Science.gov

Sample records for endoreversible radiative heat

  1. Endoreversible quantum heat engines in the linear response regime

    NASA Astrophysics Data System (ADS)

    Wang, Honghui; He, Jizhou; Wang, Jianhui

    2017-07-01

    We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.

  2. Optimization of combined endoreversible Carnot heat engines with different objectives

    NASA Astrophysics Data System (ADS)

    Cheng, Xue-Tao; Liang, Xin-Gang

    2015-06-01

    Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engines in this paper. The applicabilities of the entropy generation minimization and entransy theory to the optimizations are discussed. For the discussed cases, only the entransy loss coefficient is always agreeable to the optimization of thermal efficiency. The applicabilities of the other discussed concepts to the optimizations are conditional. Different concepts and principles are needed for different optimization objectives, and the optimization principles have their application preconditions. When the preconditions are not satisfied, the principles may be not applicable. Project supported by the National Natural Science Foundation of China (Grant No. 51376101) and the Science Fund for Creative Research Groups, China (Grant No. 51321002).

  3. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.

    PubMed

    Haseli, Y

    2016-05-01

    The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.

  4. Heat engines at optimal power: Low-dissipation versus endoreversible model

    NASA Astrophysics Data System (ADS)

    Johal, Ramandeep S.

    2017-07-01

    The low-dissipation model and the endoreversible model of heat engines are two of the most commonly studied models of machines in finite-time thermodynamics. In this paper we compare the performance characteristics of these two models under optimal power output. We point out a basic equivalence between them, in the linear response regime.

  5. Optimal Cooling Load and COP Relationship of a Four-Heat-Reservoir Endoreversible Absorption Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Chen, Lingen; Zheng, Tong; Sun, Fengrui; Wu, Chih

    2004-06-01

    On the basis of a four-heat-reservoir endoreversible absorption refrigeration cycle model, another linear heat transfer law [i.e., the heat-flux] is adopted, the fundamental optimal relation between the coefficient of performance (COP) and the cooling load, as well as the maximum cooling load and the corresponding COP of the cycle coupled to constant-temperature heat reservoirs are derived by using finite-time thermodynamics or thermodynamic optimization. The optimal distribution of the heat-transfer surface areas is also obtained. Moreover, the effects of the cycle parameters on the COP and the cooling load of the cycle are studied by detailed numerical examples. The results obtained herein are of importance to the optimal design and performance improvement of an absorption refrigeration cycle.

  6. Optimal Control Framework for Multistage Endoreversible Engines with Heat and Mass Transfer

    NASA Astrophysics Data System (ADS)

    Sieniutycz, S.

    1999-04-01

    We develop a general optimal control framework for a difficult class of problems of work maximization in endoreversible multistage processes which yield mechanical work with finite rates and are characterized by multiple (vectorial) efficiencies. Bellman's method of dynamic programming is used either to construct his recurrence equation or to arrive at a discrete maximum principle of Pontryagin's type, in which a Hamiltonian is maximized with respect to controls. Both these algorithms are powerful computational tools which serve to maximize the power output and evaluate optimal controls. Equations of dynamics which follow from energy and matter balances and transfer equations are difference constraints for optimizing work. Irreversibilities caused by the energy and mass transport are essential. Variation of efficiencies is analyzed in terms of heat and mass fluxes as natural control variables. Enhanced bounds for the work released from an engine system or added to a heat-pump system are evaluated. Lagrangians and Hamiltonians of work functionals and discrete canonical equations are effective; they reach their continuous counterparts in the limit of an infinite number of stages. For a finite-time passage of a resource fluid between two given thermodynamic states, an optimal process is shown to be irreversible. Its optimal intensity is characterized well by the Hamiltonian H. Characteristic functions which describe extremal work are found numerically in terms of final states, process duration and number of stages. An extension of classical exergy to nonisothermal separation systems with a finite number of stages and finite holdup time of the resource fluid is one of the main results. This extended exergy simplifies to the classical thermal exergy in the limit of infinite duration and an infinite number of stages. The extended exergy exhibits a hysteretic property as a decrease of maximum work received from a multistage engine system and an increase of minimum work

  7. On reversible, endoreversible, and irreversible heat device cycles versus the Carnot cycle: a pedagogical approach to account for losses

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ayala, J.; Angulo-Brown, F.; Calvo Hernández, A.; Velasco, S.

    2016-07-01

    In this work we analyze the deviations of reversible cycles (for both heat engines and refrigerators) from the corresponding Carnot cycle operating between the same extreme temperatures, and deviations of irreversible cycles from their corresponding reversible realization while putting emphasis on the corresponding losses. The endoreversible models fit in the proposed framework. Two suitable loss factors, which do not need the explicit calculation of entropy variations, are introduced. The behavior of these factors and their interplay allow for a clear and pedagogical visualization of where external and internal irreversibilities are located, and their intensities in terms of the main variables describing the cycle. The analysis could be used as a starting point for more advanced studies on modeling and optimization of real devices and installations.

  8. An analytical study of the endoreversible Curzon-Ahlborn cycle for a non-linear heat transfer law

    NASA Astrophysics Data System (ADS)

    Páez-Hernández, Ricardo T.; Portillo-Díaz, Pedro; Ladino-Luna, Delfino; Ramírez-Rojas, Alejandro; Pacheco-Paez, Juan C.

    2016-01-01

    In the present article, an endoreversible Curzon-Ahlborn engine is studied by considering a non-linear heat transfer law, particularly the Dulong-Petit heat transfer law, using the `componendo and dividendo' rule as well as a simple differentiation to obtain the Curzon-Ahlborn efficiency as proposed by Agrawal in 2009. This rule is actually a change of variable that simplifies a two-variable problem to a one-variable problem. From elemental calculus, we obtain an analytical expression of efficiency and the power output. The efficiency is given only in terms of the temperatures of the reservoirs, such as both Carnot and Curzon-Ahlborn cycles. We make a comparison between efficiencies measured in real power plants and theoretical values from analytical expressions obtained in this article and others found in literature from several other authors. This comparison shows that the theoretical values of efficiency are close to real efficiency, and in some cases, they are exactly the same. Therefore, we can say that the Agrawal method is good in calculating thermal engine efficiencies approximately.

  9. Chemical reactions in endoreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wagner, Katharina; Hoffmann, Karl Heinz

    2016-01-01

    Endoreversible thermodynamics is a theory for the (approximate) description of thermodynamic non-equilibrium systems, which allows us to capture the ever present irreversibilities of real processes. For instance in heat engines the dissipation due to finite heat transport capabilities, as well as the resulting limitations in the energy fluxes, can be incorporated into the theory. It has thus been very successful in closing the gap between observed and theoretically predicted efficiencies. Here an extension of the theory is provided, with which chemical reactions can be included in the formalism. This opens up a wide field of applications for endoreversible modeling and the investigation of dissipative processes, for instance in fuel cells or batteries.

  10. Local stability analysis of an endoreversible Carnot refrigerator

    NASA Astrophysics Data System (ADS)

    He, Jizhou; Miao, Guiling; Nie, Wenjie

    2010-08-01

    A local stability analysis of an endoreversible Carnot refrigerator, working at the maximum objective function of the product of the cooling rate R and the coefficient of performance ɛ, is presented. The endoreversible Carnot refrigerator consists of a reversible Carnot refrigerator that exchanges heat with the heat reservoirs TH through the thermal conductance α and with the cold reservoirs TL through the thermal conductance β. In addition, the working fluid has the same heat capacity C in the two isothermal branches of the cycle. By linearization and stability analysis, we find that the relaxation times are a function of α, β, the heat capacity C and τ=TL /TH; that the endoreversible Carnot refrigerator is stable for every value of α, β, C and τ that after a perturbation, the system state exponentially decays to the steady state with either of two different relaxation times; that both relaxation times are proportional to α/2C and that one of them is a monotonically increasing function τ and the other is almost independent of τ. Finally, the phase portraits for the trajectories after a small perturbation over the steady-state values of internal temperatures are presented.

  11. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  12. Thermal radiation heat transfer.

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Howell, J. R.

    1972-01-01

    A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.

  13. Ultrafast radiative heat transfer.

    PubMed

    Yu, Renwen; Manjavacas, Alejandro; García de Abajo, F Javier

    2017-02-23

    Light absorption in conducting materials produces heating of their conduction electrons, followed by relaxation into phonons within picoseconds, and subsequent diffusion into the surrounding media over longer timescales. This conventional picture of optical heating is supplemented by radiative cooling, which typically takes place at an even lower pace, only becoming relevant for structures held in vacuum or under extreme thermal isolation. Here, we reveal an ultrafast radiative cooling regime between neighboring plasmon-supporting graphene nanostructures in which noncontact heat transfer becomes a dominant channel. We predict that more than 50% of the electronic heat energy deposited on a graphene disk can be transferred to a neighboring nanoisland within a femtosecond timescale. This phenomenon is facilitated by the combination of low electronic heat capacity and large plasmonic field concentration in doped graphene. Similar effects should occur in other van der Waals materials, thus opening an unexplored avenue toward efficient heat management.Electron relaxation, which is the dominant release channel of electronic heat in nanostructures, occurs with characteristic times of several picoseconds. Here, the authors predict that an ultrafast (femtosecond) radiative cooling regime takes place in plasmonically active neighboring graphene nanodisks prior to electron relaxation.

  14. Loop heat pipe radiator

    SciTech Connect

    Sarraf, D.B.; Gernert, N.J.

    1996-03-01

    This paper describes the design and testing of a Loop Heat Pipe Radiator (LHPR) which was developed as an alternative to state-of-the-art axially-grooved heat pipes for space-based heat rejection which would be usable with tubing made of aluminum foil covered with a carbon-epoxy composite. The LHPR had an aluminum envelope and a polymer wick, and used ammonia as a working fluid. It was 4 meters long with a mass of 1.4 kg. The LHPR transported 500 watts at a 2.3 meter adverse inclination and 1500 watts when horizontal. This non-optimized LHPR had a 3000 watt-meter capability, which is four times greater than an axially-grooved heat pipe of similar power-handling capability and mass. In addition to a higher power handling capability, the LHPR has a much higher capillary margin than axially-grooved pipes. That high capillary margin simplifies ground testing in a 1-g environment by reducing the need for the careful levelling and vibration reduction required by axially-grooved pipes. {copyright} {ital 1996 American Institute of Physics.}

  15. On the optimization of endoreversible processes

    NASA Astrophysics Data System (ADS)

    Pescetti, D.

    2014-03-01

    This paper is intended for undergraduates and specialists in thermodynamics and related areas. We consider and discuss the optimization of endoreversible thermodynamic processes under the condition of maximum work production. Explicit thermodynamic analyses of the solutions are carried out for the Novikov and Agrawal processes. It is shown that the efficiencies at maximum work production and maximum power output are not necessarily equal. They are for the Novikov process but not for the Agrawal process. The role of the constraints is put into evidence. The physical aspects are enhanced by the simplicity of the involved mathematics.

  16. ETA-Graphics—an interface to endoreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Wagner, K.; Hoffmann, K. H.

    2015-03-01

    Endoreversible thermodynamics is a theory for the description of irreversible thermodynamic processes. In this theory a non-equilibrium system is divided into a set of reversible subsystems which interact irreversibly with one another by exchanging energy and extensive quantities. These extensities act as carriers for the energy. ETA-Graphics is a graphics-based interface to endoreversible thermodynamics that can be used as an educational aid. It enables students to visually design endoreversible systems by drawing reversible subsystems and connecting them with irreversible (or reversible) interactions. Through special dialogs users specify the properties of the system, e.g., in form of transport laws for energy and extensive quantities. Based on the input ETA-Graphics allows students to analyse the endoreversible systems and their properties. Therefore, performance measures, i.e., efficiency and total power output, are calculated. Additionally, graphical representations of the results are shown.

  17. Bistability in radiative heat exchange

    NASA Astrophysics Data System (ADS)

    Rudakov, V. I.; Ovcharov, V. V.; Prigara, V. P.

    2008-08-01

    The possibility of a bistable regime in systems with radiative heat exchange is theoretically demonstrated for the first time. The transfer characteristics of a radiation-closed stationary system have been calculated, in which the radiator is a blackbody and the absorber is made of a material with the absorptivity sharply increasing in a certain temperature interval. The radiator and absorber are separated by a vacuum gap. The heat exchange between the system and the environment is controlled by varying the flow rate of a heat-transfer agent cooling the absorber. The output parameter of a bistable system is the absorber temperature, while the input parameter can be either the radiator temperature or the heat-transfer agent flow rate. Depending on the choice of the input parameter, the transfer characteristic of the system is either represented by a usual S-like curve or has an inverted shape.

  18. Heat pipe radiators for space

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1976-01-01

    Analysis of the data heat pipe radiator systems tested in both vacuum and ambient environments was continued. The systems included (1) a feasibility VCHP header heat-pipe panel, (2) the same panel reworked to eliminate the VCHP feature and referred to as the feasibility fluid header panel, and (3) an optimized flight-weight fluid header panel termed the 'prototype.' A description of freeze-thaw thermal vacuum tests conducted on the feasibility VCHP was included. In addition, the results of ambient tests made on the feasibility fluid header are presented, including a comparison with analytical results. A thermal model of a fluid header heat pipe radiator was constructed and a computer program written. The program was used to make a comparison of the VCHP and fluid-header concepts for both single and multiple panel applications. The computer program was also employed for a parametric study, including optimum feeder heat pipe spacing, of the prototype fluid header.

  19. Radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Chapman, K.; Ramadhyani, S.; Ramamurthy, H.; Viskanta, R.

    1989-03-01

    A simple two-dimensional mathematical model was developed to predict the steady state thermal performance and combustion characteristics of a natural gas indirectly fired once-through radiant tube. Different burner geometries were studied and a grid size analysis was performed to determine the optimum grid spacing for each case. The rate of fuel burn-up was correlated using the burner geometry, the equivalence ratio, the fuel firing rate and air preheat temperatures as variables for non-swirling diffusion flames in the radiant tube. The model predictions were also compared with available experimental data for the purpose of validating the model. The transient, zero-dimensional model was used to conduct a detailed parametric study of a directly-fired batch reheating furnace. The parameters that were investigated are the load and refractory emissivities, the air preheat temperature, the heat capacity of the load, and the height of the combustion space. A one-dimensional model of a directly-fired continuous reheating furnace was also developed. A parametric study was completed to examine the effect of the local throughput on the furnace performance.

  20. NEP heat pipe radiators. [Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  1. NEP heat pipe radiators. [Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  2. Heat pipe radiator. [for spacecraft waste heat rejection

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  3. Solid state radiative heat pump

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

  4. Solid state radiative heat pump

    DOEpatents

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  5. Radiative heat transfer in porous uranium dioxide

    SciTech Connect

    Hayes, S.L.

    1992-12-01

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  6. Prototype V-Groove Radiator Heat Shield

    NASA Technical Reports Server (NTRS)

    Petrick, S. Walter; Bard, Steven

    1990-01-01

    Report describes design, fabrication, and testing of heat radiator equipped with multi-V-groove radiator heat shield. Device compact, efficient structure which removes heat from infrared detectors, gamma-ray detectors, and similar instruments aboard Mars Observer spacecraft and radiates heat into outer space. Designed to maintain detector for gamma-ray spectrometer at temperature of 80 K in cold vacuum under heat load of 80 mW. Prototype made of aluminum, though production shields made of aluminized sheets of polyethylene terephthalate.

  7. Dense Plasma Heating and Radiation Generation.

    DTIC Science & Technology

    The investigations under this grant consist of three parts: CO2 laser heating of dense preformed plasmas, interaction of a dense hot plasma with a...small solid pellet, and pulsed power systems and technology. The laser plasma heating experiment has demonstrated both beam guiding by the plasma and...plasma heating by the beam. These results will be useful in heating plasmas for radiation generation. Experiments have shown that the pellet-plasma

  8. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  9. The radiative heating response to climate change

    NASA Astrophysics Data System (ADS)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  10. Radiation heat transfer shapefactors for combustion systems

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Johansson, O.; Abrous, A.

    1987-01-01

    The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.

  11. Heat Radiators for Electromagnetic Pumps

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  12. Heat Radiators for Electromagnetic Pumps

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  13. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  14. Radiative heating rates near the stratospheric fountain

    NASA Technical Reports Server (NTRS)

    Doherty, G. M.; Newell, R. E.; Danielsen, E. F.

    1984-01-01

    Radiative heating rates are computed for various sets of conditions thought to be appropriate to the stratospheric fountain region: with and without a layer of cirrus cloud between 100 and 150 mbar; with standard ozone and with decreased ozone in the lower stratosphere, again with and without the cirrus cloud; and with different temperatures in the tropopause region. The presence of the cloud decreases the radiative cooling below the cloud in the upper troposphere and increases the cooling above it in the lower stratosphere. The cloud is heated at the base and cooled at the top and thus radiatively destabilized; overall it gains energy by radiation. Decreasing ozone above the cloud also tends to cool the lower stratosphere. The net effect is a tendency for vertical convergence and horizontal divergence in the cloud region. High resolution profiles of temperature, ozone, and cloudiness within the fountain region are required in order to assess the final balance of the various processes.

  15. Radiative heating rates during AAOE and AASE

    NASA Astrophysics Data System (ADS)

    Rosenfield, Joan E.

    Radiative transit computations of heating rates utilizing data from the 1987 Airborne Antarctic Ozone Experiment (AAOE) (Tuck et al., 1989) and the 1989 Airborne Arctic Stratospheric Experiment (AASE) (Turco et al., 1990) are described. Observed temperature and ozone profiles and a radiative transfer model are used to compute the heating rates for the Southern Hemisphere during AAOE and the Northern Hemisphere during AASE. The AASE average cooling rates computed inside the vortex are in good agreement with the diabatic cooling rates estimated from the ER-2 profile data for N2O for the AASE period (Schoeberl et al., 1989).

  16. Transfer of radiative heat through clothing ensembles.

    PubMed

    Lotens, W A; Pieters, A M

    1995-06-01

    A mathematical model was designed to calculate the temperature and dry heat transfer in the various layers of a clothing ensemble, and the total heat loss of a human who is irradiated for a certain fraction of his or her area. The clothing ensemble that is irradiated by an external heat source is considered to be composed of underclothing, trapped air, and outer fabric. The model was experimentally tested with heat balance methods, using subjects, varying the activity, wind, and radiation characteristics of the outer garment of two-layer ensembles. In two experiments the subjects could only give off dry heat because they were wrapped in plastic foil. The model appeared to be correct within about 1 degree C (rms error) and 10 Wm-2 (rms error). In a third experiment, sweat evaporation was also taken into account, showing that the resulting physiological heat load of 10 to 30% of the intercepted additional radiation is compensated by additional sweating. The resulting heat strain was rather mild. It is concluded that the mathematical model is a valid tool for the investigation of heat transfer through two-layer ensembles in radiant environments.

  17. Radiation Heating Analysis for Superconducting Undulator

    NASA Astrophysics Data System (ADS)

    Boon, Laura; Harkay, Katherine; Ivanyushenkov, Yury; Shiroyanagi, Yuko

    2014-03-01

    In January 2013 the Advanced Photon Source commissioned a Superconducting Undulator (SCU). The superconducting magnet is thermally isolated from the beam vacuum chamber, which absorbs the beam-induced heating. The cryo-coolers cooling the vacuum chamber can handle 40 W of heating. Throughout the SCU design process calculations were made to determine the radiation heating from an on-axis and off-axis electron beam. Simulation results show that when the electron beam is vertically off-axis radiation heating increases from the on-axis heating of less than 1 W. During user operation beam-position-limiting detectors (BPLD) are used to limit beam motion and keep the radiation heating below 25 W. During machine studies when the BPLD is not armed other measures must be taken to protect the SCU. Presented in this talk will be the comparison between analytical calculations and measured temperature rise on the installed SCU. The measured temperatures have been converted to a power using a finite element model.

  18. Radiation heating in selected NERVA engine components

    NASA Technical Reports Server (NTRS)

    Courtney, J. C.; Hertelendy, N. A.; Lindsey, B. A.

    1972-01-01

    The role of heating from nuclear radiation in design of the NERVA engine is treated. Some components are subjected to very high gamma heating rates in excess of 0.5 Btu/cubic inch/sec in steel in the primary nozzle or 0.25 Btu/cubic inch/sec in aluminum in the pressure vessel. These components must be cooled by a fraction of the liquid hydrogen propellant before it is passed through the core, heated, and expanded out the nozzle as a gas. Other components that are subjected to lower heating rates such as the thrust structure and the disk shield are designed so that they would not require liquid hydrogen cooling. Typical gamma and neutron heating rates, resulting temperatures, and their design consequences are discussed. Calculational techniques used in the nuclear and thermal analyses of the NERVA engine are briefly treated.

  19. Equilibrium radiative heating tables for Earth entry

    NASA Technical Reports Server (NTRS)

    Sutton, Kenneth; Hartung, Lin C.

    1990-01-01

    The recent resurgence of interest in blunt-body atmospheric entry for applications such as aeroassisted orbital transfer and planetary return has engendered a corresponding revival of interest in radiative heating. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. Sutton developed an inviscid, stagnation point, radiation coupled flow field code for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data, and reasonable agreement has been found. To provide information for entry body studies in support of lunar and Mars return scenarios of interest in the 1970's, the code was exercised over a matrix of Earth entry conditions. Recently, this matrix was extended slightly to reflect entry vehicle designs of current interest. Complete results are presented.

  20. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  1. Radiative Heating Methodology for the Huygens Probe

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth

    2007-01-01

    The radiative heating environment for the Huygens probe near peak heating conditions for Titan entry is investigated in this paper. The task of calculating the radiation-coupled flowfield, accounting for non-Boltzmann and non-optically thin radiation, is simplified to a rapid yet accurate calculation. This is achieved by using the viscous-shock layer (VSL) technique for the stagnation-line flowfield calculation and a modified smeared rotational band (SRB) model for the radiation calculation. These two methods provide a computationally efficient alternative to a Navier-Stokes flowfield and line-by-line radiation calculation. The results of the VSL technique are shown to provide an excellent comparison with the Navier-Stokes results of previous studies. It is shown that a conventional SRB approach is inadequate for the partially optically-thick conditions present in the Huygens shock-layer around the peak heating trajectory points. A simple modification is proposed to the SRB model that improves its accuracy in these partially optically-thick conditions. This modified approach, labeled herein as SRBC, is compared throughout this study with a detailed line-by-line (LBL) calculation and is shown to compare within 5% in all cases. The SRBC method requires many orders-of-magnitude less computational time than the LBL method, which makes it ideal for coupling to the flowfield. The application of a collisional-radiative (CR) model for determining the population of the CN electronic states, which govern the radiation for Huygens entry, is discussed and applied. The non-local absorption term in the CR model is formulated in terms of an escape factor, which is then curve-fit with temperature. Although the curve-fit is an approximation, it is shown to compare well with the exact escape factor calculation, which requires a computationally intensive iteration procedure.

  2. Heat pipe radiators for space. [vacuum tests

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1977-01-01

    An optimized flight-weight prototype fluid-header panel (heatpipe radiator system) was tested in a vacuum environment over a wide range of coolant inlet temperatures, coolant flow rates, and environmental absorbed heat fluxes. The maximum performance of the system was determined. Results are compared with earlier data obtained on a smaller fluid-header feasibility panel, and computer predictions. Freeze-thaw tests are described and the change in thaw recovery time due to the addition of a low-freezing point feeder heat pipe is evaluated. Experimental panel fin-temperature distributions are compared with calculated results.

  3. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  4. Convective and radiative heating of a Saturn entry probe

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Szema, K. Y.; Moss, J. N.; Subramanian, S. V.

    1984-01-01

    The extent of convective and radiative heating for a Saturn entry probe is investigated in the absence and presence of ablation mass injection. The flow in the shock layer is assumed to be axisymmetric, viscous and in local thermodynamic equilibrium. The importance of chemical nonequilibrium effects for both the radiative and convective nonblowing surface heating rates is demonstrated for prescribed entry conditions. Results indicate that the nonequilibrium chemistry can significantly influence the rate of radiative heating to the entry probes. With coupled carbon-phenolic ablation injection, the convective heating rates are reduced substantially. Turbulence has little effect on radiative heating but it increases the convective heating considerably.

  5. Physical and Mathematical Modeling of Heat Transfer in Intumescent Thermal Protective Coatings Under Radiative Heating

    NASA Astrophysics Data System (ADS)

    Zverev, V. G.; Goldin, V. D.; Teploukhov, A. V.

    2016-04-01

    Radiative heating of a metal plate protected by an intumescent coating layer has been studied experimentally and theoretically. Special aspects of physical modeling of intumescent coating heating on a test bench for radiative heating are considered. Heat resistance testing of metal structures is justified. A conjugate mathematical model of radiative-conductive heat transfer in an intumesced material layer is proposed. The experimental and calculation data on the metal plate temperature beneath the coating are shown to agree well.

  6. Radiative heat transfer in coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-01-01

    A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.

  7. Radiative heat transfer in coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-09-01

    A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.

  8. Liquid droplet radiators for heat rejection in space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1980-01-01

    A radiator for heat rejection in space is described which utilizes a stream of liquid droplets to radiate waste heat. The large surface area per mass makes the liquid droplet radiator at least an order of magnitude lighter than tube and fin radiators. Generation and collection of the droplets, as well as heat transfer to the liquid, can be achieved with modest extensions of conventional technology. Low vapor pressure liquids are available which cover a radiating temperature range 250-1000 K with negligible evaporation losses. The droplet radiator may be employed for a wide range of heat rejection applications in space. Three applications - heat rejection for a high temperature Rankine cycle, cooling of photovoltaic cells, and low temperature heat rejection for refrigeration in space illustrate the versatility of the radiator.

  9. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  10. Ultra lightweight unfurlable radiator for lunar base heat rejection

    SciTech Connect

    Garner, S.D.; Gernert, N.J. )

    1993-01-10

    A proof-of-concept (POC) ultra lightweight lunar radiator was fabricated and tested. The POC radiator has a specific weight of 5 kg/kW one quarter the specific weight of current ambient temperature space radiators. The significant weight reduction was due to the radiator's unique design. It is a multi-cellular heat pipe radiator utilizing the lunar gravity for condensate return. The innovation of this radiator is the laminated film material used as the heat pipe envelope. By utilizing a flexible, durable, leak tight laminate structure instead of the typical ridge heat pipe envelope, significant weight reductions were achieved. In addition, the resulting radiator is extremely flexible, allowing it to be rolled or folded and compactly stored during transit to the lunar surface. Testing demonstrated that a laminated film heat pipe radiator offers improved performance and significant weight savings over conventional space radiators.

  11. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect

    Merrigan, M.A.; Elder, M.G.; Keddy, E.S.; Sena, J.T.

    1984-08-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance (kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of light weight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  12. Heat pipe technology development for high temperature space radiator applications

    SciTech Connect

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.; Elder, M.G.

    1984-01-01

    Technology requirements for heat pipe radiators, potentially among the lightest weight systems for space power applications, include flexible elements, and improved specific radiator performance(kg/kW). For these applications a flexible heat pipe capable of continuous operation through an angle of 180/sup 0/ has been demonstrated. The effect of bend angle on the heat pipe temperature distribution is reviewed. An analysis of lightweight membrane heat pipe radiators that use surface tension forces for fluid containment has been conducted. The design analysis of these lightweight heat pipes is described and a potential application in heat rejection systems for space nuclear power plants outlined.

  13. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  14. Nonequilibrium Stagnation-Line Radiative Heating for Fire II

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth

    2007-01-01

    This paper presents a detailed analysis of the shock-layer radiative heating to the Fire II vehicle using a new air radiation model and a viscous shock-layer flowfield model. This new air radiation model contains the most up-to-date properties for modeling the atomic-line, atomic photoionization, molecular band, and non-Boltzmann processes. The applied viscous shock-layer flowfield analysis contains the same thermophysical properties and nonequilibrium models as the LAURA Navier-Stokes code. Radiation-flowfield coupling, or radiation cooling, is accounted for in detail in this study. It is shown to reduce the radiative heating by about 30% for the peak radiative heating points, while reducing the convective heating only slightly. A detailed review of past Fire II radiative heating studies is presented. It is observed that the scatter in the radiation predicted by these past studies is mostly a result of the different flowfield chemistry models and the treatment of the electronic state populations. The present predictions provide, on average throughout the trajectory, a better comparison with Fire II flight data than any previous study. The magnitude of the vacuum ultraviolet (VUV) contribution to the radiative flux is estimated from the calorimeter measurements. This is achieved using the radiometer measurements and the predicted convective heating. The VUV radiation predicted by the present model agrees well with the VUV contribution inferred from the Fire II calorimeter measurement, although only when radiation-flowfield coupling is accounted for. This agreement provides evidence that the present model accurately models the VUV radiation, which is shown to contribute significantly to the Fire II radiative heating.

  15. Decomposition of radiation energy into work and heat

    NASA Astrophysics Data System (ADS)

    Yuge, Tatsuro; Yamaguchi, Makoto; Ogawa, Tetsuo

    2017-02-01

    We investigate energy transfer by the radiation from a cavity quantum electrodynamics system in the context of quantum thermodynamics. We propose a method of decomposing it into work and heat within the framework of quantum master equations. We find that the work and heat correspond, respectively, to the coherent and incoherent parts of the radiation. In the derivation of the method, it is crucial to investigate the dynamics of the system that receives the radiation from the cavity.

  16. Application of ray tracing in radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.

    1993-01-01

    This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.

  17. Radiative Heat Transfer During Atmosphere Entry at Parabolic Velocity

    NASA Technical Reports Server (NTRS)

    Yoshikawa, Kenneth K.; Wick, Bradford H.

    1961-01-01

    Stagnation point radiative heating rates for manned vehicles entering the earth's atmosphere at parabolic velocity are presented and compared with corresponding laminar convective heating rates. The calculations were made for both nonlifting and lifting entry trajectories for vehicles of varying nose radius, weight-to-area ratio, and drag. It is concluded from the results presented that radiative heating will be important for the entry conditions considered.

  18. Intense radiative heat transport across a nano-scale gap

    SciTech Connect

    Budaev, Bair V. E-mail: amin.ghafari@berkeley.edu Ghafari, Amin E-mail: amin.ghafari@berkeley.edu Bogy, David B. E-mail: amin.ghafari@berkeley.edu

    2016-04-14

    In this paper, we analyze the radiative heat transport in layered structures. The analysis is based on our prior description of the spectrum of thermally excited waves in systems with a heat flux. The developed method correctly predicts results for all known special cases for both large and closing gaps. Numerical examples demonstrate the applicability of our approach to the calculation of the radiative heat transport coefficient across various layered structures.

  19. User's Manual: Routines for Radiative Heat Transfer and Thermometry

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2016-01-01

    Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.

  20. Development of a shuttle plume radiation heating indicator

    NASA Technical Reports Server (NTRS)

    Reardon, John E.

    1988-01-01

    The primary objectives were to develop a Base Heating Indicator Code and a new plume radiation code for the Space Shuttle. Additional work included: revision of the Space Shuttle plume radiation environment for changes in configuration and correction of errors, evaluation of radiation measurements to establish a plume radiation model for the SRB High Performance Motor (HPM) plume, radiation predictions for preliminary designs, and participation in hydrogen disposal analysis and testing for the VAFB Shuttle launch site. The two most significant accomplishments were the development of the Base Heating Indicator Code and the Shuttle Engine Plume Radiation (SEPRAD) Code. The major efforts in revising the current Shuttle plume radiation environment were for the Orbiter base heat shield and the ET components in the Orbiter-ET interface region. The work performed is summarized in the technical discussion section with references to the documents containing detailed results. The technical discussion is followed by a summary of conclusions and recommendations for future work.

  1. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    NASA Technical Reports Server (NTRS)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  2. Radiative heat transfer in the extreme near field

    NASA Astrophysics Data System (ADS)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M. T. Homer; García-Vidal, Francisco J.; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-01

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4, 5, 6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  3. An aluminum heat sink and radiator for electrophoresis capillaries.

    PubMed

    Rapp, T L; Morris, M D

    1996-12-15

    An aluminum heat sink and radiator are used with forced air cooling of an electrophoresis capillary. Theoretical analyses of the operating limits and heat dissipation characteristics are presented. A system designed for power dissipation as high as 5 W is shown to dissipate heat efficiently and to operate without arcing at voltages higher than 30 kV.

  4. Test of 50-kw heat-pipe radiator.

    NASA Technical Reports Server (NTRS)

    Kikin, G. M.; Peelgren, M. L.

    1971-01-01

    A heat pipe radiator consisting of 100 sodium-filled, 1.91-cm OD, stainless steel heat pipes has been tested at temperatures up to 760 C. This radiator was initially designed to have a heat pipe temperature of 740 C with a central coolant channel temperature of 771 C. The as-fabricated radiator heat pipe temperatures varied from 605 C to 700 C when the central coolant channel average temperature was 740 C. The heat pipes operated at 25 C to 110 C lower-than-expected temperatures, resulting in a 43 kW heat rejection capability vs the 50 kW design goal and the 65 kW ultimate capability of the radiator. The 43 kW heat rejection yields a mass/heat rejection ratio of 0.182 kg/kWt which is good for this early state-of-the-art heat pipe radiator. An end-of-mission life specific weight of 0.154 kg/kW is apparently achievable with improvements in radiator fabrication and brazing techniques.

  5. Features of Afterbody Radiative Heating for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Brandis, Aaron

    2014-01-01

    Radiative heating is identified as a major contributor to afterbody heating for Earth entry capsules at velocities above 10 km/s. Because of rate-limited electron-ion recombination processes, a large fraction of the electronically-excited N and O atoms produced in the high temperature/pressure forebody remain as they expand into the afterbody region, which results in significant afterbody radiation. Large radiative heating sensitivities to electron-impact ionization rates and escape factors are identified. Ablation products from a forebody ablator are shown to increase the afterbody radiation by as much as 40%. The tangent-slab radiation transport approach is shown to over-predict the radiative flux by as much as 40% in the afterbody, therefore making the more computationally expensive ray-tracing approach necessary for accurate radiative flux predictions. For the Stardust entry, the afterbody radiation is predicted to be nearly twice as large as the convective heating during the peak heating phase of the trajectory. Comparisons between simulations and the Stardust Echelle observation measurements, which are shown to be dominated by afterbody emission, indicate agreement within 20% for various N and O lines. Similarly, calorimeter measurements from the Fire II experiment are identified as a source of validation data for afterbody radiation. For the afterbody calorimeter measurement closest to the forebody, which experiences the largest afterbody radiative heating component, the convective heating alone is shown to under-predict the measurement, even for the fullycatalytic assumption. Agreement with the measurements is improved with the addition of afterbody radiation. These comparisons with Stardust and Fire II measurements provide validation that the significant afterbody radiation values proposed in this work are legitimate.

  6. Modeling of Radiative Heat Transfer in an Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter; Wöllenstein, Jürgen

    2017-08-01

    Radiation is an important means of heat transfer inside an electric arc furnace (EAF). To gain insight into the complex processes of heat transfer inside the EAF vessel, not only radiation from the surfaces but also emission and absorption of the gas phase and the dust cloud need to be considered. Furthermore, the radiative heat exchange depends on the geometrical configuration which is continuously changing throughout the process. The present paper introduces a system model of the EAF which takes into account the radiative heat transfer between the surfaces and the participating medium. This is attained by the development of a simplified geometrical model, the use of a weighted-sum-of-gray-gases model, and a simplified consideration of dust radiation. The simulation results were compared with the data of real EAF plants available in literature.

  7. Radiative Heating in the Kinetic Mode of AGN Feedback

    NASA Astrophysics Data System (ADS)

    Xie, Fu-Guo; Yuan, Feng; Ho, Luis C.

    2017-07-01

    AGN feedback is now widely believed to play a crucial role in the co-evolution between the central black hole and its host galaxy. Two feedback modes have been identified, namely the radiative and kinetic modes, which correspond to the luminous AGNs and low-luminosity AGNs (LLAGNs), respectively. In this paper, we investigate the radiative heating in the kinetic mode. This process is potentially important because (1) the radiation power of LLAGNs is higher than the jet power over a wide parameter range, (2) the spectral energy distribution of LLAGNs is such that the radiative heating is more effective compared to that of luminous AGNs with the same luminosity, and (3) most of the time in the lifecycle of an AGN is spent in the LLAGNs phase. In this paper, adopting the characteristic broadband spectral energy distributions of LLAGNs, we calculate the value of “Compton temperature” ({T}{{C}}), which determines the radiative heating by Compton scattering. We find that {T}{{C}}∼ (5{--}15)× {10}7 {{K}}, depending on the spectrum of individual LLAGNs and at which distance from the black hole we evaluate the heating. We also compare this heating process with other radiative heating and cooling processes such as photoionization/recombination. Our result can be used for an accurate calculation of the radiative heating in the study of AGN feedback.

  8. A Freezable Heat Exchanger for Space Suit Radiator Systems

    NASA Technical Reports Server (NTRS)

    Nabity, James A.; Mason, Georgia R.; Copeland, Robert J.; Trevino, Luis a.

    2008-01-01

    During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut s metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus highly reliable. Past freezable radiators have been too heavy, but the weight can be greatly reduced by placing a small and freeze tolerant heat exchanger between the astronaut and radiator, instead of making the very large radiator freeze tolerant. Therefore, the key technological innovation to improve space suit radiator performance was the development of a lightweight and freezable heat exchanger that accommodates the variable heat load generated by the astronaut. Herein, we present the heat transfer performance of a newly designed heat exchanger that endured several freeze / thaw cycles without any apparent damage. The heat exchanger was also able to continuously turn down or turn up the heat rejection to follow the variable load.

  9. INTERACTION OF LASER RADIATION WITH MATTER: Estimates of phase-transition heats in steels and ceramics heated by laser radiation

    NASA Astrophysics Data System (ADS)

    Tsar'kova, O. G.; Garnov, Sergei V.

    2003-08-01

    Measurements of the high-temperature dependences of the heat capacity of solids heated by high-power laser radiation and the model of formation of structural point defects (vacancies) are used to estimate the heats of sublimation, evaporation and melting, as well as enthalpy of phase transformations for modern processing of steels and ceramics.

  10. Potassium Rankine cycle vapor chamber (heat pipe) radiator study

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.

    1971-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design. A comparison shows the conduction fin radiator easier to fabricate, but heavier in weight, particularly as meteoroid protection requirements become more stringent. While the analysis was performed assuming the potassium Rankine cycle powerplant, the results are equally applicable to any system radiating heat to space in the 900 to 1400 F temperature range.

  11. Reflectivity of heatproof materials under radiative-convective heating

    NASA Astrophysics Data System (ADS)

    Frolov, G. A.; Pasichnyi, V. V.; Dverniakov, V. S.; Isaev, K. B.

    1982-05-01

    Data on the surface temperature and spectral emissivity factor under convective and combined radiative-convective heating are presented for various heatproof materials including asbestos, glass ceramics, carbon plastics, and Teflon. It is shown that under combined heating, the surface temperature is determined by the predominant heat flux component. A simple method, which involves illumination of the heated surface with an additional light source, is proposed for measuring the surface temperature and reflectivity of heatproof materials.

  12. Long titanium heat pipes for high-temperature space radiators

    SciTech Connect

    Girrens, S.P.; Ernst, D.M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D-shaped cross-section container configuration. A prototype titanium heat pipe, 5.5-m long, has been fabricated and tested in space-simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  13. Long titanium heat pipes for high-temperature space radiators

    NASA Technical Reports Server (NTRS)

    Girrens, S. P.; Ernst, D. M.

    1982-01-01

    Titanium heat pipes are being developed to provide light weight, reliable heat rejection devices as an alternate radiator design for the Space Reactor Power System (SP-100). The radiator design includes 360 heat pipes, each of which is 5.2 m long and dissipates 3 kW of power at 775 K. The radiator heat pipes use potassium as the working fluid, have two screen arteries for fluid return, a roughened surface distributive wicking system, and a D shaped cross section container configuration. A prototype titanium heat pipe, 5.5 m long, was fabricated and tested in space simulating conditions. Results from startup and isothermal operation tests are presented. These results are also compared to theoretical performance predictions that were used to design the heat pipe initially.

  14. Design and Modeling of a Variable Heat Rejection Radiator

    NASA Technical Reports Server (NTRS)

    Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan

    2011-01-01

    Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads

  15. Deployable radiators for waste heat dissipation from Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Dietz, J. B.; Leach, J. W.

    1976-01-01

    Thermal control of Shuttle instruments will require the use of a pumped fluid space radiator system to reject large quantities of waste heat. Many payloads, however, will have insufficient vehicle surface area available for radiators to reject this waste heat and will, therefore, require the use of deployed panels. It is desirable to utilize modularized, deployable radiator systems which have a high degree of configuration and component commonality to minimize the design, development, and fabrication costs. Prototypes of two radiator systems which meet these criteria are currently under development for Shuttle payload utilization: a 'rigid' radiator system which utilizes aluminum honeycomb panels of the Shuttle Orbiter configuration that are deployed by an Apollo Telescope Mount type scissors mechanism; and two 'flexible' radiator systems which use panels constructed from flexible metal/dielectric composite materials that are deployed by 'unrolling' or 'extending' in orbit. Detailed descriptions of these deployable radiator systems, along with design and performance features, are presented.

  16. High Temperature Titanium-Water Heat Pipe Radiator

    NASA Astrophysics Data System (ADS)

    Anderson, William G.; Bonner, Richard; Hartenstine, John; Barth, Jim

    2006-01-01

    Space nuclear systems require large area radiators to reject the unconverted heat to space. System optimizations with Brayton cycles lead to radiators with radiator temperatures in the 400 to 550 K range. To date, nearly all space radiator systems have used aluminum/ammonia heat pipes but these components cannot function at the required temperatures. A Graphite Fiber Reinforced Composites (GFRC) radiator with high temperature water heat pipes is currently under development. High temperature GFRC materials have been selected, and will be tested for thermal conductivity and structural properties. Titanium/water and Titanium/Monel heat pipes have been successfully operated at temperatures up to 550 K. Titanium was selected as the baseline envelope material, due to its lower mass and previous experience with bonding titanium into honeycomb panels. Heat pipes were fabricated with a number of different wick designs, including slab and grooved wicks. Since titanium cannot be extruded, the grooves are being fabricated in sintered titanium powder. The paper reports on the radiator design, materials selection, heat pipe to fin bonding, heat pipe design, and experimental results.

  17. Heat pipe radiation cooling of advanced hypersonic propulsion system components

    NASA Technical Reports Server (NTRS)

    Martin, R. A.; Keddy, M.; Merrigan, M. A.; Silverstein, C. C.

    1991-01-01

    Heat transfer, heat pipe, and system studies were performed to assess the newly proposed heat pipe radiation cooling (HPRC) concept. With an HPRC system, heat is removed from the ramburner and nozzle of a hypersonic aircraft engine by a surrounding, high-temperature, heat pipe nacelle structure, transported to nearby external surfaces, and rejected to the environment by thermal radiation. With HPRC, the Mach number range available for using hydrocarbon fuels for aircraft operation extends into the Mach 4 to Mach 6 range, up from the current limit of about Mach 4. Heat transfer studies using a newly developed HPRC computer code determine cooling system and ramburner and nozzle temperatures, heat loads, and weights for a representative combined-cycle engine cruising at Mach 5 at 80,000 ft altitude. Heat pipe heat transport calculations, using the Los Alamos code HTPIPE, reveal that adequate heat trasport capability is available using molybdenum-lithium heat pipe technology. Results show that the HPRC system radiator area is limited in size to the ramburner-nozzle region of the engine nacelle; reasonable system weights are expected; hot section temperatures are consistent with advanced structural materials development goals; and system impact on engine performance is minimal.

  18. Design of horizontal fin array for radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Ali, Mutari Hajara; Shuaibu, Bilyaminu

    2017-08-01

    This paper presents the analytical and simulation results of optimizing the radiative heat transfer performance of horizontal rectangular fin array heat sink. The fin thickness and inter-fin spacing need to be properly designed to eliminate surface area changes accompanying the creation of fin structures. Analytical expression for this change in area is developed in this work and used in identifying the optimum number of fins and their corresponding inter-fin spacing for a given rectangular space of a radiative heat sink. COMSOL Multiphysics software is used to simulate the structures considered in the above analysis. The performances of the simulated structures as radiative heat sinks are compared with the ones suggested by the developed empirical equation. The results from the two methods agreed with each successfully in the sense that the structures with large numerical radiative power from the simulations are found to also be the optimum structures suggested by the analytical formula derived in this work.

  19. Radiative heat transfer in low-dimensional systems -- microscopic mode

    NASA Astrophysics Data System (ADS)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  20. Analysis of the thermal performance of heat pipe radiators

    NASA Technical Reports Server (NTRS)

    Boo, J. H.; Hartley, J. G.

    1990-01-01

    A comprehensive mathematical model and computational methodology are presented to obtain numerical solutions for the transient behavior of a heat pipe radiator in a space environment. The modeling is focused on a typical radiator panel having a long heat pipe at the center and two extended surfaces attached to opposing sides of the heat pipe shell in the condenser section. In the set of governing equations developed for the model, each region of the heat pipe - shell, liquid, and vapor - is thermally lumped to the extent possible, while the fin is lumped only in the direction normal to its surface. Convection is considered to be the only significant heat transfer mode in the vapor, and the evaporation and condensation velocity at the liquid-vapor interface is calculated from kinetic theory. A finite-difference numerical technique is used to predict the transient behavior of the entire radiator in response to changing loads.

  1. Theory of heat transfer and hydraulic resistance of oil radiators

    NASA Technical Reports Server (NTRS)

    Mariamov, N B

    1942-01-01

    In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.

  2. Relationships between outgoing longwave radiation and diabatic heating in reanalyses

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Randel, William J.; Fu, Rong

    2016-12-01

    This study investigates relationships between daily variability in National Oceanographic and Atmospheric Administration (NOAA) outgoing longwave radiation (OLR), as a proxy for deep convection, and the global diabatic heat budget derived from reanalysis data sets. Results are evaluated based on data from ECMWF Reanalysis (ERA-Interim), Japanese 55-year Reanalysis (JRA-55) and Modern-Era Retrospective Analysis for Research and Applications (MERRA2). The diabatic heating is separated into components linked to `physics' (mainly latent heat fluxes), plus longwave (LW) and shortwave (SW) radiative tendencies. Transient variability in deep convection is highly correlated with diabatic heating throughout the troposphere and stratosphere. Correlation patterns and composite analyses show that enhanced deep convection (lower OLR) is linked to amplified heating in the tropical troposphere and in the mid-latitude storm tracks, tied to latent heat release. Enhanced convection is also linked to radiative cooling in the lower stratosphere, due to weaker upwelling LW from lower altitudes. Enhanced transient deep convection increases LW and decreases SW radiation in the lower troposphere, with opposite effects in the mid to upper troposphere. The compensating effects in LW and SW radiation are largely linked to variations in cloud fraction and water content (vapor, liquid and ice). These radiative balances in reanalyses are in agreement with idealized calculations using a column radiative transfer model. The overall relationships between OLR and diabatic heating are robust among the different reanalyses, although there are differences in radiative tendencies in the tropics due to large differences of cloud water and ice content among the reanalyses. These calculations provide a simple statistical method to quantify variations in diabatic heating linked to transient deep convection in the climate system.

  3. Modeling of radiative - conductive heat transfer in compositing materials

    NASA Astrophysics Data System (ADS)

    Luchnikov, P. A.; Nefedov, V. I.; Trefilov, N. A.; Dementiev, A. N.; Surzhikov, A. P.

    2017-01-01

    A layer of composite material is investigated, which is heated one-sidedly with one-dimensional energy transfer accounting for thermal conductivity and radiation. A mathematical model is suggested for non-stationary coefficient thermophysical problem under radiative-conductive heat transfer in a material layer. Temperature dependencies of thermal capacity and thermal conductivity coefficient of composite radio-transparent material have been determined through numerical modeling by solving the coefficient reverse problem of thermal conductivity.

  4. Heat transfer augmentation of a car radiator using nanofluids

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.

    2014-05-01

    The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.

  5. Heat pipe radiation cooling evaluation: Task 2 concept studies report

    SciTech Connect

    Silverstein, C.C.

    1991-10-01

    This report presents the result of Task 2, Concept Studies for Heat Pipe Radiation Cooling (HPRC), which was performed for Los Alamos National Laboratory under Contract 9-XT1-U9567. Studies under a prior contract defined a reference HPRC conceptual design for hypersonic aircraft engines operating at Mach 5 and an altitude of 80,000 ft. Task 2 involves the further investigation of heat pipe radiation cooling (HPRC) systems for additional design and operating conditions.

  6. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    NASA Astrophysics Data System (ADS)

    Hanuszkiewicz-Drapała, Małgorzata; Bury, Tomasz; Widziewicz, Katarzyna

    2016-03-01

    A cross-flow, tube and fin heat exchanger of the water - air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  7. Ionospheric heating for radiation belt control

    NASA Astrophysics Data System (ADS)

    Burke, William J.; Villalon, Elena

    1990-10-01

    Pitch-angle scattering interactions of electromagnetic waves in the ELF/VLF bands with trapped electrons describe the dynamics of the freshly filled radiation belts flux tubes. The natural existence of a 'slot' region with electron fluxes below the Kennel-Petschek limit requires non-local wave sources. A set of planned, active experiments is described in which VLF radiation is injected from ground and space band transmitters in conjunction with the Combined Release and Radiation Effects Satellite in the radiation belts. These experiments can measure the intensity if waves driving pitch-angle diffusion and the electron energies in gyroresonance with the waves.

  8. High-Absorptance Radiative Heat Sink

    NASA Technical Reports Server (NTRS)

    Cafferty, T.

    1983-01-01

    Absorptance of black-painted open-cell aluminum honeycomb improved by cutting honeycomb at angle or bias rather than straight across. This ensures honeycomb cavities escapes. At each reflection radiation attenuated by absorption. Applications include space-background simulators, space radiators, solar absorbers, and passive coolers for terrestrial use.

  9. Vibroacoustic Analysis of Large Heat Rejection Radiators for Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Larko, Jeffrey M.; McNelis, Mark E.; Hughes, William O.

    2006-01-01

    Spacecraft structures such as antennas, solar arrays and radiator panels significantly respond to high acoustic levels seen at lift-off. Some future spacecraft may utilize nuclear electric propulsion that require large radiator panels to reject waste heat. A vibroacoustic assessment was performed for two different radiator panel designs. Results from the analysis of the two designs using different analytical approaches are presented and discussed.

  10. Stagnation Point Radiative Heating Relations for Venus Entry

    NASA Technical Reports Server (NTRS)

    Tauber, Michael E.; Palmer, Grant E.; Prabhu, Dinesh K.

    2012-01-01

    Improved analytic expressions for calculating the stagnation point radiative heating during entry into the atmosphere of Venus have been developed. These analytic expressions can be incorporated into entry trajectory simulation codes. Together with analytical expressions for convective heating at the stagnation point, the time-integrated total heat load at the stagnation point is used in determining the thickness of protective material required, and hence the mass of the fore body heatshield of uniform thickness.

  11. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  12. Selective radiative heating of nanostructures using hyperbolic metamaterials

    DOE PAGES

    Ding, Ding; Minnich, Austin J

    2015-01-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  13. Selective radiative heating of nanostructures using hyperbolic metamaterials

    SciTech Connect

    Ding, Ding; Minnich, Austin J

    2015-01-01

    Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

  14. Radiative heat transfer as a Landauer-Büttiker problem

    NASA Astrophysics Data System (ADS)

    Yap, Han Hoe; Wang, Jian-Sheng

    2017-01-01

    We study the radiative heat transfer between two semi-infinite half-spaces, bounded by conductive surfaces in contact with vacuum. This setup is interpreted as a four-terminal mesoscopic transport problem. The slabs and interfaces are viewed as bosonic reservoirs, coupled perfectly to a scattering center consisting of the two planes and vacuum. Using Rytov's fluctuational electrodynamics and assuming Kirchhoff's circuital law, we calculate the heat flow in each bath. This allows for explicit evaluation of a conductance matrix, from which one readily verifies Büttiker symmetry. Thus, radiative heat transfer in layered media with conductive interfaces becomes a Landauer-Büttiker transport problem.

  15. Backshell Radiative Heating on Human-Scale Mars Entry Vehicles

    NASA Technical Reports Server (NTRS)

    West,Thomas K., IV; Theisinger, John E.; Brune, Andrew J.; Johnston, Christopher O.

    2017-01-01

    This work quantifies the backshell radiative heating experienced by payloads on human- scale vehicles entering the Martian atmosphere. Three underlying configurations were studied: a generic sphere, a sphere-cone forebody with a cylindrical payload, and an ellipsled. Computational fluid dynamics simulations of the flow field and radiation were performed using the LAURA and HARA codes, respectively. Results of this work indicated the primary contributor to radiative heating is emission from the CO2 IR band system. Furthermore, the backshell radiation component of heating can persist lower than 2 km/s during entry and descent. For the sphere-cone configuration a peak heat flux of about 3.5 W/cm(exp. 2) was observed at the payload juncture during entry. At similar conditions, the ellipsled geometry experienced about 1.25 W/cm(exp. 2) on the backshell, but as much as 8 W/cm(exp. 2) on the base at very high angle of attack. Overall, this study sheds light on the potential magnitudes of backshell radiative heating that various configurations may experience. These results may serve as a starting point for thermal protection system design or configuration changes necessary to accommodate thermal radiation levels.

  16. Radiative heat transfer estimation in pipes with various wall emissivities

    NASA Astrophysics Data System (ADS)

    Robin, Langebach; Christoph, Haberstroh

    2017-02-01

    Radiative heat transfer is usually of substantial importance in cryogenics when systems are designed and thermal budgeting is carried out. However, the contribution of pipes is commonly assumed to be comparably low since the warm and cold ends as well as their cross section are fairly small. Nevertheless, for a first assessment of each pipe rough estimates are always appreciated. In order to estimate the radiative heat transfer with traditional “paper and pencil“ methods there is only one analytical case available in literature - the case of plane-parallel plates. This case can only be used to calculate the theoretical lower and the upper asymptotic values of the radiative heat transfer, since pipe wall radiation properties are not taken into account. For this paper we investigated the radiative heat transfer estimation in pipes with various wall emissivities with the help of numerical simulations. Out of a number of calculation series we could gain an empirical extension for the used approach of plane-parallel plates. The model equation can be used to carry out enhanced paper and pencil estimations for the radiative heat transfer through pipes without demanding numerical simulations.

  17. Nonequilibrium radiative heating of a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Subramanian, S. V.

    1979-01-01

    The influence of nonlocal thermodynamic equilibrium (NLTE) radiative transfer on radiative and convective heating of a Jovian entry body is investigated. The flow in the shock layer is assumed to be axisymmetric, viscous, and in chemical equilibrium. The chemical species considered for the collisional deactivation processes are H2, H, H+. The NLTE radiative transfer equations are derived for multilevel energy transitions. The rotational and vibrational energy modes are assumed to be in local thermodynamic equilibrium. The results indicate that higher-level energy transitions have little influence on the overall NLTE results. The NLTE results, however, are found to be greatly influenced by the temperature distributions in the shock layer. The convective and radiative heating to the entry body are reduced significantly because of the NLTE conditions; the reduction in convective heating, however, is relatively small. The influence of NLTE is found to be greater at higher entry altitudes.

  18. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  19. Radiative heating of thin Al foils by intense extreme ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Grabovski, E. V.; Sasorov, P. V.; Shevelko, A. P.; Aleksandrov, V. V.; Andreev, S. N.; Basko, M. M.; Branitski, A. V.; Gritsuk, A. N.; Volkov, G. S.; Laukhin, Ya. N.; Mitrofanov, K. N.; Novikov, V. G.; Oleinik, G. M.; Samokhin, A. A.; Smirnov, V. P.; Tolstikhina, I. Yu.; Frolov, I. N.; Yakushev, O. F.

    2016-03-01

    The effect of induced transparency of thin Al foils radiatively heated by intense extreme ultraviolet (EVU) radiation has been observed. The radiation of the plasma of Z-pinches appearing under the compression of tungsten liners at the Angara-5-1 facility has been used as the radiation that heats the Al foil (peak illumination on the foil ~0.55 TW/cm2) and is transmitted through it. The photoabsorption has been studied in the formed aluminum plasma at temperatures of ~10-30 eV in the density range of ~1-20 mg/cm3 in the wavelength range of ~5-24 nm. Absorption lines of Al4+...7+ ions have been identified in the experimental spectrum. In addition, radiative gas-dynamic simulations of the foil heating and expansion have been performed taking into account radiation transfer processes.

  20. The Influence of Ablation on Radiative Heating for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Gnoffo, Peter A.; Sutton, Kenneth

    2008-01-01

    Using the coupled ablation and radiation capability recently included in the LAURA flowfield solver, this paper investigates the influence of ablation on the shock-layer radiative heating for Earth entry. The extension of the HARA radiation model, which provides the radiation predictions in LAURA, to treat a gas consisting of the elements C, H, O, and N is discussed. It is shown that the absorption coefficient of air is increased with the introduction of the C and H elements. A simplified shock layer model is studied to show the impact of temperature, as well as the abundance of C and H, on the net absorption or emission from an ablation contaminated boundary layer. It is found that the ablation species reduce the radiative flux in the vacuum ultraviolet, through increased absorption, for all temperatures. However, in the infrared region of the spectrum, the ablation species increase the radiative flux, through strong emission, for temperatures above 3,000 K. Thus, depending on the temperature and abundance of ablation species, the contaminated boundary layer may either provide a net increase or decrease in the radiative flux reaching the wall. To assess the validity of the coupled ablation and radiation LAURA analysis, a previously analyzed Mars-return case (15.24 km/s), which contains significant ablation and radiation coupling, is studied. Exceptional agreement with previous viscous shock-layer results is obtained. A 40% decrease in the radiative flux is predicted for ablation rates equal to 20% of the free-stream mass flux. The Apollo 4 peak-heating case (10.24 km/s) is also studied. For ablation rates up to 3.4% of the free-stream mass flux, the radiative heating is reduced by up to 19%, while the convective heating is reduced by up to 87%. Good agreement with the Apollo 4 radiometer data is obtained by considering absorption in the radiometer cavity. For both the Mars return and the Apollo 4 cases, coupled radiation alone is found to reduce the radiative

  1. Solar-Radiation Heating Effects on 3200 Phaethon

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Katsuhito; Nakato, Aiko; Nakamura, Tomoki; Kinoshita, Daisuke; Ito, Takashi; Yoshikawa, Makoto; Hasegawa, Sunao

    2009-12-01

    Apollo-type near-Earth asteroid 3200 Phaethon, having a small perihelion distance of q ˜ 0.14 AU, is classified as F- or B-type, one of subclasses among the C-complex (C-, G-, B-, and F-types) asteroids. The F/B-type asteroids and dehydrated CI and CM carbonaceous chondrites, which are regarded as being linked to each other, underwent a thermal history of high-temperature heatings at more than hundreds of degrees and dehydration for a certain period of time after aqueous alteration in their parent bodies. However, their primary heating mechanism and its timing are less certain and still controversial. We have investigated solar-radiation heating effects on Phaethon at the present planetary-epoch. As a consequence, we have found that the effects on Phaethon, if it is still hydrated, might indeed be a likely candidate for the primary metamorphic heat source. We also found that solar-radiation heating on Phaethon is a function of the latitude, since Phaethon has a highly tilted polar axis. Thus, the northern hemisphere would be selectively more heated than the southern hemisphere. Therefore, we hypothesized that the northern hemisphere, especially the north pole-northern midlatitude region, would be more thermally metamorphosed and dehydrated, if solar-radiation heating is the primary metamorphic heat source of Phaethon. This may provide the latitude-dependent color variations on Phaethon's surface, although this has not been proven by the existing Phaethon's spectral data.

  2. Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.

  3. Deployable radiators for waste heat dissipation from Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Cox, R. L.; Dietz, J. B.; Leach, J. W.

    1976-01-01

    Prototypes of two types of modularized, deployable radiator systems with a high degree of configuration and component commonality to minimize design, development and fabrication costs are currently under development for Shuttle payloads with high waste heat: a rigid radiator system which utilizes aluminum honeycomb panels that are deployed by a scissors mechanism; and two 'flexible' radiator systems which use panels constructed from flexible metal/dielectric composite materials that are deployed by 'unrolling' or 'extending' in orbit. Detail descriptions of these deployable radiator systems along with design and performance features are presented.

  4. Dust Heating by Ultraviolet Accretion Disk Radiation

    NASA Astrophysics Data System (ADS)

    Lagua, R. O.; Viegas-Aldrovandi, S. M.

    1987-05-01

    ABSTRACT. Since the first observations, the continuum of active galactic nuclei have been represented by a power law (F ). Recently, infrared and ultraviolet observations lead to the of thermal com ponents at these ranges. The Seyfert 2 galaxies show an ultraviolet excess at 10 -2O associated to thermal emission by heated dust (Neugebauer 1978, hq , 17, 149; Neugebauer, Becklin, Oke, and Searle, 1976, Ap. J., 205, 29). The extrapolation of the optical law does not provide enough ioni zing photons neither the necessary ultraviolet luminosity that explains dust heating. In this paper, we analyze the contribution of an ultraviolet accretion disk component (Malkan and Sargent 1982, Ap. J., 254, 22 (Paper I); 1983, Ap. 5., 268, 582) added to the non thermal continuum explaining the observational values of H luminosity, the intensity ratio ( /H ) and the infrared luminosity associated to thermal emission of dust grains heated by the central source. oit : GALAXIES-ACTIVE

  5. Dynamic ignition regime of condensed system by radiate heat flux

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. A.; Zolotorev, N. N.; Korotkikh, A. G.; Kuznetsov, V. T.

    2017-05-01

    The main ignition characteristics of high-energy materials are the ignition time and critical heat flux allowing evaluation of the critical conditions for ignition, fire and explosive safety for the test solid propellants. The ignition process is typically studied in stationary conditions of heat input at constant temperature of the heating surface, environment or the radiate heat flux on the sample surface. In real conditions, ignition is usually effected at variable time-dependent values of the heat flux. In this case, the heated layer is formed on the sample surface in dynamic conditions and significantly depends on the heat flux change, i.e. increasing or decreasing falling heat flux in the reaction period of the propellant sample. This paper presents a method for measuring the ignition characteristics of a high-energy material sample in initiation of the dynamic radiant heat flux, which includes the measurement of the ignition time when exposed to a sample time varying radiant heat flux given intensity. In case of pyroxyline containing 1 wt. % of soot, it is shown that the ignition times are reduced by 20-50 % depending on the initial value of the radiant flux density in initiation by increasing or decreasing radiant heat flux compared with the stationary conditions of heat supply in the same ambient conditions.

  6. Radiation Heat Transfer Procedures for Space-Related Applications

    NASA Technical Reports Server (NTRS)

    Chai, John C.

    2000-01-01

    Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.

  7. The longwave radiative heat transfer of the building envelopes

    NASA Astrophysics Data System (ADS)

    Nowak, H.

    The longwave radiative heat transfer between outside surface of the building envelopes and the thermal environment, is treated in this paper as interesting from the point of view of the studies of the influence of the atmospheric counterradiation on the heat balance of low-sloped roofs and walls. This influence may be taken into account by means of introducing a correction that would lower outside air temperature values. This paper presents the way of calculating this correction (temperature depression) as well as the factors influencing its values. The paper submits also quantitative analysis of the influence of the longwave atmospheric radiation upon the net radiative heat loss of the low-sloped roofs and walls as a function: the thermal resistance of the building partitions, the emissivity of their outside surfaces, wind speed, the sky, the outdoor and the indoor air temperature values.

  8. Evaluation of three different radiative transfer equation solvers for combined conduction and radiation heat transfer

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2016-11-01

    This work investigates the performance of P1 method, FVM and SP3 method for 2D combined conduction and radiation heat transfer problem. Results based on the Monte Carlo method coupled with the energy equation are used as the benchmark solutions. Effects of the conduction-radiation parameter and optical thickness are considered. Performance analyses in term of the accuracy of heat flux and temperature predictions and of computing time are presented and analyzed.

  9. Degradation of elastomer by heat and/or radiation

    NASA Astrophysics Data System (ADS)

    Ito, Masayuki

    2007-12-01

    This article studied various problems on the degradation of elastomers by heat and/or radiation. Three kinds of elastomers were irradiated and evaluated by the radiation resistant property using the measurement of tensile test. The fluorine containing elastomer, which has excellent heat resistant properties, was found to be less durable for irradiation than ethylene-propylene-diene (EPDM) elastomer. Ten kinds of different compounding formulas of EPDM were prepared to investigate whether the compounding for heat resistant has durability for irradiation. The thermal exposure was performed in an air oven. The duration of thermal exposure at 140 °C was 384 h. The irradiation condition was 5.0 kGy/h at 70 °C, and the total dose was 0.9 MGy. Elongation retained was taken for the evaluation of the stability. It was found that the formulas for improving the thermal stability did not bring radiation resistant of samples in the experiment. The rate constant of the increase in C dbnd O concentration by heat and radiation was measured and defined as kc( h) and kc( r), respectively. The rate constant of that under the combined addition of the heat and the radiation is expressed as kc( h + r). Eq. (1) was obtained by the experiment and it was found that there is a synergistic relationship between heat and radiation on the increase in C dbnd O concentration kc(h+r)>kc(h)+k(r). Similar relationship was observed on the rate of decrease in ultimate elongation of a certain EPDM.

  10. Heat Transfer by Radiation from Flames

    DTIC Science & Technology

    1956-01-01

    the radiating characteristics sBurner " n of the flame. Only two series of these tests B have been made. -Pulley The factorial method of planning the...organization of the work, the made whereby the industries of those countries experimental facilities, the methods of research, were enabled to contribute...account of the objectives, method of operation, or of the results has been Great Britain: 0. A. Saunders, Professor, published in the United States

  11. Equilibrium radiative heating tables for aerobraking in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Sutton, Kenneth; Brauns, Frank

    1990-01-01

    Studies currently underway for Mars missions often envision the use of aerobraking for orbital capture at Mars. These missions generally involve blunt-nosed vehicles to dissipate the excess energy of the interplanetary transfer. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. In addition, the Martian atmosphere contains CO2, whose dissociation products are known to include strong radiators. An inviscid, equilibrium, stagnation point, radiation-coupled flow-field code has been developed for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data for air, and reasonable agreement has been found. In the present work, the method was applied to a matrix of conditions in the Martian atmosphere. These conditions encompass most trajectories of interest for Mars exploration spacecraft. The predicted equilibrium radiative heating to the stagnation point of the vehicle is presented.

  12. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  13. Meteoroid Protection Methods for Spacecraft Radiators Using Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ernst, D. M.

    1979-01-01

    Various aspects of achieving a low mass heat pipe radiator for the nuclear electric propulsion spacecraft were studied. Specific emphasis was placed on a concept applicable to a closed Brayton cycle power sub-system. Three aspects of inter-related problems were examined: (1) the armor for meteoroid protection, (2) emissivity of the radiator surface, and (3) the heat pipe itself. The study revealed several alternatives for the achievement of the stated goal, but a final recommendation for the best design requires further investigation.

  14. Computation of Radiation Heat Transfer in Aeroengine Combustors

    NASA Technical Reports Server (NTRS)

    Patankar, S. V.

    1996-01-01

    In this report the highlights of the research completed for the NASA are summarized. This research has been completed in the form of two Ph.D. theses by Chai (1994) and Parthasarathy (1996). Readers are referred to these theses for a complete details of the work and lists of references. In the following sections, first objectives of this research are introduced, then the finite-volume method for radiation heat transfer is described, and finally computations of radiative heat transfer in non-gray participating media is presented.

  15. Radiative heat transfer analysis in modern rocket combustion chambers

    NASA Astrophysics Data System (ADS)

    Goebel, Florian; Kniesner, Björn; Frey, Manuel; Knab, Oliver; Mundt, Christian

    2014-06-01

    Radiative heat transfer is analyzed for subscale and fullscale rocket combustion chambers for H2/O2 and CH4/O2 combustion using the P1 radiation transport model in combination with various Weighted Sum of Gray Gases Models (WSGGMs). The influence of different wall emissivities, as well as the results using different WSGGMs, the size of the combustion chamber and the coupling of radiation and fluid dynamics, is investigated. Using rather simple WSGGMs for homogeneous systems yields similar results as using sophisticated models. With models for nonhomogeneous systems the radiative wall heat flux (RWHF) decreases by 25-30 % for H2/O2 combustion and by almost 50 % for CH4/O2 combustion. Enlarging the volume of the combustion chamber increases the RWHF. The influence of radiation on the flow field is found to be negligible. The local ratio of RWHF to total wall heat flux shows a maximum of 9-10 % for H2/O2 and 8 % for CH4/O2 combustion. The integrated heat load ratio is around 3 % for H2/O2 and 2.5 % for CH4/O2 combustion. With WSGGMs for nonhomogeneous systems, the local ratio decreases to 5 % (H2/O2) and 3 % (CH4/O2) while the integrated ratio is only 2 % (H2/O2) and 1.3 % (CH4/O2).

  16. Radiation and Heat Resistance of Moraxella-Acinetobacter in Meats

    DTIC Science & Technology

    1978-01-23

    growth 7 Vacuum packaging and impact on growth of resistant isolates .... 7 Effect of fat content of meat on radiation and heat resistance of...approximately 10 cells per ml. Storage for culture main- tenance after growth was at 3-5*C. Vacuum packaging and impact on growth of resistant isolates...sensitive to reduced oxygen occur- ring with vacuum packaging of foods (Maxcy et al., 1976). Furthermore, most of the radiation-resiscant M-A were

  17. Analytic model of an IR radiation heat pipe

    NASA Technical Reports Server (NTRS)

    Hoffman, Pamela J.

    1990-01-01

    An IR radiation heat pipe made from multilayer insulation blankets and proposed to be used aboard spacecraft to transfer waste heat was modeled analytically. A circular cross section pipe 9-in. in diameter, 10-ft long, with a specular reflectivity of 0.94 was found to have an efficiency of 58.6 percent. Several key parameters were varied for the circular model to understand their significance. In addition, square and triangular cross section pipes were investigated.

  18. Thermotronics: Towards Nanocircuits to Manage Radiative Heat Flux

    NASA Astrophysics Data System (ADS)

    Ben-Abdallah, Philippe; Biehs, Svend-Age

    2017-02-01

    The control of electric currents in solids is at the origin of the modern electronics revolution that has driven our daily life since the second half of 20th century. Surprisingly, to date, there is no thermal analogue for a control of heat flux. Here, we summarise the very last developments carried out in this direction to control heat exchanges by radiation both in near and far-field in complex architecture networks.

  19. Analytic model of an IR radiation heat pipe

    NASA Technical Reports Server (NTRS)

    Hoffman, Pamela J.

    1990-01-01

    An IR radiation heat pipe made from multilayer insulation blankets and proposed to be used aboard spacecraft to transfer waste heat was modeled analytically. A circular cross section pipe 9-in. in diameter, 10-ft long, with a specular reflectivity of 0.94 was found to have an efficiency of 58.6 percent. Several key parameters were varied for the circular model to understand their significance. In addition, square and triangular cross section pipes were investigated.

  20. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    SciTech Connect

    Wang, Yanhong; Wu, Jingzhi

    2016-02-15

    Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  1. Lightweight moving radiators for heat rejection in space

    NASA Technical Reports Server (NTRS)

    Knapp, K.

    1981-01-01

    Low temperature droplet stream radiators, using nonmetallic fluids, can be used to radiate large amounts of waste heat from large space facilities. Moving belt radiators are suitable for use on a smaller scale, radiating as few as 10 kW from shuttle related operations. If appropriate seal technology can be developed, moving belt radiators may prove to be important for high temperature systems as well. Droplet stream radiators suitable for operation at peak temperatures near 300 K and 1000 K were studied using both freezing and nonfreezing droplets. Moving belt radiators were also investigated for operation in both temperature ranges. The potential mass and performance characteristics of both concepts were estimated on the basis of parametric variations of analytical point designs. These analyses included all consideration of the equipment required to operate the moving radiator system and take into account the mass of fluid lost by evaporation during mission lifetimes. Preliminary results indicate that low temperature droplet stream radiator appears to offer the greatest potential for improvement over conventional flat plate radiators.

  2. Many-body heat radiation and heat transfer in the presence of a nonabsorbing background medium

    NASA Astrophysics Data System (ADS)

    Müller, Boris; Incardone, Roberta; Antezza, Mauro; Emig, Thorsten; Krüger, Matthias

    2017-02-01

    Heat radiation and near-field radiative heat transfer can be strongly manipulated by adjusting geometrical shapes, optical properties, or the relative positions of the objects involved. Typically, these objects are considered as embedded in vacuum. By applying the methods of fluctuational electrodynamics, we derive general closed-form expressions for heat radiation and heat transfer in a system of N arbitrary objects embedded in a passive nonabsorbing background medium. Taking into account the principle of reciprocity, we explicitly prove the symmetry and positivity of transfer in any such system. Regarding applications, we find that the heat radiation of a sphere as well as the heat transfer between two parallel plates is strongly enhanced by the presence of a background medium. Regarding near- and far-field transfer through a gas like air, we show that a microscopic model (based on gas particles) and a macroscopic model (using a dielectric contrast) yield identical results. We also compare the radiative transfer through a medium like air and the energy transfer found from kinetic gas theory.

  3. Heat Induced Damage Detection by Terahertz (THz) Radiation

    NASA Astrophysics Data System (ADS)

    Rahani, Ehsan Kabiri; Kundu, Tribikram; Wu, Ziran; Xin, Hao

    2011-06-01

    Terahertz (THz) and sub-terahertz imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. THz radiation is being used for inspecting ceramic foam tiles used in TPS (Thermal Protection System), thick polymer composites and polymer tiles that are not good conductors of ultrasonic waves. Capability of THz electromagnetic waves in detecting heat induced damage in porous materials is investigated in this paper. Porous pumice stone blocks are subjected to long time heat exposures to produce heat induced damage in the block. The dielectric properties extracted from THz TDS (Time Domain Spectroscopy) measurements are compared for different levels of heat exposure. Experimental results show noticeable and consistent change in dielectric properties with increasing levels of heat exposure, well before its melting point.

  4. Heat radiating burner for use in fireplaces

    SciTech Connect

    Turley, C.E.

    1981-11-10

    An upstanding panel assembly is disclosed having a forwardly facing front side and upper and lower marginal edges interconnected at corresponding ends by upstanding opposite side marginal edges. The panel assembly is constructed of fireproof heat reflective material and a grill generally parallels the panel assembly and is supported from the latter in spaced relation forward of the front side thereof to define a narrow combustion chamber between the grill and the panel assembly. The grill includes lower and opposite side marginal portions extending between corresponding lower and side marginal edges of the grill and panel assembly thereby closing the lower and opposite side marginal portions of the combustion chamber. The combustion chamber opens upwardly between the upper marginal portions of the grill and panel assembly and may downwardly receive combustible solid fuel components such as cross-cut log sections of pressed wood fiber logs therein.

  5. Radiation Transport through cylindrical foams with heated walls

    NASA Astrophysics Data System (ADS)

    Baker, Kevin; MacLaren, Steve; Kallman, Joshua; Heinz, Ken; Hsing, Warren

    2012-10-01

    Radiation transport through low density SiO2 foams has been experimentally studied on the Omega laser. In particular these experiments examined the effects on radiation transport when the boundaries of the SiO2 foam are heated such that energy loss to the boundaries is minimized. The initial density of the SiO2 foams was determined by taking an x-ray radiograph of the foams using a monochromatic Henke source at multiple x-ray energies. The radiation drive used to both study the transport in the SiO2 foam as well as to heat the higher density CRF wall was generated in a laser-heated gold hohlraum using ˜7.5 kJ of the laser energy. The time-dependent spatial profile of the heat wave breaking out of the SiO2 foam was detected with an x-ray streak camera coupled with a soft x-ray transmission grating. The Omega DANTE diagnostic measured the radiation drive in the hohlraum and the Omega VISAR diagnostic monitored the spatial temperature gradient in the foam section of the hohlraum.

  6. Feasibility of Jujube peeling using novel infrared radiation heating technology

    USDA-ARS?s Scientific Manuscript database

    Infrared (IR) radiation heating has a promising potential to be used as a sustainable and effective method to eliminate the use of water and chemicals in the jujube-peeling process and enhance the quality of peeled products. The objective of this study was to investigate the feasibility of use IR he...

  7. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    SciTech Connect

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-15

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  8. Assessment of Radiative Heating Uncertainty for Hyperbolic Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Mazaheri, Alireza; Gnoffo, Peter A.; Kleb, W. L.; Sutton, Kenneth; Prabhu, Dinesh K.; Brandis, Aaron M.; Bose, Deepak

    2011-01-01

    This paper investigates the shock-layer radiative heating uncertainty for hyperbolic Earth entry, with the main focus being a Mars return. In Part I of this work, a baseline simulation approach involving the LAURA Navier-Stokes code with coupled ablation and radiation is presented, with the HARA radiation code being used for the radiation predictions. Flight cases representative of peak-heating Mars or asteroid return are de ned and the strong influence of coupled ablation and radiation on their aerothermodynamic environments are shown. Structural uncertainties inherent in the baseline simulations are identified, with turbulence modeling, precursor absorption, grid convergence, and radiation transport uncertainties combining for a +34% and ..24% structural uncertainty on the radiative heating. A parametric uncertainty analysis, which assumes interval uncertainties, is presented. This analysis accounts for uncertainties in the radiation models as well as heat of formation uncertainties in the flow field model. Discussions and references are provided to support the uncertainty range chosen for each parameter. A parametric uncertainty of +47.3% and -28.3% is computed for the stagnation-point radiative heating for the 15 km/s Mars-return case. A breakdown of the largest individual uncertainty contributors is presented, which includes C3 Swings cross-section, photoionization edge shift, and Opacity Project atomic lines. Combining the structural and parametric uncertainty components results in a total uncertainty of +81.3% and ..52.3% for the Mars-return case. In Part II, the computational technique and uncertainty analysis presented in Part I are applied to 1960s era shock-tube and constricted-arc experimental cases. It is shown that experiments contain shock layer temperatures and radiative ux values relevant to the Mars-return cases of present interest. Comparisons between the predictions and measurements, accounting for the uncertainty in both, are made for a range

  9. Radiative heating and cooling rates in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Gille, John C.; Lyjak, Lawrence V.

    1986-01-01

    One of the limitations to the accurate calculation of radiative heating and cooling rates in the stratosphere and mesosphere has been the lack of accurate data on the atmospheric temperature and composition. Data from the LIMS experiment on Nimbus-7 has been extended to the South Pole with the aid of other observations. The data have been used as input to codes developed by Ramanathan and Dickinson to calculate the individual components and the net radiative heating rates from 100-0.1 mb. Solar heating due to ozone, nitrogen dioxide, carbon dioxide, water vapor and oxygen is shown to be nearly balanced by cooling in the thermal infrared spectral region due to carbon dioxide, ozone and water vapor. In the lower stratosphere, infrared transfer by ozone leads to heating that is sensitive to the distribution of tropospheric ozone, clouds and water vapor. The heating and cooling rates are adjusted slightly in order to satisfy the global mass balance. The results are in qualitative agreement with earlier calculations, but show additional detail. There is as strong temporal and vertical variation of cooling in the tropics. Radiative relaxation times are as short as 7 days or less at the stratopause.

  10. Conjugate conductive, convective, and radiative heat transfer in rocket engines

    SciTech Connect

    Naraghi, M.H.N.; DeLise, J.C.

    1995-12-31

    A comprehensive conductive, convective and radiative model for thermal analysis of rocket thrust chambers and nozzles is presented. In this model, the rocket thrust chamber and nozzle are subdivided into a number of stations along the longitudinal direction. At each station a finite element scheme is used to evaluate wall temperature distribution. The hot-gas-side convective heat transport is evaluated by numerically solving the compressible boundary layer equations and the radiative fluxes are evaluated by implementing an exchange factor scheme. The convective heat flux in the cooling channel is modeled based on the existing closed form correlations for rocket cooling channels. The conductive, convective and radiative processes are conjugated through an iterative procedure. The hot-gas-side heat transfer coefficients evaluated based on this model are compared to the experimental results reported in the literature. The computed convective heat transfer coefficients agree very well with experimental data for most of the engine except the throat where a discrepancy of approximately 20% exists. The model is applied to a typical regeneratively cooled rocket engine and the resulting wall temperature and heat flux distribution are presented.

  11. Marangoni mixed convection flow with Joule heating and nonlinear radiation

    SciTech Connect

    Hayat, Tasawar; Shaheen, Uzma; Shafiq, Anum; Alsaedi, Ahmed; Asghar, Saleem

    2015-07-15

    Marangoni mixed convective flow of Casson fluid in a thermally stratified medium is addressed. Flow analysis has been carried out in presence of inclined magnetic field. Heat transfer analysis is discussed in the presence of viscous dissipation, Joule heating and nonlinear thermal radiation. The governing nonlinear partial differential equations are first converted into ordinary differential systems and then developed the convergent series solutions. Flow pattern with the influence of pertinent parameters namely the magnetic parameter, Casson fluid parameter, temperature ratio parameter, stratification parameter, Prandtl number, Eckert number and radiation parameter is investigated. Expression of local Nusselt number is computed and analyzed. It is found that the Nusselt number decreases by increasing magnetic parameter, temperature ratio parameter, angle of inclination and stratification parameter. Moreover the effect of buoyancy parameter on the velocity distribution is opposite in both the opposing and assisting flow phenomena. Thermal field and associated layer thickness are enhanced for larger radiation parameter.

  12. Partial moment entropy approximation to radiative heat transfer

    SciTech Connect

    Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de

    2006-10-10

    We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.

  13. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  14. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  15. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  16. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Radiofrequency radiation for the heating of food... FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including microwave frequencies, may be safely...

  17. 21 CFR 179.30 - Radiofrequency radiation for the heating of food, including microwave frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Radiofrequency radiation for the heating of food... PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation Sources § 179.30 Radiofrequency radiation for the heating of food, including microwave frequencies. Radiofrequency radiation, including...

  18. Near-field radiative heat transfer between metamaterial thin films.

    PubMed

    Basu, Soumyadipta; Francoeur, Mathieu

    2014-03-01

    We investigate near-field radiative heat transfer between two thin films made of metamaterials. The impact of film thickness on magnetic and electric surface polaritons (ESPs) is analyzed. It is found that the strength as well as the location of magnetic resonance does not change with film thickness until the film behaves as semi-infinite for the dielectric function chosen in this study. When the film is thinner than vacuum gap, both electric and magnetic polaritons contribute evenly to near-field radiative heat transfer. At larger film thicknesses, ESPs dominate heat transfer due to excitation of a larger number of modes. Results obtained from this study will facilitate applications of metamaterials as thin-film coatings for energy systems.

  19. Radiative heat conduction and the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Araya-Góchez, Rafael A.; Vishniac, Ethan T.

    2004-12-01

    A photon or a neutrino gas, semicontained by a non-diffusive particle species through scattering, comprises a rather peculiar magnetohydrodynamic fluid where the magnetic field is truly frozen only to the comoving volume associated with the mass density. Although radiative diffusion precludes a formal adiabatic treatment of compressive perturbations, we cast the energy equation in quasi-adiabatic form by assuming a negligible rate of energy exchange among species on the time-scale of the perturbation. This leads to a simplified dispersion relation for toroidal, non-axisymmetric magnetorotational modes when the accretion disc has comparable stress contributions from diffusive and non-diffusive components. The properties of the modes of fastest growth are shown to depend strongly on the compressibility of the mode, with a reduction in growth rate consistent with the results of Blaes & Socrates for axisymmetric modes. A clumpy disc structure is anticipated on the basis of the polarization properties of the fastest-growing modes. This analysis is accurate in the near-hole region of locally cooled, hyper-accreting flows if the electron gas becomes moderately degenerate such that non-conductive, thermalizing processes with associated electron-positron release (i.e. neutrino annihilation and neutrino absorption on to nuclei) are effectively blocked by high occupation of the Fermi levels.

  20. Effect of superconductivity on near-field radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Králík, Tomáš; Musilová, Věra; Fořt, Tomáš; Srnka, Aleš

    2017-02-01

    Near-field (NF) radiative heat transfer (RHT) over vacuum space between bodies can exceed the far-field (FF) heat transfer by orders of magnitude. A large portion of the heat flux transferred between metals in NF is at very low frequencies, much lower than in FF. Thus a strong effect of superconductivity on NF RHT can be expected even at radiation temperatures above the superconducting critical temperature, where nearly no effect in FF is observed. We have examined experimentally the RHT between plane-parallel surfaces of niobium. Up to a fivefold decrease in NF heat flux was observed when the colder sample passed from the normal to the superconducting state. We found that a maximum decrease occurs at sample spacings ten times shorter than the spacing of crossover between the NF and FF heat flux, being ≈1000/T (μm). Applying Polder's and Van Hove's relations for NF RHT and BCS theory of superconductivity, we explain this effect and show the roles of transversal electric and magnetic modes in the steep decrease of heat flux below the critical temperature and the subsequent flux saturation at low temperatures.

  1. ASME Heat Transfer Division: Proceedings. Volume 1: Heat transfer in microgravity systems, radiative heat transfer and radiative heat transfer in low-temperature environments, and thermal contact conductance and inverse problems in heat transfer; HTD-Volume 332

    SciTech Connect

    Gopinath, A.; Sadhal, S.S.; Jones, P.D.; Seyed-Yagoobi, J.; Woodbury, K.A.

    1996-12-31

    In the first section on heat transfer in microgravity, the papers cover phase-change phenomena and thermocapillary flows and surface effects. In the second section, several papers cover solution methods for radiative heat transfer while the rest cover heat transfer in low-temperature environments. The last section covers papers containing valuable information for thermal contact conductance of various materials plus papers on inverse problems in heat transfer. Separate abstracts were prepared for most papers in this volume.

  2. Heat induced damage detection in composite materials by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  3. High thermal-transport capacity heat pipes for space radiators

    NASA Technical Reports Server (NTRS)

    Carlson, Albert W.; Gustafson, Eric; Roukis, Susan L.

    1987-01-01

    This paper presents the results of performance tests of several dual-slot heat pipe test articles. The dual-slot configuration has a very high thermal transport capability and has been identified as a very promising candidate for the radiator system for the NASA Space Station solar dynamic power modules. Two six-foot long aluminum heat pipes were built and tested with ammonia and acetone. A 20-ft long heat pipe was also built and tested with ammonia. The test results have been compared with performance predictions. A thermal transport capacity of 2000 W at an adverse tilt of 1 in. and a 1000 W capacity at an adverse tilt of 2 in. were achieved on the 20-ft long heat pipe. These values are in close agreement with the predicted performance limits.

  4. Near-field radiative heat transfer in mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Jing, Li; Yan-Hui, Feng; Xin-Xin, Zhang; Cong-Liang, Huang; Ge, Wang

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2˜4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. Project supported by the National Natural Science Foundation of China (Grant No. 51422601), the National Basic Research Program of China (Grant No. 2012CB720404), and the National Key Technology Research and Development Program of China (Grant No. 2013BAJ01B03).

  5. Azimuthal Stress and Heat Flux In Radiatively Inefficient Accretion Flows

    NASA Astrophysics Data System (ADS)

    Devlen, Ebru

    2016-07-01

    Radiatively Inefficient Accretion Flows (RIAFs) have low radiative efficiencies and/or low accretion rates. The accreting gas may retain most of its binding energy in the form of heat. This lost energy for hot RIAFs is one of the problems heavily worked on in the literature. RIAF observations on the accretion to super massive black holes (e.g., Sagittarius A* in the center of our Galaxy) have shown that the observational data are not consistent with either advection-dominated accretion flow (ADAF) or Bondi models. For this reason, it is very important to theoretically comprehend the physical properties of RIAFs derived from observations with a new disk/flow model. One of the most probable candidates for definition of mass accretion and the source of excess heat energy in RIAFs is the gyroviscous modified magnetorotational instability (GvMRI). Dispersion relation is derived by using MHD equations containing heat flux term based on viscosity in the energy equation. Numerical solutions of the disk equations are done and the growth rates of the instability are calculated. This additional heat flux plays an important role in dissipation of energy. The rates of the angular momentum and heat flux which are obtained from numerical calculations of the turbulence brought about by the GVMRI are also discussed.

  6. Coupled Convective and Radiative Heat Transfer Simulation for Urban Environments

    NASA Astrophysics Data System (ADS)

    Gracik, Stefan; Sadeghipour, Mostapha; Pitchurov, George; Liu, Jiying; Heidarinejad, Mohammad; Srebric, Jelena; Building Science Group, Penn State Team

    2013-11-01

    A building's surroundings affect its energy use. An analysis of building energy use needs to include the effects of its urban environment, as over half of the world's population now lives in cities. To correctly model the energy flow around buildings, an energy simulation needs to account for both convective and radiative heat transfer. This study develops a new model by coupling OpenFOAM and Radiance, open source packages for simulating computational fluid dynamics (CFD) and solar radiation, respectively. The model currently provides themo-fluid parameters including convective heat transfer coefficients, pressure coefficients, and solar heat fluxes that will be used as inputs for building energy simulations in a follow up study. The model uses Penn State campus buildings immersed in the atmospheric boundary layer flow as a case study to determine the thermo-fluid parameters around buildings. The results of this case study show that shadows can reduce the solar heat flux of a building's surface by eighty percent during a sunny afternoon. Convective heat transfer coefficients can vary by around fifty percent during a windy day.

  7. Combined conduction and radiation heat transfer in concentric cylindrical media

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.

    1987-01-01

    The exact radiative transfer expressions for gray and nongray gases which are absorbing, emitting and nonscattering, contained between infinitely long concentric cylinders with black surfaces, are given in local thermodynamic equilibrium. Resulting energy equations due to the combination of conduction and radiation modes of heat transfer, under steady state conditions for gray and nongray media, are solved numerically using the undetermined parameters method. A single 4.3-micron band of CO2 is considered for the nongray problems. The present solutions for gray and nongray gases obtained in the plane-parallel limit (radius ratio approaches to one) are compared with the plane-parallel results reported in the literature.

  8. Radiative properties of advanced spacecraft heat shield materials

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.

    1983-01-01

    Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.

  9. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  10. Radiative heat transfer in 2D Dirac materials.

    PubMed

    Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A R

    2015-06-03

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  11. Radiative heat transfer in 2D Dirac materials

    SciTech Connect

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  12. A multilevel method for conductive-radiative heat transfer

    SciTech Connect

    Banoczi, J.M.; Kelley, C.T.

    1996-12-31

    We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

  13. Radiative heat transfer in 2D Dirac materials

    DOE PAGES

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  14. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Astrophysics Data System (ADS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-08-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  15. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  16. Perpendicular electron heating by absorption of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Morgan, D. D.; Menietti, J. D.; Winglee, R. M.; Wong, H. K.

    1994-01-01

    We investigate the possibility of perpendicular heating of electrons and the generation of '90 deg -electron conics' by particle diffusion in velocity space due to wave-particle interaction with intense auroral kilometric radiation. This interaction is made possible by the downward shift in the R-X cutoff below the electron cyclotron frequency that occurs in the presence of warm plasma. We stimulate this condition and solve the diffusion equation using a finite difference algorithm. The results show strong perpendicular electron heating and indicate that the main characteristics of an electron conic distribution can be reproduced under these conditions.

  17. Advanced Computational Methods for Thermal Radiative Heat Transfer

    SciTech Connect

    Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.

    2016-10-01

    Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

  18. Effects of precursor heating on chemical and radiation nonequilibrium viscous flow around a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Szema, K. Y.

    1978-01-01

    The influence of precursor heating on viscous chemical nonequilibrium radiating flow around a Jovian entry body is investigated. Results obtained for a 45-degree hyperboloid blunt body entering Jupiter's nominal atmosphere at zero angle of attack indicate that the nonequilibrium radiative heating rate is significantly higher than the corresponding equilibrium heating. The precursor heating, in general, increases the radiative and convective heating to the body, and this increase is slightly higher for the nonequilibrium conditions.

  19. Numerical simulation of radiative heat loss in an experimental burner

    SciTech Connect

    Cloutman, L.D.; Brookshaw, L.

    1993-09-01

    We describe the numerical algorithm used in the COYOTE two-dimensional, transient, Eulerian hydrodynamics program to allow for radiative heat losses in simulations of reactive flows. The model is intended primarily for simulations of industrial burners, but it is not confined to that application. It assumes that the fluid is optically thin and that photons created by the fluid immediately escape to free space or to the surrounding walls, depending upon the application. The use of the model is illustrated by simulations of a laboratory-scale experimental burner. We find that the radiative heat losses reduce the local temperature of the combustion products by a modest amount, typically on the order of 50 K. However, they have a significant impact on NO{sub x} production.

  20. Propylene loop heat pipe with a lightweight, flexible, deployable radiator

    NASA Astrophysics Data System (ADS)

    Krotiuk, William J.; Crowley, Christopher J.; Rozzi, Jay C.

    2002-01-01

    This paper describes the design and fabrication of a propylene Loop Heat Pipe (LHP) with a flexible, deployable radiator intended to provide a lightweight spacecraft thermal management system. The paper presents the results of testing the LHP in an environmental chamber and in a thermal-vacuum chamber. Observations regarding operational and startup characteristics of the LHP are provided, and a comparison of design calculations to test results is presented. .

  1. Cylindrical electrostatic liquid film radiator for heat rejection in space

    SciTech Connect

    Kim, H.; Bankoff, S.G.; Miksis, M.J. )

    1994-11-01

    A new space radiator concept has been proposed by H. Kim et al. in which a thin film of hot liquid, flowing along the inside of a closed membrane, rejects waste heat by radiation to the surroundings. In previous versions, the radiator rotates, supplying most of the driving force for the liquid flow. In the present design, the cylinder is stationary, and the liquid flows circumferentially under its initial momentum. Moderately large Reynolds numbers are required to overcome viscous drag, and prevent excessive thickening of the film. The major design consideration involves the application of an internal electrostatic field to pull the liquid away from the site of a membrane puncture due to micrometeorite impact. Calculations are presented that show that leaks can be stopped with a safety factor of two or more, while the surface wave thus produced is washed harmlessly out of the system. Some preliminary heat transfer performance characteristics are presented. The advantages of this concepts include the absence of moving parts and the ease of deployment, compared to rotating units, and a factor of at least three for the reduction of the weight per unit surface area compared to heat pipes. 10 refs., 4 figs.

  2. Blackbody radiation: rosetta stone of heat bath models

    NASA Astrophysics Data System (ADS)

    O'Connell, R. F.

    2007-06-01

    The radiation field can be regarded as a collection of independent harmonic oscillators and, as such, constitutes a heat bath. Moreover, the known form of its interaction with charged particles provides a "rosetta stone" for deciding on and interpreting the correct interaction for the more general case of a quantum particle in an external potential and coupled to an arbitrary heat bath. In particular, combining QED with the machinery of stochastic physics, enables the usual scope of applications to be widened. We discuss blackbody radiation effects on: the equation of motion of a radiating electron (obtaining an equation of motion which is free from runaway solutions), anomalous diffusion, the spreading of a Gaussian wave packet, and decoherence effects due to zero-point oscillations. In addition, utilizing a formula we obtained for the free energy of an oscillator in a heat bath, enables us to determine all the quantum thermodynamic functions of interest (particularly in the areas of quantum information and nanophysics where small systems are involved) and from which we obtain temperature dependent Lamb shifts, quantum effects on the entropy at low temperature and implications for Nernst's law.

  3. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  4. The influence of a radiated heat exchanger surface on heat transfer

    NASA Astrophysics Data System (ADS)

    Morel, Sławomir

    2015-09-01

    The experiment leads to establish the influence of radiated surface development heat exchangers on the values of heat flux transferred with water flowing through the exchangers and placed in electric furnace chamber. The values of emissivity coefficients are given for the investigated metal and ceramic coatings. Analytical calculations have been made for the effect of the heating medium (flame) - uncoated wall and then heating medium (flame) - coated wall reciprocal emissivity coefficients. Analysis of the values of exchanged heat flux were also realized. Based on the measurement results for the base coating properties, these most suitable for spraying the walls of furnaces and heat exchangers were selected, and determined by the intensification of heat exchange effect. These coatings were used to spray the walls of a laboratory waste-heat boiler, and then measurements of fluxes of heat absorbed by the cooling water flowing through the boiler tubes covered with different type coatings were made. Laboratory tests and calculations were also confirmed by the results of full-scale operation on the metallurgical equipment.

  5. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  6. A thermokinetic approach to radiative heat transfer at the nanoscale.

    PubMed

    Pérez-Madrid, Agustín; Lapas, Luciano C; Rubí, J Miguel

    2013-01-01

    Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances.

  7. A Thermokinetic Approach to Radiative Heat Transfer at the Nanoscale

    PubMed Central

    Pérez-Madrid, Agustín; Lapas, Luciano C.; Rubí, J. Miguel

    2013-01-01

    Radiative heat exchange at the nanoscale presents a challenge for several areas due to its scope and nature. Here, we provide a thermokinetic description of microscale radiative energy transfer including phonon-photon coupling manifested through a non-Debye relaxation behavior. We show that a lognormal-like distribution of modes of relaxation accounts for this non-Debye relaxation behavior leading to the thermal conductance. We also discuss the validity of the fluctuation-dissipation theorem. The general expression for the thermal conductance we obtain fits existing experimental results with remarkable accuracy. Accordingly, our approach offers an overall explanation of radiative energy transfer through micrometric gaps regardless of geometrical configurations and distances. PMID:23527019

  8. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, UTRC has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced highly-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  9. Mesoscopic near-field radiative heat transfer at low temperatures

    NASA Astrophysics Data System (ADS)

    Maasilta, Ilari; Geng, Zhuoran; Chaudhuri, Saumyadip; Koppinen, Panu

    2015-03-01

    Near-field radiative heat transfer has mostly been discussed at room temperatures and/or macroscopic scale geometries. Here, we discuss our recent theoretical and experimental advances in understanding near-field transfer at ultra-low temperatures below 1K. As the thermal wavelengths increase with lowering temperature, we show that with sensitive tunnel junction bolometers it is possible to study near-field transfer up to distances ~ 10 μm currently, even though the power levels are low. In addition, these type of experiments correspond to the extreme near-field limit, as the near-field region starts at ~ mm distances at 0.1 K, and could have theoretical power enhancement factors of the order of 1010. Preliminary results on heat transfer between two parallel metallic wires are presented. We also comment on possible areas were such heat transfer might be relevant, such as densely packed arrays of low-temperature detectors.

  10. Magnetogasdynamic shock waves in a nonideal gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Singh, K. K.; Nath, B.

    2012-09-01

    The purpose of this study is to obtain a self-similar solution of the problem of propagation of a magnetogasdynamic shock wave in a nonideal gas with heat conduction and radiation heat flux in the presence of a spatially decreasing azimuthal magnetic field strength. The initial density of the medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law, and the radiation is considered to be of a diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficients are assumed to vary with temperature and density. The shock is assumed to be driven by a piston moving with a variable velocity. Similarity solutions are obtained, and the effects of variation of the gas nonidealness parameter and Alfven-Mach number on the flow field behind the shock are investigated.

  11. Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement

    SciTech Connect

    Nikbakht, Moladad

    2014-09-07

    A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientation in many body systems.

  12. Solar dynamic heat rejection technology. Task 2: Heat pipe radiator development

    NASA Technical Reports Server (NTRS)

    League, Mark; Alario, Joe

    1988-01-01

    This report covers the design, fabrication, and test of several dual slot heat pipe engineering development units. The following dual-slot heat pipes were fabricated and tested: two 6-ft. aluminum heat pipes; a 20-ft. aluminum heat pipe; and a 20-ft. aluminum heat pipe with a four-leg evaporator section. The test results of all four test articles are presented and compared to the performance predicted by the design software. Test results from the four-leg article are incomplete. The methodology for fabricating stainless steel dual slot heat pipes was also studied by performing a tool life test with different single point cutters, and these results are also presented. Although the dual-slot heat pipe has demonstrated the potential to meet the requirements for a high capacity radiator system, uncertainties with the design still exist. The startup difficulties with the aluminum test articles must be solved, and a stainless steel/methanol heat pipe should be built and tested.

  13. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test.

    PubMed

    Sheng, Chunchen; Hu, Peng; Cheng, Xiaofang

    2016-06-01

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m(2) with high accuracy and the response time of less than 10 s.

  14. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test

    NASA Astrophysics Data System (ADS)

    Sheng, Chunchen; Hu, Peng; Cheng, Xiaofang

    2016-06-01

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m2 with high accuracy and the response time of less than 10 s.

  15. Design and calibration of a novel transient radiative heat flux meter for a spacecraft thermal test

    SciTech Connect

    Sheng, Chunchen; Hu, Peng Cheng, Xiaofang

    2016-06-15

    Radiative heat flux measurement is significantly important for a spacecraft thermal test. To satisfy the requirements of both high accuracy and fast response, a novel transient radiative heat flux meter was developed. Its thermal receiver consists of a central thermal receiver and two thermal guarded annular plates, which ensure the temperature distribution of the central thermal receiver to be uniform enough for reasonably applying lumped heat capacity method in a transient radiative heat flux measurement. This novel transient radiative heat flux meter design can also take accurate measurements regardless of spacecraft surface temperature and incident radiation spectrum. The measurement principle was elaborated and the coefficients were calibrated. Experimental results from testing a blackbody furnace and an Xenon lamp show that this novel transient radiative heat flux meter can be used to measure transient radiative heat flux up to 1400 W/m{sup 2} with high accuracy and the response time of less than 10 s.

  16. Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine

    NASA Astrophysics Data System (ADS)

    Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.

  17. Heat Transfer from Radiatively Heated Material in a Low Reynolds Number Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Yamashita, H.; Baum, H. R.; Kushida, G.; Nakabe, K.; Kashiwagi, T.

    1993-01-01

    A mathematical model of the transient three-dimensional heat transfer between a slowly moving ambient gas stream and a thermally thick or thin flat surface heated by external radiation in a microgravity environment is presented. The problem is motivated in part by fire safety issues in spacecraft. The gas phase is represented by variable property convection-diffusion energy and mass conservation equations valid at low Reynolds numbers. The absence of gravity and low Reynolds number together permit the flow to be represented by a self-consistent velocity potential determined by the ambient velocity and the thermal expansion in the gas. The solid exchanges energy with the gas by conduction/convection and with the surroundings by surface absorption and re-emission of radiation. Heat conduction in the solid is assumed to be one dimensional at each point on the surface as a consequence of the limited times (of order of 10 seconds) of interest in these simulations. Despite the apparent simplicity of the model, the results show a complex thermally induced flow near the heated surface. The thermal exchange between the gas and solid produces an outward sourcelike flow upstream of the center of the irradiated area and a sinklike flow downstream. The responses of the temperature fields and the associated flows to changes in the intensity of the external radiation and the ambient velocity are discussed.

  18. Heat Transfer from Radiatively Heated Material in a Low Reynolds Number Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Yamashita, H.; Baum, H. R.; Kushida, G.; Nakabe, K.; Kashiwagi, T.

    1993-01-01

    A mathematical model of the transient three-dimensional heat transfer between a slowly moving ambient gas stream and a thermally thick or thin flat surface heated by external radiation in a microgravity environment is presented. The problem is motivated in part by fire safety issues in spacecraft. The gas phase is represented by variable property convection-diffusion energy and mass conservation equations valid at low Reynolds numbers. The absence of gravity and low Reynolds number together permit the flow to be represented by a self-consistent velocity potential determined by the ambient velocity and the thermal expansion in the gas. The solid exchanges energy with the gas by conduction/convection and with the surroundings by surface absorption and re-emission of radiation. Heat conduction in the solid is assumed to be one dimensional at each point on the surface as a consequence of the limited times (of order of 10 seconds) of interest in these simulations. Despite the apparent simplicity of the model, the results show a complex thermally induced flow near the heated surface. The thermal exchange between the gas and solid produces an outward sourcelike flow upstream of the center of the irradiated area and a sinklike flow downstream. The responses of the temperature fields and the associated flows to changes in the intensity of the external radiation and the ambient velocity are discussed.

  19. Engine and radiator: fetal and placental interactions for heat dissipation.

    PubMed

    Schröder, H J; Power, G G

    1997-03-01

    The 'engine' of fetal metabolism generates heat (3-4 W kg-1 in fetal sheep) which has to be dissipated to the maternal organism. Fetal heat may move through the amniotic/allantoic fluids to the uterine wall (conductive pathway; total conductance, 1.1 W degrees C-1 kg-1) and with the umbilical arterial blood flow (convective pathway) to the placenta. Because resistance to heat flow is larger than zero fetal temperature exceeds maternal temperature by about 0.5 degree C (0.3-1 degree C). Probably 85% of fetal heat is lost to the maternal organism through the placenta, which thus serves as the main 'radiator'. Placental heat conductivity appears to be extremely high and this may lead to impaired heat exchange (guinea-pig placenta). A computer simulation demonstrates that fetal temperature is essentially clamped to maternal temperature, and that fetal thermoregulatory efforts to gain thermal independence would be futile. Indeed, when the late gestational fetus in utero is challenged by cold stress, direct and indirect indicators of (non-shivering) thermogenesis (oxygen consumption, increase of plasma glycerol and free fatty acid levels) change only moderately. In prematurely delivered lambs, however, cold stress provokes summit metabolism and maximum heat production. Only when birth is imitated in utero (by cord clamping, external artificial lung ventilation and cooling) do thermogenic efforts approach levels typical of extra-uterine life. This suggests the presence of inhibitors of thermogenesis of placental origin, e.g. prostaglandins and adenosine. When the synthesis of prostaglandins is blocked by pretreatment with indomethacin, sheep fetuses react to intra-uterine cooling with vigorous thermogenic responses, which can be subdued by infusion of prostaglandin E2 (PGE2). Since the sheep placenta is known to produce sufficient amounts of PGE2, it seems that the placenta controls fetal thermogenic responses to some extent. This transforms the fetus into an ectothermic

  20. Radiation heat transfer within an optical fiber draw tower furnace

    SciTech Connect

    Issa, J.; Jaluria, Y.; Polymeropoulos, C.E.; Yin, Z.

    1995-12-31

    Study of the thermal transport and material flow processes associated with the drawing of optical fiber in a graphite draw furnace requires modeling of the heat transfer from the furnace wall. Previous work has shown that accurate knowledge of the furnace heater element axial temperature distribution is essential for proper modeling of the radiative transfer process. The present work is aimed at providing this information, as well as generating a set of data for the study of radiation exchange in the furnace cavity. The experimental procedure involved measuring the centerline temperature distribution in graphite and fused silica rods inserted into an optical fiber draw tower furnace. The temperature measurements were then used along with a model for radiative-convective heat transfer in the furnace in order to obtain the furnace temperature profile. This is an inverse problem since the centerline temperature in the rod is known whereas the furnace thermal conditions are not. The results obtained showed that the furnace temperature distribution was independent of rod material and size. The shape of the computed temperature distributions suggest that they can be well represented by a Gaussian function.

  1. Reversal of radiation-dependent heat sensitization of Clostridium perfringens spores

    SciTech Connect

    Gomez, R.F.; Gombas, D.E.; Herrero, A.

    1980-03-01

    The effect of solute concentration on the sensitization of Clostridium perfringens spores to heat by ionizing radiation was investigated. Spores of C. perfringens treated with gamma radiation are more sensitive to subsequent heat treatments than are spores that receive no radiation treatment. When gamma-irradiated spores were heated in the presence of increasing concentrations of glycerol or sucrose, the heat sensitivity induced by irradiation was progressively decreased.

  2. Radiation Effects in a Semitransparent Gray Coating Heated by Convection and Cooled by Radiation

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2002-01-01

    A parametric study using a one dimensional model of a semitransparent gray thermal barrier coating was performed to gain an understanding of the role thermal radiation can play in the heat transferred. Some ceramic materials are semitransparent in the wavelength ranges were thermal radiation is important. Therefore, absorption, emission, and scattering of thermal radiation can affect the he at transfer through the coating. In this paper, a one dimensional layer was used to model the heat transfer process occurring, in a burner test rig. The semitransparent layer is heated by a hot gas flowing over its surface. The layer and substrate at a cooled by radiation to the surroundings. The back side of the substrate is insulated. The coating is assumed to be gray (absorption and scattering coefficients are not function of wavelength). An absorption coefficient of 0.3/cm and scatter a rig coefficients of 0 (no scattering) and 100/cm (isotropic scattering) were used. The thickness and thermal conductivity of the layer are varied. The results show that the temperatures are affected by the properties of the semitransparent .ever and the emissivity of the substrate. The substrate and surface temperatures are presented. The apparent temperature an optical pyrometer would read for the emitted energy is also given. An apparent thermal conductivity was calculated for the layer.

  3. Slip Flow and Radiative Heat Transfer on a Convectively Heated Vertical Cylinder

    NASA Astrophysics Data System (ADS)

    Das, S.; Jana, R. N.; Makinde, O. D.

    2017-05-01

    An axisymmetric laminar boundary-layer slip flow of a viscous incompressible rarefied gas in a convectively heated vertical cylinder in the presence of thermal radiation is analyzed. The governing equations in cylindrical coordinates are transformed into ordinary differential equations by similarity transformation. These transformed equations are then solved numerically, using the fourth order Runge-Kutta method with shooting technique. The effects of the pertinent parameters on the gas velocity, temperature, as well as on the shear stress and heat transfer rate at the cylinder surface, are estimated.

  4. Topological angular momentum and radiative heat transport in closed orbits

    NASA Astrophysics Data System (ADS)

    Silveirinha, Mário G.

    2017-03-01

    We study the role of topological edge states of light in the transport of thermally generated radiation in a closed cavity at a thermodynamic equilibrium. It is shown that even in the zero temperature limit—when the field fluctuations are purely quantum mechanical—there is a persistent flow of electromagnetic momentum in the cavity in closed orbits, deeply rooted in the emergence of spatially separated unidirectional edge state channels. It is highlighted that the electromagnetic orbital angular momentum of the system is nontrivial, and that the energy circulation is towards the same direction as that determined by incomplete cyclotron orbits near the cavity walls. Our findings open inroads in topological photonics and suggest that topological states of light can determine novel paradigms in the context of radiative heat transport.

  5. Laser-heating-based active optics for synchrotron radiation applications.

    PubMed

    Yang, Fugui; Li, Ming; Gao, Lidan; Sheng, Weifan; Liu, Peng; Zhang, Xiaowei

    2016-06-15

    Active optics has attracted considerable interest from researchers in synchrotron radiation facilities because of its capacity for x-ray wavefront correction. Here, we report a novel and efficient technique for correcting or modulating a mirror surface profile based on laser-heating-induced thermal expansion. An experimental study of the characteristics of the surface thermal deformation response indicates that the power of a milliwatt laser yields a bump height as low as the subnanometer scale and that the variation of the spot size modulates the response function width effectively. In addition, the capacity of the laser-heating technique for free-form surface modulation is demonstrated via a one-dimensional surface correction experiment. The developed method is a promising new approach toward effective x-ray active optics coupled with at-wavelength metrology techniques.

  6. Chaos of radiative heat-loss-induced flame front instability.

    PubMed

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.

  7. Assessment of different radiative transfer equation solvers for combined natural convection and radiation heat transfer problems

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2017-06-01

    This work investigates the performance of the DOM, FVM, P1, SP3 and P3 methods for 2D combined natural convection and radiation heat transfer for an absorbing, emitting medium. The Monte Carlo method is used to solve the RTE coupled with the energy equation, and its results are used as benchmark solutions. Effects of the Rayleigh number, Planck number and optical thickness are considered, all covering several orders of magnitude. Temperature distributions, heat transfer rate and computational performance in terms of accuracy and computing time are presented and analyzed.

  8. Stagnation Point Nonequilibrium Radiative Heating and the Influence of Energy Exchange Models

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Mitcheltree, Robert A.; Gnoffo, Peter A.

    1991-01-01

    A nonequilibrium radiative heating prediction method has been used to evaluate several energy exchange models used in nonequilibrium computational fluid dynamics methods. The radiative heating measurements from the FIRE II flight experiment supply an experimental benchmark against which different formulations for these exchange models can be judged. The models which predict the lowest radiative heating are found to give the best agreement with the flight data. Examination of the spectral distribution of radiation indicates that despite close agreement of the total radiation, many of the models examined predict excessive molecular radiation. It is suggested that a study of the nonequilibrium chemical kinetics may lead to a correction for this problem.

  9. Acoustic radiation force on a heated sphere including effects of heat transfer and acoustic streaming

    NASA Technical Reports Server (NTRS)

    Lee, Chun P.; Wang, Taylor G.

    1988-01-01

    A previous theoretical result on the subject of the acoustic radiation force on a heated sphere (Lee and Wang, 1984) is reexamined. For a more complete understanding, effects of heat transfer and acoustic streaming are taken into consideration. Essentially, it was found that, at high sound-pressure levels in a steady situation, the force is not affected significantly by the temperature profile, consistent with the result of an experimental work (Leung and Wang, 1985). This resolves the earlier apparent contradiction between the theory and the experiment. If excessive hot air is accumulated around the sphere, which can happen in transient situations, the force can be weakened or reversed in sign. A heat transfer model due to acoustic streaming was also found.

  10. Transient Heat Transfer in a Semitransparent Radiating Layer with Boundary Convection and Surface Reflections

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    Surface convection and refractive index are examined during transient radiative heating or cooling of a grey semitransparent layer with internal absorption, emission and conduction. Each side of the layer is exposed to hot or cold radiative surroundings, while each boundary is heated or cooled by convection. Emission within the layer and internal reflections depend on the layer refractive index. The reflected energy and heat conduction distribute energy across the layer and partially equalize the transient temperature distributions. Solutions are given to demonstrate the effect of radiative heating for layers with various optical thicknesses, the behavior of the layer heated by radiation on one side and convectively cooled on the other, and a layer heated by convection while being cooled by radiation. The numerical method is an implicit finite difference procedure with non-uniform space and time increments. The basic method developed in earlier work is expanded to include external convection and incident radiation.

  11. Radiative heating rates during the Airborne Arctic Stratospheric Experiment

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Lait, Leslie R.; Newman, Paul A.; Proffitt, Michael H.

    1990-01-01

    A radiative transfer model and observed temperature and ozone profiles are used to compute three-dimensional fields of heating rates for the Northern Hemisphere during 1989 Airborne Arctic Stratospheric Experiment. For a clear atmosphere, an average cooling of 0.2 to 0.4 K/day is computed in the regions of the ER-2 aircraft during flight days. Tropospheric clouds will increase the cooling by 0.1 to 0.2 K/day. These cooling rates are in good agreement with the diabatic cooling estimated from N2O data, Net heating rather than cooling is computed in the area of the ozone 'minihole' which had its maximum on 1/31/89 and 2/1/89 in the vicinity of the mission. On 1/31/89 the 50 and 30 mb net heating rates are 0.1 to 0.2 K/day for clear skies, and 0.05 to 0.1 K/day for cloudy skies.

  12. Radiative heating rates during the Airborne Arctic Stratospheric Experiment

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Lait, Leslie R.; Newman, Paul A.; Proffitt, Michael H.

    1990-01-01

    A radiative transfer model and observed temperature and ozone profiles are used to compute three-dimensional fields of heating rates for the Northern Hemisphere during 1989 Airborne Arctic Stratospheric Experiment. For a clear atmosphere, an average cooling of 0.2 to 0.4 K/day is computed in the regions of the ER-2 aircraft during flight days. Tropospheric clouds will increase the cooling by 0.1 to 0.2 K/day. These cooling rates are in good agreement with the diabatic cooling estimated from N2O data, Net heating rather than cooling is computed in the area of the ozone 'minihole' which had its maximum on 1/31/89 and 2/1/89 in the vicinity of the mission. On 1/31/89 the 50 and 30 mb net heating rates are 0.1 to 0.2 K/day for clear skies, and 0.05 to 0.1 K/day for cloudy skies.

  13. Flower garden trees' ability to absorb solar radiation heat for local heat reduction

    NASA Astrophysics Data System (ADS)

    Maulana, Muhammad Ilham; Syuhada, Ahmad; Hamdani

    2017-06-01

    Banda Aceh as an urban area tends to have a high air temperature than its rural surroundings. A simple way to cool Banda Aceh city is by planting urban vegetation such as home gardens or parks. In addition to aesthetics, urban vegetation plays an important role as a reducer of air pollution, oxygen producer, and reducer of the heat of the environment. To create an ideal combination of plants, knowledge about the ability of plants to absorb solar radiation heat is necessary. In this study, some types of flowers commonly grown by communities around the house, such as Michelia Champaka, Saraca Asoka, Oliander, Adenium, Codiaeum Variegatum, Jas Minum Sambac, Pisonia Alba, Variegata, Apium Graveolens, Elephantopus Scaber, Randia, Cordylin.Sp, Hibiscus Rosasinensis, Agave, Lili, Amarilis, and Sesamum Indicum, were examined. The expected benefit of this research is to provide information for people, especially in Banda Aceh, on the ability of each plant relationship in absorbing heat for thermal comfort in residential environments. The flower plant which absorbs most of the sun's heat energy is Hibiscus Rosasinensis (kembang sepatu) 6.2 Joule, Elephantopus Scaber.L (tapak leman) 4.l Joule. On the other hand, the lowest heat absorption is Oliander (sakura) 0.9 Joule.

  14. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

  15. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.

  16. Some peculiarities of the sequential action of heat and ionizing radiation on yeast cells.

    PubMed

    Petin, V G; Kim, J K; Zhurakovskaya, G P; Kim, S H

    2009-02-01

    The dependence of the thermal enhancement ratio after a sequential action of heat and ionizing radiation on the dose and dose rate of ionizing radiation as well as on the temperature and duration of its application was studied for yeast cells. The combined effect of heat and ionizing radiation on cell killing depended on both the sequence of application (i.e. whether heat is applied prior to or following irradiation) and the temperature. The effectiveness of treatment with heat and ionizing radiation was greatly dependent on the duration of heat exposure. For an equal amount of cell killing from heat alone, long action of heat (50 degrees C) was more effective for radiosensitization than a short acute action of high heat (58 degrees C). For heating at 50 degrees C, heating after irradiation produced more radiosensitization than heating before irradiation. However, high heating at 58 degrees C before irradiation gave the same radiosensitization as heating after irradiation. These data confirm similar observations for mammalian cells. The results were interpreted by means of a mathematical model in which the synergistic effect of the sequential application of heat and ionizing radiation results from the additional lethal damage arising from the interaction of sublesions induced by both agents. These sublesions are not lethal after the action of these modalities, each taken alone. The model appears to be appropriate and the conclusions are valid.

  17. Development of a contact heat exchanger for a constructable radiator system

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1983-01-01

    A development program for a contact heat exchanger to be used to transfer heat from a spacecraft coolant loop to a heat pipe radiator is described. The contact heat exchanger provides for a connectable/disconnectable joint which allows for on-orbit assembly of the radiator system and replacement or exchange of radiator panels for repair and maintenance. The contact heat exchanger does not require the transfer of fluid across the joint; the spacecraft coolant loop remains contained in an all welded system with no static or dynamic fluid seals. The contact interface is also "dry' with no conductive grease or interstitial material required.

  18. Thermal self-oscillations in radiative heat exchange

    NASA Astrophysics Data System (ADS)

    Dyakov, S. A.; Dai, J.; Yan, M.; Qiu, M.

    2015-02-01

    We report the effect of relaxation-type self-induced temperature oscillations in the system of two parallel plates of SiO2 and VO2 which exchange heat by thermal radiation in vacuum. The non-linear feedback in the self-oscillating system is provided by metal-insulator transition in VO2. Using the method of fluctuational electrodynamics, we show that under the action of an external laser of a constant power, the temperature of VO2 plate oscillates around its phase transition value. The period and amplitude of oscillations depend on the geometry of the structure. We found that at 500 nm vacuum gap separating bulk SiO2 plate and 50 nm thick VO2 plate, the period of self-oscillations is 2 s and the amplitude is 4 K, which is determined by phase switching at threshold temperatures of phase transition.

  19. Heating of blood by low-intensity laser radiation

    NASA Astrophysics Data System (ADS)

    Korolevich, Alexander N.; Astafyeva, Liudmila G.; Dubina, Natali S.; Vecherinski, Sergei I.; Belsley, Michael S.

    2003-10-01

    Theoretical and experimental studies of the influence of low-intensity laser radiation, on the velocity of microcirculation of the erythrocytes of patients with the cardiovascular disease "in vivo" are carried out. Dynamic light scattering techniques were used to monitor the variation in the perfusion of micro capillary blood flow during irradiation under "in vivo" conditions and compared to the change in average size of aggregates of the blood effects observed "in vitro" using static scattering of light. It is shown that the process of the fragmentation of erythrocytes depends on amount of energy absorbed by biological tissues. This conclusion is supported by the good qualitative agreement with the theoretical model, based on the heat transfer theory within the dermis.

  20. Radiative and free convective heat transfer from a containerless sphere

    NASA Technical Reports Server (NTRS)

    Johnson, K.

    1979-01-01

    A mathematical model is derived for heat loss due to radiation and free convection for a small copper sphere (approximately 0.3 to 0.4 cm diameter) cooled by a helium-argon gas mixture. A FORTRAN program written to simplify calculations and extend the range of applicability to experimentation is presented. Pressures used were less than 400 torr, and resulting temperatures ranged from 500 to 4600 K. Comparison of results for initial cooling by the gas mixture with experimental data showed a 5 percent error for temperature values and a 2.7 percent error for the temperature difference caused by the cooling. Results indicate that the accuracy could be increased significantly by using better estimates for thermal conductivities.

  1. Split radiator design for heat rejection optimization for a waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  2. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    SciTech Connect

    Pilyugin, N.N.; Chernova, T.A.

    1986-07-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted.

  3. Reduction of radiative heat losses for solar thermal receivers

    NASA Astrophysics Data System (ADS)

    Ho, Clifford K.; Christian, Joshua M.; Ortega, Jesus D.; Yellowhair, Julius; Mosquera, Matthew J.; Andraka, Charles E.

    2014-10-01

    Solar thermal receivers absorb concentrated sunlight and can operate at high temperatures exceeding 600°C for production of heat and electricity. New fractal-like designs employing light-trapping structures and geometries at multiple length scales are proposed to increase the effective solar absorptance and efficiency of these receivers. Radial and linear structures at the micro (surface coatings and depositions), meso (tube shape and geometry), and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver also reduce thermal emittance due to reduced local view factors in the interior regions, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs. Results show that fractal-like structures and geometries can reduce total radiative losses by up to 50% and increase the thermal efficiency by up to 10%. The impact was more pronounced for materials with lower inherent solar absorptances (< 0.9). Meso-scale tests were conducted and confirmed model results that showed increased light-trapping from corrugated surfaces relative to flat surfaces.

  4. Spectral estimates of net radiation and soil heat flux

    USGS Publications Warehouse

    Daughtry, C.S.T.; Kustas, W.P.; Moran, M.S.; Pinter, P. J.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.

  5. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Astrophysics Data System (ADS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-10-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  6. Advanced radiator concepts utilizing honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.

    1987-01-01

    The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.

  7. A convective and radiative heat transfer analysis for the FIRE II forebody

    NASA Technical Reports Server (NTRS)

    Greendyke, Robert B.; Hartung, Lin C.

    1993-01-01

    A Navier-Stokes flowfield solution method (LAURA code) using finite-rate chemistry and two-temperature thermal nonequilibrium was used in combination with two nonequilibrium radiative heat transfer codes to calculate heating for the FIRE II vehicle. An axisymmetric model of the actual body shape was used. One radiative heating code (NEQAIR) was used in uncoupled fashion with the flowfield solver's energy equations, while the other code (LORAN) was used in both coupled and uncoupled variations. Several trajectory points ranging from highly nonequilibrium flow to near-equilibrium flow were used for a study of both convective and radiative heating over the vehicle. Considerable variation in radiative heating was seen at the extremes, while agreement was good in the intermediate trajectory points. Total heat transfer calculations gave good comparison until the peak heating trajectory points were encountered, and returned to good agreement for the last two equilibrium points.

  8. A convective and radiative heat transfer analysis for the FIRE II forebody

    NASA Astrophysics Data System (ADS)

    Greendyke, Robert B.; Hartung, Lin C.

    1993-07-01

    A Navier-Stokes flowfield solution method (LAURA code) using finite-rate chemistry and two-temperature thermal nonequilibrium was used in combination with two nonequilibrium radiative heat transfer codes to calculate heating for the FIRE II vehicle. An axisymmetric model of the actual body shape was used. One radiative heating code (NEQAIR) was used in uncoupled fashion with the flowfield solver's energy equations, while the other code (LORAN) was used in both coupled and uncoupled variations. Several trajectory points ranging from highly nonequilibrium flow to near-equilibrium flow were used for a study of both convective and radiative heating over the vehicle. Considerable variation in radiative heating was seen at the extremes, while agreement was good in the intermediate trajectory points. Total heat transfer calculations gave good comparison until the peak heating trajectory points were encountered, and returned to good agreement for the last two equilibrium points.

  9. Design and test of a self-controlled heat pipe radiator.

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Hembach, R.

    1973-01-01

    A 15,000-W spacecraft waste heat rejection system utilizing heat pipe radiator panels has been investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500-W radiator panel has been designed, built, and bench tested. The panel, which is a module of the 15,000-W system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiator. The thermal load to the VCHP is supplied by a Freon 21 liquid loop via an integral heat exchanger. This paper describes the results of the system studies and the radiator design. Also presented are test data on the VCHP, heat exchanger and isothermalizer heat pipes.

  10. Design and test of a self-controlled heat pipe radiator.

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Hembach, R.

    1973-01-01

    A 15,000-W spacecraft waste heat rejection system utilizing heat pipe radiator panels has been investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500-W radiator panel has been designed, built, and bench tested. The panel, which is a module of the 15,000-W system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiator. The thermal load to the VCHP is supplied by a Freon 21 liquid loop via an integral heat exchanger. This paper describes the results of the system studies and the radiator design. Also presented are test data on the VCHP, heat exchanger and isothermalizer heat pipes.

  11. Modulation and amplification of radiative far field heat transfer: Towards a simple radiative thermal transistor

    SciTech Connect

    Joulain, Karl; Ezzahri, Younès; Drevillon, Jérémie; Ben-Abdallah, Philippe

    2015-03-30

    We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see that the more the material is reflective in the metallic state, the more switching effect is realized, whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO{sub 2} that exhibits an insulator-metallic transition at 68 °C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. Far-field thermal radiation experiments are proposed to back the results presented.

  12. Radiative heat transfer in molten and glassy obsidian

    SciTech Connect

    Gable, C.W.; Shankland, T.J.

    1984-08-10

    We have measured optical transmittance spectra in rhyolitic obsidian samples in the wavelength range lambda = 380-5500 nm and at temperatures T from 19/sup 0/-1145/sup 0/C, above and below the softening point. From the transmittance, we calculated the absorption coefficient ..cap alpha..(lambda,T) and the radiative thermal conductivity K/sub R/(T). K/sub R/ ranges from 3 x 10/sup -3/ cal cm/sup -1/s/sup -1/K/sup -1/ (1.2Wm/sup -1/K/sup -1/) at 700/sup 0/C to 12 x 10/sup -3/ cal cm/sup -1/s/sup -1/K/sup -1/(5Wm/sup -1/K/sup -1/) at 1145/sup 0/C. The 700/sup 0/C value is comparable with lattice thermal conductivity K/sub L/ of about 4 x 10/sup -3/ cal cm/sup -1/ s/sup -1/K/sup -1/(1.7 Wm/sup -1/K/sup -1/). Removing scattering effects due to bubbles from the transmittance spectra by lowering the absorption baseline increased K/sub R/ to 20 x 10/sup -3/ cal cm/sup -1/ s/sup -1/ K/sup -1/(8.4Wm/sup -1/K/sup -1/) at 1145/sup 0/C. Because scattering bubbles is likely to be small in confined magmas, these numbers are probably minimum values for K/sub R/ and indicate that in active plutons radiative heat transport could be greater than lattice conductivity by more than a factor of 2 at 1000/sup 0/C. Thus melting markedly strengthens K/sub R/, and radiative heat transport is probably the dominant component of the total conductivity K = K/sub L/+K/sub R/ in silicic magmas. These relatively large values of K can be applied to models of the thermal evolution of magma bodies and to cooling of intrusives.

  13. Mechanisms of direct detonation initiation via thermal explosion of radiatively heated gas-particles layer

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    Conceptual approach of detonation wave direct initiation by external radiative heating of microparticles locally suspended in flammable gaseous mixture is proposed. Combustion waves and detonation initiation mechanisms in the congestion regions of microparticles heated by radiation are studied numerically. Necessary criteria on geometrical scales of gas-particles layer and spatial uniformity of particles distribution for successful detonation initiation are formulated.

  14. Improved method for calculating the radiation heat generation in the BOR-60 reactor

    SciTech Connect

    Varivtsev, A. V. Zhemkov, I. Yu.

    2014-12-15

    The results of theoretical and experimental studies aimed at determining the radiation heat generation in the BOR-60 reactor reveal the drawbacks of the computational methods used at present. An algorithm that is free from these drawbacks and allows one to determine the radiation heat generation computationally is proposed.

  15. Prediction of rocket plume radiative heating using backward Monte-Carlo method

    NASA Technical Reports Server (NTRS)

    Wang, K. C.

    1993-01-01

    A backward Monte-Carlo plume radiation code has been developed to predict rocket plume radiative heating to the rocket base region. This paper provides a description of this code and provides sample results. The code was used to predict radiative heating to various locations during test firings of 48-inch solid rocket motors at NASA Marshall Space Flight Center. Comparisons with test measurements are provided. Predictions of full scale sea level Redesigned Solid Rocket Motor (RSRM) and Advanced Solid Rocket Motor (ASRM) plume radiative heating to the Space Shuttle external tank (ET) dome center were also made. A comparison with the Development Flight Instrumentation (DFI) measurements is also provided.

  16. Cloud Classes and Radiative Heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) Sites

    SciTech Connect

    Mather, James H.; McFarlane, Sally A.

    2009-10-07

    The Tropical Western Pacific (TWP) is a convective regime; however, the frequency and depth of convection is dependant on dynamical forcing which exhibits variability on a range of temporal scales and also on location within the region. Manus Island, Papua New Guinea lies in the heart of the western Pacific warm pool region and exhibits frequent deep convection much of the time while Nauru, which lies approximately 20 degrees to the East of Manus, lies in a transition zone where the frequency of convection is dependent on the phase of the El Nino/Southern Oscillation. Because of this difference in dynamical regime, the distribution of clouds and the associated radiative heating is quite different at the two sites. Individual cloud types: boundary layer cumulus, thin cirrus, stratiform convective outflow, do occur at both sites – but with different frequencies. In this study we compare cloud profiles and heating profiles for specific cloud types at these two sites using data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF). Results of this comparison indicate that, while the frequency of specific cloud types differ between the two sites as one would expect, the characteristics of individual cloud classes are remarkably similar. This information could prove to be very useful for applying tropical ARM data to the broader region.

  17. Strongly coupled radiative transfer and Joule heating in the cathode of an arc heater

    NASA Technical Reports Server (NTRS)

    Durgapal, P.; Palmer, Grant E.

    1993-01-01

    Radiation and Joule heating in the electrode region of an arc heater are discussed. Radiative transport equations for a true axisymmetric geometry are used. A subsonic code is developed to numerically solve the fluid equations with strongly coupled radiation and Joule heating representative of a high pressure and high current arc heater. Analytic expression for the divergence of radiative heat flux derived previously is used. Jacobians of the radiation term are derived. The Joule heating term is computed using a previously developed code. The equilibrium gas model consists of seven species. The fluxes are differenced using Van Leer flux splitting. Using this code, the effects of radiative cooling on the thermodynamic parameters of the arc core are discussed.

  18. A detailed evaluation of the stratospheric heat budget: 1. Radiation transfer

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Mlynczak, Martin G.; Garcia, Rolando R.; Portmann, Robert W.

    1999-03-01

    We present part 1 of a two-part series on a detailed evaluation of the stratospheric heat budget. In part 2 [Mlynczak et al., this issue] we present radiative heating, radiative cooling, net radiative heating, global radiation balance, radiative relaxation times, and diabatic circulations in the stratosphere using temperature and minor constituent data provided by instruments on the Upper Atmosphere Research Satellite (UARS) between 1991 and 1993 and by the limb infrared monitor of the stratosphere (LIMS) instrument, which operated on the Nimbus-7 spacecraft in 1978-1979. Here we describe the radiative transfer techniques used to compute the climatology of radiative heating and circulations given in part 2. Included in the radiation transfer calculations are heating due to absorption of solar radiation from the ultraviolet through near-infrared wavelengths and radiative cooling due to emission by carbon dioxide, water vapor, and ozone from 0 to 3000 cm-1 (∞-3.3 μm). Infrared radiative effects of stratospheric aerosols are also considered in detail.

  19. Reversal of radiation-dependent heat sensitization of Clostridium perfringens spores.

    PubMed Central

    Gomez, R F; Gombas, D E; Herrero, A

    1980-01-01

    The effect of solute concentration on the sensitization of Clostridium perfringens spores to heat by ionizing radiation was investigated. As we have shown previously, spores of C. perfringens treated with gamma radiation are now sensitive to subsequent heat treatments than are spores that receive no radiation treatment. When gamma-irradiated spores were heated in the presence of increasing concentrations of glycerol or sucrose, the heat sensitivity induced by irradiation was progressively decreased. The magnitude of the increase in heat resistance induced by extracellular solutes was greater in gamma-irradiated spores than in nonirradiated spores. Based on these observations, it is proposed that the induction of heat sensitivity in spores by radiation is related to the loss of osmoregulatory or dehydrating mechanisms in irradiated spores. PMID:6247972

  20. Radiation losses in PLT during neutral beam and ICRF heating experiments

    SciTech Connect

    Suckewer, S.; Hinnov, E.; Hwang, D.

    1981-02-01

    Radiation and charge exchange losses in the PLT tokamak are compared for discharges with ohmic heating only (OH), and with additional heating by neutral beams (NB) or RF in the ion cyclotron frequency range (ICRF). Spectroscopic, bolometric and soft x-ray diagnostics were used. The effects of discharge cleaning, vacuum wall gettering, and rate of gas inlet on radiation losses from OH plasmas and the correlation between radiation from plasma core and edge temperatures are discussed.

  1. Coaxial radiative and convective heat transfer in gray and nongray gases

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.

    1980-01-01

    Coupled radiative and convective heat transfer is investigated for an absorbing gas flowing in a finite length channel and heated by blackbody radiation directed along the flow axis. The problem is formulated in one dimension and numerical solutions are obtained for the temperature profile of the gas and for the radiation escaping the channel entrance, assuming both gray and nongray absorption spectra. Due to radiation trapping, the flowing gas is found to have substantially smaller radiation losses for a given peak gas temperature than a solid surface that is radiatively heated to this temperature. A greenhouse effect is also evident whereby radiation losses are minimized for a gas having stronger absorption at long wavelengths.

  2. Coaxial radiative and convective heat transfer in gray and nongray gases

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.

    1980-01-01

    Coupled radiative and convective heat transfer is investigated for an absorbing gas flowing in a finite length channel and heated by blackbody radiation directed along the flow axis. The problem is formulated in one dimension and numerical solutions are obtained for the temperature profile of the gas and for the radiation escaping the channel entrance, assuming both gray and nongray absorption spectra. Due to radiation trapping, the flowing gas is found to have substantially smaller radiation losses for a given peak gas temperature than a solid surface that is radiatively heated to this temperature. A greenhouse effect is also evident whereby radiation losses are minimized for a gas having stronger absorption at long wavelengths.

  3. Numerical model for combined conductive and radiative heat transfer in annular packed beds

    SciTech Connect

    Kamiuto, K.; Saito, S.; Ito, K. . Dept. of Production Systems Engineering)

    1993-06-01

    A numerical model is developed for quantitatively analyzing combined conductive and radiative heat transfer in concentric annular packed beds. A packed bed is considered to be a continuous medium for heat transfer, but the porosity distribution within a packed bed is taken into account. To examine the validity of the proposed model, combined conductive and radiative heat transfer through annular packed beds of cordierite or porcelain beads is analyzed numerically using finite differences under conditions corresponding to heat transfer experiments of these packed beds. The resultant temperature profiles and heat transfer characteristics are compared with the experimental results.

  4. Simulation of planetary entry radiative heating with a CO2 gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.; Howe, J. T.

    1975-01-01

    Heating encountered during entry into the atmospheres of Jupiter, Saturn, and Uranus is described, followed by a discussion of the use of a CO2 gasdynamic laser to simulate the radiative component of the heating. Operation and performance of the laser is briefly described. Finally, results of laser tests of some candidate heat-shield materials are presented.

  5. Drying characteristics and quality of rough rice under infrared radiation heating

    USDA-ARS?s Scientific Manuscript database

    Infrared (IR) radiation heating could provide high heating rate and rapid moisture removal for rough rice drying. The objective of this research was to investigate the effect of the drying bed thickness on drying characteristics and quality of rough rice subjected to IR heating. Samples of freshly ...

  6. Simulation of planetary entry radiative heating with a CO2 gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Lundell, J. H.; Dickey, R. R.; Howe, J. T.

    1975-01-01

    Heating encountered during entry into the atmospheres of Jupiter, Saturn, and Uranus is described, followed by a discussion of the use of a CO2 gasdynamic laser to simulate the radiative component of the heating. Operation and performance of the laser is briefly described. Finally, results of laser tests of some candidate heat-shield materials are presented.

  7. An Investigation of the Compatibility of Radiation and Convection Heat Flux Measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1996-01-01

    A method for determining time-resolved absorbed surface heat flux and surface temperature in radiation and convection environments is described. The method is useful for verification of aerodynamic, heat transfer and durability models. A practical heat flux gage fabrication procedure and a simple one-dimensional inverse heat conduction model and calculation procedure are incorporated in this method. The model provides an estimate of the temperature and heat flux gradient in the direction of heat transfer through the gage. This paper discusses several successful time-resolved tests of this method in hostile convective heating and cooling environments.

  8. Thermal self-oscillations in radiative heat exchange

    SciTech Connect

    Dyakov, S. A.; Dai, J.; Yan, M.; Qiu, M.

    2015-02-09

    We report the effect of relaxation-type self-induced temperature oscillations in the system of two parallel plates of SiO{sub 2} and VO{sub 2} which exchange heat by thermal radiation in vacuum. The non-linear feedback in the self-oscillating system is provided by metal-insulator transition in VO{sub 2}. Using the method of fluctuational electrodynamics, we show that under the action of an external laser of a constant power, the temperature of VO{sub 2} plate oscillates around its phase transition value. The period and amplitude of oscillations depend on the geometry of the structure. We found that at 500 nm vacuum gap separating bulk SiO{sub 2} plate and 50 nm thick VO{sub 2} plate, the period of self-oscillations is 2 s and the amplitude is 4 K, which is determined by phase switching at threshold temperatures of phase transition.

  9. Investigation of the Noise Radiation from Heated Supersonic Jets

    NASA Astrophysics Data System (ADS)

    Mora Sanchez, Pablo A.

    This work focuses in the investigation of crackle and Mach wave radiation in heated supersonic jets. The skewness and kurtosis of the acoustic pressure signal and its time derivative were adopted as metrics for identifying crackling jets and quantifying levels of crackle. Cold and heated jets from supersonic nozzles with different geometric parameters and scales are analyzed to draw conclusions on noise sources and propagation. In order to complement the investigation, results are also presented for the mixing noise, broadband shock-associated noise and screech. Chapter 4 focuses on the impact of jet operating condition on the skewness and kurtosis levels of a jet issuing from a converging-diverging conical nozzle, with a 1.5 design Mach number. An increase in convective Mach number, achieved by increasing jet temperature, proved to be related to elevated values of OASPL, skewness, and kurtosis, in both the near and far fields. Intense levels of the dP/dt high-order statistics appear to be generated at different locations in the shear layer of the jet and strengthen away from the jet by non-linear propagation effects. Chapter 5 studies how adding chevrons to a converging-diverging nozzle impacts Mach wave radiation and crackle. The chevrons decreased OASPL in the downstream angles but increased the broadband shock-associated noise. Pressure skewness, dP/dt skewness and kurtosis were all reduced by the chevrons in the near field and far field, and thus they effectively mitigated crackle and Mach wave radiation; however, chevrons showed no evidence of changing the convective Mach number. The evolution of noise signals was analyzed in the near-field to the far-field to identify the strengthening of skewness through nonlinear propagation effects. Chapter 6 investigates a jet exhausting over a plate at different stand-off distances, to simulate jets exhausting over airframe surfaces and jet-ground interaction during take-off and landing operations. Far-field acoustics

  10. Radiative heat transfer in many-body systems: Coupled electric and magnetic dipole approach

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Zhao, Junming; Liu, Linhua

    2017-03-01

    The many-body radiative heat transfer theory [P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett. 107, 114301 (2011), 10.1103/PhysRevLett.107.114301] considered only the contribution from the electric dipole moment. For metal particles, however, the magnetic dipole moment due to eddy current plays an important role, which can further couple with the electric dipole moment to introduce crossed terms. In this paper, we develop the coupled electric and magnetic dipole (CEMD) approach for the radiative heat transfer in a collection of objects in mutual interaction. Due to the coupled electric and magnetic interactions, four terms, namely the electric-electric, the electric-magnetic, the magnetic-electric, and the magnetic-magnetic terms, contribute to the radiative heat flux and the local energy density. The CEMD is applied to study the radiative heat transfer between various dimers of nanoparticles. It is found that each of the four terms can dominate the radiative heat transfer depending on the position and composition of particles. Moreover, near-field many-body interactions are studied by CEMD considering both dielectric and metallic nanoparticles. The near-field radiative heat flux and local energy density can be greatly increased when the particles are in coupled resonances. Surface plasmon polariton and surface phonon polariton can be coupled to enhance the radiative heat flux.

  11. Performance Analysis of Potassium Heat Pipes Radiator for HP-STMCs Space Reactor Power System

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2004-02-04

    A detailed design and performance results of C-C finned, and armored potassium heat pipes radiator for a 110 kWe Heat Pipes-Segmented Thermoelectric Module Converters (HP-STMCs) Space Reactor Power system (SRPS) are presented. The radiator consists of two sections; each serves an equal number of STMCs and has 162 longitudinal potassium heat pipes with 0.508 mm thick C-C fins. The width of the C-C fins at the minor diameter of the radiator is almost zero, but increases with distance along the radiator to reach 3.7 cm at the radiator's major diameter. The radiator's heat pipes (OD = 2.42 cm in front and 3.03 cm in rear) have thin titanium (0.0762 mm thick) liners and wicks (0.20 mm thick with an effective pore radius of 12-16 {mu}m) and a 1.016 mm thick C-C wall. The wick is separated from the titanium liner by a 0.4 mm annulus filled with liquid potassium to increase the capillary limit. The outer surfaces of the heat pipes in the front and rear sections of the radiator are protected with a C-C armor that is 2.17 mm and 1.70 mm thick, respectively. The inside surface of the heat pipes in the front radiator is thermally insulated while the C-C finned condensers of the rear heat pipes are exposed, radiating into space through the rear opening of the radiator cavity. The heat pipes in both the front and the rear radiators have a 1.5 m long evaporator section and each dissipates 4.47 kW while operating at 43.6% of the prevailing sonic limit. The front and rear radiator sections are 5.29 m and 2.61 m long with outer surface area and mass of 47.1 m2 and 314.3 kg, and 39.9 m2 and 243.2 kg, respectively. The total radiator is 7.63 m long and has minor and major diameters of 1.48 m and 5.57 m, respectively, and a total surface area of 87 m2; however, the effective radiator area, after accounting for heat rejection through the rear of the radiator cavity, is 98.8 m2. The radiator's total mass including the C-C armor is 557.5 kg and the specific area and specific mass are 6

  12. Effect of Joule Heating and Thermal Radiation in Flow of Third Grade Fluid over Radiative Surface

    PubMed Central

    Hayat, Tasawar; Shafiq, Anum; Alsaedi, Ahmed

    2014-01-01

    This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number. PMID:24454694

  13. Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface.

    PubMed

    Hayat, Tasawar; Shafiq, Anum; Alsaedi, Ahmed

    2014-01-01

    This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.

  14. Investigation of spectral radiation heat transfer and NO{sub x} emission in a glass furnace

    SciTech Connect

    Golchert, B.; Zhou, C. Q.; Chang, S. L.; Petrick, M.

    2000-08-02

    A comprehensive radiation heat transfer model and a reduced NOx kinetics model were coupled with a computational fluid dynamics (CFD) code and then used to investigate the radiation heat transfer, pollutant formation and flow characteristics in a glass furnace. The radiation model solves the spectral radiative transport equation in the combustion space of emitting and absorbing media, i.e., CO{sub 2}, H{sub 2}O, and soot and emission/reflection from the furnace crown. The advanced numerical scheme for calculating the radiation heat transfer is extremely effective in conserving energy between radiation emission and absorption. A parametric study was conducted to investigate the impact of operating conditions on the furnace performance with emphasis on the investigation into the formation of NOx.

  15. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability.

    PubMed

    Bröde, Peter; Kuklane, Kalev; Candas, Victor; Den Hartog, Emiel A; Griefahn, Barbara; Holmér, Ingvar; Meinander, Harriet; Nocker, Wolfgang; Richards, Mark; Havenith, George

    2010-01-01

    The heat transferred through protective clothing under long wave radiation compared to a reference condition without radiant stress was determined in thermal manikin experiments. The influence of clothing insulation and reflectivity, and the interaction with wind and wet underclothing were considered. Garments with different outer materials and colours and additionally an aluminised reflective suit were combined with different number and types of dry and pre-wetted underwear layers. Under radiant stress, whole body heat loss decreased, i.e., heat gain occurred compared to the reference. This heat gain increased with radiation intensity, and decreased with air velocity and clothing insulation. Except for the reflective outer layer that showed only minimal heat gain over the whole range of radiation intensities, the influence of the outer garments' material and colour was small with dry clothing. Wetting the underclothing for simulating sweat accumulation, however, caused differing effects with higher heat gain in less permeable garments.

  16. Giant heat transfer in the crossover regime between conduction and radiation

    NASA Astrophysics Data System (ADS)

    Kloppstech, Konstantin; Könne, Nils; Biehs, Svend-Age; Rodriguez, Alejandro W.; Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2017-02-01

    Heat is transferred by radiation between two well-separated bodies at temperatures of finite difference in vacuum. At large distances the heat transfer can be described by black body radiation, at shorter distances evanescent modes start to contribute, and at separations comparable to inter-atomic spacing the transition to heat conduction should take place. We report on quantitative measurements of the near-field mediated heat flux between a gold coated near-field scanning thermal microscope tip and a planar gold sample at nanometre distances of 0.2-7 nm. We find an extraordinary large heat flux which is more than five orders of magnitude larger than black body radiation and four orders of magnitude larger than the values predicted by conventional theory of fluctuational electrodynamics. Different theories of phonon tunnelling are not able to describe the observations in a satisfactory way. The findings demand modified or even new models of heat transfer across vacuum gaps at nanometre distances.

  17. Enhancing Near-Field Radiative Heat Transfer with Si-based Metasurfaces

    NASA Astrophysics Data System (ADS)

    Fernández-Hurtado, V.; García-Vidal, F. J.; Fan, Shanhui; Cuevas, J. C.

    2017-05-01

    We demonstrate in this work that the use of metasurfaces provides a viable strategy to largely tune and enhance near-field radiative heat transfer between extended structures. In particular, using a rigorous coupled wave analysis, we predict that Si-based metasurfaces featuring two-dimensional periodic arrays of holes can exhibit a room-temperature near-field radiative heat conductance much larger than any unstructured material to date. We show that this enhancement, which takes place in a broad range of separations, relies on the possibility to largely tune the properties of the surface plasmon polaritons that dominate the radiative heat transfer in the near-field regime.

  18. Heat transfer in vertical Bridgman growth of oxides - Effects of conduction, convection, and internal radiation

    NASA Technical Reports Server (NTRS)

    Brandon, S.; Derby, J. J.

    1992-01-01

    In the present investigation of crystalline phase internal radiation and heat conduction during the vertical Bridgman growth of a YAG-like oxide crystal, where transport through the melt is dominated by convection and conduction, heat is also noted to be conducted through ampoule walls via natural convection and enclosure radiation. The results of a quasi-steady-state axisymmetric Galerkin FEM indicate that heat transfer through the system is powerfully affected by the optical absorption coefficient of the crystal. The coupling of internal radiation through the crystal with conduction through the ampoule walls promotes melt/crystal interface shapes that are highly reflected near the ampoule wall.

  19. Cold Start of a Radiator Equipped with Titanium-Water Heat Pipes

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Sanzi, James L.; Siamidis, John

    2008-01-01

    Radiator panels utilizing titanium-water heat pipes are being considered for lunar applications. A traditional sandwich structure is envisioned where heat pipes are embedded between two high thermal conductivity face sheets. The heat pipe evaporators are to be thermally connected to the heat source through one or more manifolds containing coolant. Initial radiator operation on the lunar surface would likely follow a cold soak where the water in the heat pipes is purposely frozen. To achieve heat pipe operation, it will be necessary to thaw the heat pipes. One option is to allow the sunlight impinging on the surface at sunrise to achieve this goal. Testing was conducted in a thermal vacuum chamber to simulate the lunar sunrise and additional modeling was conducted to identify steady-state and transient response. It was found that sunlight impinging on the radiator surface at sunrise was insufficient to solely achieve the goal of thawing the water in the heat pipes. However, starting from a frozen condition was accomplished successfully by applying power to the evaporators. Start up in this fashion was demonstrated without evaporator dryout. Concern is raised over thawing thermosyphons, vertical heat pipes operating in a gravity field, with no wick in the condenser section. This paper presents the results of the simulated cold start study and identifies future work to support radiator panels equipped with titanium-water heat pipes.

  20. Near-surface silica does not increase radiative heat dissipation from plant leaves

    NASA Astrophysics Data System (ADS)

    Olof Björn, Lars; Li, Shaoshan

    2011-07-01

    It has been suggested that plants are able to increase radiative heat dissipation from their leaves by depositing near-surface silica, in this way increasing emissivity of infrared radiation and lowering leaf temperature. In order to test this theory, we have compared emissivity and radiative dissipation over the mid-infrared range 2.5-22.3 μm of leaves of plants that accumulate silica and plants that do not. Our data do not support the theory that accumulation of silica increases radiative heat dissipation by plant leaves.

  1. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect

    Liu, X. L.; Zhang, Z. M.

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  2. Degradation of Biochemical Activity in Soil Sterilized by Dry Heat and Gamma Radiation

    NASA Technical Reports Server (NTRS)

    Shih, K. L.; Souza, K. A.

    1978-01-01

    The effect of soil sterilization by dry heat (0.08% relative humidity), gamma radiation, or both on soil phosphatase, urease, and decarboxylase activity was studied. Soil sterilized by a long exposure to dry heat at relatively low temperatures (eight weeks at 100.5 C) retained higher activities than did soil exposed to a higher temperature (two weeks at 124.5 C), while all activity was destroyed by four days at 148.5 C. Sterilization with 7.5 Mrads destroyed less activity than did heat sterilization. The effect of several individually nonsterizing doses of heat radiation is described.

  3. Degradation of Biochemical Activity in Soil Sterilized by Dry Heat and Gamma Radiation

    NASA Technical Reports Server (NTRS)

    Shih, K. L.; Souza, K. A.

    1978-01-01

    The effect of soil sterilization by dry heat (0.08% relative humidity), gamma radiation, or both on soil phosphatase, urease, and decarboxylase activity was studied. Soil sterilized by a long exposure to dry heat at relatively low temperatures (eight weeks at 100.5 C) retained higher activities than did soil exposed to a higher temperature (two weeks at 124.5 C), while all activity was destroyed by four days at 148.5 C. Sterilization with 7.5 Mrads destroyed less activity than did heat sterilization. The effect of several individually nonsterizing doses of heat radiation is described.

  4. Environmental microbiology as related to planetary quarantine. [synergetic effect of heat and radiation

    NASA Technical Reports Server (NTRS)

    Pflug, I. J.

    1973-01-01

    The mechanistic basis of the synergetic effect of combined heat and radiation on microbial destruction was analyzed and results show that radiation intensity, temperature, and relative humidity are the determining factors. Dry heat resistance evaluation for selected bacterial spore crops indicates that different strains of Bacillus stearothermophilus demonstrate marked differences in resistance. Preliminary work to determine the effects of storage time, suspending medium, storage temperature and spore crop cleaning procedures on dry heat survival characteristics of Bacillus subtilis var. Niger, and dry heat resistance of natural microflora in soil particles is also reported.

  5. Linear irreversible heat engines based on local equilibrium assumptions

    NASA Astrophysics Data System (ADS)

    Izumida, Yuki; Okuda, Koji

    2015-08-01

    We formulate an endoreversible finite-time Carnot cycle model based on the assumptions of local equilibrium and constant energy flux, where the efficiency and the power are expressed in terms of the thermodynamic variables of the working substance. By analyzing the entropy production rate caused by the heat transfer in each isothermal process during the cycle, and using the endoreversible condition applied to the linear response regime, we identify the thermodynamic flux and force of the present system and obtain a linear relation that connects them. We calculate the efficiency at maximum power in the linear response regime by using the linear relation, which agrees with the Curzon-Ahlborn (CA) efficiency known as the upper bound in this regime. This reason is also elucidated by rewriting our model into the form of the Onsager relations, where our model turns out to satisfy the tight-coupling condition leading to the CA efficiency.

  6. Radiative Heating on the After-Body of Martian Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Saunders, D. A.; Johnston, C. O.; Cruden, B. A.; White, T. R.

    2015-01-01

    This paper presents simulations of the radiative heat flux imparted on the after-body of vehicles entering the Martian atmosphere. The radiation is dominated by CO2 bands emitting in the mid-wave infrared spectral region. This mechanism has traditionally not been considered in the design of past Mars entry vehicles. However, with recent analysis showing that the CO2 radiation can be greater than convective heating in the wake, and with several upcoming and proposed missions to Mars potentially affected, an investigation of the impact of this radiation is warranted. The focus of this paper is to provide a better understanding of the impact to aerothermal heating predictions and to provide comparisons between NASA's two main radiation codes, NEQAIR and HARA. The tangent slab approximation is shown to be overly conservative, by as much as 58 percent, for most back- shell body point locations compared to using a full angular integration method. However, due to the complexity of the wake flow, it is also shown that tangent slab does not always represent an upper limit for radiative heating. Furthermore, analysis in this paper shows that it is not possible to provide a general knock-down factor from the tangent slab results to those obtained using the more rigorous full integration method. When the radiative heating is accounted for on the after-body, the unmargined total heat flux can be as high as 14 watts per square centimeter.

  7. The liquid droplet radiator - An ultralightweight heat rejection system for efficient energy conversion in space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1981-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets (less than about 100 micron diameter) of low vapor pressure liquids (tin, tin-lead-bismuth eutectics, vacuum oils) the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejection are discussed and solutions are suggested.

  8. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  9. The liquid droplet radiator - An ultralightweight heat rejection system for efficient energy conversion in space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1981-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets (less than about 100 micron diameter) of low vapor pressure liquids (tin, tin-lead-bismuth eutectics, vacuum oils) the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejection are discussed and solutions are suggested.

  10. The Liquid Droplet Radiator - an Ultralightweight Heat Rejection System for Efficient Energy Conversion in Space

    NASA Technical Reports Server (NTRS)

    Mattick, A. T.; Hertzberg, A.

    1984-01-01

    A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.

  11. The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low

    NASA Astrophysics Data System (ADS)

    Marsham, John H.; Parker, Douglas J.; Todd, Martin C.; Banks, Jamie R.; Brindley, Helen E.; Garcia-Carreras, Luis; Roberts, Alexander J.; Ryder, Claire L.

    2016-03-01

    The summertime Sahara heat low (SHL) is a key component of the West African monsoon (WAM) system. Considerable uncertainty remains over the relative roles of water vapour and dust aerosols in controlling the radiation budget over the Sahara and therefore our ability to explain variability and trends in the SHL, and in turn, the WAM. Here, new observations from Fennec supersite-1 in the central Sahara during June 2011 and June 2012, together with satellite retrievals from GERB, are used to quantify how total column water vapour (TCWV) and dust aerosols (from aerosol optical depth, AOD) control day-to-day variations in energy balance in both observations and ECWMF reanalyses (ERA-I). The data show that the earth-atmosphere system is radiatively heated in June 2011 and 2012. Although the empirical analysis of observational data cannot completely disentangle the roles of water vapour, clouds and dust, the analysis demonstrates that TCWV provides a far stronger control on TOA net radiation, and so the net heating of the earth-atmosphere system, than AOD does. In contrast, variations in dust provide a much stronger control on surface heating, but the decreased surface heating associated with dust is largely compensated by increased atmospheric heating, and so dust control on net TOA radiation is weak. Dust and TCWV are both important for direct atmospheric heating. ERA-I, which assimilated radiosondes from the Fennec campaign, captures the control of TOA net flux by TCWV, with a positive correlation (r = 0.6) between observed and modelled TOA net radiation, despite the use of a monthly dust climatology in ERA-I that cannot capture the daily variations in dustiness. Variations in surface net radiation, and so the vertical profile of radiative heating, are not captured in ERA-I, since it does not capture variations in dust. Results show that ventilation of the SHL by cool moist air leads to a radiative warming, stabilising the SHL with respect to such perturbations. It is

  12. Laminar and turbulent flow solutions with radiation and ablation injection for Jovian entry. [radiative heating rates for the Galileo probe

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Tiwari, S. N.

    1980-01-01

    Laminar and turbulent flow-field solutions with coupled carbon-phenolic mass injection are presented for the forebody of a probe entering a nominal Jupiter atmosphere. Solutions are obtained for a 35-degree hyperboloid and for a 45-degree spherically blunted cone using a time-dependent, finite-difference method. The radiative heating rates for the coupled laminar flow are significantly reduced as compared to the corresponding no-blowing case; however, for the coupled turbulent flow, it is found that the surface radiative heating rates are substantially increased and often exceed the corresponding no-blowing values. Turbulence is found to have no effect on the surface radiative heating rates for the no-blowing solutions. The present results are compared with the other available solutions, and some additional solutions are presented.

  13. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    NASA Technical Reports Server (NTRS)

    Martin, R. A.; Merrigan, M. A.; Elder, M. G.; Sena, J. T.; Keddy, E. S.; Silverstein, C. C.

    1992-01-01

    Analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, it is found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700 F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90,000 ft lowers the peak hot-section temperatures to around 2800 F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature.

  14. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. ); Silverstein, C.C. )

    1992-01-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  15. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1992-06-01

    Preliminary, research-oriented, analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, we found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700{degrees}F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90, 000 ft lowers peak hot section temperatures to around 2800{degrees}F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature. 24 refs.

  16. A detailed evaluation of the stratospheric heat budget: 2. Global radiation balance and diabatic circulations

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.; Mertens, Christopher J.; Garcia, Rolando R.; Portmann, Robert W.

    1999-03-01

    We present a detailed evaluation of radiative heating, radiative cooling, net heating, global radiation balance, radiative relaxation times, and diabatic circulations in the stratosphere using temperature and minor constituent data provided by instruments on the Upper Atmosphere Research Satellite (UARS) between 1991 and 1993 and by the limb infrared monitor of the stratosphere (LIMS) instrument which operated on the Nimbus-7 spacecraft in 1978-1979. Included in the calculations are heating due to absorption of solar radiation from ultraviolet through near-infrared wavelengths and radiative cooling due to emission by carbon dioxide, water vapor, and ozone from 0 to 3000 cm-1 (∞ - 3.3 μm). Infrared radiative effects of Pinatubo aerosols are also considered in some detail. In general, we find the stratosphere to be in a state of global mean radiative equilibrium on monthly timescales to within the uncertainty of the satellite-provided measurements. Radiative relaxation times are found to be larger in the lower stratosphere during UARS than LIMS because of the presence of Pinatubo aerosols. The meridional circulations in the upper stratosphere as diagnosed from the calculated fields of net heating are generally stronger in the UARS period than during the LIMS period, while the lower stratosphere meridional circulations are stronger during the LIMS period. A climatology of these calculations is available to the community via a World Wide Web interface described herein.

  17. Two Experiments for Estimating Free Convection and Radiation Heat Transfer Coefficients

    ERIC Educational Resources Information Center

    Economides, Michael J.; Maloney, J. O.

    1978-01-01

    This article describes two simple undergraduate heat transfer experiments which may reinforce a student's understanding of free convection and radiation. Apparatus, experimental procedure, typical results, and discussion are included. (Author/BB)

  18. Theoretical and experimental investigation of high-level radiation sources used to model a heat input

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Petrikevich, B. B.; Shcherbakov, A. A.

    1980-03-01

    This paper examines high-intensity xenon-filled radiation sources for heat load simulation. A mathematical model of the discharge is proposed, and results of a theoretical and an experimental investigation are presented.

  19. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation

    SciTech Connect

    Wong, G.H.; McHugh, T.; Weber, R.; Goeddel, D.V. )

    1991-05-15

    We report here that infection of the human T-cell line HUT-78 with human immunodeficiency virus (HIV) increases its sensitivity to heat and radiation toxicity. A possible explanation for this result may be the reduced expression of manganous superoxide dismutase (MnSOD) in HIV-infected cells compared to uninfected cells. Tumor necrosis factor alpha (TNF-alpha) further sensitizes HIV-infected cells but not uninfected cells to heat and radiation. This is consistent with the ability of TNF-alpha to induce the expression of MnSOD in uninfected but not in HIV-infected cells. HIV-infected HUT-78 cell lines engineered to overexpress MnSOD are more resistant to heat and radiation than HIV-infected cells that do not overexpress MnSOD. However, treatment with TNF-alpha still sensitizes these cells to heat and radiation.

  20. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect

    Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

    2014-06-21

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  1. Radiation Heat Measurement on Thermally-Isolated Double-Pipe for DC Superconducting Power Transmission

    NASA Astrophysics Data System (ADS)

    Hamabe, M.; Nasu, Y.; Ninomiya, A.; Ishiguro, Y.; Kusaka, S.; Yamaguchi, S.

    2008-03-01

    Multilayer insulator (MLI) is a strong tool for use as a radiation heat shield, though the use of MLI has disadvantages in construction and evacuation for a long superconducting power cable. We have proposed the "MLI-free" radiation heat shielding for DC superconducting power cable and have measured the radiation heat transfer for thermally-isolated double-pipes with different surfaces. Here, Zn coating, MLI, and Al-foil sheet were tested. Consequently, from the radiation heat of 9.7 W/m for bare stainless-steel pipe, Zn-coated stainless-steel surface reduced to 2.6 W/m, whereas the use of MLI reduced to 0.2 W/m. It is expected that the simultaneous use of Zn coating and MLI can reduce the number of total MLI sheets to reduce the evacuation time.

  2. Cloud properties and associated radiative heating rates in the tropical western Pacific

    SciTech Connect

    Mather, Jim H.; McFarlane, Sally A.; Miller, Mark A.; Johnson, Karen L.

    2007-03-01

    Radiative heating of the atmosphere affects cloud evolution on the cloud scale and it influences large-scale vertical motion. Obtaining good estimates of radiative heating rate profiles has been difficult due to a lack of cloud profile observations. The Atmospheric Radiation Measurement (ARM) program has been measuring cloud property distributions at sites around the globe including three in the tropical western Pacific (TWP) region. We have analyzed a month of these remote sensing observations at Manus and Nauru to calculate time series of vertical cloud property profiles and radiative heating rates. This data set will be an important tool for describing radiative processes in the tropics and assessing the simulation of these processes in dynamical models.

  3. Design and demonstration of a high-temperature, deployable, membrane heat-pipe radiator element

    SciTech Connect

    Trujillo, V.L.; Keddy, E.S.; Merrigan, M.A.

    1989-01-01

    Demonstration of a high-temperature, deployable, membrane heat-pipe radiator element has been conducted. Membrane heat pipes offer the potential for compact storage, ease of transportation, self-deployment, and a high specific radiator performance (kg/kW) for use in thermal reflection systems of space nuclear power plants. A demonstration heat pipe 8-cm wide and 100-cm long was fabricated. The heat pipe containment and wick structure were made of stainless steel and sodium used as the working fluid. The tests demonstrated passive deployment of the high-temperature membrane radiator, simulating a single segment in a flat array, at a temperature of 800 K. Details of test procedures and results of the tests are presented in this paper together with a discussion of the design and development of a full-scale, segmented high-temperature, deployable membrane heat pipe. 5 refs., 7 figs.

  4. Impact of cloud radiative heating on East Asian summer monsoon circulation

    DOE PAGES

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; ...

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. themore » different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.« less

  5. Impact of cloud radiative heating on East Asian summer monsoon circulation

    SciTech Connect

    Guo, Zhun; Zhou, Tianjun; Wang, Minghuai; Qian, Yun

    2015-07-17

    The impacts of cloud radiative heating on East Asian Summer Monsoon (EASM) over the southeastern China (105°-125°E, 20°-35°N) are explained by using the Community Atmosphere Model version 5 (CAM5). Sensitivity experiments demonstrate that the radiative heating of clouds leads to a positive effect on the local EASM circulation over southeastern China. Without the radiative heating of cloud, the EASM circulation and precipitation would be much weaker than that in the normal condition. The longwave heating of clouds dominates the changes of EASM circulation. The positive effect of clouds on EASM circulation is explained by the thermodynamic energy equation, i.e. the different heating rate between cloud base and cloud top enhances the convective instability over southeastern China, which enhances updraft consequently. The strong updraft would further result in a southward meridional wind above the center of the updraft through Sverdrup vorticity balance.

  6. Effect of a finite ionization rate on the radiative heating of outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1982-01-01

    The influence of finite rate ionization in the inviscid gas just behind the stagnation shock wave on the radiative heating of probes entering the hydrogen-helium atmosphere of the major plants was investigated. Two opposing conclusions were reached as to how the ionization rate assumption affects the radiative transfer. Hydrogen-helium shock waves with a cold nonblowing wall boundary condition at the probe heat shield are emphasized. The study is limited to the stagnation shock layer.

  7. Influence of nonequilibrium radiation on heating of an ablating Jovian entry probe

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Subramanian, S. V.

    1980-01-01

    The influence of non-local thermodynamic equilibrium (NLTE) radiative transfer on the entire shock-layer flow phenomena around a Jovian entry body is investigated. The flow in the shock layer is assumed to be viscous, axisymmetric, laminar, and in chemical equilibrium. The entry body considered is a 35-deg hyperboloid and the results have been obtained for the peak heating entry conditions. The results indicate that the radiative heating of the entry body is significantly higher under NLTE conditions.

  8. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  9. Monte Carlo prediction of radiative heat transfer in inhomogeneous, anisotropic, nongray media

    NASA Technical Reports Server (NTRS)

    Farmer, Jeff T.; Howell, John R.

    1994-01-01

    A Monte Carlo solution technique has been formulated to predict the radiative heat transfer in three-dimensional, inhomogeneous participating media which exhibit spectrally dependent emission and absorption and anisotropic scattering. Details of the technique and selected numerical sensitivities are discussed. The technique was applied to a problem involving a medium composed of a gas mixture of carbon dioxide and nitrogen and suspended carbon particles. A homogeneous medium was modeled to examine the effect of total pressure and carbon-particle concentration on radiative heat transfer. Variation in total pressure, over the range studied, had minimal effect on the amount of heat radiated to the enclosure walls and on the radiative-flux distribution within the medium. Increases in the carbon particle concentration produced significantly higher heat fluxes at the boundaries and altered the radiative flux distribution. The technique was then applied to an inhomogeneous medium to examine effects of specific temperature and carbon particle concentration distributions on radiative heat transfer. For the inhomogeneous conditions examined, the largest radiative flux divergence occurs near the center of the medium and the regions near some enclosure walls act as energy sinks.

  10. Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak?

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Hoffmann, K.-H.

    2004-03-01

    In this case study a complex Otto engine simulation provides data including, but not limited to, effects from losses due to heat conduction, exhaust losses and frictional losses. This data is used as a benchmark to test whether the Novikov engine with heat leak, a simple endoreversible model, can reproduce the complex engine behavior quantitatively by an appropriate choice of model parameters. The reproduction obtained proves to be of high quality.

  11. Radiative Heating and the Buoyant Rise of Magnetic Flux Tubes in the Solar interior

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Fisher, G. H.

    1996-06-01

    We study the effect of radiative heating on the evolution of thin magnetic flux tubes in the solar interior and on the eruption of magnetic flux loops to the surface. Magnetic flux tubes experience radiative heating because (1) the mean temperature gradient in the lower convection zone and the overshoot region deviates substantially from that of radiative equilibrium, and hence there is a non-zero divergence of radiative heat flux; and (2) the magnetic pressure of the flux tube causes a small change of the thermodynamic properties within the tube relative to the surrounding field-free fluid, resulting in an additional divergence of radiative heat flux. Our calculations show that the former constitutes the dominant source of radiative heating experienced by the flux tube. In the overshoot region, the radiative heating is found to cause a quasi-static rising of the toroidal flux tubes with an upward drift velocity ˜ 10-3|δ| cm s-1, where δ ≡ ∇e - ∇ad < 0 describes the subadiabaticity in the overshoot layer. The upward drift velocity does not depend sensitively on the field strength of the flux tubes. Thus in order to store toroidal flux tubes in the overshoot region for a period comparable to the length of the solar cycle, the magnitude of the subadiabaticity δ(< 0) in the overshoot region must be as large as ˜ 3 × 10-4. We discuss the possibilities for increasing the magnitude of δ and for reducing the rate of radiative heating of the flux tubes in the overshoot region. Using numerical simulations we study the formation of ‘Ω’-shaped emerging loops from toroidal flux tubes in the overshoot region as a result of radiative heating. The initial toroidal tube is assumed to be non-uniform in its thermodynamic properties along the tube and lies at varying depths beneath the base of the convection zone. The tube is initially in a state of neutral buoyancy with the internal density of the tube plasma equal to the local external density. We find from our

  12. Effect of a finite ionization rate on the radiative heating of outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1981-01-01

    The influence of finite rate ionization in the inviscid gas just behind the stagnation shock wave on the radiation heating of probes entering the hydrogen helium atmospere of the major planets was investigated. At the present time, there is disagreement as to whether the radiative flux increases or decreases relative to its equilibrium value when finite rate ionization is considered. Leibowitz and Kuo content that the finite rate ionization in the hydrogen gas just behind the shock wave reduces the radiative flux to the probe, whereas Tiwari and Szema predict that it increases the radiative flux. The radiation modeling used in the calculations of both pairs of these investigators was reviewed. It is concluded that finite rate ionization in the inviscid region of the shock layer should reduce the cold wall radiative heating below the values predicted by equilibrium chemistry assumptions.

  13. Study of Banana Dehydration using Sequential Infrared Radiation Heating and Freeze-Drying

    USDA-ARS?s Scientific Manuscript database

    The drying and quality characteristics of banana slices processed with a sequential infrared radiation and freeze drying (SIRFD) method were investigated. Cavendish banana slices with 5 mm thickness were predehydrated using IR heating at each one of three radiation intensities, 3000, 4000, and 5000...

  14. Mathematical Model of the Radiative Heat Exchange in the Selective Gases of a Diffusion Flame

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. A.

    2017-03-01

    Possibilities of improvement of the differential model of radiative transfer, used in engineering investigations of the heat exchange in the products of combustion of a gas fuel, were analyzed. The equations, boundary conditions, and algorithms of this model were refined. A method of calculating the local absorption coefficients of selective gases, involved in differential equations of radiative transfer, has been determined.

  15. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    SciTech Connect

    Makarov, A. N.

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  16. Passive cryogenic cooling of electrooptics with a heat pipe/radiator.

    PubMed

    Nelson, B E; Goldstein, G A

    1974-09-01

    The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.

  17. Infrared Radiation Heating for Rough Rice Disinfestation and Drying with Improved Efficiency and Milling Quality

    USDA-ARS?s Scientific Manuscript database

    This research investigated the drying characteristics, milling quality, and effectiveness in disinfestation of rough rice under infrared (IR) radiation heating. Infested and non-infested freshly harvested medium grain rice samples were heated/dried using catalytic IR for various durations as a sing...

  18. Interaction of surface radiation with combined conduction and convection from a discretely heated L-corner

    NASA Astrophysics Data System (ADS)

    Gururaja Rao, C.; Santhosh, D.; Vijay Chandra, P.

    2009-08-01

    Prominent results pertaining to the problem of multi-mode heat transfer from an L-corner equipped with three identical flush-mounted discrete heat sources in its left leg are given here. The heat generated in the heat sources is conducted along the two legs of the device before being dissipated by combined convection and radiation into air that is considered to be the cooling agent. The governing equations for temperature distribution along the L-corner are obtained by making appropriate energy balance between the heat generated, conducted, convected and radiated. The non-linear partial differential equations thus obtained are converted into algebraic form using a finite-difference formulation. The resulting equations are solved simultaneously by Gauss-Seidel iterative solver. A computer code is specifically written to solve the problem. The computational domain is discretised using 101 grids along the left leg, with 15 grids taken per heat source, and 21 grids along the bottom leg. The effects of surface emissivity, convection heat transfer coefficient, thermal conductivity and aspect ratio on local temperature distribution, peak device temperature and relative contributions of convection and radiation to heat dissipation from the L-corner are studied in detail. The point that one cannot overlook radiation in problems of this class has been clearly elucidated.

  19. Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation

    NASA Astrophysics Data System (ADS)

    Kim, Jinwon; Waliser, Duane E.; Cesana, Gregory V.; Jiang, Xianan; L'Ecuyer, Tristan; Neena, J. M.

    2017-04-01

    The cloud water content (CW) and radiative heating rate (QR) structures related to northward propagating boreal summer intraseasonal oscillations (BSISOs) are analyzed using data from A-train satellites in conjunction with the ERA-Interim reanalysis. It is found that the northward movement of CW- and QR anomalies are closely synchronized with the northward movement of BSISO precipitation maxima. Commensurate with the northward propagating BSISO precipitation maxima, the CW anomalies exhibit positive ice (liquid) CW maxima in the upper (middle/low) troposphere with a prominent tilting structure in which the low-tropospheric (upper-tropospheric) liquid (ice) CW maximum leads (lags) the BSISO precipitation maximum. The BSISO-related shortwave heating (QSW) heats (cools) the upper (low) troposphere; the longwave heating (QLW) cools (heats) the upper (middle/low) troposphere. The resulting net radiative heating (QRN), being dominated by QLW, cools (heats) the atmosphere most prominently above the 200 hPa level (below the 600 hPa level). Enhanced clouds in the upper and middle troposphere appears to play a critical role in increasing low-level QLW and QRN. The vertically-integrated QSW, QLW and QRN are positive in the region of enhanced CW with the maximum QRN near the latitude of the BSISO precipitation maximum. The bottom-heavy radiative heating anomaly resulting from the cloud-radiation interaction may act to strengthen convection.

  20. Development and application of a reverse Monte Carlo radiative transfer code for rocket plume base heating

    NASA Technical Reports Server (NTRS)

    Everson, John; Nelson, H. F.

    1993-01-01

    A reverse Monte Carlo radiative transfer code to predict rocket plume base heating is presented. In this technique rays representing the radiation propagation are traced backwards in time from the receiving surface to the point of emission in the plume. This increases the computational efficiency relative to the forward Monte Carlo technique when calculating the radiation reaching a specific point, as only the rays that strike the receiving point are considered.

  1. Numerical solution of fluid flow and heat tranfer problems with surface radiation

    NASA Technical Reports Server (NTRS)

    Ahuja, S.; Bhatia, K.

    1995-01-01

    This paper presents a numerical scheme, based on the finite element method, to solve strongly coupled fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The overall solution strategy is verified by comparing the available results with those obtained using this approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is clearly explained.

  2. Thermal radiation of laser heated niobium clusters Nb(+)(N), 8 ⩽ N ⩽ 22.

    PubMed

    Hansen, Klavs; Li, Yejun; Kaydashev, Vladimir; Janssens, Ewald

    2014-07-14

    The thermal radiation from small, laser heated, positively charged niobium clusters has been measured. The emitted power was determined by the quenching effect on the metastable decay, employing two different experimental protocols. The radiative power decreases slightly with cluster size and shows no strong size-to-size variations. The magnitude is 40-50 keV/s at the timescale of several microseconds, which is the measured crossover time from evaporative to radiative cooling.

  3. Heat flux splitter for near-field thermal radiation

    SciTech Connect

    Ben-Abdallah, P.; Belarouci, A.; Frechette, L.; Biehs, S.-A.

    2015-08-03

    We demonstrate the possibility to efficiently split the near-field heat flux exchanged between graphene nano-disks by tuning their doping. This result paves the way for the development of an active control of propagation directions for heat fluxes exchanged in the near field throughout integrated nanostructured networks.

  4. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    SciTech Connect

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  5. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    SciTech Connect

    Green, M.A.

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  6. Radiation and gas conduction heat transport across a helium dewar multilayer insulation system

    SciTech Connect

    Green, M.A.

    1994-10-10

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulate a 4 K liquid helium cryostat. The method described here permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  7. Coupling Between Turbulent Boundary Layer and Radiative Heat Transfer Under Engine-Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Sircar, A.; Paul, C.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.

    2016-11-01

    The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive CFD models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating conditions typical of heavy-duty CI engines, radiative emission can be as high as 40% of the wall heat losses, that molecular gas radiation can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number. NSF, DOE.

  8. Thermal radiation effect on MHD flow and heat transfer of Williamson nanofluids over a stretching sheet with Newtonian heating

    NASA Astrophysics Data System (ADS)

    Bing, Kho Yap; Hussanan, Abid; Mohamed, Muhammad Khairul Anuar; Sarif, Norhafizah Mohd; Ismail, Zulkhibri; Salleh, Mohd Zuki

    2017-04-01

    In this paper, the boundary layer magnetohydrodynamics (MHD) flow of Williamson nanofluids over a stretching sheet with Newtonian heating in the presence of thermal radiation effect is analyzed. Using a similarity transformation, the governing equations are reduced to a set of nonlinear ordinary differential equations (ODEs). These equations are solved numerically using a shooting method. The effects of Williamson parameter, magnetic parameter, radiation parameter, Prandtl number, Lewis number, Schmidt number, heat capacities ratio, thermophoretic diffusivity and conjugate parameter on velocity, temperature and concentration fields are shown graphically and discussed. It is found that the rate of heat transfer is higher for Williamson nanofluids compared to the classical viscous fluid. Also, the comparisons with existing results are provided in the literature.

  9. Meshless method for solving coupled radiative and conductive heat transfer in refractive index medium

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-An; Sadat, Hamou; Tan, Jian-Yu

    2016-01-01

    A diffuse approximation meshless method (DAM) is employed as a means of solving the coupled radiative and conductive heat transfer problems in semi-transparent refractive index media contained in 1D and 2D geometries. The meshless approach for radiative transfer is based on the discrete ordinates equation. Cases of combined conduction- radiation are presented, including plane parallel slab, square enclosure, and semicircular enclosure with an inner circle. The influence of the refractive index on the temperature distributions and heat fluxes is investigated. Results obtained using the proposed meshless method are compared with those reported in the literature to demonstrate the flexibility and accuracy of the method.

  10. Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating

    PubMed Central

    Hayat, Tasawar; Shafique, Maryam; Tanveer, Anum; Alsaedi, Ahmed

    2016-01-01

    Mixed convection peristaltic flow of Jeffrey nanofluid in a channel with compliant walls is addressed here. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Whole analysis is performed for velocity, thermal and concentration slip conditions. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating and slip parameters are explored in detail. Clearly temperature is a decreasing function of Hartman number and radiation parameter. PMID:26886919

  11. The effect of the number of wavebands used in spectral radiation heat transfer calculations

    SciTech Connect

    Chang, S. L.; Golchert, B.; Petrick, M.

    2000-05-09

    A spectral radiation heat transfer model that conserves emitted and absorbed energy has been developed and used to model the combustion space of an industrial glass furnace. This comprehensive radiation heat transfer model coupled with a computational fluid dynamics (CFD) code was used to investigate the effect of spectral dependencies on the computed results. The results of this work clearly indicate the need for a spectral approach as opposed to a gray body approach since the gray body approach (one waveband) severely underestimates the energy emitted via radiation.

  12. Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating.

    PubMed

    Hayat, Tasawar; Shafique, Maryam; Tanveer, Anum; Alsaedi, Ahmed

    2016-01-01

    Mixed convection peristaltic flow of Jeffrey nanofluid in a channel with compliant walls is addressed here. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Whole analysis is performed for velocity, thermal and concentration slip conditions. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating and slip parameters are explored in detail. Clearly temperature is a decreasing function of Hartman number and radiation parameter.

  13. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator.

    PubMed

    Tattersall, Glenn J; Andrade, Denis V; Abe, Augusto S

    2009-07-24

    The toco toucan (Ramphastos toco), the largest member of the toucan family, possesses the largest beak relative to body size of all birds. This exaggerated feature has received various interpretations, from serving as a sexual ornament to being a refined adaptation for feeding. However, it is also a significant surface area for heat exchange. Here we show the remarkable capacity of the toco toucan to regulate heat distribution by modifying blood flow, using the bill as a transient thermal radiator. Our results indicate that the toucan's bill is, relative to its size, one of the largest thermal windows in the animal kingdom, rivaling elephants' ears in its ability to radiate body heat.

  14. Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed

    2005-02-01

    Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor (~ 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680-720 K, the rubidium heat pipes radiator is best at 720-800 K, while the potassium heat pipes radiator is the best

  15. Radiator Heat Pipes with Carbon-Carbon Fins and Armor for Space Nuclear Reactor Power Systems

    SciTech Connect

    Tournier, Jean-Michel; El-Genk, Mohamed

    2005-02-06

    Technologies for Space Reactor Power Systems are being developed to enable future NASA's missions early next decade to explore the farthest planets in the solar system. The choices of the energy conversion technology for these power systems require radiator temperatures that span a wide range, from 350 K to 800 K. Heat pipes with carbon-carbon fins and armor are the preferred choice for these radiators because of inherent redundancy and efficient spreading and rejection of waste heat into space at a relatively small mass penalty. The performance results and specific masses of radiator heat pipes with cesium, rubidium, and potassium working fluids are presented and compared in this paper. The heat pipes operate at 40% of the prevailing operation limit (a design margin of 60%), typically the sonic and/or capillary limit. The thickness of the carbon-carbon fins is 0.5 mm but the width is varied, and the evaporator and condenser sections are 0.15 and 1.35 m long, respectively. The 400-mesh wick and the heat pipe thin metal wall are titanium, and the carbon-carbon armor ({approx} 2 mm-thick) provides both structural strength and protection against meteoroids impacts. The cross-section area of the D-shaped radiator heat pipes is optimized for minimum mass. Because of the low vapor pressure of potassium and its very high Figure-Of-Merit (FOM), radiator potassium heat pipes are the best performers at temperatures above 800 K, where the sonic limit is no longer an issue. On the other hand, rubidium heat pipes are limited by the sonic limit below 762 K and by the capillary limit at higher temperature. The transition temperature between these two limits for the cesium heat pipes occurs at a lower temperature of 724 K, since cesium has lower FOM than rubidium. The present results show that with a design margin of 60%, the cesium heat pipes radiator is best at 680-720 K, the rubidium heat pipes radiator is best at 720-800 K, while the potassium heat pipes radiator is the best

  16. Non-Equilibrium Radiation from Shock-Heated Air

    DTIC Science & Technology

    1991-07-01

    v- n 260nm LTER" vkT 4e_-. W 4 e IW- l watts (1) 2 (Q r)u cm3 sr cm - I r 0 I I .l I 1 I I I j 0 2 4 6 8 10 12 14 16 18 20 22 where CALCULATED ...Measurements, 210 nm 293 6 Radiation Measurements, 2 0 nm 30 7 Infrared Radiation Matrix, Experiment and Calculation 31 8 Three Temporal Parameters...Characterizing Non-equilibrium 32 I Infrared Radiation 9 Infrared Incubation Time, Experiment and Calculation 33 1 1 0 Infrared Time-To-Half-Peak

  17. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection

    PubMed Central

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-01-01

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink’s base plate is used as the performance indicator. For temperature differences larger than 30 ∘C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 ∘C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink. PMID:28793601

  18. Influence of Orientation and Radiative Heat Transfer on Aluminum Foams in Buoyancy-Induced Convection.

    PubMed

    Billiet, Marijn; De Schampheleire, Sven; Huisseune, Henk; De Paepe, Michel

    2015-10-09

    Two differently-produced open-cell aluminum foams were compared to a commercially available finned heat sink. Further, an aluminum plate and block were tested as a reference. All heat sinks have the same base plate dimensions of four by six inches. The first foam was made by investment casting of a polyurethane preform and has a porosity of 0.946 and a pore density of 10 pores per linear inch. The second foam is manufactured by casting over a solvable core and has a porosity of 0.85 and a pore density of 2.5 pores per linear inch. The effects of orientation and radiative heat transfer are experimentally investigated. The heat sinks are tested in a vertical and horizontal orientation. The effect of radiative heat transfer is investigated by comparing a painted/anodized heat sink with an untreated one. The heat flux through the heat sink for a certain temperature difference between the environment and the heat sink's base plate is used as the performance indicator. For temperature differences larger than 30 °C, the finned heat sink outperforms the in-house-made aluminum foam heat sink on average by 17%. Furthermore, the in-house-made aluminum foam dissipates on average 12% less heat than the other aluminum foam for a temperature difference larger than 40 °C. By painting/anodizing the heat sinks, the heat transfer rate increased on average by 10% to 50%. Finally, the thermal performance of the horizontal in-house-made aluminum foam heat sink is up to 18% larger than the one of the vertical aluminum foam heat sink.

  19. Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gibson, Marc; Sanzi, James; Locci, Ivan

    2013-01-01

    Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.

  20. Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements

    NASA Technical Reports Server (NTRS)

    Gould, Dana C.

    2000-01-01

    This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.

  1. Preliminary Convective-Radiative Heating Environments for a Neptune Aerocapture Mission

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Wright, Michael J.; Olejniczak, Joseph; Takashima, Naruhisa; Sutton, Kenneth; Prabhu, Dinesh

    2004-01-01

    Convective and radiative heating environments have been computed for a three-dimensional ellipsled configuration which would perform an aerocapture maneuver at Neptune. This work was performed as part of a one-year Neptune aerocapture spacecraft systems study that also included analyses of trajectories, atmospheric modeling, aerodynamics, structural design, and other disciplines. Complementary heating analyses were conducted by separate teams using independent sets of aerothermodynamic modeling tools (i.e. Navier-Stokes and radiation transport codes). Environments were generated for a large 5.50 m length ellipsled and a small 2.88 m length ellipsled. Radiative heating was found to contribute up to 80% of the total heating rate at the ellipsled nose depending on the trajectory point. Good agreement between convective heating predictions from the two Navier-Stokes solvers was obtained. However, the radiation analysis revealed several uncertainties in the computational models employed in both sets of codes, as well as large differences between the predicted radiative heating rates.

  2. Experimental investigation of panel radiator heat output enhancement for efficient thermal use under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Calisir, Tamer; Baskaya, Senol; Onur Yazar, Hakan; Yucedag, Sinan

    2015-05-01

    In this study the heat output of a panel-convector-convector-panel radiator (PCCP) under controlled laboratory conditions under Turkish household and especially Ankara conditions was investigated experimentally. In this sense, investigations were performed for different heating water mass flow rates, water inlet temperatures and radiator inlet and outlet connection positions, which are most commonly used in Turkey. An experimental setup was built for this purpose in a test room where temperature was controlled and held constant during the experiments. Inlet and outlet water temperatures and mass flow rates were measured and heat output of the radiator was calculated. Infrared thermal camera visualizations of the steel panel radiator front surface were also performed.

  3. Comparison of vibration dissociation coupling and radiative heat transfer models for AOTV/AFE flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.; Bobskill, Glenn J.; Greendyke, Robert B.

    1988-01-01

    A series of detailed studies comparing various vibration dissociation coupling models, reaction systems and rates, and radiative heating models has been conducted for the nonequilibrium stagnation region of an AFE/AOTV vehicle. Atomic and molecular nonequilibrium radiation correction factors have been developed and applied to various absorption coefficient step models, and a modified vibration dissociation coupling model has been shown to yield good vibration/electronic temperature and concentration profiles. While results indicate sensitivity to the choice of vibration dissociation coupling model and to the nitrogen electron impact ionization rate, by proper combinations accurate flowfield and radiative heating results can be obtained. These results indicate that nonequilibrium effects significantly affect the flowfield and the radiative heat transfer. However, additional work is needed in ionization chemistry and absorption coefficient modeling.

  4. Numerical identification of boundary conditions on nonlinearly radiating inverse heat conduction problems

    NASA Technical Reports Server (NTRS)

    Murio, Diego A.

    1991-01-01

    An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.

  5. Radiation temperature measurements in laser-heated hohlraums

    SciTech Connect

    Cobble, J.A.; Goldman, S.R.; Bessarab, A.V.; Kunin, A.V.; Tokarev, V.A.

    1997-11-01

    Two x-ray spectrographs have been used on the Trident laser at LANL to monitor the radiation temperature of small Au hohlraums. The cylindrical targets are smaller than 1 mm. The x radiation produced by {approximately} 400 J of 0.53-{micro}m laser light is detected with a 7-channel VNIIEF soft-x-ray spectrometer. Each channel employs a multi-layer mirror and a filter to limit the channel bandwidth to 1--3% of the channel energy. X rays are detected with calibrated Al x-ray diodes. A second spectrometer is based on a free-standing Au transmission grating for spectral dispersion and a multi-channel diamond photo-conductive device detector. The small hohlraum results are consistent with radiation temperatures exceeding 100 eV. Simple computer modeling shows that late in the plasma discharge, radiation of this temperature is emitted from the target.

  6. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Hubbard, Kenneth G.; Verma, Shashi B.; Starks, Patrick; Norman, John M.; Walter-Shea, Elizabeth

    1987-01-01

    The feasibility of using radio frequency receivers to collect data from automated weather stations to model fluxes of latent heat, sensible heat, and radiation using routine weather data collected by automated weather stations was tested and the estimated fluxes were compared with fluxes measured over wheat. The model Cupid was used to model the fluxes. Two or more automated weather stations, interrogated by radio frequency and other means, were utilized to examine some of the climatic variability of the First ISLSCP (International Satellite Land-Surface Climatology Project) Field Experiment (FIFE) site, to measure and model reflected and emitted radiation streams from various locations at the site and to compare modeled latent and sensible heat fluxes with measured values. Some bidirectional reflected and emitted radiation data were collected from 23 locations throughout the FIFE site. Analysis of these data along with analysis of the measured sensible and latent heat fluxes is just beginning.

  7. Method for heat treating and sintering metal oxides with microwave radiation

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Meek, Thomas T.

    1989-01-01

    A method for microwave sintering materials, primarily metal oxides, is described. Metal oxides do not normally absorb microwave radiation at temperatures ranging from about room temperature to several hundred degrees centrigrade are sintered with microwave radiation without the use of the heretofore required sintering aids. This sintering is achieved by enclosing a compact of the oxide material in a housing or capsule formed of a oxide which has microwave coupling properties at room temprature up to at least the microwave coupling temperature of the oxide material forming the compact. The heating of the housing effects the initial heating of the oxide material forming the compact by heat transference and then functions as a thermal insulator for the encased oxide material after the oxide material reaches a sufficient temperature to adequately absorb or couple with microwave radiation for heating thereof to sintering temperature.

  8. The multistage heat pipe radiator - An advancement in passive cooling technology

    NASA Technical Reports Server (NTRS)

    Wilson, D. E.; Wright, J. P.

    1977-01-01

    Mathematical models were developed for one-, two-, and three-stage radiator systems to determine optimum stage areas and system performance as a function of such parameters as insulation effectiveness, cold stage temperature, and heat load to the cold and intermediate stages. This study shows that multistage radiator systems can be optimized on the basis of weight or projected area, and that cold stage temperatures as low as 15 K are theoretically possible with present technology levels for insulation emittance. For the baseline design, analyses were performed to determine optimum radiator fin geometry and heat pipe spacing as a function of temperature, material properties, and heat pipe weight. In addition, a ground test system was designed for the baseline design with heat rejection requirements of 10 MW at 35 K on the cold stage and 100 MW at the second stage.

  9. Nonlinear solution for radiation boundary condition of heat transfer process in human eye.

    PubMed

    Dehghani, A; Moradi, A; Dehghani, M; Ahani, A

    2011-01-01

    In this paper we propose a new method based on finite element method for solving radiation boundary condition of heat equation inside the human eye and other applications. Using this method, we can solve heat equation inside human eye without need to model radiation boundary condition to a robin boundary condition. Using finite element method we can obtain a nonlinear equation, and finally we use nonlinear algorithm to solve it. The human eye is modeled as a composition of several homogeneous regions. The Ritz method in the finite element method is used for solving heat differential equation. Applying the boundary conditions, the heat radiation condition and the robin condition on the cornea surface of the eye and on the outer part of sclera are used, respectively. Simulation results of solving nonlinear boundary condition show the accuracy of the proposed method.

  10. Single-node orbit analsyis with radiation heat transfer only

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1977-01-01

    The steady-state temperature of a single node which dissipates energy by radiation only is discussed for a nontime varying thermal environment. Relationships are developed to illustrate how shields can be utilized to represent a louver system. A computer program is presented which can assess periodic temperature characteristics of a single node in a time varying thermal environment having energy dissipation by radiation only. The computer program performs thermal orbital analysis for five combinations of plate, shields, and louvers.

  11. The radiated noise from isotropic turbulence and heated jets

    NASA Technical Reports Server (NTRS)

    Lilley, G. M.

    1995-01-01

    prevented the full deployment of Lighthill's theory from being achieved. However, the growth of the supercomputer and its applications in the study of the structure of turbulent shear flows in both unbounded and wall bounded flows, which complements and in certain cases extends the work of the few dedicated experimental groups working in this field for the past forty years, provides an opportunity and challenge to accurately predict the noise from jets. Moreover a combination of numerical and laboratory experiments offers the hope that in the not too distant future the physics of noise generation and flow interaction will be better understood and it will then be possible to not only improve the accuracy of noise prediction but also to explore and optimize schemes for noise reduction. The present challenge is to provide time and space accurate numerical databases for heated subsonic and supersonic jets to provide information on the fourth-order space-time covariance of Lighthill's equivalent stress tensor, T(ij), which governs the characteristics of the farfield radiated noise and the total acoustic power. Validation with available experimental databases will establish how close Lighthill's theory is to the accurate prediction of the directivity and spectrum of jet noise and the total acoustic power, and the need, in the applications of the theory, to include the effects of flow-acoustic interaction.

  12. Latest Development of Infrared Radiation Heating for Food Processing

    USDA-ARS?s Scientific Manuscript database

    Infrared (IR) heating could be an alternative technology for thermal and dehydration processing of food and agricultural products with many advantages, including high process and energy efficiencies, high product quality, improved food safety and reduced environmental pollution. This paper reviews ...

  13. Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.

    2011-01-01

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.

  14. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  15. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger with Bypass Setpoint Temperature Control

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Spacecraft radiators are sized for their maximum heat load in their warmest thermal environment, but must operate at reduced heat loads and in colder environments. For systems where the radiator environment can be colder than the working fluid freezing temperature, radiator freezing becomes an issue. Radiator freezing has not been a major issue for the Space Shuttle and the International Space Station (ISS) active thermal control systems (ATCSs) because they operate in environments that are warm relative to the freezing point of their external coolants (Freon-21 and ammonia, respectively). For a vehicle that lands at the Lunar South Pole, the design thermal environment is 215K, but the radiator working fluid must also be kept from freezing during the 0 K sink of transit. A radiator bypass flow control design such as those used on the Space Shuttle and ISS requires more than 30% of the design heat load to avoid radiator freezing during transit - even with a very low freezing point working fluid. By changing the traditional ATCS architecture to include a regenerating heat exchanger inboard of the radiator and by using a regenerator bypass flow control valve to maintain system setpoint, the required minimum heat load can be reduced by more than half. This gives the spacecraft much more flexibility in design and operation. The present work describes the regenerator bypass ATCS setpoint control methodology. It includes analytical results comparing the performance of this system to the traditional radiator bypass system. Finally, a summary of the advantages of the regenerator bypass system are presented.

  16. The effect of sampling rate on interpretation of the temporal characteristics of radiative and convective heating in wildland flames

    Treesearch

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Michael Harrington

    2012-01-01

    Time-resolved radiative and convective heating measurements were collected on a prescribed burn in coniferous fuels at a sampling frequency of 500 Hz. Evaluation of the data in the time and frequency domain indicate that this sampling rate was sufficient to capture the temporal fluctuations of radiative and convective heating. The convective heating signal contained...

  17. Beam-induced radiation heating on the superconducting undulator at the advanced photon source

    NASA Astrophysics Data System (ADS)

    Boon, Laura Elizabeth

    2014-09-01

    In January 2013 the Advanced Photon Source (APS), a 7 GeV synchrotron X-ray source, commissioned a Superconducting Undulator (SCU). The superconducting magnet is thermally isolated from the beam vacuum chamber, which absorbs the beam-induced heating. Previous beam induced heat load studies at other laboratories had not included a robust calculation of radiation heating from the upstream dipole magnet. The mitigation of the radiation heating mechanism, and production of photoelectrons to seed an electron cloud was studied for this thesis. An analytical model was developed to predict the radiation heat load on the SCU chamber. This model was benchmarked with ray tracings and simulations. Results from this synchrotron radiation model were used to guide the design of the installed SCU beam chamber. A 3D Monte-Carlo simulation on synchrotron radiation on the beam chamber was developed. The model considered the effect of diffuse scattering and complex chamber geometries. It was found that a simulation assuming no photon scattering gave a power that agreed within 0.4% of the analytical model. Comparison between analytical calculations and measured temperature rise on the installed SCU show the analytical model agrees with the measured temperature rise within 20%. Previous models of similar superconducting devices in accelerators have reached at best 200% difference between the measured and modeled heat load. The beam heat load model presented in this thesis represents a significant improvement in modeling of superconducting devices in high energy particle accelerators. In addition to heating the SCU chamber, absorbed photons produce photoelectrons which seed electron clouds, another source of beam induced heating. Measurements of the technical aluminum samples show peaks in the quantum efficiency for photon energies equal to the K edges of oxygen, carbon, and aluminum. These results can be added to electron cloud simulation codes to improve simulation results.

  18. Turbulent convection driven by internal radiative heating of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Langton, Tom; Rees Jones, David; Moon, Woosok

    2016-11-01

    The melting of Arctic sea ice is strongly influenced by heat transfer through melt ponds which form on the ice surface. Melt ponds are internally heated by the absorption of incoming radiation and cooled by surface heat fluxes, resulting in vigorous buoyancy-driven convection in the pond interior. Motivated by this setting, we conduct two-dimensional direct-numerical simulations of the turbulent convective flow of a Boussinesq fluid between two horizontal boundaries, with internal heating predicted from a two-stream radiation model. A linearised thermal boundary condition describes heat exchange with the overlying atmosphere, whilst the lower boundary is isothermal. Vertically asymmetric convective flow modifies the upper surface temperature, and hence controls the partitioning of the incoming heat flux between emission at the upper and lower boundaries. We determine how the downward heat flux into the ice varies with a Rayleigh number based on the internal heating rate, the flux ratio of background surface cooling compared to internal heating, and a Biot number characterising the sensitivity of surface fluxes to surface temperature. Thus we elucidate the physical controls on heat transfer through Arctic melt ponds which determine the fate of sea ice in the summer.

  19. Liquid metal micro heat pipes for space radiator applications

    NASA Technical Reports Server (NTRS)

    Gerner, F. M.; Henderson, H. T.

    1995-01-01

    Micromachining is a chemical means of etching three-dimensional structures, typically in single-crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (micro electro mechanical systems), where in addition to the ordinary two dimensional (planar) microelectronics, it is possible to build three-dimensional micromotors, electrically-actuated microvalves, hydraulic systems, and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor microfabrication. The University of Cincinnati group in collaboration with NASA Lewis formed micro heat pipes in silicon by the above techniques. Work is ongoing at a modest level, but several essential bonding and packaging techniques have been recently developed. Currently, we have constructed and filled water/silicon micro heat pipes. Preliminary thermal tests of arrays of 125 micro heat pipes etched in a 1 inch x 1 inch x 250 micron silicon wafer have been completed. These pipes are instrumented with extremely small P-N junctions to measure their effective conductivity and their maximum operating power. A relatively simple one-dimensional model has been developed in order to predict micro heat pipes' operating characteristics. This information can be used to optimize micro heat pipe design with respect to length, hydraulic diameter, and number of pipes. Work is progressing on the fabrication of liquid-metal micro heat pipes. In order to be compatible with liquid metal (sodium or potassium), the inside of the micro heat pipes will be coated with a refractory metal (such as tungsten, molybdenum, or titanium).

  20. Measurement of heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  1. Preliminary Design of a SP-100/Stirling Radiatively Coupled Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul; Tower, Leonard; Dawson, Ronald; Blue, Brian; Dunn, Pat

    1995-01-01

    Several methods for coupling the SP-100 space nuclear reactor to the NASA Lewis Research Center's Free Piston Stirling Power Convertor (FPSPC) are presented. A 25 kWe, dual opposed Stirling convertor configuration is used in these designs. The concepts use radiative coupling between the SP-100 lithium loop and the sodium heat pipe of the Stirling convertor to transfer the heat from the reactor to the convertor. Four separate configurations are presented. Masses for the four designs vary from 41 to 176 kgs. Each design's structure, heat transfer characteristics, and heat pipe performance are analytically modeled.

  2. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2016-12-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  3. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2017-06-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  4. Influence of snow cover changes on surface radiation and heat balance based on the WRF model

    NASA Astrophysics Data System (ADS)

    Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen

    2016-07-01

    The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes

  5. A new method for simultaneous measurement of convective and radiative heat flux in car underhood applications

    NASA Astrophysics Data System (ADS)

    Khaled, M.; Garnier, B.; Harambat, F.; Peerhossaini, H.

    2010-02-01

    A new experimental technique is presented that allows simultaneous measurement of convective and radiative heat flux in the underhood. The goal is to devise an easily implemented and accurate experimental method for application in the vehicle underhood compartment. The new method is based on a technique for heat-flux measurement developed by the authors (Heat flow (flux) sensors for measurement of convection, conduction and radiation heat flow 27036-2, © Rhopoint Components Ltd, Hurst Green, Oxted, RH8 9AX, UK) that uses several thermocouples in the thickness of a thermal resistive layer (foil heat-flux sensor). The method proposed here uses a pair of these thermocouples with different radiative properties. Measurements validating this novel technique are carried out on a flat plate with a prescribed constant temperature in both natural- and forced-convection flow regimes. The test flat plate is instrumented by this new technique, and also with a different technique that is intrusive but very accurate, used as reference here (Bardon J P and Jarny Y 1994 Procédé et dispositif de mesure transitoire de température et flux surfacique Brevet n°94.011996, 22 February). Discrepancies between the measurements by the two techniques are less than 10% for both convective and radiative heat flux. Error identification and sensitivity analysis of the new method are also presented.

  6. Universal Optimization Efficiency for Nonlinear Irreversible Heat Engines

    NASA Astrophysics Data System (ADS)

    Zhang, Yanchao; Guo, Juncheng; Lin, Guoxing; Chen, Jincan

    2017-06-01

    We introduce a multi-parameter combined objective function of heat engines under the strong coupling and symmetry condition and derive the universal expression of the optimization efficiency. The results obtained show that the optimization efficiency derived from the multi-parameter combined objective function include a variety of optimization efficiencies, such as the efficiency at the maximum power, efficiency at the maximum efficiency-power state, efficiency at the maximum ecological or unified trade-off function, and Carnot efficiency. It is further explained that these results are also suitable for the endoreversible cycle model of the Carnot heat engines operating between two heat reservoirs.

  7. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    NASA Technical Reports Server (NTRS)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  8. Effect of radiative heat transfer on the coagulation dynamics of combustion-generated particles

    SciTech Connect

    Mackowski, D.W. ); Tassopoulos, M.; Rosner, D.E. )

    1994-01-01

    We examine the influences of radiation heat transfer on the size and number density evolution of small coagulating particles. On a microscopic level, radiative emission and/or absorption by the particle will perturb the gas temperature field adjacent to each particle. As a result of thermophoretic particle transport, the nonequilibrium condition can alter the collision rates with neighboring particles. A simplified analysis of the thermophoretic coagulation mechanism suggests that net radiative cooling of the particles can lead to an accelerated growth of [mu]m-sized particles, whereas net radiative heating can act to essentially freeze coagulation rates. On the macroscopic level, the addition or removal of heat in the gas through radiative absorption emission by the particle cloud can also significantly alter, through thermophoretic transport, the local particle number density. Under certain cases these effects can augment the accelerated coagulation rates that occur under radiative cooling conditions. We also examine the particular situation of equilibrium between particle cloud radiative absorption and emission - which results in no net macroscopic effect on the gas. 30 refs., 9 figs.

  9. Solar Radiation during Rewarming from Torpor in Elephant Shrews: Supplementation or Substitution of Endogenous Heat Production?

    PubMed Central

    Thompson, Michelle L.; Mzilikazi, Nomakwezi; Bennett, Nigel C.; McKechnie, Andrew E.

    2015-01-01

    Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy. PMID:25853244

  10. Solar radiation during rewarming from torpor in elephant shrews: supplementation or substitution of endogenous heat production?

    PubMed

    Thompson, Michelle L; Mzilikazi, Nomakwezi; Bennett, Nigel C; McKechnie, Andrew E

    2015-01-01

    Many small mammals bask in the sun during rewarming from heterothermy, but the implications of this behaviour for their energy balance remain little understood. Specifically, it remains unclear whether solar radiation supplements endogenous metabolic thermogenesis (i.e., rewarming occurs through the additive effects of internally-produced and external heat), or whether solar radiation reduces the energy required to rewarm by substituting (i.e, replacing) metabolic heat production. To address this question, we examined patterns of torpor and rewarming rates in eastern rock elephant shrews (Elephantulus myurus) housed in outdoor cages with access to either natural levels of solar radiation or levels that were experimentally reduced by means of shade cloth. We also tested whether acclimation to solar radiation availability was manifested via phenotypic flexibility in basal metabolic rate (BMR), non-shivering thermogenesis (NST) capacity and/or summit metabolism (Msum). Rewarming rates varied significantly among treatments, with elephant shrews experiencing natural solar radiation levels rewarming faster than conspecifics experiencing solar radiation levels equivalent to approximately 20% or 40% of natural levels. BMR differed significantly between individuals experiencing natural levels of solar radiation and conspecifics experiencing approximately 20% of natural levels, but no between-treatment difference was evident for NST capacity or Msum. The positive relationship between solar radiation availability and rewarming rate, together with the absence of acclimation in maximum non-shivering and total heat production capacities, suggests that under the conditions of this study solar radiation supplemented rather than substituted metabolic thermogenesis as a source of heat during rewarming from heterothermy.

  11. Drying characteristics and quality of bananas under infrared radiation heating

    USDA-ARS?s Scientific Manuscript database

    Hot air (HA) drying of banana has low drying efficiency and results in undesirable product quality. The objectives of this research were to investigate the feasibility of infrared (IR) heating to improve banana drying rate, evaluate quality of the dried product, and establish models for predicting d...

  12. Peeling of tomatoes using novel infrared radiation heating technology

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of using infrared (IR) dry-peeling as an alternative process for peeling tomatoes without lye and water was studied. Compared to conventional lye peeling, IR dry-peeling using 30 s to 75 s heating time resulted in lower peeling loss (8.3% - 13.2% vs. 12.9% - 15.8%), thinner thickne...

  13. Effective disinfection of rough rice using infrared radiation heating

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the effect of infrared (IR) heating and tempering treatments on disinfection of Aspergillus flavus in freshly harvested rough rice and storage rice. Rice samples with initial moisture contents (IMCs) of 14.1 to 27.0% (wet basis) were infected with A. fl...

  14. Measurements of convective and radiative heating in wildland fires

    Treesearch

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Jason M. Forthofer; Paul Sopko; Kyle S. Shannon; J. Kevin Hiers; Roger D. Ottmar

    2012-01-01

    Time-resolved irradiance and convective heating and cooling of fast-response thermopile sensors were measured in 13 natural and prescribed wildland fires under a variety of fuel and ambient conditions. It was shown that a sensor exposed to the fire environment was subject to rapid fluctuations of convective transfer whereas irradiance measured by a windowed sensor was...

  15. Inhomogeneous vasodilatory responses of rat tail arteries to heat stress: evaluation by synchrotron radiation microangiography.

    PubMed

    Kuwabara, Eriko; Furuyama, Fujiya; Ito, Kunihisa; Tanaka, Etsuro; Hattan, Naoichiro; Fujikura, Hisanori; Kimura, Koji; Goto, Takako; Hayashi, Takashi; Taira, Hiroyuki; Shinozaki, Yoshiro; Umetani, Keiji; Hyodo, Kazuyuki; Tanioka, Kenkichi; Mochizuki, Ryo; Kawai, Toshiaki; Koide, Shirosaku; Mori, Hidezo

    2002-10-01

    Tail blood flow is crucial for dissipating body heat in rats. Angiographies are convenient tools to evaluate tail circulation. However, conventional angiographies do not have sufficient sensitivity or spatial resolution for small vessels. Recently, we developed a novel microangiographic system using monochromatic synchrotron radiation and a high-definition video camera system. Here, we report an evaluation of rat tail circulation under heat stress using the synchrotron radiation microangiographic system. We performed an experiment using the microangiography of the caudal artery before and after heating up WKAH/HkmSlc rats to rectal temperature of 39 degrees C. The images were digitized and temporal subtraction was performed, and the diameters of caudal arteries were evaluated. After heating, the medial caudal artery was markedly dilated (320 +/- 53 to 853 +/- 243 micro m in diameter, p<0.001), while no significant change was observed in the lateral caudal arteries (139 +/- 42 to 167 +/- 73 micro m) and segmental anastomosing vessels. The heat stress allowed for visualization of the superficial caudal arteries with a diameter of approximately 60 micro m, not visible prior to heating. Thus, synchrotron radiation microangiography demonstrated that the rat tail possessed dual sets of arteries; one set was highly sensitive to heat-induced vasodilation (medial caudal artery and superficial caudal arteries) and the other set was less sensitive (lateral caudal arteries and segmental anastomosing vessels).

  16. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates

  17. A Radiative Transport Model for Heating Paints using High Density Plasma Arc Lamps

    SciTech Connect

    Sabau, Adrian S; Duty, Chad E; Dinwiddie, Ralph Barton; Nichols, Mark; Blue, Craig A; Ott, Ronald D

    2009-01-01

    The energy distribution and ensuing temperature evolution within paint-like systems under the influence of infrared radiation was studied. Thermal radiation effects as well as those due to heat conduction were considered. A complete set of material properties was derived and discussed. Infrared measurements were conducted to obtain experimental data for the temperature in the paint film. The heat flux of the incident radiation from the plasma arc lamp was measured using a heat flux sensor with a very short response time. The comparison between the computed and experimental results for temperature show that the models that are based on spectral four-flux RTE and accurate optical properties yield accurate results for the black paint systems.

  18. Magnetogasdynamic Cylindrical Shock Waves in a Rotating Nonideal Gas with Radiation Heat Flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Patel, Nanhey

    2015-03-01

    A similarity solution is presented for a cylindrical magnetogasdynamic shock wave in a rotating nonideal gas in the presence of a variable axial magnetic field in the case where the radiation heat flux is of importance. The initial angular velocity of the medium is assumed to vary as some power of the distance from the symmetry axis. The radiation heat flux is evaluated from the equation of motion without explicit use of the radiation transfer equations. It is shown that the gas nonidealness increases the shock strength but decreases the shock velocity. On the other hand, the presence of a magnetic field decreases the shock strength but increases the shock velocity. Moreover, the shock velocity increases with the ratio of specific heats. The total energy of the shock wave increases with time.

  19. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect

    Im, K H; Ahluwalia, R K

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  20. Jeans instability of self gravitating partially ionized Hall plasma with radiative heat loss functions and porosity

    NASA Astrophysics Data System (ADS)

    Kaothekar, Sachin; Chhajlani, R. K.

    2013-06-01

    The Jeans instability of partially ionized self gravitating plasma is discussed to investigate the effect of the Hall current, radiative heat-loss function, thermal conductivity, collision frequency of neutrals, porosity, finite electrical resistivity and viscosity for the formation of stars in HI and HII regions. The standard Magnetohydrodynamics (MHD) set of equations is used for the present configuration with radiative heat-loss function and thermal conductivity. A general dispersion relation is obtained from perturbation equations using the normal mode analysis method. We find that the Jeans condition of self-gravitational instability is modified due to the presence of neutral particle, radiative heat-loss functions and thermal conductivity. Presence of Hall current, porosity and collision frequency have no effect on Jeans criterion.

  1. Effects of anisotropic conduction and heat pipe interaction on minimum mass space radiators

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Lund, Kurt O.

    1991-01-01

    Equations are formulated for the two dimensional, anisotropic conduction of heat in space radiator fins. The transverse temperature field was obtained by the integral method, and the axial field by numerical integration. A shape factor, defined for the axial boundary condition, simplifies the analysis and renders the results applicable to general heat pipe/conduction fin interface designs. The thermal results are summarized in terms of the fin efficiency, a radiation/axial conductance number, and a transverse conductance surface Biot number. These relations, together with those for mass distribution between fins and heat pipes, were used in predicting the minimum radiator mass for fixed thermal properties and fin efficiency. This mass is found to decrease monotonically with increasing fin conductivity. Sensitivities of the minimum mass designs to the problem parameters are determined.

  2. Regularities pertinent to heat transfer between torch gas layers and steam boiler firebox waterwalls. Part I. Geometrical and physical torch model as a source of heat radiation

    NASA Astrophysics Data System (ADS)

    Makarov, A. N.

    2014-09-01

    The progress seen in the 19th-21st centuries in the development of methods for calculating heat transfer in torch furnaces, fireboxes, and combustion chambers is analyzed. Throughout the 20th century, calculations of heat transfer were carried out based on the law for radiation from solid bodies deduced by Y. Stefan and L. Boltzmann. It is shown that the use of this law for calculating heat transfer of a torch (a gaseous source of radiation) in heating furnaces and power-generating installations leads to incorrect results. It is substantiated that there is crisis of methods for calculating heat transfer in torch furnaces and power-generating installations. Geometrical and physical torch models in the form of radiating cylindrical gas volumes as sources of heat radiation are proposed for overcoming this crisis.

  3. Structure for conversion of solar radiation to electricity and heat

    SciTech Connect

    Boling, N.L.; Rapp, C.F.

    1980-01-29

    Disclosed is a modified flat plate thermal collector, modified to substitute for one of its insulating flat light conducting members a flat luminescent solar collector plate coupled to a photocell and having a thin layer containing a luminescent species responsive to solar radiation, to provide a structure for producing both electrical and thermal energy, wherein said thin layer is protected from the ambient atmosphere and wherein the thin layer is out of contact with said photocell.

  4. Accretion shock stability on a dynamically heated YSO atmosphere with radiative transfer

    NASA Astrophysics Data System (ADS)

    de Sá, Lionel; Chièze, Jean-Pierre; Stehlé, Chantal; Matsakos, Titos; Ibgui, Laurent; Lanz, Thierry; Hubeny, Ivan

    2014-01-01

    Theory and simulations predict Quasi-Periodic Oscillations of shocks which develop in magnetically driven accretion funnels connecting the stellar disc to the photosphere of Young Stellar Objects (YSO). X-ray observations however do not show evidence of the expected periodicity. We examine here, in a first attempt, the influence of radiative transfer on the evolution of material impinging on a dynamically heated stellar atmosphere, using the 1D ALE-RHD code ASTROLABE. The mechanical shock heating mechanism of the chromosphere only slightly perturbs the flow. We also show that, since the impacting flow, and especially the part which penetrates into the chromosphere, is not treated as a purely radiating transparent medium, a sufficiently efficient coupling between gas and radiation may affect or even suppress the oscillations of the shocked column. This study shows the importance of the description of the radiation effects in the hydrodynamics and of the accuracy of the opacities for an adequate modeling.

  5. Cloud-generated radiative heating and its generation of available potential energy

    NASA Technical Reports Server (NTRS)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  6. Cloud-generated radiative heating and its generation of available potential energy

    NASA Technical Reports Server (NTRS)

    Stuhlmann, R.; Smith, G. L.

    1989-01-01

    The generation of zonal available potential energy (APE) by cloud radiative heating is discussed. The APE concept was mathematically formulated by Lorenz (1955) as a measure of the maximum amount of total potential energy that is available for conversion by adiabatic processes to kinetic energy. The rate of change of APE is the rate of the generation of APE minus the rate of conversion between potential and kinetic energy. By radiative transfer calculations, a mean cloud-generated radiative heating for a well defined set of cloud classes is derived as a function of cloud optical thickness. The formulation is suitable for using a general cloud parameter data set and has the advantage of taking into account nonlinearities between the microphysical and macrophysical cloud properties and the related radiation field.

  7. Asymptotic solution for heat convection-radiation equation

    SciTech Connect

    Mabood, Fazle; Ismail, Ahmad Izani Md; Khan, Waqar A.

    2014-07-10

    In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.

  8. Buoyancy-driven flows of a radiatively participating fluid in a vertical cylinder heated from below

    NASA Technical Reports Server (NTRS)

    Salinger, A. G.; Brandon, S.; Aris, R.; Derby, J. J.

    1993-01-01

    The effect of radiative energy transport on the onset and evolution of natural convective flows is studied in a Rayleigh-Benard system. Steady, axisymmetric flows of a radiatively participating fluid contained in a rigid-walled, vertical cylinder which is heated on the base, cooled on top, and insulated on the side wall are calculated by using the Galerkin FEM. Bifurcation analysis techniques are used to investigate the changes in the flow structure due to internal radiation. The results of this two-parameter study - where the Rayleigh number, Ra and optical thickness, tau, are varied - apply to fluids ranging from opaque to nearly transparent with respect to IR radiation. For any nonopaque fluid, internal radiation eliminates the static state that without radiation, exists for all values of the Rayleigh number. This heat transfer mechanism also destroys a symmetry of the system that relates clockwise and counterclockwise flows. The connectivity between characteristic flow families and the range of Ra where families are stable are found to depend greatly on tau. Results demonstrate the inadequacy of characterizing the behavior of this system using simple notions of radiative transfer in optically thick or thin media; the nonlinear interaction of radiation and flow are far more complicated than these asymptotic limits would imply.

  9. Comparison of measured and modeled radiation, heat and water vapor fluxes: FIFE pilot study

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Verma, Shashi B.; Hubbard, Kenneth G.; Starks, Patrick; Hays, Cynthia; Norman, John M.; Waltershea, Elizabeth

    1988-01-01

    The primary objectives of the 1985 study were to test the feasibility of using radio frequency receivers to collect data from automated weather stations and to evaluate the use of the data collected by the automated weather stations for modeling the fluxes of latent heat, sensible heat, and radiation over wheat. The model Cupid was used to calculate these fluxes which were compared with fluxes of these entities measured using micrometeorological techniques. The primary objectives of the 1986 study were to measure and model reflected and emitted radiation streams at a few locations within the First International Satellite Land-Surface Climatology Project Field Experiment (FIFE) site and to compare modeled and measured latent heat and sensible heat fluxes from the prairie vegetation.

  10. User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)

    NASA Technical Reports Server (NTRS)

    Hainley, Donald C.

    1991-01-01

    A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.

  11. Rewetting of monogroove heat pipe in Space Station radiators

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1994-01-01

    This annual report summarizes the work accomplished on rewetting of monogroove heat pipe in space station. Specifically, theoretical and experimental investigations of the rewetting characteristics of thin liquid films over unheated and heated capillary grooved plates were performed. To investigate the effect of gravity on rewetting, the grooved surface was placed in upward and downward facing positions. Profound gravitational effects were observed as the rewetting velocity was found to be higher in the upward than in the downward facing orientation. The difference was even greater with higher initial plate temperatures. With either orientation, it was found that the rewetting velocity increased with the initial plate temperature. But when the temperature was raised above a rewetting temperature, the rewetting velocity decreased with the initial plate temperature. Hydrodynamically controlled and heat conduction controlled rewetting models were then presented to explain and to predict the rewetting characteristics in these two distinct regions. The predicted rewetting velocities were found to be in good agreement with experimental data with elevated plate temperatures.

  12. Inter-animal radiation as potential heat stressor in lying animals

    NASA Astrophysics Data System (ADS)

    Berman, A.

    2014-09-01

    A model for predicting inter-animal radiant heat exchange in shaded animals is presented, with emphasis on mature cattle. When a cow's surface temperature is 35 °C, as is common in warmer climates, it loses ˜510 Watt m-2 as radiant heat. Net radiant heat balance depends on radiation coming from bodies in the vicinity. In the 30 °C radiant temperature shaded environment typical of warm climates, net radiant loss from a lactating cow is ˜60 Watt m-2, i.e., 30 % of its ˜173 Watt m-2 heat production. Cows rest for 8-14 h day-1. The heat exchange of a lying cow differs from that of a standing one: the body center is low and 20-30 % of its surface contacts a surface of relatively low heat conductance. Lying reduces the impact of the surrounding shaded area on heat exchange but increases that of heat radiating from neighboring cows. When a cow rests adjacent to other cows, with 1.25 m between body centers when in stalls, it occupies about 140° of the horizontal plane of view. Heat emitted from the animal's surface reduces the net radiant heat loss of a resting cow by ˜30 Watt m-2. In contrast, the presence of cows at 5 and 10 m distance, e.g., cows resting on straw in loose yard housing, reduces the net radiant heat loss of the resting cow by 9 and 5 Watt m-2, respectively. Radiant heat input increases with animal density, which is beneficial in cooler climates, but acts as a stressor in warm climates.

  13. Inter-animal radiation as potential heat stressor in lying animals.

    PubMed

    Berman, A

    2014-09-01

    A model for predicting inter-animal radiant heat exchange in shaded animals is presented, with emphasis on mature cattle. When a cow's surface temperature is 35 °C, as is common in warmer climates, it loses ∼510 Watt m(-2) as radiant heat. Net radiant heat balance depends on radiation coming from bodies in the vicinity. In the 30 °C radiant temperature shaded environment typical of warm climates, net radiant loss from a lactating cow is ∼60 Watt m(-2), i.e., 30 % of its ∼173 Watt m(-2) heat production. Cows rest for 8-14 h day(-1). The heat exchange of a lying cow differs from that of a standing one: the body center is low and 20-30 % of its surface contacts a surface of relatively low heat conductance. Lying reduces the impact of the surrounding shaded area on heat exchange but increases that of heat radiating from neighboring cows. When a cow rests adjacent to other cows, with 1.25 m between body centers when in stalls, it occupies about 140° of the horizontal plane of view. Heat emitted from the animal's surface reduces the net radiant heat loss of a resting cow by ∼30 Watt m(-2). In contrast, the presence of cows at 5 and 10 m distance, e.g., cows resting on straw in loose yard housing, reduces the net radiant heat loss of the resting cow by 9 and 5 Watt m(-2), respectively. Radiant heat input increases with animal density, which is beneficial in cooler climates, but acts as a stressor in warm climates.

  14. Simulation of the radiation-convective heat transfer in multinozzle assemblies of rocket engines

    NASA Astrophysics Data System (ADS)

    Volkov, N. N.; Volkova, L. I.; Tsatsuev, S. M.

    2012-12-01

    The method and results of numerical modeling of the radiation-convective heat transfer and thermal state in the systems of multinozzle rocket-engine (RE) assemblies are presented. The method is implemented in a form of a software module entered as the component into the program of calculation of the nonsteady thermal state of the RE nozzles. The results of calculation by the consolidated program are given, and the two-dimensional thermal fields on the external and internal surfaces of mouthpieces of the four-nozzle liquid rocket engine allow us to refine the thermal state of the nozzles themselves and evaluate the radiation heat flows in the engine module.

  15. Radiative heating rates during AAOE and AASE. [Airborne Antarctic Ozone Experiment and Airborne Arctic Stratospheric Experiment

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.

    1990-01-01

    Radiative transit computations of heating rates utilizing data from the 1987 Airborne Antarctic Ozone Experiment (AAOE) (Tuck et al., 1989) and the 1989 Airborne Arctic Stratospheric Experiment (AASE) (Turco et al., 1990) are described. Observed temperature and ozone profiles and a radiative transfer model are used to compute the heating rates for the Southern Hemisphere during AAOE and the Northern Hemisphere during AASE. The AASE average cooling rates computed inside the vortex are in good agreement with the diabatic cooling rates estimated from the ER-2 profile data for N2O for the AASE period (Schoeberl et al., 1989).

  16. Mixed Convection with Conduction and Surface Radiation from a Vertical Channel with Discrete Heating

    NASA Astrophysics Data System (ADS)

    Londhe, S. D.; Rao, C. G.

    2013-10-01

    A numerical investigation into fluid flow and heat transfer for the geometry of a vertical parallel plate channel subjected to conjugate mixed convection with radiation is attempted here. The channel considered has three identical flush-mounted discrete heat sources in its left wall, while the right wall that does not contain any heat source acts as a sink. Air, assumed to be a radiatively non-participating and having constant thermophysical properties subject to the Boussinesq approximation, is the cooling agent. The heat generated in the left wall gets conducted along it and is later dissipated by mixed convection and radiation. The governing equations, considered in their full strength sans the boundary layer approximations, are converted into vorticity-stream function form and are then normalized. These equations along with pertinent boundary conditions are solved through finite volume method coupled with Gauss-Seidel iterative technique. The effects of modified Richardson number, surface emissivity, thermal conductivity and aspect ratio on local temperature distribution along the channel, maximum channel temperature and relative contributions of mixed convection and radiation have been thoroughly studied. The prominence of radiation in the present problem has been highlighted.

  17. Transient conductive, radiative heat transfer coupled with moisture transport in attic insulations

    NASA Astrophysics Data System (ADS)

    Gorthala, R.; Harris, K. T.; Roux, J. A.; McCarty, T. A.

    1994-01-01

    A transient, one-dimensional thermal model that incorporates combined conduction, radiation heat transfer, and moisture transport for residential attic insulations has been developed. The governing equations are the energy equation, the radiative transport equation for volumetric radiation within the insulation batt, and the species equations for bound H2O and vapor H2O. A simultaneous solution procedure with a Eulerian control volume-based finite difference method was used to solve the energy equation and the species equations. The method of discrete ordinates was used in solving the radiative transport equation. For H2O transport, both diffusion of vapor H2O and bound H2O and moisture adsorption/desorption within the insulation binder are included in the model. The experimental data measured at an occupied North Mississippi residence for R19STD (standard R19 fiberglass insulation batt without a foil radiant barrier) were used to validate the model which predicted heat fluxes for summer, spring, winter, and fall seasonal conditions. These predictions were compared with the measured heat flux data and the predictions from the dry model (without the moisture transport). Various profiles such as temperature-time histories, relative humidity time histories, spatial H2O concentrations, spatial temperatures, and spatial heat fluxes are presented to explain the overall heat transfer behavior.

  18. The hydrodynamic and radiative properties of low-density foams heated by x-rays

    NASA Astrophysics Data System (ADS)

    Rosmej, O. N.; Suslov, N.; Martsovenko, D.; Vergunova, G.; Borisenko, N.; Orlov, N.; Rienecker, T.; Klir, D.; Rezack, K.; Orekhov, A.; Borisenko, L.; Krousky, E.; Pfeifer, M.; Dudzak, R.; Maeder, R.; Schaechinger, M.; Schoenlein, A.; Zaehter, S.; Jacoby, J.; Limpouch, J.; Ullschmied, J.; Zhidkov, N.

    2015-09-01

    An advanced type of hydrodynamic stable plasma targets with homogeneous distribution of plasma parameters has been proposed for application in experiments on heavy ion stopping in plasmas and relativistic laser based particle acceleration. Plasma was created via x-ray heating of polymer aerogels with a mean density 103 times lower than that of solid matter. Hydrodynamic and radiation properties of low-density polymer aerogels heated by x-rays, which were generated due to laser interaction with a gold hohlraum, have been investigated experimentally and numerically. In experiments carried out at the PALS laser facility in Prague, the parameters of the hohlraum based soft x-ray source and the fraction of x-ray energy absorbed by foam layers have been measured. The results of these experiments and numerical simulations show that the x-ray heat process occurs via propagation of supersonic radiation driven heat waves. The measured heat wave velocity of 107 cm s-1 allows one to estimate the plasma temperature reached as 25 eV. The hydrodynamic stability of x-ray heated plasma layers has been demonstrated by means of an optical streak camera viewing the plasma expansion process. Simulations of the foam heating process denote rather homogeneous distribution of the plasma temperature and density in the x-ray heated plasma layer and sharp plasma boundaries. The investigated features of such plasma targets are a great advantage for experiments with heavy ion and relativistic laser beams.

  19. Similarity solution for a cylindrical shock wave in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Nath, G.

    2012-01-01

    The propagation of shock waves in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux, which has a variable azimuthally fluid velocity together with a variable axial fluid velocity, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston (or inner expanding surface). The fluid velocities in the ambient medium are assume to be vary and obey power laws. The density of the ambient medium is assumed to be constant, the heat conduction is express in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. In order to obtain the similarity solutions the angular velocity of the ambient medium is assume to be decreasing as the distance from the axis increases. The effects of the variation of the heat transfer parameter and non-idealness of the gas in the mixture are investigated. The effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are also investigated.

  20. How do rain drops affect atmospheric radiative fluxes and heating rates?

    NASA Astrophysics Data System (ADS)

    Hill, Peter; Chiu, Christine; Chern, Jiun-Dar; Allan, Richard; Hill, Adrian

    2017-04-01

    General circulation model (GCM) radiation schemes are becoming increasingly sophisticated; the treatment of clouds has become more refined while the number of gases and aerosol species that are represented continues to rise. However, all GCMs continue to ignore the radiative effect of precipitating liquid water (rain). The resulting biases are expected to be small, but they have yet to be quantified. This study aims to provide a first estimate of how rain affects the atmospheric radiation budget at a range of temporal and spatial scales. This is a necessary first step towards determining whether GCM radiation schemes should include rain. We define the rain radiative effect here as the difference between radiative fluxes calculated with and without rain. We perform calculations using the SOCRATES (Suite Of Community Radiative Transfer codes based on Edwards-Slingo) radiative tranfser scheme. Input atmospheric profiles are taken from two weeks (one week during boreal winter and the other during boreal summer) of a Goddard multiscale modelling framework (MMF) simulation. Based on these calculations, we shall quantify and explain how rain affects the transfer of radiation through the atmosphere and thus radiative heating rates and fluxes at both the surface and top of atmosphere.

  1. Radiative Heat Transfer in Finite Cylindrical Enclosures with Nonhomogeneous Participating Media

    NASA Technical Reports Server (NTRS)

    Hsu, Pei-Feng; Ku, Jerry C.

    1994-01-01

    Results of a numerical solution for radiative heat transfer in homogeneous and nonhomogeneous participating media are presented. The geometry of interest is a finite axisymmetric cylindrical enclosure. The integral formulation for radiative transport is solved by the YIX method. A three-dimensional solution scheme is applied to two-dimensional axisymmetric geometry to simplify kernel calculations and to avoid difficulties associated with treating boundary conditions. As part of the effort to improve modeling capabilities for turbulent jet diffusion flames, predicted distributions for flame temperature and soot volume fraction are used to calculate radiative heat transfer from soot particles in such flames. It is shown that the nonhomogeneity of radiative property has very significant effects. The peak value of the divergence of radiative heat flux could be underestimated by 2 factor of 7 if a mean homogeneous radiative property is used. Since recent studies have shown that scattering by soot agglomerates is significant in flames, the effect of magnitude of scattering is also investigated and found to be nonnegligible.

  2. Giant heat transfer in the crossover regime between conduction and radiation

    PubMed Central

    Kloppstech, Konstantin; Könne, Nils; Biehs, Svend-Age; Rodriguez, Alejandro W.; Worbes, Ludwig; Hellmann, David; Kittel, Achim

    2017-01-01

    Heat is transferred by radiation between two well-separated bodies at temperatures of finite difference in vacuum. At large distances the heat transfer can be described by black body radiation, at shorter distances evanescent modes start to contribute, and at separations comparable to inter-atomic spacing the transition to heat conduction should take place. We report on quantitative measurements of the near-field mediated heat flux between a gold coated near-field scanning thermal microscope tip and a planar gold sample at nanometre distances of 0.2–7 nm. We find an extraordinary large heat flux which is more than five orders of magnitude larger than black body radiation and four orders of magnitude larger than the values predicted by conventional theory of fluctuational electrodynamics. Different theories of phonon tunnelling are not able to describe the observations in a satisfactory way. The findings demand modified or even new models of heat transfer across vacuum gaps at nanometre distances. PMID:28198369

  3. Calculations of radiative heat transfer in an axisymmetric jet diffusion flame at elevated pressures using different gas radiation models

    NASA Astrophysics Data System (ADS)

    Chu, Huaqiang; Consalvi, Jean-Louis; Gu, Mingyan; Liu, Fengshan

    2017-08-01

    Radiation heat transfer in axisymmetric jet diffusion flames under conditions relevant to oxygen-enriched combustion at total pressures of 1, 10, 20, and 30 atm was calculated using several gas radiation models: line-by-line (LBL), narrow-band correlated-k (NBCK), wide-band correlated-k (WBCK), full-spectrum correlated-k (FSCK), spectral-line based weight-sum-of-gray-gases (SLW), and weight-sum-of-gray-gases (WSGG). An optimized NBCK model, an optimized FSCK model, and a WBCK model were proposed and evaluated. The LBL results are used as the benchmark solution in the evaluation of other gas radiation models. The optimized NBCK model and the optimized FSCK model are much more computationally efficient than the standard implementation of these models with very little loss in accuracy. The NBCK, WBCK, and FSCK models are accurate and their normalized errors in both the radiative source term and radiative flux remain less than about 7% and display essentially no dependence on the total pressure. Whatever the pressure considered, the FSCK is found to provide accurate predictions by considering only 10 Gauss points. For the same number of gray gases, the SLW is less accurate than the FSCK, especially at pressures higher than the atmospheric pressure. However, its accuracy can be significantly improved to reach that of the FSCKby increasing the number of gray gases. The accuracy of WSGG models deteriorates somewhat with increasing the total pressure in the prediction of radiative heat flux, though it displays no significant dependence on the total pressure in the calculation of the radiative source term. The spectral line broadening has a non-negligible influence on radiative heat transfer in the jet diffusion flame. The somewhat increased inaccuracy of the WSGG model with increasing the total pressure is at least partially due to the application of the model parameters derived at 1 atm to high pressures. The normalized errors of WSGG are about 10 to 20%. The optimized

  4. Imaging Thomson scattering measurements of radiatively heated Xe

    SciTech Connect

    Pollock, B; Meinecke, J; Kuschel, S; Ross, J S; Divol, L; Glenzer, S H; Tynan, G R

    2012-05-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {micro}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {micro}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {micro}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {micro}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20 {+-} 4 at up to 200 eV electron temperatures.

  5. Rewetting of Monogroove Heat Pipe in Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Chan, S. H.; Shen, Ting Rong; Blake, John

    1996-01-01

    Experimental investigation of the rewetting characteristics of a uniformly heated grooved surface was performed, the results of which are presented in this work. It was found that, for a rewetting fluid of 2-propanol, the rewetting temperature was approx. 93-96 C for the upward-facing case and about 2 C lower for the downwardfacing case. When the initial plate temperature was higher than the rewetting temperature, the rewetting speed decreased with the initial plate temperature. The rewetting speed is also faster in the upward-facing case than in the downward-facing case for the same initial plate temperatures, which indicates a gravitational effect on rewetting. This trend is found to be consistent with the previously investigated end heating condition. The rewetting distance that is predicted by the conduction controlled model is found to be in fair agreement with the experimental data. Also, an apparatus that enables experiments to be performed in a reduced gravitational environment has been built and experiments are currently being performed. The design of this apparatus is presented along with preliminary data.

  6. Modeling the film condensate fluid dynamics and heat transfer within the bubble membrane radiator

    SciTech Connect

    Pauley, K.A.; Thornborrow, J.O.

    1992-01-01

    An analytical model of the fluid dynamics and heat transfer characteristics of the condensate within the rotating Bubble Membrane Radiator is developed. The steady-state, three-dimensional heat transfer and flow equations were reduced to a set of third-order ordinary differential equations by employing similarity transformation techniques. These equations are then solved for the radial, axial, and angular flow distributions in the film condensate. Pressure, temperature, heat transfer, film thickness and mass flow rate distributions are also calculated. The analytical model is the basis of the SCRABBLE code which is used both as a zero-g design tool and a ground-test bed analyzer.

  7. Nonequilibrium radiation and dissociation of CO molecules in shock-heated flows

    NASA Astrophysics Data System (ADS)

    Macdonald, R. L.; Munafò, A.; Johnston, C. O.; Panesi, M.

    2016-08-01

    This work addresses the study of the behavior of the excited electronic states of CO molecules in the nonequilibrium relaxation zone behind a normal shock for a CO2-N2 mixture representative of the Mars atmosphere. The hybrid state-to-state (StS) model developed accounts for thermal nonequilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules. The electronic states of CO molecules are treated as separate species, allowing for non-Boltzmann distributions of their populations. The StS model is coupled with a nonequilibrium radiation solver, hpc-rad, allowing for the calculation of the radiation signature from the molecular and atomic species in the gas. This study focuses on the radiation from the fourth positive system of CO, which dominates the radiation heating on the forebody for higher speed Mars entry applications. In the rapidly dissociating regime behind strong shock waves, the population of the ground electronic state of CO [ CO(X 1Σ )], departs from Maxwell-Boltzmann distributions, owing to the efficient collisional excitation to the electronically excited CO(A 1Π ) state. In general the assumption of the equilibrium between electronic and vibration fails when the excitation of electronic states is driven by heavy particles. The comparison of the radiation heating predictions obtained using the conventional quasi-steady-state (QSS) approach and the physics-based StS approach revealed differences in radiative heating predictions of up to 50%. These results demonstrate that the choice of nonequilibrium model can have a significant impact on radiative heating simulations, and more importantly, they cast serious doubts on the validity of the QSS assumption for the condition of interest to this work.

  8. Computational methodology for radiation heat transfer in the flowfield of an AOTV

    NASA Technical Reports Server (NTRS)

    Fuehrer, P. L.; Edwards, D. K.; Babikian, D. S.

    1991-01-01

    A computational methodology is developed for the calculation of radiation heat transfer in a non-scattering medium where nonequilibrium conditions exist and give rise to complex spectra. The specific problem of radiation in an aeroassisted orbital transfer vehicle (AOTV) flowfield is addressed. Nonequilibrium radiation from the gases around a hypersonic vehicle is evaluated using the NASA-Ames NEQAIR program together with a three-dimensional geometrical flowfield model. Nonequilibrium compositions and temperatures are taken from NASA-Langley 3-D hypersonic flowfield calculations that include real-gas effects and finite-rate chemical kinetics. It is shown that the concept of a transmission path adjustment, together with precomputations of curves of growth based upon local properties at flowfield locations, facilitates radiation calculations. Sample calculations of directional and spectral distributions of gas radiation received upon a hypersonic vehicle are presented.

  9. The drag of airplane radiators with special reference to air heating : comparison of theory and experiment

    NASA Technical Reports Server (NTRS)

    Gothert, B

    1939-01-01

    This report contains a survey of past radiator research. This report also is intended as a systematic comparison of theoretical and experimental radiator drag, with the object of ascertaining the most important loss sources and their interaction in different cases of installation, and to separate the radiator systems which are amenable to calculation, both as regards axial flow and drag. The sources of loss due to the diffuser are to be looked into closely as in many cases they can be of preeminent magnitude and their customary appraisal, according to Fliegner's formula, does not meet actual conditions. Besides, generally applicable equations and charts are developed for the rapid determination of the heating effect of radiators as regards flow and drag, and then checked by routine tests on hot radiators.

  10. Experimental study of laminar flow forced-convection heat transfer in air flowing through offset plates heated by radiation heat flux

    SciTech Connect

    Ali, A.H.H.; Kishinami, Koki; Hanaoka, Yutaka; Suzuki, Jun

    1998-04-01

    An experimental study of the steady state laminar flow forced-convection heat transfer of air flowing through offset plates located between two parallel plates and heated by radiation heat flux was carried out. The ranges of parameters tested were incident radiation heat fluxes of 500, 700, and 1,000 W/m{sup 2}. With Re ranging from 650 to 2,560, the inlet air bulk temperatures changed from 18.2 to 70 C and the tilting angle of the unit with the horizontal ranged from 0 to 90{degree} respectively. The results show that the rate of the increase in the local Nusselt number was observed to be proportional with Re up to 1,900, while it became less sensitive over Re range of 1,900--2,500. Also, in this range of Re, with the inlet air temperature of 20 C, the angle of inclination of the unit has no effect on the local Nusselt number. Increasing the incident radiation heat flux in the case of higher values of Re leads to a slight decrease in the value of the local Nusselt number. The effect of the inlet air bulk temperature on the forced-convection heat transfer coefficient shows, in the case of the horizontal position, an increase in the inlet air bulk temperature leads to slight decreases in the value of the average Nusselt number, while it leads to significant decreases in the value of the average Nusselt number as the tilting angle increases up to the vertical position. This effect is clearer in the case of Re = 650 rather than Re = 2,550. This work has application to solar collectors.

  11. Experimental investigation on flow and heat transfer performance of a novel heat fin-plate radiator for electronic cooling

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Ling, Xiang

    2009-10-01

    Within the electronics industry, high degree of integration and enhanced performance has led to high heat dissipation electronic devices. This has identified the future development of very high heat flux components. In this paper, a novel and high efficient diffusion welded heat fin-plate radiator (HFPR) was proposed and designed. Various parameters affect the thermal performance of HFPR. The effect of three parameters: the working fluid filling ratios (8% < FR < 70%), the vacuum degrees (0.001 Pa < VD < 0.1 Pa), and the air flow velocities (0.5 m/s < u < 6 m/s) were investigated experimentally. Using distilled water and ethanol as working fluids, a series of tests were carried out to find the influence of the above parameters on steady-state heat transfer characteristics of HFPR. The experimental results indicated that the filling ratio and vacuum degree had a significant influence on thermal performance of HFPR. Also compared with cooling performance using distilled water and ethanol, the HFPR cooling component using distilled water had a stronger heat dissipation capacity for the same filling ratio. The results also can provide a basis for optimal design of HFPR structure.

  12. Using laser radiation for the formation of capillary structure in flat ceramic heat pipes

    NASA Astrophysics Data System (ADS)

    Nikolaenko, Yu. E.; Rotner, S. M.

    2012-12-01

    The possibility of using laser radiation with a wavelength of 1.064 μm for the formation of a capillary structure in the evaporation zone of flat ceramic heat pipes has been experimentally confirmed. Using a technological regime with established parameters, a capillary structure was formed in AlN and Al2O3 ceramic plates with a thickness of 1-2 mm and lateral dimensions of 48 × 60 and 100 × 100 mm, which ensured absorption of heat-transfer fluids (distilled water, ethyl alcohol, acetone) to a height of 100 mm against gravity forces. The thermal resistance of flat ceramic heat pipes with this capillary structure reaches 0.07°C/W, which is quite acceptable for their use as heat sinks in systems of thermal regime control for electronic components and as heat exchange plates for large-size thermoelectric conversion units.

  13. Active control of near-field radiative heat transfer between graphene-covered metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Qimei; Zhou, Ting; Wang, Tongbiao; Liu, Wenxing; Liu, Jiangtao; Yu, Tianbao; Liao, Qinghua; Liu, Nianhua

    2017-04-01

    In this study, the near-field radiative heat transfer between graphene-covered metamaterials is investigated. The electric surface plasmons (SPs) supported by metamaterials can be coupled with the SPs supported by graphene. The near-field heat transfer between the graphene-covered metamaterials is significantly larger than that between metamaterials because of the strong coupling in our studied frequency range. The relationship between heat flux and chemical potential is studied for different vacuum gaps. Given that the chemical potential of graphene can be tuned by the external electric field, heat transfer can be actively controlled by modulating the chemical potential. The heat flux for certain vacuum gaps can reach a maximum value when the chemical potential is at a particular value. The results of this study are beneficial for actively controlling energy transfer.

  14. Radiative and free-convective heat transfer from a finite horizontal plate inside an enclosure

    NASA Technical Reports Server (NTRS)

    Hrycak, Peter; Sandman, D. J.

    1986-01-01

    An experimental and analytical investigation of heat transfer from a horizontal, thin, square plate inside of an enclosure was carried out. Experimental results were obtained from both the upward-facing and the downward-facing sides of the heated plate. Starting with the integrated momentum and energy equations, approximate solutions were obtained for heat transfer in the laminar and the turbulent regime that correlate well with experimental data. Radiative heat transfer correction was given special attention. Effects of the enclosure-related recirculation of the test fluid, as well as effects of simultaneous heat transfer on both sides of the plate, caused an early transition, and indicated a high level of internal turbulence.

  15. Heat transfer in a gray tube with forced convection, internal radiation and axial wall conduction

    NASA Technical Reports Server (NTRS)

    Chung, B. T. F.; Thompson, J. E.

    1983-01-01

    A method of successive approximations is employed to solve the problem of heat transfer to a transparent gas flowing through a radiating-conducting tube with turbulent forced convection between the tube wall and the gas, and with energy generation in the wall. Emphasis is given to the effect of emissivity of the wall to the tube and gas temperature profiles.

  16. Laminar Convection in Binary Mixture of Hydromagnetic Flow with Radiative Heat Transfer - Part Two

    NASA Astrophysics Data System (ADS)

    Ogulu, A.; Bestman, A. R.; Alabraba, M. A.

    1992-09-01

    The hydromagnetic flow in a vertical channel with heat and mass transfer is studied when chemical reaction is present. For the general integral equation for radiative flux and in the absence of the Dufour term, the problem is reduced to a set of coupled integral equations which are solved iteratively. The results are compared with the solutions obtained when chemical reaction is absent.

  17. Optical Properties of Thermal Control Coatings After Weathering, Simulated Ascent Heating, and Simulated Space Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.

    2008-01-01

    Spacecraft radiators reject heat to their surroundings and coatings play an important role in this heat rejection. The coatings provide the combined optical properties of low solar absorptance and high infrared emittance. The coatings are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not designed for a terrestrial weathering environment, the durability of spacecraft paints, coatings, and appliques upon exposure to weathering and subsequent exposure to ascent heating, solar wind, and ultraviolet radiation was studied. In addition to traditional aluminum panels, new isocyanate ester composite panels were exposed for a total of 90 days at the Atmospheric Exposure Site of Kennedy Space Center's (KSC) Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected panel coupons were subsequently exposed to simulated ascent heating, solar wind, and vacuum ultraviolet (UV) radiation to identify the effect of a simulated space environment on as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints, coatings, and appliques.

  18. Comparison of antibodies raised against heat-and gamma radiation-killed bacteria

    USDA-ARS?s Scientific Manuscript database

    For antibody generation, pathogenic bacteria are often heat-treated prior to inoculation into host animals in order to prevent infection and subsequently, premature death of the host. Inoculation of host rabbits with gamma radiation-killed pathogenic bacteria was employed with the hopes of generati...

  19. Feasibility of Simultaneous Rough Rice Drying and Disinfestations by Infrared Radiation Heating and Rice Milling Quality

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the drying characteristics, milling quality and effectiveness of disinfestation of rough rice under conditions of infrared (IR) radiation heating. Freshly harvested medium grain rice (M202) samples with low (20.6%) and high (25.0%) moisture contents (M...

  20. Moisture removal characteristics of thin layer rough rice under sequenced infrared radiation heating and cooling

    USDA-ARS?s Scientific Manuscript database

    Rice drying with infrared (IR) radiation has been investigated during recent years and showed promising potential with improved quality and energy efficiency. The objective of this study was to further investigate the moisture removal characteristics of thin layer rough rice heated by IR and cooled ...

  1. Green's function solution to radiative heat transfer between longitudinal gray fins

    NASA Technical Reports Server (NTRS)

    Frankel, J. I.; Silvestri, J. J.

    1991-01-01

    A demonstration is presented of the applicability and versatility of a pure integral formulation for radiative-conductive heat-transfer problems. Preliminary results have been obtained which indicate that this formulation allows an accurate, fast, and stable computation procedure to be implemented. Attention is given to the accessory problem defining Green's function.

  2. Radiative heat-transfer model in the interior of a pulverized coal furnace

    SciTech Connect

    Canadas, L.; Salvador, L.; Ollero, P. )

    1990-04-01

    A practical mathematical model simulating radiative heat transfer in the furnace of a pulverized coal boiler is presented. The inclusion of this model in a pulverized coal combustion model allows for testing its validity and its sensitivity to furnace walls and particle emissivity values, by comparison with measurements in a 550 MW power plant boiler.

  3. STS-29 Space station Heat pipe Radiator Element (SHARE) at KSC OPF

    NASA Image and Video Library

    1989-01-20

    S89-25873 (Nov 1988) --- The Space Station Heat Pipe Advanced Radiator Element (SHARE) is readied for installation in late November at Kennedy Space Center's orbiter processing facility (OPF). The SHARE device will be carried on a pedestel in Discovery's cargo bay during the five-day STS-29 mission, scheduled for a mid-March 1989 launch.

  4. Boundary Heat Fluxes for Spectral Radiation from a Uniform Temperature Rectangular Medium

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1992-01-01

    The effect of spectral behavior is analytically shown for radiation in a 2D rectangular geometry. The solution provides exact boundary heat flux values that can be used for comparison with values obtained from general computer programs. The spectral solution presented can be easily evaluated by numerical integration for complex variations of the spectral absorption coefficient with wavelength.

  5. Numerical prediction of radiative heat transfer in reciprocating superadiabatic combustion in porous media.

    PubMed

    Du, Liming; Xie, Maozhao

    2011-06-01

    A numerical study of Reciprocating Superadiabatic Combustion of Premixed gases in porous media (hereafter, referred to as RSCP) is performed. In this system the transient combustion of methane-air mixture is stabilized in a porous media combustor by periodically switching flow directions. The mass, momentum, energy and species conservation equations are solved using a two-dimensional control volume method. Local thermal non-equilibrium between the gas and the solid phases is considered by solving separate energy equations for the two phases and coupling them through a convective heat transfer coefficient. The porous media is assumed to emit, absorb and isotropically scatter radiation. The influences of the dominating operating parameters, such as filtration velocity, equivalence ratio and half cycle on the temperature profile, heat release rate, radiant flux, radiant efficiency and combustion efficiency are discussed. The results show that coupling calculating of flow field, combustion reaction and volume radiation of the optically thick media is successively achieved and heat radiation plays an important role in the overall performance of the burner. The temperature profile inside the RSCP combustor has a typical trapezoidal shape and the profile of radiation flux is similar to sinusoidal shape. Compared with the conventional premixed combustion in porous medium, combustion behavior in RSCP combustor is superior, such as better thermal structure and higher radiation efficiency and combustion efficiency. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Open Loop Heat Pipe Radiator Having a Free-Piston for Wiping Condensed Working Fluid

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    2015-01-01

    An open loop heat pipe radiator comprises a radiator tube and a free-piston. The radiator tube has a first end, a second end, and a tube wall, and the tube wall has an inner surface and an outer surface. The free-piston is enclosed within the radiator tube and is capable of movement within the radiator tube between the first and second ends. The free-piston defines a first space between the free-piston, the first end, and the tube wall, and further defines a second space between the free-piston, the second end, and the tube wall. A gaseous-state working fluid, which was evaporated to remove waste heat, alternately enters the first and second spaces, and the free-piston wipes condensed working fluid from the inner surface of the tube wall as the free-piston alternately moves between the first and second ends. The condensed working fluid is then pumped back to the heat source.

  7. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps

    NASA Astrophysics Data System (ADS)

    Song, Bai; Thompson, Dakotah; Fiorino, Anthony; Ganjeh, Yashar; Reddy, Pramod; Meyhofer, Edgar

    2016-06-01

    Recent experiments have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories. Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography because of the expected increases in efficiency, power conversion or resolution in these applications. Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory. Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories. Our measurements were performed in vacuum gaps between prototypical materials (SiO2-SiO2, Au-Au, SiO2-Au and Au-Si) using two microdevices and a custom-built nanopositioning platform, which allows precise control over a broad range of gap sizes (from <100 nm to 10 μm). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena, with important implications for thermophotovoltaic applications, that have been predicted but have defied experimental verification.

  8. Radiative heat transfer in plasma of pulsed high pressure caesium discharge

    NASA Astrophysics Data System (ADS)

    Lapshin, V. F.

    2016-01-01

    Two-temperature many component gas dynamic model is used for the analysis of features of radiative heat transfer in pulsed high pressure caesium discharge plasma. It is shown that at a sufficiently high pressure the radial optical thickness of arc column is close to unit (τR (λ) ∼ 1) in most part of spectrum. In this case radiative heat transfer has not local character. In these conditions the photons which are emitted in any point of plasma volume are absorbed in other point remote from an emission point on considerable distance. As a result, the most part of the electric energy put in the discharge mainly near its axis is almost instantly redistributed on all volume of discharge column. In such discharge radial profiles of temperature are smooth. In case of low pressure, when discharge plasma is optically transparent for own radiation in the most part of a spectrum (τR(λ) << 1), the emission of radiation without reabsorption takes place. Radiative heat transfer in plasma has local character and profiles of temperature have considerable gradient.

  9. Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study

    NASA Astrophysics Data System (ADS)

    Ali, M. E.; Sandeep, N.

    The knowledge of heat transfer in MHD nanofluid flows over different geometries is very important for heat exchangers design, transpiration, fiber coating, etc. Recent days, heat transfer of non-Newtonian nanofluids plays a major role in manufacturing processes due to its shear thinning and thickening properties. Naturally, magnetite (Fe3O4) nanoparticles move randomly within the base fluid. By applying the transverse magnetic field, the motion of those nanoparticles becomes uniform. This phenomenon is very useful in heat transfer processes. With this initiation, a mathematical model is developed to investigate the heat transfer behaviour of electrically conducting MHD flow of a Casson nanofluid over a cone, wedge and a plate. We consider a Cattaneo-Christov heat flux model with variable source/sink and nonlinear radiation effects. We also considered water as the base fluid suspended with magnetite nanoparticles. R-K-Felhberg-integration scheme is employed to resolve the altered governing nonlinear equations. Impacts of governing parameters on common profiles (temperature and velocity) are conversed (in three cases). By viewing the same parameters, the friction factor coefficient and heat transfer rate are discussed with the assistance of tables. It is found that the boundary layers (thermal and flow) over three geometries (cone, wedge and a plate) are not uniform. It is also found that the thermal relaxation parameter effectively enhances the heat local Nusselt number and the heat transfer performance is high in the flow over a wedge when compared with the flows over a cone and plate.

  10. Significant enhancement of metal heat dissipation from mechanically exfoliated graphene nanosheets through thermal radiation effect

    NASA Astrophysics Data System (ADS)

    Hu, Junxiong; Xu, Jianbao; Zhu, Chao; Li, Qi; Ullah, Zaka; Liu, Fengkui; Li, Weiwei; Guo, Yufen; Zhao, Xinluo; Liu, Liwei

    2017-05-01

    We demonstrate a facile approach to significantly enhance the heat dissipation potential of conventional aluminum (Al) heat sinks by mechanically coating graphene nanosheets. For Al and graphene-coated Al heat sinks, the change in temperature with change in coating coverage, coating thickness and heat flux are studied. It is found that with the increase in coating coverage from 0 to 100%, the steady-state temperature is decreased by 5 °C at a heat flux of 1.8 W cm-1. By increasing the average thickness of graphene coating from 480 nm to 1900 nm, a remarkable temperature reduction up to 7 °C can be observed. Moreover, with the increase in heat flux from 1.2 W cm-1 to 2.4 W cm-1, the temperature difference between uncoated and graphene-coated samples increases from 1 °C to 6 °C. The thermal analysis and finite element simulation reveal that the thermal radiation plays a key role in enhancing the heat dissipation performance. The effect of heat convection remains weak owing to the low air velocity at surface-air boundary. This work provides a technological innovation in improving metal heat dissipation using graphene nanosheets.

  11. Heat transfer performance of an external receiver pipe under unilateral concentrated solar radiation

    SciTech Connect

    Jianfeng, Lu; Jing, Ding; Jianping, Yang

    2010-11-15

    The heat transfer and absorption characteristics of an external receiver pipe under unilateral concentrated solar radiation are theoretically investigated. Since the heat loss ratio of the infrared radiation has maximum at moderate energy flux, the heat absorption efficiency will first increase and then decrease with the incident energy flux. The local absorption efficiency will increase with the flow velocity, while the wall temperature drops quickly. Because of the unilateral concentrated solar radiation and different incident angle, the heat transfer is uneven along the circumference. Near the perpendicularly incident region, the wall temperature and absorption efficiency slowly approaches to the maximum, while the absorption efficiency sharply drops near the parallelly incident region. The calculation results show that the heat transfer parameters calculated from the average incident energy flux have a good agreement with the average values of the circumference under different boundary conditions. For the whole pipe with coating of Pyromark, the absorption efficiency of the main region is above 85%, and only the absorption efficiency near the parallelly incident region is below 80%. In general, the absorption efficiency of the whole pipe increases with flow velocity rising and pipe length decreasing, and it approaches to the maximum at optimal concentrated solar flux. (author)

  12. Propagation of a cylindrical shock wave in a rotating dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Vishwakarma, J. P.; Nath, G.

    2010-04-01

    A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.

  13. Experimental and theoretical analysis on the effect of inclination on metal powder sintered heat pipe radiator with natural convection cooling

    NASA Astrophysics Data System (ADS)

    Cong, Li; Qifei, Jian; Wu, Shifeng

    2017-02-01

    An experimental study and theoretical analysis of heat transfer performance of a sintered heat pipe radiator that implemented in a 50 L domestic semiconductor refrigerator have been conducted to examine the effect of inclination angle, combined with a minimum entropy generation analysis. The experiment results suggest that inclination angle has influences on both the evaporator and condenser section, and the performance of the heat pipe radiator is more sensitive to the inclination change in negative inclined than in positive inclined position. When the heat pipe radiator is in negative inclination angle position, large amplitude of variation on the thermal resistance of this heat pipe radiator is observed. As the thermal load is below 58.89 W, the influence of inclination angle on the overall thermal resistance is not that apparent as compared to the other three thermal loads. Thermal resistance of heat pipe radiator decreases by 82.86 % in inclination of 60° at the set of 138.46 W, compared to horizontal position. Based on the analysis results in this paper, in order to achieve a better heat transfer performance of the heat pipe radiator, it is recommended that the heat pipe radiator be mounted in positive inclination angle positions (30°-90°), where the condenser is above the evaporator.

  14. Coupling radiative heat transfer in participating media with other heat transfer modes

    SciTech Connect

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  15. Coupling radiative heat transfer in participating media with other heat transfer modes

    DOE PAGES

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  16. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Malik, Rabia; Hussain, M.

    2016-05-01

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  17. Nonlinear radiative heat transfer to stagnation-point flow of Sisko fluid past a stretching cylinder

    SciTech Connect

    Khan, Masood; Malik, Rabia; Hussain, M.

    2016-05-15

    In the present paper, we endeavor to perform a numerical analysis in connection with the nonlinear radiative stagnation-point flow and heat transfer to Sisko fluid past a stretching cylinder in the presence of convective boundary conditions. The influence of thermal radiation using nonlinear Rosseland approximation is explored. The numerical solutions of transformed governing equations are calculated through forth order Runge-Kutta method using shooting technique. With the help of graphs and tables, the influence of non-dimensional parameters on velocity and temperature along with the local skin friction and Nusselt number is discussed. The results reveal that the temperature increases however, heat transfer from the surface of cylinder decreases with the increasing values of thermal radiation and temperature ratio parameters. Moreover, the authenticity of numerical solutions is validated by finding their good agreement with the HAM solutions.

  18. Temperature and Radiative Heat Flux Measurements in Microgravity Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Greenberg, Paul S.

    1997-01-01

    The objective of this project is to provide detailed measurements and modeling analyses of local soot concentration, temperature and radiation heat flux distributions in laminar and turbulent jet diffusion flames under normal (1-g) and reduced gravity (0-g) conditions. Results published to date by these co-PI's and their co-workers include: 1. thermophoretic sampling and size and morphological analyses of soot aggregates in laminar flames under normal and reduced gravity conditions; 2. full-field absorption imaging for soot volume fraction maps in laminar and turbulent flames under normal and reduced gravity conditions; 3. an accurate solver module for detailed radiation heat transfer in nongray nonhomogeneous media; 4. a complete model to include flame structure, soot formation and an energy equation to couple with radiation solver.

  19. Energetics and the resistive tearing mode - Effects of Joule heating and radiation

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1983-01-01

    The contribution of energy flux to the dynamics of magnetic field reconnection is analytically studied in order to determine the influence of Joule heating and radiation on the linear development of the tearing instability in slab geometry. A temperature-dependent Coulomb-like resistivity is used to provide the coupling between the dynamics and the energy equation. Analytical expressions are derived for the growth rates utilizing constant-psi and long-wavelength approximations. The solutions indicate the occurrence of several modes in addition to the usual tearing mode, several of which have relatively slow, complex growth rates. At large values of the magnetic Reynolds number, there are at least two modes with purely exponential growth when the radiative loss decreases with increasing temperature. If the radiation is neglected, the Joule heating alone also results in two modes with real, positive growth at large S. Below a particular value of S, all the modes are generally stabilized.

  20. Ultrabroadband super-Planckian radiative heat transfer with artificial continuum cavity states in patterned hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Dai, Jin; Ding, Fei; Bozhevolnyi, Sergey I.; Yan, Min

    2017-06-01

    Localized cavity resonances due to nanostructures at material surfaces can greatly enhance radiative heat transfer (RHT) between two closely placed bodies owing to stretching of cavity states in momentum space beyond the light line. Based on such understanding, we numerically demonstrate the possibility of ultrabroadband super-Planckian RHT between two plates patterned with trapezoidal-shaped hyperbolic metamaterial (HMM) arrays. The phenomenon is rooted not only in HMM's high effective index for creating subwavelength resonators but also its extremely anisotropic isofrequency contour. The two properties enable one to create photonic bands with a high spectral density to populate a desired thermal radiation window. At submicron gap sizes between such two plates, the artificial continuum states extend outside the light cone, tremendously increasing overall RHT. Our study reveals that structured HMM offers unprecedented potential in achieving a controllable super-Planckian radiative heat transfer for thermal management at nanoscale.

  1. Design and calculation of low infrared transmittance and low emissivity coatings for heat radiative applications

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Hai; Zhang, Yue; Zhang, Da-Hai; Fan, Jin-Peng

    2012-02-01

    The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low transmittance and low emissivity coatings to reduce the heat transfer by thermal radiation for high-temperature applications. In the case of silica coating layers constituted with various structural titania particles (solid, hollow, and core-shell spherical), the dependence of transmittance and emissivity of the coating layer on the particle structure and the layer thickness was investigated and optimized. The results indicate that the coating pigmented with core-shell titania particles exhibits a lower infrared transmittance and a lower emissivity value than that with other structural particles and is suitable to radiative heat-insulating applications.

  2. Electrically tunable near-field radiative heat transfer via ferroelectric materials

    SciTech Connect

    Huang, Yi; Boriskina, Svetlana V.; Chen, Gang

    2014-12-15

    We explore ways to actively control near-field radiative heat transfer between two surfaces that relies on electrical tuning of phonon modes of ferroelectric materials. Ferroelectrics are widely used for tunable electrical devices, such as capacitors and memory devices; however, their tunable properties have not yet been examined for heat transfer applications. We show via simulations that radiative heat transfer between two ferroelectric materials can be enhanced by over two orders of magnitude over the blackbody limit in the near field, and can be tuned as much as 16.5% by modulating the coupling between surface phonon polariton modes at the two surfaces via varying external electric fields. We then discuss how to maximize the modulation contrast for tunable thermal devices using the studied mechanism.

  3. High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System

    SciTech Connect

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2006-01-20

    A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at {approx} 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By

  4. High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2006-01-01

    A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at ~ 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the

  5. Evaluation of radiative heating rate profiles in eight GCMs using A-train satellite observations

    NASA Astrophysics Data System (ADS)

    Cesana, Gregory; Waliser, D. E.; L'Ecuyer, T.; Jiang, X.; Li, J.-L.

    2017-02-01

    In this study, we take advantage of two modeling experiments and A-train satellite observations to characterize the impact of cloud biases in the vertical distribution of radiative heating rates in eight general circulation models General Circulation Models (GCMs). We compare the modeled vertical distribution of clouds against the GCM-Oriented Cloud-Aerosols Lidar and Infrared Pathfinder Satellite Observations Cloud Product (CALIPSO-GOCCP) using a simulator approach. Although the overall pattern of modeled zonal cloud frequency profiles is relatively good (r=0.92 for the multi-model mean), we show two main systematic biases in the cloud frequency profiles: a positive bias above 7km (up to 10%), particularly in the tropics; and a negative bias below 3km (up to -10%), which reaches a maximum over the stratocumulus cloud regions. Using radiative heating rate profiles calculated with constraints from CloudSat, CALIPSO and other satellite observations, we show that the excess of clouds in the upper troposphere (>7km) results in excess infrared and solar heating in the vicinity of the clouds as well as more infrared heating for the entire column below the cloud. On the other hand, the lack of clouds in the lower troposphere reduces the infrared cooling near the missing cloud levels and increases the absorption of solar radiation by water vapor below. The global radiative heating rate between 50°S and 50°N is too warm in the models (-0.81K/day vs. -1.01K/day). The representation of clouds in GCMs remains challenging, but reducing the cloud biases would lead to an improvement of the heating rate profiles, which in turn would help in improving other aspects of models' simulations such as the dynamics, cloud feedbacks and surface-atmosphere interactions.

  6. Space cooling system using nocturnal heat rejection and sky radiation cooling

    SciTech Connect

    Hirano, Satoshi; Saitoh, Takeo

    1998-07-01

    A space cooling system using natural energy, a range of atmospheric temperature and sky radiation, is considered. Behavior of the system using nocturnal heat rejection in the summer is characterized by numerical simulation. The system consists of sky radiators, a thermal energy storage tank, and an air-conditioner. The sky radiators are fin-tube heat exchanger type with fans. The air conditioner is water-to-air type. The water in the storage tank is circulated to the sky radiators by a pump at night to be cooled using forced convection of outdoor air and sky radiation cooling. In the daytime, the condenser of the air conditioner is cooled by the cold water in the storage tank. Total consumption of electric power for air conditioning is used for evaluating the system performance. From the calculation, it is found that there are optimum conditions to reduce the total consumption of electric power. The reason is that the storage system requires additional consumption of electric power by the sky radiator pump and fans though the system could reduce the consumption of electric power by the air conditioner. When the sky radiators are operated during some limited hours, the total consumption of electric power becomes smaller than that when the sky radiators are continuously operated throughout night. The consumption of electric power decreases as the capacity of the thermal energy storage tank increases. This system has a possibility to save energy and to level the uneven consumption of electric power throughout a 24-hour period. For an example of some operating condition, the total consumption of electric power is reduced by 2.4 % compared with a conventional system, and 19 % of the power is consumed late at night for operating the sky radiator pump and fans. Combining with seasonal thermal energy storage could more reduce demand for electricity or shift the demand to off-peak hours.

  7. Vertical profiles of aerosol extinction and radiative heating at Niamey, Niger

    NASA Astrophysics Data System (ADS)

    McFarlane, S.; Kassianov, E.; Flynn, C.; Barnard, J.

    2007-12-01

    Land use and land cover changes may lead to increases in Saharan dust outbreaks and increased dust aerosol loading in the atmosphere. It is important to understand the impact of Saharan dust on the Earth's radiation budget in order to improve model simulations of regional and global climate. Details of the radiative impact depend on the amount, vertical profile, and optical properties of the observed aerosol. The ARM Mobile Facility (AMF) was deployed in Niamey, Niger during 2006 as part of the RADAGAST project (Radiative Atmospheric Divergence using ARM Mobile Facility, GERB data and AMMA Stations) in cooperation with the African Monsoon Multidisciplinary Analysis (AMMA) experiment. This deployment represents the first long- term series of measurements of aerosol properties from the surface in the Sahel region and provides an unprecedented opportunity to examine the radiative heating profiles associated with aerosol in this region. Using aerosol optical properties derived from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) and the Atmospheric Emitted Radiance Interferometer (AERI), profiles of relative aerosol extinction from the micropulse lidar (MPL), and measurements of broadband surface radiation at the AMF site, we examine the vertical profile of aerosol extinction and aerosol radiative heating during the dry season (January - March and Oct-Dec, 2006) at Niamey.

  8. Thermal conditions on the International Space Station: Heat flux and temperature investigation of main radiators for the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Gao, Jianmin; Wu, Shaohua; Qin, Yukun

    2016-09-01

    The investigation on heat flux can clarify the thermal condition and explain temperature behavior on the main radiators of the Alpha Magnetic Spectrometer (AMS). In this paper, a detailed investigation of heat flux on the AMS main radiators is proposed. The heat transfer process of the AMS main radiators is theoretically analyzed. An updated thermal model of the AMS on the International Space Station (ISS) is developed to calculate the external heat flux density on the AMS main radiators. We conclude the ISS components and operations affect on the solar flux density of the AMS main radiators by reflecting or shading solar illumination. According to the energy conservation on the AMS main radiators, the temperature variation mainly depends on the solar flux change. The investigations are conducive to reference for the long-duration thermal control of the AMS, and knowledge for the thermal conditions on the ISS.

  9. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    NASA Astrophysics Data System (ADS)

    Shah, S.; Hussain, S.; Sagheer, M.

    2016-08-01

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number's impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity and temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.

  10. MHD effects and heat transfer for the UCM fluid along with Joule heating and thermal radiation using Cattaneo-Christov heat flux model

    SciTech Connect

    Shah, S. Hussain, S.; Sagheer, M.

    2016-08-15

    Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity and temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.

  11. CONTROL OF LASER RADIATION PARAMETERS: Compensation for thermally induced aberrations in optical elements by means of additional heating by CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Kozhevatov, I. E.; Palashov, O. V.; Khazanov, E. A.

    2006-10-01

    A method is proposed for compensating thermally induced phase distortions of laser radiation in absorbing optical elements. The method is based on supplementary heating of the peripheral region of the distorting element by the radiation from an auxiliary laser. A programme code has been developed for calculating the optimal parameters of supplementary radiation for minimising phase distortions. This code is based on the numerical solution of the thermal conductivity and static elasticity equations for a nonuniformly heated solid of cylindrical symmetry. Experiments reveal a high efficiency of the method for compensating distortions resulting from absorption of radiation with a Gaussian intensity profile.

  12. Steady state thermal radiation analysis between the TOPAZ-II radiator and a heat exchanger

    SciTech Connect

    Maveety, J.G.; Wold, S.K.

    1995-12-31

    In this study the authors investigate the feasibility and efficiency of coupling a single-pass heat exchanger to the TOPAZ-II space power system operating at steady state conditions. A first and second law analysis was performed in order to determine the optimal operating conditions which minimize the pumping power and maximize the flow exergy of the working fluid. The results of this study show that (1) the space power system is basically unaffected by the addition of this heat exchanger and (2) as much as 60% of the availability is destroyed by irreversibilities while operating at optimal flow conditions.

  13. High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2008-01-01

    Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.

  14. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  15. Study of radiative heat transfer in Ångström- and nanometre-sized gaps

    PubMed Central

    Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; Feist, Johannes; García-Vidal, Francisco J.; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2017-01-01

    Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here we report studies of radiative heat transfer in few Å to 5 nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushing the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones—below the detection limit of our probe—as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps. PMID:28198467

  16. Study of radiative heat transfer in Ångström- and nanometre-sized gaps

    NASA Astrophysics Data System (ADS)

    Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; Feist, Johannes; García-Vidal, Francisco J.; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2017-02-01

    Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here we report studies of radiative heat transfer in few Å to 5 nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushing the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones--below the detection limit of our probe--as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps.

  17. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    NASA Astrophysics Data System (ADS)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  18. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    SciTech Connect

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  19. Study of radiative heat transfer in Ångström- and nanometre-sized gaps

    DOE PAGES

    Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; ...

    2017-02-15

    Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here in this paper we report studies of radiative heat transfer in few Å to 5nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushingmore » the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones—below the detection limit of our probe—as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps.« less

  20. [Comparison of the effects of heat and radiation on Aspergillus parasiticus].

    PubMed

    Narvaiz, P; Kotliar, N; Lescano, G; Kaupert, N

    1988-01-01

    The inactivation effect and fungus toxin production of Aspergillus parasiticus NRRL 2999 were studied by means of ionizing radiations. The dose-survival curve reveals two different responses to radiation: the first one, showing a relatively high sensitivity, corresponds to mycelia; the second one, more resistant, to non-germinated conidiospores with a D10 value of 0.77 kGy. To carry on further experiments, 1.5 kGy was chosen as radiation treatment dose, which is twice the D10 value for the most resistant form. The mould was cultivated on rice, under ideal temperature and humidity conditions, so as to assure toxin production. Samples of different ages were irradiated, and 20 hour old mycelium turned out to be the most susceptible to radiation damage. Therefore 20 hours after inoculation, the following experiments were performed: a) irradiation; b) heating; c) heating followed by irradiation. Aflatoxin production was measured along 11 days of incubation, by dilution to extinction on thin layer chromatography. Results obtained show that heated or irradiated samples have decreased aflatoxin levels compared to controls, and the combined treatment reduce them below the detection limit of our analytical method, and also below the maximum levels advised by the international organizations on health (FAO/OMS, 1966: less than 30 ppb).

  1. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  2. Phonon black-body radiation limit for heat dissipation in electronics.

    PubMed

    Schleeh, J; Mateos, J; Íñiguez-de-la-Torre, I; Wadefalk, N; Nilsson, P A; Grahn, J; Minnich, A J

    2015-02-01

    Thermal dissipation at the active region of electronic devices is a fundamental process of considerable importance. Inadequate heat dissipation can lead to prohibitively large temperature rises that degrade performance, and intensive efforts are under way to mitigate this self-heating. At room temperature, thermal resistance is due to scattering, often by defects and interfaces in the active region, that impedes the transport of phonons. Here, we demonstrate that heat dissipation in widely used cryogenic electronic devices instead occurs by phonon black-body radiation with the complete absence of scattering, leading to large self-heating at cryogenic temperatures and setting a key limit on the noise floor. Our result has important implications for the many fields that require ultralow-noise electronic devices.

  3. Electromagnetic and heat transfer computations for non-ionizing radiation dosimetry.

    PubMed

    Samaras, T; Regli, P; Kuster, N

    2000-08-01

    Reliable information on the heat distribution inside biological tissues is essential for the planning and optimization of experiments which aim to study the effects of non-ionizing radiation (NIR). In electrodynamics, the finite-difference time-domain (FDTD) technique has become the dominant technique for radiofrequency dosimetry. In order to obtain the electromagnetic field and heat distributions within the same simulation run without changing discretization, a heat diffusion solver has been directly integrated into an advanced electrodynamic FDTD kernel. The implementation enables both coupled and sequential simulations. It also includes the ability to work with complex bodies and to accelerate heat diffusion. This paper emphasizes the importance of this combination in the field of NIR dosimetry. Two examples from this area are given: the validation of dosimetry with temperature probes and the estimation of the highest thermal load during bioexperiments.

  4. Radiation budget and soil heat fluxes in different Arctic tundra vegetation types

    NASA Astrophysics Data System (ADS)

    Juszak, Inge; Iturrate Garcia, Maitane; Gastellu-Etchegorry, Jean-Philippe; Schaepman, Michael E.; Schaepman-Strub, Gabriela

    2016-04-01

    While solar radiation is one of the primary energy sources for warming and thawing permafrost soil, the amount of shortwave radiation reaching the soil is reduced by vegetation shading. Climate change has led to greening, shrub expansion and encroachment in many Arctic tundra regions and further changes are anticipated. These vegetation changes feed back to the atmosphere and permafrost as they modify the surface energy budget. However, canopy transmittance of solar radiation has rarely been measured or modelled for a variety of tundra vegetation types. We assessed the radiation budget of the most common vegetation types at the Kytalyk field site in North-East Siberia (70.8°N, 147.5°E) with field measurements and 3D radiative transfer modelling and linked it to soil heat fluxes. Our results show that Arctic tundra vegetation types differ in canopy albedo and transmittance as well as in soil heat flux and active layer thickness. Tussock sedges transmitted on average 56% of the incoming light and dwarf shrubs 27%. For wet sedges we found that the litter layer was very important as it reduced the average transmittance to only 6%. Model output indicated that both, albedo and transmittance, also depend on the spatial aggregation of vegetation types. We found that permafrost thaw was more strongly related to soil properties than to canopy shading. The presented radiative transfer model allows quantifying effects of the vegetation layer on the surface radiation budget in permafrost areas. The parametrised model can account for diverse vegetation types and variation of properties within types. Our results highlight small scale radiation budget and permafrost thaw variability which are indicated and partly caused by vegetation. As changes in species composition and biomass increase can influence thaw rates, small scale patterns should be considered in assessments of climate-vegetation-permafrost feedbacks.

  5. Heat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation

    PubMed Central

    Suter, Clemens; Tomeš, Petr; Weidenkaff, Anke; Steinfeld, Aldo

    2010-01-01

    A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of p-type La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electrically in series and thermally in parallel. The governing equations for heat transfer and electrical potential are formulated, discretized and solved numerically by applying the finite volume (FV) method. The model is validated in terms of experimentally measured temperatures and voltages/power using a set of TEC demonstrator modules, subjected to a peak radiative flux intensity of 300 suns. The heat transfer model is then applied to examine the effect of the geometrical parameters (e.g. length/width of legs) on the solar-to-electricity energy conversion efficiency.

  6. Effects of precursor heating on radiative and chemically reacting viscous flow around a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Szema, K. Y.

    1979-01-01

    The influence of change in the precursor region flow properties on the entire shock layer flow phenomena around a Jovian entry body was investigated. The flow in the shock layer was assumed to be steady, axisymmetric, and viscous. Both the chemical equilibrium and the nonequilibrium composition of the shock layer gas were considered. The effects of transitional range behavior were included in the analysis of high altitude entry conditions. Realistic thermophysical and radiation models were used, and results were obtained by employing the implicit finite difference technique in the shock layer and an iterative procedure for the entire shock layer precursor zone. Results obtained for a 45 degree angle hyperboloid blunt body entering Jupiter's atmosphere at zero angle of attack indicates that preheating the gas significantly increases the static pressure and temperature ahead of the shock for entry velocities exceeding 36 km/sec. The nonequilibrium radiative heating rate to the body is found to be significantly higher than the corresponding equilibrium heating. The precursor heating generally increases the radiative and convective heating of a body. That increase is slightly higher for the nonequilibrium conditions.

  7. Modeling and Simulation of Radiative Compressible Flows in Aerodynamic Heating Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Bensassi, Khalil; Laguna, Alejandro A.; Lani, Andrea; Mansour, Nagi N.

    2016-01-01

    Numerical simulations of an arc heated flow inside NASA's 20 [MW] Aerodynamics heating facility (AHF) are performed in order to investigate the three-dimensional swirling flow and the current distribution inside the wind tunnel. The plasma is considered in Local Thermodynamics Equilibrium(LTE) and is composed of Air-Argon gas mixture. The governing equations are the Navier-Stokes equations that include source terms corresponding to Joule heating and radiative cooling. The former is obtained by solving an electric potential equation, while the latter is calculated using an innovative massively parallel ray-tracing algorithm. The fully coupled system is closed by the thermodynamics relations and transport properties which are obtained from Chapman-Enskog method. A novel strategy was developed in order to enable the flow solver and the radiation calculation to be preformed independently and simultaneously using a different number of processors. Drastic reduction in the computational cost was achieved using this strategy. Details on the numerical methods used for space discretization, time integration and ray-tracing algorithm will be presented. The effect of the radiative cooling on the dynamics of the flow will be investigated. The complete set of equations were implemented within the COOLFluiD Framework. Fig. 1 shows the geometry of the Anode and part of the constrictor of the Aerodynamics heating facility (AHF). Fig. 2 shows the velocity field distribution along (x-y) plane and the streamline in (z-y) plane.

  8. The effects of Ohmic heating and stable radiation on magnetic tearing

    NASA Technical Reports Server (NTRS)

    Tachi, T.; Steinolfson, R. S.; Van Hoven, G.

    1983-01-01

    A study is made of the effect of a temperature-dependent Coulomb-like resistivity on the planar tearing mode. The local evolution of the temperature is described by an energy equation which includes Joule heating and optically thin radiation. The resulting system of coupled linear magnetohydrodynamic equations is solved numerically, and eigenfunctions and growth rates are obtained. In the absence of radiation, there are two distinct solutions above a critical value of the magnetic Reynolds number S, a tearing-like mode and a Joule-heating mode. Below this point, the growth rates coalesce into a conjugate-complex pair. When stable radiation (dR/dT greater than 0) is added, the heating mode disappears and a modified tearing excitation exists to much lower values of S before its growth is cut off by Ohmic heating. Examples are given for solar coronal parameters, and for those characteristic of fusion-research devices. The introduction of an effective value for the resistivity, in the presence of energy transport, allows a simple qualitative discussion of the different modes.

  9. Effect of a Radiation Cooling and Heating Function on Standing Longitudinal Oscillations in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J.

    2016-06-01

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  10. Uncertainty and Sensitivity Analysis of Afterbody Radiative Heating Predictions for Earth Entry

    NASA Technical Reports Server (NTRS)

    West, Thomas K., IV; Johnston, Christopher O.; Hosder, Serhat

    2016-01-01

    The objective of this work was to perform sensitivity analysis and uncertainty quantification for afterbody radiative heating predictions of Stardust capsule during Earth entry at peak afterbody radiation conditions. The radiation environment in the afterbody region poses significant challenges for accurate uncertainty quantification and sensitivity analysis due to the complexity of the flow physics, computational cost, and large number of un-certain variables. In this study, first a sparse collocation non-intrusive polynomial chaos approach along with global non-linear sensitivity analysis was used to identify the most significant uncertain variables and reduce the dimensions of the stochastic problem. Then, a total order stochastic expansion was constructed over only the important parameters for an efficient and accurate estimate of the uncertainty in radiation. Based on previous work, 388 uncertain parameters were considered in the radiation model, which came from the thermodynamics, flow field chemistry, and radiation modeling. The sensitivity analysis showed that only four of these variables contributed significantly to afterbody radiation uncertainty, accounting for almost 95% of the uncertainty. These included the electronic- impact excitation rate for N between level 2 and level 5 and rates of three chemical reactions in uencing N, N(+), O, and O(+) number densities in the flow field.

  11. Coherent regime and far-to-near-field transition for radiative heat transfer

    NASA Astrophysics Data System (ADS)

    Tsurimaki, Yoichiro; Chapuis, Pierre-Olivier; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao; Vaillon, Rodolphe

    2017-01-01

    Radiative heat transfer between two semi-infinite parallel media is analyzed in the transition zone between the near-field and the classical macroscopic, i.e. incoherent far-field, regimes of thermal radiation, first for model gray materials and then for real metallic (Al) and dielectric (SiC) materials. The presence of a minimum in the flux-distance curve is observed for the propagative component of the radiative heat transfer coefficient, and in some cases for the total coefficient, i.e. the sum of the propagative and evanescent components. At best this reduction can reach 15% below the far-field limit in the case of aluminum. The far-to-near-field regime taking place for the distance range between the near-field and the classical macroscopic regime involves a coherent far-field regime. One of its limits can be practically defined by the distance at which the incoherent far-field regime breaks down. This separation distance below which the standard theory of incoherent thermal radiation cannot be applied anymore is found to be larger than the usual estimate based on Wien's law and varies as a function of temperature. The aforementioned effects are due to coherence, which is present despite the broadband spectral nature of thermal radiation, and has a stronger impact for reflective materials.

  12. Shortwave radiative heating rate profiles in hazy and clear atmosphere: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Doppler, Lionel; Fischer, Jürgen; Ravetta, François; Pelon, Jacques; Preusker, René

    2010-05-01

    Aerosols have an impact on shortwave heating rate profiles (additional heating or cooling). In this survey, we quantify the impact of several key-parameters on the heating rate profiles of the atmosphere with and without aerosols. These key-parameters are: (1) the atmospheric model (tropical, midlatitude summer or winter, US Standard), (2) the integrated water vapor amount (IWV ), (3) the ground surface (flat and rough ocean, isotropic surface albedo for land), (4) the aerosol composition (dusts, soots or maritimes mixtures with respect to the OPAC-database classification), (5) the aerosol optical depth and (6) vertical postion, and (7) the single-scattering albedo (?o) of the aerosol mixture. This study enables us to evaluate which parameters are most important to take into account in a radiative energy budget of the atmosphere and will be useful for a future study: the retrieval of heating rates profiles from satellite data (CALIPSO, MODIS, MERIS) over the Mediterranean Sea. All the heating rates are computed by using the vector irradiances computed at each pressure level in the spectral interval 0.2 - 3.6μm (shortwave) by the 1D radiative transfer model for atmosphere and ocean: MOMO (Matrix-Operator MOdel) of the Institute for Space Science, FU Berlin 1

  13. Experimental Investigation of Heat Transfer Characteristics of Automobile Radiator using TiO2-Nanofluid Coolant

    NASA Astrophysics Data System (ADS)

    Salamon, V.; Senthil kumar, D.; Thirumalini, S.

    2017-08-01

    The use of nanoparticle dispersed coolants in automobile radiators improves the heat transfer rate and facilitates overall reduction in size of the radiators. In this study, the heat transfer characteristics of water/propylene glycol based TiO2 nanofluid was analyzed experimentally and compared with pure water and water/propylene glycol mixture. Two different concentrations of nanofluids were prepared by adding 0.1 vol. % and 0.3 vol. % of TiO2 nanoparticles into water/propylene glycol mixture (70:30). The experiments were conducted by varying the coolant flow rate between 3 to 6 lit/min for various coolant temperatures (50°C, 60°C, 70°C, and 80°C) to understand the effect of coolant flow rate on heat transfer. The results showed that the Nusselt number of the nanofluid coolant increases with increase in flow rate. At low inlet coolant temperature the water/propylene glycol mixture showed higher heat transfer rate when compared with nanofluid coolant. However at higher operating temperature and higher coolant flow rate, 0.3 vol. % of TiO2 nanofluid enhances the heat transfer rate by 8.5% when compared to base fluids.

  14. Scattering effect in radiative heat transfer during selective laser sintering of polymers

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Boutaous, M'hamed; Xin, Shihe

    2016-10-01

    The aim of this work is to develop an accurate model to simulate the selective laser sintering (SLS) process, in order to understand the multiple phenomena occurring in the material and to study the influence of each parameter on the quality of the sintered parts. A numerical model, coupling radiative and conductive heat transfers in a polymer powder bed providing a local temperature field, is proposed. To simulate the polymer sintering by laser heating as in additive manufacturing, a double-lines scanning of a laser beam over a thin layer of polymer powder is studied. An effective volumetric heat source, using a modified Monte Carlo method, is estimated from laser radiation scattering and absorption in a semi-transparent polymer powder bed. In order to quantify the laser-polymer interaction, the heating and cooling of the material is modeled and simulated with different types heat sources by both finite elements method (FEM) and discrete elements method (DEM). To highlight the importance of introducing a semi-transparent behavior of such materials and in order to validate our model, the results are compared with works taken from the literature.

  15. Upper limits to near-field radiative heat transfer: generalizing the blackbody concept

    NASA Astrophysics Data System (ADS)

    Miller, Owen D.; Rodriguez, Alejandro W.; Johnson, Steven G.

    2016-09-01

    For 75 years it has been known that radiative heat transfer can exceed far-field blackbody rates when two bodies are separated by less than a thermal wavelength. Yet an open question has remained: what is the maximum achievable radiative transfer rate? Here we describe basic energy-conservation principles that answer this question, yielding upper bounds that depend on the temperatures, material susceptibilities, and separation distance, but which encompass all geometries. The simple structures studied to date fall far short of the bounds, offering the possibility for significant future enhancement, with ramifications for experimental studies as well as thermophotovoltaic applications.

  16. Radiation effects on stagnation point flow with melting heat transfer and second order slip

    NASA Astrophysics Data System (ADS)

    Mabood, F.; Shafiq, A.; Hayat, T.; Abelman, S.

    This article examines the effects of melting heat transfer and thermal radiation in stagnation point flow towards a stretching/shrinking surface. Mathematical formulation is made in the presence of mass transfer and second order slip condition. Numerical solutions to the resulting nonlinear problems are obtained by Runge-Kutta fourth fifth order method. Physical quantities like velocity, temperature, concentration, skin friction, Nusselt and Sherwood number are analyzed via sundry parameters for stretching/shrinking, first order slip, second order slip, radiation, melting, Prandtl and Schmidt. A comparative study with the previously published results in limiting sense is made.

  17. Heating and cooling of a two-dimensional electron gas by terahertz radiation

    SciTech Connect

    Budkin, G. V.; Tarasenko, S. A.

    2011-04-15

    The absorption of terahertz radiation by free charge carriers in n-type semiconductor quantum wells accompanied by the interaction of electrons with acoustic and optical phonons is studied. It is shown that intrasubband optical transitions can cause both heating and cooling of the electron gas. The cooling of charge carriers occurs in a certain temperature and radiation frequency region where light is most efficiently absorbed due to intrasubband transitions with emission of optical phonons. In GaAs quantum wells, the optical cooling of electrons occurs most efficiently at liquid nitrogen temperatures, while cooling is possible even at room temperature in GaN heterostructures.

  18. Non-gray combined conduction and radiation heat transfer by using FVM and SLW

    NASA Astrophysics Data System (ADS)

    Sun, Yujia; Zhang, Xiaobing; Howell, John R.

    2017-08-01

    To investigate non-gray combined conduction and radiation problems, this paper uses the FVM to solve the energy equation and radiative transfer equation and the SLW method to model the effect of gas spectral properties in a 2D geometry. Carbon dioxide, water vapor and carbon monoxide are considered as the participating media. The effects of gas species, gas mixture ratios and wall emissivities on the temperature and heat flux were investigated. The accuracy of the gray gas model is also analyzed compared to the SLW method.

  19. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lewis, Marlon R.; Carr, Mary-Elena; Feldman, Gene C.; Esaias, Wayne; Mcclain, Chuck

    1990-01-01

    Recent satellite observations of ocean transparency, coupled with climatological surface heat fluxes and ocean density profiles, are used here to show that solar radiation in visible frequencies, usually assumed to be absorbed at the sea surface, in fact penetrates to a significant degree to below the upper mixed layer of the ocean which interacts actively with the atmosphere. The net effect is a reduction of the heat input into the upper layer; for a 20 m-thick mixed layer this is equivalent to an annual reduction in temperature of about 5-10 K. The results provide a natural explanation for the discrepancy between the SSTs predicted by models and those observed.

  20. A study of graphite ablation in combined convective and radiative heating.

    NASA Technical Reports Server (NTRS)

    Wakefield, R. M.; Peterson, D. L.

    1972-01-01

    Comparison of graphite ablation experiment results in the diffusion-controlled oxidation and sublimation regimes with results of an equilibrium chemistry, film coefficient ablation analysis. Mass transfer and energy transfer effects are considered. Tests were conducted in an arcjet facility at convective heating rates of 600 to 800 W/sq cm, radiative heating rates up to 2900 W/sq cm, with test specimen surface pressures of 0.06, 0.1, and 0.3 atm in an air stream. The experimental and analytical mass loss and surface temperature results agreed well when the carbon vapor thermodynamic properties from the JANAF tables are used in the analysis.

  1. Testing of SLA-561V in NASA-Ames' Turbulent Flow Duct with Augmented Radiative Heating

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Kornienko, Robert S.; Radbourne, Chris A.

    2010-01-01

    As part of Mars Science Laboratory s (MSL) heatshield development program, SLA-561 was tested in NASA Ames Turbulent Flow Duct (TFD) Facility. For these tests, the TFD facility was modified to include a ceramic plate located in the wall opposite to the test model. Normally the TFD wall opposite to the test model is water-cooled steel. Installing a noncooled ceramic plate allows the ceramic to absorb convective heating and radiate the energy back to the test model as the plate heats up. This work was an effort to increase the severity of TFD test conditions. Presented here are the results from these tests.

  2. A study of graphite ablation in combined convective and radiative heating.

    NASA Technical Reports Server (NTRS)

    Wakefield, R. M.; Peterson, D. L.

    1972-01-01

    Comparison of graphite ablation experiment results in the diffusion-controlled oxidation and sublimation regimes with results of an equilibrium chemistry, film coefficient ablation analysis. Mass transfer and energy transfer effects are considered. Tests were conducted in an arcjet facility at convective heating rates of 600 to 800 W/sq cm, radiative heating rates up to 2900 W/sq cm, with test specimen surface pressures of 0.06, 0.1, and 0.3 atm in an air stream. The experimental and analytical mass loss and surface temperature results agreed well when the carbon vapor thermodynamic properties from the JANAF tables are used in the analysis.

  3. Heat transfer by conduction and radiation in one-dimensional planar medium using the differential approximation

    NASA Astrophysics Data System (ADS)

    Ratzel, A. C.; Howell, J. R.

    1981-08-01

    The combined conduction and radiation heat transfer problem for a gray planar medium between two diffuse, isothermal infinite parallel plates is considered using the differential approximation. The P-1 and P-3 spherical harmonics approximations for the intensity distribution are used. In addition, isotropic scattering and uniform volumetric generation terms are included. The governing energy equations developed using the P-1 and P-3 intensity expressions are fourth and sixth order nonlinear ordinary differential equations, respectively, and these equations have been solved numerically using a spline-collocation algorithm. Results are compared with the exact solutions and show that the differential methods are accurate for predicting both temperature profiles and heat transfer rates.

  4. High fidelity radiative heat transfer models for high-pressure laminar hydrogen-air diffusion flames

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Lei, Shenghui; Dasgupta, Adhiraj; Modest, Michael F.; Haworth, Daniel C.

    2014-11-01

    Radiative heat transfer is studied numerically for high-pressure laminar H2-air jet diffusion flames, with pressure ranging from 1 to 30 bar. Water vapour is assumed to be the only radiatively participating species. Two different radiation models are employed, the first being the full spectrum k-distribution model together with conventional Radiative Transfer Equation (RTE) solvers. Narrowband k-distributions of water vapour are calculated and databased from the HITEMP 2010 database, which claims to retain accuracy up to 4000 K. The full-spectrum k-distributions are assembled from their narrowband counterparts to yield high accuracy with little additional computational cost. The RTE is solved using various spherical harmonics methods, such as P1, simplified P3 (SP3) and simplified P5 (SP5). The resulting partial differential equations as well as other transport equations in the laminar diffusion flames are discretized with the finite-volume method in OpenFOAM®. The second radiation model is a Photon Monte Carlo (PMC) method coupled with a line-by-line spectral model. The PMC absorption coefficient database is derived from the same spectroscopy database as the k-distribution methods. A time blending scheme is used to reduce PMC calculations at each time step. Differential diffusion effects, which are important in laminar hydrogen flames, are also included in the scalar transport equations. It was found that the optically thin approximation overpredicts radiative heat loss at elevated pressures. Peak flame temperature is less affected by radiation because of faster chemical reactions at high pressures. Significant cooling effects are observed at downstream locations. As pressure increases, the performance of RTE models starts to deviate due to increased optical thickness. SPN models perform only marginally better than P1 because P1 is adequate except at very high pressure.

  5. Monte Carlo calculation model for heat radiation of inclined cylindrical flames and its application

    NASA Astrophysics Data System (ADS)

    Chang, Zhangyu; Ji, Jingwei; Huang, Yuankai; Wang, Zhiyi; Li, Qingjie

    2017-07-01

    Based on Monte Carlo method, a calculation model and its C++ calculating program for radiant heat transfer from an inclined cylindrical flame are proposed. In this model, the total radiation energy of the inclined cylindrical flame is distributed equally among a certain number of energy beams, which are emitted randomly from the flame surface. The incident heat flux on a surface is calculated by counting the number of energy beams which could reach the surface. The paper mainly studies the geometrical evaluation criterion for validity of energy beams emitted by inclined cylindrical flames and received by other surfaces. Compared to Mudan's formula results for a straight cylinder or a cylinder with 30° tilt angle, the calculated view factors range from 0.0043 to 0.2742 and the predicted view factors agree well with Mudan's results. The changing trend and values of incident heat fluxes computed by the model is consistent with experimental data measured by Rangwala et al. As a case study, incident heat fluxes on a gasoline tank, both the side and the top surface are calculated by the model. The heat radiation is from an inclined cylindrical flame generated by another 1000 m3 gasoline tank 4.6 m away from it. The cone angle of the flame to the adjacent oil tank is 45° and the polar angle is 0°. The top surface and the side surface of the tank are divided into 960 and 5760 grids during the calculation, respectively. The maximum incident heat flux on the side surface is 39.64 and 51.31 kW/m2 on the top surface. Distributions of the incident heat flux on the surface of the oil tank and on the ground around the fire tank are obtained, too.

  6. Monte Carlo calculation model for heat radiation of inclined cylindrical flames and its application

    NASA Astrophysics Data System (ADS)

    Chang, Zhangyu; Ji, Jingwei; Huang, Yuankai; Wang, Zhiyi; Li, Qingjie

    2017-02-01

    Based on Monte Carlo method, a calculation model and its C++ calculating program for radiant heat transfer from an inclined cylindrical flame are proposed. In this model, the total radiation energy of the inclined cylindrical flame is distributed equally among a certain number of energy beams, which are emitted randomly from the flame surface. The incident heat flux on a surface is calculated by counting the number of energy beams which could reach the surface. The paper mainly studies the geometrical evaluation criterion for validity of energy beams emitted by inclined cylindrical flames and received by other surfaces. Compared to Mudan's formula results for a straight cylinder or a cylinder with 30° tilt angle, the calculated view factors range from 0.0043 to 0.2742 and the predicted view factors agree well with Mudan's results. The changing trend and values of incident heat fluxes computed by the model is consistent with experimental data measured by Rangwala et al. As a case study, incident heat fluxes on a gasoline tank, both the side and the top surface are calculated by the model. The heat radiation is from an inclined cylindrical flame generated by another 1000 m3 gasoline tank 4.6 m away from it. The cone angle of the flame to the adjacent oil tank is 45° and the polar angle is 0°. The top surface and the side surface of the tank are divided into 960 and 5760 grids during the calculation, respectively. The maximum incident heat flux on the side surface is 39.64 and 51.31 kW/m2 on the top surface. Distributions of the incident heat flux on the surface of the oil tank and on the ground around the fire tank are obtained, too.

  7. Measurement of preheating due to radiation and nonlocal electron heat transport in laser-irradiated targets

    SciTech Connect

    Otani, K.; Shigemori, K.; Kadono, T.; Hironaka, Y.; Nakai, M.; Shiraga, H.; Azechi, H.; Mima, K.; Ozaki, N.; Kimura, T.; Miyanishi, K.; Kodama, R.; Sakaiya, T.; Sunahara, A.

    2010-03-15

    This paper reports an experimental study on preheating of laser-irradiated targets. We performed temperature measurements at the rear surface of laser-irradiated targets under conditions of two different laser wavelengths (0.35 or 0.53 mum) and several intensities (2x10{sup 13}-1x10{sup 14} W/cm{sup 2}) in order to verify an effect of radiation and nonlocal electron heat transport. The preheating temperature was evaluated by observing self-emission, reflectivity, and expansion velocity at the rear surface of planar polyimide foils. The experimental results show that the x-ray radiation is dominant for preheating for 0.35-mum laser irradiation, but contribution of nonlocal electron heat transport is not negligible for 0.53-mum laser irradiation conditions.

  8. Radiative heat transfer in curved specular surfaces in Czochralski crystal growth furnace

    SciTech Connect

    Guo, Z.; Maruyama, Shigenao; Tsukada, Takao

    1997-11-07

    A numerical investigation of radiative heat transfer constructed by curved surfaces with specular and diffuse reflection components is carried out. The ray tracing method is adopted for the calculation of view factors, in which a new ray emission model is proposed. The second-degree radiation ring elements are introduced, which are of engineering importance and numerical efficiency. The accuracy of the method is analyzed and verified using a simple configuration. The present computation using the proposed ray emission model is in good agreement with the analytical solution. As a numerical example and engineering application, the effects of the specular reflection and the meniscus of the melt surface in Czochralski (CZ) crystal growth are investigated. A marked temperature decrease in the melt surface is found by introducing specular reflection and the meniscus. The combined effects of the specular reflection and the meniscus should be considered in precision heat transfer control of a CZ apparatus.

  9. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet

    PubMed Central

    2012-01-01

    In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles. PMID:22520273

  10. An implicit-iterative solution of the heat conduction equation with a radiation boundary condition

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, D. M.

    1977-01-01

    For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.

  11. Monte Carlo modeling of radiative heat transfer in particle-laden flow

    NASA Astrophysics Data System (ADS)

    Farbar, Erin; Boyd, Iain D.; Esmaily-Moghadam, Mahdi

    2016-11-01

    Three-dimensional numerical simulations are applied to model radiative heat transfer in a dispersed particle phase exhibiting preferential concentration typical of a turbulent, particle-laden flow environment. The dispersed phase is composed of micron-sized nickel particles, and the carrier phase is non-participating. The simulations are performed for a snapshot of the particle field using the Monte Carlo Ray Tracing method, and the spectral dependence of the optical properties is considered. Interaction between the particles and radiation is modeled by projecting the particle locations onto an Eulerian mesh. Results show that the optically thin approximation results in errors in predicted particle heat transfer of up to 35% at some locations in the particle field. Oxidation is shown to change the absorption efficiency of the particles significantly, while consideration of non-spherical particle shapes results in relatively small changes in the predicted optical properties of the particles.

  12. Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet.

    PubMed

    Hady, Fekry M; Ibrahim, Fouad S; Abdel-Gaied, Sahar M; Eid, Mohamed R

    2012-04-22

    In this work, we study the flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in the presence of thermal radiation, included in the energy equation, and variable wall temperature. A similarity transformation was used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. An efficient numerical shooting technique with a fourth-order Runge-Kutta scheme was used to obtain the solution of the boundary value problem. The variations of dimensionless surface temperature, as well as flow and heat-transfer characteristics with the governing dimensionless parameters of the problem, which include the nanoparticle volume fraction ϕ, the nonlinearly stretching sheet parameter n, the thermal radiation parameter NR, and the viscous dissipation parameter Ec, were graphed and tabulated. Excellent validation of the present numerical results has been achieved with the earlier nonlinearly stretching sheet problem of Cortell for local Nusselt number without taking the effect of nanoparticles.

  13. Direct initiation of gaseous detonation via radiative heating of microparticles volumetrically suspended in the gas

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    2015-11-01

    We propose a new conceptual approach for direct detonation initiation in the gaseous mixtures seeded with micro particles via the radiative heating from the external energy source. The basic mechanisms of energy absorption, ignition and detonation formation are analyzed numerically on the example of hydrogen-oxygen mixture. Obtained data is very promising and allows us to formulate conditions for the source power to ignite detonation in certain system geometry.

  14. Radiative heat transfer in PC (pulverized coal) furnaces burning deeply cleaned coals

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1990-05-01

    A three-dimensional spectral radiation transport model has been developed for assessing the impact of burning deeply cleaned coals on heat absorption patterns in pulverized coal (PC) furnaces. Spectroscopic data are used for calculating the absorption coefficients of participating gases. Mie theory is invoked for determining the extinction and scattering efficiencies of combustion particulates. The optical constants of char, ash and soot are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. 8 refs., 2 figs., 3 tabs.

  15. Effect Of Black Carbon Radiative Heating On Cloud Microphysics Over Indo-Gangetic Basin

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Tripathi, S. N.

    2008-12-01

    Airborne black carbon (BC), the most significant particulate absorber of solar radiation in the atmosphere, is an important contributor to both global and regional-scale climate forcing (Tripathi et al., 2005). In context of cloud microphysics, freshly emitted pure BC particles are hydrophobic (i.e., bad cloud condensation nuclei (CCN)). However, exposure in the atmosphere may transform BC to a hydrophilic state if these particles are coated with additional materials, such as sulfate and organic carbon (OC). In a recent study, Conant et al. (2002) has examined the effect of radiative heating of BC on the critical supersaturation spectrum of internally mixed aerosols. Two main uncertainties introduced in this work are due to lack of knowledge of actual state of mixing and realistic distributions of different aerosol species. Indo-Gangetic Basin (IGB) in the northern India is one of the most polluted regions in the world. The cloud microphysical processes in IGB are very complex and it requires an in depth investigation for understanding of the aerosol-cloud interaction in the region (Tripathi, et al., 2007). In the present work, an attempt has been made to study the effect of radiative heating due to BC particles coated with hydrophilic materials on cloud microphysics over IGB. For this purpose, we have used (a) a two-layer radiative parameter model based on Mie theory (Toon and Ackerman, 1981) to calculate the particle (monodisperse) absorption cross section; (b) a three-dimensional (3D) radiative transfer model, the spherical harmonics discrete ordinate method (SHDOM) (Evans,1998), which assumes a tropical continental atmosphere, to simulate the 3D spectral actinic flux over the study region; and (c) Extended Köhler theory (Conant et al., 2002) to simulate the effect the BC radiative heating on cloud droplet activation. The solar wavelength spectrum used ranges from 0.2 to 5 micrometer. Following the in situ measurements and modeling studies on mixing state (Dey

  16. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by

  17. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: Theory versus experiment in water

    SciTech Connect

    Underwood, H.R. ); Peterson, A.F. ); Magin, R.L. )

    1992-02-01

    A rectangular microstrip antenna radiator is investigated for its near-zone radiation characteristics in water. Calculations of a cavity model theory are compared with the electric-field measurements of a miniature nonperturbing diode dipole E-field probe whose 3 mm tip was positioned by an automatic three-axis scanning system. These comparisons have implications for the use of microstrip antennas in a multielement microwave hyperthermia applicator. Half-wavelength rectangular microstrip patches were designed to radiate in water at 915 MHz. Both low ([epsilon][sub r] = 10) and high ([epsilon][sub r] = 85) dielectric constant substrates were tested. Normal and tangential components of the near-zone radiated electric field were discriminated by appropriate orientation of the E-field probe. Low normal to transverse electric-field ratios ar 3.0 cm depth indicate that the radiators may be useful for hyperthermia heating with an intervening water bolus. Electric-field pattern addition from a three-element linear array of these elements in water indicates that phase and amplitude adjustment can achieve some limited control over the distribution of radiated power.

  18. Convective and radiative heat transfer coefficients for individual human body segments

    NASA Astrophysics Data System (ADS)

    de Dear, R. J.; Arens, Edward; Hui, Zhang; Oguro, Masayuki

    Human thermal physiological and comfort models will soon be able to simulate both transient and spatial inhomogeneities in the thermal environment. With this increasing detail comes the need for anatomically specific convective and radiative heat transfer coefficients for the human body. The present study used an articulated thermal manikin with 16 body segments (head, chest, back, upper arms, forearms, hands, pelvis, upper legs, lower legs, feet) to generate radiative heat transfer coefficients as well as natural- and forced-mode convective coefficients. The tests were conducted across a range of wind speeds from still air to 5.0 m/s, representing atmospheric conditions typical of both indoors and outdoors. Both standing and seated postures were investigated, as were eight different wind azimuth angles. The radiative heat transfer coefficient measured for the whole-body was 4.5 W/m2 per K for both the seated and standing cases, closely matching the generally accepted whole-body value of 4.7 W/m2 per K. Similarly, the whole-body natural convection coefficient for the manikin fell within the mid-range of previously published values at 3.4 and 3.3 W/m2 per K when standing and seated respectively. In the forced convective regime, heat transfer coefficients were higher for hands, feet and peripheral limbs compared to the central torso region. Wind direction had little effect on convective heat transfers from individual body segments. A general-purpose forced convection equation suitable for application to both seated and standing postures indoors was hc=10.3v0.6 for the whole-body. Similar equations were generated for individual body segments in both seated and standing postures.

  19. Comparison of Simulated and Observed Continental Tropical Anvil Clouds and Their Radiative Heating Profiles

    SciTech Connect

    Powell, Scott W.; Houze, R.; Kumar, Anil; McFarlane, Sally A.

    2012-09-06

    Vertically pointing millimeter-wavelength radar observations of anvil clouds extending from mesoscale convective systems (MCSs) that pass over an Atmospheric Radiation Measurement Program (ARM) field site in Niamey, Niger, are compared to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model using six different microphysical schemes. The radar data provide the statistical distribution of the radar reflectivity values as a function of height and anvil thickness. These statistics are compared to the statistics of the modeled anvil cloud reflectivity at all altitudes. Requiring the model to be statistically accurate at all altitudes is a stringent test of the model performance. The typical vertical profile of radiative heating in the anvil clouds is computed from the radar observations. Variability of anvil structures from the different microphysical schemes provides an estimate of the inherent uncertainty in anvil radiative heating profiles. All schemes underestimate the optical thickness of thin anvils and cirrus, resulting in a bias of excessive net anvil heating in all of the simulations.

  20. Shock-tube studies of radiative base heating of Jovian probe

    NASA Technical Reports Server (NTRS)

    Shirai, H.; Park, C.

    1980-01-01

    A 6.4-cm-diameter scale model of the Jovian entry vehicle is tested in an electric-arc-driven shock tube and a 5-cm-diameter sphere model is tested in a combustion-driven shock tube and in an electric-arc-driven shock tunnel. The radiative heat-transfer rate and pressure on the front and the base regions are measured in the absence of ablation with sensors imbedded in the models in a stream consisting of 10% hydrogen in a bath of either neon or argon. The measured radiative heat-transfer rates and pressures range to about 22 kW/sq cm and 12 atm, respectively, at the front stagnation point. The ratio of the radiative heat-transfer rate at the base stagnation point to that at the front stagnation point is found to be about 1/4 for the sphere at Mach 1.8, about 1/30 for the sphere at Mach 4.8, and about 1/6 for the scale model at Mach 1.7. The present experimental results agree well with the theoretical predictions of Park, thus indicating that Park's theory is valid.

  1. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, J.; Zhao, J. M.; Liu, L. H.

    2017-08-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension.

  2. Method for calculating internal radiation and ventilation with the ADINAT heat-flow code

    SciTech Connect

    Butkovich, T.R.; Montan, D.N.

    1980-04-01

    One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation and ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.

  3. Modeling of Radiative Heating in Base Region of Jovian Entry Probe

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1979-01-01

    A theoretical model is derived to determine the average thermodynamic properties in the expanding region, recirculating region, recompression region, and neck region through application of one-dimensional conservation equations. Radiative transfer is calculated using spectrally detailed computer codes accounting for nonequilibrium. The results show that the most severe heating occurs immediately behind the frustum, and that the recompression and neck regions are the major sources of radiation that heats the base stagnation point, The radiation flux to the base point is slightly stronger with ablation than without. Its value is 0.11(43 P(sub b)/P(sub s))(sup 2) times that to the front stagnation point where the base pressure P(sub b) is defined as the average pressure in the recirculating region and P(sub s) is the front stagnation-point pressure. The time-integrated heat load to the base point is 18(43 P(sub b)/P(sub s))(sup 2) kJ/sq cm.

  4. The role of radiation transport in the thermal response of semitransparent materials to localized laser heating

    SciTech Connect

    Colvin, Jeffrey; Shestakov, Aleksei; Stolken, James; Vignes, Ryan

    2011-03-09

    Lasers are widely used to modify the internal structure of semitransparent materials for a wide variety of applications, including waveguide fabrication and laser glass damage healing. The gray diffusion approximation used in past models to describe radiation cooling is not adequate for these materials, particularly near the heated surface layer. In this paper we describe a computational model based upon solving the radiation transport equation in 1D by the Pn method with ~500 photon energy bands, and by multi-group radiationdiffusion in 2D with fourteen photon energy bands. The model accounts for the temperature-dependent absorption of infrared laser light and subsequent redistribution of the deposited heat by both radiation and conductive transport. We present representative results for fused silica irradiated with 2–12 W of 4.6 or 10.6 µm laser light for 5–10 s pulse durations in a 1 mm spot, which is small compared to the diameter and thickness of the silica slab. Furthermore, we show that, unlike the case for bulk heating, in localized infrared laser heatingradiation transport plays only a very small role in the thermal response of silica.

  5. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  6. Optical absorption and radiative heat transport in olivine at high temperature

    NASA Technical Reports Server (NTRS)

    Shankland, T. J.; Nitsan, U.; Duba, A. G.

    1979-01-01

    Results are presented of measurements of the optical absorption spectra (300-8000 nm) of olivine as a function of temperature (300-1700 K) under conditions of controlled and known oxygen fugacity within the stability field of the samples. The absorption spectra are used to calculate the temperature-dependent radiative transfer coefficient of olivine and to numerically study the accuracy of the method. The present absorption measurements in olivine under oxidizing conditions known to be within the olivine stability field indicate that the effective radiative conductivity K(R) is lower than that obtained in previous studies under different experimental conditions. The lower value of K(R) makes it more likely that some of the earth's internal heat is removed by convection and less likely that thermal models involving conduction and radiation alone will satisfactorily explain thermal conditions in the earth's mantle.

  7. Application of coupled mode theory on radiative heat transfer between layered Lorentz materials

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-05-01

    The coupled mode theory (CMT) provides a simple and clear framework to analyze the radiation energy exchange between reservoirs. We apply CMT to analyze the radiative heat transfer between layered Lorentz materials whose dielectric functions can be approximated by the Lorentz oscillator model. By comparing the transmissivity computed by the exact solution to that computed by CMT, we find that CMT generally gives a good approximation for this class of materials. The biggest advantage of CMT analysis, in our opinion, is that only the (complex) resonant energies are needed to obtain the radiation energy transfer; the knowledge of the spatial profile of resonances is not required. Several issues, including how to choose the resonant modes, what these modes represent, and the limitation of this method, are discussed. Finally, we also apply the CMT method to the electronic systems, demonstrating the generality of this formalism.

  8. Influence of radiative heating and cumulus convection on development of mean monsoon circulation in July

    NASA Technical Reports Server (NTRS)

    Kuo, H. L.; Qian, Y. F.; Chen, Y. J.

    1983-01-01

    Numerical simulations of July mean monsoon circulation in the tropics are described. The model used in the simulations was based on a series of primitive equations for the combined effects of variations of solar radiation, radiative diurnal warming, and large-scale and deep cumulus condensation, and the kinematic effects of topography. The initial states of the model were derived from the observed mean distributions of pressure and humidity. Analysis of the numerical results showed that the large-scale features of the mean July monsoon circulation in the tropics are created mainly by differential diabatic heating under the influence of the specific topography. The time necessary to establish the large scale features was only about 5 days when the diurnal variation of solar radiation was taken into account. Graphic illustrations of the simulated mean July flow conditions are provided.

  9. Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants.

    PubMed

    Shi, Norman Nan; Tsai, Cheng-Chia; Camino, Fernando; Bernard, Gary D; Yu, Nanfang; Wehner, Rüdiger

    2015-07-17

    Saharan silver ants, Cataglyphis bombycina, forage under extreme temperature conditions in the African desert. We show that the ants' conspicuous silvery appearance is created by a dense array of triangular hairs with two thermoregulatory effects. They enhance not only the reflectivity of the ant's body surface in the visible and near-infrared range of the spectrum, where solar radiation culminates, but also the emissivity of the ant in the mid-infrared. The latter effect enables the animals to efficiently dissipate heat back to the surroundings via blackbody radiation under full daylight conditions. This biological solution for a thermoregulatory problem may lead to the development of biomimetic coatings for passive radiative cooling of objects. Copyright © 2015, American Association for the Advancement of Science.

  10. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  11. Strongly coupled near-field radiative and conductive heat transfer between planar bodies

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Jin, Weiliang; Rodriguez, Alejandro W.

    2016-09-01

    We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps d and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction-radiation in this geometry. We find that these effects can be prominent in typical materials (e.g., silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.

  12. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    SciTech Connect

    Kasmani, Ruhaila Md; Bhuvaneswari, M.; Sivasankaran, S.; Siri, Zailan

    2015-10-22

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge–Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of the heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.

  13. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Kasmani, Ruhaila Md; Sivasankaran, S.; Bhuvaneswari, M.; Siri, Zailan

    2015-10-01

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge-Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of the heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.

  14. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  15. Physical and mathematical models of the heat action of laser radiation on biotissues

    NASA Astrophysics Data System (ADS)

    Ivanov, Andrei V.; Molodykh, E. I.; Romanovsky, Yury M.; Schetinkina, T. A.; Borisov, D. V.

    1995-01-01

    A mathematical model of contact laser destruction of normal and tumor liver tissues by radiation of YAG:Nd laser is described. We present the results of the simulation of tissue heat destruction, taking into account the influence of blood and lymph circulation on the processes of heat transfer. The problem is adapted to the case of liver tissue with tumor. A liver is considered as a capillary-porous body with internal blood circulation. Heatconductivity and tissue-blood heat transfer are considered. Heat action is assumed to be implemented with contact laser scalpel. The mathematical model consists of two inhomogeneous nonlinear equations of heatconductivity with spherical symmetry. Nonstationary temperature fields of tissue and blood are determined. The power of laser radiation (LR) was taken into account in boundary conditions set for the center of coagulated tissue volume. We also took into account the processes connected with changing of substance phase (vaporization). The original computer programs allow one to solve the problem varying in a wide range of the main parameters. Reasonable agreement was found between the calculation results and the experimental data for operations on macrosamples and on test animals.

  16. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  17. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    NASA Astrophysics Data System (ADS)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  18. Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    SciTech Connect

    Bagratashvili, Viktor N; Bagratashvili, N V; Omel'chenko, A I; Sviridov, A P; Sobol', E N; Tsypina, S I; Gapontsev, V P; Minaev, V P; Samartsev, I E; Makhmutova, G Sh

    2001-06-30

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 {mu}m is studied. The laser-induced bleaching (at 1.56 {mu}m) and darkening (at 0.97 {mu}m) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues. (laser applications and other topics in quantum electronics)

  19. Validation experiments to determine radiation partitioning of heat flux to an object in a fully turbulent fire.

    SciTech Connect

    Ricks, Allen; Blanchat, Thomas K.; Jernigan, Dann A.

    2006-06-01

    It is necessary to improve understanding and develop validation data of the heat flux incident to an object located within the fire plume for the validation of SIERRA/ FUEGO/SYRINX fire and SIERRA/CALORE. One key aspect of the validation data sets is the determination of the relative contribution of the radiative and convective heat fluxes. To meet this objective, a cylindrical calorimeter with sufficient instrumentation to measure total and radiative heat flux had been designed and fabricated. This calorimeter will be tested both in the controlled radiative environment of the Penlight facility and in a fire environment in the FLAME/Radiant Heat (FRH) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisons between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. A significant question of interest to modeling heat flux incident to an object in or near a fire is the contribution of the radiation and convection modes of heat transfer. The series of experiments documented in this test plan is designed to provide data on the radiation partitioning, defined as the fraction of the total heat flux that is due to radiation.

  20. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  1. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  2. Heating, Hydrodynamics, and Radiation From a Laser Heated Non-LTE High-Z Target

    NASA Astrophysics Data System (ADS)

    Gray, William; Foord, M. E.; Schneider, M. B.; Barrios, M. A.; Brown, G. V.; Heeter, R. F.; Jarrott, L. C.; Liedahl, D. A.; Marley, E. V.; Mauche, C. W.; Widmann, K.

    2016-10-01

    We present 2D R-z simulations that model the hydrodynamics and x-ray output of a laser heated, tamped foil, using the rad-hydro code LASNEX. The foil consists of a thin (2400 A) cylindrical disk of iron/vanadium/gold that is embedded in a thicker Be tamper. The simulations utilize a non-LTE detailed configuration (DCA) model, which generates the emission spectra. Simulated pinhole images are compared with data, finding qualitative agreement with the time-history of the face-on emission profiles, and exhibiting an interesting reduction in emission size over a few ns time period. Furthermore, we find that the simulations recover similar burn through times in both the target and Be tamper as measured by a time-dependent filtered x-ray detector (DANTE). Additional results and characterization of the experimental plasma will be presented. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Conjugate Convection with Surface Radiation from a Square-Shaped Electronic Device with Multiple Identical Discrete Heat Sources

    NASA Astrophysics Data System (ADS)

    Shah, A. P.; Krishna, Y. M.; Rao, C. G.

    2013-04-01

    Numerical simulation studies on combined conduction-convection-radiation from a square-shaped electronic device with multiple identical flush-mounted discrete heat sources have been performed and the prominent results are reported here. The problem geometry comprises a square shaped slab with four symmetrically located flush mounted identical discrete heat sources. The heat generated in the heat sources gets conducted through the slab and subsequently gets dissipated from its boundaries by the combined modes of convection and radiation. Air, a radiatively transparent medium is considered to be the cooling agent. The governing equations for temperature distribution in the entire computational domain are obtained by appropriate energy balance between the heat generated, conducted, convected and radiated. The resulting partial differential equations are solved using finite difference method in conjunction with Gauss-Seidel iterative technique. A computer code is prepared for the purpose. Exhaustive numerical studies are performed to elucidate the effects of parameters like volumetric heat generation, thermal conductivity, surface emissivity and convection heat transfer coefficient on local temperature distribution, peak device temperature and relative contributions of convection and radiation in heat dissipation.

  4. Calculation of flow and heat transfer over the radiation section of a fluidized bed furnace-equipped boiler

    NASA Astrophysics Data System (ADS)

    Abramzon, M. N.; Popov, Yu. A.

    1993-03-01

    Calculations of flow and heat transfer in the furnace volume and in the radiation part of the E-160 boiler (under the Russian trademark) for Tash-Kumyrsk coal burning at atmospheric and elevated pressures are made.

  5. Graphene-based amplification and tuning of near-field radiative heat transfer between dissimilar polar materials

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Ben-Abdallah, Philippe; Guizal, Brahim; Antezza, Mauro

    2017-07-01

    The radiative heat transfer between two dielectrics can be strongly enhanced in the near field in the presence of surface phonon-polariton resonances. Nevertheless, the spectral mismatch between the surface modes supported by two dissimilar materials is responsible for a dramatic reduction of the radiative heat flux they exchange. In the present paper we study how the presence of a graphene sheet, deposited on the material supporting the surface wave of lowest frequency, allows us to widely tune the radiative heat transfer, producing an amplification factor going up to one order of magnitude. By analyzing the Landauer energy transmission coefficients we demonstrate that this amplification results from the interplay between the delocalized plasmon supported by graphene and the surface polaritons of the two dielectrics. We finally show that the effect we highlight is robust with respect to the frequency mismatch, paving the way to an active tuning and amplification of near-field radiative heat transfer in different configurations.

  6. Modeling Earth's Outer Radiation Belt Electron Dynamics---Radial Diffusion, Heating, and Loss

    NASA Astrophysics Data System (ADS)

    Tu, Weichao

    Earth's outer radiation belt is a relativistic electron environment that is hazardous to space systems. It is characterized by large variations in the electron flux, which are controlled by the competition between source, transport, and loss processes. One of the central questions in outer radiation belt research is to resolve the relative contribution of radial diffusion, wave heating, and loss to the enhancement and decay of the radiation belt electrons. This thesis studies them together and separately. Firstly, we develop an empirical Fokker-Planck model that includes radial diffusion, an internal source, and finite electron lifetimes parameterized as functions of geomagnetic indices. By simulating the observed electron variations, the model suggests that the required magnitudes of radial diffusion and internal heating for the enhancement of energetic electrons in the outer radiation belt vary from storm to storm, and generally internal heating contributes more to the enhancements of MeV energy electrons at L=4 (L is approximately the radial distance in Earth radii at the equator). However, since the source, transport, and loss terms in the model are empirical, the model results have uncertainties. To eliminate the uncertainty in the loss rate, both the precipitation and the adiabatic loss of radiation belt electrons are quantitatively studied. Based on the observations from Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), a Drift-Diffusion model is applied to quantify electron precipitation loss, which is the dominant non-adiabatic loss mechanism for electrons in the heart of the outer radiation belt. Model results for a small storm, a moderate storm, and an intense storm indicate that fast precipitation losses of relativistic electrons, on the time scale of hours, persistently occur in the storm main phases and with more efficient losses at higher energies over wide range of L regions. Additionally, calculations of adiabatic effects on radiation

  7. Analysis of Tropical Radiative Heating Profiles in the Multi-Scale Modeling Framework: A Comparison to Atmospheric Radiation Measurement Program Observations

    SciTech Connect

    McFarlane, Sally A.; Mather, Jim H.; Ackerman, Thomas P.

    2006-03-01

    Radiative heating associated with the variability of water vapor and clouds in the atmosphere is a principal driver of tropical circulation. Models must produce cloud and radiative heating rate profiles with realistic horizontal, vertical, and diurnal variability in order to produce realistic tropical circulations and cloud feedbacks. A recent study has indicated that the inability of many models to simulate realistic representations of the Madden-Julian Oscillation (MJO) may be caused by systematic diabatic heating profile errors. One of the primary difficulties in producing accurate heating rate profiles within a large-scale general circulation model (GCM) is the sub-grid scale nature of cloud processes and their interactions with radiation. A new approach to climate modeling, the Multi-Scale Modeling Framework (MMF), reduces the need for sub-grid scale cloud parameterizations by replacing the cloud and radiation parameterizations of a GCM with a 2-D cloud system resolving model. The long time series of cloud radar observations at the ARM tropical sites provide an unprecedented dataset for directly calculating radiative heating rate profiles with high temporal and vertical resolution. In this study, we compare radiative heating rate profiles calculated from ARM cloud observations at the Nauru and Manus sites to the model output from the MMF and its parent model, the NCAR Community Atmosphere Model (CAM 3.0). During the study period, the Nauru site was experiencing suppressed conditions while the Manus site had more active convection, leading to very different average radiative heating rate profiles at the two sites. We examine the differences in the observations and model output during these two meteorological regimes. Features of the average heating rates as well as the details of the diurnal cycle are examined. Initial results indicate that differences in the cloud amounts and cloud properties produced in the two models due to their different treatment of cloud

  8. Design and Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

    NASA Technical Reports Server (NTRS)

    Sunada, Eric; Birur, Gajanana C.; Ganapathi, Gani B.; Miller, Jennifer; Berisford, Daniel; Stephan, Ryan

    2010-01-01

    NASA's proposed lunar lander, Altair, will be exposed to vastly different external environment temperatures. The challenges to the active thermal control system (ATCS) are compounded by unfavorable transients in the internal waste heat dissipation profile: the lowest heat load occurs in the coldest environment while peak loads coincide with the warmest environment. The current baseline for this fluid is a 50/50 inhibited propylene glycol/water mixture with a freeze temperature around -35 C. While the overall size of the radiator's heat rejection area is dictated by the worst case hot scenario, a turn-down feature is necessary to tolerate the worst case cold scenario. A radiator with digital turn-down capability is being designed as a robust means to maintain cabin environment and equipment temperatures while minimizing mass and power consumption. It utilizes active valving to isolate and render ineffective any number of parallel flow tubes which span across the ATCS radiator. Several options were assessed in a trade-study to accommodate flow tube isolation and how to deal with the stagnant fluid that would otherwise remain in the tube. Bread-board environmental tests were conducted for options to drain the fluid from a turned-down leg as well an option to allow a leg to freeze/thaw. Each drain option involved a positive displacement gear pump with different methods of providing a pressure head to feed it. Test results showed that a start-up heater used to generate vapor at the tube inlet held the most promise for tube evacuation. Based on these test results and conclusions drawn from the trade-study, a full-scale radiator design is being worked for the Altair mission profile.

  9. Design and Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

    NASA Technical Reports Server (NTRS)

    Sunada, Eric; Birur, Gajanana C.; Ganapathi, Gani B.; Miller, Jennifer; Berisford, Daniel; Stephan, Ryan

    2010-01-01

    NASA's proposed lunar lander, Altair, will be exposed to vastly different external environment temperatures. The challenges to the active thermal control system (ATCS) are compounded by unfavorable transients in the internal waste heat dissipation profile: the lowest heat load occurs in the coldest environment while peak loads coincide with the warmest environment. The current baseline for this fluid is a 50/50 inhibited propylene glycol/water mixture with a freeze temperature around -35 C. While the overall size of the radiator's heat rejection area is dictated by the worst case hot scenario, a turn-down feature is necessary to tolerate the worst case cold scenario. A radiator with digital turn-down capability is being designed as a robust means to maintain cabin environment and equipment temperatures while minimizing mass and power consumption. It utilizes active valving to isolate and render ineffective any number of parallel flow tubes which span across the ATCS radiator. Several options were assessed in a trade-study to accommodate flow tube isolation and how to deal with the stagnant fluid that would otherwise remain in the tube. Bread-board environmental tests were conducted for options to drain the fluid from a turned-down leg as well an option to allow a leg to freeze/thaw. Each drain option involved a positive displacement gear pump with different methods of providing a pressure head to feed it. Test results showed that a start-up heater used to generate vapor at the tube inlet held the most promise for tube evacuation. Based on these test results and conclusions drawn from the trade-study, a full-scale radiator design is being worked for the Altair mission profile.

  10. Cloud radiative forcing induced by layered clouds and associated impact on the atmospheric heating rate

    NASA Astrophysics Data System (ADS)

    Lü, Qiaoyi; Li, Jiming; Wang, Tianhe; Huang, Jianping

    2015-10-01

    A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented, based on the 2B-CLDCLASS-LIDAR and 2B-FLXHR-LIDAR products on the global scale. The CRH at a given atmospheric level is defined as the cloudy minus clear-sky radiative heating rate. The statistical results show that the globally averaged cloud fraction of the MLC (24.9%), which is primarily prevalent in equatorial regions, is smaller than that of the SLC (46.6%). The globally averaged net radiative forcings (NET CRFs) induced by the SLC (MLC) at the top and bottom of the atmosphere (TOA and BOA) and in the atmosphere (ATM) are-60.8 (-40.9),-67.5 (-49.6), and 6.6 (8.7) W m-2, respectively, where the MLC contributes approximately 40.2%, 42.4%, and 57% to the NET CRF at the TOA, BOA, and in the ATM, respectively. The MLC exhibits distinct differences to the SLC in terms of CRH. The shortwave CRH of the SLC (MLC) reaches a heating peak at 9.75 (7.5) km, with a value of 0.35 (0.60) K day-1, and the differences between SLC and MLC transform from positive to negative with increasing altitude. However, the longwave CRH of the SLC (MLC) reaches a cooling peak at 2 (8) km, with a value of-0.45 (-0.42) K day-1, and the differences transform from negative to positive with increasing altitude. In general, the NET CRH differences between SLC and MLC are negative below 7.5 km. These results provide an observational basis for the assessment and improvement of the cloud parameterization schemes in global models.

  11. Thermoregulation of foraging honeybees on flowering plants: seasonal variability and influence of radiative heat gain

    PubMed Central

    Kovac, Helmut; Stabentheiner, Anton

    2011-01-01

    1. During nectar and pollen foraging in a temperate climate, honeybees are exposed to a broad range of ambient temperatures, challenging their thermoregulatory ability. The body temperature that the bees exhibit results from endothermic heat production, exogenous heat gain from solar radiation, and heat loss. In addition to profitability of foraging, season was suggested to have a considerable influence on thermoregulation. To assess the relative importance of these factors, the thermoregulatory behaviour of foragers on 33 flowering plants in dependence on season and environmental factors was investigated. 2. The bees (Apis mellifera carnica Pollman) were always endothermic. On average, the thorax surface temperature (Tth) was regulated at a high and rather constant level over a broad range of ambient temperatures (Tth = 33.7–35.7°C, Ta = 10–27°C). However, at a certain Ta, Tth showed a strong variation, depending on the plants from which the bees were foraging. At warmer conditions (Ta = 27–32°C) the Tth increased nearly linearly with Ta to a maximal average level of 42.6 °C. The thorax temperature excess decreased strongly with increasing Ta (Tth−Ta = 21.6 − 3.6°C). 3. The bees used the heat gain from solar radiation to elevate the temperature excess of thorax, head, and abdomen. Seasonal dependance was reflected in a 2.7 °C higher mean Tth in the spring than in the summer. An anova revealed that season had the greatest effect on Tth, followed by Ta and radiation. 4. It was presumed the foragers' motivational status to be the main factor responsible for the variation of Tth between seasons and different plants. PMID:22419834

  12. Thermoregulation of foraging honeybees on flowering plants: seasonal variability and influence of radiative heat gain.

    PubMed

    Kovac, Helmut; Stabentheiner, Anton

    2011-12-01

    1. During nectar and pollen foraging in a temperate climate, honeybees are exposed to a broad range of ambient temperatures, challenging their thermoregulatory ability. The body temperature that the bees exhibit results from endothermic heat production, exogenous heat gain from solar radiation, and heat loss. In addition to profitability of foraging, season was suggested to have a considerable influence on thermoregulation. To assess the relative importance of these factors, the thermoregulatory behaviour of foragers on 33 flowering plants in dependence on season and environmental factors was investigated.2. The bees (Apis mellifera carnica Pollman) were always endothermic. On average, the thorax surface temperature (T(th)) was regulated at a high and rather constant level over a broad range of ambient temperatures (T(th) = 33.7-35.7°C, T(a) = 10-27°C). However, at a certain T(a), T(th) showed a strong variation, depending on the plants from which the bees were foraging. At warmer conditions (T(a) = 27-32°C) the T(th) increased nearly linearly with T(a) to a maximal average level of 42.6 °C. The thorax temperature excess decreased strongly with increasing T(a) (T(th)-T(a) = 21.6 - 3.6°C).3. The bees used the heat gain from solar radiation to elevate the temperature excess of thorax, head, and abdomen. Seasonal dependance was reflected in a 2.7 °C higher mean T(th) in the spring than in the summer. An anova revealed that season had the greatest effect on T(th), followed by T(a) and radiation.4. It was presumed the foragers' motivational status to be the main factor responsible for the variation of T(th) between seasons and different plants.

  13. Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Naab, Thorsten; Glover, Simon C. O.; Walch, Stefanie; Clark, Paul C.

    2017-10-01

    We present high-resolution hydrodynamical simulations of isolated dwarf galaxies including self-gravity, non-equilibrium cooling and chemistry, interstellar radiation fields (ISRF) and shielding, star formation, and stellar feedback. This includes spatially and temporally varying photoelectric (PE) heating, photoionization, resolved supernova (SN) blast waves and metal enrichment. A new flexible method to sample the stellar initial mass function allows us to follow the contribution to the ISRF, the metal output and the SN delay times of individual massive stars. We find that SNe play the dominant role in regulating the global star formation rate, shaping the multiphase interstellar medium (ISM) and driving galactic outflows. Outflow rates (with mass-loading factors of a few) and hot gas fractions of the ISM increase with the number of SNe exploding in low-density environments where radiative energy losses are low. While PE heating alone can suppress star formation as efficiently as SNe alone can do, it is unable to drive outflows and reproduce the multiphase ISM that emerges naturally whenever SNe are included. We discuss the potential origins for the discrepancy between our results and another recent study that claimed that PE heating dominates over SNe. In the absence of SNe and photoionization (mechanisms to disperse dense clouds), the impact of PE heating is highly overestimated owing to the (unrealistic) proximity of dense gas to the radiation sources. This leads to a substantial boost of the infrared continuum emission from the UV-irradiated dust and a far-infrared line-to-continuum ratio too low compared to observations.

  14. Preventive measures and lifestyle habits against exertional heat illness in radiation decontamination workers.

    PubMed

    Endo, Shota; Kakamu, Takeyasu; Sato, Sei; Hidaka, Tomoo; Kumagai, Tomohiro; Nakano, Shinichi; Koyama, Kikuo; Fukushima, Tetsuhito

    2017-09-28

    The aim of this study was to reveal the current state of preventive measures and lifestyle habits against heat illness in radiation decontamination workers and to examine whether young radiation decontamination workers take less preventive measures and have worse lifestyle habits than the elder workers. This was a cross-sectional study. Self-administered questionnaires were sent to 1,505 radiation decontamination workers in Fukushima, Japan. Five hundred fifty-eight men who replied and answered all questions were included in the statistical analysis. The questionnaire included age, duration of decontamination work, previous occupation, lifestyle habit, and preventive measures for heat illness. We classified age of the respondents into five groups: <30, 30-39, 40-49, 50-59, and ≥60 years and defined the workers under 30 years of age as young workers. Logistic regression analysis was used to reveal the factors associated with each lifestyle habit and preventive measures. In comparison with young workers, 50-59-year-old workers were significantly associated with refraining from drinking alcohol. Workers 40 years of age or older were significantly associated with cooling their bodies with refrigerant. Furthermore, 30-39-year-old workers and 40-49-year-old workers were significantly associated with adequate consumption of water compared to young workers. The results of our study suggests that young decontamination workers are more likely to have worse lifestyle habits and take insufficient preventive measures for heat illness. This may be the cause of higher incidence of heat illness among young workers.

  15. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    SciTech Connect

    Sizyuk, V. Hassanein, A.

    2015-01-15

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  16. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Phuoc, Tran X.

    2008-09-25

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source team, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed.

  17. Influence of radiation on MHD peristaltic blood flow through a tapered channel in presence of slip and joule heating

    NASA Astrophysics Data System (ADS)

    Ahamad, N. Ameer; Ravikumar, S.; Govindaraju, Kalimuthu

    2017-07-01

    The aim of the present attempt was to investigate an effect of slip and joule heating on MHD peristaltic Newtonian fluid through an asymmetric vertical tapered channel under influence of radiation. The Mathematical modeling is investigated by utilizing long wavelength and low Reynolds number assumptions. The effects of Hartmann number, porosity parameter, volumetric flow rate, radiation parameter, non uniform parameter, shift angle, Prandtl number, Brinkman number, heat source/sink parameter on temperature characteristics are presented graphically and discussed in detail.

  18. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Tran, P.X.

    2008-09-22

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed

  19. Transport of heat in caloric vestibular stimulation. Conduction, convection or radiation?

    PubMed

    Feldmann, H; Hüttenbrink, K B; Delank, K W

    1991-01-01

    Experiments in temporal bone specimens were carried out under strictly controlled conditions: temperature (37 degrees C) and humidity kept constant; standardized irrigation of the external ear canal by an automated system (in 15 s, 50 ml of water, 11 degrees C above temperature of specimen), thermistor probes of 0.2 mm diameter placed in different parts of the specimens. In the intact temporal bone such an irrigation causes a rise in temperature with a gradient from the external ear canal across the bony bridge to the lateral semicircular canal as expected with heat conduction. After removal of the bony bridge, which is the main route for heat conduction, the rise in temperature in the lateral semicircular canal is greater and faster than in the intact specimen. This effect again is drastically reduced by placing a reflecting shield between tympanic membrane and labyrinth. In the intact middle ear inserting a reflecting shield or filling the cavity with gel also reduces the heat transfer to the labyrinth, although the bony routes for heat conduction are left untouched. The experiments prove that radiation plays an important part in heat transfer in caloric stimulation.

  20. Changes in domestic heating fuel use in Greece: effects on atmospheric chemistry and radiation

    NASA Astrophysics Data System (ADS)

    Athanasopoulou, Eleni; Speyer, Orestis; Brunner, Dominik; Vogel, Heike; Vogel, Bernhard; Mihalopoulos, Nikolaos; Gerasopoulos, Evangelos

    2017-09-01

    For the past 8 years, Greece has been experiencing a major financial crisis which, among other side effects, has led to a shift in the fuel used for residential heating from fossil fuel towards biofuels, primarily wood. This study simulates the fate of the residential wood burning aerosol plume (RWB smog) and the implications on atmospheric chemistry and radiation, with the support of detailed aerosol characterization from measurements during the winter of 2013-2014 in Athens. The applied model system (TNO-MACC_II emissions and COSMO-ART model) and configuration used reproduces the measured frequent nighttime aerosol spikes (hourly PM10 > 75 µg m-3) and their chemical profile (carbonaceous components and ratios). Updated temporal and chemical RWB emission profiles, derived from measurements, were used, while the level of the model performance was tested for different heating demand (HD) conditions, resulting in better agreement with measurements for Tmin < 9 °C. Half of the aerosol mass over the Athens basin is organic in the submicron range, of which 80 % corresponds to RWB (average values during the smog period). Although organic particles are important light scatterers, the direct radiative cooling of the aerosol plume during wintertime is found low (monthly average forcing of -0.4 W m-2 at the surface), followed by a minor feedback to the concentration levels of aerosol species. The low radiative cooling of a period with such intense air pollution conditions is attributed to the timing of the smog plume appearance, both directly (longwave radiation increases during nighttime) and indirectly (the mild effect of the residual plume on solar radiation during the next day, due to removal and dispersion processes).