta-HSD1 and 11beta-HSD2 have been analyzed by immunohistochemistry and protease protection assays of in vitro transcription/translation products. 11beta-HSD constructs, tagged with the FLAG epitope, were transiently expressed in HEK-293 cells. The enzymatic characteristics of tagged and native enzymes were indistinguishable. Fluorescence microscopy demonstrated the localization of both 11beta-HSD1 and 11beta-HSD2 exclusively to the endoplasmic reticulum (ER) membrane. To examine the orientation of tagged 11beta-HSD enzymes within the ER membrane, we stained selectively permeabilized HEK-293 cells with anti-FLAG antibody. Immunohistochemistry revealed that the N terminus of 11beta-HSD1 is cytoplasmic, and the catalytic domain containing the C terminus is protruding into the ER lumen. In contrast, the N terminus of 11beta-HSD2 is lumenal, and the catalytic domain is facing the cytoplasm. Chimeric proteins where the N-terminal anchor sequences of 11beta-HSD1 and 11beta-HSD2 were exchanged adopted inverted orientation in the ER membrane. However, both chimeric proteins were not catalytically active. Furthermore, mutation of a tyrosine motif to alanine in the transmembrane segment of 11beta-HSD1 significantly reduced V(max). The subcellular localization of 11beta-HSD1 was not affected by mutations of the tyrosine motif or of a di-lysine motif in the N terminus. However, residue Lys(5), but not Lys(6), turned out to be critical for the topology of 11beta-HSD1. Mutation of Lys(5) to Ser inverted the orientation of 11beta-HSD1 in the ER membrane without loss of catalytic activity. Our results emphasize the importance of the N-terminal transmembrane segments of 11beta-HSD enzymes for

  10. Nonvesicular Lipid Transfer from the Endoplasmic Reticulum

    PubMed Central

    Lev, Sima

    2012-01-01

    The transport of lipids from their synthesis site at the endoplasmic reticulum (ER) to different target membranes could be mediated by both vesicular and nonvesicular transport mechanisms. Nonvesicular lipid transport appears to be the major transport route of certain lipid species, and could be mediated by either spontaneous lipid transport or by lipid-transfer proteins (LTPs). Although nonvesicular lipid transport has been extensively studied for more than four decades, its underlying mechanism, advantage and regulation, have not been fully explored. In particular, the function of LTPs and their involvement in intracellular lipid movement remain largely controversial. In this article, we describe the pathways by which lipids are synthesized at the ER and delivered to different cellular membranes, and discuss the role of LTPs in lipid transport both in vitro and in intact cells. PMID:23028121

  11. Co-chaperone Specificity in Gating of the Polypeptide Conducting Channel in the Membrane of the Human Endoplasmic Reticulum*

    PubMed Central

    Schorr, Stefan; Klein, Marie-Christine; Gamayun, Igor; Melnyk, Armin; Jung, Martin; Schäuble, Nico; Wang, Qian; Hemmis, Birgit; Bochen, Florian; Greiner, Markus; Lampel, Pavel; Urban, Sabine Katharina; Hassdenteufel, Sarah; Dudek, Johanna; Chen, Xing-Zhen; Wagner, Richard; Cavalié, Adolfo; Zimmermann, Richard

    2015-01-01

    In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic polypeptide-conducting channel, the heterotrimeric Sec61 complex. Previous work has characterized the Sec61 complex as a potential ER Ca2+ leak channel in HeLa cells and identified ER lumenal molecular chaperone immunoglobulin heavy-chain-binding protein (BiP) as limiting Ca2+ leakage via the open Sec61 channel by facilitating channel closing. This BiP activity involves binding of BiP to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344. Of note, the Y344H mutation destroys the BiP binding site and causes pancreatic β-cell apoptosis and diabetes in mice. Here, we systematically depleted HeLa cells of the BiP co-chaperones by siRNA-mediated gene silencing and used live cell Ca2+ imaging to monitor the effects on ER Ca2+ leakage. Depletion of either one of the ER lumenal BiP co-chaperones, ERj3 and ERj6, but not the ER membrane-resident co-chaperones (such as Sec63 protein, which assists BiP in Sec61 channel opening) led to increased Ca2+ leakage via Sec6 complex, thereby phenocopying the effect of BiP depletion. Thus, BiP facilitates Sec61 channel closure (i.e. limits ER Ca2+ leakage) via the Sec61 channel with the help of ERj3 and ERj6. Interestingly, deletion of ERj6 causes pancreatic β-cell failure and diabetes in mice and humans. We suggest that co-chaperone-controlled gating of the Sec61 channel by BiP is particularly important for cells, which are highly active in protein secretion, and that breakdown of this regulatory mechanism can cause apoptosis and disease. PMID:26085089

  12. The Machinery at Endoplasmic Reticulum-Plasma Membrane Contact Sites Contributes to Spatial Regulation of Multiple Legionella Effector Proteins

    PubMed Central

    Hubber, Andree; Arasaki, Kohei; Nakatsu, Fubito; Hardiman, Camille; Lambright, David; De Camilli, Pietro; Nagai, Hiroki; Roy, Craig R.

    2014-01-01

    The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis. PMID:24992562

  13. Lipid Transport between the Endoplasmic Reticulum and Mitochondria

    PubMed Central

    Flis, Vid V.

    2013-01-01

    Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis. PMID:23732475

  14. Analysis of a Chinese hamster ovary cell mutant with defective mobilization of cholesterol from the plasma membrane to the endoplasmic reticulum.

    PubMed

    Jacobs, N L; Andemariam, B; Underwood, K W; Panchalingam, K; Sternberg, D; Kielian, M; Liscum, L

    1997-10-01

    The factors involved in shuttling cholesterol among cellular membranes have not been defined. Using amphotericin B selection, we previously isolated Chinese hamster ovary cell mutants expressing defects in intracellular cholesterol transport. Complementation analysis among seven mutants identified one cell line, mutant 3-6, with a unique defect. The present analysis revealed three key features of mutant 3-6. First, the movement of cholesterol both from the endoplasmic reticulum and through lysosomes to the plasma membrane was normal. However, when intact 3-6 cells were treated with sphingomyelinase, movement of plasma membrane cholesterol to acyl CoA:cholesterol acyltransferase in the endoplasmic reticulum was defective. Cellular cholesterol was mobilized to this enzyme upon activation by 25-hydroxycholesterol. Second, mutant 3-6 did not utilize endogenously synthesized sterol or low density lipoprotein-derived cholesterol for growth as effectively as parental Chinese hamster ovary cells. Finally, despite normal movement of cholesterol to the plasma membrane, mutant 3-6 was amphotericin B resistant. The plasma membrane cholesterol content was normal as assessed by cholesterol oxidase treatment and Semliki Forest virus fusion, which suggests that the 3-6 mutation alters the organization of cholesterol in the plasma membrane. Our characterization of this mutant cell line should facilitate the identification of gene(s) required for this transport pathway.

  15. Studies on the Endoplasmic Reticulum

    PubMed Central

    Porter, Keith R.; Machado, Raul D.

    1960-01-01

    Cells of onion and garlic root tips were examined under the electron and phase contrast microscopes after fixation in KMnO4. Special attention was focused on the distribution and behavior of the endoplasmic reticulum (ER) during the several phases of mitosis. Slender profiles, recognized as sections through thin lamellar units of the ER (most prominent in KMnO4-fixed material), are distributed more or less uniformly in the cytoplasm of interphase cells and show occasional continuity with the nuclear envelope. In late prophase the nuclear envelope breaks down and its remnants plus cytoplasmic elements of the ER, which are morphologically identical, surround the spindle in a zone from which mitochondria, etc., are excluded. During metaphase these ER elements persist and concentrate as two separate systems in the polar caps or zones of the spindle. At about this same time they begin to proliferate and to invade the ends of the spindle. The invading lamellar units form drape-like partitions between the anaphase chromosomes. In late anaphase, their advancing margins reach the middle zone of the spindle and begin to fray out. Finally, in telophase, while elements of the ER in the poles of the spindle coalesce around the chromosomes to form the new envelope, the advancing edges of those in the middle zone reticulate at the level of the equator to form a close lattice of tubular elements. Within this, which is identified as the phragmoplast, the earliest signs of the cell plate appear in the form of small vesicles. These subsequently grow and fuse to complete the separation of the two protoplasts. Other morphological units apparently participating in mitosis are described. Speculation is provided on the equal division or not of the nuclear envelope and the contribution the envelope fragments make to the ER of the new cell. PMID:14434278

  16. Cowpea Mosaic Virus Infection Induces a Massive Proliferation of Endoplasmic Reticulum but Not Golgi Membranes and Is Dependent on De Novo Membrane Synthesis

    PubMed Central

    Carette, Jan E.; Stuiver, Marchel; Van Lent, Jan; Wellink, Joan; Van Kammen, Ab

    2000-01-01

    Replication of cowpea mosaic virus (CPMV) is associated with small membranous vesicles that are induced upon infection. The effect of CPMV replication on the morphology and distribution of the endomembrane system in living plant cells was studied by expressing green fluorescent protein (GFP) targeted to the endoplasmic reticulum (ER) and the Golgi membranes. CPMV infection was found to induce an extensive proliferation of the ER, whereas the distribution and morphology of the Golgi stacks remained unaffected. Immunolocalization experiments using fluorescence confocal microscopy showed that the proliferated ER membranes were closely associated with the electron-dense structures that contain the replicative proteins encoded by RNA1. Replication of CPMV was strongly inhibited by cerulenin, an inhibitor of de novo lipid synthesis, at concentrations where the replication of the two unrelated viruses alfalfa mosaic virus and tobacco mosaic virus was largely unaffected. These results suggest that proliferating ER membranes produce the membranous vesicles formed during CPMV infection and that this process requires continuous lipid biosynthesis. PMID:10864669

  17. Acetylation in vitro of constituent polypeptides by smooth endoplasmic reticulum (SER) and Golgi membrane fractions

    SciTech Connect

    Sambasivam, H.; Murray, R.K.

    1986-05-01

    Many polypeptides of the membranes of the ER are phosphorylated. To determine if any such polypeptides are acetylated, microsomal and other classical subcellular fractions were incubated with (/sup 3/H) acetyl-CoA; the specific activity of the microsomal fraction (MF) was the greatest. SDS-PAGE revealed that some 20 polypeptides of the MF were acetylated; 2-D electrophoretograms extended this number to approximately 60. Separation of the MF into smooth (S) and rough (R) fractions showed that the great majority of the labelled polypeptides belonged to the former. Isolation of a Golgi fraction revealed that its acetylation activity was approximately 3-fold greater than the SER fraction. Extensive proteolytic digestion of the MF followed by radiochromatography disclosed some 9 components whose precise nature (acetylated amino acids and/or sialic acids, etc.) is under study. Assuming that the majority of the radioactivity is in the former components and that a similar process occurs in vivo, the authors suggest that the Golgi apparatus may be a major site of acetylation of membrane and possibly other proteins.

  18. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders.

    PubMed

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-02-11

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the "unfolded protein response" (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article.

  19. Protein quality control at the endoplasmic reticulum.

    PubMed

    McCaffrey, Kathleen; Braakman, Ineke

    2016-10-15

    The ER (endoplasmic reticulum) is the protein folding 'factory' of the secretory pathway. Virtually all proteins destined for the plasma membrane, the extracellular space or other secretory compartments undergo folding and maturation within the ER. The ER hosts a unique PQC (protein quality control) system that allows specialized modifications such as glycosylation and disulfide bond formation essential for the correct folding and function of many secretory proteins. It is also the major checkpoint for misfolded or aggregation-prone proteins that may be toxic to the cell or extracellular environment. A failure of this system, due to aging or other factors, has therefore been implicated in a number of serious human diseases. In this article, we discuss several key features of ER PQC that maintain the health of the cellular secretome. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  20. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders

    PubMed Central

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-01-01

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article. PMID:28208663

  1. An endoplasmic reticulum-specific cyclophilin.

    PubMed Central

    Hasel, K W; Glass, J R; Godbout, M; Sutcliffe, J G

    1991-01-01

    Cyclophilin is a ubiquitously expressed cytosolic peptidyl-prolyl cis-trans isomerase that is inhibited by the immunosuppressive drug cyclosporin A. A degenerate oligonucleotide based on a conserved cyclophilin sequence was used to isolate cDNA clones representing a ubiquitously expressed mRNA from mice and humans. This mRNA encodes a novel 20-kDa protein, CPH2, that shares 64% sequence identity with cyclophilin. Bacterially expressed CPH2 binds cyclosporin A and is a cyclosporin A-inhibitable peptidyl-prolyl cis-trans isomerase. Cell fractionation of rat liver followed by Western blot (immunoblot) analysis indicated that CPH2 is not cytosolic but rather is located exclusively in the endoplasmic reticulum. These results suggest that cyclosporin A mediates its effect on cells through more than one cyclophilin and that cyclosporin A-induced misfolding of T-cell membrane proteins normally mediated by CPH2 plays a role in immunosuppression. Images PMID:1710767

  2. Structural organization of the endoplasmic reticulum

    PubMed Central

    Voeltz, Gia K.; Rolls, Melissa M.; Rapoport, Tom A.

    2002-01-01

    The endoplasmic reticulum (ER) is a continuous membrane system but consists of various domains that perform different functions. Structurally distinct domains of this organelle include the nuclear envelope (NE), the rough and smooth ER, and the regions that contact other organelles. The establishment of these domains and the targeting of proteins to them are understood to varying degrees. Despite its complexity, the ER is a dynamic structure. In mitosis it must be divided between daughter cells and domains must be re-established, and even in interphase it is constantly rearranged as tubules extend along the cytoskeleton. Throughout these rearrangements the ER maintains its basic structure. How this is accomplished remains mysterious, but some insight has been gained from in vitro systems. PMID:12370207

  3. Membrane biogenesis during B cell differentiation: most endoplasmic reticulum proteins are expressed coordinately

    PubMed Central

    1990-01-01

    The induction of high-rate protein secretion entails increased biogenesis of secretory apparatus organelles. We examined the biogenesis of the secretory apparatus in the B cell line CH12 because it can be induced in vitro to secrete immunoglobulin (Ig). Upon stimulation with lipopolysaccharide (LPS), CH12 cells increased secretion of IgM 12-fold. This induced secretion was accompanied by preferential expansion of the ER and the Golgi complex. Three parameters of the rough ER changed: its area and volume increased 3.3- and 3.7-fold, respectively, and the density of membrane-bound ribosomes increased 3.5-fold. Similarly, the area of the Golgi stack increased 3.3-fold, and its volume increased 4.1-fold. These changes provide sufficient biosynthetic capacity to account for the increased secretory activity of CH12. Despite the large increase in IgM synthesis, and because of the expansion of the ER, the concentration of IgM within the ER changed less than twofold during the differentiation process. During the amplification of the rough ER, the expression of resident proteins changed according to one of two patterns. The majority (75%) of rough microsomal (RM) proteins increased in proportion to the increase in rough ER size. Included in this group were both lumenal proteins such as Ig binding protein (BiP), and membrane proteins such as ribophorins I and II. In addition, the expression of a minority (approximately 9%) of RM polypeptides increased preferentially, such that their abundance within the RM of secreting CH12 cells was increased. Thus, the expansion of ER during CH12 differentiation involves preferential increases in the abundance of a few resident proteins, superimposed upon proportional increases in most ER proteins. PMID:2335560

  4. Valosin-containing protein-interacting membrane protein (VIMP) links the endoplasmic reticulum with microtubules in concert with cytoskeleton-linking membrane protein (CLIMP)-63.

    PubMed

    Noda, Chikano; Kimura, Hana; Arasaki, Kohei; Matsushita, Mitsuru; Yamamoto, Akitsugu; Wakana, Yuichi; Inoue, Hiroki; Tagaya, Mitsuo

    2014-08-29

    The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Valosin-containing Protein-interacting Membrane Protein (VIMP) Links the Endoplasmic Reticulum with Microtubules in Concert with Cytoskeleton-linking Membrane Protein (CLIMP)-63*

    PubMed Central

    Noda, Chikano; Kimura, Hana; Arasaki, Kohei; Matsushita, Mitsuru; Yamamoto, Akitsugu; Wakana, Yuichi; Inoue, Hiroki; Tagaya, Mitsuo

    2014-01-01

    The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains. PMID:25008318

  6. SYP71, a plant-specific Qc-SNARE protein, reveals dual localization to the plasma membrane and the endoplasmic reticulum in Arabidopsis.

    PubMed

    Suwastika, I Nengah; Uemura, Tomohiro; Shiina, Takashi; Sato, Masa H; Takeyasu, Kunio

    2008-01-01

    SNAREs ('Soluble N-ethyl-maleimide sensitive factor attachment protein receptors') play a critical role in the membrane fusion step of the vesicular transport system in eukaryotes. The number of the genes encoding SNARE proteins is estimated to be 64 in Arabidopsis thaliana. This number is much larger than those in other eukaryotes, suggesting a complex membrane trafficking in plants. The Arabidopsis SNAREs, the SYP7 group proteins, SYP71, SYP72, and SYP73, form a plant-specific SNARE subfamily with not-yet-identified functions. We have previously reported that the SYP7 subfamily proteins are predominantly localized to the endoplasmic reticulum in the Arabidopsis suspension cultured cells under transient expression condition. However, several proteomic analyzes indicated the plasma membrane localizations of one of SYP7 subfamily proteins, SYP71. In order to confirm the expression patterns and subcellular localization of SYP7, we performed combination analyses including promoter GUS analysis, a sucrose density gradient centrifugation analysis, as well as an observation on transgenic Arabidopsis plants expressing GFP-fused SYP71 under control of its native promoter. From these analyses, we concluded that one of the SYP7 subfamily proteins, SYP71, is predominantly expressed in all vegetative tissues and mainly localized to the plasma membrane. We also found that SYP71 is localized to the endoplasmic reticulum in the dividing cells of various types of tissues.

  7. Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane.

    PubMed

    Flierman, Dennis; Ye, Yihong; Dai, Min; Chau, Vincent; Rapoport, Tom A

    2003-09-12

    Polyubiquitination is required for retrotranslocation of proteins from the endoplasmic reticulum back into the cytosol, where they are degraded by the proteasome. We have tested whether the release of a polypeptide chain into the cytosol is caused by a ratcheting mechanism in which the attachment of polyubiquitin prevents the chain from moving back into the endoplasmic reticulum. Using a permeabilized cell system in which major histocompatibility complex class I heavy chains are retrotranslocated under the influence of the human cytomegalovirus protein US11, we demonstrate that polyubiquitination alone is insufficient to provide the driving force for retrotranslocation. Substrate release into the cytosol requires an additional ATP-dependent step. Release requires a lysine 48 linkage of ubiquitin chains. It does not occur when polyubiquitination of the substrate is carried out with glutathione S-transferase (GST)-ubiquitin, and this correlates with poly-GST-ubiquitin not being recognized by a ubiquitin-binding domain in the Ufd1-Npl4 cofactor of the ATPase p97. These data suggest that polyubiquitin does not serve as a ratcheting molecule. Rather, it may serve as a recognition signal for the p97-Ufd1-Npl4 complex, a component implicated in the movement of substrate into the cytosol.

  8. RNF-121 is an endoplasmic reticulum-membrane E3 ubiquitin ligase involved in the regulation of beta-integrin.

    PubMed

    Darom, Amir; Bening-Abu-Shach, Ulrike; Broday, Limor

    2010-06-01

    We report on the characterization of RNF-121, an evolutionarily conserved E3 ligase RING finger protein that is expressed in the endoplasmic reticulum (ER) of various cells and tissues in Caenorhabditis elegans. Inactivation of RNF-121 induced an elevation in BiP expression and increased the sensitivity of worms to ER stress. Genetic analysis placed RNF-121 downstream of the unfolded protein response (UPR) regulator protein kinase-like endoplasmic reticulum kinase (PERK). We identify PAT-3::GFP, the beta subunit of the heterodimeric integrin receptors, as an RNF-121 substrate; whereas induction of RNF-121 expression reduced the level of PAT-3::GFP in the gonad distal tip cells, inhibition of RNF-121 led to the accumulation of stably bound PAT-3::GFP inclusions. Correspondingly, overexpression of RNF-121 during early stages of gonad development led to aberrations in germline development and gonad migration that overlap with those observed after PAT-3 inactivation. The formation of these gonad abnormalities required functional ER-associated degradation (ERAD) machinery. Our findings identify RNF-121 as an ER-anchored ubiquitin ligase that plays a specific role in the ERAD pathway by linking it to the regulation of the cell adhesion integrin receptors.

  9. Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology.

    PubMed

    Hattori, Akira; Tsujimoto, Masafumi

    2013-09-01

    The human endoplasmic reticulum aminopeptidase (ERAP) 1 and 2 proteins were initially identified as homologues of human placental leucine aminopeptidase/insulin-regulated aminopeptidase. They are categorized as a unique class of proteases based on their subcellular localization on the luminal side of the endoplasmic reticulum. ERAPs play an important role in the N-terminal processing of the antigenic precursors that are presented on the major histocompatibility complex (MHC) class I molecules. ERAPs are also implicated in the regulation of a wide variety of physiological phenomena and pathogenic conditions. In this review, the current knowledge on ERAPs is summarized.

  10. A plasma membrane-type Ca[sup 2+]-ATPase of 120 kilodaltons on the endoplasmic reticulum from carrot (Daucus carota) cells

    SciTech Connect

    Chen, F.H.; Ratterman, D.M.; Sze, H. )

    1993-06-01

    Cytosolic Ca[sup 2+] levels are regulated in part by Ca[sup 2+]-pumping ATPases that export Ca[sup 2+] from the cytoplasm; The types and properties of Ca[sup 2+] pumps in plants are not well understood. The kinetic properties of a 120-kD phosphoenzyme (PE) intermediate formed during the reaction cycle of a Ca[sup 2+]-ATPase from suspension-cultured carrot (Daucus carota) cells are characterized. Only one Ca[sup 2+]-dependent phosphoprotein was formed when carrot membrane vesicles were incubated with [[gamma]-[sup 32]P]ATP. Formation of this 120-kD phosphoprotein was inhibited by vanadate, enhanced by La[sup 3+], and decreased by hydroxylamine, confirming its identification as an intermediate of a phosphorylated-type Ca[sup 2+]-translocating ATPase. The 120-kD Ca[sup 2+]-ATPase was most abundant in endoplasmic reticulum-enriched fractions, in which the Ca[sup 2+]-ATPase was estimated to be 0.1% of membrane protein. Direct quantitation of Ca[sup 2+]-dependent phosphoprotein was used to examine the kinetics of PE formation. PE formation exhibited a K[sub m] for Ca[sup 2+] of 1 to 2 [mu]m and a K[sub m] for ATP of 67 nm. Relative affinities of substrates, determined by competition experiments, were 0.075 [mu]m for ATP, 1 [mu]m for ADP, 100 [mu]m for ITP, and 250 [mu]m for GTP. Thapsigargin and cyclopiazonic acid, specific inhibitors of animal sarcoplasmic/endoplasmic reticulum Ca[sup 2+]-ATPase, had no effect on PE formation; erythrosin B inhibited with 50% inhibition at <0.1 [mu]m. Calmodulin (1 [mu]m) stimulated PE formation by 25%. The results indicate that the carrot 120-kD Ca[sup 2+]-ATPase is similar but not identical to animal plasma membrane-type Ca[sup 2+]-ATPase and yet is located on endomembranes, such as the endoplasmic reticulum. This type of Ca[sup 2+] pump may reside on the cortical endoplasmic reticulum, thought to play a major role in anchoring the cytoskeleton and in facilitating secretion. 34 refs., 9 figs., 3 tabs.

  11. Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells1[OPEN

    PubMed Central

    Ferrero, Sergi; Grados-Torrez, Ricardo Enrique; Antolín-Llovera, Meritxell; López-Iglesias, Carmen; Cortadellas, Nuria; Ferrer, Joan Carles

    2015-01-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formations of hypertrophied tightly packed ER membranes devoted to specific biosynthetic and secretory functions, the biogenesis of which remains largely unexplored. We show that the membrane domain of plant HMGR suffices to trigger ER proliferation and OSER biogenesis. The proliferating membranes become highly enriched in HMGR protein, but they do not accumulate sterols, indicating a morphogenetic rather than a metabolic role for HMGR. The N-terminal MDVRRRPP motif present in most plant HMGR isoforms is not required for retention in the ER, which was previously proposed, but functions as an ER morphogenic signal. Plant OSER structures are morphologically similar to those of animal cells, emerge from tripartite ER junctions, and mainly build up beside the nuclear envelope, indicating conserved OSER biogenesis in high eukaryotes. Factors other than the OSER-inducing HMGR construct mediate the tight apposition of the proliferating membranes, implying separate ER proliferation and membrane association steps. Overexpression of the membrane domain of Arabidopsis (Arabidopsis thaliana) HMGR leads to ER hypertrophy in every tested cell type and plant species, whereas the knockout of the HMG1 gene from Arabidopsis, encoding its major HMGR isoform, causes ER aggregation at the nuclear envelope. Our results show that the membrane domain of HMGR contributes to ER morphogenesis in plant cells. PMID:26015445

  12. Proliferation and Morphogenesis of the Endoplasmic Reticulum Driven by the Membrane Domain of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Plant Cells.

    PubMed

    Ferrero, Sergi; Grados-Torrez, Ricardo Enrique; Leivar, Pablo; Antolín-Llovera, Meritxell; López-Iglesias, Carmen; Cortadellas, Nuria; Ferrer, Joan Carles; Campos, Narciso

    2015-07-01

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis and is composed of an endoplasmic reticulum (ER)-anchoring membrane domain with low sequence similarity among eukaryotic kingdoms and a conserved cytosolic catalytic domain. Organized smooth endoplasmic reticulum (OSER) structures are common formations of hypertrophied tightly packed ER membranes devoted to specific biosynthetic and secretory functions, the biogenesis of which remains largely unexplored. We show that the membrane domain of plant HMGR suffices to trigger ER proliferation and OSER biogenesis. The proliferating membranes become highly enriched in HMGR protein, but they do not accumulate sterols, indicating a morphogenetic rather than a metabolic role for HMGR. The N-terminal MDVRRRPP motif present in most plant HMGR isoforms is not required for retention in the ER, which was previously proposed, but functions as an ER morphogenic signal. Plant OSER structures are morphologically similar to those of animal cells, emerge from tripartite ER junctions, and mainly build up beside the nuclear envelope, indicating conserved OSER biogenesis in high eukaryotes. Factors other than the OSER-inducing HMGR construct mediate the tight apposition of the proliferating membranes, implying separate ER proliferation and membrane association steps. Overexpression of the membrane domain of Arabidopsis (Arabidopsis thaliana) HMGR leads to ER hypertrophy in every tested cell type and plant species, whereas the knockout of the HMG1 gene from Arabidopsis, encoding its major HMGR isoform, causes ER aggregation at the nuclear envelope. Our results show that the membrane domain of HMGR contributes to ER morphogenesis in plant cells. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Isolation of Endoplasmic Reticulum, Mitochondria, and Mitochondria-Associated Membrane and Detergent Resistant Membrane Fractions from Transfected Cells and from Human Cytomegalovirus-Infected Primary Fibroblasts

    PubMed Central

    Williamson, Chad D.; Wong, Daniel S.; Bozidis, Petros; Zhang, Aiping; Colberg-Poley, Anamaris M.

    2015-01-01

    Increasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria. Characterization of the dual localization and trafficking of human cytomegalovirus (HCMV) UL37 proteins required establishing protocols in which the ER and mitochondria could be reliably separated. Because of its documented role in lipid and ceramide transfer from the ER to mitochondria, a method to purify MAM from infected cells was also developed. Two robust procedures were developed to efficiently isolate mitochondria, ER, and MAM fractions while providing substantial protein yields from HCMV-infected primary fibroblasts and from transfected HeLa cells. Furthermore, this unit includes protocols for isolation of detergent resistant membranes from subcellular fractions as well as techniques that allow visualization of the mitochondria network disruption that occurs in permissively infected cells by their optimal resolution in Percoll gradients. PMID:26331984

  14. A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress

    PubMed Central

    Kim, Adam; Cunningham, Kyle W.

    2015-01-01

    Lysosomal membrane permeabilization (LMP) is a poorly understood regulator of programmed cell death that involves leakage of luminal lysosomal or vacuolar hydrolases into the cytoplasm. In Saccharomyces cerevisiae, LMP can be induced by antifungals and endoplasmic reticulum stressors when calcineurin also has been inactivated. A genome-wide screen revealed Pib2, a relative of LAPF/phafin1 that regulates LMP in mammals, as a pro-LMP protein in yeast. Pib2 associated with vacuolar and endosomal limiting membranes in unstressed cells in a manner that depended on its FYVE domain and on phosphatidylinositol 3-phosphate (PI(3)P) biosynthesis. Genetic experiments suggest that Pib2 stimulates the activity of TORC1, a vacuole-associated protein kinase that is sensitive to rapamycin, in a pathway parallel to the Ragulator/EGO complex containing the GTPases Gtr1 and Gtr2. A hyperactivating mutation in the catalytic subunit of TORC1 restored LMP to the gtr1∆ and pib2∆ mutants and also prevented the synthetic lethality of the double mutants. These findings show novel roles of PI(3)P and Pib2 in the regulation of TORC1, which in turn promoted LMP and nonapoptotic death of stressed cells. Rapamycin prevented the death of the pathogenic yeast Candida albicans during exposure to fluconazole plus a calcineurin inhibitor, suggesting that TORC1 broadly promotes sensitivity to fungistats in yeasts. PMID:26510498

  15. Isolation of Endoplasmic Reticulum, Mitochondria, and Mitochondria-Associated Membrane and Detergent Resistant Membrane Fractions from Transfected Cells and from Human Cytomegalovirus-Infected Primary Fibroblasts.

    PubMed

    Williamson, Chad D; Wong, Daniel S; Bozidis, Petros; Zhang, Aiping; Colberg-Poley, Anamaris M

    2015-09-01

    Increasingly mechanistic virology studies require dependable and sensitive methods for isolating purified organelles containing functional cellular sub-domains. The mitochondrial network is, in part, closely apposed to the endoplasmic reticulum (ER). The mitochondria-associated membrane (MAM) fraction provides direct physical contact between the ER and mitochondria. Characterization of the dual localization and trafficking of human cytomegalovirus (HCMV) UL37 proteins required establishing protocols in which the ER and mitochondria could be reliably separated. Because of its documented role in lipid and ceramide transfer from the ER to mitochondria, a method to purify MAM from infected cells was also developed. Two robust procedures were developed to efficiently isolate mitochondria, ER, and MAM fractions while providing substantial protein yields from HCMV-infected primary fibroblasts and from transfected HeLa cells. Furthermore, this unit includes protocols for isolation of detergent resistant membranes from subcellular fractions as well as techniques that allow visualization of the mitochondrial network disruption that occurs in permissively infected cells by their optimal resolution in Percoll gradients.

  16. Cancer: Untethering Mitochondria from the Endoplasmic Reticulum?

    PubMed Central

    Herrera-Cruz, Maria Sol; Simmen, Thomas

    2017-01-01

    Following the discovery of the mitochondria-associated membrane (MAM) as a hub for lipid metabolism in 1990 and its description as one of the first examples for membrane contact sites at the turn of the century, the past decade has seen the emergence of this structure as a potential regulator of cancer growth and metabolism. The mechanistic basis for this hypothesis is that the MAM accommodates flux of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. This flux then determines mitochondrial ATP production, known to be low in many tumors as part of the Warburg effect. However, low mitochondrial Ca2+ flux also reduces the propensity of tumor cells to undergo apoptosis, another cancer hallmark. Numerous regulators of this flux have been recently identified as MAM proteins. Not surprisingly, many fall into the groups of tumor suppressors and oncogenes. Given the important role that the MAM could play in cancer, it is expected that proteins mediating its formation are particularly implicated in tumorigenesis. Examples for such proteins are mitofusin-2 and phosphofurin acidic cluster sorting protein 2 that likely act as tumor suppressors. This review discusses how these proteins that mediate or regulate ER–mitochondria tethering are (or are not) promoting or inhibiting tumorigenesis. The emerging picture of MAMs in cancer seems to indicate that in addition to the downregulation of mitochondrial Ca2+ import, MAM defects are but one way how cancer cells control mitochondria metabolism and apoptosis. PMID:28603693

  17. Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons.

    PubMed Central

    Terasaki, M; Slater, N T; Fein, A; Schmidek, A; Reese, T S

    1994-01-01

    Purkinje neurons in rat cerebellar slices injected with an oil drop saturated with 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiIC16(3) or DiI] to label the endoplasmic reticulum were observed by confocal microscopy. DiI spread throughout the cell body and dendrites and into the axon. DiI spreading is due to diffusion in a continuous bilayer and is not due to membrane trafficking because it also spreads in fixed neurons. DiI stained such features of the endoplasmic reticulum as densities at branch points, reticular networks in the cell body and dendrites, nuclear envelope, spines, and aggregates formed during anoxia nuclear envelope, spines, and aggregates formed during anoxia in low extracellular Ca2+. In cultured rat hippocampal neurons, where optical conditions provide more detail, DiI labeled a clearly delineated network of endoplasmic reticulum in the cell body. We conclude that there is a continuous compartment of endoplasmic reticulum extending from the cell body throughout the dendrites. This compartment may coordinate and integrate neuronal functions. Images PMID:7519781

  18. Isolation of Endoplasmic Reticulum Fractions from Mammary Epithelial Tissue.

    PubMed

    Chanat, Eric; Le Parc, Annabelle; Lahouassa, Hichem; Badaoui, Bouabid

    2016-06-01

    In the mammary glands of lactating animals, the mammary epithelial cells that surround the lumen of the acini produce and secrete copious amounts of milk. Functional differentiation of these mammary epithelial cells depends on the development of high-efficiency secretory pathways, notably for protein and lipid secretion. Protein secretion is a fundamental process common to all animal cells that involves a subset of cellular organelles, including the endoplasmic reticulum and the Golgi apparatus. In contrast, en masse secretion of triglycerides and cholesterol esters in the form of milk fat globules is a unique feature of the mammary epithelial cell. Cytoplasmic lipid droplets, the intracellular precursors of milk fat globules, originate from the endoplasmic reticulum, as do most milk-specific proteins. This organelle is therefore pivotal in the biogenesis of milk components. Fractionation of the cell into its subcellular parts is an approach that has proven very powerful for understanding organelle function and for studying the specific role of an organelle in a given cell activity. Here we describe a method for the purification of both smooth and rough microsomes, the membrane-bound endoplasmic reticulum fragments that form from endoplasmic reticulum domains when cells are broken up, from mammary gland tissue at lactation.

  19. Isolation and characterization of the Neurospora crassa endoplasmic reticulum.

    PubMed Central

    Borgeson, C E; Bowman, B J

    1983-01-01

    The endoplasmic reticulum from Neurospora crassa was identified by monitoring the activity of the putative enzyme marker phosphatidylcholine glyceride transferase. After differential centrifugation of a cell homogenate, phosphatidylcholine glyceride transferase activity initially copurified with plasma membrane H+-ATPase. However, isopycnic centrifugation of the whole-cell homogenate on a linear sucrose gradient separated the two enzyme activities into different fractions. The lighter membrane fraction exhibited characteristics that have been associated with the endoplasmic reticulum in other organisms: (i) the inclusion of magnesium caused this light membrane fraction to shift to a higher density on the gradient; (ii) it was highly enriched in cytochrome c reductase, an endoplasmic reticulum marker in other systems; and (iii) the morphology of the light fraction with and without added magnesium was clearly distinguishable from that of the plasma membrane fraction by electron microscopy. A reinvestigation of the location of chitin synthetase confirmed its association with the plasma membrane fraction even after separation of the lighter fractions. Images PMID:6311800

  20. Newly discovered viral E3 ligase pK3 induces endoplasmic reticulum-associated degradation of class I major histocompatibility proteins and their membrane-bound chaperones.

    PubMed

    Herr, Roger A; Wang, Xiaoli; Loh, Joy; Virgin, Herbert W; Hansen, Ted H

    2012-04-27

    Viral immune invasion proteins are highly effective probes for studying physiological pathways. We report here the characterization of a new viral ubiquitin ligase pK3 expressed by rodent herpesvirus Peru (RHVP) that establishes acute and latent infection in laboratory mice. Our findings show that pK3 binds directly and specifically to class I major histocompatibility proteins (MHCI) in a transmembrane-dependent manner. This binding results in the rapid degradation of the pK3/MHCI complex by a mechanism dependent upon catalytically active pK3. Subsequently, the rapid degradation of pK3/MHCI secondarily causes the slow degradation of membrane bound components of the MHCI peptide loading complex, tapasin, and transporter associated with antigen processing (TAP). Interestingly, this secondary event occurs by cellular endoplasmic reticulum-associated degradation. Cumulatively, our findings show pK3 uses a unique mechanism of substrate detection and degradation compared with other viral or cellular E3 ligases. More importantly, our findings reveal that in the absence of nascent MHCI proteins in the endoplasmic reticulum, the transmembrane proteins TAP and tapasin that facilitate peptide binding to MHCI proteins are degraded by cellular quality control mechanisms.

  1. Cell death and survival through the endoplasmic reticulum-mitochondrial axis.

    PubMed

    Bravo-Sagua, R; Rodriguez, A E; Kuzmicic, J; Gutierrez, T; Lopez-Crisosto, C; Quiroga, C; Díaz-Elizondo, J; Chiong, M; Gillette, T G; Rothermel, B A; Lavandero, S

    2013-02-01

    The endoplasmic reticulum has a central role in biosynthesis of a variety of proteins and lipids. Mitochondria generate ATP, synthesize and process numerous metabolites, and are key regulators of cell death. The architectures of endoplasmic reticulum and mitochondria change continually via the process of membrane fusion, fission, elongation, degradation, and renewal. These structural changes correlate with important changes in organellar function. Both organelles are capable of moving along the cytoskeleton, thus changing their cellular distribution. Numerous studies have demonstrated coordination and communication between mitochondria and endoplasmic reticulum. A focal point for these interactions is a zone of close contact between them known as the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a signaling juncture that facilitates calcium and lipid transfer between organelles. Here we review the emerging data on how communication between endoplasmic reticulum and mitochondria can modulate organelle function and determine cellular fate.

  2. Cell Death and Survival Through the Endoplasmic Reticulum-Mitochondrial Axis

    PubMed Central

    Bravo-Sagua, R.; Rodriguez, A.E.; Kuzmicic, J.; Gutierrez, T.; Lopez-Crisosto, C.; Quiroga, C.; Díaz-Elizondo, J.; Chiong, M.; Gillette, T.G.; Rothermel, B.A.; Lavandero, S.

    2014-01-01

    The endoplasmic reticulum has a central role in biosynthesis of a variety of proteins and lipids. Mitochondria generate ATP, synthesize and process numerous metabolites, and are key regulators of cell death. The architectures of endoplasmic reticulum and mitochondria change continually via the process of membrane fusion, fission, elongation, degradation, and renewal. These structural changes correlate with important changes in organellar function. Both organelles are capable of moving along the cytoskeleton, thus changing their cellular distribution. Numerous studies have demonstrated coordination and communication between mitochondria and endoplasmic reticulum. A focal point for these interactions is a zone of close contact between them known as the mitochondrial–associated endoplasmic reticulum membrane (MAM), which serves as a signaling juncture that facilitates calcium and lipid transfer between organelles. Here we review the emerging data on how communication between endoplasmic reticulum and mitochondria can modulate organelle function and determine cellular fate. PMID:23228132

  3. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems☆

    PubMed Central

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-01-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR− rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. PMID:24406246

  4. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems.

    PubMed

    Wlcek, Katrin; Hofstetter, Lia; Stieger, Bruno

    2014-03-01

    Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR(-) rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

    PubMed Central

    Ghasemi, Maedeh; Khodaei, Naser; Salari, Sajjad; Eliassi, Afsaneh; Saghiri, Reza

    2014-01-01

    Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. Method: Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. Results: Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. Conclusion: We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans. PMID:24842143

  6. Transport and transporters in the endoplasmic reticulum.

    PubMed

    Csala, Miklós; Marcolongo, Paola; Lizák, Beáta; Senesi, Silvia; Margittai, Eva; Fulceri, Rosella; Magyar, Judit E; Benedetti, Angelo; Bánhegyi, Gábor

    2007-06-01

    Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.

  7. Endoplasmic Reticulum Stress and Associated ROS

    PubMed Central

    Zeeshan, Hafiz Maher Ali; Lee, Geum Hwa; Kim, Hyung-Ryong; Chae, Han-Jung

    2016-01-01

    The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases. PMID:26950115

  8. Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching.

    PubMed

    Brandizzi, Federica; Snapp, Erik L; Roberts, Alison G; Lippincott-Schwartz, Jennifer; Hawes, Chris

    2002-06-01

    The mechanisms that control protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus are poorly characterized in plants. Here, we examine in tobacco leaves the structural relationship between Golgi and ER membranes using electron microscopy and demonstrate that Golgi membranes contain elements that are in close association and/or in direct contact with the ER. We further visualized protein trafficking between the ER and the Golgi using Golgi marker proteins tagged with green fluorescent protein. Using photobleaching techniques, we showed that Golgi membrane markers constitutively cycle to and from the Golgi in an energy-dependent and N-ethylmaleimide-sensitive manner. We found that membrane protein transport toward the Golgi occurs independently of the cytoskeleton and does not require the Golgi to be motile along the surface of the ER. Brefeldin A treatment blocked forward trafficking of Golgi proteins before their redistribution into the ER. Our results indicate that in plant cells, the Golgi apparatus is a dynamic membrane system whose components continuously traffic via membrane trafficking pathways regulated by brefeldin A- and N-ethylmaleimide-sensitive machinery.

  9. Membrane hyperpolarization induced by endoplasmic reticulum stress facilitates ca(2+) influx to regulate cell cycle progression in brain capillary endothelial cells.

    PubMed

    Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji

    2014-01-01

    Upregulation of the Kir2.1 channel during endoplasmic reticulum (ER) stress in t-BBEC117, an immortalized bovine brain endothelial cell line, caused a sustained increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and a facilitation of cell death. Expressions of Ca(2+) influx channels (TRPC, Orai1, STIM1) were unchanged by ER stress. The ER stress-induced [Ca(2+)]i increase was mainly attributed to the deeper resting membrane potential due to Kir2.1 upregulation. ER stress arrested at the G2/M phase and it was attenuated by an inhibitor of Kir2.1. These results indicate that Kir2.1 upregulation by ER stress facilitates cell death via regulation of cell cycle progression in t-BBEC117.

  10. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane.

    PubMed

    Kihara, Akio; Igarashi, Yasuyuki

    2004-11-19

    Sphingolipids are essential membrane components of eukaryotic cells. Their synthesis is initiated with the condensation of l-serine with palmitoyl-CoA, producing 3-ketodihydrosphingosine (KDS), followed by a reduction to dihydrosphingosine by KDS reductase. Until now, only yeast TSC10 has been identified as a KDS reductase gene. Here, we provide evidence that the human FVT-1 (hFVT-1) and mouse FVT-1 (mFVT-1) are functional mammalian KDS reductases. The forced expression of hFVT-1 or mFVT-1 in TSC10-null yeast cells suppressed growth defects, and hFVT-1 overproduced in cultured cells exhibited KDS reductase activity in vitro. Moreover, purified recombinant hFVT-1 protein exhibited NADPH-dependent KDS reductase activity. The identification of the FVT-1 genes enabled us to characterize the mammalian KDS reductase at the molecular level. Northern blot analyses demonstrated that both hFVT-1 and mFVT-1 mRNAs are ubiquitously expressed, suggesting that FVT-1 is a major KDS reductase. We also found the presence of hFVT-1 variants, which were differentially expressed among tissues. Immunofluorescence microscopic analysis revealed that hFVT-1 is localized at the endoplasmic reticulum. Moreover, a proteinase K digestion assay revealed that the large hydrophilic domain of hFVT-1, which contains putative active site residues, faces the cytosol. These results suggest that KDS is converted to dihydrosphingosine in the cytosolic side of the endoplasmic reticulum membrane. Moreover, the topology studies provide insight into the spatial organization of the sphingolipid biosynthetic pathway.

  11. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export.

    PubMed

    Hayashi, Teruo; Su, Tsung-Ping

    2003-08-01

    The brain sigma-1 receptors can bind neurosteroids and psychotropic drugs, including neuroleptics and cocaine and are implicated in schizophrenia, depression, and drug dependence. In this study, we found that sigma-1 receptors specifically target lipid storage sites (lipid droplets) on the endoplasmic reticulum by forming a distinct class of lipid microdomains. Both endogenously expressing sigma-1 receptors and transfected C-terminally enhanced yellow fluorescent protein (EYFP)-tagged sigma-1 receptors (Sig-1R-EYFP) target unique "ring-like" structures associated with endoplasmic reticulum reticular networks in NG108-15 cells. The ring-like structures contain neutral lipids and are enlarged by the oleate treatment, indicating that they are endoplasmic reticulum-associated lipid droplets (ER-LDs). sigma-1 receptors colocalize with caveolin-2, a cholesterol-binding protein in lipid rafts on the ER-LDs, but not with adipocyte differentiation-related protein (ADRP), a cytosolic lipid droplet (c-LD)-specific protein. When the double-arginine ER retention signal on the N terminus of sigma-1 receptors is truncated, sigma-1 receptors no longer exist on ER-LDs, but predominantly target c-LDs, which contain ADRP. sigma-1 receptors on ER-LDs form detergent-resistant raft-like lipid microdomains, the buoyancy of which is different from that of plasma membrane lipid rafts. (+)-Pentazocine causes sigma-1 receptors to disappear from the microdomains. N-Terminally EYFP-tagged sigma-1 receptors (EYFP-Sig-1R) failed to target ER-LDs. EYFP-Sig-1R-transfected cells showed an unrestricted distribution of neutral lipids all over the endoplasmic reticulum network, decreases in c-LDs and cholesterol in plasma membranes, and the bulbous aggregation of endoplasmic reticulum. Thus, sigma-1 receptors are unique endoplasmic reticulum proteins that regulate the compartmentalization of lipids on the endoplasmic reticulum and their export from the endoplasmic reticulum to plasma membrane and c-LDs.

  12. Reticulomics: Protein-Protein Interaction Studies with Two Plasmodesmata-Localized Reticulon Family Proteins Identify Binding Partners Enriched at Plasmodesmata, Endoplasmic Reticulum, and the Plasma Membrane1

    PubMed Central

    Kriechbaumer, Verena; Botchway, Stanley W.; Slade, Susan E.; Knox, Kirsten; Frigerio, Lorenzo; Oparka, Karl; Hawes, Chris

    2015-01-01

    The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane. PMID:26353761

  13. Vma21p is a yeast membrane protein retained in the endoplasmic reticulum by a di-lysine motif and is required for the assembly of the vacuolar H(+)-ATPase complex.

    PubMed Central

    Hill, K J; Stevens, T H

    1994-01-01

    The yeast vacuolar proton-translocating ATPase (V-ATPase) is a multisubunit complex comprised of peripheral membrane subunits involved in ATP hydrolysis and integral membrane subunits involved in proton pumping. The yeast vma21 mutant was isolated from a screen to identify mutants defective in V-ATPase function. vma21 mutants fail to assemble the V-ATPase complex onto the vacuolar membrane: peripheral subunits accumulate in the cytosol and the 100-kDa integral membrane subunit is rapidly degraded. The product of the VMA21 gene (Vma21p) is an 8.5-kDa integral membrane protein that is not a subunit of the purified V-ATPase complex but instead resides in the endoplasmic reticulum. Vma21p contains a dilysine motif at the carboxy terminus, and mutation of these lysine residues abolishes retention in the endoplasmic reticulum and results in delivery of Vma21p to the vacuole, the default compartment for yeast membrane proteins. Our findings suggest that Vma21p is required for assembly of the integral membrane sector of the V-ATPase in the endoplasmic reticulum and that the unassembled 100-kDa integral membrane subunit present in delta vma21 cells is rapidly degraded by nonvacuolar proteases. Images PMID:7841520

  14. Regulated endoplasmic reticulum-associated degradation of a polytopic protein: p97 recruits proteasomes to Insig-1 before extraction from membranes.

    PubMed

    Ikeda, Yukio; Demartino, George N; Brown, Michael S; Lee, Joon No; Goldstein, Joseph L; Ye, Jin

    2009-12-11

    Polytopic membrane proteins subjected to endoplasmic reticulum (ER)-associated degradation are extracted from membranes and targeted to proteasomes for destruction. The extraction mechanism is poorly understood. One polytopic ER protein subjected to ER-associated degradation is Insig-1, a negative regulator of cholesterol synthesis. Insig-1 is rapidly degraded by proteasomes when cells are depleted of cholesterol, and its degradation is inhibited when sterols accumulate in cells. Insig-2, a functional homologue of Insig-1, is degraded slowly, and its degradation is not regulated by sterols. Here, we report that a single amino acid substitution in Insig-2, Insig-2(L210A), causes Insig-2 to be degraded in an accelerated and sterol-regulated manner similar to Insig-1. In seeking an explanation for the accelerated degradation, we found that proteasomes bind to wild type Insig-1 and mutant Insig-2(L210A) but not to wild type Insig-2, whereas the proteins are still embedded in cell membranes. This binding depends on at least two factors, ubiquitination of Insig and association with the ATPase p97/VCP complex. These data suggest that p97 recruits proteasomes to polytopic ER proteins even before they are extracted from membranes.

  15. Di-acidic Motifs in the Membrane-distal C Termini Modulate the Transport of Angiotensin II Receptors from the Endoplasmic Reticulum to the Cell Surface*

    PubMed Central

    Zhang, Xiaoping; Dong, Chunmin; Wu, Qiong J.; Balch, William E.; Wu, Guangyu

    2011-01-01

    The molecular mechanisms underlying the endoplasmic reticulum (ER) export and cell surface transport of nascent G protein-coupled receptors (GPCRs) have just begun to be revealed and previous studies have shown that hydrophobic motifs in the putative amphipathic 8th α-helical region within the membrane-proximal C termini play an important role. In this study, we demonstrate that di-acidic motifs in the membrane-distal, nonstructural C-terminal portions are required for the exit from the ER and transport to the plasma membrane of angiotensin II receptors, but not adrenergic receptors. More interestingly, distinct di-acidic motifs dictate optimal export trafficking of different angiotensin II receptors and export ability of each acidic residue in the di-acidic motifs cannot be fully substituted by other acidic residue. Moreover, the function of the di-acidic motifs is likely mediated through facilitating the recruitment of the receptors onto the ER-derived COPII transport vesicles. Therefore, the di-acidic motifs located in the membrane-distal C termini may represent the first linear motifs which recruit selective GPCRs onto the COPII vesicles to control their export from the ER. PMID:21507945

  16. Integral membrane proteins Brr6 and Apq12 link assembly of the nuclear pore complex to lipid homeostasis in the endoplasmic reticulum

    PubMed Central

    Hodg, Christine A.; Choudhary, Vineet; Wolyniak, Michael J.; Scarcelli, John J.; Schneiter, Roger; Col, Charles N.

    2010-01-01

    Summary Cells of Saccharomyces cerevisiae lacking Apq12, a nuclear envelope (NE)-endoplasmic reticulum (ER) integral membrane protein, are defective in assembly of nuclear pore complexes (NPCs), possibly because of defects in regulating membrane fluidity. We identified BRR6, which encodes an essential integral membrane protein of the NE-ER, as a dosage suppressor of apq12 Δ. Cells carrying the temperature-sensitive brr6-1 allele have been shown to have defects in nucleoporin localization, mRNA metabolism and nuclear transport. Electron microscopy revealed that brr6-1 cells have gross NE abnormalities and proliferation of the ER. brr6-1 cells were hypersensitive to compounds that affect membrane biophysical properties and to inhibitors of lipid biosynthetic pathways, and displayed strong genetic interactions with genes encoding non-essential lipid biosynthetic enzymes. Strikingly, brr6-1 cells accumulated, in or near the NE, elevated levels of the two classes of neutral lipids, steryl esters and triacylglycerols, and over-accumulated sterols when they were provided exogenously. Although neutral lipid synthesis is dispensable in wild-type cells, viability of brr6-1 cells was fully dependent on neutral lipid production. These data indicate that Brr6 has an essential function in regulating lipid homeostasis in the NE-ER, thereby impacting NPC formation and nucleocytoplasmic transport. PMID:20016074

  17. Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction.

    PubMed

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J; Bose, Mahuya; Whittal, Randy M; Bose, Himangshu S

    2015-01-30

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221-229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Mitochondria-associated Endoplasmic Reticulum Membrane (MAM) Regulates Steroidogenic Activity via Steroidogenic Acute Regulatory Protein (StAR)-Voltage-dependent Anion Channel 2 (VDAC2) Interaction*

    PubMed Central

    Prasad, Manoj; Kaur, Jasmeet; Pawlak, Kevin J.; Bose, Mahuya; Whittal, Randy M.; Bose, Himangshu S.

    2015-01-01

    Steroid hormones are essential for carbohydrate metabolism, stress management, and reproduction and are synthesized from cholesterol in mitochondria of adrenal glands and gonads/ovaries. In acute stress or hormonal stimulation, steroidogenic acute regulatory protein (StAR) transports substrate cholesterol into the mitochondria for steroidogenesis by an unknown mechanism. Here, we report for the first time that StAR interacts with voltage-dependent anion channel 2 (VDAC2) at the mitochondria-associated endoplasmic reticulum membrane (MAM) prior to its translocation to the mitochondrial matrix. In the MAM, StAR interacts with mitochondrial proteins Tom22 and VDAC2. However, Tom22 knockdown by siRNA had no effect on pregnenolone synthesis. In the absence of VDAC2, StAR was expressed but not processed into the mitochondria as a mature 30-kDa protein. VDAC2 interacted with StAR via its C-terminal 20 amino acids and N-terminal amino acids 221–229, regulating the mitochondrial processing of StAR into the mature protein. In the absence of VDAC2, StAR could not enter the mitochondria or interact with MAM-associated proteins, and therefore steroidogenesis was inhibited. Furthermore, the N terminus was not essential for StAR activity, and the N-terminal deletion mutant continued to interact with VDAC2. The endoplasmic reticulum-targeting prolactin signal sequence did not affect StAR association with the MAM and thus its mitochondrial targeting. Therefore, VDAC2 controls StAR processing and activity, and MAM is thus a central location for initiating mitochondrial steroidogenesis. PMID:25505173

  19. Endoplasmic Reticulum as a Site of Phenylpropanoid and Flavonoid Metabolism in Hippeastrum1

    PubMed Central

    Wagner, George J.; Hrazdina, Geza

    1984-01-01

    The nature of bound forms of enzymes of phenylpropanoid and flavonoid metabolism have been investigated in Hippeastrum CV Dutch Red Hybrid. Particulate components of petal homogenates were fractionated on sucrose gradients and the EDTA shift method was employed to characterize membranes of the endoplasmic reticulum. In magnesiumcontaining gradients, a portion of phenylalanine ammonia lyase, chalcone synthase, glucosyl transferase, and all of the trans-cinnamate 4-monooxygenase and NADH Cytochrome c reductase (the last an endoplasmic reticulum marker) were associated with membranes equilibrating at 1.18 specific gravity. In gradients lacking magnesium and containing EDTA, the above activities—except chalcone synthase, which was lost—and protein were diminished at 1.18 specific gravity and enhanced at lower densities characteristic of membranes of the smooth endoplasmic reticulum. These results are consistent with the contention that endoplasmic reticulum is a site of phenylpropanoid and flavonoid metabolism in Hippeastrum. PMID:16663530

  20. Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum–plasma membrane contact sites

    PubMed Central

    Siao, Wei; Wang, Pengwei; Voigt, Boris; Hussey, Patrick J.; Baluska, Frantisek

    2016-01-01

    Arabidopsis synaptotagmin 1 (SYT1) is localized on the endoplasmic reticulum–plasma membrane (ER–PM) contact sites in leaf and root cells. The ER–PM localization of Arabidopsis SYT1 resembles that of the extended synaptotagmins (E-SYTs) in animal cells. In mammals, E-SYTs have been shown to regulate calcium signaling, lipid transfer, and endocytosis. Arabidopsis SYT1 was reported to be essential for maintaining cell integrity and virus movement. This study provides detailed insight into the subcellular localization of SYT1 and VAP27-1, another ER–PM-tethering protein. SYT1 and VAP27-1 were shown to be localized on distinct ER–PM contact sites. The VAP27-1-enriched ER–PM contact sites (V-EPCSs) were always in contact with the SYT1-enriched ER–PM contact sites (S-EPCSs). The V-EPCSs still existed in the leaf epidermal cells of the SYT1 null mutant; however, they were less stable than those in the wild type. The polygonal networks of cortical ER disassembled and the mobility of VAP27-1 protein on the ER–PM contact sites increased in leaf cells of the SYT1 null mutant. These results suggest that SYT1 is responsible for stabilizing the ER network and V-EPCSs. PMID:27811083

  1. Obesity and endoplasmic reticulum (ER) stresses

    PubMed Central

    Tripathi, Yamini B.; Pandey, Vivek

    2012-01-01

    In obesity, the adipose cells behave as inflammatory source and result to low grade inflammation. This systemic inflammation along with oxidative stress is a silent killer and damages other vital organs also. High metabolic process, induced due to high nutritional intake, results to endoplasmic reticulum (ER) stress and mitochondrial stress. This review describes the triggering factor and basic mechanism behind the obesity mediated these stresses in relation to inflammation. Efforts have been made to describe the effect-response cycle between adipocytes and non-adipocyte cells with reference to metabolic syndrome (MS). PMID:22891067

  2. Immunological evidence for eight spans in the membrane domain of 3- hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum

    PubMed Central

    1992-01-01

    We have raised two monospecific antibodies against synthetic peptides derived from the membrane domain of the ER glycoprotein 3-hydroxy-3- methylglutaryl coenzyme A (HMG-CoA) reductase, the rate limiting enzyme in the cholesterol biosynthetic pathway. This domain, which was proposed to span the ER membrane seven times (Liscum, L., J. Finer- Moore, R. M. Stroud, K. L. Luskey, M. S. Brown, and J. L. Goldstein. 1985. J. Biol. Chem. 260:522-538), plays a critical role in the regulated degradation of the enzyme in the ER in response to sterols. The antibodies stain the ER of cells and immunoprecipitate HMG-CoA reductase and HMGal, a chimeric protein composed of the membrane domain of the reductase fused to Escherichia coli beta-galactosidase, the degradation of which is also accelerated by sterols. We show that the sequence Arg224 through Leu242 of HMG-CoA reductase (peptide G) faces the cytoplasm both in cultured cells and in rat liver, whereas the sequence Thr284 through Glu302 (peptide H) faces the lumen of the ER. This indicates that a sequence between peptide G and peptide H spans the membrane of the ER. Moreover, by epitope tagging with peptide H, we show that the loop segment connecting membrane spans 3 and 4 is sequestered in the lumen of the ER. These results demonstrate that the membrane domain of HMG-CoA reductase spans the ER eight times and are inconsistent with the seven membrane spans topological model. The approximate boundaries of the proposed additional transmembrane segment are between Lys248 and Asp276. Replacement of this 7th span in HMGal with the first transmembrane helix of bacteriorhodopsin abolishes the sterol-enhanced degradation of the protein, indicating its role in the regulated turnover of HMG-CoA reductase within the endoplasmic reticulum. PMID:1374417

  3. Direct observation of molecular arrays in the organized smooth endoplasmic reticulum.

    PubMed

    Korkhov, Vladimir M; Zuber, Benoît

    2009-08-24

    Tubules and sheets of endoplasmic reticulum perform different functions and undergo inter-conversion during different stages of the cell cycle. Tubules are stabilized by curvature inducing resident proteins, but little is known about the mechanisms of endoplasmic reticulum sheet stabilization. Tethering of endoplasmic reticulum membranes to the cytoskeleton or to each other has been proposed as a plausible way of sheet stabilization. Here, using fluorescence microscopy we show that the previously proposed mechanisms, such as membrane tethering via GFP-dimerization or coiled coil protein aggregation do not explain the formation of the calnexin-induced organized smooth endoplasmic reticulum membrane stacks. We also show that the LINC complex proteins known to serve a tethering function in the nuclear envelope are excluded from endoplasmic reticulum stacks. Finally, using cryo-electron microscopy of vitreous sections methodology that preserves cellular architecture in a hydrated, native-like state, we show that the sheet stacks are highly regular and may contain ordered arrays of macromolecular complexes. Some of these complexes decorate the cytosolic surface of the membranes, whereas others appear to span the width of the cytosolic or luminal space between the stacked sheets. Our results provide evidence in favour of the hypothesis of endoplasmic reticulum sheet stabilization by intermembrane tethering.

  4. The yeast split-ubiquitin membrane protein two-hybrid screen identifies BAP31 as a regulator of the turnover of endoplasmic reticulum-associated protein tyrosine phosphatase-like B.

    PubMed

    Wang, Bing; Pelletier, Jerry; Massaad, Michel J; Herscovics, Annette; Shore, Gordon C

    2004-04-01

    In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. Here, we constructed unique split-ubiquitin-linked cDNA libraries and provide details for implementing this system to screen for binding partners of a bait protein, in this case BAP31. BAP31 is a resident integral protein of the endoplasmic reticulum, where it operates as a chaperone or cargo receptor and regulator of apoptosis. Here we describe a novel human member of the protein tyrosine phosphatase-like B (PTPLB) family, an integral protein of the endoplasmic reticulum membrane with four membrane-spanning alpha helices, as a BAP31-interacting protein. PTPLB turns over rapidly through degradation by the proteasome system. Comparisons of mouse cells with a deletion of Bap31 or reconstituted with human BAP31 indicate that BAP31 is required to maintain PTPLB, consistent with a chaperone or quality control function for BAP31 in the endoplasmic reticulum membrane.

  5. Endoplasmic reticulum stress regulates rat mandibular cartilage thinning under compressive mechanical stress.

    PubMed

    Li, Huang; Zhang, Xiang-Yu; Wu, Tuo-Jiang; Cheng, Wei; Liu, Xin; Jiang, Ting-Ting; Wen, Juan; Li, Jie; Ma, Qiao-Ling; Hua, Zi-Chun

    2013-06-21

    Compressive mechanical stress-induced cartilage thinning has been characterized as a key step in the progression of temporomandibular joint diseases, such as osteoarthritis. However, the regulatory mechanisms underlying this loss have not been thoroughly studied. Here, we used an established animal model for loading compressive mechanical stress to induce cartilage thinning in vivo. The mechanically stressed mandibular chondrocytes were then isolated to screen potential candidates using a proteomics approach. A total of 28 proteins were identified that were directly or indirectly associated with endoplasmic reticulum stress, including protein disulfide-isomerase, calreticulin, translationally controlled tumor protein, and peptidyl-prolyl cis/trans-isomerase protein. The altered expression of these candidates was validated at both the mRNA and protein levels. The induction of endoplasmic reticulum stress by mechanical stress loading was confirmed by the activation of endoplasmic reticulum stress markers, the elevation of the cytoplasmic Ca(2+) level, and the expansion of endoplasmic reticulum membranes. More importantly, the use of a selective inhibitor to block endoplasmic reticulum stress in vivo reduced the apoptosis observed at the early stages of mechanical stress loading and inhibited the proliferation observed at the later stages of mechanical stress loading. Accordingly, the use of the inhibitor significantly restored cartilage thinning. Taken together, these results demonstrated that endoplasmic reticulum stress is significantly activated in mechanical stress-induced mandibular cartilage thinning and, more importantly, that endoplasmic reticulum stress inhibition alleviates this loss, suggesting a novel pharmaceutical strategy for the treatment of mechanical stress-induced temporomandibular joint diseases.

  6. A Cdc48 "Retrochaperone" Function Is Required for the Solubility of Retrotranslocated, Integral Membrane Endoplasmic Reticulum-associated Degradation (ERAD-M) Substrates.

    PubMed

    Neal, Sonya; Mak, Raymond; Bennett, Eric J; Hampton, Randolph

    2017-02-24

    A surprising feature of endoplasmic reticulum (ER)-associated degradation (ERAD) is the movement, or retrotranslocation, of ubiquitinated substrates from the ER lumen or membrane to the cytosol where they are degraded by the 26S proteasome. Multispanning ER membrane proteins, called ERAD-M substrates, are retrotranslocated to the cytosol as full-length intermediates during ERAD, and we have investigated how they maintain substrate solubility. Using an in vivo assay, we show that retrotranslocated ERAD-M substrates are moved to the cytoplasm as part of the normal ERAD pathway, where they are part of a solely proteinaceous complex. Using proteomics and direct biochemical confirmation, we found that Cdc48 serves as a critical "retrochaperone" for these ERAD-M substrates. Cdc48 binding to retrotranslocated, ubiquitinated ERAD-M substrates is required for their solubility; removal of the polyubiquitin chains or competition for binding by addition of free polyubiquitin liberated Cdc48 from retrotranslocated proteins and rendered them insoluble. All components of the canonical Cdc48 complex Cdc48-Npl4-Ufd1 were present in solubilized ERAD-M substrates. This function of the complex was observed for both HRD and DOA pathway substrates. Thus, in addition to the long known ATP-dependent extraction of ERAD substrates during retrotranslocation, the Cdc48 complex is generally and critically needed for the solubility of retrotranslocated ERAD-M intermediates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Evaluation of the role of the endoplasmic reticulum-Golgi transit in the biogenesis of peroxisomal membrane proteins in wild type and peroxisome biogenesis mutant CHO cells.

    PubMed

    Toro, Andrés; Arredondo, Cristian; Córdova, Gonzalo; Araya, Claudia; Palacios, José L; Venegas, Alejandro; Morita, Masashi; Imanaka, Tsuneo; Santos, Manuel J

    2007-01-01

    Peroxisomes are thought to be formed by division of pre-existing peroxisomes after the import of newly synthesized proteins. However, it has been recently suggested that the endoplasmic reticulum (ER) provides an alternative de novo mechanism for peroxisome biogenesis in some cells. To test a possible role of the ER-Golgi transit in peroxisome biogenesis in mammalian cells, we evaluated the biogenesis of three peroxisomal membrane proteins (PMPs): ALDRP (adrenoleukodystrophy related protein), PMP70 and Pex3p in CHO cells. We constructed chimeric genes encoding these PMPs and green fluorescent protein (GFP), and transiently transfected them to wild type and mutant CHO cells, in which normal peroxisomes were replaced by peroxisomal membrane ghosts. The expressed proteins were targeted to peroxisomes and peroxisomal ghosts correctly in the presence or absence of Brefeldin A (BFA), a drug known to block the ER-Golgi transit. Furthermore, low temperature did not disturb the targeting of Pex3p-GFP to peroxisomes. We also constructed two chimeric proteins of PMPs containing an ER retention signal "DEKKMP": GFP-ALDRP-DEKKMP and myc- Pex3p-DEKKMP. These proteins were mostly targeted to peroxisomes. No colocalization with an ER maker was found. These results suggest that the classical ER-Golgi pathway does not play a major role in the biogenesis of mammalian PMPs.

  8. Regulation of Calcium Fluxes by GPX8, a Type-II Transmembrane Peroxidase Enriched at the Mitochondria-Associated Endoplasmic Reticulum Membrane.

    PubMed

    Yoboue, Edgar Djaha; Rimessi, Alessandro; Anelli, Tiziana; Pinton, Paolo; Sitia, Roberto

    2017-09-20

    Glutathione peroxidases (GPXs) are enzymes that are present in almost all organisms with the primary function of limiting peroxide accumulation. In mammals, two of the eight members (GPX7 and GPX8) reside in the endoplasmic reticulum (ER). A peculiar feature of GPX8 is the concomitant presence of a conserved N-terminal transmembrane domain (TMD) and a C-terminal KDEL-like motif for ER localization. Investigating whether and how GPX8 impacts Ca(2+) homeostasis and signaling. We show that GPX8 is enriched in mitochondria-associated membranes and regulates Ca(2+) storage and fluxes. Its levels correlate with [Ca(2+)]ER, and cytosolic and mitochondrial Ca(2+) fluxes. GPX7, which lacks a TMD, does not share these properties. Deleting or replacing the GPX8 TMD with an unrelated N-terminal membrane integration sequence abolishes all effects on Ca(2+) fluxes, whereas appending the GPX8 TMD to GPX7 transfers the Ca(2+)-regulating properties. Innovation and Conclusion: The notion that the TMD of GPX8, in addition to its enzymatic activity, is essential for regulating Ca(2+) dynamics reveals a novel level of integration between redox-related proteins and Ca(2+) signaling/homeostasis. Antioxid. Redox Signal. 27, 583-595.

  9. An endoplasmic reticulum (ER) membrane complex composed of SPFH1 and SPFH2 mediates the ER-associated degradation of inositol 1,4,5-trisphosphate receptors.

    PubMed

    Pearce, Margaret M P; Wormer, Duncan B; Wilkens, Stephan; Wojcikiewicz, Richard J H

    2009-04-17

    How endoplasmic reticulum (ER) proteins that are substrates for the ER-associated degradation (ERAD) pathway are recognized for polyubiquitination and proteasomal degradation is largely unresolved. Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) form tetrameric calcium channels in ER membranes, whose primary role is to control the release of ER calcium stores, but whose levels are also regulated, in an activation-dependent manner, by the ERAD pathway. Here we report that the ER membrane protein SPFH1 and its homolog SPFH2 form a heteromeric approximately 2 MDa complex that binds to IP(3)R tetramers immediately after their activation and is required for their processing. The complex is ring-shaped (diameter approximately 250A(),) and RNA interference-mediated depletion of SPFH1 and SPFH2 blocks IP(3)R polyubiquitination and degradation. We propose that this novel SPFH1/2 complex is a recognition factor that targets IP(3)Rs and perhaps other substrates for ERAD.

  10. A membrane-anchored Theileria parva cyclophilin with a non-cleaved amino-terminal signal peptide for entry into the endoplasmic reticulum.

    PubMed

    Ebel, Thomas; Pellé, Roger; Janoo, Rozmin; Lipp, Joachim; Bishop, Richard

    2004-05-07

    Recent studies suggest that peptidyl-prolyl isomerases of the cyclophilin family, that access the secretory pathway, can be involved in the interaction of parasitic protozoa with mammalian host cells. The amino acid sequence of a cDNA encoding a cyclophilin family member of the intracellular protozoan parasite of cattle Theileria parva contains a conserved C-terminal domain that exhibits 70% amino acid identity to cyclophilin proteins from other organisms, and a unique 60 amino acid novel N-terminal extension. Cell-free expression of the cDNA revealed a 26kDa amino translation product, indicating expression of the N-terminal domain. The protein-coding region contains three short introns, less than 100 base pairs in length and Northern blot analysis demonstrates expression of a single 0.9 kb transcript in the piroplasm and schizont stages. The transcript is present in high abundance in the intra-lymphocytic schizont stage. The recombinant protein binds to immobilized cyclosporin A, a finding consistent with peptidyl-prolyl cis-trans isomerase function in vivo. A predicted N-terminal signal peptide was functional for entry into the eukaryotic secretory transport pathway in a cell-free in vitro transcription/translation system. The C-terminal cyclophilin domain was translocated across the membrane of the endoplasmic reticulum and the uncleaved signal peptide functioned as a membrane anchor. Copyright 2004 Elsevier B.V.

  11. Endoplasmic reticulum stress is increased after spontaneous labor in human fetal membranes and myometrium where it regulates the expression of prolabor mediators.

    PubMed

    Liong, Stella; Lappas, Martha

    2014-09-01

    Increasing evidence indicates that endoplasmic reticulum (ER) stress is involved in various diseases. In nongestational tissues, several markers of the unfolded protein response (UPR) have been shown to regulate the inflammatory response. Thus, the aim of this study was to determine the effect of human labor on markers of ER stress in fetal membranes and myometrium. In addition, the effect of ER stress inhibition on the expression and secretion of proinflammatory and prolabor mediators was also assessed. The markers of ER stress, GRP78, IRE1, and spliced XBP1 (XBP1s), were significantly increased in fetal membranes and myometrium after term and preterm labor compared to nonlaboring samples. Given that inflammation is considered to be one of the leading causes of spontaneous preterm birth, here we used bacterial endotoxin lipopolysaccharide (LPS) as a model for infection-induced preterm birth. In term nonlabored fetal membranes and myometrium, LPS induced UPR activation as evidenced by a significant increase in the expression of GRP78, IRE1, and XBP1s in fetal membranes and myometrium. The use of the chemical chaperones 4-phenylbutyric acid (4-PBA) and tauroursodeoxycholic acid (TUDCA) alleviated ER stress induced by LPS. 4-PBA and TUDCA also ameliorated the increase in LPS-induced prolabor mediators. Our data suggest that the UPR may regulate the inflammatory responses associated with labor or infection in fetal membranes and myometrium of pregnant term and preterm women. Thus, the use of ER stress inhibitors, in particular 4-PBA or TUDCA, may be a potential therapeutic strategy for the prevention of infection-mediated spontaneous preterm birth. © 2014 by the Society for the Study of Reproduction, Inc.

  12. Sulfatase modifying factor 1 trafficking through the cells: from endoplasmic reticulum to the endoplasmic reticulum.

    PubMed

    Zito, Ester; Buono, Mario; Pepe, Stefano; Settembre, Carmine; Annunziata, Ida; Surace, Enrico Maria; Dierks, Thomas; Monti, Maria; Cozzolino, Marianna; Pucci, Piero; Ballabio, Andrea; Cosma, Maria Pia

    2007-05-16

    Sulfatase modifying factor 1 (SUMF1) is the gene mutated in multiple sulfatase deficiency (MSD) that encodes the formylglycine-generating enzyme, an essential activator of all the sulfatases. SUMF1 is a glycosylated enzyme that is resident in the endoplasmic reticulum (ER), although it is also secreted. Here, we demonstrate that upon secretion, SUMF1 can be taken up from the medium by several cell lines. Furthermore, the in vivo engineering of mice liver to produce SUMF1 shows its secretion into the blood serum and its uptake into different tissues. Additionally, we show that non-glycosylated forms of SUMF1 can still be secreted, while only the glycosylated SUMF1 enters cells, via a receptor-mediated mechanism. Surprisingly, following its uptake, SUMF1 shuttles from the plasma membrane to the ER, a route that has to date only been well characterized for some of the toxins. Remarkably, once taken up and relocalized into the ER, SUMF1 is still active, enhancing the sulfatase activities in both cultured cells and mice tissues.

  13. The Arabidopsis Synaptotagmin1 Is Enriched in Endoplasmic Reticulum-Plasma Membrane Contact Sites and Confers Cellular Resistance to Mechanical Stresses1[OPEN

    PubMed Central

    Pérez-Sancho, Jessica; Vanneste, Steffen; Lee, Eunkyoung; McFarlane, Heather E.; Esteban del Valle, Alicia; Valpuesta, Victoriano; Friml, Jiří

    2015-01-01

    Eukaryotic endoplasmic reticulum (ER)-plasma membrane (PM) contact sites are evolutionarily conserved microdomains that have important roles in specialized metabolic functions such as ER-PM communication, lipid homeostasis, and Ca2+ influx. Despite recent advances in knowledge about ER-PM contact site components and functions in yeast (Saccharomyces cerevisiae) and mammals, relatively little is known about the functional significance of these structures in plants. In this report, we characterize the Arabidopsis (Arabidopsis thaliana) phospholipid binding Synaptotagmin1 (SYT1) as a plant ortholog of the mammal extended synaptotagmins and yeast tricalbins families of ER-PM anchors. We propose that SYT1 functions at ER-PM contact sites because it displays a dual ER-PM localization, it is enriched in microtubule-depleted regions at the cell cortex, and it colocalizes with Vesicle-Associated Protein27-1, a known ER-PM marker. Furthermore, biochemical and physiological analyses indicate that SYT1 might function as an electrostatic phospholipid anchor conferring mechanical stability in plant cells. Together, the subcellular localization and functional characterization of SYT1 highlights a putative role of plant ER-PM contact site components in the cellular adaptation to environmental stresses. PMID:25792253

  14. The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses.

    PubMed

    Pérez-Sancho, Jessica; Vanneste, Steffen; Lee, Eunkyoung; McFarlane, Heather E; Esteban Del Valle, Alicia; Valpuesta, Victoriano; Friml, Jiří; Botella, Miguel A; Rosado, Abel

    2015-05-01

    Eukaryotic endoplasmic reticulum (ER)-plasma membrane (PM) contact sites are evolutionarily conserved microdomains that have important roles in specialized metabolic functions such as ER-PM communication, lipid homeostasis, and Ca(2+) influx. Despite recent advances in knowledge about ER-PM contact site components and functions in yeast (Saccharomyces cerevisiae) and mammals, relatively little is known about the functional significance of these structures in plants. In this report, we characterize the Arabidopsis (Arabidopsis thaliana) phospholipid binding Synaptotagmin1 (SYT1) as a plant ortholog of the mammal extended synaptotagmins and yeast tricalbins families of ER-PM anchors. We propose that SYT1 functions at ER-PM contact sites because it displays a dual ER-PM localization, it is enriched in microtubule-depleted regions at the cell cortex, and it colocalizes with Vesicle-Associated Protein27-1, a known ER-PM marker. Furthermore, biochemical and physiological analyses indicate that SYT1 might function as an electrostatic phospholipid anchor conferring mechanical stability in plant cells. Together, the subcellular localization and functional characterization of SYT1 highlights a putative role of plant ER-PM contact site components in the cellular adaptation to environmental stresses. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. An Absence of Nuclear Lamins in Keratinocytes Leads to Ichthyosis, Defective Epidermal Barrier Function, and Intrusion of Nuclear Membranes and Endoplasmic Reticulum into the Nuclear Chromatin

    PubMed Central

    Jung, Hea-Jin; Tatar, Angelica; Tu, Yiping; Nobumori, Chika; Yang, Shao H.; Goulbourne, Chris N.; Herrmann, Harald

    2014-01-01

    B-type lamins (lamins B1 and B2) have been considered to be essential for many crucial functions in the cell nucleus (e.g., DNA replication and mitotic spindle formation). However, this view has been challenged by the observation that an absence of both B-type lamins in keratinocytes had no effect on cell proliferation or the development of skin and hair. The latter findings raised the possibility that the functions of B-type lamins are subserved by lamins A and C. To explore that idea, we created mice lacking all nuclear lamins in keratinocytes. Those mice developed ichthyosis and a skin barrier defect, which led to death from dehydration within a few days after birth. Microscopy of nuclear-lamin-deficient skin revealed hyperkeratosis and a disordered stratum corneum with an accumulation of neutral lipid droplets; however, BrdU incorporation into keratinocytes was normal. Skin grafting experiments confirmed the stratum corneum abnormalities and normal BrdU uptake. Interestingly, the absence of nuclear lamins in keratinocytes resulted in an interspersion of nuclear/endoplasmic reticulum membranes with the chromatin. Thus, a key function of the nuclear lamina is to serve as a “fence” and prevent the incursion of cytoplasmic organelles into the nuclear chromatin. PMID:25312645

  16. A Fungal Sarcolemmal Membrane-Associated Protein (SLMAP) Homolog Plays a Fundamental Role in Development and Localizes to the Nuclear Envelope, Endoplasmic Reticulum, and Mitochondria

    PubMed Central

    Nordzieke, Steffen; Zobel, Thomas; Fränzel, Benjamin; Wolters, Dirk A.

    2014-01-01

    Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions. PMID:25527523

  17. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    PubMed Central

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  18. Endoplasmic-Reticulum Calcium Depletion and Disease

    PubMed Central

    Mekahli, Djalila; Bultynck, Geert; Parys, Jan B.; De Smedt, Humbert; Missiaen, Ludwig

    2011-01-01

    The endoplasmic reticulum (ER) as an intracellular Ca2+ store not only sets up cytosolic Ca2+ signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca2+ depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca2+ may no longer sustain essential cell functions. On the other hand, loss of luminal Ca2+ causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca2+ depletion. PMID:21441595

  19. Endoplasmic Reticulum Stress Response in Arabidopsis Roots

    PubMed Central

    Cho, Yueh; Kanehara, Kazue

    2017-01-01

    Roots are the frontier of plant body to perceive underground environmental change. Endoplasmic reticulum (ER) stress response represents circumvention of cellular stress caused by various environmental changes; however, a limited number of studies are available on the ER stress responses in roots. Here, we report the tunicamycin (TM) -induced ER stress response in Arabidopsis roots by monitoring expression patterns of immunoglobulin-binding protein 3 (BiP3), a representative marker for the response. Roots promptly responded to the TM-induced ER stress through the induction of similar sets of ER stress-responsive genes. However, not all cells responded uniformly to the TM-induced ER stress in roots, as BiP3 was highly expressed in root tips, an outer layer in elongation zone, and an inner layer in mature zone of roots. We suggest that ER stress response in roots has tissue specificity. PMID:28298914

  20. [Endoplasmic reticulum stress response in osteogenesis].

    PubMed

    Saito, Atsushi; Imaizumi, Kazunori

    2013-11-01

    Various cellular conditions such as synthesis of abundant proteins, expressions of mutant proteins and oxidative stress lead to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen. This type of stress is called ER stress. The excessive ER stress causes cellular damages followed by apoptosis. When ER stress occurs, cells are activated ER stress response (unfolded protein response) to avoid cellular damages. Recently, it has been clear that ER stress response plays crucial roles not only in cell survival after ER stress but also in regulating various cellular functions and tissue formations. In particular, ER stress and ER stress response regulate protein quality control, secretory protein production, and smooth secretion of proteins in the cells such as osteoblasts which synthesize and secrete enormous matrix proteins.

  1. Endoplasmic reticulum stress and intestinal inflammation.

    PubMed

    Kaser, A; Blumberg, R S

    2010-01-01

    The intestinal epithelial cell (IEC) is increasingly recognized to play a prominent role as an important intermediary between the commensal microbiota and the intestinal immune system. Moreover, it is now recognized that intestinal inflammation in inflammatory bowel disease (IBD) may arise primarily from IEC dysfunction due to unresolved endoplasmic reticulum (ER) stress as a consequence of genetic disruption of X box binding protein-1 function. In addition to primary (genetic) abnormalities of the unfolded protein response, a variety of secondary (inflammation and environmental) factors are also likely to be important regulators of ER stress. ER stress pathways are also well known to regulate (and be regulated by) autophagy pathways. Therefore, the host's ability to manage ER stress is likely to be a major pathway in the pathogenesis of intestinal inflammation that arises primarily from the IEC. Herein we discuss ER stress in the IEC as both an originator and perpetuator of intestinal inflammation in IBD.

  2. Endoplasmic Reticulum Stress and Ethanol Neurotoxicity.

    PubMed

    Yang, Fanmuyi; Luo, Jia

    2015-10-14

    Ethanol abuse affects virtually all organ systems and the central nervous system (CNS) is particularly vulnerable to excessive ethanol exposure. Ethanol exposure causes profound damages to both the adult and developing brain. Prenatal ethanol exposure induces fetal alcohol spectrum disorders (FASD) which is associated with mental retardation and other behavioral deficits. A number of potential mechanisms have been proposed for ethanol-induced brain damage; these include the promotion of neuroinflammation, interference with signaling by neurotrophic factors, induction of oxidative stress, modulation of retinoid acid signaling, and thiamine deficiency. The endoplasmic reticulum (ER) regulates posttranslational protein processing and transport. The accumulation of unfolded or misfolded proteins in the ER lumen triggers ER stress and induces unfolded protein response (UPR) which are mediated by three transmembrane ER signaling proteins: pancreatic endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). UPR is initiated to protect cells from overwhelming ER protein loading. However, sustained ER stress may result in cell death. ER stress has been implied in various CNS injuries, including brain ischemia, traumatic brain injury, and aging-associated neurodegeneration, such as Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). However, effects of ethanol on ER stress in the CNS receive less attention. In this review, we discuss recent progress in the study of ER stress in ethanol-induced neurotoxicity. We also examine the potential mechanisms underlying ethanol-mediated ER stress and the interaction among ER stress, oxidative stress and autophagy in the context of ethanol neurotoxicity.

  3. Mobility of ribosomes bound to microsomal membranes. A freeze-etch and thin-section electron microscope study of the structure and fluidity of the rough endoplasmic reticulum

    PubMed Central

    1977-01-01

    The lateral mobility of ribosomes bound to rough endoplasmic reticulum (RER) membranes was demonstrated under experimental conditions. High- salt-washed rough microsomes were treated with pancreatic ribonuclease (RNase) to cleave the mRNA of bound polyribosomes and allow the movement of individual bound ribosomesmfreeze-etch and thin-section electron microscopy demonstrated that, when rough microsomes were treated with RNase at 4 degrees C and then maintained at this temperature until fixation, the bound ribosomes retained their homogeneous distribution on the microsomal surface. However, when RNase- treated rough microsomes were brought to 24 degrees C, a temperature above the thermotropic phase transition of the microsomal phospholipids, bound ribosomes were no longer distributed homogeneously but, instead, formed large, tightly packed aggregates on the microsomal surface. Bound polyribosomes could also be aggregated by treating rough microsomes with antibodies raised against large ribosomal subunit proteins. In these experiments, extensive cross-linking of ribosomes from adjacent microsomes also occurred, and large ribosome-free membrane areas were produced. Sedimentation analysis in sucrose density gradients demonstrated that the RNase treatment did not release bound ribosomes from the membranes; however, the aggregated ribosomes remain capable of peptide bond synthesis and were released by puromycin. It is proposed that the formation of ribosomal aggregates on the microsomal surface results from the lateral displacement of ribosomes along with their attached binding sites, nascent polypeptide chains, and other associated membrane proteins; The inhibition of ribosome mobility after maintaining rough microsomes at 4 degrees C after RNase, or antibody, treatment suggests that the ribosome binding sites are integral membrane proteins and that their mobility is controlled by the fluidity of the RER membrane. Examination of the hydrophobic interior of microsomal

  4. Human ribophorins I and II: the primary structure and membrane topology of two highly conserved rough endoplasmic reticulum-specific glycoproteins.

    PubMed Central

    Crimaudo, C; Hortsch, M; Gausepohl, H; Meyer, D I

    1987-01-01

    Ribophorins I and II represent proteins that are postulated to be involved in ribosome binding. They are abundant, highly-conserved glycoproteins located exclusively in the membranes of the rough endoplasmic reticulum. As the first step in the further characterization of the structure and function of these proteins, we have isolated and sequenced full-length human cDNA clones encoding ribophorins I and II using probes derived from a human liver expression library cloned into pEX1. The authenticity of the clones was verified by overlaps in the protein sequence of N-terminal and several internal fragments of canine pancreatic ribophorins I and II. The cDNA clones hybridize to mRNA species of 2.5 kb in length, and encode polypeptides of 68.5 and 69.3 kd, respectively. Primary sequence analysis, coupled with biochemical studies on the topology, indicates that both ribophorins are largely luminally disposed, spanning the membrane once and having 150 and 70 amino acid long cytoplasmically disposed C termini, respectively. Both are synthesized as precursors having cleavable signal sequences of 23 (ribophorin I) and 22 (ribophorin II) amino acids. The topology suggested by the primary structure has been confirmed biochemically using proteolytic enzymes and anti-ribophorin antibodies. Proteolysis of intact microsomes with a variety of enzymes resulted in a reduction in the apparent mol. wt of ribophorin I that would correspond to a loss of its 150-amino acid cytoplasmic tail. In the case of ribophorin II, it is completely resistant to such proteolysis which is consistent with its luminal disposition and fairly hydrophobic C terminus.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 2. Fig. 6. Fig. 7. Fig. 8. PMID:3034581

  5. Arresting a Torsin ATPase Reshapes the Endoplasmic Reticulum*

    PubMed Central

    Rose, April E.; Zhao, Chenguang; Turner, Elizabeth M.; Steyer, Anna M.; Schlieker, Christian

    2014-01-01

    Torsins are membrane-tethered AAA+ ATPases residing in the nuclear envelope (NE) and endoplasmic reticulum (ER). Here, we show that the induction of a conditional, dominant-negative TorsinB variant provokes a profound reorganization of the endomembrane system into foci containing double membrane structures that are derived from the ER. These double-membrane sinusoidal structures are formed by compressing the ER lumen to a constant width of 15 nm, and are highly enriched in the ATPase activator LULL1. Further, we define an important role for a highly conserved aromatic motif at the C terminus of Torsins. Mutations in this motif perturb LULL1 binding, reduce ATPase activity, and profoundly limit the induction of sinusoidal structures. PMID:24275647

  6. Endoplasmic Reticulum Stress Regulates Adipocyte Resistin Expression

    PubMed Central

    Lefterova, Martina I.; Mullican, Shannon E.; Tomaru, Takuya; Qatanani, Mohammed; Schupp, Michael; Lazar, Mitchell A.

    2009-01-01

    OBJECTIVE Resistin is a secreted polypeptide that impairs glucose metabolism and, in rodents, is derived exclusively from adipocytes. In murine obesity, resistin circulates at elevated levels but its gene expression in adipose tissue is paradoxically reduced. The mechanism behind the downregulation of resistin mRNA is poorly understood. We investigated whether endoplasmic reticulum (ER) stress, which is characteristic of obese adipose tissue, regulates resistin expression in cultured mouse adipocytes. RESEARCH DESIGN AND METHODS The effects of endoplasmic stress inducers on resistin mRNA and secreted protein levels were examined in differentiated 3T3-L1 adipocytes, focusing on the expression and genomic binding of transcriptional regulators of resistin. The association between downregulated resistin mRNA and induction of ER stress was also investigated in the adipose tissue of mice fed a high-fat diet. RESULTS ER stress reduced resistin mRNA in 3T3-L1 adipocytes in a time- and dose-dependent manner. The effects of ER stress were transcriptional because of downregulation of CAAT/enhancer binding protein-α and peroxisome proliferator–activated receptor-γ transcriptional activators and upregulation of the transcriptional repressor CAAT/enhancer binding protein homologous protein-10 (CHOP10). Resistin protein was also substantially downregulated, showing a close correspondence with mRNA levels in 3T3-L1 adipocytes as well as in the fat pads of obese mice. CONCLUSIONS ER stress is a potent regulator of resistin, suggesting that ER stress may underlie the local downregulation of resistin mRNA and protein in fat in murine obesity. The paradoxical increase in plasma may be because of various systemic abnormalities associated with obesity and insulin resistance. PMID:19491212

  7. Diabetes: Targeting endoplasmic reticulum to combat juvenile diabetes.

    PubMed

    Urano, Fumihiko

    2014-03-01

    Limited options for clinical management of patients with juvenile-onset diabetes mellitus call for a novel therapeutic paradigm. Two innovative studies support endoplasmic reticulum as an emerging target for combating both autoimmune and heritable forms of this disease.

  8. Nox NADPH Oxidases and the Endoplasmic Reticulum

    PubMed Central

    Araujo, Thaís L.S.; Abrahão, Thalita B.

    2014-01-01

    Abstract Significance: Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Recent Advances: Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Critical Issues: Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. Future Directions: We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between

  9. Nox NADPH oxidases and the endoplasmic reticulum.

    PubMed

    Laurindo, Francisco R M; Araujo, Thaís L S; Abrahão, Thalita B

    2014-06-10

    Understanding isoform- and context-specific subcellular Nox reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase compartmentalization allows relevant functional inferences. This review addresses the interplay between Nox NADPH oxidases and the endoplasmic reticulum (ER), an increasingly evident player in redox pathophysiology given its role in redox protein folding and stress responses. Catalytic/regulatory transmembrane subunits are synthesized in the ER and their processing includes folding, N-glycosylation, heme insertion, p22phox heterodimerization, as shown for phagocyte Nox2. Dual oxidase (Duox) maturation also involves the regulation by ER-resident Duoxa2. The ER is the activation site for some isoforms, typically Nox4, but potentially other isoforms. Such location influences redox/Nox-mediated calcium signaling regulation via ER targets, such as sarcoendoplasmic reticulum calcium ATPase (SERCA). Growing evidence suggests that Noxes are integral signaling elements of the unfolded protein response during ER stress, with Nox4 playing a dual prosurvival/proapoptotic role in this setting, whereas Nox2 enhances proapoptotic signaling. ER chaperones such as protein disulfide isomerase (PDI) closely interact with Noxes. PDI supports growth factor-dependent Nox1 activation and mRNA expression, as well as migration in smooth muscle cells, and PDI overexpression induces acute spontaneous Nox activation. Mechanisms of PDI effects include possible support of complex formation and RhoGTPase activation. In phagocytes, PDI supports phagocytosis, Nox activation, and redox-dependent interactions with p47phox. Together, the results implicate PDI as possible Nox organizer. We propose that convergence between Noxes and ER may have evolutive roots given ER-related functional contexts, which paved Nox evolution, namely calcium signaling and pathogen killing. Overall, the interplay between Noxes and the ER may provide relevant insights in Nox-related (patho)physiology.

  10. The catalytic activity of the endoplasmic reticulum-resident protein microsomal epoxide hydrolase towards carcinogens is retained on inversion of its membrane topology.

    PubMed Central

    Friedberg, T; Holler, R; Löllmann, B; Arand, M; Oesch, F

    1996-01-01

    Diol epoxides formed by the sequential action of cytochrome P-450 and the microsomal epoxide hydrolase (mEH) in the endoplasmic reticulum (ER) represent an important class of ultimate carcinogenic metabolites of polycyclic aromatic hydrocarbons. The role of the membrane orientation of cytochrome P-450 and mEH relative to each other in this catalytic cascade is not known. Cytochrome P-450 is known to have a type I topology. According to the algorithm of Hartman, Rapoport and Lodish [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 5786-5790], which allows the prediction of the membrane topology of proteins, mEH should adopt a type II membrane topology. Experimentally, mEH membrane topology has been disputed. Here we demonstrate that, in contrast with the theoretical prediction, the rat mEH has exclusively a type I membrane topology. Moreover we show that this topology can be inverted without affecting the catalytic activity of mEH. Our conclusions are supported by the observation that two mEH constructs (mEHg1 and mEHg2), containing engineered potential glycosylation sites at two separate locations after the C-terminal site of the membrane anchor, were not glycosylated in fibroblasts. However, changing the net charge at the N-terminus of these engineered mEH proteins by +3 resulted in proteins (++mEHg1 and ++mEHg2) that became glycosylated and consequently had a type II topology. The sensitivity of these glycosylated proteins to endoglycosidase H indicated that, like the native mEH, they are still retained in the ER. The engineered mEH proteins were integrated into membranes as they were resistant to alkaline extraction. Interestingly, an insect mEH with a charge distribution in its N-terminus similar to ++mEHg1 has recently been isolated. This enzyme might well display a type II topology instead of the type I topology of the rat mEH. Importantly, mEHg1, having the natural cytosolic orientation, as well as ++mEHg1, having an artificial huminal orientation, displayed rather

  11. Co-chaperones of the mammalian endoplasmic reticulum.

    PubMed

    Melnyk, Armin; Rieger, Heiko; Zimmermann, Richard

    2015-01-01

    In mammalian cells, the rough endoplasmic reticulum or ER plays a central role in the biogenesis of most extracellular plus many organellar proteins and in cellular calcium homeostasis. Therefore, this organelle comprises molecular chaperones that are involved in import, folding/assembly, export, and degradation of polypeptides in millimolar concentrations. In addition, there are calcium channels/pumps and signal transduction components present in the ER membrane that affect and are affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy chain binding protein or BiP, is the central player in all these activities and involves up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.

  12. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion.

    PubMed

    Yu, Jia; Chia, Joanne; Canning, Claire Ann; Jones, C Michael; Bard, Frédéric A; Virshup, David M

    2014-05-12

    Wnts are transported to the cell surface by the integral membrane protein WLS (also known as Wntless, Evi, and GPR177). Previous studies of WLS trafficking have emphasized WLS movement from the Golgi to the plasma membrane (PM) and then back to the Golgi via retromer-mediated endocytic recycling. We find that endogenous WLS binds Wnts in the endoplasmic reticulum (ER), cycles to the PM, and then returns to the ER through the Golgi. We identify an ER-targeting sequence at the carboxyl terminus of native WLS that is critical for ER retrograde recycling and contributes to Wnt secretory function. Golgi-to-ER recycling of WLS requires the COPI regulator ARF as well as ERGIC2, an ER-Golgi intermediate compartment protein that is also required for the retrograde trafficking of the KDEL receptor and certain toxins. ERGIC2 is required for efficient Wnt secretion. ER retrieval is an integral part of the WLS transport cycle.

  13. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.

    PubMed

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-07-25

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function.

  14. Novel ubiquitin-dependent quality control in the endoplasmic reticulum.

    PubMed

    Feldman, M; van der Goot, F Gisou

    2009-08-01

    Proteins of the endomembrane system undergo assisted folding in the endoplasmic reticulum (ER), then quality-control and, if misfolded, ER-associated degradation (ERAD). Recent findings on the biogenesis of a type-I membrane protein (an LRP6 mutant) lead us to hypothesize the existence of a novel mechanism promoting folding of membrane proteins from the cytosolic side of the ER. The proposed folding mechanism involves cycles of chaperone binding through mono-ubiquitylation and de-ubiquitylation, followed eventually by poly-ubiquitylation and ERAD. This suggests a novel dual role for ubiquitylation in the ER - dependent on the type of ubiquitin chains involved - in folding and in degradation, and highlights the potential importance of de-ubiquitylating enzymes.

  15. Mitochondria and endoplasmic reticulum crosstalk in amyotrophic lateral sclerosis.

    PubMed

    Manfredi, Giovanni; Kawamata, Hibiki

    2016-06-01

    Physical and functional interactions between mitochondria and the endoplasmic reticulum (ER) are crucial for cell life. These two organelles are intimately connected and collaborate to essential processes, such as calcium homeostasis and phospholipid biosynthesis. The connections between mitochondria and endoplasmic reticulum occur through structures named mitochondria associated membranes (MAMs), which contain lipid rafts and a large number of proteins, many of which serve multiple functions at different cellular sites. Growing evidence strongly suggests that alterations of ER-mitochondria interactions are involved in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), a devastating and rapidly fatal motor neuron disease. Mutations in proteins that participate in ER-mitochondria interactions and MAM functions are increasingly being associated with genetic forms of ALS and other neurodegenerative diseases. This evidence strongly suggests that, rather than considering the two organelles separately, a better understanding of the disease process can derive from studying the alterations in their crosstalk. In this review we discuss normal and pathological ER-mitochondria interactions and the evidence that link them to ALS.

  16. Ricin A chain reaches the endoplasmic reticulum after endocytosis

    SciTech Connect

    Liu Qiong; Zhan Jinbiao . E-mail: jzhan2k@zju.edu.cn; Chen Xinhong; Zheng Shu

    2006-05-12

    Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum.

  17. Endoplasmic reticulum stress in periimplantation embryos.

    PubMed

    Michalak, Marek; Gye, Myung Chan

    2015-03-01

    Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro.

  18. Endoplasmic reticulum stress causes EBV lytic replication

    PubMed Central

    Taylor, Gwen Marie; Raghuwanshi, Sandeep K.; Rowe, David T.; Wadowsky, Robert M.

    2011-01-01

    Endoplasmic reticulum (ER) stress triggers a homeostatic cellular response in mammalian cells to ensure efficient folding, sorting, and processing of client proteins. In lytic-permissive lymphoblastoid cell lines (LCLs), pulse exposure to the chemical ER-stress inducer thapsigargin (TG) followed by recovery resulted in the activation of the EBV immediate-early (BRLF1, BZLF1), early (BMRF1), and late (gp350) genes, gp350 surface expression, and virus release. The protein phosphatase 1 a (PP1a)–specific phosphatase inhibitor Salubrinal (SAL) synergized with TG to induce EBV lytic genes; however, TG treatment alone was sufficient to activate EBV lytic replication. SAL showed ER-stress–dependent and –independent antiviral effects, preventing virus release in human LCLs and abrogating gp350 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)–treated B95-8 cells. TG resulted in sustained BCL6 but not BLIMP1 or CD138 expression, which is consistent with maintenance of a germinal center B-cell, rather than plasma-cell, phenotype. Microarray analysis identified candidate genes governing lytic replication in LCLs undergoing ER stress. PMID:21849482

  19. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    PubMed

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux.

  20. Brain Endoplasmic Reticulum Stress Mechanistically Distinguishes the Saline-Intake and Hypertensive Response to DOCA-Salt

    PubMed Central

    Jo, Fusakazu; Jo, Hiromi; Hilzendeger, Aline M.; Thompson, Anthony P.; Cassell, Martin D.; Rutkowski, D. Thomas; Davisson, Robin L.; Grobe, Justin L.; Sigmund, Curt D.

    2015-01-01

    Endoplasmic reticulum stress has become an important mechanism in hypertension. We examined the role of endoplasmic reticulum stress in mediating the increased saline intake and hypertensive effects in response to DOCA-salt. Intracerebroventricular delivery of the endoplasmic reticulum stress-reducing chemical chaperone Tauroursodeoxycholic acid did not affect the magnitude of hypertension, but markedly decreased saline intake in response to DOCA-salt. Increased saline intake returned after Tauroursodeoxycholic acid was terminated. Decreased saline intake was also observed after intracerebroventricular infusion of 4-phenylbutyrate, another chemical chaperone. Immunoreactivity to CHOP, a marker of irremediable endoplasmic reticulum stress, was increased in the subfornical organ and supraoptic nucleus of DOCA-salt mice, but the signal was absent in control and CHOP-deficient mice. Electron microscopy revealed abnormalities in endoplasmic reticulum structure (decrease in membrane length, swollen membranes, and decreased ribosome numbers) in the subfornical organ consistent with endoplasmic reticulum stress. Subfornical organ-targeted adenoviral delivery of GRP78, a resident endoplasmic reticulum chaperone, decreased DOCA-salt-induced saline intake. The increase in saline intake in response to DOCA-salt was blunted in CHOP-deficient mice, but these mice exhibited a normal hypertensive response. We conclude: 1) brain endoplasmic reticulum stress mediates the saline intake, but not blood pressure response to DOCA-salt, 2) DOCA-salt causes endoplasmic reticulum stress in the SFO which when attenuated by GRP78 blunts saline intake, and 3) CHOP may play a functional role in DOCA-salt-induced saline intake. The results suggest a mechanistic distinction between the importance of endoplasmic reticulum stress in mediating effects of DOCA-salt on saline intake and blood pressure. PMID:25895586

  1. Rapid flip-flop of phospholipids in endoplasmic reticulum membranes studied by a stopped-flow approach.

    PubMed Central

    Marx, U; Lassmann, G; Holzhütter, H G; Wüstner, D; Müller, P; Höhlig, A; Kubelt, J; Herrmann, A

    2000-01-01

    The transbilayer movement of short-chain spin-labeled and fluorescent 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) phospholipid analogs in rat liver microsomes is measured by stopped-flow mixing of labeled microsomes with bovine serum albumin (BSA) solution. Extraction of analogs from the outer leaflet of microsomes to BSA can be directly monitored in conjunction with electron paramagnetic resonance or fluorescence spectroscopy by taking advantage of the fact that the signal of spin-labeled or fluorescent analogs bound to BSA is different from that of the analogs inserted into membranes. From the signal kinetics, the transbilayer movement and the distribution of analogs in microsomal membranes can be derived provided the extraction of analogs by BSA is much faster in comparison to the transbilayer movement of analogs. Half-times of the back-exchange for spin-labeled and fluorescent analogs were <3.5 and <9.5 s, respectively. The unprecedented time resolution of the assay revealed that the transbilayer movement of spin-labeled analogs is much faster than previously reported. The half-time of the movement was about 16 s or even less at room temperature. Transmembrane movement of NBD-labeled analogs was six- to eightfold slower than that of spin-labeled analogs. PMID:10777759

  2. From endoplasmic reticulum to mitochondria: absence of the Arabidopsis ATP antiporter endoplasmic Reticulum Adenylate Transporter1 perturbs photorespiration.

    PubMed

    Hoffmann, Christiane; Plocharski, Bartolome; Haferkamp, Ilka; Leroch, Michaela; Ewald, Ralph; Bauwe, Hermann; Riemer, Jan; Herrmann, Johannes M; Neuhaus, H Ekkehard

    2013-07-01

    The carrier Endoplasmic Reticulum Adenylate Transporter1 (ER-ANT1) resides in the endoplasmic reticulum (ER) membrane and acts as an ATP/ADP antiporter. Mutant plants lacking ER-ANT1 exhibit a dwarf phenotype and their seeds contain reduced protein and lipid contents. In this study, we describe a further surprising metabolic peculiarity of the er-ant1 mutants. Interestingly, Gly levels in leaves are immensely enhanced (26×) when compared with that of wild-type plants. Gly accumulation is caused by significantly decreased mitochondrial glycine decarboxylase (GDC) activity. Reduced GDC activity in mutant plants was attributed to oxidative posttranslational protein modification induced by elevated levels of reactive oxygen species (ROS). GDC activity is crucial for photorespiration; accordingly, morphological and physiological defects in er-ant1 plants were nearly completely abolished by application of high environmental CO(2) concentrations. The latter observation demonstrates that the absence of ER-ANT1 activity mainly affects photorespiration (maybe solely GDC), whereas basic cellular metabolism remains largely unchanged. Since ER-ANT1 homologs are restricted to higher plants, it is tempting to speculate that this carrier fulfils a plant-specific function directly or indirectly controlling cellular ROS production. The observation that ER-ANT1 activity is associated with cellular ROS levels reveals an unexpected and critical physiological connection between the ER and other organelles in plants.

  3. Endoplasmic reticulum stress implicated in chronic traumatic encephalopathy.

    PubMed

    Lucke-Wold, Brandon P; Turner, Ryan C; Logsdon, Aric F; Nguyen, Linda; Bailes, Julian E; Lee, John M; Robson, Matthew J; Omalu, Bennet I; Huber, Jason D; Rosen, Charles L

    2016-03-01

    Chronic traumatic encephalopathy is a progressive neurodegenerative disease characterized by neurofibrillary tau tangles following repetitive neurotrauma. The underlying mechanism linking traumatic brain injury to chronic traumatic encephalopathy has not been elucidated. The authors investigate the role of endoplasmic reticulum stress as a link between acute neurotrauma and chronic neurodegeneration. The authors used pharmacological, biochemical, and behavioral tools to assess the role of endoplasmic reticulum stress in linking acute repetitive traumatic brain injury to the development of chronic neurodegeneration. Data from the authors' clinically relevant and validated rodent blast model were compared with those obtained from postmortem human chronic traumatic encephalopathy specimens from a National Football League player and World Wrestling Entertainment wrestler. The results demonstrated strong correlation of endoplasmic reticulum stress activation with subsequent tau hyperphosphorylation. Various endoplasmic reticulum stress markers were increased in human chronic traumatic encephalopathy specimens, and the endoplasmic reticulum stress response was associated with an increase in the tau kinase, glycogen synthase kinase-3β. Docosahexaenoic acid, an endoplasmic reticulum stress inhibitor, improved cognitive performance in the rat model 3 weeks after repetitive blast exposure. The data showed that docosahexaenoic acid administration substantially reduced tau hyperphosphorylation (t = 4.111, p < 0.05), improved cognition (t = 6.532, p < 0.001), and inhibited C/EBP homology protein activation (t = 5.631, p < 0.01). Additionally the data showed, for the first time, that endoplasmic reticulum stress is involved in the pathophysiology of chronic traumatic encephalopathy. Docosahexaenoic acid therefore warrants further investigation as a potential therapeutic agent for the prevention of chronic traumatic encephalopathy.

  4. Teaching the modes of Ca2+ transport between the plasma membrane and endoplasmic reticulum using a classic paper by Kwan et al.

    PubMed

    Liang, Willmann

    2009-09-01

    This teaching article uses the report by Kwan et al., "Effects of methacholine, thapsigargin, and La(3+) on plasmalemmal and intracellular Ca(2+) transport in lacrimal acinar cells," where the effects of Ca(2+)-mobilizing agents in regulating Ca(2+) fluxes were examined under various conditions. Upper-level undergraduate and new graduate students in physiology are the targe audience. Teaching and learning points are put forth in this article to illustrate 1) the characteristics of methacholine- and thapsigargin-induced Ca(2+) responses, 2) the different endoplasmic reticulum Ca(2+) stores accessible to methacholine and thapsigargin, 3) the inhibitory effects of La(3+) on Ca(2+) extrusion and Ca(2+) influx, and 4) the facilitatory role of La(3+) on endoplasmic reticulum Ca(2+) recycling. Each of the above concepts is first explained with references to the figures adapted from the original article. A list of student learning questions then follows, where the answers are found in the teaching notes for the instructors. It is the objective of this article to make both teaching and learning Ca(2+) regulation a rewarding experience for all.

  5. Endoplasmic Reticulum Calcium, Stress and Cell-to-Cell Adhesion

    PubMed Central

    Mauro, Theodora

    2014-01-01

    Darier's Disease (DD) is caused by mutations in the endoplasmic reticulum (ER) Ca2+ ATPase ATP2A2 (protein SERCA2). Current treatment modalities are ineffective for many patients. This report shows that impaired SERCA2 function, both in DD keratinocytes and in normal keratinocytes treated with the SERCA2-inhibitor thapsigargin, depletes ER Ca2+ stores, leading to constitutive ER stress and increased sensitivity to ER stressors. ER stress, in turn, leads to abnormal cell-to-cell adhesion via impaired redistribution of desmoplakin, desmoglein 3, desmocollin 3 and E-cadherin to the plasma membrane. This report illustrates how ER Ca2+ depletion and the resulting ER stress are central to the pathogenesis of the disease. Additionally, the authors introduce a possible new therapeutic agent, Miglustat. PMID:24924761

  6. Crystalloid smooth endoplasmic reticulum in the quail uropygial gland.

    PubMed

    Fringes, B; Gorgas, K

    1993-06-01

    The occurrence, localization and organization of crystalloid smooth endoplasmic reticulum (SER) membrane aggregates in the male quail uropygial gland was investigated by electron microscopy. The lattice-like structures exhibiting a hexagonal honeycomb pattern are regularly found in the perinuclear region of the fully developed intermediate cell (type II) which is most effective in lipid biosynthesis and constitutes the middle layers of the stratified glandular epithelium undergoing sebaceous transformation. The crystalloids frequently exhibit a rectangular shape and tend to cluster, the latter exceeding 5 microns in length. They are composed of sets of highly ordered and densely packed tubular SER profiles. Diaminobenzidine (DAB) stained peroxisomes exhibit a close spatial relationship to the borders of crystalloids, but the organelles do not participate in the formation of these grid-like structures. The functional significance of the conformational change of the SER organization is not known. Local accumulation of specific lipogenic enzymes within this functional SER domain is discussed.

  7. Terasaki spiral ramps in the rough endoplasmic reticulum.

    PubMed

    Guven, Jemal; Huber, Greg; Valencia, Dulce María

    2014-10-31

    We present a model describing the morphology as well as the assembly of "Terasaki ramps," the recently discovered helicoidal connections linking adjacent sheets of the rough endoplasmic reticulum (ER). The fundamental unit is a localized symmetric double-ramped "parking garage" formed by two separated gently pitched, approximately helicoidal, ramps of opposite chiralities. This geometry is stabilized by a short-range repulsive interaction between ramps associated with bending energy which opposes the long-range attraction associated with tension. The ramp inner boundaries are themselves stabilized by the condensation of membrane-shaping proteins along their length. A mechanism for parking garage self-assembly is proposed involving the nucleation of dipoles at the center of tubular three-way junctions within the smooth ER. Our predictions are compared with the experimental data.

  8. Terasaki Spiral Ramps in the Rough Endoplasmic Reticulum

    NASA Astrophysics Data System (ADS)

    Guven, Jemal; Huber, Greg; Valencia, Dulce María

    2014-10-01

    We present a model describing the morphology as well as the assembly of "Terasaki ramps," the recently discovered helicoidal connections linking adjacent sheets of the rough endoplasmic reticulum (ER). The fundamental unit is a localized symmetric double-ramped "parking garage" formed by two separated gently pitched, approximately helicoidal, ramps of opposite chiralities. This geometry is stabilized by a short-range repulsive interaction between ramps associated with bending energy which opposes the long-range attraction associated with tension. The ramp inner boundaries are themselves stabilized by the condensation of membrane-shaping proteins along their length. A mechanism for parking garage self-assembly is proposed involving the nucleation of dipoles at the center of tubular three-way junctions within the smooth ER. Our predictions are compared with the experimental data.

  9. Stress Responses from the Endoplasmic Reticulum in Cancer

    PubMed Central

    Kato, Hironori; Nishitoh, Hideki

    2015-01-01

    The endoplasmic reticulum (ER) is a dynamic organelle that is essential for multiple cellular functions. During cellular stress conditions, including nutrient deprivation and dysregulation of protein synthesis, unfolded/misfolded proteins accumulate in the ER lumen, resulting in activation of the unfolded protein response (UPR). The UPR also contributes to the regulation of various intracellular signaling pathways such as calcium signaling and lipid signaling. More recently, the mitochondria-associated ER membrane (MAM), which is a site of close contact between the ER and mitochondria, has been shown to function as a platform for various intracellular stress responses including apoptotic signaling, inflammatory signaling, the autophagic response, and the UPR. Interestingly, in cancer, these signaling pathways from the ER are often dysregulated, contributing to cancer cell metabolism. Thus, the signaling pathway from the ER may be a novel therapeutic target for various cancers. In this review, we discuss recent research on the roles of stress responses from the ER, including the MAM. PMID:25941664

  10. Altered Endoplasmic Reticulum Calcium Pump Expression during Breast Tumorigenesis

    PubMed Central

    Papp, Béla; Brouland, Jean-Philippe

    2011-01-01

    Endoplasmic reticulum calcium homeostasis is involved in several essential cell functions including cell proliferation, protein synthesis, stress responses or secretion. Calcium uptake into the endoplasmic reticulum is performed by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). In order to study endoplasmic reticulum calcium homeostasis in situ in mammary tissue, in this work SERCA3 expression was investigated in normal breast and in its benign and malignant lesions in function of the cell type, degree of malignancy, and histological and molecular parameters of the tumors. Our data indicate, that although normal breast acinar epithelial cells express SERCA3 abundantly, its expression is strongly decreased already in very early non-malignant epithelial lesions such as adenosis, and remains low in lobular carcinomas. Whereas normal duct epithelium expresses significant amounts of SERCA3, its expression is decreased in several benign ductal lesions, as well as in ductal adenocarcinoma. The loss of SERCA3 expression is correlated with Elston-Ellis grade, negative hormone receptor expression or triple negative status in ductal carcinomas. The concordance between decreased SERCA3 expression and several histological, as well as molecular markers of ductal carcinogenesis indicates that endoplasmic reticulum calcium homeostasis is remodeled during tumorigenesis in the breast epithelium. PMID:21863130

  11. Unusual configurations of endoplasmic reticulum in cells of acute promyelocytic leukemia.

    PubMed

    Parkin, J L; Brunning, R D

    1978-08-01

    An ultrastructural study of leukemia cells from 8 patients with acute promyelocytic leukemia revealed several features that have not previously been emphasized: prominent dilated rough endoplasmic reticulum and two unusual configurations of endoplasmic reticulum (ER). The two membrane structures, multilaminar ER and complex stellate arrangements of ER, appeared to be morphogenetically related. The multilaminar ER was observed in every mitotic cell and less frequently in interphase cells. The stellate ER complex was observed only in interphase cells. Ultrastructural evidence is presented to support the possible evolution of the stellate ER complex from the multilaminar ER.

  12. Cholesterol and steroid synthesizing smooth endoplasmic reticulum of adrenocortical cells contains high levels of proteins associated with the translocation channel.

    PubMed

    Black, Virginia H; Sanjay, Archana; van Leyen, Klaus; Lauring, Brett; Kreibich, Gert

    2005-10-01

    Steroid-secreting cells are characterized by abundant smooth endoplasmic reticulum whose membranes contain many enzymes involved in sterol and steroid synthesis. Yet they have relatively little morphologically identifiable rough endoplasmic reticulum, presumably required for synthesis and maintenance of the smooth membranes. In this study, we demonstrate that adrenal smooth microsomal subfractions enriched in smooth endoplasmic reticulum membranes contain high levels of translocation apparatus and oligosaccharyltransferase complex proteins, previously thought confined to rough endoplasmic reticulum. We further demonstrate that these smooth microsomal subfractions are capable of effecting cotranslational translocation, signal peptide cleavage, and N-glycosylation of newly synthesized polypeptides. This shifts the paradigm for distinction between smooth and rough endoplasmic reticulum. Confocal microscopy revealed the proteins to be distributed throughout the abundant tubular endoplasmic reticulum in these cells, which is predominantly smooth surfaced. We hypothesize that the broadly distributed translocon and oligosaccharyltransferase proteins participate in local synthesis and/or quality control of membrane proteins involved in cholesterol and steroid metabolism in a sterol-dependent and hormonally regulated manner.

  13. Methods to Study PTEN in Mitochondria and Endoplasmic Reticulum.

    PubMed

    Missiroli, Sonia; Morganti, Claudia; Giorgi, Carlotta; Pinton, Paolo

    2016-01-01

    Although PTEN has been widely described as a nuclear and cytosolic protein, in the last 2 years, alternative organelles, such as the endoplasmic reticulum (ER), pure mitochondria, and mitochondria-associated membranes (MAMs), have been recognized as pivotal targets of PTEN activity.Here, we describe different methods that have been used to highlight PTEN subcellular localization.First, a protocol to extract nuclear and cytosolic fractions has been described to assess the "canonical" PTEN localization. Moreover, we describe a protocol for mitochondria isolation with proteinase K (PK) to further discriminate whether PTEN associates with the outer mitochondrial membrane (OMM) or resides within the mitochondria. Finally, we focus our attention on a subcellular fractionation protocol of cells that permits the isolation of MAMs containing unique regions of ER membranes attached to the outer mitochondrial membrane (OMM) and mitochondria without contamination from other organelles. In addition to biochemical fractionations, immunostaining can be used to determine the subcellular localization of proteins; thus, a detailed protocol to obtain good immunofluorescence (IF) is described. The employment of these methodological approaches could facilitate the identification of different PTEN localizations in several physiopathological contexts.

  14. Three-dimensional organization of the endoplasmic reticulum membrane around the mitochondrial constriction site in mammalian cells revealed by using focused-ion beam tomography.

    PubMed

    Ohta, Keisuke; Okayama, Satoko; Togo, Akinobu; Nakamura, Kei-Ichiro

    2014-11-01

    The endoplasmic reticulum (ER) and mitochondria associate at multiple contact sites to form specific domains known as mitochondria-ER associated membranes (MAMs) that play a role in the regulation of various cellular processes such as Ca2+ transfer, autophagy, and inflammation. Recently, it has been suggested that MAMs are also involved in mitochondrial dynamics, especially fission events. Cytological analysis showed that ER tubules were frequently located close to each other in mitochondrial fission sites that accumulate fission-related proteins. Three-dimensional (3D) imaging of ER-mitochondrial contacts in yeast mitochondria by using cryo-electron tomography also showed that ER tubules were attached near the constriction site, which is considered to be a fission site1). MAMs have been suggested to play a role in the initiation of mitochondrial fission, although the molecular relationships between MAMs and the mitochondrial fission process have not been established. Although an ER-mitochondrial membrane association has also been observed at the fission site in mammalian mitochondria, the detailed organization of MAMs around mammalian mitochondria remains to be established. To visualize the 3D distribution of the ER-mitochondrial contacts around the mitochondria, especially around the constriction site in mammalian cells, we attempted 3D structural analysis of the mammalian cytoplasm using high-resolution focused ion-beam scanning electron microscopy (FIB-SEM) tomography, and observed the distribution pattern of ER contacts around the mammalian mitochondrial constriction site.Rat hepatocytes and HeLa cells were used. Liver tissue was obtained from male rats (Wistar, 6W) fixed by transcardial perfusion of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) under deep anesthesia. HeLa cells were fixed with the same fixative. The specimens were then stained en bloc to enhance membrane contrast and embedded in epoxy resin2). The surface of

  15. Mutations in the Polybasic Juxtamembrane Sequence of Both Plasma Membrane- and Endoplasmic Reticulum-localized Epidermal Growth Factor Receptors Confer Ligand-independent Cell Transformation*

    PubMed Central

    Bryant, Kirsten L.; Antonyak, Marc A.; Cerione, Richard A.; Baird, Barbara; Holowka, David

    2013-01-01

    Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling. PMID:24142702

  16. De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum

    PubMed Central

    Jagannathan, Sujatha; Reid, David W.; Cox, Amanda H.

    2014-01-01

    The specialized protein synthesis functions of the cytosol and endoplasmic reticulum compartments are conferred by the signal recognition particle (SRP) pathway, which directs the cotranslational trafficking of signal sequence-encoding mRNAs from the cytosol to the endoplasmic reticulum (ER). Although subcellular mRNA distributions largely mirror the binary pattern predicted by the SRP pathway model, studies in mammalian cells, yeast, and Drosophila have also demonstrated that cytosolic protein-encoding mRNAs are broadly represented on ER-bound ribosomes. A mechanism for such noncanonical mRNA localization remains, however, to be identified. Here, we examine the hypothesis that de novo translation initiation on ER-bound ribosomes serves as a mechanism for localizing cytosolic protein-encoding mRNAs to the ER. As a test of this hypothesis, we performed single molecule RNA fluorescence in situ hybridization studies of subcellular mRNA distributions and report that a substantial fraction of mRNAs encoding the cytosolic protein GAPDH resides in close proximity to the ER. Consistent with these data, analyses of subcellular mRNA and ribosome distributions in multiple cell lines demonstrated that cytosolic protein mRNA-ribosome distributions were strongly correlated, whereas signal sequence-encoding mRNA-ribosome distributions were divergent. Ribosome footprinting studies of ER-bound polysomes revealed a substantial initiation codon read density enrichment for cytosolic protein-encoding mRNAs. We also demonstrate that eukaryotic initiation factor 2α is bound to the ER via a salt-sensitive, ribosome-independent mechanism. Combined, these data support ER-localized translation initiation as a mechanism for mRNA recruitment to the ER. PMID:25142066

  17. De novo translation initiation on membrane-bound ribosomes as a mechanism for localization of cytosolic protein mRNAs to the endoplasmic reticulum.

    PubMed

    Jagannathan, Sujatha; Reid, David W; Cox, Amanda H; Nicchitta, Christopher V

    2014-10-01

    The specialized protein synthesis functions of the cytosol and endoplasmic reticulum compartments are conferred by the signal recognition particle (SRP) pathway, which directs the cotranslational trafficking of signal sequence-encoding mRNAs from the cytosol to the endoplasmic reticulum (ER). Although subcellular mRNA distributions largely mirror the binary pattern predicted by the SRP pathway model, studies in mammalian cells, yeast, and Drosophila have also demonstrated that cytosolic protein-encoding mRNAs are broadly represented on ER-bound ribosomes. A mechanism for such noncanonical mRNA localization remains, however, to be identified. Here, we examine the hypothesis that de novo translation initiation on ER-bound ribosomes serves as a mechanism for localizing cytosolic protein-encoding mRNAs to the ER. As a test of this hypothesis, we performed single molecule RNA fluorescence in situ hybridization studies of subcellular mRNA distributions and report that a substantial fraction of mRNAs encoding the cytosolic protein GAPDH resides in close proximity to the ER. Consistent with these data, analyses of subcellular mRNA and ribosome distributions in multiple cell lines demonstrated that cytosolic protein mRNA-ribosome distributions were strongly correlated, whereas signal sequence-encoding mRNA-ribosome distributions were divergent. Ribosome footprinting studies of ER-bound polysomes revealed a substantial initiation codon read density enrichment for cytosolic protein-encoding mRNAs. We also demonstrate that eukaryotic initiation factor 2α is bound to the ER via a salt-sensitive, ribosome-independent mechanism. Combined, these data support ER-localized translation initiation as a mechanism for mRNA recruitment to the ER. © 2014 Jagannathan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. High-resolution calcium mapping of the endoplasmic reticulum-Golgi-exocytic membrane system. Electron energy loss imaging analysis of quick frozen-freeze dried PC12 cells.

    PubMed

    Pezzati, R; Bossi, M; Podini, P; Meldolesi, J; Grohovaz, F

    1997-08-01

    The calcium pools segregated within the endoplasmic reticulum, Golgi complex, exocytic, and other organelles are believed to participate in the regulation of a variety of cell functions. Until now, however, the precise intracellular distribution of the element had not been established. Here, we report about the first high-resolution calcium mapping obtained in neurosecretory PC12 cells by the imaging mode of the electron energy loss spectroscopy technique. The preparation procedure used included quick freezing of cell monolayers, followed by freeze-drying, fixation with OSO4 vapors, resin embedding, and cutting of very thin sections. Conventional electron microscopy and high-resolution immunocytochemistry revealed a high degree of structural preservation, a condition in which inorganic elements are expected to maintain their native distribution. Within these cells, calcium signals of nucleus, cytosol, and most mitochondria remained below detection, whereas in other organelles specific patterns were identified. In the endoplasmic reticulum, the distribution was heterogeneous with strongly positive cisternae (more often the nuclear envelope and stacks of parallel elements that are frequent in quick frozen preparations) lying in the proximity of or even in direct continuity with other, apparently negative cisternae. The Golgi complexes were labeled strongly and uniformly in all cisternae and part of their vesicles, with no appreciable differences along the cis-trans axis. Weaker or negative signals were recorded from the trans-Golgi network elements and from scattered vesicles, whereas in contrast secretion granules were strongly positive for calcium. These results are discussed in relation to the existing knowledge about the mechanisms of calcium transport in the variations organelles, and about the processes and functions regulated by organelle lumenal calcium in eukaryotic cells.

  19. Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers

    SciTech Connect

    Kaakinen, Mika; Papponen, Hinni; Metsikkoe, Kalervo

    2008-01-15

    The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca{sup 2+}-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped viruses indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites.

  20. Cloning of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) from Caribbean spiny lobster Panulirus argus

    PubMed Central

    Arunachalam, S. C.; Meleshkevitch, E. A.; Mandal, P. K.; Boudko, D. Y.; Ahearn, G. A.

    2012-01-01

    We have previously reported on calcium transport mechanisms in American lobster, Homarus americanus, using 45Ca2+ coupled with vesicle preparations of hepatopancreatic endoplasmic reticulum. The active transport of calcium across membranes bordering calcium-sequestering stores such as sarcoplasmic or endoplasmic reticulum is catalyzed by membrane-spanning proteins, the sarco-endoplasmic Ca2+-ATPases (SERCAs). In the study described here we used advanced bioinformatics and molecular techniques to clone SERCA from the economically important Caribbean spiny lobster, Panulirus argus. We report the complete cloning of a full-length SERCA from P. argus antenna cDNA (GenBank accession number AY702617). This cDNA has a 1020-amino acid residue open reading frame which is 90% identical to published sequences of other crustacean SERCA proteins. Our data support the hypothesis that one crustacean and three vertebrate genes controlling calcium transport were derived from a common ancestral gene. PMID:18825387

  1. Terasaki Ramps in the Endoplasmic Reticulum: Structure, Function and Formation

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Guven, Jemal; Valencia, Dulce-Maria

    2015-03-01

    The endoplasmic reticulum (ER) has long been considered an exceedingly important and complex cellular organelle in eukaryotes (like you). It is a membrane structure, part folded lamellae, part tubular network, that both envelopes the nucleus and threads its way outward, all the way to the cell's periphery. Despite the elegant mechanics of bilayer membranes offered by the work of Helfrich and Canham, as far as the ER is concerned, theory has mostly sat on the sidelines. However, refined imaging of the ER has recently revealed beautiful and subtle geometrical forms - simple geometries, from the mathematical point of view - which some have called a ``parking garage for ribosomes.'' I'll review the discovery and physics of Terasaki ramps and discuss their relation to cell-biological questions, such as ER and nuclear-membrane re-organization during mitosis. Rather than being a footnote in a textbook on differential geometry, these structures suggest answers to a number of the ER's structure-function problems.

  2. Arachidonoyl-Specific Diacylglycerol Kinase ε and the Endoplasmic Reticulum

    PubMed Central

    Nakano, Tomoyuki; Matsui, Hirooki; Tanaka, Toshiaki; Hozumi, Yasukazu; Iseki, Ken; Kawamae, Kaneyuki; Goto, Kaoru

    2016-01-01

    The endoplasmic reticulum (ER) comprises an interconnected membrane network, which is made up of lipid bilayer and associated proteins. This organelle plays a central role in the protein synthesis and sorting. In addition, it represents the synthetic machinery of phospholipids, the major constituents of the biological membrane. In this process, phosphatidic acid (PA) serves as a precursor of all phospholipids, suggesting that PA synthetic activity is closely associated with the ER function. One enzyme responsible for PA synthesis is diacylglycerol kinase (DGK) that phosphorylates diacylglycerol (DG) to PA. DGK is composed of a family of enzymes with distinct features assigned to each isozyme in terms of structure, enzymology, and subcellular localization. Of DGKs, DGKε uniquely exhibits substrate specificity toward arachidonate-containing DG and is shown to reside in the ER. Arachidonic acid, a precursor of bioactive eicosanoids, is usually acylated at the sn-2 position of phospholipids, being especially enriched in phosphoinositide. In this review, we focus on arachidonoyl-specific DGKε with respect to the historical context, molecular basis of the substrate specificity and ER-targeting, and functional implications in the ER. PMID:27917381

  3. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins

    PubMed Central

    Yalçın, Belgin; Zhao, Lu; Stofanko, Martin; O'Sullivan, Niamh C; Kang, Zi Han; Roost, Annika; Thomas, Matthew R; Zaessinger, Sophie; Blard, Olivier; Patto, Alex L; Sohail, Anood; Baena, Valentina; Terasaki, Mark; O'Kane, Cahir J

    2017-01-01

    Axons contain a smooth tubular endoplasmic reticulum (ER) network that is thought to be continuous with ER throughout the neuron; the mechanisms that form this axonal network are unknown. Mutations affecting reticulon or REEP proteins, with intramembrane hairpin domains that model ER membranes, cause an axon degenerative disease, hereditary spastic paraplegia (HSP). We show that Drosophila axons have a dynamic axonal ER network, which these proteins help to model. Loss of HSP hairpin proteins causes ER sheet expansion, partial loss of ER from distal motor axons, and occasional discontinuities in axonal ER. Ultrastructural analysis reveals an extensive ER network in axons, which shows larger and fewer tubules in larvae that lack reticulon and REEP proteins, consistent with loss of membrane curvature. Therefore HSP hairpin-containing proteins are required for shaping and continuity of axonal ER, thus suggesting roles for ER modeling in axon maintenance and function. DOI: http://dx.doi.org/10.7554/eLife.23882.001 PMID:28742022

  4. The Mammalian Endoplasmic Reticulum-Associated Degradation System

    PubMed Central

    Olzmann, James A.; Kopito, Ron R.; Christianson, John C.

    2013-01-01

    The endoplasmic reticulum (ER) is the site of synthesis for nearly one-third of the eukaryotic proteome and is accordingly endowed with specialized machinery to ensure that proteins deployed to the distal secretory pathway are correctly folded and assembled into native oligomeric complexes. Proteins failing to meet this conformational standard are degraded by ER-associated degradation (ERAD), a complex process through which folding-defective proteins are selected and ultimately degraded by the ubiquitin-proteasome system. ERAD proceeds through four tightly coupled steps involving substrate selection, dislocation across the ER membrane, covalent conjugation with polyubiquitin, and proteasomal degradation. The ERAD machinery shows a modular organization with central ER membrane-embedded ubiquitin ligases linking components responsible for recognition in the ER lumen to the ubiquitin-proteasome system in the cytoplasm. The core ERAD machinery is highly conserved among eukaryotes and much of our basic understanding of ERAD organization has been derived from genetic and biochemical studies of yeast. In this article we discuss how the core ERAD machinery is organized in mammalian cells. PMID:23232094

  5. Reconstitution of Glucosylceramide Flip-Flop across Endoplasmic Reticulum

    PubMed Central

    Chalat, Madhavan; Menon, Indu; Turan, Zeynep; Menon, Anant K.

    2012-01-01

    Most glycosphingolipids are synthesized by the sequential addition of monosaccharides to glucosylceramide (GlcCer) in the lumen of the Golgi apparatus. Because GlcCer is synthesized on the cytoplasmic face of Golgi membranes, it must be flipped to the non-cytoplasmic face by a lipid flippase in order to nucleate glycosphingolipid synthesis. Halter et al. (Halter, D., Neumann, S., van Dijk, S. M., Wolthoorn, J., de Mazière, A. M., Vieira, O. V., Mattjus, P., Klumperman, J., van Meer, G., and Sprong, H. (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol. 179, 101–115) proposed that this essential flipping step is accomplished via a complex trafficking itinerary; GlcCer is moved from the cytoplasmic face of the Golgi to the endoplasmic reticulum (ER) by FAPP2, a cytoplasmic lipid transfer protein, flipped across the ER membrane, then delivered to the lumen of the Golgi complex by vesicular transport. We now report biochemical reconstitution studies to analyze GlcCer flipping at the ER. Using proteoliposomes reconstituted from Triton X-100-solubilized rat liver ER membrane proteins, we demonstrate rapid (t½ < 20 s), ATP-independent flip-flop of N-(6-((7-nitro-2–1,3-benzoxadiazol-4-yl)amino)hexanoyl)-d-glucosyl-β1–1′-sphingosine, a fluorescent GlcCer analog. Further studies involving protein modification, biochemical fractionation, and analyses of flip-flop in proteoliposomes reconstituted with ER membrane proteins from yeast indicate that GlcCer translocation is facilitated by well characterized ER phospholipid flippases that remain to be identified at the molecular level. By reason of their abundance and membrane bending activity, we considered that the ER reticulons and the related Yop1 protein could function as phospholipid-GlcCer flippases. Direct tests showed that these proteins have no flippase activity. PMID:22427661

  6. Concanavalin A binds to the endoplasmic reticulum and the starch grain surface of root statocytes.

    PubMed

    Schneider, E M; Sievers, A

    1981-07-01

    Using Concanavalin A (Con A) labeled with fluorescein isothiocyanate, we studied the intracellular localization of receptor molecules in the calyptra of 24-h dark-grown cress roots. Fixation in glutaraldehyde gave positive binding of the distal complex of the endoplasmic reticulum and the nucelus in the statocytes. In contrast, fixation in formaldehyde did not preserve the membrane-associated receptors, but revealed Con A affinity of the starch grain surface within the amyloplasts. Treatment of glutaraldehydefixed sections with non-ionic detergents led to partial solubilization of membrane components: the starch grain surface turned positive, though the positive binding of Con A to the endoplasmic reticulum and the nucleus remained unaffected. We therefore conclude that the Con A receptor in the membrane is a glycoprotein tightly inserted in other components of the compartment.

  7. Mammalian vesicle trafficking proteins of the endoplasmic reticulum and Golgi apparatus.

    PubMed

    Hay, J C; Hirling, H; Scheller, R H

    1996-03-08

    Vesicle traffic propagates and maintains distinct subcellular compartments and routes secretory products from their site of synthesis to their final destinations. As a basis for the specificity of vesicular transport reactions, each step in the secretory pathway appears to be handled by a distinct set of evolutionarily conserved proteins. Mammalian proteins responsible for vesicle trafficking at early steps in the secretory pathway are not well understood. In this report, we describe rat sec22 (rsec22) and rat bet1 (rbet1), mammalian sequence homologs of yeast proteins identified as mediators of endoplasmic reticulum-to-Golgi protein transport. rsec22 and rbet1 were expressed widely in mammalian tissues, as anticipated for proteins involved in fundamental membrane trafficking reactions. Recombinant rsec22 and rbet1 proteins behaved as integral membrane components of 28 and 18 kDa, respectively, consistent with their primary structures, which contain a predicted transmembrane domain at or near the carboxyl terminus. Recombinant rsec22 and rbet1 had distinct subcellular localizations, with rsec22 residing on endoplasmic reticulum membranes and rbet1 found on Golgi membranes. Studies with brefeldin A and nocodazole indicated that rbet1 function might involve interaction with or retention in the intermediate compartment. The distinct localizations of rsec22 and rbet1 may reflect their participation in opposite directions of membrane flow between the endoplasmic reticulum and Golgi apparatus.

  8. Association of Legionella pneumophila with the macrophage endoplasmic reticulum.

    PubMed Central

    Swanson, M S; Isberg, R R

    1995-01-01

    Legionella pneumophila replicates within a membrane-bounded compartment that is studded with ribosomes. In this study we investigated whether these ribosomes originate from the cytoplasmic pool or are associated with host endoplasmic reticulum (ER). Immunofluorescence and electron microscopic localization studies of ER proteins in macrophages infected with L. pneumophila indicated that the bacteria reside in a compartment surrounded by ER. An L. pneumophila mutant that grows slowly in macrophages was slow to associate with host ER, providing genetic evidence in support of the hypothesis that this specialized vacuole is required for intracellular bacterial growth. Ultrastructural studies, in which the ER luminal protein BiP was labeled by immunoperoxidase cytochemistry, revealed that L. pneumophila replication vacuoles resemble nascent autophagosomes. Furthermore, short-term amino acid starvation of macrophages, which stimulated host autophagosomes. Furthermore, short-term amino acid starvation of macrophages, which stimulated host autophagy, increased association of the bacteria with the ER and enhanced bacterial growth. These results are compatible with the hypothesis that L. pneumophila exploits the autophagy machinery of macrophages to establish an intracellular niche favorable for replication. PMID:7642298

  9. Coordination of Endoplasmic Reticulum (ER) Signaling During Maize Seed Development

    SciTech Connect

    Boston, Rebecca S.

    2010-11-20

    Seed storage reserves represent one of the most important sources of renewable fixed carbon and nitrogen found in nature. Seeds are well-adapted for diverting metabolic resources to synthesize storage proteins as well as enzymes and structural proteins needed for their transport and packaging into membrane bound storage protein bodies. Our underlying hypothesis is that the endoplasmic reticulum (ER) stress response provides the critical cellular control of metabolic flux required for optimal accumulation of storage reserves in seeds. This highly conserved response is a cellular mechanism to monitor the protein folding environment of the ER and restore homeostasis in the presence of unfolded or misfolded proteins. In seeds, deposition of storage proteins in protein bodies is a highly specialized process that takes place even in the presence of mutant proteins that no longer fold and package properly. The capacity of the ER to deposit these aberrant proteins in protein bodies during a period that extends several weeks provides an excellent model for deconvoluting the ER stress response of plants. We have focused in this project on the means by which the ER senses and responds to functional perturbations and the underlying intracellular communication that occurs among biosynthetic, trafficking and degradative pathways for proteins during seed development.

  10. The Role of the Endoplasmic Reticulum in Peroxisome Biogenesis

    PubMed Central

    Dimitrov, Lazar; Lam, Sheung Kwan; Schekman, Randy

    2013-01-01

    Peroxisomes are essential cellular organelles involved in lipid metabolism. Patients affected by severe peroxisome biogenesis disorders rarely survive their first year. Genetic screens in several model organisms have identified more than 30 PEX genes that are required for the formation of functional peroxisomes. Despite significant work on the PEX genes, the biogenic origin of peroxisomes remains controversial. For at least two decades, the prevailing model postulated that peroxisomes propagate by growth and fission of preexisting peroxisomes. In this review, we focus on the recent evidence supporting a new, semiautonomous model of peroxisomal biogenesis. According to this model, peroxisomal membrane proteins (PMPs) traffic from the endoplasmic reticulum (ER) to the peroxisome by a vesicular budding, targeting, and fusion process while peroxisomal matrix proteins are imported into the organelle by an autonomous, posttranslational mechanism. We highlight the contradictory conclusions reached to answer the question of how PMPs are inserted into the ER. We then review what we know and what still remains to be elucidated about the mechanism of PMP exit from the ER and the contribution of preperoxisomal vesicles to mature peroxisomes. Finally, we discuss discrepancies in our understanding of de novo peroxisome biogenesis in wild-type cells. We anticipate that resolving these key issues will lead to a more complete picture of peroxisome biogenesis. PMID:23637287

  11. The role of the endoplasmic reticulum in peroxisome biogenesis.

    PubMed

    Dimitrov, Lazar; Lam, Sheung Kwan; Schekman, Randy

    2013-05-01

    Peroxisomes are essential cellular organelles involved in lipid metabolism. Patients affected by severe peroxisome biogenesis disorders rarely survive their first year. Genetic screens in several model organisms have identified more than 30 PEX genes that are required for the formation of functional peroxisomes. Despite significant work on the PEX genes, the biogenic origin of peroxisomes remains controversial. For at least two decades, the prevailing model postulated that peroxisomes propagate by growth and fission of preexisting peroxisomes. In this review, we focus on the recent evidence supporting a new, semiautonomous model of peroxisomal biogenesis. According to this model, peroxisomal membrane proteins (PMPs) traffic from the endoplasmic reticulum (ER) to the peroxisome by a vesicular budding, targeting, and fusion process while peroxisomal matrix proteins are imported into the organelle by an autonomous, posttranslational mechanism. We highlight the contradictory conclusions reached to answer the question of how PMPs are inserted into the ER. We then review what we know and what still remains to be elucidated about the mechanism of PMP exit from the ER and the contribution of preperoxisomal vesicles to mature peroxisomes. Finally, we discuss discrepancies in our understanding of de novo peroxisome biogenesis in wild-type cells. We anticipate that resolving these key issues will lead to a more complete picture of peroxisome biogenesis.

  12. Live cell imaging of protein dislocation from the endoplasmic reticulum.

    PubMed

    Zhong, Yongwang; Fang, Shengyun

    2012-08-10

    Misfolded proteins in the endoplasmic reticulum (ER) are dislocated to the cytosol to be degraded by the proteasomes. Various plant and bacterial toxins and certain viruses hijack this dislocation pathway to exert their toxicity or to infect cells. In this study, we report a dislocation-dependent reconstituted GFP (drGFP) assay that allows, for the first time, imaging proteins dislocated from the ER lumen to the cytosol in living cells. Our results indicate that both luminal and membrane-spanning ER proteins can be fully dislocated from the ER to the cytosol. By combining the drGFP assay with RNAi or chemical inhibitors of proteins in the Hrd1 ubiquitin ligase complex, we demonstrate that the Sel1L, Hrd1, p97/VCP, and importin β proteins are required for the dislocation of misfolded luminal α-1 antitrypsin. The strategy described in this work is broadly applicable to the study of other types of transmembrane transport of proteins and likely also of viruses and toxins in living cells.

  13. Small GTPases and Brucella entry into the endoplasmic reticulum.

    PubMed

    de Bolle, Xavier; Letesson, Jean-Jacques; Gorvel, Jean-Pierre

    2012-12-01

    A key determinant for intracellular pathogenic bacteria to ensure their virulence within host cells is their ability to bypass the endocytic pathway and to reach a safe niche of replication. In the case of Brucella, the bacterium targets the ER (endoplasmic reticulum) to create a replicating niche called the BCV (Brucella-containing vacuole). The ER is a suitable strategic place for pathogenic Brucella. Indeed, bacteria can be hidden from host cell defences to persist within the host, and they can take advantage of the membrane reservoir delivered by the ER to replicate. Interaction with the ER leads to the presence on the BCV of the GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and the small GTPase Rab2 known to be located on secretory vesicles that traffic between the ER and the Golgi apparatus. GAPDH and the small GTPase Rab2 controls Brucella replication at late times post-infection. A specific interaction between the human small GTPase Rab2 and a Brucella spp. protein named RicA was identified. Altered kinetics of intracellular trafficking and faster proliferation of the Brucella abortus ΔricA mutant was observed compared with the wild-type strain. RicA is the first reported effector with a proposed function for B. abortus.

  14. Endoplasmic reticulum-mitochondria calcium signaling in hepatic metabolic diseases.

    PubMed

    Rieusset, Jennifer

    2017-06-01

    The liver plays a central role in glucose homeostasis, and both metabolic inflexibility and insulin resistance predispose to the development of hepatic metabolic diseases. Mitochondria and endoplasmic reticulum (ER), which play a key role in the control of hepatic metabolism, also interact at contact points defined as mitochondria-associated membranes (MAM), in order to exchange metabolites and calcium (Ca(2+)) and regulate cellular homeostasis and signaling. Here, we overview the role of the liver in the control of glucose homeostasis, mainly focusing on the independent involvement of mitochondria, ER and Ca(2+) signaling in both healthy and pathological contexts. Then we focus on recent data highlighting MAM as important hubs for hormone and nutrient signaling in the liver, thus adapting mitochondria physiology and cellular metabolism to energy availability. Lastly, we discuss how chronic ER-mitochondria miscommunication could participate to hepatic metabolic diseases, pointing MAM interface as a potential therapeutic target for metabolic disorders. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Causes and consequences of endoplasmic reticulum stress in rheumatic disease.

    PubMed

    Navid, Fatemeh; Colbert, Robert A

    2017-01-01

    Rheumatic diseases represent a heterogeneous group of inflammatory conditions, many of which involve chronic activation of both innate and adaptive immune responses by multiple genetic and environmental factors. These immune responses involve the secretion of excessive amounts of cytokines and other signalling mediators by activated immune cells. The endoplasmic reticulum (ER) is the cellular organelle that directs the folding, processing and trafficking of membrane-bound and secreted proteins, including many key components of the immune response. Maintaining homeostasis in the ER is critical to cell function and survival. Consequently, elaborate mechanisms have evolved to sense and respond to ER stress through three main signalling pathways that together comprise the unfolded protein response (UPR). Activation of the UPR can rapidly resolve the accumulation of misfolded proteins, direct permanent changes in the size and function of cells during differentiation, and critically influence the immune response and inflammation. Recognition of the importance of ER stress and UPR signalling pathways in normal and dysregulated immune responses has greatly increased in the past few years. This Review discusses several settings in which ER stress contributes to the pathogenesis of rheumatic diseases and considers some of the therapeutic opportunities that these discoveries provide.

  16. MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2.

    PubMed

    Sugiura, Ayumu; Nagashima, Shun; Tokuyama, Takeshi; Amo, Taku; Matsuki, Yohei; Ishido, Satoshi; Kudo, Yoshihisa; McBride, Heidi M; Fukuda, Toshifumi; Matsushita, Nobuko; Inatome, Ryoko; Yanagi, Shigeru

    2013-07-11

    The mitochondrial ubiquitin ligase MITOL regulates mitochondrial dynamics. We report here that MITOL regulates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) domain formation through mitofusin2 (Mfn2). MITOL interacts with and ubiquitinates mitochondrial Mfn2, but not ER-associated Mfn2. Mutation analysis identified a specific interaction between MITOL C-terminal domain and Mfn2 HR1 domain. MITOL mediated lysine-63-linked polyubiquitin chain addition to Mfn2, but not its proteasomal degradation. MITOL knockdown inhibited Mfn2 complex formation and caused Mfn2 mislocalization and MAM dysfunction. Sucrose-density gradient centrifugation and blue native PAGE retardation assay demonstrated that MITOL is required for GTP-dependent Mfn2 oligomerization. MITOL knockdown reduced Mfn2 GTP binding, resulting in reduced GTP hydrolysis. We identified K192 in the GTPase domain of Mfn2 as a major ubiquitination site for MITOL. A K192R mutation blocked oligomerization even in the presence of GTP. Taken together, these results suggested that MITOL regulates ER tethering to mitochondria by activating Mfn2 via K192 ubiquitination. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Proteostasis: bad news and good news from the endoplasmic reticulum.

    PubMed

    Noack, Julia; Brambilla Pisoni, Giorgia; Molinari, Maurizio

    2014-01-01

    The endoplasmic reticulum (ER) is an intracellular compartment dedicated to the synthesis and maturation of secretory and membrane proteins, totalling about 30% of the total eukaryotic cells proteome. The capacity to produce correctly folded polypeptides and to transport them to their correct intra- or extracellular destinations relies on proteostasis networks that regulate and balance the activity of protein folding, quality control, transport and degradation machineries. Nutrient and environmental changes, pathogen infection aging and, more relevant for the topics discussed in this review, mutations that impair attainment of the correct 3D structure of nascent polypeptide chains may compromise the activity of the proteostasis networks with devastating consequences on cells, organs and organisms' homeostasis. Here we present a review of mechanisms regulating folding and quality control of proteins expressed in the ER, and we describe the protein degradation and the ER stress pathways activated by the expression of misfolded proteins in the ER lumen. Finally, we highlight select examples of proteopathies (also known as conformational disorders or protein misfolding diseases) caused by protein misfolding in the ER and/or affecting cellular proteostasis and therapeutic interventions that might alleviate or cure the disease symptoms.

  18. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  19. A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum.

    PubMed

    Schamel, Wolfgang W A; Kuppig, Stephan; Becker, Bernd; Gimborn, Kerstin; Hauri, Hans-Peter; Reth, Michael

    2003-08-19

    B cell antigen receptors (BCRs) are multimeric transmembrane protein complexes comprising membrane-bound immunoglobulins (mIgs) and Ig-alpha/Ig-beta heterodimers. In most cases, transport of mIgs from the endoplasmic reticulum (ER) to the cell surface requires assembly with the Ig-alpha/Ig-beta subunits. In addition to Ig-alpha/Ig-beta, mIg molecules also bind two ER-resident membrane proteins, BAP29 and BAP31, and the chaperone heavy chain binding protein (BiP). In this article, we show that neither Ig-alpha/Ig-beta nor BAP29/BAP31 nor BiP bind simultaneously to the same mIgD molecule. Blue native PAGE revealed that only a minor fraction of intracellular mIgD is associated with high-molecular-weight BAP29/BAP31 complexes. BAP-binding to mIgs was found to correlate with ER retention of chimeric mIgD molecules. On high-level expression in Drosophila melanogaster S2 cells, mIgD molecules were detected on the cell surface in the absence of Ig-alpha/Ig-beta. This aberrant transport was prevented by coexpression of BAP29 and BAP31. Thus, BAP complexes contribute to ER retention of mIg complexes that are not bound to Ig-alpha/Ig-beta. Furthermore, the mechanism of ER retention of both BAP31 and mIgD is not through retrieval from a post-ER compartment, but true ER retention. In conclusion, BAP29 and BAP31 might be the long sought after retention proteins and/or chaperones that act on transmembrane regions of various proteins.

  20. The endoplasmic reticulum stress response: A link with tuberculosis?

    PubMed

    Cui, Yongyong; Zhao, Deming; Barrow, Paul Andrew; Zhou, Xiangmei

    2016-03-01

    Tuberculosis (TB) remains a major cause of mortality and morbidity in the worldwide. The endoplasmic-reticulum stress (ERS) response constitutes a cellular process that is triggered by mycobacterial infection that disturbs the folding of proteins in the endoplasmic reticulum (ER). The unfolded protein response (UPR) is induced to suspend the synthesis of early proteins and reduce the accumulation of unfolded- or misfolded proteins in the ER restoring normal physiological cell function. Prolonged or uncontrolled ERS leads to the activation of three signaling pathways (IRE1, PERK and ATF6) which directs the cell towards apoptosis. The absence of this process facilitates spread of the mycobacteria within the body. We summarize here recent advances in understanding the signaling pathway diversity governing ERS in relation to TB.

  1. CDIP1-BAP31 complex transduces apoptotic signals from endoplasmic reticulum to mitochondria under endoplasmic reticulum stress.

    PubMed

    Namba, Takushi; Tian, Fang; Chu, Kiki; Hwang, So-Young; Yoon, Kyoung Wan; Byun, Sanguine; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W

    2013-10-31

    Resolved endoplasmic reticulum (ER) stress response is essential for intracellular homeostatic balance, but unsettled ER stress can lead to apoptosis. Here, we show that a proapoptotic p53 target, CDIP1, acts as a key signal transducer of ER-stress-mediated apoptosis. We identify B-cell-receptor-associated protein 31 (BAP31) as an interacting partner of CDIP1. Upon ER stress, CDIP1 is induced and enhances an association with BAP31 at the ER membrane. We also show that CDIP1 binding to BAP31 is required for BAP31 cleavage upon ER stress and for BAP31-Bcl-2 association. The recruitment of Bcl-2 to the BAP31-CDIP1 complex, as well as CDIP1-dependent truncated Bid (tBid) and caspase-8 activation, contributes to BAX oligomerization. Genetic knockout of CDIP1 in mice leads to impaired response to ER-stress-mediated apoptosis. Altogether, our data demonstrate that the CDIP1/BAP31-mediated regulation of mitochondrial apoptosis pathway represents a mechanism for establishing an ER-mitochondrial crosstalk for ER-stress-mediated apoptosis signaling.

  2. Fluoride induced endoplasmic reticulum stress and calcium overload in ameloblasts.

    PubMed

    Zhang, Ying; Zhang, KaiQiang; Ma, Lin; Gu, HeFeng; Li, Jian; Lei, Shuang

    2016-09-01

    The aim of the study was to evaluate the involvement of endoplasmic reticulum stress and intracellular calcium overload on the development of dental fluorosis. We cultured and exposed rat ameloblast HAT-7 cells to various concentrations of fluoride and measured apoptosis with flow cytometry and intracellular Ca2+ changes using confocal microscopy, investigated the protein levels of GRP78, calreticulin, XBP1 and CHOP by western blotting, and their transcriptional levels with RT-PCR. We also created an in vivo model of dental fluorosis by exposing animals to various concentrations of fluoride. Subsequently, thin dental tissue slices were analyzed with H&E staining, immunohistochemical staining, and transmission electron microscopy, TUNEL assay was also performed on dental tissue slices for assessment of apoptosis. High fluoride concentration was associated with decreased ameloblast proliferation, elevated ameloblast apoptosis, and increased intracellular Ca2+ in vitro. The translation and transcription of the proteins associated with endoplasmic reticulum stress were significantly elevated with high concentrations of fluoride. Based on immunohistochemical staining, these proteins were also highly expressed in animals exposed to high fluoride concentrations. Histologically, we found significant fluorosis-like changes in tissues from animals exposed to high fluoride concentrations. Transmission electron microscopy cytology indicated significant apoptotic changes in tissues exposed to high concentrations of fluoride. These results indicate that exposure to high levels of fluoride led to endoplasmic reticulum stress which induced apoptosis in cultured ameloblasts and in vivo rat model, suggesting an important role of calcium overload and endoplasmic reticulum stress triggered by high concentrations of fluoride in the development of dental fluorosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. [Collagen abnormalities and endoplasmic reticulum stress in bone and cartilage].

    PubMed

    Furuichi, Tatsuya; Nishimura, Gen; Ikegawa, Shiro

    2013-11-01

    There are many steps in the post-translational modification of collagen molecules. When abnormality occurs in some step, the unfolded collagen molecules are accumulated in the endoplasmic reticulum (ER) , leading to ER stress. ER stress also occurs downstream of the defective modification of collagen in bone and cartilage. ER stress-induced apoptosis or ER stress response without inducing apoptosis may be associated with the pathogenesis of genetic collagen disorders in bone and cartilage.

  4. Regulation of lipid metabolism via a connection between the endoplasmic reticulum and lipid droplets.

    PubMed

    Suzuki, Michitaka

    2017-01-01

    Lipid droplets (LDs) are ubiquitous organelles that store and supply lipids to regulate cellular lipid homeostasis. Fatty acids are packaged as triglyceride and cholesterol ester into endoplasmic reticulum (ER) membranes to synthesize LDs. Cytosolic LDs move dynamically and interact with organelles, including other LDs. In this process, functional proteins for metabolism are also transferred to LDs. In this review, I focus on interactions between the ER and LDs related to lipid metabolism.

  5. Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells

    NASA Technical Reports Server (NTRS)

    Zheng, H. Q.; Staehelin, L. A.

    2001-01-01

    The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.

  6. Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells

    NASA Technical Reports Server (NTRS)

    Zheng, H. Q.; Staehelin, L. A.

    2001-01-01

    The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the identification of a specialized form of ER, termed "nodal ER," which is found exclusively in columella cells; the demonstration that the bulk of the ER is organized in the form of a tubular network that is confined to a peripheral layer under the plasma membrane; and the discovery that this ER-rich peripheral region excludes Golgi stacks, vacuoles, and amyloplasts but not mitochondria. Nodal ER domains consist of an approximately 100-nm-diameter central rod composed of oblong subunits to which usually seven sheets of rough ER are attached along their margins. These domains form patches at the interface between the peripheral ER network and the ER-free central region of the cells, and they occupy defined positions within central and flanking columella cells. Over one-half of the nodal ER domains are located along the outer tangential walls of the flanking cells. Cytochalasin D and latrunculin A cause an increase in size and a decrease in numbers of nodal ER domains. We postulate that the nodal ER membranes locally modulate the gravisensing signals produced by the sedimenting amyloplasts, and that the confinement of all ER membranes to the cell periphery serves to enhance the sedimentability of the amyloplasts in the central region of columella cells.

  7. Endoplasmic reticulum stress: implications for inflammatory bowel disease pathogenesis

    PubMed Central

    Kaser, Arthur; Martínez-Naves, Eduardo; Blumberg, Richard S.

    2015-01-01

    Purpose of review To provide an overview of the emerging role of cellular stress responses in inflammatory bowel disease (IBD). Recent findings The unfolded protein response (UPR) is a primitive cellular pathway that is engaged when responding to endoplasmic reticulum stress and regulates autophagy. Highly secretory cells such as Paneth cells and goblet cells in the intestines are particularly susceptible to endoplasmic reticulum stress and are exceedingly dependent upon a properly functioning UPR to maintain cellular viability and homeostasis. Primary genetic abnormalities within the components of the UPR (e.g. XBP1, ARG2, ORMDL3), genes that encode proteins reliant upon a robust secretory pathway (e.g. MUC2, HLAB27) and environmental factors that create disturbances in the UPR (e.g. microbial products and inflammatory cytokines) are important factors in the primary development and/or perpetuation of intestinal inflammation. Summary Endoplasmic reticulum stress is an important new pathway involved in the development of intestinal inflammation associated with IBD and likely other intestinal inflammatory disorders. PMID:20495455

  8. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy

    PubMed Central

    Montague, Karli; Malik, Bilal; Gray, Anna L.; La Spada, Albert R.; Hanna, Michael G.; Szabadkai, Gyorgy

    2014-01-01

    Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington’s disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases. PMID:24898351

  9. Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death.

    PubMed

    Chandra, Dhyan; Choy, Grace; Deng, Xiaodi; Bhatia, Bobby; Daniel, Peter; Tang, Dean G

    2004-08-01

    It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca(2+)-dependent mechanism.

  10. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation.

    PubMed

    Hayashi-Nishino, Mitsuko; Fujita, Naonobu; Noda, Takeshi; Yamaguchi, Akihito; Yoshimori, Tamotsu; Yamamoto, Akitsugu

    2009-12-01

    Autophagy is a bulk degradation process in eukaryotic cells and has fundamental roles in cellular homeostasis.The origin and source of autophagosomal membranes are long-standing questions in the field. Using electron microscopy, we show that, in mammalian culture cells, the endoplasmic reticulum (ER) associates with early autophagic structures called isolation membranes (IMs). Overexpression of an Atg4B mutant, which causes defects in autophagosome formation, induces the accumulation of ER-IM complexes. Electron tomography revealed that the ER-IM complex appears as a subdomain of the ER that formed a cradle encircling the IM, and showed that both ER and isolation membranes are interconnected.

  11. Endoplasmic reticulum quality control and apoptosis.

    PubMed

    Groenendyk, Jody; Michalak, Marek

    2005-01-01

    The ER is one of the most important folding compartments within the cell, as well as an intracellular Ca(2+) storage organelle and it contains a number of Ca(2+) regulated molecular chaperones responsible for the proper folding of glycosylated as well as non-glycosylated proteins. The luminal environment of the ER contains Ca(2+) which is involved in regulating chaperones such as calnexin and calreticulin, as well as apoptotic proteins caspase-12 and Bap31, which may play an important role in determining cellular sensitivity to ER stress and apoptosis. The ER quality control system consists of several molecular chaperones, including calnexin, that assist in properly folding proteins and transporting them through the ER as well as sensing misfolded proteins, attempting to refold them and if this is not possible, targeting them for degradation. Accumulation of misfolded protein in the ER leads to activation of genes responsible for the expression of ER chaperones. The UPR mechanism involves transcriptional activation of chaperones by the membrane-localized transcription factor ATF6, in conjunction with the ER membrane kinase IRE1, as well as translational repression of protein synthesis by another ER membrane kinase PERK. When accumulation of misfolded protein becomes toxic, apoptosis is triggered, potentially with IRE1 involved in signaling via caspase-12. Both the extrinsic and intrinsic apoptotic pathways appear to culminate in the activation of caspases and this results in the recruitment of mitochondria in an essential amplifying manner. Bap31 may direct pro-apoptotic crosstalk between the ER and the mitochondria via Ca(2+) in conjunction with caspase-12 and calnexin. Accordingly, ER stress and the resultant Ca(2+) release must be very carefully regulated because of their effects in virtually all areas of cell function.

  12. Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction.

    PubMed

    Fu, Hai Ying; Sanada, Shoji; Matsuzaki, Takashi; Liao, Yulin; Okuda, Keiji; Yamato, Masaki; Tsuchida, Shota; Araki, Ryo; Asano, Yoshihiro; Asanuma, Hiroshi; Asakura, Masanori; French, Brent A; Sakata, Yasushi; Kitakaze, Masafumi; Minamino, Tetsuo

    2016-03-04

    Doxorubicin is an effective chemotherapeutic agent for cancer, but its use is often limited by cardiotoxicity. Doxorubicin causes endoplasmic reticulum (ER) dilation in cardiomyocytes, and we have demonstrated that ER stress plays important roles in the pathophysiology of heart failure. We evaluated the role of ER stress in doxorubicin-induced cardiotoxicity and examined whether the chemical ER chaperone could prevent doxorubicin-induced cardiac dysfunction. We confirmed that doxorubicin caused ER dilation in mouse hearts, indicating that doxorubicin may affect ER function. Doxorubicin activated an ER transmembrane stress sensor, activating transcription factor 6, in cultured cardiomyocytes and mouse hearts. However, doxorubicin suppressed the expression of genes downstream of activating transcription factor 6, including X-box binding protein 1. The decreased levels of X-box binding protein 1 resulted in a failure to induce the expression of the ER chaperone glucose-regulated protein 78 which plays a major role in adaptive responses to ER stress. In addition, doxorubicin activated caspase-12, an ER membrane-resident apoptotic molecule, which can lead to cardiomyocyte apoptosis and cardiac dysfunction. Cardiac-specific overexpression of glucose-regulated protein 78 by adeno-associated virus 9 or the administration of the chemical ER chaperone 4-phenylbutyrate attenuated caspase-12 cleavage, and alleviated cardiac apoptosis and dysfunction induced by doxorubicin. Doxorubicin activated the ER stress-initiated apoptotic response without inducing the ER chaperone glucose-regulated protein 78, further augmenting ER stress in mouse hearts. Cardiac-specific overexpression of glucose-regulated protein 78 or the administration of the chemical ER chaperone alleviated the cardiac dysfunction induced by doxorubicin and may facilitate the safe use of doxorubicin for cancer treatment. © 2016 American Heart Association, Inc.

  13. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling.

    PubMed

    Filadi, Riccardo; Greotti, Elisa; Turacchio, Gabriele; Luini, Alberto; Pozzan, Tullio; Pizzo, Paola

    2015-04-28

    The organization and mutual interactions between endoplasmic reticulum (ER) and mitochondria modulate key aspects of cell pathophysiology. Several proteins have been suggested to be involved in keeping ER and mitochondria at a correct distance. Among them, in mammalian cells, mitofusin 2 (Mfn2), located on both the outer mitochondrial membrane and the ER surface, has been proposed to be a physical tether between the two organelles, forming homotypic interactions and heterocomplexes with its homolog Mfn1. Recently, this widely accepted model has been challenged using quantitative EM analysis. Using a multiplicity of morphological, biochemical, functional, and genetic approaches, we demonstrate that Mfn2 ablation increases the structural and functional ER-mitochondria coupling. In particular, we show that in different cell types Mfn2 ablation or silencing increases the close contacts between the two organelles and strengthens the efficacy of inositol trisphosphate (IP3)-induced Ca(2+) transfer from the ER to mitochondria, sensitizing cells to a mitochondrial Ca(2+) overload-dependent death. We also show that the previously reported discrepancy between electron and fluorescence microscopy data on ER-mitochondria proximity in Mfn2-ablated cells is only apparent. By using a different type of morphological analysis of fluorescent images that takes into account (and corrects for) the gross modifications in mitochondrial shape resulting from Mfn2 ablation, we demonstrate that an increased proximity between the organelles is also observed by confocal microscopy when Mfn2 levels are reduced. Based on these results, we propose a new model for ER-mitochondria juxtaposition in which Mfn2 works as a tethering antagonist preventing an excessive, potentially toxic, proximity between the two organelles.

  14. Protein misfolding in the endoplasmic reticulum as a conduit to human disease.

    PubMed

    Wang, Miao; Kaufman, Randal J

    2016-01-21

    In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins - known as endoplasmic reticulum stress - and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases.

  15. Cell Cycle-dependent Changes in Localization and Phosphorylation of the Plasma Membrane Kv2.1 K+ Channel Impact Endoplasmic Reticulum Membrane Contact Sites in COS-1 Cells.

    PubMed

    Cobb, Melanie M; Austin, Daniel C; Sack, Jon T; Trimmer, James S

    2015-12-04

    The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic β cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation.

  16. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injury

    PubMed Central

    Sun, Guo-zhu; Gao, Fen-fei; Zhao, Zong-mao; Sun, Hai; Xu, Wei; Wu, Li-wei; He, Yong-chang

    2016-01-01

    Neuronal apoptosis is mediated by intrinsic and extrinsic signaling pathways such as the membrane-mediated, mitochondrial, and endoplasmic reticulum stress pathways. Few studies have examined the endoplasmic reticulum-mediated apoptosis pathway in the penumbra after traumatic brain injury, and it remains unclear whether endoplasmic reticulum stress can activate the caspase-12-dependent apoptotic pathway in the traumatic penumbra. Here, we established rat models of fluid percussion-induced traumatic brain injury and found that protein expression of caspase-12, caspase-3 and the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein increased in the traumatic penumbra 6 hours after injury and peaked at 24 hours. Furthermore, numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the traumatic penumbra also reached peak levels 24 hours after injury. These findings suggest that caspase-12-mediated endoplasmic reticulum-related apoptosis is activated in the traumatic penumbra, and may play an important role in the pathophysiology of secondary brain injury. PMID:27651773

  17. Endoplasmic reticulum stress: an unrecognized actor in solid organ transplantation.

    PubMed

    Pallet, Nicolas; Fougeray, Sophie; Beaune, Philippe; Legendre, Christophe; Thervet, Eric; Anglicheau, Dany

    2009-09-15

    Endoplasmic reticulum (ER) stress is an adaptive response to the accumulation of misfolded proteins within the ER, which can trigger cell dedifferentiation and cell suicide. Increasing evidences suggest its implication in mediating allograft injury. Herein, we summarize the mechanisms of ER stress and discuss its implication in allograft injury. Increasing our understanding of the cellular and molecular mechanisms of acute and chronic allograft damages could lead to the development of new biomarkers and to the discovery of new therapeutic strategies to prevent the initiation of graft dysfunction or to promote the tissue regeneration after injury.

  18. Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics.

    PubMed

    Pizzo, Paola; Pozzan, Tullio

    2007-10-01

    Mitochondria and endoplasmic reticulum (ER) have different roles in living cells but they interact both physically and functionally. A key aspect of the mitochondria-ER relationship is the modulation of Ca(2+) signaling during cell activation, which thus affects a variety of physiological processes. We focus here on the molecular aspects that control the dynamics of the organelle-organelle interaction and their relationship with Ca(2+) signals, also discussing the consequences that these phenomena have, not only for cell physiology but also in the control of cell death.

  19. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization.

    PubMed

    Sun, Wenxiang; Li, Yang; Chen, Lu; Chen, Huihui; You, Fuping; Zhou, Xiang; Zhou, Yi; Zhai, Zhonghe; Chen, Danying; Jiang, Zhengfan

    2009-05-26

    We report here the identification and characterization of a protein, ERIS, an endoplasmic reticulum (ER) IFN stimulator, which is a strong type I IFN stimulator and plays a pivotal role in response to both non-self-cytosolic RNA and dsDNA. ERIS (also known as STING or MITA) resided exclusively on ER membrane. The ER retention/retrieval sequence RIR was found to be critical to retain the protein on ER membrane and to maintain its integrity. ERIS was dimerized on innate immune challenges. Coumermycin-induced ERIS dimerization led to strong and fast IFN induction, suggesting that dimerization of ERIS was critical for self-activation and subsequent downstream signaling.

  20. Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases

    PubMed Central

    Liu, Mei-qing; Chen, Zhe; Chen, Lin-xi

    2016-01-01

    Endoplasmic reticulum is a principal organelle responsible for folding, post-translational modifications and transport of secretory, luminal and membrane proteins, thus palys an important rale in maintaining cellular homeostasis. Endoplasmic reticulum stress (ERS) is a condition that is accelerated by accumulation of unfolded/misfolded proteins after endoplasmic reticulum environment disturbance, triggered by a variety of physiological and pathological factors, such as nutrient deprivation, altered glycosylation, calcium depletion, oxidative stress, DNA damage and energy disturbance, etc. ERS may initiate the unfolded protein response (UPR) to restore cellular homeostasis or lead to apoptosis. Numerous studies have clarified the link between ERS and cardiovascular diseases. This review focuses on ERS-associated molecular mechanisms that participate in physiological and pathophysiological processes of heart and blood vessels. In addition, a number of drugs that regulate ERS was introduced, which may be used to treat cardiovascular diseases. This review may open new avenues for studying the pathogenesis of cardiovascular diseases and discovering novel drugs targeting ERS. PMID:26838072

  1. Endoplasmic Reticulum Stress Mediates Methamphetamine-Induced Blood-Brain Barrier Damage.

    PubMed

    Qie, Xiaojuan; Wen, Di; Guo, Hongyan; Xu, Guanjie; Liu, Shuai; Shen, Qianchao; Liu, Yi; Zhang, Wenfang; Cong, Bin; Ma, Chunling

    2017-01-01

    Methamphetamine (METH) abuse causes serious health problems worldwide, and long-term use of METH disrupts the blood-brain barrier (BBB). Herein, we explored the potential mechanism of endoplasmic reticulum (ER) stress in METH-induced BBB endothelial cell damage in vitro and the therapeutic potential of endoplasmic reticulum stress inhibitors for METH-induced BBB disruption in C57BL/6J mice. Exposure of immortalized BMVEC (bEnd.3) cells to METH significantly decreased cell viability, induced apoptosis, and diminished the tightness of cell monolayers. METH activated ER stress sensor proteins, including PERK, ATF6, and IRE1, and upregulated the pro-apoptotic protein CHOP. The ER stress inhibitors significantly blocked the upregulation of CHOP. Knockdown of CHOP protected bEnd.3 cells from METH-induced cytotoxicity. Furthermore, METH elevated the production of reactive oxygen species (ROS) and induced the dysfunction of mitochondrial characterized by a Bcl2/Bax ratio decrease, mitochondrial membrane potential collapse, and cytochrome c. ER stress release was partially reversed by ROS inhibition, and cytochrome c release was partially blocked by knockdown of CHOP. Finally, PBA significantly attenuated METH-induced sodium fluorescein (NaFluo) and Evans Blue leakage, as well as tight junction protein loss, in C57BL/6J mice. These data suggest that BBB endothelial cell damage was caused by METH-induced endoplasmic reticulum stress, which further induced mitochondrial dysfunction, and that PBA was an effective treatment for METH-induced BBB disruption.

  2. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity.

    PubMed

    Brignac-Huber, Lauren M; Park, Ji Won; Reed, James R; Backes, Wayne L

    2016-12-01

    Cytochrome P450s (P450s) comprise a superfamily of proteins that catalyze numerous monooxygenase reactions in animals, plants, and bacteria. In eukaryotic organisms, these proteins not only carry out reactions necessary for the metabolism of endogenous compounds, but they are also important in the oxidation of exogenous drugs and other foreign compounds. Eukaryotic P450 system proteins generally reside in membranes, primarily the endoplasmic reticulum or the mitochondrial membrane. These membranes provide a scaffold for the P450 system proteins that facilitate interactions with their redox partners as well as other P450s. This review focuses on the ability of specific lipid components to influence P450 activities, as well as the role of the membrane in P450 function. These studies have shown that P450s and NADPH-cytochrome P450 reductase appear to selectively associate with specific phospholipids and that these lipid-protein interactions influence P450 activities. Finally, because of the heterogeneous nature of the endoplasmic reticulum as well as other biologic membranes, the phospholipids are not arranged randomly but associate to generate lipid microdomains. Together, these characteristics can affect P450 function by 1) altering the conformation of the proteins, 2) influencing the P450 interactions with their redox partners, and 3) affecting the localization of the proteins into specific membrane microdomains. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. [Involvement of endoplasmic reticulum stress in solid organ transplantation].

    PubMed

    Pallet, Nicolas; Bouvier, Nicolas; Beaune, Philippe; Legendre, Christophe; Anglicheau, Dany; Thervet, Eric

    2010-04-01

    Endoplasmic reticulum (ER) stress is a situation caused by the accumulation of unfolded proteins in the endoplasmic reticulum, triggering an evolutionary conserved adaptive response termed the unfolded protein response. When adaptation fails, excessive and prolonged ER stress triggers cell suicide. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including diabetes, hypoxia, ischemia/reperfusion injury, neurodegenerative and heart diseases. The implication of the ER stress is not well recognized in solid organ transplantation, but increasing evidence suggests its implication in mediating allograft injury. The purpose of this review is to summarize the mechanisms of ER stress and to discuss its implication during tissue injury in solid organ transplantation. The possible implications of the ER stress in the modifications of cell functional properties and phenotypic changes are also discussed beyond the scope of adaptation and cell death. Increasing the understanding of the cellular and molecular mechanisms of acute and chronic allograft damages could lead to the development of new biomarkers and to the discovery of new therapeutic strategies to prevent the initiation of graft dysfunction or to promote the tissue regeneration after injury.

  4. Endoplasmic Reticulum Calcium Pumps and Cancer Cell Differentiation

    PubMed Central

    Papp, Béla; Brouland, Jean-Philippe; Arbabian, Atousa; Gélébart, Pascal; Kovács, Tünde; Bobe, Régis; Enouf, Jocelyne; Varin-Blank, Nadine; Apáti, Ágota

    2012-01-01

    The endoplasmic reticulum (ER) is a major intracellular calcium storage pool and a multifunctional organelle that accomplishes several calcium-dependent functions involved in many homeostatic and signaling mechanisms. Calcium is accumulated in the ER by Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA)-type calcium pumps. SERCA activity can determine ER calcium content available for intra-ER functions and for calcium release into the cytosol, and can shape the spatiotemporal characteristics of calcium signals. SERCA function therefore constitutes an important nodal point in the regulation of cellular calcium homeostasis and signaling, and can exert important effects on cell growth, differentiation and survival. In several cell types such as cells of hematopoietic origin, mammary, gastric and colonic epithelium, SERCA2 and SERCA3-type calcium pumps are simultaneously expressed, and SERCA3 expression levels undergo significant changes during cell differentiation, activation or immortalization. In addition, SERCA3 expression is decreased or lost in several tumor types when compared to the corresponding normal tissue. These observations indicate that ER calcium homeostasis is remodeled during cell differentiation, and may present defects due to decreased SERCA3 expression in tumors. Modulation of the state of differentiation of the ER reflected by SERCA3 expression constitutes an interesting new aspect of cell differentiation and tumor biology. PMID:24970132

  5. Molecular Characterization of Endoplasmic Reticulum Oxidoreductin 1 from Bombyx mori.

    PubMed

    Seo, Minchul; Ryou, Hee-Joo; Yun, Eun-Young; Goo, Tae-Won

    2015-11-05

    We isolated a complementary DNA (cDNA) clone encoding endoplasmic reticulum oxidoreductin 1 (bERO1, a specific oxidant of protein disulfide isomerase (PDI)) from Bombyx mori. This protein has a putative open reading frame (ORF) of 489 amino acids and a predicted size of 57.4 kDa. Although bERO1 protein shares less than 57% amino acid sequence homology with other reported ERO1s, it contains two conserved redox active motifs, a Cys-X-X-X-X-Cys motif of N-terminal and Cys-X-X-Cys-X-X-Cys motif of C-terminal. Both motifs are typically present in ERO1 protein family members. The bEro1 mRNA expression was highest in posterior silk gland on the sixth day of the 5th instar larvae. Expression of bEro1 mRNA also markedly increased during endoplasmic reticulum (ER) stress induced by stimulation with antimycin, calcium ionophore A23187, dithiothreitol, H₂O₂, monencin, and tunicamycin. In addition, expression levels of bEro1 exactly coincided with that of bPdi. This is the first result suggesting that bERO1 plays an essential role in ER quality control through the combined activities of bERO1 and bPDI as a catalyst of protein folding in the ER and sustaining cellular redox homeostasis.

  6. Molecular Characterization of Endoplasmic Reticulum Oxidoreductin 1 from Bombyx mori

    PubMed Central

    Seo, Minchul; Ryou, Hee-Joo; Yun, Eun-Young; Goo, Tae-Won

    2015-01-01

    We isolated a complementary DNA (cDNA) clone encoding endoplasmic reticulum oxidoreductin 1 (bERO1, a specific oxidant of protein disulfide isomerase (PDI)) from Bombyx mori. This protein has a putative open reading frame (ORF) of 489 amino acids and a predicted size of 57.4 kDa. Although bERO1 protein shares less than 57% amino acid sequence homology with other reported ERO1s, it contains two conserved redox active motifs, a Cys-X-X-X-X-Cys motif of N-terminal and Cys-X-X-Cys-X-X-Cys motif of C-terminal. Both motifs are typically present in ERO1 protein family members. The bEro1 mRNA expression was highest in posterior silk gland on the sixth day of the 5th instar larvae. Expression of bEro1 mRNA also markedly increased during endoplasmic reticulum (ER) stress induced by stimulation with antimycin, calcium ionophore A23187, dithiothreitol, H2O2, monencin, and tunicamycin. In addition, expression levels of bEro1 exactly coincided with that of bPdi. This is the first result suggesting that bERO1 plays an essential role in ER quality control through the combined activities of bERO1 and bPDI as a catalyst of protein folding in the ER and sustaining cellular redox homeostasis. PMID:26556347

  7. Endoplasmic Reticulum Protein Quality Control Failure in Myelin Disorders

    PubMed Central

    Volpi, Vera G.; Touvier, Thierry; D'Antonio, Maurizio

    2017-01-01

    Reaching the correct three-dimensional structure is crucial for the proper function of a protein. The endoplasmic reticulum (ER) is the organelle where secreted and transmembrane proteins are synthesized and folded. To guarantee high fidelity of protein synthesis and maturation in the ER, cells have evolved ER-protein quality control (ERQC) systems, which assist protein folding and promptly degrade aberrant gene products. Only correctly folded proteins that pass ERQC checkpoints are allowed to exit the ER and reach their final destination. Misfolded glycoproteins are detected and targeted for degradation by the proteasome in a process known as endoplasmic reticulum-associated degradation (ERAD). The excess of unstructured proteins in the ER triggers an adaptive signal transduction pathway, called unfolded protein response (UPR), which in turn potentiates ERQC activities in order to reduce the levels of aberrant molecules. When the situation cannot be restored, the UPR drives cells to apoptosis. Myelin-forming cells of the central and peripheral nervous system (oligodendrocytes and Schwann cells) synthesize a large amount of myelin proteins and lipids and therefore are particularly susceptible to ERQC failure. Indeed, deficits in ERQC and activation of ER stress/UPR have been implicated in several myelin disorders, such as Pelizaeus-Merzbacher and Krabbe leucodystrophies, vanishing white matter disease and Charcot-Marie-Tooth neuropathies. Here we discuss recent evidence underlying the importance of proper ERQC functions in genetic disorders of myelinating glia. PMID:28101003

  8. Resynthesis of phosphatidylinositol in permeabilized neutrophils following phospholipase Cbeta activation: transport of the intermediate, phosphatidic acid, from the plasma membrane to the endoplasmic reticulum for phosphatidylinositol resynthesis is not dependent on soluble lipid carriers or vesicular transport.

    PubMed Central

    Whatmore, J; Wiedemann, C; Somerharju, P; Swigart, P; Cockcroft, S

    1999-01-01

    Receptor-mediated phospholipase C (PLC) hydrolysis of phosphoinositides is accompanied by the resynthesis of phosphatidylinositol (PI). Hydrolysis of phosphoinositides occurs at the plasma membrane, and the resulting diacylglycerol (DG) is converted into phosphatidate (PA). Two enzymes located at the endoplasmic reticulum (ER) function sequentially to convert PA back into PI. We have established an assay whereby the resynthesis of PI could be followed in permeabilized cells. In the presence of [gamma-32P]ATP, DG generated by PLC activation accumulates label when converted into PA. The 32P-labelled PA is subsequently converted into labelled PI. The formation of labelled PI reports the arrival of labelled PA from the plasma membrane to the ER. Cytosol-depleted, permeabilized human neutrophils are capable of PI resynthesis following stimulation of PLCbeta (in the presence of phosphatidylinositol-transfer protein), provided that CTP and inositol are also present. We also found that wortmannin, an inhibitor of endocytosis, or cooling the cells to 15 degrees C did not stop PI resynthesis. We conclude that PI resynthesis is dependent neither on vesicular transport mechanisms nor on freely diffusible, soluble transport proteins. Phosphatidylcholine-derived PA generated by the ADP-ribosylation-factor-stimulated phospholipase D pathway was found to accumulate label, reflecting the rapid cycling of PA to DG, and back. This labelled PA was not converted into PI. We conclude that PA derived from the PLC pathway is selected for PI resynthesis, and its transfer to the ER could be membrane-protein-mediated at sites of close membrane contact. PMID:10393103

  9. Endoplasmic Reticulum Stress and Homeostasis in Reproductive Physiology and Pathology.

    PubMed

    Guzel, Elif; Arlier, Sefa; Guzeloglu-Kayisli, Ozlem; Tabak, Mehmet Selcuk; Ekiz, Tugba; Semerci, Nihan; Larsen, Kellie; Schatz, Frederick; Lockwood, Charles Joseph; Kayisli, Umit Ali

    2017-04-08

    The endoplasmic reticulum (ER), comprises 60% of the total cell membrane and interacts directly or indirectly with several cell organelles i.e., Golgi bodies, mitochondria and proteasomes. The ER is usually associated with large numbers of attached ribosomes. During evolution, ER developed as the specific cellular site of synthesis, folding, modification and trafficking of secretory and cell-surface proteins. The ER is also the major intracellular calcium storage compartment that maintains cellular calcium homeostasis. During the production of functionally effective proteins, several ER-specific molecular steps sense quantity and quality of synthesized proteins as well as proper folding into their native structures. During this process, excess accumulation of unfolded/misfolded proteins in the ER lumen results in ER stress, the homeostatic coping mechanism that activates an ER-specific adaptation program, (the unfolded protein response; UPR) to increase ER-associated degradation of structurally and/or functionally defective proteins, thus sustaining ER homeostasis. Impaired ER homeostasis results in aberrant cellular responses, contributing to the pathogenesis of various diseases. Both female and male reproductive tissues undergo highly dynamic cellular, molecular and genetic changes such as oogenesis and spermatogenesis starting in prenatal life, mainly controlled by sex-steroids but also cytokines and growth factors throughout reproductive life. These reproductive changes require ER to provide extensive protein synthesis, folding, maturation and then their trafficking to appropriate cellular location as well as destroying unfolded/misfolded proteins via activating ER-associated degradation mediated proteasomes. Many studies have now shown roles for ER stress/UPR signaling cascades in the endometrial menstrual cycle, ovarian folliculogenesis and oocyte maturation, spermatogenesis, fertilization, pre-implantation embryo development and pregnancy and parturition

  10. The Saccharomyces cerevisiae YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum

    PubMed Central

    Famá, M. Carla; Raden, David; Zacchi, Nicolás; Lemos, Darío R.; Robinson, Anne S.; Silberstein, Susana

    2007-01-01

    YFR041C/ERJ5 was identified in Saccharomyces cerevisiae as a gene regulated by the unfolded protein response pathway (UPR). The open reading frame of the gene has a J domain characteristic of the DnaJ chaperone family of proteins that regulate the activity of Hsp70 chaperones. We determined the expression and topology of Erj5p, a type I membrane protein with a J domain in the lumen of the endoplasmic reticulum (ER) that colocalizes with Kar2p, the major Hsp70 in the yeast ER. We identified synthetic interactions of Δerj5 with mutations in genes involved in protein folding in the ER (kar2-159, Δscj1Δjem1) and in the induction of the unfolded protein response (Δire1). Loss of Erj5p in yeast cells with impaired ER protein folding capacity increased sensitivity to agents that cause ER stress. We identified the ERJ5 mRNA and confirmed that agents that promote accumulation of misfolded proteins in the ER regulate its abundance. We found that loss of the non-essential ERJ5 gene leads to a constitutively induced UPR, indicating that ERJ5 is required for maintenance of an optimal folding environment in the yeast ER. PMID:17157937

  11. Human homologs of the putative G protein-coupled membrane progestin receptors (mPRalpha, beta, and gamma) localize to the endoplasmic reticulum and are not activated by progesterone.

    PubMed

    Krietsch, Tom; Fernandes, Maria Sofia; Kero, Jukka; Lösel, Ralf; Heyens, Maria; Lam, Eric W-F; Huhtaniemi, Ilpo; Brosens, Jan J; Gellersen, Birgit

    2006-12-01

    The steroid hormone progesterone exerts pleiotrophic functions in many cell types. Although progesterone controls transcriptional activation through binding to its nuclear receptors, it also initiates rapid nongenomic signaling events. Recently, three putative membrane progestin receptors (mPRalpha, beta, and gamma) with structural similarity to G protein-coupled receptors have been identified. These mPR isoforms are expressed in a tissue-specific manner and belong to the larger, highly conserved family of progestin and adiponectin receptors found in plants, eubacteria, and eukaryotes. The fish mPRalpha has been reported to mediate progesterone-dependent MAPK activation and inhibition of cAMP production through coupling to an inhibitory G protein. To functionally characterize the human homologs, we established human embryonic kidney 293 and MDA-MB-231 cell lines that stably express human mPRalpha, beta, or gamma. For comparison, we also established cell lines expressing the mPRalpha cloned from the spotted seatrout (Cynoscion nebulosus) and Japanese pufferfish (Takifugu rubripes). Surprisingly, we found no evidence that human or fish mPRs regulate cAMP production or MAPK (ERK1/2 or p38) activation upon progesterone stimulation. Furthermore, the mPRs did not couple to a highly promiscuous G protein subunit, Galpha(q5i), in transfection studies or provoke Ca(2+) mobilization in response to progesterone. Finally, we demonstrate that transfected mPRs, as well as endogenous human mPRalpha, localize to the endoplasmic reticulum, and that their expression does not lead to increased progestin binding either in membrane preparations or in intact cells. Our results therefore do not support the concept that mPRs are plasma membrane receptors involved in transducing nongenomic progesterone actions.

  12. Dense-cored vesicles, smooth endoplasmic reticulum, and mitochondria are closely associated with non-specialized parts of plasma membrane of nerve terminals: implications for exocytosis and calcium buffering by intraterminal organelles.

    PubMed

    Lysakowski, A; Figueras, H; Price, S D; Peng, Y Y

    1999-01-18

    To determine whether there are anatomical correlates for intraterminal Ca2+ stores to regulate exocytosis of dense-cored vesicles (DCVs) and whether these stores can modulate exocytosis of synaptic vesicles, we studied the spatial distributions of DCVs, smooth endoplasmic reticulum (SER), and mitochondria in 19 serially reconstructed nerve terminals in bullfrog sympathetic ganglia. On average, each bouton had three active zones, 214 DCVs, 26 SER fragments (SERFs), and eight mitochondria. DCVs, SERFs and mitochondria were located, on average, 690, 624, and 526 nm, respectively, away from active zones. Virtually no DCVs were within "docking" (i.e., < or = 50 nm) distances of the active zones. Thus, it is unlikely that DCV exocytosis occurs at active zones via mechanisms similar to those for exocytosis of synaptic vesicles. Because there were virtually no SERFs or mitochondria within 50 nm of any active zone, Ca2+ modulation by these organelles is unlikely to affect ACh release evoked by a single action potential. In contrast, 30% of DCVs and 40% of SERFs were located within 50 nm of the nonspecialized regions of the plasma membrane. Because each bouton had at least one SERF within 50 nm of the plasma membrane and most of these SERFs had DCVs, but not mitochondria, near them, it is possible for Ca2+ release from the SER to provide the Ca2+ necessary for DCV exocytosis. The fact that 60% of the mitochondria had some part within 50 nm of the plasma membrane means that it is possible for mitochondrial Ca2+ buffering to affect DCV exocytosis.

  13. Endoplasmic reticulum stress in spinal and bulbar muscular atrophy: a potential target for therapy.

    PubMed

    Montague, Karli; Malik, Bilal; Gray, Anna L; La Spada, Albert R; Hanna, Michael G; Szabadkai, Gyorgy; Greensmith, Linda

    2014-07-01

    Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  14. The (Ca2+ + Mg2+)-stimulated ATPase of the rat parotid endoplasmic reticulum.

    PubMed Central

    Thiyagarajah, P; Lim, S C

    1986-01-01

    A membrane fraction enriched in endoplasmic reticulum was prepared from rat parotid glands by using sucrose-gradient centrifugation. The fraction showed a 10-fold increase in specific activity of NADPH: cytochrome c reductase activity over that of tissue homogenates and minimal contamination with plasma membranes or mitochondria. The endoplasmic reticulum fraction possessed both Mg2+ -stimulated ATPase as well as Ca2+, Mg2+-ATPase [( Ca2+ + Mg2+)-stimulated ATPase]activity. The Ca2+, Mg2+-ATPase required 2-5 mM-Mg2+ for optimal activity and was stimulated by submicromolar concentrations of free Ca2+. The Km for free Ca2+ was 0.55 microM and the average Vmax. was 60 nmol/min per mg of protein. The Km for ATP was 0.11 mM. Other nucleotides, such as GTP, CTP or ADP, could not substitute for ATP in supporting the Ca2+-activated nucleotidase activity. Increasing the K+ concentration from 0 to 100 mM caused a 2-fold activation of the Ca2+, Mg2+-ATPase. Trifluoperazine, W7 [N-(6-aminohexyl)-5-chloronaphthalene-1-sulphonamide] and vanadate inhibited the enzyme. The concentration of trifluoperazine and vanadate required for 50% inhibition of the ATPase were 52 microM and 28 microM respectively. Calmodulin, cyclic AMP, cyclic AMP-dependent protein kinase and inositol 1,4,5-trisphosphate had no effect on the ATPase. The properties of the Ca2+, Mg2+ -ATPase were distinct from those of the Mg2+-ATPase, but comparable with those reported for the parotid endoplasmic-reticulum Ca2+-transport system [Kanagasuntheram & Teo (1982) Biochem. J. 208, 789-794]. The results suggest that the Ca2+, Mg2+-ATPase is responsible for driving the ATP-dependent Ca2+ accumulation by this membrane. PMID:2943271

  15. Exocyst Sec10 is involved in basolateral protein translation and translocation in the endoplasmic reticulum.

    PubMed

    Choi, Soo Young; Fogelgren, Ben; Zuo, Xiaofeng; Huang, Liwei; McKenna, Sarah; Lingappa, Vishwanath R; Lipschutz, Joshua H

    2012-01-01

    Protein translation and translocation at the rough endoplasmic reticulum (RER) are the first steps in the secretory pathway. The translocon through which newly made proteins are translocated into or across the RER membrane consists of three main subunits: Sec61α, -β, and -γ. Sec61β facilitates translocation, and we and others have shown that the highly conserved eight-protein exocyst complex interacts with Sec61β. We have also shown that the exocyst is involved in basolateral, not apical, protein synthesis and delivery. Recently, however, exocyst involvement in apical protein delivery has been reported. Furthermore, we have shown that the exocyst is necessary for formation of primary cilia, organelles found on the apical surface. GST pulldown was performed on lysate of renal tubule cells to investigate biochemical interactions. Cell-free assays consisting of cell-free extracts from rabbit reticulocytes, pancreatic endoplasmic reticulum (ER) microsomal membranes, transcripts of cDNA from apical and basolateral proteins, ATP/GTP, amino acids, and (35)S-methionine for protein detection were used to investigate the role of the exocyst in synthesis of polarized proteins. P(32)-orthophosphate and immunoprecipitation with antibody against Sec61β was used to investigate Sec61β phosphorylation in exocyst Sec10-overexpressing cells. Sec10 biochemically interacts with Sec61β using GST pulldown. Using cell-free assays, there is enhanced exocyst recruitment to endoplasmic reticulum membranes following exocyst depletion and basolateral G protein of vesicular stomatitis virus protein translation, compared to apical hemagglutinin of influenza virus protein translation. Finally, Sec10 overexpression increases Sec61β phosphorylation. These data confirm that the exocyst is preferentially involved in basolateral protein translation and translocation, and may well act through the phosphorylation of Sec61β. Copyright © 2012 S. Karger AG, Basel.

  16. [From endoplasmic reticulum to Golgi apparatus: a secretory pathway controlled by signal molecules].

    PubMed

    Wang, Jiasheng; Luo, Jianhong; Zhang, Xiaomin

    2013-07-01

    Protein transport from endoplasmic reticulum (ER) to Golgi apparatus has long been known to be a central process for protein quality control and sorting. Recent studies have revealed that a large number of signal molecules are involved in regulation of membrane trafficking through ER, ER-Golgi intermediate compartment and Golgi apparatus. These molecules can significantly change the transport rate of proteins by regulating vesicle budding and fusion. Protein transport from ER to Golgi apparatus is not only controlled by signal pathways triggered from outside the cell, it is also regulated by feedback signals from the transport pathway.

  17. Endoplasmic Reticulum Stress Sensing in the Unfolded Protein Response

    PubMed Central

    Gardner, Brooke M.; Pincus, David; Gotthardt, Katja; Gallagher, Ciara M.; Walter, Peter

    2013-01-01

    Secretory and transmembrane proteins enter the endoplasmic reticulum (ER) as unfolded proteins and exit as either folded proteins in transit to their target organelles or as misfolded proteins targeted for degradation. The unfolded protein response (UPR) maintains the protein-folding homeostasis within the ER, ensuring that the protein-folding capacity of the ER meets the load of client proteins. Activation of the UPR depends on three ER stress sensor proteins, Ire1, PERK, and ATF6. Although the consequences of activation are well understood, how these sensors detect ER stress remains unclear. Recent evidence suggests that yeast Ire1 directly binds to unfolded proteins, which induces its oligomerization and activation. BiP dissociation from Ire1 regulates this oligomeric equilibrium, ultimately modulating Ire1’s sensitivity and duration of activation. The mechanistic principles of ER stress sensing are the focus of this review. PMID:23388626

  18. Endoplasmic reticulum stress: The cause and solution to Huntington's disease?

    PubMed

    Jiang, Yuwei; Chadwick, Sarah R; Lajoie, Patrick

    2016-10-01

    Accumulation of misfolded proteins is a hallmark of many human diseases, including several incurable neurological disorders, such as Huntington's disease (HD). In HD, expansion of a polyglutamine stretch within the first exon of the Huntingtin protein (Htt) leads to Htt misfolding, aberrant protein aggregation, and progressive appearance of disease symptoms. Several studies in various organisms (from yeast to humans) have identified the accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER stress) as a crucial determinant of cellular toxicity in HD. In this review, we highlight the recent research linking HD to ER stress. We also discuss how the modulation of signaling pathways responsible for coping with misfolded protein accumulation in the ER may constitute attractive methods to reduce toxicity and identify new therapeutic targets for treatment of HD. This article is part of a Special Issue entitled SI:ER stress.

  19. Trichoplein/mitostatin regulates endoplasmic reticulum-mitochondria juxtaposition.

    PubMed

    Cerqua, Cristina; Anesti, Vassiliki; Pyakurel, Aswin; Liu, Dan; Naon, Deborah; Wiche, Gerhard; Baffa, Raffaele; Dimmer, Kai S; Scorrano, Luca

    2010-11-01

    Trichoplein/mitostatin (TpMs) is a keratin-binding protein that partly colocalizes with mitochondria and is often downregulated in epithelial cancers, but its function remains unclear. In this study, we report that TpMs regulates the tethering between mitochondria and endoplasmic reticulum (ER) in a Mitofusin 2 (Mfn2)-dependent manner. Subcellular fractionation and immunostaining show that TpMs is present at the interface between mitochondria and ER. The expression of TpMs leads to mitochondrial fragmentation and loosens tethering with ER, whereas its silencing has opposite effects. Functionally, the reduced tethering by TpMs inhibits apoptosis by Ca(2+)-dependent stimuli that require ER-mitochondria juxtaposition. Biochemical and genetic evidence support a model in which TpMs requires Mfn2 to modulate mitochondrial shape and tethering. Thus, TpMs is a new regulator of mitochondria-ER juxtaposition.

  20. The Gp78 ubiquitin ligase: probing endoplasmic reticulum complexity.

    PubMed

    St Pierre, Pascal; Nabi, Ivan R

    2012-02-01

    The endoplasmic reticulum (ER) has been classically divided, based on electron microscopy analysis, into parallel ribosome-studded rough ER sheets and a tubular smooth ER network. Recent studies have identified molecular constituents of the ER, the reticulons and DP1, that drive ER tubule formation and whose expression determines expression of ER sheets and tubules and thereby rough and smooth ER. However, segregation of the ER into only two domains remains simplistic and multiple functionally distinct ER domains necessarily exist. In this review, we will discuss the sub-organization of the ER in different domains focusing on the localization and role of the gp78 ubiquitin ligase in the mitochondria-associated smooth ER and on the evidence for a quality control ERAD domain.

  1. Interaction of the smooth endoplasmic reticulum and mitochondria.

    PubMed

    Goetz, J G; Nabi, I R

    2006-06-01

    The ER (endoplasmic reticulum) is composed of multiple domains including the nuclear envelope, ribosome-studded rough ER and the SER (smooth ER). The SER can also be functionally segregated into domains that regulate ER-Golgi traffic (transitional ER), ERAD (ER-associated degradation), sterol and lipid biosynthesis and calcium sequestration. The last two, as well as apoptosis, are critically regulated by the close association of the SER with mitochondria. Studies with AMFR (autocrine motility factor receptor) have defined an SER domain whose integrity and mitochondrial association can be modulated by ilimaquinone as well as by free cytosolic calcium levels in the normal physiological range. AMFR is an E3 ubiquitin ligase that targets its ligand directly to the SER via a caveolae/raft-dependent pathway. In the present review, we will address the relationship between the calcium-dependent morphology and mitochondrial association of the SER and its various functional roles in the cell.

  2. Interplay of endoplasmic reticulum stress and autophagy in neurodegenerative disorders

    PubMed Central

    Cai, Yu; Arikkath, Jyothi; Yang, Lu; Guo, Ming-Lei; Periyasamy, Palsamy; Buch, Shilpa

    2016-01-01

    ABSTRACT The common underlying feature of most neurodegenerative diseases such as Alzheimer disease (AD), prion diseases, Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) involves accumulation of misfolded proteins leading to initiation of endoplasmic reticulum (ER) stress and stimulation of the unfolded protein response (UPR). Additionally, ER stress more recently has been implicated in the pathogenesis of HIV-associated neurocognitive disorders (HAND). Autophagy plays an essential role in the clearance of aggregated toxic proteins and degradation of the damaged organelles. There is evidence that autophagy ameliorates ER stress by eliminating accumulated misfolded proteins. Both abnormal UPR and impaired autophagy have been implicated as a causative mechanism in the development of various neurodegenerative diseases. This review highlights recent advances in the field on the role of ER stress and autophagy in AD, prion diseases, PD, ALS and HAND with the involvement of key signaling pathways in these processes and implications for future development of therapeutic strategies. PMID:26902584

  3. Endoplasmic reticulum stress, pancreatic β-cell degeneration, and diabetes.

    PubMed

    Papa, Feroz R

    2012-09-01

    Overwhelming of protein folding in the endoplasmic reticulum (ER)--referred to as "ER stress"--activates a set of intracellular signaling pathways termed the unfolded protein response (UPR). Beneficial outputs of the UPR promote adaptation in cells experiencing manageably low levels of ER stress. However, if ER stress reaches critically high levels, the UPR uses destructive outputs to trigger programmed cell death. Genetic mutations in various UPR components cause inherited syndromes of diabetes mellitus in both rodents and humans, implicating the UPR in the proper functioning and survival of pancreatic islet β cells. Markers of chronically elevated ER stress, terminal UPR signaling, and apoptosis are evident in β cells in these rare disorders; these markers are similarly present in islets of human patients with common forms of diabetes. These findings promise to enhance our molecular understanding of human diabetes significantly and may lead to new and effective therapies.

  4. Endoplasmic reticulum stress in diabetes: New insights of clinical relevance.

    PubMed

    Balasubramanyam, Muthuswamy; Lenin, Raji; Monickaraj, Finny

    2010-04-01

    The endoplasmic reticulum (ER) is a cellular compartment responsible for multiple important cellular functions including the biosynthesis and folding of newly synthesized proteins destined for secretion, such as insulin. A myriad of pathological and physiological factors perturb ER function and cause dysregulation of ER homeostasis, leading to ER stress. Accumulating evidence suggests that ER stress plays a role in the pathogenesis of diabetes, contributing to pancreatic β-cell loss and insulin resistance. ER stress may also link obesity, inflammation and insulin resistance in type 2 diabetes. In this review, we address the transition from physiology to pathology, namely how and why the physiological UPR evolves to a proapoptotic ER stress response in diabetes and its complications. Special attention was given to elucidate how ER stress could explain some of the 'clinical paradoxes' such as secondary sulfonylurea failure, initial worsening of retinopathy during tight glycemic control, insulin resistance induced by protease inhibitors and other clinically relevant observations.

  5. Assembly of MHC class I molecules within the endoplasmic reticulum.

    PubMed

    Zhang, Yinan; Williams, David B

    2006-01-01

    MHC class I molecules bind cytosolically derived peptides within the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T cells. A major focus of our laboratory has been to understand the functions of the diverse proteins involved in the intracellular assembly of MHC class I molecules. These include the molecular chaperones calnexin and calreticulin, which enhance the proper folding and subunit assembly of class I molecules and also retain assembly intermediates within the ER; ERp57, a thiol oxidoreductase that promotes heavy chain disulfide formation and proper assembly of the peptide loading complex; tapasin, which recruits class I molecules to the TAP peptide transporter and enhances the loading of high affinity peptide ligands; and Bap31, which is involved in clustering assembled class I molecules at ER exit sites for export along the secretory pathway. This review describes our contributions to elucidating the functions of these proteins; the combined effort of many dedicated students and postdoctoral fellows.

  6. Pharmacological Modulators of Endoplasmic Reticulum Stress in Metabolic Diseases

    PubMed Central

    Jung, Tae Woo; Choi, Kyung Mook

    2016-01-01

    The endoplasmic reticulum (ER) is the principal organelle responsible for correct protein folding, a step in protein synthesis that is critical for the functional conformation of proteins. ER stress is a primary feature of secretory cells and is involved in the pathogenesis of numerous human diseases, such as certain neurodegenerative and cardiometabolic disorders. The unfolded protein response (UPR) is a defense mechanism to attenuate ER stress and maintain the homeostasis of the organism. Two major degradation systems, including the proteasome and autophagy, are involved in this defense system. If ER stress overwhelms the capacity of the cell’s defense mechanisms, apoptotic death may result. This review is focused on the various pharmacological modulators that can protect cells from damage induced by ER stress. The possible mechanisms for cytoprotection are also discussed. PMID:26840310

  7. Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface

    PubMed Central

    Muñiz, Manuel; Riezman, Howard

    2016-01-01

    In eukaryotes, many cell surface proteins are attached to the plasma membrane via a glycolipid glycosylphosphatidylinositol (GPI) anchor. GPI-anchored proteins (GPI-APs) receive the GPI anchor as a conserved posttranslational modification in the lumen of the endoplasmic reticulum (ER). After anchor attachment, the GPI anchor is structurally remodeled to function as a transport signal that actively triggers the delivery of GPI-APs from the ER to the plasma membrane, via the Golgi apparatus. The structure and composition of the GPI anchor confer a special mode of interaction with membranes of GPI-APs within the lumen of secretory organelles that lead them to be differentially trafficked from other secretory membrane proteins. In this review, we examine the mechanisms by which GPI-APs are selectively transported through the secretory pathway, with special focus on the recent progress made in their actively regulated export from the ER and the trans-Golgi network. PMID:26450970

  8. Restriction of docking protein to the rough endoplasmic reticulum: immunocytochemical localization in rat liver.

    PubMed

    Hortsch, M; Griffiths, G; Meyer, D I

    1985-09-01

    Docking protein (or SRP receptor) is an integral membrane protein essential for translocation of nascent polypeptides across the membrane of the endoplasmic reticulum (ER). Anti-docking protein antibodies were used to localize this protein in situ in thin frozen sections using protein A-gold detection methods. The majority of gold particles was restricted to ribosome-studded membranes, whereas particles were rarely seen in areas rich in smooth ER. Quantitative evaluation of labeling suggests that there is one molecule of docking protein for roughly 10 to 20 bound ribosomes. On the basis of these results we conclude that docking protein is the first functionally-characterized integral marker protein specific for the rough membranes of ER.

  9. Maternal obesity alters endoplasmic reticulum homeostasis in offspring pancreas.

    PubMed

    Soeda, Jumpei; Mouralidarane, Angelina; Cordero, Paul; Li, Jiawei; Nguyen, Vi; Carter, Rebeca; Kapur, Sabrina R; Pombo, Joaquim; Poston, Lucilla; Taylor, Paul D; Vinciguerra, Manlio; Oben, Jude A

    2016-06-01

    The prevalence of non-alcoholic fatty pancreas disease (NAFPD) is increasing in parallel with obesity rates. Stress-related alterations in endoplasmic reticulum (ER), such as the unfolded protein response (UPR), are associated with obesity. The aim of this study was to investigate ER imbalance in the pancreas of a mice model of adult and perinatal diet-induced obesity. Twenty female C57BL/6J mice were assigned to control (Con) or obesogenic (Ob) diets prior to and during pregnancy and lactation. Their offspring were weaned onto Con or Ob diets up to 6 months post-partum. Then, after sacrifice, plasma biochemical analyses, gene expression, and protein concentrations were measured in pancreata. Offspring of Ob-fed mice had significantly increased body weight (p < 0.001) and plasma leptin (p < 0.001) and decreased insulin (p < 0.01) levels. Maternal obesogenic diet decreased the total and phosphorylated Eif2α and increased spliced X-box binding protein 1 (XBP1). Pancreatic gene expression of downstream regulators of UPR (EDEM, homocysteine-responsive endoplasmic reticulum-resident (HERP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP)) and autophagy-related proteins (LC3BI/LC3BII) were differently disrupted by obesogenic feeding in both mothers and offspring (from p < 0.1 to p < 0.001). Maternal obesity and Ob feeding in their offspring alter UPR in NAFPD, with involvement of proapoptotic and autophagy-related markers. Upstream and downstream regulators of PERK, IRE1α, and ATF6 pathways were affected differently following the obesogenic insults.

  10. Transitory development of rough endoplasmic reticulum aggregates during embryo maturation in seeds of mustard (Sinapis alba L.).

    PubMed

    Bergfeld, R; Schopfer, P

    1984-05-01

    During the final period of maturation of mustard (Sinapis alba L.) seeds conspicuous aggregates of rough endoplasmic reticulum are found specifically in some tissues of the differentiation zone of the radicle. The appearance of these structures is temporally correlated with the disappearance of single-stranded reticulum and the onset of seed dehydration. These aggregates can be demonstrated also in the dry, mature seed and during the first few hours after imbibition with water; they disappear however during germination. In germinated root tips reformation of the aggregates can be induced by severe water stress. It is concluded that the observed membrane aggregates represent a storage form of rough endoplasmic reticulum during periods of low protoplasmic hydration.

  11. Vesicular trafficking of incoming human papillomavirus 16 to the Golgi apparatus and endoplasmic reticulum requires γ-secretase activity.

    PubMed

    Zhang, Wei; Kazakov, Teymur; Popa, Andreea; DiMaio, Daniel

    2014-09-16

    The route taken by papillomaviruses from the cell surface to the nucleus during infection is incompletely understood. Here, we developed a novel human papillomavirus 16 (HPV16) pseudovirus in which the carboxy terminus of the minor capsid protein L2 is exposed on the exterior of the intact capsid prior to cell binding. With this pseudovirus, we used the proximity ligation assay immune detection technique to demonstrate that during entry HPV16 L2 traffics into and out of the early endosome prior to Golgi localization, and we demonstrated that L2 enters the endoplasmic reticulum during entry. The cellular membrane-associated protease, γ-secretase, is required for infection by HPV16 pseudovirus and authentic HPV16. We also showed that inhibition of γ-secretase does not interfere substantively with virus internalization, initiation of capsid disassembly, entry into the early endosome, or exit from this compartment, but γ-secretase is required for localization of L2 and viral DNA to the Golgi apparatus and the endoplasmic reticulum. These results show that incoming HPV16 traffics sequentially from the cell surface to the endosome and then to the Golgi apparatus and the endoplasmic reticulum prior to nuclear entry. The human papillomaviruses are small nonenveloped DNA viruses responsible for approximately 5% of all human cancer deaths, but little is known about the process by which these viruses transit from the cell surface to the nucleus. Here we show that incoming HPV16, the most common high-risk HPV, traffics though a series of vesicular compartments during infectious entry, including the endosome, Golgi apparatus, and endoplasmic reticulum. Furthermore, we show that γ-secretase, a cellular membrane-associated protease, is required for entry of the L2 minor capsid protein and viral DNA into the Golgi apparatus and endoplasmic reticulum. These studies reveal a new pathway of cell entry by DNA viruses and suggest that components of this pathway are candidate

  12. Dolichylphosphate-dependent Glycosyl Transfer Reactions in the Endoplasmic Reticulum of Castor Bean Endosperm

    PubMed Central

    Marriott, Kathleen M.; Tanner, Widmar

    1979-01-01

    In the endosperm of Ricinus communis (castor bean) a number of glycosyl transferases were found to be present during germination. They catalyze the incorporation of mannose from guanosine diphosphate mannose and of N-acetylglucosamine from uridine diphosphate N-acetylglucosamine into a glycolipid fraction, which had all of the properties of dolichylphosphate and pyrophosphate sugars, respectively. The sugar moiety of dolichylphosphate mannose is transferred to a lipid-oligosaccharide, containing more than 6 hexose units. When the membranes are preincubated with nonradioactive guanosine diphosphate mannose and uridine diphosphate N-acetylglucosamine, radioactivity from dolichylphosphate [14C]mannose is also transferred to a glycopolymer. In addition, the formation of radioactive glycoproteins from guanosine diphosphate [14C]mannose has been demonstrated using a combination of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autofluorography. All of these reactions occur with the highest specific as well as total activity in the endoplasmic reticulum fraction. Whereas a membrane fraction lighter than the endoplasmic reticulum also contains a significant amount of glycosyl transfer activity, the enzymes seem to be present in very low amounts in glyoxysomes and mitochondria. The activities of the various reactions increase severalfold during the first days of germination, i.e. the time of rapid formation of glyoxysomes. The importance of these results in relation to intracellular protein segregation is discussed. Images PMID:16660985

  13. The translocon and the non-specific transport of small molecules in the endoplasmic reticulum (Review).

    PubMed

    Lizák, Beáta; Csala, Miklós; Benedetti, Angelo; Bánhegyi, Gábor

    2008-02-01

    Transmembrane fluxes are major determinants of several enzyme activities localized in the luminal compartment of the endoplasmic reticulum (ER). Although a large number of metabolites were shown to be transported across the ER membrane, only a few transporters have been identified so far. It can be assumed that the basal permeability of ER membrane vesicles (microsomes) to a variety of small molecules is due to the presence of a low-selectivity channel or pore rather than many strictly specific transporters. The translocon complex is a possible candidate for this role because it transitionally forms an open channel in the ER membrane and an increasing amount of evidence shows the permeation of small compounds through this channel. It seems plausible that the translocon pore is not only responsible for inward and outward peptide translocation but also contributes to basal Ca(2+) leakage from the ER and ensures the substrate supply for certain luminal ER enzymes.

  14. Compartmentalization of the endoplasmic reticulum in the early C. elegans embryos

    PubMed Central

    Lee, Zuo Yen; Prouteau, Manoël

    2016-01-01

    The one-cell Caenorhabditis elegans embryo is polarized to partition fate determinants between the cell lineages generated during its first division. Using fluorescence loss in photobleaching, we find that the endoplasmic reticulum (ER) of the C. elegans embryo is physically continuous throughout the cell, but its membrane is compartmentalized shortly before nuclear envelope breakdown into an anterior and a posterior domain, indicating that a diffusion barrier forms in the ER membrane between these two domains. Using mutants with disorganized ER, we show that ER compartmentalization is independent of the morphological transition that the ER undergoes in mitosis. In contrast, compartmentalization takes place at the position of the future cleavage plane in a par-3–dependent manner. Together, our data indicate that the ER membrane is compartmentalized in cells as diverse as budding yeast, mouse neural stem cells, and the early C. elegans embryo. PMID:27597753

  15. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly.

    PubMed

    Romero-Brey, Inés; Bartenschlager, Ralf

    2016-06-07

    The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles.

  16. Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly

    PubMed Central

    Romero-Brey, Inés; Bartenschlager, Ralf

    2016-01-01

    The endoplasmic reticulum (ER) is the largest intracellular organelle. It forms a complex network of continuous sheets and tubules, extending from the nuclear envelope (NE) to the plasma membrane. This network is frequently perturbed by positive-strand RNA viruses utilizing the ER to create membranous replication factories (RFs), where amplification of their genomes occurs. In addition, many enveloped viruses assemble progeny virions in association with ER membranes, and viruses replicating in the nucleus need to overcome the NE barrier, requiring transient changes of the NE morphology. This review first summarizes some key aspects of ER morphology and then focuses on the exploitation of the ER by viruses for the sake of promoting the different steps of their replication cycles. PMID:27338443

  17. Isolation and characterization of cDNA clones for rat ribophorin I: complete coding sequence and in vitro synthesis and insertion of the encoded product into endoplasmic reticulum membranes

    PubMed Central

    1987-01-01

    Ribophorins I and II are two transmembrane glycoproteins that are characteristic of the rough endoplasmic reticulum and are thought to be part of the apparatus that affects the co-translational translocation of polypeptides synthesized on membrane-bound polysomes. A ribophorin I cDNA clone containing a 0.6-kb insert was isolated from a rat liver lambda gtll cDNA library by immunoscreening with specific antibodies. This cDNA was used to isolate a clone (2.3 kb) from a rat brain lambda gtll cDNA library that contains the entire ribophorin I coding sequence. SP6 RNA transcripts of the insert in this clone directed the in vitro synthesis of a polypeptide of the expected size that was immunoprecipitated with anti-ribophorin I antibodies. When synthesized in the presence of microsomes, this polypeptide, like the translation product of the natural ribophorin I mRNA, underwent membrane insertion, signal cleavage, and co-translational glycosylation. The complete amino acid sequence of the polypeptide encoded in the cDNA insert was derived from the nucleotide sequence and found to contain a segment that corresponds to a partial amino terminal sequence of ribophorin I that was obtained by Edman degradation. This confirmed the identity of the cDNA clone and established that ribophorin I contains 583 amino acids and is synthesized with a cleavable amino terminal insertion signal of 22 residues. Analysis of the amino acid sequence of ribophorin I suggested that the polypeptide has a simple transmembrane disposition with a rather hydrophilic carboxy terminal segment of 150 amino acids exposed on the cytoplasmic face of the membrane, and a luminal domain of 414 amino acids containing three potential N-glycosylation sites. Hybridization measurements using the cloned cDNA as a probe showed that ribophorin I mRNA levels increase fourfold 15 h after partial hepatectomy, in confirmation of measurements made by in vitro translation of liver mRNA. Southern blot analysis of rat genomic

  18. A conserved region in the Closterovirus 1a polyprotein drives extensive remodeling of endoplasmic reticulum membranes and induces motile globules in Nicotiana benthamiana cells.

    PubMed

    Gushchin, V A; Karlin, D G; Makhotenko, A V; Khromov, A V; Erokhina, T N; Solovyev, A G; Morozov, S Yu; Agranovsky, A A

    2017-02-01

    In infected plant cells, closterovirus replicative polyproteins 1a and 1ab drive membrane remodeling and formation of multivesicular replication platforms. Polyprotein 1a contains a variable Central Region (CR) between the methyltransferase and helicase domains. In a previous study, we have found that transient expression of the Beet yellows virus CR-2 segment (aa 1305-1494) in Nicotiana benthamiana induces the formation of ~1µm mobile globules originating from the ER membranes. In the present study, sequence analysis has shown that a part of the CR named the "Zemlya region" (overlapping the CR-2), is conserved in all members of the Closterovirus genus and contains a predicted amphipathic helix (aa 1368-1385). By deletion analysis, the CR-2 region responsible for the induction of 1-μm globules has been mapped to aa 1368-1432. We suggest that the conserved membrane-modifying region of the BYV 1a may be involved in the biogenesis of closterovirus replication platforms.

  19. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    USDA-ARS?s Scientific Manuscript database

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  20. Biodistribution of Viscumin after Subcutaneous Injection to Mice and In Vitro Modeling of Endoplasmic Reticulum Stress.

    PubMed

    Maltseva, D V; Krainova, N A; Khaustova, N A; Nikulin, S V; Tonevitskaya, S A; Poloznikov, A A

    2017-08-01

    Viscumin (mistletoe lectin I, MLI) in concentrations of 10(-11)-10(-7) M causes endoplasmic reticulum stress and triggers unfolded protein response, a modulator of antitumor immunity, in target cells.

  1. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    DTIC Science & Technology

    2015-07-01

    1 AWARD NUMBER: W81XWH-14-1-0203 TITLE: The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease PRINCIPAL...COVERED 07/01/2014-06/30/2015 4. TITLE AND SUBTITLE The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease 5a...NUMBER(S) 13. SUPPLEMENTARY NOTES 14. ABSTRACT We hypothesize that ER stress induced by glucose in diabetes promotes diabetic CKD through CRT stimulation

  2. The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease

    DTIC Science & Technology

    2016-07-01

    AWARD NUMBER: W81XWH-14-1-0203 TITLE: The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease PRINCIPAL...1 July 2015- 30 June 2016 4. TITLE AND SUBTITLE The Endoplasmic Reticulum Stress Protein Calreticulin in Diabetic Chronic Kidney Disease 5a...We hypothesize that ER stress induced by glucose in diabetes promotes diabetic CKD through CRT stimulation of TGF-beta-dependent calcium/NFAT

  3. Temperature-sensitive, Post-translational Regulation of Plant Omega-3 Fatty-acid Desaturases is Mediated by the Endoplasmic Reticulum-associated Degradation Pathway

    USDA-ARS?s Scientific Manuscript database

    Changes in ambient temperature represent a major physiological challenge to poikilothermic organisms that requires rapid adjustments in the composition of cellular membranes in order to preserve overall membrane dynamics and integrity. In plants, the endoplasmic reticulum-localized omega-3 fatty ac...

  4. Gibberellic Acid Regulates the Level of a BiP Cognate in the Endoplasmic Reticulum of Barley Aleurone Cells 1

    PubMed Central

    Jones, Russell L.; Bush, Douglas S.

    1991-01-01

    The isolation of a 70-kilodalton protein from barley (Hordeum vulgare L.) aleurone layers that cross-reacts with an antibody against yeast binding protein (BiP) is reported. Endoplasmic reticulum isolated from aleurone layers treated with gibberellic acid contain much higher levels of the BiP cognate than do membranes isolated from layers treated with abscisic acid. ImagesFigure 1Figure 2Figure 3 PMID:16668408

  5. A Metabotropic-Like Flux-Independent NMDA Receptor Regulates Ca2+ Exit from Endoplasmic Reticulum and Mitochondrial Membrane Potential in Cultured Astrocytes

    PubMed Central

    Montes de Oca Balderas, Pavel; Aguilera, Penélope

    2015-01-01

    Astrocytes were long thought to be only structural cells in the CNS; however, their functional properties support their role in information processing and cognition. The ionotropic glutamate N-methyl D-aspartate (NMDA) receptor (NMDAR) is critical for CNS functions, but its expression and function in astrocytes is still a matter of research and debate. Here, we report immunofluorescence (IF) labeling in rat cultured cortical astrocytes (rCCA) of all NMDAR subunits, with phenotypes suggesting their intracellular transport, and their mRNA were detected by qRT-PCR. IF and Western Blot revealed GluN1 full-length synthesis, subunit critical for NMDAR assembly and transport, and its plasma membrane localization. Functionally, we found an iCa2+ rise after NMDA treatment in Fluo-4-AM labeled rCCA, an effect blocked by the NMDAR competitive inhibitors D(-)-2-amino-5-phosphonopentanoic acid (APV) and Kynurenic acid (KYNA) and dependent upon GluN1 expression as evidenced by siRNA knock down. Surprisingly, the iCa2+ rise was not blocked by MK-801, an NMDAR channel blocker, or by extracellular Ca2+ depletion, indicating flux-independent NMDAR function. In contrast, the IP3 receptor (IP3R) inhibitor XestosponginC did block this response, whereas a Ryanodine Receptor inhibitor did so only partially. Furthermore, tyrosine kinase inhibition with genistein enhanced the NMDA elicited iCa2+ rise to levels comparable to those reached by the gliotransmitter ATP, but with different population dynamics. Finally, NMDA depleted the rCCA mitochondrial membrane potential (mΔψ) measured with JC-1. Our results demonstrate that rCCA express NMDAR subunits which assemble into functional receptors that mediate a metabotropic-like, non-canonical, flux-independent iCa2+ increase. PMID:25954808

  6. A Metabotropic-Like Flux-Independent NMDA Receptor Regulates Ca2+ Exit from Endoplasmic Reticulum and Mitochondrial Membrane Potential in Cultured Astrocytes.

    PubMed

    Montes de Oca Balderas, Pavel; Aguilera, Penélope

    2015-01-01

    Astrocytes were long thought to be only structural cells in the CNS; however, their functional properties support their role in information processing and cognition. The ionotropic glutamate N-methyl D-aspartate (NMDA) receptor (NMDAR) is critical for CNS functions, but its expression and function in astrocytes is still a matter of research and debate. Here, we report immunofluorescence (IF) labeling in rat cultured cortical astrocytes (rCCA) of all NMDAR subunits, with phenotypes suggesting their intracellular transport, and their mRNA were detected by qRT-PCR. IF and Western Blot revealed GluN1 full-length synthesis, subunit critical for NMDAR assembly and transport, and its plasma membrane localization. Functionally, we found an iCa2+ rise after NMDA treatment in Fluo-4-AM labeled rCCA, an effect blocked by the NMDAR competitive inhibitors D(-)-2-amino-5-phosphonopentanoic acid (APV) and Kynurenic acid (KYNA) and dependent upon GluN1 expression as evidenced by siRNA knock down. Surprisingly, the iCa2+ rise was not blocked by MK-801, an NMDAR channel blocker, or by extracellular Ca2+ depletion, indicating flux-independent NMDAR function. In contrast, the IP3 receptor (IP3R) inhibitor XestosponginC did block this response, whereas a Ryanodine Receptor inhibitor did so only partially. Furthermore, tyrosine kinase inhibition with genistein enhanced the NMDA elicited iCa2+ rise to levels comparable to those reached by the gliotransmitter ATP, but with different population dynamics. Finally, NMDA depleted the rCCA mitochondrial membrane potential (mΔψ) measured with JC-1. Our results demonstrate that rCCA express NMDAR subunits which assemble into functional receptors that mediate a metabotropic-like, non-canonical, flux-independent iCa2+ increase.

  7. Diversity and selectivity in mRNA translation on the endoplasmic reticulum

    PubMed Central

    Reid, David W.; Nicchitta, Christopher V.

    2015-01-01

    Pioneering electron microscopy studies defined two primary populations of ribosomes in eukaryotic cells: one freely dispersed through the cytoplasm and the other bound to the surface of the endoplasmic reticulum (ER). Subsequent investigations revealed a specialized function for each population, with secretory and integral membrane protein-encoding mRNAs translated on ER-bound ribosomes, and cytosolic protein synthesis was widely attributed to free ribosomes. Recent findings have challenged this view, and transcriptome-scale studies of mRNA distribution and translation have now demonstrated that ER-bound ribosomes also function in the translation of a large fraction of mRNAs that encode cytosolic proteins. These studies suggest a far more expansive role for the ER in transcriptome expression, where membrane and secretory protein synthesis represents one element of a multifaceted and dynamic contribution to post-transcriptional gene expression. PMID:25735911

  8. Endoplasmic reticulum-mitochondria Ca(2+) crosstalk in the control of the tumor cell fate.

    PubMed

    Missiroli, Sonia; Danese, Alberto; Iannitti, Tommaso; Patergnani, Simone; Perrone, Mariasole; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo

    2017-06-01

    Mitochondria-associated membranes are juxtaposed between the endoplasmic reticulum and mitochondria and have been identified as a critical hub in the regulation of apoptosis and tumor growth. One key function of mitochondria-associated membranes is to provide asylum to a number of proteins with tumor suppressor and oncogenic properties. In this review, we discuss how Ca(2+) flux manipulation represents the primary mechanism underlying the action of several oncogenes and tumor-suppressor genes and how these networks might be manipulated to provide novel therapies for cancer. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10.

    PubMed

    Ellenrieder, Lars; Opaliński, Łukasz; Becker, Lars; Krüger, Vivien; Mirus, Oliver; Straub, Sebastian P; Ebell, Katharina; Flinner, Nadine; Stiller, Sebastian B; Guiard, Bernard; Meisinger, Chris; Wiedemann, Nils; Schleiff, Enrico; Wagner, Richard; Pfanner, Nikolaus; Becker, Thomas

    2016-10-10

    The endoplasmic reticulum-mitochondria encounter structure (ERMES) connects the mitochondrial outer membrane with the ER. Multiple functions have been linked to ERMES, including maintenance of mitochondrial morphology, protein assembly and phospholipid homeostasis. Since the mitochondrial distribution and morphology protein Mdm10 is present in both ERMES and the mitochondrial sorting and assembly machinery (SAM), it is unknown how the ERMES functions are connected on a molecular level. Here we report that conserved surface areas on opposite sides of the Mdm10 β-barrel interact with SAM and ERMES, respectively. We generated point mutants to separate protein assembly (SAM) from morphology and phospholipid homeostasis (ERMES). Our study reveals that the β-barrel channel of Mdm10 serves different functions. Mdm10 promotes the biogenesis of α-helical and β-barrel proteins at SAM and functions as integral membrane anchor of ERMES, demonstrating that SAM-mediated protein assembly is distinct from ER-mitochondria contact sites.

  10. ATP-Dependent Formation of Phosphatidylserine-Rich Vesicles from the Endoplasmic Reticulum of Leek Cells

    PubMed Central

    Sturbois-Balcerzak, Bénédicte; Vincent, Patrick; Maneta-Peyret, Lilly; Duvert, Michel; Satiat-Jeunemaitre, Béatrice; Cassagne, Claude; Moreau, Patrick

    1999-01-01

    Leek (Allium porrum) plasma membrane is enriched in phosphatidylserine (PS) by the vesicular pathway, in a way similar to that already observed in animal cells (B. Sturbois-Balcerzak, D.J. Morré, O. Loreau, J.P. Noel, P. Moreau, C. Cassagne [1995] Plant Physiol Biochem 33: 625–637). In this paper we document the formation of PS-rich small vesicles from leek endoplasmic reticulum (ER) membranes upon addition of ATP and other factors. The omission of ATP or its replacement by ATPγ-S prevents vesicle formation. These vesicles correspond to small structures (70–80 nm) and their phospholipid composition, characterized by a PS enrichment, is compatible with a role in PS transport. Moreover, the PS enrichment over phosphatidylinositol in the ER-derived vesicles is the first example, to our knowledge, of phospholipid sorting from the ER to ER-derived vesicles in plant cells. PMID:10318702

  11. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology

    PubMed Central

    Chong, Wai Chin; Shastri, Madhur D.; Eri, Rajaraman

    2017-01-01

    The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases. PMID:28379196

  12. Endoplasmic Reticulum Stress Plays a Key Role in the Pathogenesis of Diabetic Peripheral Neuropathy

    PubMed Central

    Lupachyk, Sergey; Watcho, Pierre; Stavniichuk, Roman; Shevalye, Hanna; Obrosova, Irina G.

    2013-01-01

    Endoplasmic reticulum stress resulting from abnormal folding of newly synthesized proteins impairs metabolism, transcriptional regulation, and gene expression, and it is a key mechanism of cell injury. Endoplasmic reticulum stress plays an important role in cardiovascular and neurodegenerative diseases, cancer, and diabetes. We evaluated the role for this phenomenon in diabetic peripheral neuropathy. Endoplasmic reticulum stress manifest in upregulation of multiple components of unfolded protein response was identified in neural tissues (sciatic nerve, spinal cord) of streptozotocin diabetic rats and mice. A chemical chaperone, trimethylamine oxide, administered for 12 weeks after induction of diabetes (110 mg⋅kg−1⋅d−1, a prevention paradigm) attenuated endoplasmic reticulum stress, peripheral nerve dysfunction, intraepidermal nerve fiber loss, and sciatic nerve and spinal cord oxidative-nitrative stress in streptozotocin diabetic rats. Similar effects on diabetes-induced endoplasmic reticulum stress and peripheral nerve dysfunction were observed with a structurally unrelated chemical chaperone, 4-phenylbutyric acid (100 mg⋅kg−1⋅d−1, intraperitoneal). CCAAT/enhancer-binding protein homologous protein (CHOP)−/− mice made diabetic with streptozotocin displayed less severe sciatic nerve oxidative-nitrative stress and peripheral neuropathy than the wild-type (C57Bl6/J) mice. Neither chemical chaperones nor CHOP gene deficiency reduced diabetic hyperglycemia. Our findings reveal an important role of endoplasmic reticulum stress in the development of diabetic peripheral neuropathy and identify a potential new therapeutic target. PMID:23364451

  13. EpCAM associates with endoplasmic reticulum aminopeptidase 2 (ERAP2) in breast cancer cells.

    PubMed

    Gadalla, Salah-Eldin; Öjemalm, Karin; Vasquez, Patricia Lara; Nilsson, Ingmarie; Ericsson, Christer; Zhao, Jian; Nistér, Monica

    2013-09-20

    Epithelial cell adhesion molecule (EpCAM) is an epithelial and cancer cell "marker" and there is a cumulative and growing evidence of its signaling role. Its importance has been recognized as part of the breast cancer stem cell phenotype, the tumorigenic breast cancer stem cell is EpCAM(+). In spite of its complex functions in normal cell development and cancer, relatively little is known about EpCAM-interacting proteins. We used breast cancer cell lines and performed EpCAM co-immunoprecipitation followed by mass spectrometry in search for novel potentially interacting proteins. The endoplasmic reticulum aminopeptidase 2 (ERAP2) was found to co-precipitate with EpCAM and to co-localize in the cytoplasm/ER and the plasma membrane. ERAP2 is a proteolytic enzyme set in the endoplasmic reticulum (ER) where it plays a central role in the trimming of peptides for presentation by MHC class I molecules. Expression of EpCAM and ERAP2 in vitro in the presence of dog pancreas rough microsomes (ER vesicles) confirmed N-linked glycosylation, processing in ER and the size of EpCAM. The association between ERAP2 and EpCAM is a unique and novel finding that provides new ideas on EpCAM processing and on how antigen presentation may be regulated in cancer.

  14. The Endoplasmic Reticulum Coat Protein II Transport Machinery Coordinates Cellular Lipid Secretion and Cholesterol Biosynthesis*

    PubMed Central

    Fryer, Lee G. D.; Jones, Bethan; Duncan, Emma J.; Hutchison, Claire E.; Ozkan, Tozen; Williams, Paul A.; Alder, Olivia; Nieuwdorp, Max; Townley, Anna K.; Mensenkamp, Arjen R.; Stephens, David J.; Dallinga-Thie, Geesje M.; Shoulders, Carol C.

    2014-01-01

    Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions. PMID:24338480

  15. Protein Folding and Misfolding, Endoplasmic Reticulum Stress in Neurodegenerative Diseases: in Trace of Novel Drug Targets.

    PubMed

    Penke, Botond; Bogár, Ferenc; Fülöp, Lívia

    2016-01-01

    Alzheimer's disease (AD) is characterized by severe cognitive impairment and memory loss. AD is classified both into the "protein conformational" and the "endoplasmic reticulum-mitochondria stress" disorders. AD is a very complex, multifactorial disease of heterogeneous genetic and environmental background. The amyloid hypothesis of AD cannot fully explain the various clinical forms of the disease. Protein folding and misfolding in the endoplasmic reticulum (ER), and accumulation of several misfolded proteins (β-amyloid, Tau, alpha-synuclein, etc.) in ER and mitochondria (MT) may play a key role in the development of AD. Functional degradation of the synapse and the synapse holding neurites represents the first step in the pathogenesis of neurodegeneration. MT and ER are tightly coupled both physically and functionally with a special lipid raft called mitochondria-associated ER-membrane (MAM). MAM is crucial for Ca(2+) signalling and metabolic regulation of the cell. In turn, the impairment of ER-MT interplay is a common mechanism of different neurodegenerative diseases. In this review, we discuss recent findings focusing on the protein conformational and metabolic dysfunction, and the role of MAM and ER-MT crosstalk in neurodegeneration.

  16. Photodynamic action of porphyrin on Ca2+ influx in endoplasmic reticulum: a comparison with mitochondria.

    PubMed Central

    Ricchelli, F; Barbato, P; Milani, M; Gobbo, S; Salet, C; Moreno, G

    1999-01-01

    We have studied the distribution properties of haematoporphyrin (HP) and protoporphyrin (PP) in mitochondria and endoplasmic reticulum after isolation from rat liver. The photosensitizing efficiency of porphyrin on the Ca2+ influx function of microsomes has been compared with that obtained on Ca2+ uptake in mitochondria. HP and PP are accumulated in microsomes to a greater extent than in mitochondria, both porphyrins binding to membrane protein sites. The Ca2+ influx functions of mitochondria and microsomes, before and after irradiation in the presence of HP or PP, were studied by following the changes in the free Ca2+ concentration in the medium as revealed by the variations in fluorescence intensity of the Ca2+ indicator Calcium Green-1. For the same amount of incorporated porphyrin, the Ca2+ influx function of microsomes is degraded by irradiation more rapidly than that of mitochondria. The protective effect of dithiothreitol suggests that thiol groups in the Ca2+-transporting enzyme are the preferential targets of the photodynamic effect. These results suggest that intracellular Ca2+ movements are altered primarily by the endoplasmic reticulum rather than by mitochondrial damage, in good agreement with other observations made in porphyrin-loaded irradiated cells. PMID:9931319

  17. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus

    PubMed Central

    Demirtas, Levent; Guclu, Aydin; Erdur, Fatih Mehmet; Akbas, Emin Murat; Ozcicek, Adalet; Onk, Didem; Turkmen, Kultigin

    2016-01-01

    The prevalence of diabetes mellitus (DM) is increasing secondary to increased consumption of food and decreased physical activity worldwide. Hyperglycaemia, insulin resistance and hypertrophy of pancreatic beta cells occur in the early phase of diabetes. However, with the progression of diabetes, dysfunction and loss of beta cells occur in both types 1 and 2 DM. Programmed cell death also named apoptosis is found to be associated with diabetes, and apoptosis of beta cells might be the main mechanism of relative insulin deficiency in DM. Autophagic cell death and apoptosis are not entirely distinct programmed cell death mechanisms and share many of the regulator proteins. These processes can occur in both physiologic and pathologic conditions including DM. Besides these two important pathways, endoplasmic reticulum (ER) also acts as a cell sensor to monitor and maintain cellular homeostasis. ER stress has been found to be associated with autophagy and apoptosis. This review was aimed to describe the interactions between apoptosis, autophagy and ER stress pathways in DM. PMID:28256459

  18. Endoplasmic reticulum localization and activity of maize auxin biosynthetic enzymes.

    PubMed

    Kriechbaumer, Verena; Seo, Hyesu; Park, Woong June; Hawes, Chris

    2015-09-01

    Auxin is a major growth hormone in plants and the first plant hormone to be discovered and studied. Active research over >60 years has shed light on many of the molecular mechanisms of its action including transport, perception, signal transduction, and a variety of biosynthetic pathways in various species, tissues, and developmental stages. The complexity and redundancy of the auxin biosynthetic network and enzymes involved raises the question of how such a system, producing such a potent agent as auxin, can be appropriately controlled at all. Here it is shown that maize auxin biosynthesis takes place in microsomal as well as cytosolic cellular fractions from maize seedlings. Most interestingly, a set of enzymes shown to be involved in auxin biosynthesis via their activity and/or mutant phenotypes and catalysing adjacent steps in YUCCA-dependent biosynthesis are localized to the endoplasmic reticulum (ER). Positioning of auxin biosynthetic enzymes at the ER could be necessary to bring auxin biosynthesis in closer proximity to ER-localized factors for transport, conjugation, and signalling, and allow for an additional level of regulation by subcellular compartmentation of auxin action. Furthermore, it might provide a link to ethylene action and be a factor in hormonal cross-talk as all five ethylene receptors are ER localized.

  19. Unique defense strategy by the endoplasmic reticulum body in plants.

    PubMed

    Yamada, Kenji; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2011-12-01

    The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.

  20. Hydrogen sulfide, endoplasmic reticulum stress and alcohol mediated neurotoxicity.

    PubMed

    George, Akash K; Behera, Jyotirmaya; Kelly, Kimberly E; Zhai, Yuankun; Tyagi, Neetu

    2017-02-14

    Alcohol is one of the most socially accepted addictive drugs in modern society. Its abuse affects virtually all organ systems with the central nervous system (CNS) being particularly vulnerable to excessive alcohol exposure. Alcohol exposure also causes profound damage to both the adult and developing brain. Excessive alcohol consumption induces numerous pathophysiological stress responses, one of which is the endoplasmic reticulum (ER) stress response. Potential mechanisms that trigger the alcohol induced ER stress response are either directly or indirectly related to alcohol metabolism, which include toxic levels of acetaldehyde and homocysteine, oxidative stress and abnormal epigenetic modifications. Growing evidence suggests that H2S is the most recently recognized gasotransmitter with tremendous physiological protective functions against oxidative stress induced neurotoxicity. In this review we address the alcohol induced oxidative stress mediated ER stress and the role of H2S in its mitigation in the context of alcohol neurotoxicity. Interruption of ER stress triggers is anticipated to have therapeutic benefits for alcohol mediated diseases and disorders.

  1. Protein Bodies in Leaves Exchange Contents through the Endoplasmic Reticulum

    DOE PAGES

    Saberianfar, Reza; Sattarzadeh, Amirali; Joensuu, Jussi J.; ...

    2016-05-23

    Protein bodies (PBs) are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER) and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP), or hydrophobin-I (HFBI). Here in this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered intomore » all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles.« less

  2. Heme oxygenase-1 comes back to endoplasmic reticulum

    SciTech Connect

    Kim, Hong Pyo; Pae, Hyun-Ock; Back, Sung Hun; Chung, Su Wol; Woo, Je Moon; Son, Yong; Chung, Hun-Taeg

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  3. Regulation of endoplasmic reticulum turnover by selective autophagy.

    PubMed

    Khaminets, Aliaksandr; Heinrich, Theresa; Mari, Muriel; Grumati, Paolo; Huebner, Antje K; Akutsu, Masato; Liebmann, Lutz; Stolz, Alexandra; Nietzsche, Sandor; Koch, Nicole; Mauthe, Mario; Katona, Istvan; Qualmann, Britta; Weis, Joachim; Reggiori, Fulvio; Kurth, Ingo; Hübner, Christian A; Dikic, Ivan

    2015-06-18

    The endoplasmic reticulum (ER) is the largest intracellular endomembrane system, enabling protein and lipid synthesis, ion homeostasis, quality control of newly synthesized proteins and organelle communication. Constant ER turnover and modulation is needed to meet different cellular requirements and autophagy has an important role in this process. However, its underlying regulatory mechanisms remain unexplained. Here we show that members of the FAM134 reticulon protein family are ER-resident receptors that bind to autophagy modifiers LC3 and GABARAP, and facilitate ER degradation by autophagy ('ER-phagy'). Downregulation of FAM134B protein in human cells causes an expansion of the ER, while FAM134B overexpression results in ER fragmentation and lysosomal degradation. Mutant FAM134B proteins that cause sensory neuropathy in humans are unable to act as ER-phagy receptors. Consistently, disruption of Fam134b in mice causes expansion of the ER, inhibits ER turnover, sensitizes cells to stress-induced apoptotic cell death and leads to degeneration of sensory neurons. Therefore, selective ER-phagy via FAM134 proteins is indispensable for mammalian cell homeostasis and controls ER morphology and turnover in mice and humans.

  4. Microtubules and the endoplasmic reticulum are highly interdependent structures

    PubMed Central

    1986-01-01

    The interrelationships of the endoplasmic reticulum (ER), microtubules, and intermediate filaments were studied in the peripheral regions of thin, spread fibroblasts, epithelial, and vascular endothelial cells in culture. We combined a fluorescent dye staining technique to localize the ER with immunofluorescence to localize microtubules or intermediate filaments in the same cell. Microtubules and the ER are sparse in the lamellipodia, but intermediate filaments are usually completely absent. These relationships indicate that microtubules and the ER advance into the lamellipodia before intermediate filaments. We observed that microtubules and tubules of the ER have nearly identical distributions in lamellipodia, where new extensions of both are taking place. We perturbed microtubules by nocodazole, cold temperature, or hypotonic shock, and observed the effects on the ER distribution. On the basis of our observations in untreated cells and our experiments with microtubule perturbation, we conclude that microtubules and the ER are highly interdependent in two ways: (a) polymerization of individual microtubules and extension of individual ER tubules occur together at the level of resolution of the fluorescence microscope, and (b) depolymerization of microtubules does not disrupt the ER network in the short term (15 min), but prolonged absence of microtubules (2 h) leads to a slow retraction of the ER network towards the cell center, indicating that over longer periods of time, the extended state of the entire ER network requires the microtubule system. PMID:3533956

  5. Low molecular weight Abeta induces collapse of endoplasmic reticulum.

    PubMed

    Lai, Cora Sau-Wan; Preisler, Julie; Baum, Larry; Lee, Daniel Hong-Seng; Ng, Ho-Keung; Hugon, Jacques; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2009-05-01

    The endoplasmic reticulum (ER) is a dynamic multifunction organelle that is responsible for Ca(2+) homeostasis, protein folding, post-translational modification, protein degradation, and transportation of nascent proteins. Disruption of ER architecture might affect the normal physiology of the cell. In yeast, expansion of the ER is observed under unfolded protein response (UPR) and subsequently induces autophagy initiated from the ER. Here, we found that soluble low molecular weight of Abeta disrupted the anchoring between ER and microtubules (MT) and induced collapse of ER. In addition, it decreased the stability of MT. Subsequently, low molecular weight Abeta triggered autophagy and enhanced lysosomal degradation, as shown by electron microscopy and live-cell imaging. Dysfunction of ER can be further proved in postmortem AD brain and transgenic mice bearing APP Swedish mutation by immunohistochemical analysis of calreticulin. Treatment with Taxol, a MT-stabilizing agent, could partially inhibit collapse of the ER and induction of autophagy. The results show that Abeta-induced disruption of MT can affect the architecture of the ER. Collapse/aggregation of the ER may play an important role in Abeta peptide-triggered neurodegenerative processes.

  6. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus.

    PubMed

    Demirtas, Levent; Guclu, Aydin; Erdur, Fatih Mehmet; Akbas, Emin Murat; Ozcicek, Adalet; Onk, Didem; Turkmen, Kultigin

    2016-10-01

    The prevalence of diabetes mellitus (DM) is increasing secondary to increased consumption of food and decreased physical activity worldwide. Hyperglycaemia, insulin resistance and hypertrophy of pancreatic beta cells occur in the early phase of diabetes. However, with the progression of diabetes, dysfunction and loss of beta cells occur in both types 1 and 2 DM. Programmed cell death also named apoptosis is found to be associated with diabetes, and apoptosis of beta cells might be the main mechanism of relative insulin deficiency in DM. Autophagic cell death and apoptosis are not entirely distinct programmed cell death mechanisms and share many of the regulator proteins. These processes can occur in both physiologic and pathologic conditions including DM. Besides these two important pathways, endoplasmic reticulum (ER) also acts as a cell sensor to monitor and maintain cellular homeostasis. ER stress has been found to be associated with autophagy and apoptosis. This review was aimed to describe the interactions between apoptosis, autophagy and ER stress pathways in DM.

  7. Endoplasmic Reticulum Stress Interacts With Inflammation in Human Diseases.

    PubMed

    Cao, Stewart Siyan; Luo, Katherine L; Shi, Lynn

    2016-02-01

    The endoplasmic reticulum (ER) is a critical organelle for normal cell function and homeostasis. Disturbance in the protein folding process in the ER, termed ER stress, leads to the activation of unfolded protein response (UPR) that encompasses a complex network of intracellular signaling pathways. The UPR can either restore ER homeostasis or activate pro-apoptotic pathways depending on the type of insults, intensity and duration of the stress, and cell types. ER stress and the UPR have recently been linked to inflammation in a variety of human pathologies including autoimmune, infectious, neurodegenerative, and metabolic disorders. In the cell, ER stress and inflammatory signaling share extensive regulators and effectors in a broad spectrum of biological processes. In spite of different etiologies, the two signaling pathways have been shown to form a vicious cycle in exacerbating cellular dysfunction and causing apoptosis in many cells and tissues. However, the interaction between ER stress and inflammation in many of these diseases remains poorly understood. Further understanding of the biochemistry, cell biology, and physiology may enable the development of novel therapies that spontaneously target these pathogenic pathways.

  8. Endoplasmic reticulum stress response in yeast and humans

    PubMed Central

    Wu, Haoxi; Ng, Benjamin S. H.; Thibault, Guillaume

    2014-01-01

    Stress pathways monitor intracellular systems and deploy a range of regulatory mechanisms in response to stress. One of the best-characterized pathways, the UPR (unfolded protein response), is an intracellular signal transduction pathway that monitors ER (endoplasmic reticulum) homoeostasis. Its activation is required to alleviate the effects of ER stress and is highly conserved from yeast to human. Although metazoans have three UPR outputs, yeast cells rely exclusively on the Ire1 (inositol-requiring enzyme-1) pathway, which is conserved in all Eukaryotes. In general, the UPR program activates hundreds of genes to alleviate ER stress but it can lead to apoptosis if the system fails to restore homoeostasis. In this review, we summarize the major advances in understanding the response to ER stress in Sc (Saccharomyces cerevisiae), Sp (Schizosaccharomyces pombe) and humans. The contribution of solved protein structures to a better understanding of the UPR pathway is discussed. Finally, we cover the interplay of ER stress in the development of diseases. PMID:24909749

  9. Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming.

    PubMed

    Kimura, Kenji; Mamane, Alexandre; Sasaki, Tohru; Sato, Kohta; Takagi, Jun; Niwayama, Ritsuya; Hufnagel, Lars; Shimamoto, Yuta; Joanny, Jean-François; Uchida, Seiichi; Kimura, Akatsuki

    2017-04-01

    Cytoplasmic streaming refers to a collective movement of cytoplasm observed in many cell types. The mechanism of meiotic cytoplasmic streaming (MeiCS) in Caenorhabditis elegans zygotes is puzzling as the direction of the flow is not predefined by cell polarity and occasionally reverses. Here, we demonstrate that the endoplasmic reticulum (ER) network structure is required for the collective flow. Using a combination of RNAi, microscopy and image processing of C. elegans zygotes, we devise a theoretical model, which reproduces and predicts the emergence and reversal of the flow. We propose a positive-feedback mechanism, where a local flow generated along a microtubule is transmitted to neighbouring regions through the ER. This, in turn, aligns microtubules over a broader area to self-organize the collective flow. The proposed model could be applicable to various cytoplasmic streaming phenomena in the absence of predefined polarity. The increased mobility of cortical granules by MeiCS correlates with the efficient exocytosis of the granules to protect the zygotes from osmotic and mechanical stresses.

  10. Chlorpyrifos induces endoplasmic reticulum stress in JEG-3 cells.

    PubMed

    Reyna, Luciana; Flores-Martín, Jésica; Ridano, Magali E; Panzetta-Dutari, Graciela M; Genti-Raimondi, Susana

    2017-04-01

    Chlorpyrifos (CPF) is an organophosphorous pesticide widely used in agricultural, industrial, and household applications. We have previously shown that JEG-3 cells are able to attenuate the oxidative stress induced by CPF through the adaptive activation of the Nrf2/ARE pathway. Considering that there is a relationship between oxidative stress and endoplasmic reticulum stress (ER), herein we investigated whether CPF also induces ER stress in JEG-3 cells. Cells were exposed to 50μM or 100μM CPF during 24h in conditions where cell viability was not altered. Western blot and PCR assays were used to explore the protein and mRNA levels of ER stress biomarkers, respectively. CPF induced an increase of the typical ER stress-related proteins, such as GRP78/BiP and IRE1α, a sensor for the unfolded protein response, as well as in phospho-eIF2α and XBP1 mRNA splicing. Additionally, CPF led to a decrease in p53 protein expression. The downregulation of p53 levels induced by CPF was partially blocked when cells were exposed to CPF in the presence of the proteasome inhibitor MG132. Altogether, these findings point out that CPF induces ER stress in JEG-3 cells; however these cells are able to attenuate it downregulating the levels of the pro-apoptotic protein p53.

  11. Thiamine Deficiency Induces Endoplasmic Reticulum Stress in Neurons

    PubMed Central

    Wang, Xin; Wang, Bingwei; Fan, Zhiqin; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia

    2007-01-01

    Thiamine (vitamin B1) deficiency (TD) causes region selective neuronal loss in the brain; it has been used to model neurodegeneration that accompanies mild impairment of oxidative metabolism. The mechanisms for TD-induced neurodegeneration remain incompletely elucidated. Inhibition of protein glycosylation, perturbation of calcium homeostasis and reduction of disulfide bonds provoke the accumulation of unfolded proteins in the endoplasmic reticulum (ER), and cause ER stress. Recently, ER stress has been implicated in a number of neurodegenerative models. We demonstrated here that TD up-regulated several markers of ER stress, such as GRP78, GADD153/Chop, phosphorylation of eIF2α and cleavage of caspase-12 in the cerebellum and the thalamus of mice. Furthermore, ultrastructural analysis by electron microscopic study revealed an abnormality in ER structure. To establish an in vitro model of TD in neurons, we treated cultured cerebellar granule neurons (CGNs) with amprolium, a potent inhibitor of thiamine transport. Exposure to amprolium caused apoptosis and the generation of reactive oxygen species in CGNs. Similar to the observation in vivo, TD up-regulated markers for ER stress. Treatment of a selective inhibitor of caspase-12 significantly alleviated amprolium-induced death of CGNs. Thus, ER stress may play a role in TD-induced brain damage. PMID:17137721

  12. Thiamine deficiency induces endoplasmic reticulum stress in neurons.

    PubMed

    Wang, X; Wang, B; Fan, Z; Shi, X; Ke, Z-J; Luo, J

    2007-02-09

    Thiamine (vitamin B1) deficiency (TD) causes region selective neuronal loss in the brain; it has been used to model neurodegeneration that accompanies mild impairment of oxidative metabolism. The mechanisms for TD-induced neurodegeneration remain incompletely elucidated. Inhibition of protein glycosylation, perturbation of calcium homeostasis and reduction of disulfide bonds provoke the accumulation of unfolded proteins in the endoplasmic reticulum (ER), and cause ER stress. Recently, ER stress has been implicated in a number of neurodegenerative models. We demonstrated here that TD up-regulated several markers of ER stress, such as glucose-regulated protein (GRP) 78, growth arrest and DNA-damage inducible protein or C/EBP-homologus protein (GADD153/Chop), phosphorylation of eIF2alpha and cleavage of caspase-12 in the cerebellum and the thalamus of mice. Furthermore, ultrastructural analysis by electron microscopic study revealed an abnormality in ER structure. To establish an in vitro model of TD in neurons, we treated cultured cerebellar granule neurons (CGNs) with amprolium, a potent inhibitor of thiamine transport. Exposure to amprolium caused apoptosis and the generation of reactive oxygen species in CGNs. Similar to the observation in vivo, TD up-regulated markers for ER stress. Treatment of a selective inhibitor of caspase-12 significantly alleviated amprolium-induced death of CGNs. Thus, ER stress may play a role in TD-induced brain damage.

  13. The effect of calcitriol on endoplasmic reticulum stress response.

    PubMed

    Haddur, Ela; Ozkaya, Ali Burak; Ak, Handan; Aydin, Hikmet Hakan

    2015-06-01

    Calcitriol, the active form of vitamin D, is known for its anticancer properties including induction of apoptosis, inhibition of angiogenesis, and metastasis. Calcitriol also increases intracellular calcium triggering apoptosis in a calpain-dependent manner. Since the main storage unit for cellular calcium is endoplasmic reticulum (ER) and a decrease in ER calcium levels might induce ER stress associated cell death, we hypothesized that the cellular actions of calcitriol occur via ER stress. We have evaluated induction of ER stress by assessing BIP expression and XBP-1 splicing in breast cancer cell lines (MCF-7 and MDA-MB-231) and mammary epithelial cell line MCF10A. Our results suggest that cytotoxic concentrations of calcitriol induce an ER stress related response indicated as increased BIP levels and XBP-1 splicing not only in breast cancer cells but also in mammary epithelial cell line. However, vehicle treatment also induced a similar response de-emphasizing the importance of such effect. Calcitriol also failed to activate calpains, further weakening the idea of ER stress as the main mechanism for apoptotic effects of calcitriol. Taken together our results suggest an association between ER stress and vitamin D signaling. However present data indicates that ER stress by itself is not sufficient to explain anticancer properties of calcitriol.

  14. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis.

    PubMed

    Xue, Yong; Schmollinger, Stefan; Attar, Narsis; Campos, Oscar A; Vogelauer, Maria; Carey, Michael F; Merchant, Sabeeha S; Kurdistani, Siavash K

    2017-08-11

    The endoplasmic reticulum (ER)-mitochondria encounter structure (ERMES) is a protein complex that physically tethers the two organelles to each other and creates the physical basis for communication between them. ERMES functions in lipid exchange between the ER and mitochondria, protein import into mitochondria, and maintenance of mitochondrial morphology and genome. Here, we report that ERMES is also required for iron homeostasis. Loss of ERMES components activates an Aft1-dependent iron deficiency response even in iron-replete conditions, leading to accumulation of excess iron inside the cell. This function is independent of known ERMES roles in calcium regulation, phospholipid biosynthesis, or effects on mitochondrial morphology. A mutation in the vacuolar protein sorting 13 (VPS13) gene that rescues the glycolytic phenotype of ERMES mutants suppresses the iron deficiency response and iron accumulation. Our findings reveal that proper communication between the ER and mitochondria is required for appropriate maintenance of cellular iron levels. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Altered localization of amyloid precursor protein under endoplasmic reticulum stress.

    PubMed

    Kudo, Takashi; Okumura, Masayo; Imaizumi, Kazunori; Araki, Wataru; Morihara, Takashi; Tanimukai, Hitoshi; Kamagata, Eiichiro; Tabuchi, Nobuhiko; Kimura, Ryo; Kanayama, Daisuke; Fukumori, Akio; Tagami, Shinji; Okochi, Masayasu; Kubo, Mikiko; Tanii, Hisashi; Tohyama, Masaya; Tabira, Takeshi; Takeda, Masatoshi

    2006-06-02

    Recent reports have shown that the endoplasmic reticulum (ER) stress is relevant to the pathogenesis of Alzheimer disease. Following the amyloid cascade hypothesis, we therefore attempted to investigate the effects of ER stress on amyloid-beta peptide (Abeta) generation. In this study, we found that ER stress altered the localization of amyloid precursor protein (APP) from late compartments to early compartments of the secretory pathway, and decreased the level of Abeta 40 and Abeta 42 release by beta- and gamma-cutting. Transient transfection with BiP/GRP78 also caused a shift of APP and a reduction in Abeta secretion. It was revealed that the ER stress response facilitated binding of BiP/GRP78 to APP, thereby causing it to be retained in the early compartments apart from a location suitable for the cleavages of Abeta. These findings suggest that induction of BiP/GRP78 during ER stress may be one of the regulatory mechanisms of Abeta generation.

  16. Naltrexone attenuates endoplasmic reticulum stress induced hepatic injury in mice.

    PubMed

    Moslehi, A; Nabavizadeh, F; Nabavizadeh, Fatemeh; Dehpour, A R; Dehpou, A R; Tavanga, S M; Hassanzadeh, G; Zekri, A; Nahrevanian, H; Sohanaki, H

    2014-09-01

    Endoplasmic reticulum (ER) stress provides abnormalities in insulin action, inflammatory responses, lipoprotein B100 degradation and hepatic lipogenesis. Excess accumulation of triglyceride in hepatocytes may also lead to disorders such as non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Opioid peptides are involved in triglyceride and cholesterol dysregulation, inflammation and cell death. In this study, we evaluated Naltrexone effects on ER stress induced liver injury. To do so, C57/BL6 mice received saline, DMSO and Naltrexone, as control groups. ER stress was induced by tunicamycin (TM) injection. Naltrexone was given before TM administration. Liver blood flow and biochemical serum analysis were measured. Histopathological evaluations, TNF-α measurement and Real-time RT-PCR were also performed. TM challenge provokes steatosis, cellular ballooning and lobular inflammation which significantly reduced in Naltrexone treated animals. ALT, AST and TNF-α increased in the TM group and improved in the Naltrexone plus TM group. Triglyceride and cholesterol levels decreased in TM treated mice with no increase in Naltrexone treated animals. In the Naltrexone plus TM group, gene expression of Bax/Bcl-2 ratio and caspase3 significantly lowered compared with the TM group. In this study, we found that Naltrexone had a notable alleviating role in ER stress induced steatosis and liver injury.

  17. Protein misfolding and endoplasmic reticulum stress in chronic lung disease.

    PubMed

    Wei, James; Rahman, Sadaf; Ayaub, Ehab A; Dickhout, Jeffrey G; Ask, Kjetil

    2013-04-01

    The pathogenesis of chronic lung disorders is poorly understood but is often thought to arise because of repeated injuries derived from exposure to exogenous or endogenous stress factors. Protein-misfolding events have been observed in a variety of genetic and nongenetic chronic lung disorders and may contribute to both the initiation and the progression of lung disease through endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). Evidence indicates that exposure to common lung irritants such as cigarette smoke, environmental pollutants, and infectious viral or bacterial agents can induce ER stress and protein misfolding. Although the UPR is thought to be a molecular mechanism involved in the repair and restoration of protein homeostasis or "proteostasis," prolonged activation of the UPR may lead to compromised cellular functions, cellular transformation, or cell death. Here, we review literature that associates protein-misfolding events with ER stress and UPR activation and discuss how this basic molecular repair mechanism may contribute to the initiation and progression of various genetic and nongenetic chronic lung diseases.

  18. Protein quality control, retention, and degradation at the endoplasmic reticulum.

    PubMed

    Benyair, Ron; Ron, Efrat; Lederkremer, Gerardo Z

    2011-01-01

    In order to maintain proper cellular functions, all living cells, from bacteria to mammalian cells, must carry out a rigorous quality control process in which nascent and newly synthesized proteins are examined. An important role of this process is to protect cells against pathological accumulation of unfolded and misfolded proteins. The endoplasmic reticulum (ER) has evolved as a staging ground for secretory protein synthesis with distinct sites for entry, quality control, and exit. In the ER, most proteins are N-glycosylated, a posttranslational modification that defines the quality control pathway that the protein will undergo. The folding state of glycoproteins is revealed by specific modifications of their N-glycans. Regardless of size and posttranslational modifications, the folding states of all proteins must be identified as unfolded, properly folded, or terminally misfolded and accordingly subjected to ER retention and continued folding attempts, export and maturation, or retrotranslocation to the cytosol for degradation. These processes involve specialized machineries that utilize molecular chaperones, protein- and N-glycan-modifying enzymes, and lectins for protein folding and quality control and ubiquitination and degradation machineries for disposal. All these machineries are regulated by a signaling pathway, the unfolded protein response, which upregulates ER functions when under the stress of high protein load. Here, we describe the molecular mechanisms that are implicated and discuss recent data that underline the importance of compartmentalization in the segregation of the various functions of the ER for their correct function.

  19. Selective export of autotaxin from the endoplasmic reticulum.

    PubMed

    Lyu, Lin; Wang, Baolu; Xiong, Chaoyang; Zhang, Xiaotian; Zhang, Xiaoyan; Zhang, Junjie

    2017-04-28

    Autotaxin (ATX) or ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) is a secretory glycoprotein and functions as the key enzyme for lysophosphatidic acid generation. The mechanism of ATX protein trafficking is largely unknown. Here, we demonstrated that p23, a member of the p24 protein family, was the protein-sorting receptor required for endoplasmic reticulum (ER) export of ATX. A di-phenylalanine (Phe-838/Phe-839) motif in the human ATX C-terminal region was identified as a transport signal essential for the ATX-p23 interaction. Knockdown of individual Sec24 isoforms by siRNA revealed that ER export of ATX was impaired only if Sec24C was down-regulated. These results suggest that ATX is selectively exported from the ER through a p23, Sec24C-dependent pathway. In addition, it was found that AKT signaling played a role in ATX secretion regulation to facilitate ATX ER export by enhancing the nuclear factor of activated T cell-mediated p23 expression. Furthermore, the di-hydrophobic amino acid motifs (FY) also existed in the C-terminal regions of human ENPP1 and ENPP3. Such a p23, Sec24C-dependent selective ER export mechanism is conserved among these ENPP family members. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Prognosis of oocytes showing aggregation of smooth endoplasmic reticulum.

    PubMed

    Ebner, Thomas; Moser, Marianne; Shebl, Omar; Sommerguber, Michael; Tews, Gernot

    2008-01-01

    Few cytoplasmic dysmorphisms of oocytes have been reported to negatively influence the further fate of the ova. One such anomaly, namely the central aggregation of the smooth endoplasmic reticulum (SER), has recently been associated with suboptimal outcome in a limited number of patients. In order to increase prognostic value, it was decided to prospectively screen all intracytoplasmic sperm injection patients within 1 year for eggs showing aggregations of SER. In addition, all deliveries (obstetric and neonatal data) were analysed. Occurrence of SER cluster was related to duration (P < 0.001) and dosage (P < 0.01) of the stimulation. Fertilization (58.9%) and blastulation rate (44.0%) were lower (P < 0.01) in affected ova compared with unaffected counterparts (77.4 and 87.8%, respectively). Pregnancies in women with affected gametes were accompanied by a higher incidence of obstetric problems (P < 0.01) leading to a non-significant trend towards earlier delivery and significantly reduced birthweight (P < 0.05). It is strongly recommended to avoid transfer of embryos/blastocysts derived from SER cluster-positive gametes. Patients have to be informed that even transfer of sibling oocytes without this anomaly involves a higher risk of detrimental outcome.

  1. Quantitative proteomic survey of endoplasmic reticulum in mouse liver.

    PubMed

    Song, Yanping; Jiang, Ying; Ying, Wantao; Gong, Yan; Yan, Yujuan; Yang, Dong; Ma, Jie; Xue, Xiaofang; Zhong, Fan; Wu, Songfeng; Hao, Yunwei; Sun, Aihua; Li, Tao; Sun, Wei; Wei, Handong; Zhu, Yunping; Qian, Xiaohong; He, Fuchu

    2010-03-05

    To gain a better understanding of the critical function of the endoplasmic reticulum (ER) in liver, we carried out a proteomic survey of mouse liver ER. The ER proteome was profiled with a new three-dimensional, gel-based strategy. From 6152 and 6935 MS spectra, 903 and 1042 proteins were identified with at least two peptides matches at 95% confidence in the rough (r) and smooth (s) ER, respectively. Comparison of the rER and sER proteomes showed that calcium-binding proteins are significantly enriched in the sER suggesting that the ion-binding function of the ER is compartmentalized. Comparison of the rat and mouse ER proteomes showed that 662 proteins were common to both, comprising 53.5% and 49.3% of those proteomes, respectively. We proposed that these proteins were stably expressed proteins that were essential for the maintenance of ER function. GO annotation with a hypergeometric model proved this hypothesis. Unexpectedly, 210 unknown proteins and some proteins previously reported to occur in the cytosol were highly enriched in the ER. This study provides a reference map for the ER proteome of liver. Identification of new ER proteins will enhance our current understanding of the ER and also suggest new functions for this organelle.

  2. Endoplasmic Reticulum Stress, Unfolded Protein Response, and Cancer Cell Fate

    PubMed Central

    Corazzari, Marco; Gagliardi, Mara; Fimia, Gian Maria; Piacentini, Mauro

    2017-01-01

    Perturbation of endoplasmic reticulum (ER) homeostasis results in a stress condition termed “ER stress” determining the activation of a finely regulated program defined as unfolded protein response (UPR) and whose primary aim is to restore this organelle’s physiological activity. Several physiological and pathological stimuli deregulate normal ER activity causing UPR activation, such as hypoxia, glucose shortage, genome instability, and cytotoxic compounds administration. Some of these stimuli are frequently observed during uncontrolled proliferation of transformed cells, resulting in tumor core formation and stage progression. Therefore, it is not surprising that ER stress is usually induced during solid tumor development and stage progression, becoming an hallmark of such malignancies. Several UPR components are in fact deregulated in different tumor types, and accumulating data indicate their active involvement in tumor development/progression. However, although the UPR program is primarily a pro-survival process, sustained and/or prolonged stress may result in cell death induction. Therefore, understanding the mechanism(s) regulating the cell survival/death decision under ER stress condition may be crucial in order to specifically target tumor cells and possibly circumvent or overcome tumor resistance to therapies. In this review, we discuss the role played by the UPR program in tumor initiation, progression and resistance to therapy, highlighting the recent advances that have improved our understanding of the molecular mechanisms that regulate the survival/death switch. PMID:28491820

  3. Protein Bodies in Leaves Exchange Contents through the Endoplasmic Reticulum

    SciTech Connect

    Saberianfar, Reza; Sattarzadeh, Amirali; Joensuu, Jussi J.; Kohalmi, Susanne E.; Menassa, Rima

    2016-05-23

    Protein bodies (PBs) are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER) and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP), or hydrophobin-I (HFBI). Here in this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered into all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles.

  4. Coping with endoplasmic reticulum stress in the cardiovascular system.

    PubMed

    Groenendyk, Jody; Agellon, Luis B; Michalak, Marek

    2013-01-01

    The endoplasmic reticulum (ER) is a multifunctional intracellular organelle, a component of the cellular reticular network that allows cells to adjust to a wide variety of conditions. The cardiomyocyte reticular network is the ideal location of sensors for both intrinsic and extrinsic factors that disrupt energy and/or nutrient homeostasis and lead to ER stress, a disturbance in ER function. ER stress has been linked to both physiological and pathological states in the cardiovascular system; such states include myocardial infarction, oxygen starvation (hypoxia) and fuel starvation, ischemia, pressure overload, dilated cardiomyopathy, hypertrophy, and heart failure. The ER stress coping response (e.g., the unfolded protein response) is composed of discrete pathways that are controlled by a collection of common regulatory components that may function as a single entity involved in reacting to ER stress. These corrective strategies allow the cardiomyocyte reticular network to restore energy and/or nutrient homeostasis and to avoid cell death. Therefore, the identities of the ER stress corrective strategies are important targets for the development of therapeutic approaches for cardiovascular and other acquired disorders.

  5. Protein Bodies in Leaves Exchange Contents through the Endoplasmic Reticulum

    PubMed Central

    Saberianfar, Reza; Sattarzadeh, Amirali; Joensuu, Jussi J.; Kohalmi, Susanne E.; Menassa, Rima

    2016-01-01

    Protein bodies (PBs) are organelles found in seeds whose main function is the storage of proteins that are used during germination for sustaining growth. PBs can also be induced to form in leaves when foreign proteins are produced at high levels in the endoplasmic reticulum (ER) and when fused to one of three tags: Zera®, elastin-like polypeptides (ELP), or hydrophobin-I (HFBI). In this study, we investigate the differences between ELP, HFBI and Zera PB formation, packing, and communication. Our results confirm the ER origin of all three fusion-tag-induced PBs. We show that secretory pathway proteins can be sequestered into all types of PBs but with different patterns, and that different fusion tags can target a specific protein to different PBs. Zera PBs are mobile and dependent on actomyosin motility similar to ELP and HFBI PBs. We show in vivo trafficking of proteins between PBs using GFP photoconversion. We also show that protein trafficking between ELP or HFBI PBs is faster and proteins travel further when compared to Zera PBs. Our results indicate that fusion-tag-induced PBs do not represent terminally stored cytosolic organelles, but that they form in, and remain part of the ER, and dynamically communicate with each other via the ER. We hypothesize that the previously documented PB mobility along the actin cytoskeleton is associated with ER movement rather than independent streaming of detached organelles. PMID:27242885

  6. PROTEOMICS ANALYSIS OF ROUGH ENDOPLASMIC RETICULUM IN PANCREATIC BETA CELLS

    PubMed Central

    Lee, Jin-sook; Wu, Yanning; Skallos, Patracia; Fang, Jingye; Zhang, Xuebao; Karnovsky, Alla; Woods, James; Stemmer, Paul M.; Liu, Ming; Zhang, Kezhong; Chen, Xuequn

    2015-01-01

    Pancreatic beta cells have well-developed endoplasmic reticulum (ER) to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by one dimensional SDS-PAGE coupled with HPLC-MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. Gene ontology analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes-causing conditions. PMID:25546123

  7. PERK-opathies: An Endoplasmic Reticulum Stress Mechanism Underlying Neurodegeneration.

    PubMed

    Bell, Michelle C; Meier, Shelby E; Ingram, Alexandria L; Abisambra, Jose F

    2016-01-01

    The unfolded protein response (UPR) plays a vital role in maintaining cell homeostasis as a consequence of endoplasmic reticulum (ER) stress. However, prolonged UPR activity leads to cell death. This time-dependent dual functionality of the UPR represents the adaptive and cytotoxic pathways that result from ER stress. Chronic UPR activation in systemic and neurodegenerative diseases has been identified as an early sign of cellular dyshomeostasis. The Protein Kinase R-like ER Kinase (PERK) pathway is one of three major branches in the UPR, and it is the only one to modulate protein synthesis as an adaptive response. The specific identification of prolonged PERK activity has been correlated with the progression of disorders such as diabetes, Alzheimer's disease, and cancer, suggesting that PERK plays a role in the pathology of these disorders. For the first time, the term "PERK-opathies" is used to group these diseases in which PERK mediates detriment to the cell culminating in chronic disorders. This article reviews the literature documenting links between systemic disorders with the UPR, but with a specific emphasis on the PERK pathway. Then, articles reporting links between the UPR, and more specifically PERK, and neurodegenerative disorders are presented. Finally, a therapeutic perspective is discussed, where PERK interventions could be potential remedies for cellular dysfunction in chronic neurodegenerative disorders.

  8. Binding of FUNDC1 with Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum (ER) Membranes Maintains Mitochondrial Dynamics and Function in Hearts In Vivo.

    PubMed

    Wu, Shengnan; Lu, Qiulun; Wang, Qilong; Ding, Ye; Ma, Zejun; Mao, Xiaoxiang; Huang, Kai; Xie, Zhonglin; Zou, Ming-Hui

    2017-09-23

    Background -FUN14 domain containing 1 (FUNDC1) is a highly conserved outer mitochondrial membrane protein. The aim of this study is to examine if FUNDC1 modulates the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), mitochondrial morphology, and function in cardiomyocytes and in intact hearts. Methods -The impacts of FUNDC1 on MAMs formation and cardiac functions were studied in mouse neonatal cardiomyocytes, in mice with cardiomyocyte-specific Fundc1 gene knockout (Fundc1(f/Y)/Cre(αMyHC+/-) ), and in the cardiac tissues of the patients with heart failure. Results -In mouse neonatal cardiomyocytes and intact hearts, FUNDC1 was localized in MAMs by binding to ER-resided inositol 1,4,5-trisphosphate type 2 receptor (IP3R2). Fundc1 ablation disrupted MAMs, reduced the levels of IP3R2 and Ca(2+) in both mitochondria and cytosol whereas overexpression of Fundc1 increased the levels of IP3R2 and Ca(2+) in both mitochondria and cytosol. Consistently, Fundc1 ablation increased Ca(2+) levels in ER whereas Fundc1 overexpression lowered ER Ca(2+) levels. Further, Fundc1 ablation in cardiomyocytes elongated mitochondria, and compromised mitochondrial functions. Mechanistically, we found that Fundc1 ablation-induced reduction of intracellular Ca(2+) levels suppressed mitochondrial fission 1 protein (Fis1) expression and mitochondrial fission by reducing the binding of the cAMP response element binding protein (CREB) in the Fis1 promoter. Fundc1(f/Y)/Cre(αMyHC+/-) mice but not their littermate control mice (Fundc1(wt/Y)/Cre(αMyHC+/-)) exhibited cardiac dysfunction. The ligation of the left ventricle artery of Fundc1(f/Y)/Cre(αMyHC+/-) mice caused more severe cardiac dysfunction than those in sham-treated Fundc1(f/Y)/Cre(αMyHC+/-) mice. Finally, we found that the FUNDC1/MAMs/CREB/Fis1 signaling axis was significantly suppressed in the patients with heart failure. Conclusions -We conclude that FUNDC1 binds to IP3R2 to modulate ER Ca(2+) release into

  9. Alteration of Ceramide Synthase 6/C16-Ceramide Induces Activating Transcription Factor 6-mediated Endoplasmic Reticulum (ER) Stress and Apoptosis via Perturbation of Cellular Ca2+ and ER/Golgi Membrane Network*

    PubMed Central

    Senkal, Can E.; Ponnusamy, Suriyan; Manevich, Yefim; Meyers-Needham, Marisa; Saddoughi, Sahar A.; Mukhopadyay, Archana; Dent, Paul; Bielawski, Jacek; Ogretmen, Besim

    2011-01-01

    Mechanisms that regulate endoplasmic reticulum (ER) stress-induced apoptosis in cancer cells remain enigmatic. Recent data suggest that ceramide synthase1–6 (CerS1–6)-generated ceramides, containing different fatty acid chain lengths, might exhibit distinct and opposing functions, such as apoptosis versus survival in a context-dependent manner. Here, we investigated the mechanisms involved in the activation of one of the major ER stress response proteins, ATF-6, and subsequent apoptosis by alterations of CerS6/C16-ceramide. Induction of wild type (WT), but not the catalytically inactive mutant CerS6, increased tumor growth in SCID mice, whereas siRNA-mediated knockdown of CerS6 induced ATF-6 activation and apoptosis in multiple human cancer cells. Down-regulation of CerS6/C16-ceramide, and not its further metabolism to glucosylceramide or sphingomyelin, activated ATF-6 upon treatment with ER stress inducers tunicamycin or SAHA (suberoylanilide hydroxamic acid). Induction of WT-CerS6 expression, but not its mutant, or ectopic expression of the dominant-negative mutant form of ATF-6 protected cells from apoptosis in response to CerS6 knockdown and tunicamycin or SAHA treatment. Mechanistically, ATF-6 activation was regulated by a concerted two-step process involving the release of Ca2+ from the ER stores ([Ca2+]ER), which resulted in the fragmentation of Golgi membranes in response to CerS6/C16-ceramide alteration. This resulted in the accumulation of pro-ATF-6 in the disrupted ER/Golgi membrane network, where pro-ATF6 is activated. Accordingly, ectopic expression of a Ca2+ chelator calbindin prevented the Golgi fragmentation, ATF-6 activation, and apoptosis in response to CerS6/C16-ceramide down-regulation. Overall, these data suggest a novel mechanism of how CerS6/C16-ceramide alteration activates ATF6 and induces ER-stress-mediated apoptosis in squamous cell carcinomas. PMID:22013072

  10. Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network.

    PubMed

    Senkal, Can E; Ponnusamy, Suriyan; Manevich, Yefim; Meyers-Needham, Marisa; Saddoughi, Sahar A; Mukhopadyay, Archana; Dent, Paul; Bielawski, Jacek; Ogretmen, Besim

    2011-12-09

    Mechanisms that regulate endoplasmic reticulum (ER) stress-induced apoptosis in cancer cells remain enigmatic. Recent data suggest that ceramide synthase1-6 (CerS1-6)-generated ceramides, containing different fatty acid chain lengths, might exhibit distinct and opposing functions, such as apoptosis versus survival in a context-dependent manner. Here, we investigated the mechanisms involved in the activation of one of the major ER stress response proteins, ATF-6, and subsequent apoptosis by alterations of CerS6/C(16)-ceramide. Induction of wild type (WT), but not the catalytically inactive mutant CerS6, increased tumor growth in SCID mice, whereas siRNA-mediated knockdown of CerS6 induced ATF-6 activation and apoptosis in multiple human cancer cells. Down-regulation of CerS6/C(16)-ceramide, and not its further metabolism to glucosylceramide or sphingomyelin, activated ATF-6 upon treatment with ER stress inducers tunicamycin or SAHA (suberoylanilide hydroxamic acid). Induction of WT-CerS6 expression, but not its mutant, or ectopic expression of the dominant-negative mutant form of ATF-6 protected cells from apoptosis in response to CerS6 knockdown and tunicamycin or SAHA treatment. Mechanistically, ATF-6 activation was regulated by a concerted two-step process involving the release of Ca(2+) from the ER stores ([Ca(2+)](ER)), which resulted in the fragmentation of Golgi membranes in response to CerS6/C(16)-ceramide alteration. This resulted in the accumulation of pro-ATF-6 in the disrupted ER/Golgi membrane network, where pro-ATF6 is activated. Accordingly, ectopic expression of a Ca(2+) chelator calbindin prevented the Golgi fragmentation, ATF-6 activation, and apoptosis in response to CerS6/C(16)-ceramide down-regulation. Overall, these data suggest a novel mechanism of how CerS6/C(16)-ceramide alteration activates ATF6 and induces ER-stress-mediated apoptosis in squamous cell carcinomas.

  11. Stability and flexibility of marginally hydrophobic–segment stalling at the endoplasmic reticulum translocon

    PubMed Central

    Kida, Yuichiro; Ishihara, Yudai; Fujita, Hidenobu; Onishi, Yukiko; Sakaguchi, Masao

    2016-01-01

    Many membrane proteins are integrated into the endoplasmic reticulum membrane through the protein-conducting channel, the translocon. Transmembrane segments with insufficient hydrophobicity for membrane integration are frequently found in multispanning membrane proteins, and such marginally hydrophobic (mH) segments should be accommodated, at least transiently, at the membrane. Here we investigated how mH-segments stall at the membrane and their stability. Our findings show that mH-segments can be retained at the membrane without moving into the lipid phase and that such segments flank Sec61α, the core channel of the translocon, in the translational intermediate state. The mH-segments are gradually transferred from the Sec61 channel to the lipid environment in a hydrophobicity-dependent manner, and this lateral movement may be affected by the ribosome. In addition, stalling mH-segments allow for insertion of the following transmembrane segment, forming an Ncytosol/Clumen orientation, suggesting that mH-segments can move laterally to accommodate the next transmembrane segment. These findings suggest that mH-segments may be accommodated at the ER membrane with lateral fluctuation between the Sec61 channel and the lipid phase. PMID:26823014

  12. Endoplasmic reticulum-Golgi intermediate compartment protein 3 knockdown suppresses lung cancer through endoplasmic reticulum stress-induced autophagy.

    PubMed

    Hong, Seong-Ho; Chang, Seung-Hee; Cho, Kyung-Cho; Kim, Sanghwa; Park, Sungjin; Lee, Ah Young; Jiang, Hu-Lin; Kim, Hyeon-Jeong; Lee, Somin; Yu, Kyeong-Nam; Seo, Hwi Won; Chae, Chanhee; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing

    2016-10-04

    Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies.

  13. Endoplasmic reticulum-Golgi intermediate compartment protein 3 knockdown suppresses lung cancer through endoplasmic reticulum stress-induced autophagy

    PubMed Central

    Hong, Seong-Ho; Chang, Seung-Hee; Cho, Kyung-Cho; Kim, Sanghwa; Park, Sungjin; Lee, Ah Young; Jiang, Hu-Lin; Kim, Hyeon-Jeong; Lee, Somin; Yu, Kyeong-Nam; Seo, Hwi Won; Chae, Chanhee; Kim, Kwang Pyo; Park, Jongsun; Cho, Myung-Haing

    2016-01-01

    Trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus is elevated in cancer cells. Therefore, proteins of the ER-Golgi intermediate compartment (ERGIC) attract significant attention as targets for cancer treatment. Enhanced cancer cell growth and epithelial-mesenchymal transition by ERGICs correlates with poor-prognosis of lung cancer. This prompted us to assess whether knockdown of ERGIC3 may decrease lung cancer growth. To test the hypothesis, the effects of ERGIC3 short hairpin RNA (shERGIC3) on ER stress-induced cell death and lung tumorigenesis were investigated both in vitro and in vivo. Knockdown of ERGIC3 led to ER stress-induced autophagic cell death and suppression of proliferation in the A549 human lung cancer cell-line. Moreover, non-invasive aerosol-delivery of shERGIC3 using the biocompatible carrier glycerol propoxylate triacrylate and spermine (GPT-SPE) inhibited lung tumorigenesis in the K-rasLA1 murine model of lung cancer. Our data suggest that suppression of ERGIC3 could provide a framework for the development of effective lung cancer therapies. PMID:27588471

  14. Identification of a calmodulin-regulated Ca2+-ATPase in the endoplasmic reticulum

    NASA Technical Reports Server (NTRS)

    Hong, B.; Ichida, A.; Wang, Y.; Gens, J. S.; Pickard, B. G.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    1999-01-01

    A unique subfamily of calmodulin-dependent Ca2+-ATPases was recently identified in plants. In contrast to the most closely related pumps in animals, plasma membrane-type Ca2+-ATPases, members of this new subfamily are distinguished by a calmodulin-regulated autoinhibitor located at the N-terminal instead of a C-terminal end. In addition, at least some isoforms appear to reside in non-plasma membrane locations. To begin delineating their functions, we investigated the subcellular localization of isoform ACA2p (Arabidopsis Ca2+-ATPase, isoform 2 protein) in Arabidopsis. Here we provide evidence that ACA2p resides in the endoplasmic reticulum (ER). In buoyant density sucrose gradients performed with and without Mg2+, ACA2p cofractionated with an ER membrane marker and a typical "ER-type" Ca2+-ATPase, ACA3p/ECA1p. To visualize its subcellular localization, ACA2p was tagged with a green fluorescence protein at its C terminus (ACA2-GFPp) and expressed in transgenic Arabidopsis. We collected fluorescence images from live root cells using confocal and computational optical-sectioning microscopy. ACA2-GFPp appeared as a fluorescent reticulum, consistent with an ER location. In addition, we observed strong fluorescence around the nuclei of mature epidermal cells, which is consistent with the hypothesis that ACA2p may also function in the nuclear envelope. An ER location makes ACA2p distinct from all other calmodulin-regulated pumps identified in plants or animals.

  15. Identification of a calmodulin-regulated Ca2+-ATPase in the endoplasmic reticulum

    NASA Technical Reports Server (NTRS)

    Hong, B.; Ichida, A.; Wang, Y.; Gens, J. S.; Pickard, B. G.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    1999-01-01

    A unique subfamily of calmodulin-dependent Ca2+-ATPases was recently identified in plants. In contrast to the most closely related pumps in animals, plasma membrane-type Ca2+-ATPases, members of this new subfamily are distinguished by a calmodulin-regulated autoinhibitor located at the N-terminal instead of a C-terminal end. In addition, at least some isoforms appear to reside in non-plasma membrane locations. To begin delineating their functions, we investigated the subcellular localization of isoform ACA2p (Arabidopsis Ca2+-ATPase, isoform 2 protein) in Arabidopsis. Here we provide evidence that ACA2p resides in the endoplasmic reticulum (ER). In buoyant density sucrose gradients performed with and without Mg2+, ACA2p cofractionated with an ER membrane marker and a typical "ER-type" Ca2+-ATPase, ACA3p/ECA1p. To visualize its subcellular localization, ACA2p was tagged with a green fluorescence protein at its C terminus (ACA2-GFPp) and expressed in transgenic Arabidopsis. We collected fluorescence images from live root cells using confocal and computational optical-sectioning microscopy. ACA2-GFPp appeared as a fluorescent reticulum, consistent with an ER location. In addition, we observed strong fluorescence around the nuclei of mature epidermal cells, which is consistent with the hypothesis that ACA2p may also function in the nuclear envelope. An ER location makes ACA2p distinct from all other calmodulin-regulated pumps identified in plants or animals.

  16. Plasmolysis-deplasmolysis causes changes in endoplasmic reticulum form, movement, flow, and cytoskeletal association.

    PubMed

    Cheng, Xiaohang; Lang, Ingeborg; Adeniji, Opeyemi Samson; Griffing, Lawrence

    2017-07-10

    Plasmolysis of hypocotyl cells of transgenic Arabidopsis thaliana and Nicotiana benthamiana diminishes the dynamics of the remodeling of the endoplasmic reticulum (ER) in the central protoplast, namely that withdrawn from the cell wall, and more persistent cisternae are formed, yet little change in the actin network in the protoplast occurs. Also, protein flow within the ER network in the protoplast, as detected with fluorescence recovery after photobleaching (FRAP), is not affected by plasmolysis. After plasmolysis, another network of strictly tubular ER remains attached to the plasma membrane-wall interface and is contained within the Hechtian strands and reticulum. FRAP studies indicate that protein flow within these ER tubules diminishes. Actin is largely absent from the Hechtian reticulum and the ER becomes primarily associated with altered, branched microtubules. The smaller volume of the central protoplast is accompanied by decreased movement rates of tubules, cisternae, and spheroid organelles, but this reduced movement is not readily reversed by the increase in volume that accompanies deplasmolysis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Selenoprotein S is required for clearance of C99 through endoplasmic reticulum-associated degradation.

    PubMed

    Jang, Jun Ki; Park, Ki Jun; Lee, Jea Hwang; Ko, Kwan Young; Kang, Seongman; Kim, Ick Young

    2017-04-29

    Amyloid beta precursor protein (APP) is normally cleaved by α-secretase, but can also be cleaved by β-secretase (BACE1) to produce C99 fragments in the endoplasmic reticulum (ER) membrane. C99 is subsequently cleaved to amyloid β (Aβ), the aggregation of which is known to cause Alzheimer's disease. Therefore, C99 removing is for preventing the disease. Selenoprotein S (SelS) is an ER membrane protein participating in endoplasmic reticulum-associated degradation (ERAD), one of the stages in resolving ER stress of misfolded proteins accumulated in the ER. ERAD has been postulated as one of the processes to degrade C99; however, it remains unclear if the degradation depends on SelS. In this study, we investigated the effect of SelS on C99 degradation. We observed that both SelS and C99 were colocalized in the membrane fraction of mouse neuroblastoma Neuro2a (N2a) cells. While the level of SelS was increased by ER stress, the level of C99 was decreased. However, despite the induction of ER stress, there was no change in the amount of C99 in SelS knock-down cells. The interaction of C99 with p97(VCP), an essential component of the ERAD complex, did not occur in SelS knock-down cells. The ubiquitination of C99 was decreased in SelS knock-down cells. We also found that the extracellular amount of Aβ(1-42) was relatively higher in SelS knock-down cells than in control cells. These results suggest that SelS is required for C99 degradation through ERAD, resulting in inhibition of Aβ production. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Sertraline induces endoplasmic reticulum stress in hepatic cells.

    PubMed

    Chen, Si; Xuan, Jiekun; Couch, Letha; Iyer, Advait; Wu, Yuanfeng; Li, Quan-Zhen; Guo, Lei

    2014-08-01

    Sertraline is used for the treatment of depression, and is also used for the treatment of panic, obsessive-compulsive, and post-traumatic stress disorders. Previously, we have demonstrated that sertraline caused hepatic cytotoxicity, with mitochondrial dysfunction and apoptosis being underlying mechanisms. In this study, we used microarray and other biochemical and molecular analyses to identify endoplasmic reticulum (ER) stress as a novel molecular mechanism. HepG2 cells were exposed to sertraline and subjected to whole genome gene expression microarray analysis. Pathway analysis revealed that ER stress is among the significantly affected biological changes. We confirmed the increased expression of ER stress makers by real-time PCR and Western blots. The expression of typical ER stress markers such as PERK, IRE1α, and CHOP was significantly increased. To study better ER stress-mediated drug-induced liver toxicity; we established in vitro systems for monitoring ER stress quantitatively and efficiently, using Gaussia luciferase (Gluc) and secreted alkaline phosphatase (SEAP) as ER stress reporters. These in vitro systems were validated using well-known ER stress inducers. In these two reporter assays, sertraline inhibited the secretion of Gluc and SEAP. Moreover, we demonstrated that sertraline-induced apoptosis was coupled to ER stress and that the apoptotic effect was attenuated by 4-phenylbutyrate, a potent ER stress inhibitor. In addition, we showed that the MAP4K4-JNK signaling pathway contributed to the process of sertraline-induced ER stress. In summary, we demonstrated that ER stress is a mechanism of sertraline-induced liver toxicity. Published by Elsevier Ireland Ltd.

  19. Endoplasmic reticulum stress activation during total knee arthroplasty

    PubMed Central

    Hocker, Austin D; Boileau, Ryan M; Lantz, Brick A; Jewett, Brian A; Gilbert, Jeffrey S; Dreyer, Hans C

    2013-01-01

    Total knee arthroplasty (TKA) is the most common remediation for knee pain from osteoarthritis (OA) and is performed 650,000 annually in the U.S. A tourniquet is commonly used during TKA which causes ischemia and reperfusion (I/R) to the lower limb but the effects of I/R on muscle are not fully understood. Previous reports suggest upregulation of cell stress and catabolism and downregulation of markers of cap-dependent translation during and after TKA. I/R has also been shown to cause endoplasmic reticulum (ER) stress and induce the unfolded protein response (UPR). We hypothesized that the UPR would be activated in response to ER stress during TKA. We obtained muscle biopsies from the vastus lateralis at baseline, before TKA; at maximal ischemia, prior to tourniquet deflation; and during reperfusion in the operating room. Phosphorylation of 4E-BP1 and AKT decreased during ischemia (−28%, P < 0.05; −20%, P < 0.05, respectively) along with an increase in eIF2α phosphorylation (64%, P < 0.05) suggesting decreased translation initiation. Cleaved ATF6 protein increased in ischemia (39%, P = 0.056) but returned to baseline during reperfusion. CASP3 activation increased during reperfusion compared to baseline (23%, P < 0.05). XBP1 splicing assays revealed an increase in spliced transcript during ischemia (31%, P < 0.05) which diminished during reperfusion. These results suggest that in response to I/R during TKA all three branches of the ER stress response are activated. PMID:24159375

  20. Lipolysis Response to Endoplasmic Reticulum Stress in Adipose Cells*

    PubMed Central

    Deng, Jingna; Liu, Shangxin; Zou, Liangqiang; Xu, Chong; Geng, Bin; Xu, Guoheng

    2012-01-01

    In obesity and diabetes, adipocytes show significant endoplasmic reticulum (ER) stress, which triggers a series of responses. This study aimed to investigate the lipolysis response to ER stress in rat adipocytes. Thapsigargin, tunicamycin, and brefeldin A, which induce ER stress through different pathways, efficiently activated a time-dependent lipolytic reaction. The lipolytic effect of ER stress occurred with elevated cAMP production and protein kinase A (PKA) activity. Inhibition of PKA reduced PKA phosphosubstrates and attenuated the lipolysis. Although both ERK1/2 and JNK are activated during ER stress, lipolysis is partially suppressed by inhibiting ERK1/2 but not JNK and p38 MAPK and PKC. Thus, ER stress induces lipolysis by activating cAMP/PKA and ERK1/2. In the downstream lipolytic cascade, phosphorylation of lipid droplet-associated protein perilipin was significantly promoted during ER stress but attenuated on PKA inhibition. Furthermore, ER stress stimuli did not alter the levels of hormone-sensitive lipase and adipose triglyceride lipase but caused Ser-563 and Ser-660 phosphorylation of hormone-sensitive lipase and moderately elevated its translocation from the cytosol to lipid droplets. Accompanying these changes, total activity of cellular lipases was promoted to confer the lipolysis. These findings suggest a novel pathway of the lipolysis response to ER stress in adipocytes. This lipolytic activation may be an adaptive response that regulates energy homeostasis but with sustained ER stress challenge could contribute to lipotoxicity, dyslipidemia, and insulin resistance because of persistently accelerated free fatty acid efflux from adipocytes to the bloodstream and other tissues. PMID:22223650

  1. Endoplasmic reticulum stress: key promoter of rosacea pathogenesis.

    PubMed

    Melnik, Bodo C

    2014-12-01

    Recent scientific interest in the pathogenesis of rosacea focuses on abnormally high facial skin levels of cathelicidin and the trypsin-like serine protease kallikrein 5 (KLK5) that cleaves the cathelicidin precursor protein into the bioactive fragment LL-37, which exerts crucial proinflammatory, angiogenic and antimicrobial activities. Furthermore, increased expression of toll-like receptor 2 (TLR2) has been identified in rosacea skin supporting the participation of the innate immune system. Notably, TLRs are expressed on sensory neurons and increase neuronal excitability linking TLR signalling to the transmission of neuroinflammatory responses. It is the intention of this viewpoint to present a unifying concept that links all known clinical trigger factors of rosacea such as UV irradiation, heat, skin irritants and special foods to one converging point: enhanced endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR). ER stress via upregulation of transcription factor ATF4 increases TLR2 expression, resulting in enhanced production of cathelicidin and KLK5 mediating downstream proinflammatory, angiogenic and antimicrobial signalling. The presented concept identifies rosacea trigger factors as environmental stressors that enhance the skin's ER stress response. Exaggerated cutaneous ER stress that stimulates the TLR2-driven inflammatory response may involve sebocytes, keratinocytes, monocyte-macrophages and sensory cutaneous neurons. Finally, all antirosacea drugs are proposed to attenuate the ER stress signalling cascade at some point. Overstimulated ER stress signalling may have evolutionarily evolved as a compensatory mechanism to balance impaired vitamin D-driven LL-37-mediated antimicrobial defenses due to lower exposure of UV-B irradiation of the northern Celtic population.

  2. Klotho ameliorates chemically induced endoplasmic reticulum (ER) stress signaling.

    PubMed

    Banerjee, Srijita; Zhao, Yanhua; Sarkar, Partha S; Rosenblatt, Kevin P; Tilton, Ronald G; Choudhary, Sanjeev

    2013-01-01

    Both endoplasmic reticulum (ER) stress, a fundamental cell response associated with stress-initiated unfolded protein response (UPR), and loss of Klotho, an anti-aging hormone linked to NF-κB-induced inflammation, occur in chronic metabolic diseases such as obesity and type 2 diabetes. We investigated if the loss of Klotho is causally linked to increased ER stress. We treated human renal epithelial HK-2, alveolar epithelial A549, HEK293, and SH-SH-SY5Y neuroblastoma cells with ER stress-inducing agents, thapsigargin and/or tunicamycin. Effects of overexpression or siRNA-mediated knockdown of Klotho on UPR signaling was investigated by immunoblotting and Real-time PCR. Elevated Klotho levels in HK-2 cells decreased expression of ER stress markers phospho--IRE1, XBP-1s, BiP, CHOP, pJNK, and phospho-p38, all of which were elevated in response to tunicamycin and/or thapsigargin. Similar results were observed using A549 cells for XBP-1s, BiP, and CHOP in response to thapsigargin. Conversely, knockdown of Klotho in HEK 293 cells using siRNA caused further thapsigargin-induced increases in pIRE-1, XBP-1s, and BiP. Klotho overexpression in A549 cells blocked thapsigargin-induced caspase and PARP cleavage and improved cell viability. Our data indicate that Klotho has an important role in regulating ER stress and that loss of Klotho is causally linked to ER stress-induced apoptosis. Copyright © 2013 S. Karger AG, Basel.

  3. Effect of pulsed electromagnetic fields on endoplasmic reticulum stress.

    PubMed

    Keczan, E; Keri, G; Banhegyi, G; Stiller, I

    2016-10-01

    The maintenance of protein homeostasis in the endoplasmic reticulum (ER) is crucial in cell life. Disruption of proteostasis results in ER stress that activates the unfolded protein response (UPR); a signalling network assigned to manage the accumulated misfolded or unfolded proteins. Prolonged or unresolved ER stress leads to apoptotic cell death that can be the basis of many serious diseases. Our aim was to study the effect of pulsed electromagnetic fields (PEMF), an alternative, non-invasive therapeutic method on ER stressed cell lines. First, the effect of PEMF treatment on the expression of ER stress markers was tested in three different cell lines. PEMF had no remarkable effect on ER stress protein levels in human embryonic kidney (HEK293T) and human liver carcinoma (HepG2) cell lines. However, the expression of BiP, Grp94 and CHOP were increased in HeLa cells upon PEMF exposure. Therefore, HepG2 cell line was selected for further experiments. Cells were stressed by tunicamycin and exposed to PEMF. Grp94, PDI, CHOP and PARP expression as markers of stress were monitored by Western blot and cell viability was also investigated. Tunicamycin treatment, as expected, increased the expression of Grp94, PDI, CHOP and inactivated PARP. Analysis of protein expression showed that PEMF was able to decrease the elevated level of ER chaperons Grp94, PDI and the apoptosis marker CHOP. The truncated, inactive form of PARP was also decreased. Accordingly, cell viability was also improved by PEMF exposure. These results indicate that PEMF is able to moderate ER stress induced by tunicamycin in HepG2 cells. However, our results clearly draw attention to that different cell lines may vary in the response to PEMF treatment.

  4. Endoplasmic Reticulum Stress Is Chronically Activated in Chronic Pancreatitis*

    PubMed Central

    Sah, Raghuwansh P.; Garg, Sushil K.; Dixit, Ajay K.; Dudeja, Vikas; Dawra, Rajinder K.; Saluja, Ashok K.

    2014-01-01

    The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T−/−), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T−/− mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies. PMID:25077966

  5. Endoplasmic reticulum stress is chronically activated in chronic pancreatitis.

    PubMed

    Sah, Raghuwansh P; Garg, Sushil K; Dixit, Ajay K; Dudeja, Vikas; Dawra, Rajinder K; Saluja, Ashok K

    2014-10-03

    The pathogenesis of chronic pancreatitis (CP) is poorly understood. Endoplasmic reticulum (ER) stress has now been recognized as a pathogenic event in many chronic diseases. However, ER stress has not been studied in CP, although pancreatic acinar cells seem to be especially vulnerable to ER dysfunction because of their dependence on high ER volume and functionality. Here, we aim to investigate ER stress in CP, study its pathogenesis in relation to trypsinogen activation (widely regarded as the key event of pancreatitis), and explore its mechanism, time course, and downstream consequences during pancreatic injury. CP was induced in mice by repeated episodes of acute pancreatitis (AP) based on caerulein hyperstimulation. ER stress leads to activation of unfolded protein response components that were measured in CP and AP. We show sustained up-regulation of unfolded protein response components ATF4, CHOP, GRP78, and XBP1 in CP. Overexpression of GRP78 and ATF4 in human CP confirmed the experimental findings. We used novel trypsinogen-7 knock-out mice (T(-/-)), which lack intra-acinar trypsinogen activation, to clarify the relationship of ER stress to intra-acinar trypsinogen activation in pancreatic injury. Comparable activation of ER stress was seen in wild type and T(-/-) mice. Induction of ER stress occurred through pathologic calcium signaling very early in the course of pancreatic injury. Our results establish that ER stress is chronically activated in CP and is induced early in pancreatic injury through pathologic calcium signaling independent of trypsinogen activation. ER stress may be an important pathogenic mechanism in pancreatitis that needs to be explored in future studies.

  6. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics

    PubMed Central

    Kaufman, Randal J.; Malhotra, Jyoti D.

    2014-01-01

    Calcium homeostasis is central to all cellular functions and has been studied for decades. Calcium acts as a critical second messenger for both extracellular and intracellular signaling and is fundamental in cell life and death decisions [1]. The calcium gradient in the cell is coupled with an inherent ability of the divalent cation to reversibly bind multiple target biological molecules to generate an extremely versatile signaling system [2]. Calcium signals are used by the cell to control diverse processes as development, neurotransmitter release, muscle contraction, metabolism, autophagy and cell death. “Cellular calcium overload” is detrimental to cellular health, resulting in massive activation of proteases and phospholipases leading to cell death [3]. Historically, cell death associated with calcium ion perturbations has been primarily recognized as necrosis. Recent evidence clearly associate changes in calcium ion concentrations with more sophisticated forms of cellular demise, including apoptosis [4] [5] [6] [7]. Although the endoplasmic reticulum (ER) serves as the primary calcium store in the metazoan cell, dynamic calcium release to the cytosol, mitochondria, nuclei and other organelles orchestrate diverse coordinated responses. Most evidence supports that calcium transport from the ER to mitochondria plays a significant role in regulating cellular bioenergetics, production of reactive oxygen species, induction of autophagy and apoptosis. Recently, molecular identities that mediate calcium traffic between the ER and mitochondria have been discovered [8] [9] [10]. The next questions are how they are regulated for exquisite tight control of ER – mitochondrial calcium dynamics. This review attempts to summarize recent advances in the role of calcium in regulation of ER and mitochondrial function. PMID:24690484

  7. Endoplasmic reticulum stress inhibition reduces hypertension through the preservation of resistance blood vessel structure and function.

    PubMed

    Carlisle, Rachel E; Werner, Kaitlyn E; Yum, Victoria; Lu, Chao; Tat, Victor; Memon, Muzammil; No, Yejin; Ask, Kjetil; Dickhout, Jeffrey G

    2016-08-01

    Our purpose was to determine if endoplasmic reticulum stress inhibition lowers blood pressure (BP) in hypertension by correcting vascular dysfunction. The spontaneously hypertensive rat (SHR) was used as a model of human essential hypertension with its normotensive control, the Wistar Kyoto rat. Animals were subjected to endoplasmic reticulum stress inhibition with 4-phenylbutyric acid (4-PBA; 1 g/kg per day, orally) for 5 weeks from 12 weeks of age. BP was measured weekly noninvasively and at endpoint with carotid arterial cannulation. Small mesenteric arteries were removed for vascular studies. Function was assessed with a Mulvany-Halpern style myograph, and structure was assessed by measurement of medial-to-lumen ratio in perfusion fixed vessels as well as three-dimensional confocal reconstruction of vessel wall components. Endoplasmic reticulum stress was assessed by quantitative real time-PCR and western blotting; oxidative stress was assessed by 3-nitrotyrosine and dihydroethidium staining. 4-PBA significantly lowered BP in SHR (vehicle 206.1 ± 4.3 vs. 4-PBA 178.9 ± 3.1, systolic) but not Wistar Kyoto. 4-PBA diminished contractility and augmented endothelial-dependent vasodilation in SHR small mesenteric arteries, as well as reducing media-to-lumen ratio. 4-PBA significantly reduced endoplasmic reticulum stress in SHR resistance vessels. Normotensive resistance vessels, treated with the endoplasmic reticulum stress-inducing agent, tunicamycin, show decreased endothelial-dependent vasodilation; this was improved with 4-PBA treatment. 3-Nitrotyrosine and dihydroethidium staining indicated that endoplasmic reticulum stress leads to reactive oxygen species generation resolvable by 4-PBA treatment. Endoplasmic reticulum stress caused endothelial-mediated vascular dysfunction contributing to elevated BP in the SHR model of human essential hypertension.

  8. Cell biology of the endoplasmic reticulum and the Golgi apparatus through proteomics.

    PubMed

    Smirle, Jeffrey; Au, Catherine E; Jain, Michael; Dejgaard, Kurt; Nilsson, Tommy; Bergeron, John

    2013-01-01

    Enriched endoplasmic reticulum (ER) and Golgi membranes subjected to mass spectrometry have uncovered over a thousand different proteins assigned to the ER and Golgi apparatus of rat liver. This, in turn, led to the uncovering of several hundred proteins of poorly understood function and, through hierarchical clustering, showed that proteins distributed in patterns suggestive of microdomains in cognate organelles. This has led to new insights with respect to their intracellular localization and function. Another outcome has been the critical testing of the cisternal maturation hypothesis showing overwhelming support for a predominant role of COPI vesicles in the transport of resident proteins of the ER and Golgi apparatus (as opposed to biosynthetic cargo). Here we will discuss new insights gained and also highlight new avenues undertaken to further explore the cell biology of the ER and the Golgi apparatus through tandem mass spectrometry.

  9. Microtubules as key coordinators of nuclear envelope and endoplasmic reticulum dynamics during mitosis.

    PubMed

    Schlaitz, Anne-Lore

    2014-07-01

    During mitosis, cells comprehensively restructure their interior to promote the faithful inheritance of DNA and cytoplasmic contents. In metazoans, this restructuring entails disassembly of the nuclear envelope, redistribution of its components into the endoplasmic reticulum (ER) and eventually nuclear envelope reassembly around the segregated chromosomes. The microtubule cytoskeleton has recently emerged as a critical regulator of mitotic nuclear envelope and ER dynamics. Microtubules and associated molecular motors tear open the nuclear envelope in prophase and remove nuclear envelope remnants from chromatin. Additionally, two distinct mechanisms of microtubule-based regulation of ER dynamics operate later in mitosis. First, association of the ER with microtubules is reduced, preventing invasion of ER into the spindle area, and second, organelle membrane is actively cleared from metaphase chromosomes. However, we are only beginning to understand the role of microtubules in shaping and distributing ER and other organelles during mitosis.

  10. Mechanisms of alcohol-induced endoplasmic reticulum stress and organ injuries.

    PubMed

    Ji, Cheng

    2012-01-01

    Alcohol is readily distributed throughout the body in the blood stream and crosses biological membranes, which affect virtually all biological processes inside the cell. Excessive alcohol consumption induces numerous pathological stress responses, part of which is endoplasmic reticulum (ER) stress response. ER stress, a condition under which unfolded/misfolded protein accumulates in the ER, contributes to alcoholic disorders of major organs such as liver, pancreas, heart, and brain. Potential mechanisms that trigger the alcoholic ER stress response are directly or indirectly related to alcohol metabolism, which includes toxic acetaldehyde and homocysteine, oxidative stress, perturbations of calcium or iron homeostasis, alterations of S-adenosylmethionine to S-adenosylhomocysteine ratio, and abnormal epigenetic modifications. Interruption of the ER stress triggers is anticipated to have therapeutic benefits for alcoholic disorders.

  11. Endoplasmic reticulum glucosidase II is required for pathogenicity of Ustilago maydis.

    PubMed

    Schirawski, Jan; Böhnert, Heidi U; Steinberg, Gero; Snetselaar, Karen; Adamikowa, Lubica; Kahmann, Regine

    2005-12-01

    We identified a nonpathogenic strain of Ustilago maydis by tagging mutagenesis. The affected gene, glucosidase1 (gas1), displays similarity to catalytic alpha-subunits of endoplasmic reticulum (ER) glucosidase II. We have shown that Gas1 localizes to the ER and complements the temperature-sensitive phenotype of a Saccharomyces cerevisiae mutant lacking ER glucosidase II. gas1 deletion mutants were normal in growth and mating but were more sensitive to calcofluor and tunicamycin. Mutant infection hyphae displayed significant alterations in the distribution of cell wall material and were able to form appressoria and penetrate the plant surface but arrested growth in the epidermal cell layer. Electron microscopy analysis revealed that the plant-fungal interface between mutant hyphae and the plant plasma membrane was altered compared with the interface of penetrating wild-type hyphae. This may indicate that gas1 mutants provoke a plant response.

  12. Coordination of stress, Ca2+, and immunogenic signaling pathways by PERK at the endoplasmic reticulum.

    PubMed

    van Vliet, Alexander R; Garg, Abhishek D; Agostinis, Patrizia

    2016-07-01

    The endoplasmic reticulum (ER) is the main coordinator of intracellular Ca2+ signaling, protein synthesis, and folding. The ER is also implicated in the formation of contact sites with other organelles and structures, including mitochondria, plasma membrane (PM), and endosomes, thereby orchestrating through interorganelle signaling pathways, a variety of cellular responses including Ca2+ homeostasis, metabolism, and cell death signaling. Upon loss of its folding capacity, incited by a number of stress signals including those elicited by various anticancer therapies, the unfolded protein response (UPR) is launched to restore ER homeostasis. The ER stress sensor protein kinase RNA-like ER kinase (PERK) is a key mediator of the UPR and its role during ER stress has been largely recognized. However, growing evidence suggests that PERK may govern signaling pathways through UPR-independent functions. Here, we discuss emerging noncanonical roles of PERK with particular relevance for the induction of danger or immunogenic signaling and interorganelle communication.

  13. Cell Biology of the Endoplasmic Reticulum and the Golgi Apparatus through Proteomics

    PubMed Central

    Smirle, Jeffrey; Au, Catherine E.; Jain, Michael; Dejgaard, Kurt; Nilsson, Tommy; Bergeron, John

    2013-01-01

    Enriched endoplasmic reticulum (ER) and Golgi membranes subjected to mass spectrometry have uncovered over a thousand different proteins assigned to the ER and Golgi apparatus of rat liver. This, in turn, led to the uncovering of several hundred proteins of poorly understood function and, through hierarchical clustering, showed that proteins distributed in patterns suggestive of microdomains in cognate organelles. This has led to new insights with respect to their intracellular localization and function. Another outcome has been the critical testing of the cisternal maturation hypothesis showing overwhelming support for a predominant role of COPI vesicles in the transport of resident proteins of the ER and Golgi apparatus (as opposed to biosynthetic cargo). Here we will discuss new insights gained and also highlight new avenues undertaken to further explore the cell biology of the ER and the Golgi apparatus through tandem mass spectrometry. PMID:23284051

  14. Mutations in the SPTLC1 protein cause mitochondrial structural abnormalities and endoplasmic reticulum stress in lymphoblasts.

    PubMed

    Myers, Simon J; Malladi, Chandra S; Hyland, Ryan A; Bautista, Tara; Boadle, Ross; Robinson, Phillip J; Nicholson, Garth A

    2014-07-01

    Mutations in serine palmitoyltransferase long chain subunit 1 (SPTLC1) cause the typical length-dependent axonal degeneration hereditary sensory neuropathy type 1 (HSN1). Transmission electron microscopy studies on SPTLC1 mutant lymphoblasts derived from patients revealed specific structural abnormalities of mitochondria. Swollen mitochondria with abnormal cristae were clustered around the nucleus, with some mitochondria being wrapped in rough endoplasmic reticulum (ER) membranes. Total mitochondrial counts revealed a significant change in mitochondrial numbers between healthy and diseased lymphocytes but did not reveal any change in length to width ratios nor were there any changes to cellular function. However, there was a notable change in ER homeostasis, as assessed using key ER stress markers, BiP and ERO1-Lα, displaying reduced protein expression. The observations suggest that SPTLC1 mutations cause mitochondrial abnormalities and ER stress in HSN1 cells.

  15. Elevated mitochondria-coupled NAD(P)H in endoplasmic reticulum of dopamine neurons

    PubMed Central

    Tucker, Kristal R.; Cavolo, Samantha L.; Levitan, Edwin S.

    2016-01-01

    Pyridine nucleotides are redox coenzymes that are critical in bioenergetics, metabolism, and neurodegeneration. Here we use brain slice multiphoton microscopy to show that substantia nigra dopamine neurons, which are sensitive to stress in mitochondria and the endoplasmic reticulum (ER), display elevated combined NADH and NADPH (i.e., NAD(P)H) autofluorescence. Despite limited mitochondrial mass, organellar NAD(P)H is extensive because much of the signal is derived from the ER. Remarkably, even though pyridine nucleotides cannot cross mitochondrial and ER membranes, inhibiting mitochondrial function with an uncoupler or interrupting the electron transport chain with cyanide (CN−) alters ER NAD(P)H. The ER CN− response can occur without a change in nuclear NAD(P)H, raising the possibility of redox shuttling via the cytoplasm locally between neuronal mitochondria and the ER. We propose that coregulation of NAD(P)H in dopamine neuron mitochondria and ER coordinates cell redox stress signaling by the two organelles. PMID:27582392

  16. [Calcium transport in endoplasmic reticulum of the rat liver during lipid peroxidation].

    PubMed

    Gubskiĭ, Iu I; Kurskiĭ, M D; Zadorina, O V; Fedorov, A N; Briuzgina, T S; Iurzhenko, N N

    1990-01-01

    Some parameters of calcium transport in rat liver microsomes under conditions of lipoperoxidation activation modelled by antioxidant deficiency (AOD) were studied. This process was shown to be associated with a sharp stimulation of NADPH- and ascorbate-dependent lipid peroxidation in hepatocyte endoplasmic reticulum. The activation of lipid peroxidation was accompanied by disturbances in the kinetic properties of Ca2(+)-ATPase. This was paralleled with a considerable decrease of the ATP-dependent 45Ca-accumulation, increase in the passive permeability of microsomal vesicles for Ca2+ and Ca2+ elevation in the microsomal fraction. The AOD-induced diminution of the Ca2(+)-pump efficiency was slightly prevented by injections of rats with the antioxidants, alpha-tocopherol acetate and ionol which enable Ca2+ compartmentation correction in liver cytosol and membrane fractions.

  17. Endoplasmic Reticulum Glucosidase II Is Required for Pathogenicity of Ustilago maydisW⃞

    PubMed Central

    Schirawski, Jan; Böhnert, Heidi U.; Steinberg, Gero; Snetselaar, Karen; Adamikowa, Lubica; Kahmann, Regine

    2005-01-01

    We identified a nonpathogenic strain of Ustilago maydis by tagging mutagenesis. The affected gene, glucosidase1 (gas1), displays similarity to catalytic α-subunits of endoplasmic reticulum (ER) glucosidase II. We have shown that Gas1 localizes to the ER and complements the temperature-sensitive phenotype of a Saccharomyces cerevisiae mutant lacking ER glucosidase II. gas1 deletion mutants were normal in growth and mating but were more sensitive to calcofluor and tunicamycin. Mutant infection hyphae displayed significant alterations in the distribution of cell wall material and were able to form appressoria and penetrate the plant surface but arrested growth in the epidermal cell layer. Electron microscopy analysis revealed that the plant–fungal interface between mutant hyphae and the plant plasma membrane was altered compared with the interface of penetrating wild-type hyphae. This may indicate that gas1 mutants provoke a plant response. PMID:16272431

  18. Taking organelles apart, putting them back together and creating new ones: lessons from the endoplasmic reticulum.

    PubMed

    Lavoie, Christine; Roy, Line; Lanoix, Joël; Taheri, Mariam; Young, Robin; Thibault, Geneviève; Farah, Carol Abi; Leclerc, Nicole; Paiement, Jacques

    2011-06-01

    The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. Physiological functions of endoplasmic reticulum stress transducer OASIS in central nervous system.

    PubMed

    Saito, Atsushi

    2014-01-01

    Eukaryotic cells can adapt to endoplasmic reticulum (ER) dysfunction by producing diverse signals from the ER to the cytosol or nucleus. These signaling pathways are collectively known as the unfolded protein response (UPR). The canonical branches of the UPR are mediated by three ER membrane-bound proteins: double-stranded RNA-dependent protein kinase (PKR)-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme-1 (IRE1) and activating transcription factor 6 (ATF6). These ER stress transducers basically play important roles in cell survival after ER stress. Recently, novel types of ER stress transducers that share a region of high sequence similarity with ATF6 have been identified. They have a transmembrane domain, which allows them to associate with the ER, and possess a transcription-activation domain and a basic leucine zipper (bZIP) domain. These membrane-bound bZIP transcription factors include OASIS, BBF2H7 CREBH, CREB4 and Luman, and are collectively referred to as OASIS family members. Despite their structural similarities with ATF6, differences in activating stimuli and tissue distribution indicate specialized functions of each member on regulating UPR signaling in specific organs and tissues. One of them, OASIS, is expressed preferentially in astrocytes in the central nervous system (CNS). OASIS temporally regulates the differentiation from neural precursor cells into astrocytes to promote the expression of Glial Cell Missing 1 through dynamic interactions among OASIS family members followed by accelerating demethylation of the Gfap promoter. This review is a summary of our current understanding of the physiological functions of OASIS in the CNS.

  20. Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis.

    PubMed

    Guo, Jun-Jie; Ma, Lei-Lei; Shi, Hong-Tao; Zhu, Jian-Bing; Wu, Jian; Ding, Zhi-Wen; An, Yi; Zou, Yun-Zeng; Ge, Jun-Bo

    2016-12-20

    Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis.

  1. Alginate Oligosaccharide Prevents Acute Doxorubicin Cardiotoxicity by Suppressing Oxidative Stress and Endoplasmic Reticulum-Mediated Apoptosis

    PubMed Central

    Guo, Jun-Jie; Ma, Lei-Lei; Shi, Hong-Tao; Zhu, Jian-Bing; Wu, Jian; Ding, Zhi-Wen; An, Yi; Zou, Yun-Zeng; Ge, Jun-Bo

    2016-01-01

    Doxorubicin (DOX) is a highly potent chemotherapeutic agent, but its usage is limited by dose-dependent cardiotoxicity. DOX-induced cardiotoxicity involves increased oxidative stress and activated endoplasmic reticulum-mediated apoptosis. Alginate oligosaccharide (AOS) is a non-immunogenic, non-toxic and biodegradable polymer, with anti-oxidative, anti-inflammatory and anti-endoplasmic reticulum stress properties. The present study examined whether AOS pretreatment could protect against acute DOX cardiotoxicity, and the underlying mechanisms focused on oxidative stress and endoplasmic reticulum-mediated apoptosis. We found that AOS pretreatment markedly increased the survival rate of mice insulted with DOX, improved DOX-induced cardiac dysfunction and attenuated DOX-induced myocardial apoptosis. AOS pretreatment mitigated DOX-induced cardiac oxidative stress, as shown by the decreased expressions of gp91 (phox) and 4-hydroxynonenal (4-HNE). Moreover, AOS pretreatment significantly decreased the expression of Caspase-12, C/EBP homologous protein (CHOP) (markers for endoplasmic reticulum-mediated apoptosis) and Bax (a downstream molecule of CHOP), while up-regulating the expression of anti-apoptotic protein Bcl-2. Taken together, these findings identify AOS as a potent compound that prevents acute DOX cardiotoxicity, at least in part, by suppression of oxidative stress and endoplasmic reticulum-mediated apoptosis. PMID:27999379

  2. Role of syntaxin 18 in the organization of endoplasmic reticulum subdomains.

    PubMed

    Iinuma, Takayuki; Aoki, Takehiro; Arasaki, Kohei; Hirose, Hidenori; Yamamoto, Akitsugu; Samata, Rie; Hauri, Hans-Peter; Arimitsu, Nagisa; Tagaya, Mitsuo; Tani, Katsuko

    2009-05-15

    The presence of subdomains in the endoplasmic reticulum (ER) enables this organelle to perform a variety of functions, yet the mechanisms underlying their organization are poorly understood. In the present study, we show that syntaxin 18, a SNAP (soluble NSF attachment protein) receptor localized in the ER, is important for the organization of two ER subdomains, smooth/rough ER membranes and ER exit sites. Knockdown of syntaxin 18 caused a global change in ER membrane architecture, leading to the segregation of the smooth and rough ER. Furthermore, the organization of ER exit sites was markedly changed concomitantly with dispersion of the ER-Golgi intermediate compartment and the Golgi complex. These morphological changes in the ER were substantially recovered by treatment of syntaxin-18-depleted cells with brefeldin A, a reagent that stimulates retrograde membrane flow to the ER. These results suggest that syntaxin 18 has an important role in ER subdomain organization by mediating the fusion of retrograde membrane carriers with the ER membrane.

  3. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling.

    PubMed

    Liu, Xiaoyu; Kwak, Dongmin; Lu, Zhongbing; Xu, Xin; Fassett, John; Wang, Huan; Wei, Yidong; Cavener, Douglas R; Hu, Xinli; Hall, Jennifer; Bache, Robert J; Chen, Yingjie

    2014-10-01

    Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure.

  4. C-Terminal nsP1a Protein of Human Astrovirus Colocalizes with the Endoplasmic Reticulum and Viral RNA

    PubMed Central

    Guix, Susana; Caballero, Santiago; Bosch, Albert; Pintó, Rosa M.

    2004-01-01

    Computational and biological approaches were undertaken to characterize the role of the human astrovirus nonstructural protein nsP1a/4, located at the C-terminal fragment of nsP1a. Computer analysis reveals sequence similarities to other nonstructural viral proteins involved in RNA replication and/or transcription and allows the identification of a glutamine- and proline-rich region, the prediction of many phosphorylation and O-glycosylation sites, and the occurrence of a KKXX-like endoplasmic reticulum retention signal. Immunoprecipitation analysis with an antibody against a synthetic peptide of the nsP1a/4 sequence detected polyprotein precursors of 160, 75, and 38 to 40 kDa as well as five smaller proteins in the range of 21 to 27 kDa. Immunofluorescence labeling showed that the nsP1a/4 protein is accumulated at the perinuclear region, in association with the endoplasmic reticulum and the viral RNA. These results suggest the involvement of nsP1a/4 protein in the RNA replication process in endoplasmic reticulum-derived intracellular membranes. PMID:15564473

  5. C-terminal nsP1a protein of human astrovirus colocalizes with the endoplasmic reticulum and viral RNA.

    PubMed

    Guix, Susana; Caballero, Santiago; Bosch, Albert; Pintó, Rosa M

    2004-12-01

    Computational and biological approaches were undertaken to characterize the role of the human astrovirus nonstructural protein nsP1a/4, located at the C-terminal fragment of nsP1a. Computer analysis reveals sequence similarities to other nonstructural viral proteins involved in RNA replication and/or transcription and allows the identification of a glutamine- and proline-rich region, the prediction of many phosphorylation and O-glycosylation sites, and the occurrence of a KKXX-like endoplasmic reticulum retention signal. Immunoprecipitation analysis with an antibody against a synthetic peptide of the nsP1a/4 sequence detected polyprotein precursors of 160, 75, and 38 to 40 kDa as well as five smaller proteins in the range of 21 to 27 kDa. Immunofluorescence labeling showed that the nsP1a/4 protein is accumulated at the perinuclear region, in association with the endoplasmic reticulum and the viral RNA. These results suggest the involvement of nsP1a/4 protein in the RNA replication process in endoplasmic reticulum-derived intracellular membranes.

  6. Endoplasmic Reticulum Exit of Golgi-resident Defective for SREBP Cleavage (Dsc) E3 Ligase Complex Requires Its Activity.

    PubMed

    Raychaudhuri, Sumana; Espenshade, Peter J

    2015-06-05

    Layers of quality control ensure proper protein folding and complex formation prior to exit from the endoplasmic reticulum. The fission yeast Dsc E3 ligase is a Golgi-localized complex required for sterol regulatory element-binding protein (SREBP) transcription factor activation that shows architectural similarity to endoplasmic reticulum-associated degradation E3 ligases. The Dsc E3 ligase consists of five integral membrane proteins (Dsc1-Dsc5) and functionally interacts with the conserved AAA-ATPase Cdc48. Utilizing an in vitro ubiquitination assay, we demonstrated that Dsc1 has ubiquitin E3 ligase activity that requires the E2 ubiquitin-conjugating enzyme Ubc4. Mutations that specifically block Dsc1-Ubc4 interaction prevent SREBP cleavage, indicating that SREBP activation requires Dsc E3 ligase activity. Surprisingly, Golgi localization of the Dsc E3 ligase complex also requires Dsc1 E3 ligase activity. Analysis of Dsc E3 ligase complex formation, glycosylation, and localization indicated that Dsc1 E3 ligase activity is specifically required for endoplasmic reticulum exit of the complex. These results define enzyme activity-dependent sorting as an autoregulatory mechanism for protein trafficking.

  7. Endoplasmic reticulum resident proteins of normal human dermal fibroblasts are the major targets for oxidative stress induced by hydrogen peroxide.

    PubMed Central

    van der Vlies, Dennis; Pap, Eward H W; Post, Jan Andries; Celis, Julio E; Wirtz, Karel W A

    2002-01-01

    The membrane-permeable fluorescein-labelled tyramine conjugate (acetylTyrFluo) was used to identify the proteins of normal human dermal fibroblasts most susceptible to oxidation by hydrogen peroxide [Van der Vlies, Wirtz and Pap (2001) Biochemistry 40, 7783-7788]. By exposing the cells to H(2)O(2) (0.1 mM for 10 min), TyrFluo was covalently linked to target proteins. TyrFluo-labelled and [(35)S]Met-labelled cell lysates were mixed and subjected to two-dimensional PAGE. After Western blotting the (35)S-labelled proteins were visualized by autoradiography and the TyrFluo-labelled proteins by using anti-fluorescein antibody. The TyrFluo-labelled proteins were matched with the (35)S-labelled proteins and identified by comparison with our mastermap of proteins. Protein disulphide isomerase (PDI), IgG-binding protein (BiP), calnexin, endoplasmin and glucose-regulated protein 58 (endoplasmic reticulum protein 57/GRP58) were identified as targets of oxidation. All these proteins reside in the endoplasmic reticulum and are part of the protein folding machinery. In agreement, confocal laser scanning microscopy showed co-localization of TyrFluo-labelled proteins and the KDEL receptor ERD-2, a marker for the endoplasmic reticulum. PMID:12071860

  8. Vesicular Trafficking of Incoming Human Papillomavirus 16 to the Golgi Apparatus and Endoplasmic Reticulum Requires γ-Secretase Activity

    PubMed Central

    Zhang, Wei; Kazakov, Teymur; Popa, Andreea

    2014-01-01

    ABSTRACT The route taken by papillomaviruses from the cell surface to the nucleus during infection is incompletely understood. Here, we developed a novel human papillomavirus 16 (HPV16) pseudovirus in which the carboxy terminus of the minor capsid protein L2 is exposed on the exterior of the intact capsid prior to cell binding. With this pseudovirus, we used the proximity ligation assay immune detection technique to demonstrate that during entry HPV16 L2 traffics into and out of the early endosome prior to Golgi localization, and we demonstrated that L2 enters the endoplasmic reticulum during entry. The cellular membrane-associated protease, γ-secretase, is required for infection by HPV16 pseudovirus and authentic HPV16. We also showed that inhibition of γ-secretase does not interfere substantively with virus internalization, initiation of capsid disassembly, entry into the early endosome, or exit from this compartment, but γ-secretase is required for localization of L2 and viral DNA to the Golgi apparatus and the endoplasmic reticulum. These results show that incoming HPV16 traffics sequentially from the cell surface to the endosome and then to the Golgi apparatus and the endoplasmic reticulum prior to nuclear entry. PMID:25227470

  9. Endoplasmic reticulum protein ERp46 in prostate adenocarcinoma

    PubMed Central

    Duivenvoorden, Wilhelmina C.M.; Hopmans, Sarah N.; Austin, Richard C.; Pinthus, Jehonathan H.

    2017-01-01

    Endoplasmic reticulum (ER) protein ERp46 is a member of the protein disulfide isomerase family of oxidoreductases, which facilitates the reduction of disulfides in proteins and their folding. Accumulation of misfolded proteins has been implicated in cancer. The objectives of the present study were to investigate the role of ERp46 in prostate cancer, its expression and its effects on prostate cancer growth. A tissue microarray with human prostate cancer and normal prostate tissue samples was stained for ERp46 followed by image analysis. Human prostate adenocarcinoma 22Rv1 cells were stably transfected with short hairpin RNA (shRNA) specific for ERp46, a non-effective scrambled control or a plasmid containing full-length human ERp46 cDNA, and cell growth was determined. Subcloned cells were treated with thapsigargin or tunicamycin to induce ER stress and lysates were subjected to western blot analysis for ER stress proteins. Subcutaneous xenografts of parental 22Rv1, ERp46-overexpressing (ERp46+), shERp46 or scrambled control cells were established in male inbred BALB/c nude mice (n=10/group). Tumor growth curves of the xenografts were constructed over a period of 30 days and subsequently the mice were sacrificed and the amount of serum prostate-specific antigen was determined. The results demonstrated increased ERp46 expression levels in prostate cancer tissue samples of Gleason ≥7 compared with normal prostate tissue samples. When ERp46 was stably knocked down using shRNA or overexpressed in prostate carcinoma 22Rv1 cells, tumor growth in vitro and in BALB/c nude mice was inhibited and accelerated, respectively. ERp46 overexpression led to reduced sensitivity to ER stress as indicated by higher half maximal inhibitory concentrations for tunicamycin and thapsigargin in ERp46+ cells. The shERp46 cells lost the ability to upregulate protein disulfide isomerase following tunicamycin-induced ER stress. The present study suggests a role for ERp46 as a therapeutic

  10. The Atlastin C-terminal Tail Is an Amphipathic Helix That Perturbs the Bilayer Structure during Endoplasmic Reticulum Homotypic Fusion

    PubMed Central

    Faust, Joseph E.; Desai, Tanvi; Verma, Avani; Ulengin, Idil; Sun, Tzu-Lin; Moss, Tyler J.; Betancourt-Solis, Miguel A.; Huang, Huey W.; Lee, Tina; McNew, James A.

    2015-01-01

    Fusion of tubular membranes is required to form three-way junctions found in reticular subdomains of the endoplasmic reticulum. The large GTPase Atlastin has recently been shown to drive endoplasmic reticulum membrane fusion and three-way junction formation. The mechanism of Atlastin-mediated membrane fusion is distinct from SNARE-mediated membrane fusion, and many details remain unclear. In particular, the role of the amphipathic C-terminal tail of Atlastin is still unknown. We found that a peptide corresponding to the Atlastin C-terminal tail binds to membranes as a parallel α helix, induces bilayer thinning, and increases acyl chain disorder. The function of the C-terminal tail is conserved in human Atlastin. Mutations in the C-terminal tail decrease fusion activity in vitro, but not GTPase activity, and impair Atlastin function in vivo. In the context of unstable lipid bilayers, the requirement for the C-terminal tail is abrogated. These data suggest that the C-terminal tail of Atlastin locally destabilizes bilayers to facilitate membrane fusion. PMID:25555915

  11. [Effect of endoplasmic reticulum stress in trophocytes on the pathogenesis of intrahepatic cholestasis of pregnancy].

    PubMed

    Yu, Y; Zhou, C L; Yu, T T; Han, X J; Shi, H Y; Wang, H Z; Shen, J J; He, J

    2017-06-25

    Objective: To evaluate the effect of endoplasmic reticulum stress in trophocytes, in patients with intrahepatic cholestasis of pregnancy (ICP). Methods: Sixty-one pregnant women who were hospitalized in Women's Hospital, School of Medicine, Zhejiang University from January to December 2015 were recruited. Thirty-one women who were diagnosed as ICP were defined as the ICP group and 30 healthy pregnant women were defined as the control group. The localization and expression intensity of glucose regulated protein 78 (GRP-78) in placental tissues were detected by immunohistochemistry technique. Electronic microscope was used to observe ultra-microstructure change of the endoplasmic reticulum in trophocytes and cell line Swan71. Reverse transcription (RT)-PCR and western blot were used to investigate the expression of GRP-78 mRNA and protein in Swan 71 cell. Results: (1) GRP-78 protein was mainly expressed in the cytoplasm of cytotrophoblasts and syncytiotrophoblasts. The protein expression of GRP-78 in placentas of the ICP group (13.2±2.4) was significantly higher than that in the control group (7.8±1.3, P<0.01). (2) The volume of endoplasmie reticulum did not increase and the microvilli developed well, with no swelling and no expansion of endoplasmic reticulum in the control group.In the ICP group, microvilli injury, endoplasmic reticulum edema were found; the volume of endoplasmic reticulum increased, with dilation, vacuolation and significant degranulation. After treated with 100 μmol/L cholyglycine for 24 hours, universal dilatation of the endoplasmic reticulum were seen in the Swan71 cells. (3) In Swan71 cells, cholylglycine displayed a concentration-dependent up-regulation on the expression of GRP-78. The expressions of GRP-78 mRNA in 0, 25, 50, 100 μmol/L cholylglycine experimental group were 1.01±0.17, 2.17±0.16, 5.47±0.36, 5.65±0.82, respectively. The expression of GRP-78 protein in 0, 25, 50, 100 μmol/L cholylglycine experimental group were 1.01±0

  12. [Endoplasmic reticulum stress in kidney diseases: a question of life and death?].

    PubMed

    Pallet, Nicolas; Bouvier, Nicolas; Beaune, Philippe; Legendre, Christophe; Thervet, Eric; Anglicheau, Dany

    2009-06-01

    Increasing our understanding of the cellular and molecular mechanisms of acute and chronic kidney diseases will lead to the development of new biomarkers of early kidney injury and to the discovery of new therapeutic strategies to prevent the initiation of renal failure or to promote the renal regeneration after injury. The implication of the endoplasmic reticulum stress in kidney diseases is not well recognized, but increasing experimental evidences suggest its implication in a wide array of kidney insults. Beside its role in the regulation of cell death, the UPR response induced by the endoplasmic reticulum stress alters many cellular functions and constitutes an important mediator of inflammation and/or epithelial to mesenchymal transition. The purpose of this review is to summarize the existing data concerning the role of the endoplasmic reticulum stress during kidney injury and to clarify its precise role in chronic kidney disease.

  13. Endoplasmic reticulum targeting and glycosylation of hybrid proteins in transgenic tobacco.

    PubMed Central

    Iturriaga, G; Jefferson, R A; Bevan, M W

    1989-01-01

    The correct compartmentation of proteins to the endomembrane system, mitochondria, or chloroplasts requires an amino-terminal signal peptide. The major tuber protein of potato, patatin, has a signal peptide in common with many other plant storage proteins. When the putative signal peptide of patatin was fused to the bacterial reporter protein beta-glucuronidase, the fusion proteins were translocated to the endoplasmic reticulum in planta and in vitro. In addition, translocated beta-glucuronidase was modified by glycosylation, and the signal peptide was correctly processed. In the presence of an inhibitor of glycosylation, tunicamycin, the enzymatically active form of beta-glucuronidase was assembled in the endoplasmic reticulum. This is the first report of targeting a cytoplasmic protein to the endoplasmic reticulum of plants using a signal peptide. PMID:2535509

  14. Endoplasmic reticulum stress caused by aggregate-prone proteins containing homopolymeric amino acids.

    PubMed

    Uchio, Naohiro; Oma, Yoko; Toriumi, Kazuya; Sasagawa, Noboru; Tanida, Isei; Fujita, Eriko; Kouroku, Yoriko; Kuroda, Reiko; Momoi, Takashi; Ishiura, Shoichi

    2007-11-01

    Many human proteins have homopolymeric amino acid (HPAA) tracts, but their physiological functions or cellular effects are not well understood. Previously, we expressed 20 HPAAs in mammalian cells and showed characteristic intracellular localization, in that hydrophobic HPAAs aggregated strongly and caused high cytotoxicity in proportion to their hydrophobicity. In the present study, we investigated the cytotoxicity of these aggregate-prone hydrophobic HPAAs, assuming that the ubiquitin proteasome system is impaired in the same manner as other well-known aggregate-prone polyglutamine-containing proteins. Some highly hydrophobic HPAAs caused a deficiency in the ubiquitin proteasome system and excess endoplasmic reticulum stress, leading to apoptosis. These results indicate that the property of causing excess endoplasmic reticulum stress by proteasome impairment may contribute to the strong cytotoxicity of highly hydrophobic HPAAs, and proteasome impairment and the resulting excess endoplasmic reticulum stress is not a common cytotoxic effect of aggregate-prone proteins such as polyglutamine.

  15. The Role of Endoplasmic Reticulum Stress and Unfolded Protein Response in Atherosclerosis

    PubMed Central

    Ivanova, Ekaterina A.; Orekhov, Alexander N.

    2016-01-01

    Pathogenesis of atherosclerosis is a complex process involving several metabolic and signalling pathways. Accumulating evidence demonstrates that endoplasmic reticulum stress and associated apoptosis can be induced in the pathological conditions of atherosclerotic lesions and contribute to the disease progression. Notably, they may play a role in the development of vulnerable plaques that induce thrombosis and are therefore especially dangerous. Endoplasmic reticulum stress response is regulated by several signaling mechanisms that involve protein kinases and transcription factors. Some of these molecules can be regarded as potential therapeutic targets to improve treatment of atherosclerosis. In this review we will discuss the role of endoplasmic reticulum stress and apoptosis in atherosclerosis development in different cell types and summarize the current knowledge on potential therapeutic agents targeting molecules regulating these pathways and their possible use for anti-atherosclerotic therapy. PMID:26840309

  16. Myopathy in Marinesco-Sjögren syndrome links endoplasmic reticulum chaperone dysfunction to nuclear envelope pathology.

    PubMed

    Roos, Andreas; Buchkremer, Stephan; Kollipara, Laxmikanth; Labisch, Thomas; Gatz, Christian; Zitzelsberger, Manuela; Brauers, Eva; Nolte, Kay; Schröder, J Michael; Kirschner, Janbernd; Jesse, Christopher Marvin; Goebel, Hans Hilmar; Goswami, Anand; Zimmermann, Richard; Zahedi, René Peiman; Senderek, Jan; Weis, Joachim

    2014-05-01

    Marinesco-Sjögren syndrome (MSS) features cerebellar ataxia, mental retardation, cataracts, and progressive vacuolar myopathy with peculiar myonuclear alterations. Most MSS patients carry homozygous or compound heterozygous SIL1 mutations. SIL1 is a nucleotide exchange factor for the endoplasmic reticulum resident chaperone BiP which controls a plethora of essential processes in the endoplasmic reticulum. In this study we made use of the spontaneous Sil1 mouse mutant woozy to explore pathomechanisms leading to Sil1 deficiency-related skeletal muscle pathology. We found severe, progressive myopathy characterized by alterations of the sarcoplasmic reticulum, accumulation of autophagic vacuoles, mitochondrial changes, and prominent myonuclear pathology including nuclear envelope and nuclear lamina alterations. These abnormalities were remarkably similar to the myopathy in human patients with MSS. In particular, the presence of perinuclear membranous structures which have been reported as an ultrastructural hallmark of MSS-related myopathy could be confirmed in woozy muscles. We found that these structures are derived from the nuclear envelope and nuclear lamina and associate with proliferations of the sarcoplasmic reticulum. In line with impaired function of BiP secondary to loss of its nucleotide exchange factor Sil1, we observed activation of the unfolded protein response and the endoplasmic-reticulum-associated protein degradation-pathway. Despite initiation of the autophagy-lysosomal system, autophagic clearance was found ineffective which is in agreement with the formation of autophagic vacuoles. This report identifies woozy muscle as a faithful phenocopy of the MSS myopathy. Moreover, we provide a link between two well-established disease mechanisms in skeletal muscle, dysfunction of chaperones and nuclear envelope pathology.

  17. Changes in the endoplasmic reticulum lipid properties in response to low temperature in Brassica napus.

    PubMed

    Tasseva, Guergana; de Virville, Jacques Davy; Cantrel, Catherine; Moreau, François; Zachowski, Alain

    2004-12-01

    Cold is an abiotic stress known to induce changes in membrane lipid composition. However, there is only limited information on the differential reactivity to environmental temperature of distinct cellular compartments. Therefore, we focused our attention on the endoplasmic reticulum (ER) that was never studied in this respect in plants. The ER membranes of etiolated Brassica napus (oilseed rape) hypocotyls grown at low temperature (4 degrees C) has been shown to be enriched in polyunsaturated fatty acids and phosphatidylethanolamine (PtdEtn) compared to hypocotyls grown at 22 degrees C. Despite the significant changes in their lipid composition upon cold exposure, the ER membranes showed a very partial physico-chemical adaptation as determined by measurement of membrane fluidity parameters such as local microviscosity of acyl chains and lipid lateral diffusion. To investigate the implication of transcriptional regulations during cold acclimation, we compared the abundance of transcripts for genes related to the fatty acid and the phosphatidylcholine (PtdCho)/PtdEtn biosynthesis pathways between normal temperature (22 degrees C)-acclimated and cold temperature (4 degrees C)-treated seedlings, using heterologous cDNA-array technology based on the knowledge on the Arabidopsis genome. Our studies demonstrate that a putative stearoyl-ACP desaturase isogene (orthologous to At1g43800) was up-regulated in response to low temperature.

  18. Chlamydiae Assemble a Pathogen Synapse to Hijack the Host Endoplasmic Reticulum

    PubMed Central

    Dumoux, Maud; Clare, Daniel K; Saibil, Helen R; Hayward, Richard D

    2012-01-01

    Chlamydiae are obligate intracellular bacterial pathogens that replicate within a specialized membrane-bound compartment, termed an ‘inclusion’. The inclusion membrane is a critical host–pathogen interface, yet the extent of its interaction with cellular organelles and the origin of this membrane remain poorly defined. Here we show that the host endoplasmic reticulum (ER) is specifically recruited to the inclusion, and that key rough ER (rER) proteins are enriched on and translocated into the inclusion. rER recruitment is a Chlamydia-orchestrated process that occurs independently of host trafficking. Generation of infectious progeny requires an intact ER, since ER vacuolation early during infection stalls inclusion development, whereas disruption post ER recruitment bursts the inclusion. Electron tomography and immunolabelling of Chlamydia-infected cells reveal ‘pathogen synapses’ at which ordered arrays of chlamydial type III secretion complexes connect to the inclusion membrane only at rER contact sites. Our data show a supramolecular assembly involved in pathogen hijack of a key host organelle. PMID:22901061

  19. Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast.

    PubMed

    Kannan, Muthukumar; Riekhof, Wayne R; Voelker, Dennis R

    2015-02-01

    Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non-vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport-dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p-specific transport pathway is one in which the enzyme and its non-catalytic N-terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes.

  20. New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum.

    PubMed

    Rudner, J; Jendrossek, V; Belka, C

    2002-10-01

    The oncogenic protein Bcl-2 which is expressed in membranes of different subcellular organelles protects cells from apoptosis induced by endogenic stimuli. Most of the results published so far emphasise the importance of Bcl-2 at the mitochondria. Several recent observations suggest a role of Bcl-2 at the endoplasmic reticulum (ER). Bcl-2 located at the ER was shown to interfere with apoptosis induction by Bax, ceramides, ionising radiation, serum withdrawal and c-myc expression. Although the detailed functions of Bcl-2 at the ER remain elusive, several speculative mechanisms may be supposed. For instance, Bcl-2 at the ER may regulate calcium fluxes between the ER and the mitochondria. In addition, Bcl-2 is able to interact with the endoplasmic protein Bap31 thus avoiding caspase activation at the ER. Bcl-2 may also abrogate the function of ER located pro-apoptotic Bcl-2 like proteins by heterodimerization. Current data on the function of Bcl-2 at the ER, its role for the modulation of calcium fluxes and its influence on caspase activation at the ER are reviewed.

  1. Cell-autonomous cytotoxicity of type I interferon response via induction of endoplasmic reticulum stress.

    PubMed

    Mihailidou, Chrysovalantou; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2017-08-17

    The interaction of IFN with specific membrane receptors that transduce death-inducing signals is considered to be the principle mechanism of IFN-induced cytotoxicity. In this study, the classic non-cell-autonomous cytotoxicity of IFN was augmented by cell-autonomous mechanisms that operated independently of the interaction of IFN with its receptors. Cells primed to produce IFN by 5-azacytidine (5-aza) underwent endoplasmic reticulum (ER) stress. The chemical chaperones tauroursodeoxycholate (TUDCA) and 4-phenylbutyrate (4-PBA), as well as the iron chelator ciclopirox (CPX), which reduces ER stress, alleviated the cytotoxicity of 5-aza. Ablation of CCAAT-enhancer-binding protein homologous protein (CHOP), the major ER stress-associated proapoptotic transcription factor, protected fibroblasts from 5-aza only when the cytotoxicity was examined cell autonomously. In a medium-transfer experiment in which the cell-autonomous effects of 5-aza was dissociated, CHOP ablation was incapable of modulating cytotoxicity; however, neutralization of IFN receptor was highly effective. Also the levels of caspase activation showed a distinct profile between the cell-autonomous and the medium-transfer experiments. We suggest that besides the classic paracrine mechanism, cell-autonomous mechanisms that involve induction of ER stress also participate. These results have implications in the development of anti-IFN-based therapies and expand the class of pathologic states that are viewed as protein-misfolding diseases.-Mihailidou, C., Papavassiliou, A. G., Kiaris, H. Cell-autonomous cytotoxicity of type I interferon response via induction of endoplasmic reticulum stress. © FASEB.

  2. Hydrolysis of retinyl esters by non-specific carboxylesterases from rat liver endoplasmic reticulum.

    PubMed Central

    Mentlein, R; Heymann, E

    1987-01-01

    The four most important non-specific carboxylesterases from rat liver were assayed for their ability to hydrolyse retinyl esters. Only the esterases with pI 6.2 and 6.4 (= esterase ES-4) are able to hydrolyse retinyl palmitate. Their specific activities strongly depend on the emulsifier used (maximum rate: 440 nmol of retinol liberated/h per mg of esterase). Beside retinyl palmitate, these esterases cleave palmitoyl-CoA and monoacylglycerols with much higher rates, as well as certain drugs (e.g. aspirin and propanidid). However, no transacylation between palmitoyl-CoA and retinol occurs. Retinyl acetate also is a substrate for the above esterases and for another one with pI 5.6 (= esterase ES-3). Again the emulsifier influences the hydrolysis by these esterases (maximum rates: 475 nmol/h per mg for ES-4 and 200 nmol/h per mg for ES-3). Differential centrifugation of rat liver homogenate reveals that retinyl palmitate hydrolase activity is highly enriched in the plasma membranes, but only moderately so in the endoplasmic reticulum, where the investigated esterases are located. Since the latter activity can be largely inhibited with the selective esterase inhibitor bis-(4-nitrophenyl) phosphate, it is concluded that the esterases with pI 6.2 and 6.4 (ES-4) represent the main retinyl palmitate hydrolase of rat liver endoplasmic reticulum. In view of this cellular localization, the enzyme could possibly be involved in the mobilization of retinol from the vitamin A esters stored in the liver. However, preliminary experiments in vivo have failed to demonstrate such a biological function. Images Fig. 1. PMID:3663197

  3. Lipid rafts, endoplasmic reticulum and mitochondria in the antitumor action of the alkylphospholipid analog edelfosine.

    PubMed

    Gajate, Consuelo; Mollinedo, Faustino

    2014-05-01

    The so-called alkylphospholipid analogs (APLs) constitute a family of synthetic antitumor compounds that target cell membranes. The ether phospholipid edelfosine has been considered the long-standing prototype of these antitumor agents and promotes apoptosis in tumor cells by a rather selective way, while sparing normal cells. Increasing evidence suggests that edelfosine-induced apoptosis involves a number of subcellular structures in tumor cells, including plasma membrane lipid rafts, endoplasmic reticulum (ER) and mitochondria. Edelfosine has been shown to accumulate in plasma membrane lipid rafts, ER and mitochondria in different tumor cells in a cell type-dependent way. Edelfosine induces apoptosis in several hematopoietic cancer cells by recruiting death receptor and downstream apoptotic signaling molecules into lipid rafts and displacing survival signaling molecules from these membrane domains. However, in vitro and in vivo evidences suggest that edelfosine-induced apoptosis in solid tumor cells is mediated through an ER stress response. Both raft- and ER-mediated proapoptotic responses require a mitochondrial-related step to eventually promote cell death, and overexpression of Bcl-2 or Bcl-xL prevents edelfosine-induced apoptosis. Edelfosine can also interact with mitochondria leading to an increase in mitochondrial membrane permeability and loss of mitochondrial membrane potential. Edelfosine treatment also induced a redistribution of lipid rafts from the plasma membrane to mitochondria, suggesting a raft-mediated link between plasma membrane and mitochondria. The involvement of lipid rafts, ER and mitochondria in the apoptotic response induced by edelfosine may provide new avenues for targeting cancer cells as well as new opportunities for cancer therapy.

  4. Endoplasmic reticulum proteins quality control and the unfolded protein response: the regulative mechanism of organisms against stress injuries.

    PubMed

    Fu, Xi Ling; Gao, Dong Sheng

    2014-01-01

    The endoplasmic reticulum is the cellular compartment in which secretory proteins are synthesized and folded. Perturbations of endoplasmic reticulum homeostasis lead to the accumulation of unfolded proteins. The activation of the unfolded protein response during endoplasmic reticulum stress transmits information about the status of protein folding to the cytosol and nucleus. The unfolded protein response leads to the upregulation of genes encoding endoplasmic reticulum chaperones, attenuation of translation, and initiation of the endoplasmic reticulum quality control system to restore endoplasmic reticulum homeostasis. When the unfolded protein response is insufficient to rebuild the steady state in endoplasmic reticulum, the programmed cell death or apoptosis would be initiated, by triggering cell injuries, even to cell death through apoptosis signals. In this review, we briefly outline research on the chaperones and foldases conserved in eukaryotes and plants, and describe the general principles and mechanisms of the endoplasmic reticulum quality control and the unfolded protein response. We describe the current models for the molecular mechanism of the unfolded protein response in plants, and emphasize the role of inositol requiring enzyme-1-dependent network in the unfolded protein response. Finally, we give a general overview of the directions for future research on the unfolded protein response in plants and its role in the response to environmental stresses. © 2014 International Union of Biochemistry and Molecular Biology.

  5. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view.

    PubMed

    Pagliassotti, Michael J; Kim, Paul Y; Estrada, Andrea L; Stewart, Claire M; Gentile, Christopher L

    2016-09-01

    The endoplasmic reticulum (ER) is most notable for its central roles in calcium ion storage, lipid biosynthesis, and protein sorting and processing. By virtue of its extensive membrane contact sites that connect the ER to most other organelles and to the plasma membrane, the ER can also regulate diverse cellular processes including inflammatory and insulin signaling, nutrient metabolism, and cell proliferation and death via a signaling pathway called the unfolded protein response (UPR). Chronic UPR activation has been observed in liver and/or adipose tissue of dietary and genetic murine models of obesity, and in human obesity and non-alcoholic fatty liver disease (NAFLD). Activation of the UPR in obesity and obesity-related disorders likely has two origins. One linked to classic ER stress involving the ER lumen and one linked to alterations to the ER membrane environment. This review discusses both of these origins and also considers the role of post-translational protein modifications, such as acetylation and palmitoylation, and ER-mitochondrial interactions to obesity-mediated impairments in the ER and activation of the UPR. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death.

    PubMed

    Borradaile, Nica M; Han, Xianlin; Harp, Jeffrey D; Gale, Sarah E; Ory, Daniel S; Schaffer, Jean E

    2006-12-01

    Cell dysfunction and death induced by lipid accumulation in nonadipose tissues, or lipotoxicity, may contribute to the pathogenesis of obesity and type 2 diabetes. However, the mechanisms leading to lipotoxic cell death are poorly understood. We recently reported that, in Chinese hamster ovary (CHO) cells and in H9c2 cardiomyoblasts, lipid overload induced by incubation with 500 muM palmitate leads to intracellular accumulation of reactive oxygen species, which subsequently induce endoplasmic reticulum (ER) stress and cell death. Here, we show that palmitate also impairs ER function through a more direct mechanism. Palmitate was rapidly incorporated into saturated phospholipid and triglyceride species in microsomal membranes of CHO cells. The resulting membrane remodeling was associated with dramatic dilatation of the ER and redistribution of protein-folding chaperones to the cytosol within 5 h, indicating compromised ER membrane integrity. Increasing beta-oxidation, through the activation of AMP-activated protein kinase, decreased palmitate incorporation into microsomes, decreased the escape of chaperones to the cytosol, and decreased subsequent caspase activation and cell death. Thus, palmitate rapidly increases the saturated lipid content of the ER, leading to compromised ER morphology and integrity, suggesting that impairment of the structure and function of this organelle is involved in the cellular response to fatty acid overload.

  7. Unique Requirement for ESCRT Factors in Flavivirus Particle Formation on the Endoplasmic Reticulum.

    PubMed

    Tabata, Keisuke; Arimoto, Masaru; Arakawa, Masashi; Nara, Atsuki; Saito, Kazunobu; Omori, Hiroko; Arai, Arisa; Ishikawa, Tomohiro; Konishi, Eiji; Suzuki, Ryosuke; Matsuura, Yoshiharu; Morita, Eiji

    2016-08-30

    Flavivirus infection induces endoplasmic reticulum (ER) membrane rearrangements to generate a compartment for replication of the viral genome and assembly of viral particles. Using quantitative mass spectrometry, we identified several ESCRT (endosomal sorting complex required for transport) proteins that are recruited to sites of virus replication on the ER. Systematic small interfering RNA (siRNA) screening revealed that release of both dengue virus and Japanese encephalitis virus was dramatically decreased by single depletion of TSG101 or co-depletion of specific combinations of ESCRT-III proteins, resulting in ≥1,000-fold titer reductions. By contrast, release was unaffected by depletion of some core ESCRTs, including VPS4. Reintroduction of ESCRT proteins to siRNA-depleted cells revealed interactions among ESCRT proteins that are crucial for flavivirus budding. Electron-microscopy studies revealed that the CHMP2 and CHMP4 proteins function directly in membrane deformation at the ER. Thus, a unique and specific subset of ESCRT contributes to ER membrane biogenesis during flavivirus infection.

  8. Lack of cortical endoplasmic reticulum protein Ist2 alters sodium accumulation in Saccharomyces cerevisiae cells.

    PubMed

    Papouskova, Klara; Andrsova, Marketa; Sychrova, Hana

    2017-03-01

    The maintenance of intracellular alkali-metal-cation homeostasis is a fundamental property of all living organisms, including the yeast Saccharomyces cerevisiae. Several transport systems are indispensable to ensure proper alkali-metal-cation levels in the yeast cytoplasm and organelles. Ist2 is an endoplasmic reticulum (ER)-resident protein involved, together with other tethering proteins, in the formation of contacts between the plasma and ER membranes. As IST2 gene deletion was shown to influence yeast growth in the presence of sodium, we focused on the roles of Ist2 in the cell response to the presence of various concentrations of alkali metal cations, and its interactions with characterised plasma membrane alkali-metal-cation transporters. Most importantly, we show that, in BY4741 background, the lack of Ist2 results in the accumulation of higher amounts of sodium when the cells are exposed to the presence of this cation, demonstrating the importance of Ist2 for the maintenance of low intracellular levels of toxic sodium. As the function and localisation of alkali-metal-cation exporters is not affected in ist2Δ cells, IST2 deletion results in an increased non-specific uptake of sodium to cells. Moreover, the deletion of IST2 influences relative cell membrane potential, pHin and the growth of cells in the presence of a limiting K+ concentration. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Quantitative proteomics reveal proteins enriched in tubular endoplasmic reticulum of Saccharomyces cerevisiae

    PubMed Central

    Wang, Xinbo; Li, Shanshan; Wang, Haicheng; Shui, Wenqing; Hu, Junjie

    2017-01-01

    The tubular network is a critical part of the endoplasmic reticulum (ER). The network is shaped by the reticulons and REEPs/Yop1p that generate tubules by inducing high membrane curvature, and the dynamin-like GTPases atlastin and Sey1p/RHD3 that connect tubules via membrane fusion. However, the specific functions of this ER domain are not clear. Here, we isolated tubule-based microsomes from Saccharomyces cerevisiae via classical cell fractionation and detergent-free immunoprecipitation of Flag-tagged Yop1p, which specifically localizes to ER tubules. In quantitative comparisons of tubule-derived and total microsomes, we identified a total of 79 proteins that were enriched in the ER tubules, including known proteins that organize the tubular ER network. Functional categorization of the list of proteins revealed that the tubular ER network may be involved in membrane trafficking, lipid metabolism, organelle contact, and stress sensing. We propose that affinity isolation coupled with quantitative proteomics is a useful tool for investigating ER functions. DOI: http://dx.doi.org/10.7554/eLife.23816.001 PMID:28287394

  10. Endoplasmic Reticulum Stress in Obesity and Obesity-Related Disorders: An Expanded View

    PubMed Central

    Pagliassotti, M.J.; Kim, P. Y.; Estrada, A.L.; Stewart, C.M.; Gentile, C.L.

    2016-01-01

    The Endoplasmic Reticulum (ER) is most notable for its central roles in calcium ion storage, lipid biosynthesis, and protein sorting and processing. By virtue of its extensive membrane contact sites that connect the ER to most other organelles and to the plasma membrane, the ER can also regulate diverse cellular processes including inflammatory and insulin signaling, nutrient metabolism, and cell proliferation and death via a signaling pathway called the unfolded protein response (UPR). Chronic UPR activation has been observed in liver and/or adipose tissue of dietary and genetic murine models of obesity, and in human obesity and non-alcoholic fatty liver disease (NAFLD). Activation of the UPR in obesity and obesity-related disorders likely has two origins. One linked to classic ER stress involving the ER lumen and one linked to alterations to the ER membrane environment. This review discusses both of these origins and also considers the role of post-translational protein modifications, such as acetylation and palmitoylation, and ER-mitochondrial interactions to obesity-mediated impairments in the ER and activation of the UPR. PMID:27506731

  11. Syntaxin 5 Overexpression and β-Amyloid 1–42 Accumulation in Endoplasmic Reticulum of Hippocampal Cells in Rat Brain Induced by Ozone Exposure

    PubMed Central

    Hernández-Zimbrón, Luis Fernando

    2016-01-01

    Oxidative stress is a risk factor for Alzheimer's disease and it is currently accepted that oxidative damage precedes the overproduction of A42 peptide. We have reported that ozone causes oxidative stress inducing neurodegeneration in the brain of rats. It is associated with A42 overproduction and intracellular accumulation in hippocampus. Organelles like mitochondria, intracellular membranes, and endoplasmic reticulum have been identified as sites of A42 production and accumulation affecting cellular metabolism. However whether ozone exposure induces overproduction and/or accumulation of A42 in endoplasmic reticulum has not been studied. We evaluated this effect in the endoplasmic reticulum of hippocampal cells of rats exposed chronically to low doses of ozone (0.25 ppm) at 7, 15, 30, 60, and 90 days. The effect of the presence of A42 in endoplasmic reticulum was analyzed evaluating the expression of the chaperone Syntaxin 5. Our results show an accumulation of A42 peptide in this organelle. It was observed by immunofluorescence and by WB in endoplasmic fractions from hippocampal cells of rats at 60 and 90 days of treatment. Significant overexpression of the chaperone Syntaxin 5 at 60 and 90 days of treatment was observed (⁎P < 0.05). These results indicate that the exposure to environmental pollutants could be involved as a risk factor for neurodegenerative processes. PMID:27366738

  12. 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats.

    PubMed

    Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao

    2016-08-01

    Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti-endoplasmic

  13. Mitochondrial and endoplasmic reticulum stress pathways cooperate in zearalenone-induced apoptosis of human leukemic cells

    PubMed Central

    2010-01-01

    Background Zearalenone (ZEA) is a phytoestrogen from Fusarium species. The aims of the study was to identify mode of human leukemic cell death induced by ZEA and the mechanisms involved. Methods Cell cytotoxicity of ZEA on human leukemic HL-60, U937 and peripheral blood mononuclear cells (PBMCs) was performed by using 3-(4,5-dimethyl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Reactive oxygen species production, cell cycle analysis and mitochondrial transmembrane potential reduction was determined by employing 2',7'-dichlorofluorescein diacetate, propidium iodide and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. Caspase-3 and -8 activities were detected by using fluorogenic Asp-Glu-Val-Asp-7-amino-4-methylcoumarin (DEVD-AMC) and Ile-Glu-Thr-Asp-7-amino-4-methylcoumarin (IETD-AMC) substrates, respectively. Protein expression of cytochrome c, Bax, Bcl-2 and Bcl-xL was performed by Western blot. The expression of proteins was assessed by two-dimensional polyacrylamide gel-electrophoresis (PAGE) coupled with LC-MS2 analysis and real-time reverse transcription polymerase chain reaction (RT-PCR) approach. Results ZEA was cytotoxic to U937 > HL-60 > PBMCs and caused subdiploid peaks and G1 arrest in both cell lines. Apoptosis of human leukemic HL-60 and U937 cell apoptosis induced by ZEA was via an activation of mitochondrial release of cytochrome c through mitochondrial transmembrane potential reduction, activation of caspase-3 and -8, production of reactive oxygen species and induction of endoplasmic reticulum stress. Bax was up regulated in a time-dependent manner and there was down regulation of Bcl-xL expression. Two-dimensional PAGE coupled with LC-MS2 analysis showed that ZEA treatment of HL-60 cells produced differences in the levels of 22 membrane proteins such as apoptosis inducing factor and the ER stress proteins including endoplasmic reticulum protein 29 (ERp29), 78 kDa glucose-regulated protein, heat shock protein 90 and

  14. A short carboxy-terminal domain of polycystin-1 reorganizes the microtubular network and the endoplasmic reticulum.

    PubMed

    Gao, Hongyu; Sellin, Lorenz K; Pütz, Michael; Nickel, Christian; Imgrund, Michael; Gerke, Peter; Nitschke, Roland; Walz, Gerd; Kramer-Zucker, Albrecht G

    2009-04-15

    Mutations of PKD1 cause autosomal dominant polycystic kidney disease (ADPKD), a syndrome characterized by kidney cysts and progressive renal failure. Polycystin-1, the protein encoded by PKD1, is a large integral membrane protein with a short carboxy-terminal cytoplasmic domain that appears to initiate multiple cellular programs. We report now that this polycystin-1 domain contains a novel motif responsible for rearrangements of intermediate filaments, microtubules and the endoplasmic reticulum (ER). This motif reveals homology to CLIMP-63, a microtubule-binding protein that rearranges the ER. Our findings suggest that polycystin-1 influences the shape and localization of both the microtubular network and the ER.

  15. Inositol 1,4,5-trisphosphate Receptors in the Endoplasmic Reticulum: a Single-channel Point of View

    PubMed Central

    Mak, Don-On Daniel; Foskett, J. Kevin

    2015-01-01

    As an intracellular Ca2+ release channel at the endoplasmic reticulum membrane, the ubiquitous inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) plays a crucial role in the generation, propagation and regulation of intracellular Ca2+ signals that regulate numerous physiological and pathophysiological processes. This review provides a concise account of the fundamental single-channel properties of the InsP3R channel: its conductance properties and its regulation by InsP3 and Ca2+, its physiological ligands, studied using nuclear patch clamp electrophysiology. PMID:25555684

  16. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    PubMed Central

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  17. Nucleocapsid protein from fig mosaic virus forms cytoplasmic agglomerates that are hauled by endoplasmic reticulum streaming.

    PubMed

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki; Namba, Shigetou

    2015-01-01

    Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly throughout the cell, and we

  18. A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection

    PubMed Central

    Midgley, Rebecca; Moffat, Katy; Berryman, Stephen; Hawes, Philippa; Simpson, Jennifer; Fullen, Daniel; Stephens, David. J.; Burman, Alison

    2013-01-01

    Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane coat complexes, COPII and COPI, and requires the coordinated actions of Sar1, Arf1 and Rab proteins. Sar1 is essential for generating COPII vesicles at endoplasmic reticulum (ER) exit sites (ERESs), while Arf1 and Rab1 are required for subsequent vesicle transport by COPI vesicles. In the present study, we have provided evidence that FMDV requires pre-Golgi membranes of the early secretory pathway for infection. Small interfering RNA depletion of Sar1 or expression of a dominant-negative (DN) mutant of Sar1a inhibited FMDV infection. In contrast, a dominant-active mutant of Sar1a, which allowed COPII vesicle formation but inhibited the secretory pathway by stabilizing COPII coats, caused major disruption to the ER–Golgi intermediate compartment (ERGIC) but did not inhibit infection. Treatment of cells with brefeldin A, or expression of DN mutants of Arf1 and Rab1a, disrupted the Golgi and enhanced FMDV infection. These results show that reagents that block the early secretory pathway at ERESs have an inhibitory effect on FMDV infection, while reagents that block the early secretory pathway immediately after ER exit but before the ERGIC and Golgi make infection more favourable. Together, these observations argue for a role for Sar1 in FMDV infection and that initial virus replication takes place on membranes that are formed at ERESs. PMID:23963534

  19. Cyclosporine triggers endoplasmic reticulum stress in endothelial cells: a role for endothelial phenotypic changes and death.

    PubMed

    Bouvier, Nicolas; Flinois, Jean Pierre; Gilleron, Jerome; Sauvage, François-Ludovic; Legendre, Christophe; Beaune, Philippe; Thervet, Eric; Anglicheau, Dany; Pallet, Nicolas

    2009-01-01

    Calcineurin inhibitors cyclosporine and tacrolimus are effective immunosuppressants, but both substances have the same intrinsic nephrotoxic potential that adversely affects allograft survival in renal transplant patients and causes end-stage renal disease in other solid organ or bone marrow transplant recipients. Endothelial cells are the first biological interface between drugs and the kidney, and calcineurin inhibitors may influence endothelial function and viability in a number of ways. Notably, endothelial cells have recently been shown to contribute to the accumulation of interstitial fibroblasts in nonrenal models, through endothelial-to-mesenchymal transition. Here we demonstrate that cyclosporine, but not tacrolimus or its metabolites, induces morphological and phenotypic endothelial changes suggestive of a partial endothelial-to-mesenchymal transition in human umbilical arterial endothelial cells. We identify for the first time a contingent of interstitial myofibroblasts that coexpress endothelial markers in rat kidneys treated with cyclosporine, suggesting that endothelial-to-mesenchymal transition could occur in vivo. Finally, our findings suggest that endoplasmic reticulum stress triggered by cyclosporine induces endothelial cells to undergo endothelial phenotypic changes suggestive of a partial endothelial-to-mesenchymal transition, whereas salubrinal partially preserves the endothelial phenotype. Inversely, tacrolimus does not induce endothelial-to-mesenchymal transition or endoplasmic reticulum stress. In conclusion, this study demonstrates for the first time that cyclosporine, and not tacrolimus, induces endoplasmic reticulum stress in endothelial cells. Our findings also suggest that endoplasmic reticulum stress contributes to endothelial cell death and phenotypic changes similar to a partial endothelial-to-mesenchymal transition.

  20. Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis

    PubMed Central

    Hughes, Alexandria; Oxford, Alexandra E.; Tawara, Ken; Jorcyk, Cheryl L.; Oxford, Julia Thom

    2017-01-01

    Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis. PMID:28335520

  1. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    SciTech Connect

    Faria, Gisele; Cardoso, Cristina R.B.; Larson, Roy E.; Silva, Joao S.; Rossi, Marcos A.

    2009-01-15

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker of activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug.

  2. Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis.

    PubMed

    Hughes, Alexandria; Oxford, Alexandra E; Tawara, Ken; Jorcyk, Cheryl L; Oxford, Julia Thom

    2017-03-20

    Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.

  3. Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae.

    PubMed

    Miyagawa, Ken-Ichi; Ishiwata-Kimata, Yuki; Kohno, Kenji; Kimata, Yukio

    2014-01-01

    Impaired protein folding in the endoplasmic reticulum (ER) evokes the unfolded protein response (UPR), which is triggered in budding yeast, Saccharomyces cerevisiae, by the ER-located transmembrane protein Ire1. Here, we report that ethanol stress damages protein folding in the ER, causing activation of Ire1 in yeast cells. The UPR likely contributes to the ethanol tolerance of yeast cells.

  4. Luteolin shows an antidepressant-like effect via suppressing endoplasmic reticulum stress.

    PubMed

    Ishisaka, Mitsue; Kakefuda, Kenichi; Yamauchi, Mika; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Tsuruta, Akifumi; Hara, Hideaki

    2011-01-01

    Depression is a significant public health problem and some reports indicate an association between depression and endoplasmic reticulum stress. Luteolin is a flavonoid contained in many plants and with a variety of known pharmacological properties such as anti-inflammatory, anti-anxiety, and memory-improving effects, suggesting that luteolin penetrates into the brain. In the present study, we investigated the effects of luteolin on endoplasmic reticulum stress-induced neuronal cell death. Luteolin significantly suppressed tunicamycin-induced cell death at 1 to 10 µM in human neuroblastoma cells. Luteolin increased in the expression of the 78 kDa glucose-regulated protein and 94 kDa glucose-regulated protein and decreased in the cleavage activation of caspase-3. Additionally, to investigate whether chronic luteolin treatment has an antidepression effect, we performed some behavioral tests. Chronic luteolin treatment showed antidepressant-like effects in behavioral tests and, luteolin attenuated the expression of endoplasmic reticulum stress-related proteins in the hippocampus of corticosterone-treated depression model mice. These findings indicate that luteolin has antidepressant-like effects, partly due to the suppression of endoplasmic reticulum stress.

  5. Mouse VAP33 is associated with the endoplasmic reticulum and microtubules

    PubMed Central

    Skehel, P. A.; Fabian-Fine, R.; Kandel, E. R.

    2000-01-01

    VAMP/synaptobrevin is a synaptic vesicle protein that is essential for neurotransmitter release. Intracellular injection of antisera against the Aplysia californica VAMP/synaptobrevin-binding protein ApVAP33 inhibited evoked excitatory postsynaptic potentials (EPSPs) in cultured cells, suggesting that this association may regulate the function of VAMP/synaptobrevin. We have identified and characterized a mouse homologue of ApVAP33, mVAP33. The overall domain structure of the proteins is conserved, and they have similar biochemical properties. mVAP33 mRNA is detectable in all mouse tissues examined, in contrast to the more restricted expression seen in A. californica. We analyzed the cellular distribution of mVAP33 protein in brain slices and cultured cortical cells by light and electron microscopy. Although present at higher levels in neurons, immunoreactivity was detected throughout both neurons and glia in a reticular pattern similar to that of endoplasmic reticulum-resident proteins. mVAP33 does not colocalize with VAMP/synaptobrevin at synaptic structures, but expression overlaps with lower levels of VAMP/synaptobrevin in the soma. Ultrastructural analysis revealed mVAP33 associated with microtubules and intracellular vesicles of heterogeneous size. In primary neuronal cultures, large aggregates of mVAP33 are also detected in short filamentous structures, which are occasionally associated with intracellular membranes. There is no evidence for accumulation of mVAP33 on synaptic vesicles or at the plasma membrane. These data suggest that mVAP33 is an endoplasmic-reticulum–resident protein that associates with components of the cytoskeleton. Any functional interaction between mVAP33 and VAMP/synaptobrevin, therefore, most likely involves the delivery of components to synaptic terminals rather than a direct participation in synaptic vesicle exocytosis. PMID:10655491

  6. Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis.

    PubMed

    Zhou, Xinyu; Lin, Peihui; Yamazaki, Daiju; Park, Ki Ho; Komazaki, Shinji; Chen, S R Wayne; Takeshima, Hiroshi; Ma, Jianjie

    2014-02-14

    Trimeric intracellular cation channels (TRIC) represents a novel class of trimeric intracellular cation channels. Two TRIC isoforms have been identified in both the human and the mouse genomes: TRIC-A, a subtype predominantly expressed in the sarcoplasmic reticulum (SR) of muscle cells, and TRIC-B, a ubiquitous subtype expressed in the endoplasmic reticulum (ER) of all tissues. Genetic ablation of either TRIC-A or TRIC-B leads to compromised K(+) permeation and Ca(2+) release across the SR/ER membrane, supporting the hypothesis that TRIC channels provide a counter balancing K(+) flux that reduces SR/ER membrane depolarization for maintenance of the electrochemical gradient that drives SR/ER Ca(2+) release. TRIC-A and TRIC-B seem to have differential functions in Ca(2+) signaling in excitable and nonexcitable cells. Tric-a(-/-) mice display defective Ca(2+) sparks and spontaneous transient outward currents in arterial smooth muscle and develop hypertension, in addition to skeletal muscle dysfunction. Knockout of TRIC-B results in abnormal IP3 receptor-mediated Ca(2+) release in airway epithelial cells, respiratory defects, and neonatal lethality. Double knockout mice lacking both TRIC-A and TRIC-B show embryonic lethality as a result of cardiac arrest. Such an aggravated lethality indicates that TRIC-A and TRIC-B share complementary physiological functions in Ca(2+) signaling in embryonic cardiomyocytes. Tric-a(-/-) and Tric-b(+/-) mice are viable and susceptible to stress-induced heart failure. Recent evidence suggests that TRIC-A directly modulates the function of the cardiac ryanodine receptor 2 Ca(2+) release channel, which in turn controls store-overload-induced Ca(2+) release from the SR. Thus, the TRIC channels, in addition to providing a countercurrent for SR/ER Ca(2+) release, may also function as accessory proteins that directly modulate the ryanodine receptor/IP3 receptor channel functions.

  7. Lynx1 Shifts α4β2 Nicotinic Receptor Subunit Stoichiometry by Affecting Assembly in the Endoplasmic Reticulum*

    PubMed Central

    Nichols, Weston A.; Henderson, Brandon J.; Yu, Caroline; Parker, Rell L.; Richards, Christopher I.; Lester, Henry A.; Miwa, Julie M.

    2014-01-01

    Glycosylphosphatidylinositol-anchored neurotoxin-like receptor binding proteins, such as lynx modulators, are topologically positioned to exert pharmacological effects by binding to the extracellular portion of nAChRs. These actions are generally thought to proceed when both lynx and the nAChRs are on the plasma membrane. Here, we demonstrate that lynx1 also exerts effects on α4β2 nAChRs within the endoplasmic reticulum. Lynx1 affects assembly of nascent α4 and β2 subunits and alters the stoichiometry of the receptor population that reaches the plasma membrane. Additionally, these data suggest that lynx1 shifts nAChR stoichiometry to low sensitivity (α4)3(β2)2 pentamers primarily through this interaction in the endoplasmic reticulum, rather than solely via direct modulation of activity on the plasma membrane. To our knowledge, these data represent the first test of the hypothesis that a lynx family member, or indeed any glycosylphosphatidylinositol-anchored protein, could act within the cell to alter assembly of a multisubunit protein. PMID:25193667

  8. Calcium homoeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress.

    PubMed

    Gallego-Sandín, Sonia; Alonso, María Teresa; García-Sancho, Javier

    2011-08-01

    CALHM1 (calcium homoeostasis modulator 1), a membrane protein with similarity to NMDA (N-methyl-D-aspartate) receptor channels that localizes in the plasma membrane and the ER (endoplasmic reticulum) of neurons, has been shown to generate a plasma-membrane Ca(2+) conductance and has been proposed to influence Alzheimer's disease risk. In the present study we have investigated the effects of CALHM1 on intracellular Ca(2+) handling in HEK-293T [HEK (human embryonic kidney)-293 cells expressing the large T-antigen of SV40 (simian virus 40)] cells by using targeted aequorins for selective monitorization of Ca(2+) transport by organelles. We find that CALHM1 increases Ca(2+) leak from the ER and, more importantly, reduces ER Ca(2+) uptake by decreasing both the transport capacity and the Ca(2+) affinity of SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase). As a result, the Ca(2+) content of the ER is drastically decreased. This reduction in the Ca(2+) content of the ER triggered the UPR (unfolded protein response) with induction of several ER stress markers, such as CHOP [C/EBP (CCAAT/enhancer-binding protein)-homologous protein], ERdj4, GRP78 (glucose-regulated protein of 78 kDa) and XBP1 (X-box-binding protein 1). Thus CALHM1 might provide a relevant link between Ca(2+) homoeostasis disruption, ER stress and cell damage in the pathogenesis of neurodegenerative diseases. © The Authors Journal compilation © 2011 Biochemical Society

  9. Lynx1 shifts α4β2 nicotinic receptor subunit stoichiometry by affecting assembly in the endoplasmic reticulum.

    PubMed

    Nichols, Weston A; Henderson, Brandon J; Yu, Caroline; Parker, Rell L; Richards, Christopher I; Lester, Henry A; Miwa, Julie M

    2014-11-07

    Glycosylphosphatidylinositol-anchored neurotoxin-like receptor binding proteins, such as lynx modulators, are topologically positioned to exert pharmacological effects by binding to the extracellular portion of nAChRs. These actions are generally thought to proceed when both lynx and the nAChRs are on the plasma membrane. Here, we demonstrate that lynx1 also exerts effects on α4β2 nAChRs within the endoplasmic reticulum. Lynx1 affects assembly of nascent α4 and β2 subunits and alters the stoichiometry of the receptor population that reaches the plasma membrane. Additionally, these data suggest that lynx1 shifts nAChR stoichiometry to low sensitivity (α4)3(β2)2 pentamers primarily through this interaction in the endoplasmic reticulum, rather than solely via direct modulation of activity on the plasma membrane. To our knowledge, these data represent the first test of the hypothesis that a lynx family member, or indeed any glycosylphosphatidylinositol-anchored protein, could act within the cell to alter assembly of a multisubunit protein. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The reticulons: Guardians of the structure and function of the endoplasmic reticulum

    SciTech Connect

    Di Sano, Federica; Bernardoni, Paolo; Piacentini, Mauro

    2012-07-01

    The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by a specific class of curvature stabilizing proteins, the reticulons and DP1; however it is still unclear how the sheets are assembled. The ER is the cellular compartment responsible for secretory and membrane protein synthesis. The reducing conditions of ER lead to the intra/inter-chain formation of new disulphide bonds into polypeptides during protein folding assessed by enzymatic or spontaneous reactions. Moreover, ER represents the main intracellular calcium storage site and it plays an important role in calcium signaling that impacts many cellular processes. Accordingly, the maintenance of ER function represents an essential condition for the cell, and ER morphology constitutes an important prerogative of it. Furthermore, it is well known that ER undergoes prominent shape transitions during events such as cell division and differentiation. Thus, maintaining the correct ER structure is an essential feature for cellular physiology. Now, it is known that proper ER-associated proteins play a fundamental role in ER tubules formation. Among these ER-shaping proteins are the reticulons (RTN), which are acquiring a relevant position. In fact, beyond the structural role of reticulons, in very recent years new and deeper functional implications of these proteins are emerging in relation to their involvement in several cellular processes.

  11. Endoplasmic Reticulum Ca2+ Handling in Excitable Cells in Health and Disease

    PubMed Central

    Mattson, Mark P.

    2011-01-01

    The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca2+ in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca2+ ATPases and two types of ER membrane Ca2+ channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca2+ uptake and release, respectively. There are also direct and indirect interactions of ER Ca2+ stores with plasma membrane and mitochondrial Ca2+-regulating systems. Pharmacological agents that selectively modify ER Ca2+ release or uptake have enabled studies that revealed many different physiological roles for ER Ca2+ signaling. Several inherited diseases are caused by mutations in ER Ca2+-regulating proteins, and perturbed ER Ca2+ homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca2+ handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease. PMID:21737534

  12. Transport along the dendritic endoplasmic reticulum mediates the trafficking of GABAB receptors

    PubMed Central

    Valenzuela, José I.; Jaureguiberry-Bravo, Matías; Salas, Daniela A.; Ramírez, Omar A.; Cornejo, Víctor H.; Lu, Hsiangmin E.; Blanpied, Thomas A.; Couve, Andrés

    2014-01-01

    ABSTRACT In neurons, secretory organelles within the cell body are complemented by the dendritic endoplasmic reticulum (ER) and Golgi outposts (GOPs), whose role in neurotransmitter receptor trafficking is poorly understood. γ-aminobutyric acid (GABA) type B metabotropic receptors (GABABRs) regulate the efficacy of synaptic transmission throughout the brain. Their plasma membrane availability is controlled by mechanisms involving an ER retention motif and assembly-dependent ER export. Thus, they constitute an ideal molecular model to study ER trafficking, but the extent to which the dendritic ER participates in GABABR biosynthesis has not been thoroughly explored. Here, we show that GABAB1 localizes preferentially to the ER in dendrites and moves long distances within this compartment. Not only diffusion but also microtubule and dynein-dependent mechanisms control dendritic ER transport. GABABRs insert throughout the somatodendritic plasma membrane but dendritic post-ER carriers containing GABABRs do not fuse selectively with GOPs. This study furthers our understanding of the spatial selectivity of neurotransmitter receptors for dendritic organelles. PMID:24895402

  13. Cellular Pathology of Pelizaeus-Merzbacher Disease Involving Chaperones Associated with Endoplasmic Reticulum Stress

    PubMed Central

    Inoue, Ken

    2017-01-01

    Disease-causing mutations in genes encoding membrane proteins may lead to the production of aberrant polypeptides that accumulate in the endoplasmic reticulum (ER). These mutant proteins have detrimental conformational changes or misfolding events, which result in the triggering of the unfolded protein response (UPR). UPR is a cellular pathway that reduces ER stress by generally inhibiting translation, increasing ER chaperones levels, or inducing cell apoptosis in severe ER stress. This process has been implicated in the cellular pathology of many neurological disorders, including Pelizaeus-Merzbacher disease (PMD). PMD is a rare pediatric disorder characterized by the failure in the myelination process of the central nervous system (CNS). PMD is caused by mutations in the PLP1 gene, which encodes a major myelin membrane protein. Severe clinical PMD phenotypes appear to be the result of cell toxicity, due to the accumulation of PLP1 mutant proteins and not due to the lack of functional PLP1. Therefore, it is important to clarify the pathological mechanisms by which the PLP1 mutants negatively impact the myelin-generating cells, called oligodendrocytes, to overcome this devastating disease. This review discusses how PLP1 mutant proteins change protein homeostasis in the ER of oligodendrocytes, especially focusing on the reaction of ER chaperones against the accumulation of PLP1 mutant proteins that cause PMD. PMID:28286750

  14. Endoplasmic Reticulum-Localized Transmembrane Protein Dpy19L1 Is Required for Neurite Outgrowth

    PubMed Central

    Watanabe, Keisuke; Bizen, Norihisa; Sato, Noboru; Takebayashi, Hirohide

    2016-01-01

    The endoplasmic reticulum (ER), including the nuclear envelope, is a continuous and intricate membrane-bound organelle responsible for various cellular functions. In neurons, the ER network is found in cell bodies, axons, and dendrites. Recent studies indicate the involvement of the ER network in neuronal development, such as neuronal migration and axonal outgrowth. However, the regulation of neural development by ER-localized proteins is not fully understood. We previously reported that the multi-transmembrane protein Dpy19L1 is required for neuronal migration in the developing mouse cerebral cortex. A Dpy19L family member, Dpy19L2, which is a causative gene for human Globozoospermia, is suggested to act as an anchor of the acrosome to the nuclear envelope. In this study, we found that the patterns of exogenous Dpy19L1 were partially coincident with the ER, including the nuclear envelope in COS-7 cells at the level of the light microscope. The reticular distribution of Dpy19L1 was disrupted by microtubule depolymerization that induces retraction of the ER. Furthermore, Dpy19L1 showed a similar distribution pattern with a ER marker protein in embryonic mouse cortical neurons. Finally, we showed that Dpy19L1 knockdown mediated by siRNA resulted in decreased neurite outgrowth in cultured neurons. These results indicate that transmembrane protein Dpy19L1 is localized to the ER membrane and regulates neurite extension during development. PMID:27959946

  15. The Ca(2+)-ATPase pump facilitates bidirectional proton transport across the sarco/endoplasmic reticulum.

    PubMed

    Espinoza-Fonseca, L Michel

    2017-03-28

    Ca(2+) transport across the sarco/endoplasmic reticulum (SR) plays an essential role in intracellular Ca(2+) homeostasis, signalling, cell differentiation and muscle contractility. During SR Ca(2+) uptake and release, proton fluxes are required to balance the charge deficit generated by the exchange of Ca(2+) and other ions across the SR. During Ca(2+) uptake by the SR Ca(2+)-ATPase (SERCA), two protons are countertransported from the SR lumen to the cytosol, thus partially compensating for the charge moved by Ca(2+) transport. Studies have shown that protons are also transported from the cytosol to the lumen during Ca(2+) release, but a transporter that facilitates proton transport into the SR lumen has not been described. In this article we propose that SERCA forms pores that facilitate bidirectional proton transport across the SR. We describe the location and structure of water-filled pores in SERCA that form cytosolic and luminal pathways for protons to cross the SR membrane. Based on this structural information, we suggest mechanistic models for proton translocation to the cytosol during active Ca(2+) transport, and into the SR lumen during SERCA inhibition by endogenous regulatory proteins. Finally, we discuss the physiological consequences of SERCA-mediated bidirectional proton transport across the SR membrane of muscle and non-muscle cells.

  16. The combined therapeutic effects of bortezomib and fenretinide on neuroblastoma cells involve endoplasmic reticulum stress response.

    PubMed

    Pagnan, Gabriella; Di Paolo, Daniela; Carosio, Roberta; Pastorino, Fabio; Marimpietri, Danilo; Brignole, Chiara; Pezzolo, Annalisa; Loi, Monica; Galietta, Luis J V; Piccardi, Federica; Cilli, Michele; Nico, Beatrice; Ribatti, Domenico; Pistoia, Vito; Ponzoni, Mirco

    2009-02-15

    The proteasome inhibitor bortezomib inhibited cell growth and angiogenesis in neuroblastoma. Bortezomib has been shown to induce synergistic activity when combined with other antineoplastic agents. Here we have investigated the antitumor activity of bortezomib in combination with fenretinide, a synthetic retinoid, against neuroblastoma cells. Different neuroblastoma cell lines were tested for sensitivity to bortezomib and fenretinide, given alone or in different dose-dependent and time-dependent combination schedules. Cell proliferation, cell viability, and apoptosis were evaluated by measuring 3H-thymidine incorporation, trypan blue staining, DNA fragmentation, and western blot analysis. Angiogenesis was assessed by the chick embryo chorioallantoic membrane assay. An orthotopic neuroblastoma mouse model was used to examine in vivo sensitivity. Each compound alone was able to induce a dose-dependent inhibition of cell proliferation, with a significant enhanced antiproliferative effect for the drugs used in combination. This inhibition was characterized by marked G2-M and G1 cell cycle arrest with nearly complete depletion of S phase. Bortezomib and fenretinide in association triggered an increased apoptosis through activation of specific genes of the endoplasmic reticulum stress compared with either drug tested alone. Tumor-bearing mice treated with bortezomib plus fenretinide lived statistically significantly longer than mice treated with each drug alone. Histologic evaluation and chorioallantoic membrane analysis of primary tumors showed that the combined therapeutic activity of bortezomib and fenretinide rested upon antitumor and antiangiogenic mechanisms. These findings provide the rationale for the development of a new therapeutic strategy for neuroblastoma based on this pharmacologic combination.

  17. Induction of endoplasmic reticulum stress and apoptosis by a marine prostanoid in human hepatocellular carcinoma.

    PubMed

    Chiang, Po-Cheng; Chien, Chung-Liang; Pan, Shiow-Lin; Chen, Wen-Pin; Teng, Che-Ming; Shen, Ya-Ching; Guh, Jih-Hwa

    2005-10-01

    Hepatocellular carcinoma is a very common malignancy and is highly chemoresistant to currently available chemotherapeutic agents. We isolated a marine prostanoid, bromovulone III, from soft coral Clavularia viridis and found that it displayed effective anti-tumor activity in human hepatocellular carcinoma. The anti-tumor mechanism has been delineated in this study. Anti-tumor efficacy and apoptotic cell death were examined by sulforhodamine B and Hoechst 33342 assays. Rhodamine 123 was used to measure the change of mitochondrial membrane potential. Immunoprecipitation and Western blotting detect the involvement of several apoptosis-related proteins. Electron microscopic examination detects the morphological change of mitochondria and endoplasmic reticulum (ER). Bromovulone III primarily induced mitochondria-related activation of caspase-9 and -3 in several tumor types, such as prostate cancer PC-3 and acute promyelocytic leukemia HL-60 cells. However, it primarily induced the activation of m-calpain, caspase-12, and transcription factor CHOP/GADD153 in hepatocellular carcinoma Hep3B cells, suggesting the involvement of ER stress. Furthermore, a secondary mitochondrial swelling and depolarization of mitochondrial membrane potential were subsequently triggered after ER stress, suggesting the crosstalk between ER and mitochondria. It is suggested that bromovulone III induces apoptosis in Hep3B cells through a mechanism that induces ER stress and leads to activation of CHOP/GADD153 and caspase-12.

  18. Cotranslational Intersection between the SRP and GET Targeting Pathways to the Endoplasmic Reticulum of Saccharomyces cerevisiae.

    PubMed

    Zhang, Ying; Schäffer, Thea; Wölfle, Tina; Fitzke, Edith; Thiel, Gerhard; Rospert, Sabine

    2016-09-15

    Targeting of transmembrane proteins to the endoplasmic reticulum (ER) proceeds via either the signal recognition particle (SRP) or the guided entry of tail-anchored proteins (GET) pathway, consisting of Get1 to -5 and Sgt2. While SRP cotranslationally targets membrane proteins containing one or multiple transmembrane domains, the GET pathway posttranslationally targets proteins containing a single C-terminal transmembrane domain termed the tail anchor. Here, we dissect the roles of the SRP and GET pathways in the sorting of homologous, two-membrane-spanning K(+) channel proteins termed Kcv, Kesv, and Kesv-VV. We show that Kcv is targeted to the ER cotranslationally via its N-terminal transmembrane domain, while Kesv-VV is targeted posttranslationally via its C-terminal transmembrane domain, which recruits Get4-5/Sgt2 and Get3. Unexpectedly, nascent Kcv recruited not only SRP but also the Get4-5 module of the GET pathway to ribosomes. Ribosome binding of Get4-5 was independent of Sgt2 and was strongly outcompeted by SRP. The combined data indicate a previously unrecognized cotranslational interplay between the SRP and GET pathways. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5

    PubMed Central

    Vogiatzi, Fotini; Brandt, Dominique T.; Schneikert, Jean; Fuchs, Jeannette; Grikscheit, Katharina; Wanzel, Michael; Pavlakis, Evangelos; Charles, Joël P.; Timofeev, Oleg; Nist, Andrea; Mernberger, Marco; Kantelhardt, Eva J.; Siebolts, Udo; Bartel, Frank; Jacob, Ralf; Rath, Ariane; Moll, Roland; Grosse, Robert; Stiewe, Thorsten

    2016-01-01

    Mutations in the p53 tumor suppressor gene are the most frequent genetic alteration in cancer and are often associated with progression from benign to invasive stages with metastatic potential. Mutations inactivate tumor suppression by p53, and some endow the protein with novel gain of function (GOF) properties that actively promote tumor progression and metastasis. By comparative gene expression profiling of p53-mutated and p53-depleted cancer cells, we identified ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) as a mutant p53 target gene, which functions as a uridine 5′-diphosphatase (UDPase) in the endoplasmic reticulum (ER) to promote the folding of N-glycosylated membrane proteins. A comprehensive pan-cancer analysis revealed a highly significant correlation between p53 GOF mutations and ENTPD5 expression. Mechanistically, mutp53 is recruited by Sp1 to the ENTPD5 core promoter to induce its expression. We show ENTPD5 to be a mediator of mutant p53 GOF activity in clonogenic growth, architectural tissue remodeling, migration, invasion, and lung colonization in an experimental metastasis mouse model. Our study reveals folding of N-glycosylated membrane proteins in the ER as a mechanism underlying the metastatic progression of tumors with mutp53 that could provide new possibilities for cancer treatment. PMID:27956623

  20. Brucella abortus Transits through the Autophagic Pathway and Replicates in the Endoplasmic Reticulum of Nonprofessional Phagocytes

    PubMed Central

    Pizarro-Cerdá, Javier; Méresse, Stéphane; Parton, Robert G.; van der Goot, Gisou; Sola-Landa, Alberto; Lopez-Goñi, Ignacio; Moreno, Edgardo; Gorvel, Jean-Pierre

    1998-01-01

    Brucella abortus is an intracellular pathogen that replicates within a membrane-bounded compartment. In this study, we have examined the intracellular pathway of the virulent B. abortus strain 2308 (S2308) and the attenuated strain 19 (S19) in HeLa cells. At 10 min after inoculation, both bacterial strains are transiently detected in phagosomes characterized by the presence of early endosomal markers such as the early endosomal antigen 1. At ∼1 h postinoculation, bacteria are located within a compartment positive for the lysosome-associated membrane proteins (LAMPs) and the endoplasmic reticulum (ER) marker sec61β but negative for the mannose 6-phosphate receptors and cathepsin D. Interestingly, this compartment is also positive for the autophagosomal marker monodansylcadaverin, suggesting that S2308 and S19 are located in autophagic vacuoles. At 24 h after inoculation, attenuated S19 is degraded in lysosomes, while virulent S2308 multiplies within a LAMP- and cathepsin D-negative but sec61β- and protein disulfide isomerase-positive compartment. Furthermore, treatment of infected cells with the pore-forming toxin aerolysin from Aeromonas hydrophila causes vacuolation of the bacterial replication compartment. These results are compatible with the hypothesis that pathogenic B. abortus exploits the autophagic machinery of HeLa cells to establish an intracellular niche favorable for its replication within the ER. PMID:9826346

  1. Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5.

    PubMed

    Vogiatzi, Fotini; Brandt, Dominique T; Schneikert, Jean; Fuchs, Jeannette; Grikscheit, Katharina; Wanzel, Michael; Pavlakis, Evangelos; Charles, Joël P; Timofeev, Oleg; Nist, Andrea; Mernberger, Marco; Kantelhardt, Eva J; Siebolts, Udo; Bartel, Frank; Jacob, Ralf; Rath, Ariane; Moll, Roland; Grosse, Robert; Stiewe, Thorsten

    2016-12-27

    Mutations in the p53 tumor suppressor gene are the most frequent genetic alteration in cancer and are often associated with progression from benign to invasive stages with metastatic potential. Mutations inactivate tumor suppression by p53, and some endow the protein with novel gain of function (GOF) properties that actively promote tumor progression and metastasis. By comparative gene expression profiling of p53-mutated and p53-depleted cancer cells, we identified ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) as a mutant p53 target gene, which functions as a uridine 5'-diphosphatase (UDPase) in the endoplasmic reticulum (ER) to promote the folding of N-glycosylated membrane proteins. A comprehensive pan-cancer analysis revealed a highly significant correlation between p53 GOF mutations and ENTPD5 expression. Mechanistically, mutp53 is recruited by Sp1 to the ENTPD5 core promoter to induce its expression. We show ENTPD5 to be a mediator of mutant p53 GOF activity in clonogenic growth, architectural tissue remodeling, migration, invasion, and lung colonization in an experimental metastasis mouse model. Our study reveals folding of N-glycosylated membrane proteins in the ER as a mechanism underlying the metastatic progression of tumors with mutp53 that could provide new possibilities for cancer treatment.

  2. Cotranslational Intersection between the SRP and GET Targeting Pathways to the Endoplasmic Reticulum of Saccharomyces cerevisiae

    PubMed Central

    Zhang, Ying; Schäffer, Thea; Wölfle, Tina; Fitzke, Edith; Thiel, Gerhard

    2016-01-01

    Targeting of transmembrane proteins to the endoplasmic reticulum (ER) proceeds via either the signal recognition particle (SRP) or the guided entry of tail-anchored proteins (GET) pathway, consisting of Get1 to -5 and Sgt2. While SRP cotranslationally targets membrane proteins containing one or multiple transmembrane domains, the GET pathway posttranslationally targets proteins containing a single C-terminal transmembrane domain termed the tail anchor. Here, we dissect the roles of the SRP and GET pathways in the sorting of homologous, two-membrane-spanning K+ channel proteins termed Kcv, Kesv, and Kesv-VV. We show that Kcv is targeted to the ER cotranslationally via its N-terminal transmembrane domain, while Kesv-VV is targeted posttranslationally via its C-terminal transmembrane domain, which recruits Get4-5/Sgt2 and Get3. Unexpectedly, nascent Kcv recruited not only SRP but also the Get4-5 module of the GET pathway to ribosomes. Ribosome binding of Get4-5 was independent of Sgt2 and was strongly outcompeted by SRP. The combined data indicate a previously unrecognized cotranslational interplay between the SRP and GET pathways. PMID:27354063

  3. Proteasome inhibition compromises direct retention of cytochrome P450 2C2 in the endoplasmic reticulum.

    PubMed

    Szczesna-Skorupa, Elzbieta; Kemper, Byron

    2008-10-15

    To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention "receptor" since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.

  4. The liver isoform of carnitine palmitoyltransferase 1 is not targeted to the endoplasmic reticulum.

    PubMed

    Broadway, Neil M; Pease, Richard J; Birdsey, Graeme; Shayeghi, Majid; Turner, Nigel A; David Saggerson, E

    2003-02-15

    Liver microsomal fractions contain a malonyl-CoA-inhibitable carnitine acyltransferase (CAT) activity. It has been proposed [Fraser, Corstorphine, Price and Zammit (1999) FEBS Lett. 446, 69-74] that this microsomal CAT activity is due to the liver form of carnitine palmitoyltransferase 1 (L-CPT1) being targeted to the endoplasmic reticulum (ER) membrane as well as to mitochondria, possibly by an N-terminal signal sequence [Cohen, Guillerault, Girard and Prip-Buus (2001) J. Biol. Chem. 276, 5403-5411]. COS-1 cells were transiently transfected to express a fusion protein in which enhanced green fluorescent protein was fused to the C-terminus of L-CPT1. Confocal microscopy showed that this fusion protein was localized to mitochondria, and possibly to peroxisomes, but not to the ER. cDNAs corresponding to truncated (amino acids 1-328) or full-length L-CPT1 were transcribed and translated in the presence of canine pancreatic microsomes. However, there was no evidence of authentic insertion of CPT1 into the ER membrane. Rat liver microsomal fractions purified by sucrose-density-gradient centrifugation contained an 88 kDa protein (p88) which was recognized by an anti-L-CPT1 antibody and by 2,4-dinitrophenol-etomoxiryl-CoA, a covalent inhibitor of L-CPT1. Abundance of p88 and malonyl-CoA-inhibitable CAT activity were increased approx. 3-fold by starvation for 24 h. Deoxycholate solubilized p88 and malonyl-CoA-inhibitable CAT activity from microsomes to approximately the same extent. The microsomal fraction contained porin, which, relative to total protein, was as abundant as in crude mitochondrial outer membranes fractions. It is concluded that L-CPT1 is not targeted to the ER membrane and that malonyl-CoA CAT in microsomal fractions is L-CPT1 that is derived from mitochondria, possibly from membrane contact sites.

  5. Endoplasmic Reticulum Stress Plays a Key Role in Rotenone-Induced Apoptotic Death of Neurons.

    PubMed

    Goswami, Poonam; Gupta, Sonam; Biswas, Joyshree; Joshi, Neeraj; Swarnkar, Supriya; Nath, Chandishwar; Singh, Sarika

    2016-01-01

    Rotenone, a pesticide, causes neurotoxicity via the mitochondrial complex-I inhibition. The present study was conducted to evaluate the role of endoplasmic reticulum (ER) stress in rotenone-induced neuronal death. Cell viability, cytotoxicity, reactive oxygen species (ROS) generation, nitrite level, mitochondrial membrane potential (MMP), and DNA damage were assessed in rotenone-treated neuro-2A cells. Protein levels of ER stress markers glucose regulated protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153), and phosphorylation of eukaryotic translation initiation factor 2 subunit α (eIF2-α) were estimated to assess the ER stress. To confirm the apoptotic death of neurons, mRNA levels of caspase-9, caspase-12 and caspase-3 were estimated. Further, to confirm the involvement of ER stress, neuro-2A cells were pretreated with ER stress inhibitor salubrinal. Co-treatment of antioxidant melatonin was also given to assess the role of oxidative stress in rotenone-induced apoptosis. Rotenone (0.1, 0.5, and 1 μM) treatment to neurons caused significantly decreased cell viability, increased cytotoxicity, increased ROS generation, increased expression of GRP78 and GADD, DNA damage and activation of caspase-12 and caspase-3 which were significantly attenuated by pretreatment of salubrinal (25 μM). Rotenone-induced dephosphorylation of eIF2α was also inhibited with salubrinal treatment. However, pretreatment of salubrinal did not affect the rotenone-induced increased nitrite levels, decreased MMP and caspase-9 activation. Co-treatment of antioxidant melatonin (1 mM) did not offer attenuation against rotenone-induced increased expression of caspase-9, caspase-12 and caspase-3. In conclusion, results indicated that ER stress plays a key role in rotenone-induced neuronal death, rather than oxidative stress. Graphical Abstract Pictorial presentation showed the involvement of endoplasmic reticulum (ER) stress, increased reactive oxygen species (ROS

  6. The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum.

    PubMed

    Lipschutz, Joshua H; Lingappa, Vishwanath R; Mostov, Keith E

    2003-06-06

    We previously showed that the exocyst complex specifically affected the synthesis and delivery of secretory and basolateral plasma membrane proteins. Significantly, the entire spectrum of secreted proteins was increased when the hSec10 (human Sec10) component of the exocyst complex was overexpressed, suggestive of post-transcriptional regulation (Lipschutz, J. H., Guo, W., O'Brien, L. E., Nguyen, Y. H., Novick, P., and Mostov, K. E. (2000) Mol. Biol. Cell 11, 4259-4275). Here, using an exogenously transfected basolateral protein, the polymeric immunoglobulin receptor (pIgR), and a secretory protein, gp80, we show that pIgR and gp80 protein synthesis and delivery are increased in cells overexpressing Sec10 despite the fact that mRNA levels are unchanged, which is highly indicative of post-transcriptional regulation. To test specificity, we also examined the synthesis and delivery of an exogenous apical protein, CNT1 (concentrative nucleoside transporter 1), and found no increase in CNT1 protein synthesis, delivery, or mRNA levels in cells overexpressing Sec10. Sec10-GFP-overexpressing cell lines were created, and staining was seen in the endoplasmic reticulum. It was demonstrated previously in yeast that high levels of expression of SEB1, the Sec61beta homologue, suppressed sec15-1, an exocyst mutant (Toikkanen, J., Gatti, E., Takei, K., Saloheimo, M., Olkkonen, V. M., Soderlund, H., De Camilli, P., and Keranen, S. (1996) Yeast 12, 425-438). Sec61beta is a member of the Sec61 heterotrimer, which is the main component of the endoplasmic reticulum translocon. By co-immunoprecipitation we show that Sec10, which forms an exocyst subcomplex with Sec15, specifically associates with the Sec61beta component of the translocon and that Sec10 overexpression increases the association of other exocyst complex members with Sec61beta. Proteosome inhibition does not appear to be the mechanism by which increased protein synthesis occurs in the face of equivalent amounts of m

  7. Lipid transport mediated by Arabidopsis TGD proteins is unidirectional from the endoplasmic reticulum to the plastid

    SciTech Connect

    Xu, C.; Moellering, E. R., Muthan, B.; Fan, J.; Benning, C.

    2010-06-01

    The transfer of lipids between the endoplasmic reticulum (ER) and the plastid in Arabidopsis involves the TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins. Lipid exchange is thought to be bidirectional based on the presence of specific lipid molecular species in Arabidopsis mutants impaired in the desaturation of fatty acids of membrane lipids in the ER and plastid. However, it was unclear whether TGD proteins were required for lipid trafficking in both directions. This question was addressed through the analysis of double mutants of tgd1-1 or tgd4-3 in genetic mutant backgrounds leading to a defect in lipid fatty acid desaturation either in the ER (fad2) or the plastid (fad6). The fad6 tgd1-1 and fad6 tgd4-3 double mutants showed drastic reductions in the relative levels of polyunsaturated fatty acids and of galactolipids. The growth of these plants and the development of photosynthetic membrane systems were severely compromised, suggesting a disruption in the import of polyunsaturated fatty acid-containing lipid species from the ER. Furthermore, a forward-genetic screen in the tgd1-2 dgd1 mutant background led to the isolation of a new fad6-2 allele with a marked reduction in the amount of digalactosyldiacylglycerol. In contrast, the introduction of fad2, affecting fatty acid desaturation of lipids in the ER, into the two tgd mutant backgrounds did not further decrease the level of fatty acid desaturation in lipids of extraplastidic membranes. These results suggest that the role of TGD proteins is limited to plastid lipid import, but does not extend to lipid export from the plastid to extraplastidic membranes.

  8. Genetic and molecular interactions of the Erv41p-Erv46p complex involved in transport between the endoplasmic reticulum and Golgi complex.

    PubMed

    Welsh, Leah M; Tong, Amy Hin Yan; Boone, Charles; Jensen, Ole N; Otte, Stefan

    2006-11-15

    Erv41p and Erv46p are integral membrane proteins conserved across species. They were originally identified as abundant constituents of COPII-coated vesicles, and form a complex which cycles between the endoplasmic reticulum and Golgi complex. Yeast strains lacking these proteins are viable but display subtle secretory phenotypes. In order to obtain information about possible biological roles of this protein complex in endoplasmic reticulum to Golgi transport, we employed the Synthetic Genetic Array approach to screen for synthetic genetic interactions with the erv46 null mutation. We identified synthetic interactions with vma12, vma21, vma22 and vps1 deletion mutations. The vma21Delta mutation exacerbates transport defects caused by the erv46Delta mutation. Unexpectedly, yeast strains lacking Vma21p fail to sort the endoplasmic reticulum to Golgi v-SNARE, Bos1p, efficiently into COPII vesicles, yet these vesicles are fully fusion competent. In addition, we set out to identify, by a biochemical approach, proteins interacting with the Erv41p-Erv46p complex. We report a strong interaction between the Erv41p-Erv46p complex and endoplasmic reticulum glucosidase II. Strains lacking a cycling Erv41p-Erv46p complex display a mild glycoprotein processing defect.

  9. The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress.

    PubMed

    Richie, Daryl L; Miley, Michael D; Bhabhra, Ruchi; Robson, Geoffrey D; Rhodes, Judith C; Askew, David S

    2007-01-01

    We have examined the contribution of metacaspases to the growth and stress response of the opportunistic human mould pathogen, Aspergillus fumigatus, based on increasing evidence implicating the yeast metacaspase Yca1p in apoptotic-like programmed cell death. Single metacaspase-deficient mutants were constructed by targeted disruption of each of the two metacaspase genes in A. fumigatus, casA and casB, and a metacaspase-deficient mutant, DeltacasA/DeltacasB, was constructed by disrupting both genes. Stationary phase cultures of wild-type A. fumigatus were associated with the appearance of typical markers of apoptosis, including elevated proteolytic activity against caspase substrates, phosphatidylserine exposure on the outer leaflet of the membrane, and loss of viability. By contrast, phosphatidylserine exposure was not observed in stationary phase cultures of the DeltacasA/DeltacasB mutant, although caspase activity and viability was indistinguishable from wild type. The mutant retained wild-type virulence and showed no difference in sensitivity to a range of pro-apoptotic stimuli that have been reported to initiate yeast apoptosis. However, the DeltacasA/DeltacasB mutant showed a growth detriment in the presence of agents that disrupt endoplasmic reticulum homeostasis. These findings demonstrate that metacaspase activity in A. fumigatus contributes to the apoptotic-like loss of membrane phospholipid asymmetry at stationary phase, and suggest that CasA and CasB have functions that support growth under conditions of endoplasmic reticulum stress.

  10. [Mechanisms of smooth endoplasmic reticulum aggregates creation in oocyte's cytoplasm in IVF cycles and its clinical relevance (literature review)].

    PubMed

    Kovalskaya, E V; Makarova, N P; Syrkasheva, A G; Dolgushina, N V; Kurilo, L F

    2015-01-01

    A large proportion of human oocytes received from exogenous gonadotropin-stimulated cycles have different morphological attributes, or dysmorphisms. The presence of dysmorphism can affect the fertilization rate, the embryo quality and subsequently the frequency of occurrence of implantation and pregnancy. Special attention is paid to oocytes with cytoplasmic attributes such as alteration of cytoplasmic granularity, the appearance of vacuoles, lipofuscin bodies and visible (large) aggregates of smooth endoplasmic reticulum. Endoplasmic reticulum (ER) is a type of the organelle forming an interconnected network of flattened, membrane-enclosed sacs or tubes. One of the main functions of ER in the oocyte is storage and redistribution of calcium, which provides cell activation during fertilization. Furthermore, complex of ER and mitochondria is necessary for accumulation of energy, synthesis of lipids and triglycerides, as well as synthesis of cytosolic and nuclear membranes during the early stages of cleavage. The appearance of anomalously large aggregates of ER in oocytes correlates with a low fertilization rate, low embryo quality, and pregnancy rate. The aim of the manuscript is to summarize current understanding of the mechanism of formation of such pathology of oocytes, together with special aspects of their fertilization and embryo quality.

  11. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis

    PubMed Central

    Zhang, Jintao; Yi, Man; Zha, Longying; Chen, Siqiang; Li, Zhijia; Li, Cheng; Gong, Mingxing; Deng, Hong; Chu, Xinwei; Chen, Jiehua; Zhang, Zheqing; Mao, Limei; Sun, Suxia

    2016-01-01

    Purpose Butyrate, a short-chain fatty acid derived from dietary fiber, inhibits proliferation and induces cell death in colorectal cancer cells. However, clinical trials have shown mixed results regarding the anti-tumor activities of butyrate. We have previously shown that sodium butyrate increases endoplasmic reticulum stress by altering intracellular calcium levels, a well-known autophagy trigger. Here, we investigated whether sodium butyrate-induced endoplasmic reticulum stress mediated autophagy, and whether there was crosstalk between autophagy and the sodium butyrate-induced apoptotic response in human colorectal cancer cells. Methods Human colorectal cancer cell lines (HCT-116 and HT-29) were treated with sodium butyrate at concentrations ranging from 0.5–5mM. Cell proliferation was assessed using MTT tetrazolium salt formation. Autophagy induction was confirmed through a combination of Western blotting for associated proteins, acridine orange staining for acidic vesicles, detection of autolysosomes (MDC staining), and electron microscopy. Apoptosis was quantified by flow cytometry using standard annexinV/propidium iodide staining and by assessing PARP-1 cleavage by Western blot. Results Sodium butyrate suppressed colorectal cancer cell proliferation, induced autophagy, and resulted in apoptotic cell death. The induction of autophagy was supported by the accumulation of acidic vesicular organelles and autolysosomes, and the expression of autophagy-associated proteins, including microtubule-associated protein II light chain 3 (LC3-II), beclin-1, and autophagocytosis-associated protein (Atg)3. The autophagy inhibitors 3-methyladenine (3-MA) and chloroquine inhibited sodium butyrate induced autophagy. Furthermore, sodium butyrate treatment markedly enhanced the expression of endoplasmic reticulum stress-associated proteins, including BIP, CHOP, PDI, and IRE-1a. When endoplasmic reticulum stress was inhibited by pharmacological (cycloheximide and mithramycin

  12. Translocon pores in the endoplasmic reticulum are permeable to small anions.

    PubMed

    Lizák, Beáta; Czegle, Ibolya; Csala, Miklós; Benedetti, Angelo; Mandl, József; Bánhegyi, Gábor

    2006-09-01

    Contribution of translocon peptide channels to the permeation of low molecular mass anions was investigated in rat liver microsomes. Puromycin, which purges translocon pores of nascent polypeptides, creating additional empty pores, raised the microsomal uptake of radiolabeled UDP-glucuronic acid, while it did not increase the uptake of glucose-6-phosphate or glutathione. The role of translocon pores in the transport of small anions was also investigated by measuring the effect of puromycin on the activity of microsomal enzymes with intraluminal active sites. The mannose-6-phosphatase activity of glucose-6-phosphatase and the activity of UDP-glucuronosyltransferase were elevated upon addition of puromycin, but glucose-6-phosphatase and beta-glucuronidase activities were not changed. The increase in enzyme activities was due to a better access of the substrates to the luminal compartment rather than to activation of the enzymes. Antibody against Sec61 translocon component decreased the activity of UDP-glucuronosyltransferase and antagonized the effect of puromycin. Similarly, the addition of the puromycin antagonist anisomycin or treatments of microsomes, resulting in the release of attached ribosomes, prevented the puromycin-dependent increase in the activity. Mannose-6-phosphatase and UDP-glucuronosyltransferase activities of smooth microsomal vesicles showed higher basal latencies that were not affected by puromycin. In conclusion, translationally inactive, ribosome-bound translocons allow small anions to cross the endoplasmic reticulum membrane. This pathway can contribute to the nonspecific substrate supply of enzymes with intraluminal active centers.

  13. GOLGI TRANSPORT 1B Regulates Protein Export from the Endoplasmic Reticulum in Rice Endosperm Cells.

    PubMed

    Wang, Yihua; Liu, Feng; Ren, Yulong; Wang, Yunlong; Liu, Xi; Long, Wuhua; Wang, Di; Zhu, Jianping; Zhu, Xiaopin; Jing, Ruonan; Wu, Mingming; Hao, Yuanyuan; Jiang, Ling; Wang, Chunming; Wang, Haiyang; Bao, Yiqun; Wan, Jianmin

    2016-11-01

    Coat protein complex II (COPII) mediates the first step of anterograde transport of newly synthesized proteins from the endoplasmic reticulum (ER) to other endomembrane compartments in eukaryotes. A group of evolutionarily conserved proteins (Sar1, Sec23, Sec24, Sec13, and Sec31) constitutes the basic COPII coat machinery; however, the details of how the COPII coat assembly is regulated remain unclear. Here, we report a protein transport mutant of rice (Oryza sativa), named glutelin precursor accumulation4 (gpa4), which accumulates 57-kD glutelin precursors and forms two types of ER-derived abnormal structures. GPA4 encodes the evolutionarily conserved membrane protein GOT1B (also known as GLUP2), homologous to the Saccharomyces cerevisiae GOT1p. The rice GOT1B protein colocalizes with Arabidopsis thaliana Sar1b at Golgi-associated ER exit sites (ERESs) when they are coexpressed in Nicotiana benthamiana Moreover, GOT1B physically interacts with rice Sec23, and both proteins are present in the same complex(es) with rice Sar1b. The distribution of rice Sar1 in the endomembrane system, its association with rice Sec23c, and the ERES organization pattern are significantly altered in the gpa4 mutant. Taken together, our results suggest that GOT1B plays an important role in mediating COPII vesicle formation at ERESs, thus facilitating anterograde transport of secretory proteins in plant cells. © 2016 American Society of Plant Biologists. All rights reserved.

  14. Selective Targeting of Proteins within Secretory Pathway for Endoplasmic Reticulum-associated Degradation

    PubMed Central

    Vecchi, Lara; Petris, Gianluca; Bestagno, Marco; Burrone, Oscar R.

    2012-01-01

    The endoplasmic reticulum-associated degradation (ERAD) is a cellular quality control mechanism to dispose of misfolded proteins of the secretory pathway via proteasomal degradation. SEL1L is an ER-resident protein that participates in identification of misfolded molecules as ERAD substrates, therefore inducing their ER-to-cytosol retrotranslocation and degradation. We have developed a novel class of fusion proteins, termed degradins, composed of a fragment of SEL1L fused to a target-specific binding moiety located on the luminal side of the ER. The target-binding moiety can be a ligand of the target or derived from specific mAbs. Here, we describe the ability of degradins with two different recognition moieties to promote degradation of a model target. Degradins recognize the target protein within the ER both in secretory and membrane-bound forms, inducing their degradation following retrotranslocation to the cytosol. Thus, degradins represent an effective technique to knock-out proteins within the secretory pathway with high specificity. PMID:22523070

  15. Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection.

    PubMed

    Grangeon, Romain; Agbeci, Maxime; Chen, Jun; Grondin, Gilles; Zheng, Huanquan; Laliberté, Jean-François

    2012-09-01

    The impact of turnip mosaic virus (TuMV) infection on the endomembranes of the host early secretory pathway was investigated using an infectious clone that has been engineered for tagging viral membrane structures with a fluorescent protein fused to the viral protein 6K(2). TuMV infection led to the amalgamation of the endoplasmic reticulum (ER), Golgi apparatus, COPII coatamers, and chloroplasts into a perinuclear globular structure that also contained viral proteins. One consequence of TuMV infection was that protein secretion was blocked at the ER-Golgi interface. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the perinuclear structure cannot be restocked in viral components but was dynamically connected to the bulk of the Golgi apparatus and the ER. Experiments with 6K(2) fused to photoactivable green fluorescent protein (GFP) showed that production of motile peripheral 6K(2) vesicles was functionally linked to the perinuclear structure. Disruption of the early secretory pathway did not prevent the formation of the perinuclear globular structure, enhanced the clustering of peripheral 6K(2) vesicles with COPII coatamers, and led to inhibition of cell-to-cell virus movement. This suggests that a functional secretory pathway is not required for the formation of the TuMV perinuclear globular structure and peripheral vesicles but is needed for successful viral intercellular propagation.

  16. Golgi enzymes do not cycle through the endoplasmic reticulum during protein secretion or mitosis.

    PubMed

    Villeneuve, Julien; Duran, Juan; Scarpa, Margherita; Bassaganyas, Laia; Van Galen, Josse; Malhotra, Vivek

    2017-01-01

    Golgi-specific sialyltransferase (ST) expressed as a chimera with the rapamycin-binding domain of mTOR, FRB, relocates to the endoplasmic reticulum (ER) in cells exposed to rapamycin that also express invariant chain (Ii)-FKBP in the ER. This result has been taken to indicate that Golgi-resident enzymes cycle to the ER constitutively. We show that ST-FRB is trapped in the ER even without Ii-FKBP upon rapamycin addition. This is because ER-Golgi-cycling FKBP proteins contain a C-terminal KDEL-like sequence, bind ST-FRB in the Golgi, and are transported together back to the ER by KDEL receptor-mediated retrograde transport. Moreover, depletion of KDEL receptor prevents trapping of ST-FRB in the ER by rapamycin. Thus ST-FRB cycles artificially by binding to FKBP domain-containing proteins. In addition, Golgi-specific O-linked glycosylation of a resident ER protein occurs only upon artificial fusion of Golgi membranes with ER. Together these findings support the consensus view that there is no appreciable mixing of Golgi-resident enzymes with ER under normal conditions.

  17. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis

    PubMed Central

    Tse, Gary; Yan, Bryan P.; Chan, Yin W. F.; Tian, Xiao Yu; Huang, Yu

    2016-01-01

    Background: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. Method: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. Results: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. Conclusion: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure. PMID:27536244

  18. ATG5 defines a phagophore domain connected to the endoplasmic reticulum during autophagosome formation in plants.

    PubMed

    Le Bars, Romain; Marion, Jessica; Le Borgne, Rémi; Satiat-Jeunemaitre, Béatrice; Bianchi, Michele Wolfe

    2014-06-20

    Autophagosomes are the organelles responsible for macroautophagy and arise, in yeast and animals, from the sealing of a cup-shaped double-membrane precursor, the phagophore. How the phagophore is generated and grows into a sealed autophagosome is still not clear in detail, and unknown in plants. This is due, in part, to the scarcity of structurally informative, real-time imaging data of the required protein machinery at the phagophore formation site. Here we find that in intact living Arabidopsis tissue, autophagy-related protein ATG5, which is essential for autophagosome formation, is present at the phagophore site from early, sub-resolution stages and later defines a torus-shaped structure on a flat cisternal early phagophore. Movement and expansion of this structure are accompanied by the underlying endoplasmic reticulum, suggesting tight connections between the two compartments. Detailed real-time and 3D imaging of the growing phagophore are leveraged to propose a model for autophagosome formation in plants.

  19. Oncogenic Kit signals on endolysosomes and endoplasmic reticulum are essential for neoplastic mast cell proliferation

    PubMed Central

    Obata, Yuuki; Toyoshima, Shota; Wakamatsu, Ei; Suzuki, Shunichi; Ogawa, Shuhei; Esumi, Hiroyasu; Abe, Ryo

    2014-01-01

    Kit is a receptor-type tyrosine kinase found on the plasma membrane. It can transform mast cells through activating mutations. Here, we show that a mutant Kit from neoplastic mast cells from mice, Kit(D814Y), is permanently active and allows cells to proliferate autonomously. It does so by activating two signalling pathways from different intracellular compartments. Mutant Kit from the cell surface accumulates on endolysosomes through clathrin-mediated endocytosis, which requires Kit’s kinase activity. Kit(D814Y) is constitutively associated with phosphatidylinositol 3-kinase, but the complex activates Akt only on the cytoplasmic surface of endolysosomes. It resists destruction because it is under-ubiquitinated. Kit(D814Y) also appears in the endoplasmic reticulum soon after biosynthesis, and there, can activate STAT5 aberrantly. These mechanisms of oncogenic signalling are also seen in rat and human mast cell leukemia cells. Thus, oncogenic Kit signalling occurs from different intracellular compartments, and the mutation acts by altering Kit trafficking as well as activation. PMID:25493654

  20. Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway.

    PubMed

    Boussabbeh, Manel; Ben Salem, Intidhar; Prola, Alexandre; Guilbert, Arnaud; Bacha, Hassen; Abid-Essefi, Salwa; Lemaire, Christophe

    2015-04-01

    Patulin (PAT) is a toxic metabolite produced by several filamentous fungi of the genera of Penicillium, Aspergillus, and Byssochlamys. PAT is the most common mycotoxin found in apples and apple-based products including juice, compotes, cider, and baby food. Exposure to this mycotoxin has been reported to induce intestinal and kidney injuries. This study investigated the mechanism of PAT-induced toxicity in human colon carcinoma (HCT116) and embryonic kidney cells (HEK293). We demonstrated that PAT activated endoplasmic reticulum (ER) and unfolded protein response as evidenced by up-regulation of GRP78 and GADD34, splicing of XBP1 mRNA, and expression of the proapoptotic factor CHOP. This ER stress response was accompanied by the induction of the mitochondrial apoptotic pathway. Apoptosis occurred with ROS production, drop in mitochondrial membrane potential and caspase activation. Further, we showed that deficiency of the proapoptotic protein Bax or Bak protected cells against PAT-induced apoptosis. The treatment of cells with the ROS scavenger N-acetyl cysteine inhibits the ER stress response and prevents mitochondrial apoptosis. Collectively, our data provide new mechanistic insights in the signaling pathways of the cell death induced by PAT and demonstrate that PAT induces cytotoxicity through a ROS-dependent mechanism involving ER stress and activation of mitochondrial apoptotic pathway in human intestinal and kidney cells. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects

    PubMed Central

    Martínez-Pizarro, Ainhoa; Desviat, Lourdes R.; Ugarte, Magdalena; Pérez, Belén; Richard, Eva

    2016-01-01

    Proper function of endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs) have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patient-derived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IP3R1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2) were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patient-derived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca2+ homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications. PMID:26959487

  2. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects.

    PubMed

    Martínez-Pizarro, Ainhoa; Desviat, Lourdes R; Ugarte, Magdalena; Pérez, Belén; Richard, Eva

    2016-01-01

    Proper function of endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site as well as perturbation of mitochondria-associated ER membranes (MAMs) have been linked to neurodegenerative and metabolic diseases. Previously, we have observed an increase in ROS and apoptosis levels in patient-derived fibroblasts with remethylation disorders causing homocystinuria. Here we show increased mRNA and protein levels of Herp, Grp78, IP3R1, pPERK, ATF4, CHOP, asparagine synthase and GADD45 in patient-derived fibroblasts suggesting ER stress and calcium perturbations in homocystinuria. In addition, overexpressed MAM-associated proteins (Grp75, σ-1R and Mfn2) were found in these cells that could result in mitochondrial calcium overload and oxidative stress increase. Our results also show an activation of autophagy process and a substantial degradation of altered mitochondria by mitophagy in patient-derived fibroblasts. Moreover, we have observed that autophagy was partially abolished by antioxidants suggesting that ROS participate in this process that may have a protective role. Our findings argue that alterations in Ca2+ homeostasis and autophagy may contribute to the development of this metabolic disorder and suggest a therapeutic potential in homocystinuria for agents that stabilize calcium homeostasis and/or restore the proper function of ER-mitochondria communications.

  3. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum.

    PubMed Central

    Hendershot, L M; Wei, J Y; Gaut, J R; Lawson, B; Freiden, P J; Murti, K G

    1995-01-01

    BiP possesses ATP binding/hydrolysis activities that are thought to be essential for its ability to chaperone protein folding and assembly in the endoplasmic reticulum (ER). We have produced a series of point mutations in a hamster BiP clone that inhibit ATPase activity and have generated a species-specific anti-BiP antibody to monitor the effects of mutant hamster BiP expression in COS monkey cells. The enzymatic inactivation of BiP did not interfere with its ability to bind to Ig heavy chains in vivo but did inhibit ATP-mediated release of heavy chains in vitro. Immunofluorescence staining and electron microscopy revealed vesiculation of the ER membranes in COS cells expressing BiP ATPase mutants. ER disruption was not observed when a "44K" fragment of BiP that did not include the protein binding domain was similarly mutated but was observed when the protein binding region of BiP was expressed without an ATP binding domain. This suggests that BiP binding to target proteins as an inactive chaperone is responsible for the ER disruption. This is the first report on the in vivo expression of mammalian BiP mutants and is demonstration that in vitro-identified ATPase mutants behave as dominant negative mutants when expressed in vivo. Images PMID:7612964

  4. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants.

    PubMed

    Liu, Jian-Xiang; Howell, Stephen H

    2010-09-01

    The endoplasmic reticulum (ER) has a sophisticated quality control (QC) system to eliminate improperly folded proteins from the secretory pathway. Given that protein folding is such a fastidious process and subject to adverse environmental conditions, the ER QC system appears to have been usurped to serve as an environmental sensor and responder in plants. Under stressful conditions, the ER protein folding machinery reaches a limit as the demands for protein folding exceed the capacity of the system. Under these conditions, misfolded or unfolded proteins accumulate in the ER, triggering an unfolded protein response (UPR). UPR mitigates ER stress by upregulating the expression of genes encoding components of the protein folding machinery or the ER-associated degradation system. In Arabidopsis thaliana, ER stress is sensed and stress signals are transduced by membrane-bound transcription factors, which are activated and mobilized under environmental stress conditions. Under acute or chronic stress conditions, UPR can also lead to apoptosis or programmed cell death. Despite recent progress in our understanding of plant protein QC, discovering how different environmental conditions are perceived is one of the major challenges in understanding this system. Since the ER QC system is one among many stress response systems in plants, another major challenge is determining the extent to which the ER QC system contributes to various stress responses in plants.

  5. Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons.

    PubMed

    Sainath, Rajiv; Armijo-Weingart, Lorena; Ketscheck, Andrea; Xu, Zhuxuan; Li, Shuxin; Gallo, Gianluca

    2017-09-13

    Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150(Glu) dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol, 2017. © 2017 Wiley Periodicals, Inc.

  6. Receptor quality control in the endoplasmic reticulum for plant innate immunity

    PubMed Central

    Saijo, Yusuke; Tintor, Nico; Lu, Xunli; Rauf, Philipp; Pajerowska-Mukhtar, Karolina; Häweker, Heidrun; Dong, Xinnian; Robatzek, Silke; Schulze-Lefert, Paul

    2009-01-01

    Pattern recognition receptors in eukaryotes initiate defence responses on detection of microbe-associated molecular patterns shared by many microbe species. The Leu-rich repeat receptor-like kinases FLS2 and EFR recognize the bacterial epitopes flg22 and elf18, derived from flagellin and elongation factor-Tu, respectively. We describe Arabidopsis ‘priority in sweet life' (psl) mutants that show de-repressed anthocyanin accumulation in the presence of elf18. EFR accumulation and signalling, but not of FLS2, are impaired in psl1, psl2, and stt3a plants. PSL1 and PSL2, respectively, encode calreticulin3 (CRT3) and UDP-glucose:glycoprotein glycosyltransferase that act in concert with STT3A-containing oligosaccharyltransferase complex in an N-glycosylation pathway in the endoplasmic reticulum. However, EFR-signalling function is impaired in weak psl1 alleles despite its normal accumulation, thereby uncoupling EFR abundance control from quality control. Furthermore, salicylic acid-induced, but EFR-independent defence is weakened in psl2 and stt3a plants, indicating the existence of another client protein than EFR for this immune response. Our findings suggest a critical and selective function of N-glycosylation for different layers of plant immunity, likely through quality control of membrane-localized regulators. PMID:19763087

  7. Endoplasmic reticulum-mitochondrial crosstalk: a novel role for the mitochondrial peptide humanin

    PubMed Central

    Sreekumar, Parameswaran G.; Hinton, David R.; Kannan, Ram

    2017-01-01

    In this review, the interactive mechanisms of mitochondria with the endoplasmic reticulum (ER) are discussed with emphasis on the potential protective role of the mitochondria derived peptide humanin (HN) in ER stress. The ER and mitochondria are dynamic organelles capable of modifying their structure and function in response to changing environmental conditions. The ER and mitochondria join together at multiple sites and form mitochondria-ER associated membranes that participate in signal transduction pathways that are under active investigation. Our laboratory previously showed that HN protects cells from oxidative stress induced cell death and more recently, described the beneficial role of HN on ER stress-induced apoptosis in retinal pigment epithelium cells and the involvement of ER-mitochondrial cross-talk in cellular protection. The protection was achieved, in part, by the restoration of mitochondrial glutathione that was depleted by ER stress. Thus, HN may be a promising candidate for therapy for diseases that involve both oxidative and ER stress. Developing novel approaches for retinal delivery of HN, its analogues as well as small molecular weight ER stress inhibitors would prove to be a valuable approach in the treatment of age-related macular degeneration. PMID:28250736

  8. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity.

    PubMed

    Arruda, Ana Paula; Pers, Benedicte M; Parlakgül, Güneş; Güney, Ekin; Inouye, Karen; Hotamisligil, Gökhan S

    2014-12-01

    Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.