Sample records for endoscopic imaging system

  1. Smartphone-Based Endoscope System for Advanced Point-of-Care Diagnostics: Feasibility Study

    PubMed Central

    Bae, Jung Kweon; Vavilin, Andrey; You, Joon S; Kim, Hyeongeun; Ryu, Seon Young; Jang, Jeong Hun

    2017-01-01

    Background Endoscopic technique is often applied for the diagnosis of diseases affecting internal organs and image-guidance of surgical procedures. Although the endoscope has become an indispensable tool in the clinic, its utility has been limited to medical offices or operating rooms because of the large size of its ancillary devices. In addition, the basic design and imaging capability of the system have remained relatively unchanged for decades. Objective The objective of this study was to develop a smartphone-based endoscope system capable of advanced endoscopic functionalities in a compact size and at an affordable cost and to demonstrate its feasibility of point-of-care through human subject imaging. Methods We developed and designed to set up a smartphone-based endoscope system, incorporating a portable light source, relay-lens, custom adapter, and homebuilt Android app. We attached three different types of existing rigid or flexible endoscopic probes to our system and captured the endoscopic images using the homebuilt app. Both smartphone-based endoscope system and commercialized clinical endoscope system were utilized to compare the imaging quality and performance. Connecting the head-mounted display (HMD) wirelessly, the smartphone-based endoscope system could superimpose an endoscopic image to real-world view. Results A total of 15 volunteers who were accepted into our study were captured using our smartphone-based endoscope system, as well as the commercialized clinical endoscope system. It was found that the imaging performance of our device had acceptable quality compared with that of the conventional endoscope system in the clinical setting. In addition, images captured from the HMD used in the smartphone-based endoscope system improved eye-hand coordination between the manipulating site and the smartphone screen, which in turn reduced spatial disorientation. Conclusions The performance of our endoscope system was evaluated against a commercial system in routine otolaryngology examinations. We also demonstrated and evaluated the feasibility of conducting endoscopic procedures through a custom HMD. PMID:28751302

  2. Endoscopes with latest technology and concept.

    PubMed

    Gotoh

    2003-09-01

    Endoscopic imaging systems that perform as the "eye" of the operator during endoscopic surgical procedures have developed rapidly due to various technological developments. In addition, since the most recent turn of the century robotic surgery has increased its scope through the utilization of systems such as Intuitive Surgical's da Vinci System. To optimize the imaging required for precise robotic surgery, a unique endoscope has been developed, consisting of both a two dimensional (2D) image optical system for wider observation of the entire surgical field, and a three dimensional (3D) image optical system for observation of the more precise details at the operative site. Additionally, a "near infrared radiation" endoscopic system is under development to detect the sentinel lymph node more readily. Such progress in the area of endoscopic imaging is expected to enhance the surgical procedure from both the patient's and the surgeon's point of view.

  3. [Experience of Fusion image guided system in endonasal endoscopic surgery].

    PubMed

    Wen, Jingying; Zhen, Hongtao; Shi, Lili; Cao, Pingping; Cui, Yonghua

    2015-08-01

    To review endonasal endoscopic surgeries aided by Fusion image guided system, and to explore the application value of Fusion image guided system in endonasal endoscopic surgeries. Retrospective research. Sixty cases of endonasal endoscopic surgeries aided by Fusion image guided system were analysed including chronic rhinosinusitis with polyp (n = 10), fungus sinusitis (n = 5), endoscopic optic nerve decompression (n = 16), inverted papilloma of the paranasal sinus (n = 9), ossifying fibroma of sphenoid bone (n = 1), malignance of the paranasal sinus (n = 9), cerebrospinal fluid leak (n = 5), hemangioma of orbital apex (n = 2) and orbital reconstruction (n = 3). Sixty cases of endonasal endoscopic surgeries completed successfully without any complications. Fusion image guided system can help to identify the ostium of paranasal sinus, lamina papyracea and skull base. Fused CT-CTA images, or fused MR-MRA images can help to localize the optic nerve or internal carotid arteiy . Fused CT-MR images can help to detect the range of the tumor. It spent (7.13 ± 1.358) minutes for image guided system to do preoperative preparation and the surgical navigation accuracy reached less than 1mm after proficient. There was no device localization problem because of block or head set loosed. Fusion image guided system make endonasal endoscopic surgery to be a true microinvasive and exact surgery. It spends less preoperative preparation time, has high surgical navigation accuracy, improves the surgical safety and reduces the surgical complications.

  4. A 3D photographic capsule endoscope system with full field of view

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Kung, Yi-Chinn; Tao, Kuan-Heng

    2013-09-01

    Current capsule endoscope uses one camera to capture the surface image in the intestine. It can only observe the abnormal point, but cannot know the exact information of this abnormal point. Using two cameras can generate 3D images, but the visual plane changes while capsule endoscope rotates. It causes that two cameras can't capture the images information completely. To solve this question, this research provides a new kind of capsule endoscope to capture 3D images, which is 'A 3D photographic capsule endoscope system'. The system uses three cameras to capture images in real time. The advantage is increasing the viewing range up to 2.99 times respect to the two camera system. The system can accompany 3D monitor provides the exact information of symptom points, helping doctors diagnose the disease.

  5. Real-time endoscopic image orientation correction system using an accelerometer and gyrosensor.

    PubMed

    Lee, Hyung-Chul; Jung, Chul-Woo; Kim, Hee Chan

    2017-01-01

    The discrepancy between spatial orientations of an endoscopic image and a physician's working environment can make it difficult to interpret endoscopic images. In this study, we developed and evaluated a device that corrects the endoscopic image orientation using an accelerometer and gyrosensor. The acceleration of gravity and angular velocity were retrieved from the accelerometer and gyrosensor attached to the handle of the endoscope. The rotational angle of the endoscope handle was calculated using a Kalman filter with transmission delay compensation. Technical evaluation of the orientation correction system was performed using a camera by comparing the optical rotational angle from the captured image with the rotational angle calculated from the sensor outputs. For the clinical utility test, fifteen anesthesiology residents performed a video endoscopic examination of an airway model with and without using the orientation correction system. The participants reported numbers written on papers placed at the left main, right main, and right upper bronchi of the airway model. The correctness and the total time it took participants to report the numbers were recorded. During the technical evaluation, errors in the calculated rotational angle were less than 5 degrees. In the clinical utility test, there was a significant time reduction when using the orientation correction system compared with not using the system (median, 52 vs. 76 seconds; P = .012). In this study, we developed a real-time endoscopic image orientation correction system, which significantly improved physician performance during a video endoscopic exam.

  6. Extraction of endoscopic images for biomedical figure classification

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; You, Daekeun; Chachra, Suchet; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2015-03-01

    Modality filtering is an important feature in biomedical image searching systems and may significantly improve the retrieval performance of the system. This paper presents a new method for extracting endoscopic image figures from photograph images in biomedical literature, which are found to have highly diverse content and large variability in appearance. Our proposed method consists of three main stages: tissue image extraction, endoscopic image candidate extraction, and ophthalmic image filtering. For tissue image extraction we use image patch level clustering and MRF relabeling to detect images containing skin/tissue regions. Next, we find candidate endoscopic images by exploiting the round shape characteristics that commonly appear in these images. However, this step needs to compensate for images where endoscopic regions are not entirely round. In the third step we filter out the ophthalmic images which have shape characteristics very similar to the endoscopic images. We do this by using text information, specifically, anatomy terms, extracted from the figure caption. We tested and evaluated our method on a dataset of 115,370 photograph figures, and achieved promising precision and recall rates of 87% and 84%, respectively.

  7. Laser scanning endoscope for diagnostic medicine

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald R.; Nudelman, Sol; Spackman, Thomas; Zaccheo, Scott

    1990-07-01

    A new type of endoscope is being developed which utilizes an optical raster scanning system for imaging through an endoscope. The optical raster scanner utilizes a high speed, multifaceted, rotating polygon mirror system for horizontal deflection, and a slower speed galvanometer driven mirror as the vertical deflection system. When used in combination, the optical raster scanner traces out a raster similar to an electron beam raster used in television systems. This flying spot of light can then be detected by various types of photosensitive detectors to generate a video image of the surface or scene being illuminated by the scanning beam. The optical raster scanner has been coupled to an endoscope. The raster is projected down the endoscope, thereby illuminating the object to be imaged at the distal end of the endoscope. Elemental photodetectors are placed at the distal or proximal end of the endoscope to detect the reflected illumination from the flying spot of light. This time sequenced signal is captured by an image processor for display and processing. This technique offers the possibility for very small diameter endoscopes since illumination channel requirements are eliminated. Using various lasers, very specific spectral selectivity can be achieved to optimum contrast of specific lesions of interest. Using several laser lines, or a white light source, with detectors of specific spectral response, multiple spectrally selected images can be acquired simultaneously. The potential for co-linear therapy delivery while imaging is also possible.

  8. Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review.

    PubMed

    East, James E; Vleugels, Jasper L; Roelandt, Philip; Bhandari, Pradeep; Bisschops, Raf; Dekker, Evelien; Hassan, Cesare; Horgan, Gareth; Kiesslich, Ralf; Longcroft-Wheaton, Gaius; Wilson, Ana; Dumonceau, Jean-Marc

    2016-11-01

    Background and aim: This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods: This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations: 1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2. We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3. We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion: Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Performance evaluation of stereo endoscopic imaging system incorporating TFT-LCD.

    PubMed

    Song, C-G; Park, S-K

    2005-01-01

    This paper presents a 3D endoscopic video system designed to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. In a comparison of the polarized and electric shutter-type stereo imaging systems, the former was found to be superior in terms of both accuracy and speed for knot-tying and for the loop pass test. The results of our experiments show that the proposed 3D endoscopic system has a sufficiently wide viewing angle and zone for multi-viewing, and that it provides better image quality and more stable optical performance compared with the electric shutter-type.

  10. Design of an autofocus capsule endoscope system and the corresponding 3D reconstruction algorithm.

    PubMed

    Zhang, Wei; Jin, Yi-Tao; Guo, Xin; Su, Jin-Hui; You, Su-Ping

    2016-10-01

    A traditional capsule endoscope can only take 2D images, and most of the images are not clear enough to be used for diagnosing. A 3D capsule endoscope can help doctors make a quicker and more accurate diagnosis. However, blurred images negatively affect reconstruction accuracy. A compact, autofocus capsule endoscope system is designed in this study. Using a liquid lens, the system can be electronically controlled to autofocus, and without any moving elements. The depth of field of the system is in the 3-100 mm range and its field of view is about 110°. The images captured by this optical system are much clearer than those taken by a traditional capsule endoscope. A 3D reconstruction algorithm is presented to adapt to the zooming function of our proposed system. Simulations and experiments have shown that more feature points can be correctly matched and a higher reconstruction accuracy can be achieved by this strategy.

  11. An Automated Self-Learning Quantification System to Identify Visible Areas in Capsule Endoscopy Images.

    PubMed

    Hashimoto, Shinichi; Ogihara, Hiroyuki; Suenaga, Masato; Fujita, Yusuke; Terai, Shuji; Hamamoto, Yoshihiko; Sakaida, Isao

    2017-08-01

    Visibility in capsule endoscopic images is presently evaluated through intermittent analysis of frames selected by a physician. It is thus subjective and not quantitative. A method to automatically quantify the visibility on capsule endoscopic images has not been reported. Generally, when designing automated image recognition programs, physicians must provide a training image; this process is called supervised learning. We aimed to develop a novel automated self-learning quantification system to identify visible areas on capsule endoscopic images. The technique was developed using 200 capsule endoscopic images retrospectively selected from each of three patients. The rate of detection of visible areas on capsule endoscopic images between a supervised learning program, using training images labeled by a physician, and our novel automated self-learning program, using unlabeled training images without intervention by a physician, was compared. The rate of detection of visible areas was equivalent for the supervised learning program and for our automatic self-learning program. The visible areas automatically identified by self-learning program correlated to the areas identified by an experienced physician. We developed a novel self-learning automated program to identify visible areas in capsule endoscopic images.

  12. 4-mm-diameter three-dimensional imaging endoscope with steerable camera for minimally invasive surgery (3-D-MARVEL).

    PubMed

    Bae, Sam Y; Korniski, Ronald J; Shearn, Michael; Manohara, Harish M; Shahinian, Hrayr

    2017-01-01

    High-resolution three-dimensional (3-D) imaging (stereo imaging) by endoscopes in minimally invasive surgery, especially in space-constrained applications such as brain surgery, is one of the most desired capabilities. Such capability exists at larger than 4-mm overall diameters. We report the development of a stereo imaging endoscope of 4-mm maximum diameter, called Multiangle, Rear-Viewing Endoscopic Tool (MARVEL) that uses a single-lens system with complementary multibandpass filter (CMBF) technology to achieve 3-D imaging. In addition, the system is endowed with the capability to pan from side-to-side over an angle of [Formula: see text], which is another unique aspect of MARVEL for such a class of endoscopes. The design and construction of a single-lens, CMBF aperture camera with integrated illumination to generate 3-D images, and the actuation mechanism built into it is summarized.

  13. endoscope-i: an innovation in mobile endoscopic technology transforming the delivery of patient care in otolaryngology.

    PubMed

    Mistry, N; Coulson, C; George, A

    2017-11-01

    Digital and mobile device technology in healthcare is a growing market. The introduction of the endoscope-i, the world's first endoscopic mobile imaging system, allows the acquisition of high definition images of the ear, nose and throat (ENT). The system combines the e-i Pro camera app with a bespoke engineered endoscope-i adaptor which fits securely onto the iPhone or iPod touch. Endoscopic examination forms a salient aspect of the ENT work-up. The endoscope-i therefore provides a mobile and compact alternative to the existing bulky endoscopic systems currently in use which often restrict the clinician to the clinic setting. Areas covered: This article gives a detailed overview of the endoscope-i system together with its applications. A review and comparison of alternative devices on the market offering smartphone adapted endoscopic viewing systems is also presented. Expert commentary: The endoscope-i fulfils unmet needs by providing a compact, highly portable, simple to use endoscopic viewing system which is cost-effective and which makes use of smartphone technology most clinicians have in their pocket. The system allows real-time feedback to the patient and has the potential to transform the way that healthcare is delivered in ENT as well as having applications further afield.

  14. Volume holographic reflection endoscope for in-vivo ovarian cancer clinical studies

    NASA Astrophysics Data System (ADS)

    Howlett, I. D.; Gordon, M.; Brownlee, J. W.; Barton, J. K.; Kostuk, R. K.

    2014-03-01

    We present the design for an endoscopic system capable of imaging tissues of the ovary at two selected imaging depths simultaneously. The method utilizes a multiplexed volume hologram to select wavefronts from different depths within the tissue. It is the first demonstration of an endoscopic volume holographic imaging system. The endoscope uses both gradient index (GRIN) optical components and off the shelf singlet lenses to relay an image from the distal tip to the proximal end. The endoscope has a minimum diameter of 3.75 mm. The system length is 30 cm which is connected to a handle that includes the holographic components and optics that relay the image to a camera. Preliminary evaluation of the endoscope was performed with tissue phantoms and calibrated targets, which shows lateral resolution ≍ 4 μm at an operating wavelength of 660 nm. The hologram is recorded in phenanthraquinone doped poly methacrylate and is designed to produce images from two tissue depths. One image is obtained at the tissue surface and the second 70 μm below the surface. This method requires no mechanical scanning and acquires an image at the camera frame rate. The preliminary ex-vivo results show good correlation with histology sections of the same tissue sections.

  15. Sparse aperture endoscope

    DOEpatents

    Fitch, J.P.

    1999-07-06

    An endoscope is disclosed which reduces the volume needed by the imaging part, maintains resolution of a wide diameter optical system, while increasing tool access, and allows stereographic or interferometric processing for depth and perspective information/visualization. Because the endoscope decreases the volume consumed by imaging optics such allows a larger fraction of the volume to be used for non-imaging tools, which allows smaller incisions in surgical and diagnostic medical applications thus produces less trauma to the patient or allows access to smaller volumes than is possible with larger instruments. The endoscope utilizes fiber optic light pipes in an outer layer for illumination, a multi-pupil imaging system in an inner annulus, and an access channel for other tools in the center. The endoscope is amenable to implementation as a flexible scope, and thus increases it's utility. Because the endoscope uses a multi-aperture pupil, it can also be utilized as an optical array, allowing stereographic and interferometric processing. 7 figs.

  16. Sparse aperture endoscope

    DOEpatents

    Fitch, Joseph P.

    1999-07-06

    An endoscope which reduces the volume needed by the imaging part thereof, maintains resolution of a wide diameter optical system, while increasing tool access, and allows stereographic or interferometric processing for depth and perspective information/visualization. Because the endoscope decreases the volume consumed by imaging optics such allows a larger fraction of the volume to be used for non-imaging tools, which allows smaller incisions in surgical and diagnostic medical applications thus produces less trauma to the patient or allows access to smaller volumes than is possible with larger instruments. The endoscope utilizes fiber optic light pipes in an outer layer for illumination, a multi-pupil imaging system in an inner annulus, and an access channel for other tools in the center. The endoscope is amenable to implementation as a flexible scope, and thus increases the utility thereof. Because the endoscope uses a multi-aperture pupil, it can also be utilized as an optical array, allowing stereographic and interferometric processing.

  17. Identification of early cancerous lesion of esophagus with endoscopic images by hyperspectral image technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Wei; Chen, Shih-Hua; Chen, Weichung; Wu, I.-Chen; Wu, Ming Tsang; Kuo, Chie-Tong; Wang, Hsiang-Chen

    2016-03-01

    This study presents a method to identify early esophageal cancer within endoscope using hyperspectral imaging technology. The research samples are three kinds of endoscopic images including white light endoscopic, chromoendoscopic, and narrow-band endoscopic images with different stages of pathological changes (normal, dysplasia, dysplasia - esophageal cancer, and esophageal cancer). Research is divided into two parts: first, we analysis the reflectance spectra of endoscopic images with different stages to know the spectral responses by pathological changes. Second, we identified early cancerous lesion of esophagus by principal component analysis (PCA) of the reflectance spectra of endoscopic images. The results of this study show that the identification of early cancerous lesion is possible achieve from three kinds of images. In which the spectral characteristics of NBI endoscopy images of a gray area than those without the existence of the problem the first two, and the trend is very clear. Therefore, if simply to reflect differences in the degree of spectral identification, chromoendoscopic images are suitable samples. The best identification of early esophageal cancer is using the NBI endoscopic images. Based on the results, the use of hyperspectral imaging technology in the early endoscopic esophageal cancer lesion image recognition helps clinicians quickly diagnose. We hope for the future to have a relatively large amount of endoscopic image by establishing a hyperspectral imaging database system developed in this study, so the clinician can take this repository more efficiently preliminary diagnosis.

  18. Advanced endoscopic imaging to improve adenoma detection

    PubMed Central

    Neumann, Helmut; Nägel, Andreas; Buda, Andrea

    2015-01-01

    Advanced endoscopic imaging is revolutionizing our way on how to diagnose and treat colorectal lesions. Within recent years a variety of modern endoscopic imaging techniques was introduced to improve adenoma detection rates. Those include high-definition imaging, dye-less chromoendoscopy techniques and novel, highly flexible endoscopes, some of them equipped with balloons or multiple lenses in order to improve adenoma detection rates. In this review we will focus on the newest developments in the field of colonoscopic imaging to improve adenoma detection rates. Described techniques include high-definition imaging, optical chromoendoscopy techniques, virtual chromoendoscopy techniques, the Third Eye Retroscope and other retroviewing devices, the G-EYE endoscope and the Full Spectrum Endoscopy-system. PMID:25789092

  19. Analysis of the color rendition of flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Murphy, Edward M.; Hegarty, Francis J.; McMahon, Barry P.; Boyle, Gerard

    2003-03-01

    Endoscopes are imaging devices routinely used for the diagnosis of disease within the human digestive tract. Light is transmitted into the body cavity via incoherent fibreoptic bundles and is controlled by a light feedback system. Fibreoptic endoscopes use coherent fibreoptic bundles to provide the clinician with an image. It is also possible to couple fibreoptic endoscopes to a clip-on video camera. Video endoscopes consist of a small CCD camera, which is inserted into gastrointestinal tract, and associated image processor to convert the signal to analogue RGB video signals. Images from both types of endoscope are displayed on standard video monitors. Diagnosis is dependent upon being able to determine changes in the structure and colour of tissues and biological fluids, and therefore is dependent upon the ability of the endoscope to reproduce the colour of these tissues and fluids with fidelity. This study investigates the colour reproduction of flexible optical and video endoscopes. Fibreoptic and video endoscopes alter image colour characteristics in different ways. The colour rendition of fibreoptic endoscopes was assessed by coupling them to a video camera and applying video colorimetric techniques. These techniques were then used on video endoscopes to assess how the colour rendition of video endoscopes compared with that of optical endoscopes. In both cases results were obtained at fixed illumination settings. Video endoscopes were then assessed with varying levels of illumination. Initial results show that at constant luminance endoscopy systems introduce non-linear shifts in colour. Techniques for examining how this colour shift varies with illumination intensity were developed and both methodology and results will be presented. We conclude that more rigorous quality assurance is required to reduce colour error and are developing calibration procedures applicable to medical endoscopes.

  20. Design of embedded endoscopic ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhou, Hao; Wen, Shijie; Chen, Xiodong; Yu, Daoyin

    2008-12-01

    Endoscopic ultrasonic imaging system is an important component in the endoscopic ultrasonography system (EUS). Through the ultrasonic probe, the characteristics of the fault histology features of digestive organs is detected by EUS, and then received by the reception circuit which making up of amplifying, gain compensation, filtering and A/D converter circuit, in the form of ultrasonic echo. Endoscopic ultrasonic imaging system is the back-end processing system of the EUS, with the function of receiving digital ultrasonic echo modulated by the digestive tract wall from the reception circuit, acquiring and showing the fault histology features in the form of image and characteristic data after digital signal processing, such as demodulation, etc. Traditional endoscopic ultrasonic imaging systems are mainly based on image acquisition and processing chips, which connecting to personal computer with USB2.0 circuit, with the faults of expensive, complicated structure, poor portability, and difficult to popularize. To against the shortcomings above, this paper presents the methods of digital signal acquisition and processing specially based on embedded technology with the core hardware structure of ARM and FPGA for substituting the traditional design with USB2.0 and personal computer. With built-in FIFO and dual-buffer, FPGA implement the ping-pong operation of data storage, simultaneously transferring the image data into ARM through the EBI bus by DMA function, which is controlled by ARM to carry out the purpose of high-speed transmission. The ARM system is being chosen to implement the responsibility of image display every time DMA transmission over and actualizing system control with the drivers and applications running on the embedded operating system Windows CE, which could provide a stable, safe and reliable running platform for the embedded device software. Profiting from the excellent graphical user interface (GUI) and good performance of Windows CE, we can not only clearly show 511×511 pixels ultrasonic echo images through application program, but also provide a simple and friendly operating interface with mouse and touch screen which is more convenient than the traditional endoscopic ultrasonic imaging system. Including core and peripheral circuits of FPGA and ARM, power network circuit and LCD display circuit, we designed the whole embedded system, achieving the desired purpose by implementing ultrasonic image display properly after the experimental verification, solving the problem of hugeness and complexity of the traditional endoscopic ultrasonic imaging system.

  1. Development of terahertz endoscopic system for cancer detection

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2016-02-01

    Terahertz (THz) imaging is emerging as a robust platform for a myriad of applications in the fields of security, health, astronomy and material science. The terahertz regime with wavelengths spanning from microns to millimeters is a potentially safe and noninvasive medical imaging modality for detecting cancers. Endoscopic imaging systems provide high flexibility in examining the interior surfaces of an organ or tissue. Researchers have been working on the development of THz endoscopes with photoconductive antennas, which necessarily operate under high voltage, and require at least two channels to measure the reflected signal from the specimen. This manuscript provides the design and imperative steps involved in the development of a single-channel terahertz endoscopic system. The continuous-wave terahertz imaging system utilizes a single flexible terahertz waveguide channel to transmit and collect the back reflected intrinsic terahertz signal from the sample and is capable of operation in both transmission and reflection modalities. To determine the feasibility of using a terahertz endoscope for cancer detection, the co- and cross-polarized terahertz remittance from human colonic tissue specimens were collected at 584 GHz frequency. The two dimensional terahertz images obtained using polarization specific detection exhibited intrinsic contrast between cancerous and normal regions of fresh colorectal tissue. The level of contrast observed using endoscopic imaging correlates well with the contrast levels observed in the free space ex vivo terahertz reflectance studies of human colonic tissue. The prototype device developed in this study represents a significant step towards clinical endoscopic application of THz technology for in vivo colon cancer screening.

  2. A feasibility study of an integrated NIR/gamma/visible imaging system for endoscopic sentinel lymph node mapping.

    PubMed

    Kang, Han Gyu; Lee, Ho-Young; Kim, Kyeong Min; Song, Seong-Hyun; Hong, Gun Chul; Hong, Seong Jong

    2017-01-01

    The aim of this study is to integrate NIR, gamma, and visible imaging tools into a single endoscopic system to overcome the limitation of NIR using gamma imaging and to demonstrate the feasibility of endoscopic NIR/gamma/visible fusion imaging for sentinel lymph node (SLN) mapping with a small animal. The endoscopic NIR/gamma/visible imaging system consists of a tungsten pinhole collimator, a plastic focusing lens, a BGO crystal (11 × 11 × 2 mm 3 ), a fiber-optic taper (front = 11 × 11 mm 2 , end = 4 × 4 mm 2 ), a 122-cm long endoscopic fiber bundle, an NIR emission filter, a relay lens, and a CCD camera. A custom-made Derenzo-like phantom filled with a mixture of 99m Tc and indocyanine green (ICG) was used to assess the spatial resolution of the NIR and gamma images. The ICG fluorophore was excited using a light-emitting diode (LED) with an excitation filter (723-758 nm), and the emitted fluorescence photons were detected with an emission filter (780-820 nm) for a duration of 100 ms. Subsequently, the 99m Tc distribution in the phantom was imaged for 3 min. The feasibility of in vivo SLN mapping with a mouse was investigated by injecting a mixture of 99m Tc-antimony sulfur colloid (12 MBq) and ICG (0.1 mL) into the right paw of the mouse (C57/B6) subcutaneously. After one hour, NIR, gamma, and visible images were acquired sequentially. Subsequently, the dissected SLN was imaged in the same way as the in vivo SLN mapping. The NIR, gamma, and visible images of the Derenzo-like phantom can be obtained with the proposed endoscopic imaging system. The NIR/gamma/visible fusion image of the SLN showed a good correlation among the NIR, gamma, and visible images both for the in vivo and ex vivo imaging. We demonstrated the feasibility of the integrated NIR/gamma/visible imaging system using a single endoscopic fiber bundle. In future, we plan to investigate miniaturization of the endoscope head and simultaneous NIR/gamma/visible imaging with dichroic mirrors and three CCD cameras. © 2016 American Association of Physicists in Medicine.

  3. Design of a modified endoscope illuminator for spectral imaging of colorectal tissues

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2017-02-01

    The gold standard for locating colonic polyps is a white light endoscope in a colonoscopy, however, polyps smaller than 5 mm can be easily missed. Modified procedures such as narrow band imaging have shown only marginal increases in detection rates. Spectral imaging is a potential solution to improve the sensitivity and specificity of colonoscopies by providing the ability to distinguish molecular fluorescence differences in tissues. The goal of this work is to implement a spectral endoscopic light source to acquire spectral image data of colorectal tissues. A beta-version endoscope light source was developed, by retrofitting a white light endoscope light source (Olympus, CLK-4) with 16 narrow band LEDs. This redesigned, beta-prototype uses high-power LEDs with a minimum output of 500 mW to provide sufficient spectral output (0.5 mW) through the endoscope. A mounting apparatus was designed to provide sufficient heat dissipation. Here, we report recent results of our tests to characterize the intensity output through the light source and endoscope to determine the flat spectral output for imaging and intensity losses through the endoscope. We also report preliminary spectral imaging data from transverse pig colon that demonstrates the ability to result in working practical spectral data. Preliminary results of this revised prototype spectral endoscope system demonstrate that there is sufficient power to allow the imaging process to continue and potentially determine spectral differences in cancerous and normal tissue from imaging ex vivo pairs. Future work will focus on building a spectral library for the colorectal region and refining the user interface the system for in vivo use.

  4. Endoscopic near-infrared dental imaging with indocyanine green: a pilot study.

    PubMed

    Li, Zhongqiang; Yao, Shaomian; Xu, Jian; Wu, Ye; Li, Chunhong; He, Ziying

    2018-06-01

    Current dental diagnosis, especially tooth abnormalities, relies largely on X-ray-based imaging, a technique that requires specialized skills and suffers from ionizing radiation. Here, we present a pilot study in rats of an efficient, ionizing-radiation-free and easy-to-use alternative for dental imaging. Postnatal rats at different ages were injected with indocyanine green and molars were imaged by a laboratory-designed endoscopic near-infrared (NIR) dental imaging system. The results indicate that the endoscopic NIR dental imaging can be used to observe the morphology of postnatal rat molars, especially at early postnatal stages when morphology of the molar is indistinguishable under visible conditions. A small abnormal cusp was observed and distinguished from the normal cusps by the NIR dental imaging system. Dental structures, such as unerupted molars, can be imaged as soon as 10 min after the injection of indocyanine green; imaging after 24 h shows improved imaging contrast. Overall, the endoscopic NIR fluorescence dental imaging system described here may be useful in dental research; this technique may serve as a safe, real-time imaging tool for dental diagnosis and treatment beyond experimental systems in the future. © 2018 New York Academy of Sciences.

  5. Clinical study using novel endoscopic system for measuring size of gastrointestinal lesion

    PubMed Central

    Oka, Kiyoshi; Seki, Takeshi; Akatsu, Tomohiro; Wakabayashi, Takao; Inui, Kazuo; Yoshino, Junji

    2014-01-01

    AIM: To verify the performance of a lesion size measurement system through a clinical study. METHODS: Our proposed system, which consists of a conventional endoscope, an optical device, an optical probe, and a personal computer, generates a grid scale to measure the lesion size from an endoscopic image. The width of the grid scale is constantly adjusted according to the distance between the tip of the endoscope and lesion because the lesion size on an endoscopic image changes according to the distance. The shape of the grid scale was corrected to match the distortion of the endoscopic image. The distance was calculated using the amount of laser light reflected from the lesion through an optical probe inserted into the instrument channel of the endoscope. The endoscopist can thus measure the lesion size without contact by comparing the lesion with the size of the grid scale on the endoscopic image. (1) A basic test was performed to verify the relationship between the measurement error eM and the tilt angle of the endoscope; and (2) The sizes of three colon polyps were measured using our system during endoscopy. These sizes were immediately measured by scale after their removal. RESULTS: There was no error at α = 0°. In addition, the values of eM (mean ± SD) were 0.24 ± 0.11 mm (α = 10°), 0.90 ± 0.58 mm (α = 20°) and 2.31 ± 1.41 mm (α = 30°). According to these results, our system has been confirmed to measure accurately when the tilt angle is less than 20°. The measurement error was approximately 1 mm in the clinical study. Therefore, it was concluded that our proposed measurement system was also effective in clinical examinations. CONCLUSION: By combining simple optical equipment with a conventional endoscope, a quick and accurate system for measuring lesion size was established. PMID:24744595

  6. Endoscopic techniques in aesthetic plastic surgery.

    PubMed

    McCain, L A; Jones, G

    1995-01-01

    There has been an explosive interest in endoscopic techniques by plastic surgeons over the past two years. Procedures such as facial rejuvenation, breast augmentation and abdominoplasty are being performed with endoscopic assistance. Endoscopic operations require a complex setup with components such as video camera, light sources, cables and hard instruments. The Hopkins Rod Lens system consists of optical fibers for illumination, an objective lens, an image retrieval system, a series of rods and lenses, and an eyepiece for image collection. Good illumination of the body cavity is essential for endoscopic procedures. Placement of the video camera on the eyepiece of the endoscope gives a clear, brightly illuminated large image on the monitor. The video monitor provides the surgical team with the endoscopic image. It is important to become familiar with the equipment before actually doing cases. Several options exist for staff education. In the operating room the endoscopic cart needs to be positioned to allow a clear unrestricted view of the video monitor by the surgeon and the operating team. Fogging of the endoscope may be prevented during induction by using FREDD (a fog reduction/elimination device) or a warm bath. The camera needs to be white balanced. During the procedure, the nurse monitors the level of dissection and assesses for clogging of the suction.

  7. Augmented reality image guidance for minimally invasive coronary artery bypass

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Rueckert, Daniel; Hawkes, David; Casula, Roberto; Hu, Mingxing; Pedro, Ose; Zhang, Dong Ping; Penney, Graeme; Bello, Fernando; Edwards, Philip

    2008-03-01

    We propose a novel system for image guidance in totally endoscopic coronary artery bypass (TECAB). A key requirement is the availability of 2D-3D registration techniques that can deal with non-rigid motion and deformation. Image guidance for TECAB is mainly required before the mechanical stabilization of the heart, thus the most dominant source of non-rigid deformation is the motion of the beating heart. To augment the images in the endoscope of the da Vinci robot, we have to find the transformation from the coordinate system of the preoperative imaging modality to the system of the endoscopic cameras. In a first step we build a 4D motion model of the beating heart. Intraoperatively we can use the ECG or video processing to determine the phase of the cardiac cycle. We can then take the heart surface from the motion model and register it to the stereo-endoscopic images of the da Vinci robot using 2D-3D registration methods. We are investigating robust feature tracking and intensity-based methods for this purpose. Images of the vessels available in the preoperative coordinate system can then be transformed to the camera system and projected into the calibrated endoscope view using two video mixers with chroma keying. It is hoped that the augmented view can improve the efficiency of TECAB surgery and reduce the conversion rate to more conventional procedures.

  8. Navigation technique for MR-endoscope system using a wireless accelerometer-based remote control device.

    PubMed

    Kumamoto, Etsuko; Takahashi, Akihiro; Matsuoka, Yuichiro; Morita, Yoshinori; Kutsumi, Hiromu; Azuma, Takeshi; Kuroda, Kagayaki

    2013-01-01

    The MR-endoscope system can perform magnetic resonance (MR) imaging during endoscopy and show the images obtained by using endoscope and MR. The MR-endoscope system can acquire a high-spatial resolution MR image with an intraluminal radiofrequency (RF) coil, and the navigation system shows the scope's location and orientation inside the human body and indicates MR images with a scope view. In order to conveniently perform an endoscopy and MR procedure, the design of the user interface is very important because it provides useful information. In this study, we propose a navigation system using a wireless accelerometer-based controller with Bluetooth technology and a navigation technique to set the intraluminal RF coil using the navigation system. The feasibility of using this wireless controller in the MR shield room was validated via phantom examinations of the influence on MR procedures and navigation accuracy. In vitro examinations using an isolated porcine stomach demonstrated the effectiveness of the navigation technique using a wireless remote-control device.

  9. Image segmentation of pyramid style identifier based on Support Vector Machine for colorectal endoscopic images.

    PubMed

    Okamoto, Takumi; Koide, Tetsushi; Sugi, Koki; Shimizu, Tatsuya; Anh-Tuan Hoang; Tamaki, Toru; Raytchev, Bisser; Kaneda, Kazufumi; Kominami, Yoko; Yoshida, Shigeto; Mieno, Hiroshi; Tanaka, Shinji

    2015-08-01

    With the increase of colorectal cancer patients in recent years, the needs of quantitative evaluation of colorectal cancer are increased, and the computer-aided diagnosis (CAD) system which supports doctor's diagnosis is essential. In this paper, a hardware design of type identification module in CAD system for colorectal endoscopic images with narrow band imaging (NBI) magnification is proposed for real-time processing of full high definition image (1920 × 1080 pixel). A pyramid style image segmentation with SVMs for multi-size scan windows, which can be implemented on an FPGA with small circuit area and achieve high accuracy, is proposed for actual complex colorectal endoscopic images.

  10. Implementation of real-time digital endoscopic image processing system

    NASA Astrophysics Data System (ADS)

    Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho

    1997-10-01

    Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.

  11. Design of the computerized 3D endoscopic imaging system for delicate endoscopic surgery.

    PubMed

    Song, Chul-Gyu; Kang, Jin U

    2011-02-01

    This paper describes a 3D endoscopic video system designed to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. In a comparison of the polarized and conventional electric shutter-type stereo imaging systems, the former was found to be superior in terms of both accuracy and speed for suturing and for the loop pass test. Among the groups performing loop passing and suturing, there was no significant difference in the task performance between the 2D and 3D modes, however, suturing was performed 15% (p < 0.05) faster in 3D mode by both groups. The results of our experiments show that the proposed 3D endoscopic system has a sufficiently wide viewing angle and zone for multi-viewing.

  12. Design of a handheld optical coherence microscopy endoscope

    NASA Astrophysics Data System (ADS)

    Korde, Vrushali R.; Liebmann, Erica; Barton, Jennifer K.

    2011-06-01

    Optical coherence microscopy (OCM) combines coherence gating, high numerical aperture optics, and a fiber-core pinhole to provide high axial and lateral resolution with relatively large depth of imaging. We present a handheld rigid OCM endoscope designed for small animal surgical imaging, with a 6-mm diam tip, 1-mm scan width, and 1-mm imaging depth. X-Y scanning is performed distally with mirrors mounted to micro galvonometer scanners incorporated into the endoscope handle. The endoscope optical design consists of scanning doublets, an afocal Hopkins relay lens system, a 0.4 numerical aperture water immersion objective, and a cover glass. This endoscope can resolve laterally a 1.4-μm line pair feature and has an axial resolution (full width half maximum) of 5.4 μm. Images taken with this endoscope of fresh ex-vivo mouse ovaries show structural features, such as corpus luteum, primary follicles, growing follicles, and fallopian tubes. This rigid handheld OCM endoscope can be useful for a variety of minimally invasive and surgical imaging applications.

  13. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    NASA Astrophysics Data System (ADS)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  14. Endoscopic Optical Coherence Tomography for Clinical Gastroenterology

    PubMed Central

    Tsai, Tsung-Han; Fujimoto, James G.; Mashimo, Hiroshi

    2014-01-01

    Optical coherence tomography (OCT) is a real-time optical imaging technique that is similar in principle to ultrasonography, but employs light instead of sound waves and allows depth-resolved images with near-microscopic resolution. Endoscopic OCT allows the evaluation of broad-field and subsurface areas and can be used ancillary to standard endoscopy, narrow band imaging, chromoendoscopy, magnification endoscopy, and confocal endomicroscopy. This review article will provide an overview of the clinical utility of endoscopic OCT in the gastrointestinal tract and of recent achievements using state-of-the-art endoscopic 3D-OCT imaging systems. PMID:26852678

  15. Experimental assessment of a 3-D plenoptic endoscopic imaging system.

    PubMed

    Le, Hanh N D; Decker, Ryan; Krieger, Axel; Kang, Jin U

    2017-01-01

    An endoscopic imaging system using a plenoptic technique to reconstruct 3-D information is demonstrated and analyzed in this Letter. The proposed setup integrates a clinical surgical endoscope with a plenoptic camera to achieve a depth accuracy error of about 1 mm and a precision error of about 2 mm, within a 25 mm × 25 mm field of view, operating at 11 frames per second.

  16. Experimental assessment of a 3-D plenoptic endoscopic imaging system

    PubMed Central

    Le, Hanh N. D.; Decker, Ryan; Krieger, Axel; Kang, Jin U.

    2017-01-01

    An endoscopic imaging system using a plenoptic technique to reconstruct 3-D information is demonstrated and analyzed in this Letter. The proposed setup integrates a clinical surgical endoscope with a plenoptic camera to achieve a depth accuracy error of about 1 mm and a precision error of about 2 mm, within a 25 mm × 25 mm field of view, operating at 11 frames per second. PMID:29449863

  17. Spectral-domain optical coherence tomography for endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Li, Qiao; Li, Wanhui; Wang, Yi; Yu, Daoyin

    2007-02-01

    Optical coherence tomography (OCT) is an emerging cross-sectional imaging technology. It uses broadband light sources to achieve axial image resolutions on the few micron scale. OCT is widely applied to medical imaging, it can get cross-sectional image of bio-tissue (transparent and turbid) with non-invasion and non-touch. In this paper, the principle of OCT is presented and the crucial parameters of the system are discussed in theory. With analysis of different methods and medical endoscopic system's feature, a design which combines the spectral domain OCT (SDOCT) technique and endoscopy is put forward. SDOCT provides direct access to the spectrum of the optical signal. It is shown to provide higher imaging speed when compared to time domain OCT. At the meantime, a novel OCT probe which uses advanced micromotor to drive reflecting prism is designed according to alimentary tract endoscopic feature. A simple optical coherence tomography system has been developed based on a fiber-based Michelson interferometer and spectrometer. An experiment which uses motor to drive prism to realize rotating imaging is done. Images obtained with this spectral interferometer are presented. The results verify the feasibility of endoscopic optical coherence tomography system with rotating scan.

  18. Design and characterization of an optimized simultaneous color and near-infrared fluorescence rigid endoscopic imaging system

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Park, Minho; Ashitate, Yoshitomo; Neacsu, Florin; Kettenring, Frank; Frangioni, John V.; Gangadharan, Sidhu P.; Gioux, Sylvain

    2013-12-01

    We report the design, characterization, and validation of an optimized simultaneous color and near-infrared (NIR) fluorescence rigid endoscopic imaging system for minimally invasive surgery. This system is optimized for illumination and collection of NIR wavelengths allowing the simultaneous acquisition of both color and NIR fluorescence at frame rates higher than 6.8 fps with high sensitivity. The system employs a custom 10-mm diameter rigid endoscope optimized for NIR transmission. A dual-channel light source compatible with the constraints of an endoscope was built and includes a plasma source for white light illumination and NIR laser diodes for fluorescence excitation. A prism-based 2-CCD camera was customized for simultaneous color and NIR detection with a highly efficient filtration scheme for fluorescence imaging of both 700- and 800-nm emission dyes. The performance characterization studies indicate that the endoscope can efficiently detect fluorescence signal from both indocyanine green and methylene blue in dimethyl sulfoxide at the concentrations of 100 to 185 nM depending on the background optical properties. Finally, we performed the validation of this imaging system in vivo during a minimally invasive procedure for thoracic sentinel lymph node mapping in a porcine model.

  19. The endoscopic diagnosis of nonerosive reflux disease using flexible spectral imaging color enhancement image: a feasibility trial.

    PubMed

    Miyasaka, M; Hirakawa, M; Nakamura, K; Tanaka, F; Mimori, K; Mori, M; Honda, H

    2011-08-01

    Nonerosive reflux disease (NERD) is classified into grade M (minimal change, endoscopically; erythema without sharp demarcation, whitish turbidity, and/or invisibility of vessels due to these findings) and grade N (normal) in the modified Los Angeles classification system in Japan. However, the classification of grades M and N NERD is not included in the original Los Angeles system because interobserver agreement for the conventional endoscopic diagnosis of grades M or N NERD is poor. Flexible spectral imaging color enhancement (FICE) is a virtual chromoendoscopy technique that enhances mucosal and vascular visibility. The aim of this study is to evaluate whether the endoscopic diagnosis of grades M or N NERD using FICE images is feasible. Between April 2006 and May 2008, 26 NERD patients and 31 controls were enrolled in the present study. First, an experienced endoscopist assessed the color pattern of minimal change in FICE images using conventional endoscopic images and FICE images side-by-side and comparing the proportion of minimal change between the two groups. Second, three blinded endoscopists assessed the presence or absence of minimal change in both groups using conventional endoscopic images and FICE images separately. Intraobserver variability was compared using McNemar's test, and interobserver agreement was described using the kappa value. Minimal changes, such as erythema and whitish turbidity, which were detected using conventional endoscopic images, showed up as navy blue and pink-white, respectively, in color using FICE images in the present FICE mode. The NERD group had a higher proportion of minimal change, compared with the control group (77% and 48%, respectively) (P= 0.033). In all three readers, the detection rates of minimal change using FICE images were greater than those using conventional endoscopic images (P= 0.025, <0.0001, and 0.034 for readers A, B, and C, respectively). The kappa values for all pairs of three readers using FICE images were between 0.683 and 0.812, while those using conventional endoscopic images were between 0.364 and 0.624. Thus, the endoscopic diagnosis of grades M or N NERD using FICE images is feasible and may improve interobserver agreement. © 2011 Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  20. Towards automated visual flexible endoscope navigation.

    PubMed

    van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J

    2013-10-01

    The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.

  1. 3D imaging with a single-aperture 3-mm objective lens: concept, fabrication, and test

    NASA Astrophysics Data System (ADS)

    Korniski, Ronald; Bae, Sam Y.; Shearn, Michael; Manohara, Harish; Shahinian, Hrayr

    2011-10-01

    There are many advantages to minimally invasive surgery (MIS). An endoscope is the optical system of choice by the surgeon for MIS. The smaller the incision or opening made to perform the surgery, the smaller the optical system needed. For minimally invasive neurological and skull base surgeries the openings are typically 10-mm in diameter (dime sized) or less. The largest outside diameter (OD) endoscope used is 4mm. A significant drawback to endoscopic MIS is that it only provides a monocular view of the surgical site thereby lacking depth information for the surgeon. A stereo view would provide the surgeon instantaneous depth information of the surroundings within the field of view, a significant advantage especially during brain surgery. Providing 3D imaging in an endoscopic objective lens system presents significant challenges because of the tight packaging constraints. This paper presents a promising new technique for endoscopic 3D imaging that uses a single lens system with complementary multi-bandpass filters (CMBFs), and describes the proof-of-concept demonstrations performed to date validating the technique. These demonstrations of the technique have utilized many commercial off-the- shelf (COTS) components including the ones used in the endoscope objective.

  2. 3D Imaging with a Single-Aperture 3-mm Objective Lens: Concept, Fabrication and Test

    NASA Technical Reports Server (NTRS)

    Korniski, Ron; Bae, Sam Y.; Shearn, Mike; Manohara, Harish; Shahinian, Hrayr

    2011-01-01

    There are many advantages to minimally invasive surgery (MIS). An endoscope is the optical system of choice by the surgeon for MIS. The smaller the incision or opening made to perform the surgery, the smaller the optical system needed. For minimally invasive neurological and skull base surgeries the openings are typically 10-mm in diameter (dime sized) or less. The largest outside diameter (OD) endoscope used is 4mm. A significant drawback to endoscopic MIS is that it only provides a monocular view of the surgical site thereby lacking depth information for the surgeon. A stereo view would provide the surgeon instantaneous depth information of the surroundings within the field of view, a significant advantage especially during brain surgery. Providing 3D imaging in an endoscopic objective lens system presents significant challenges because of the tight packaging constraints. This paper presents a promising new technique for endoscopic 3D imaging that uses a single lens system with complementary multi-bandpass filters (CMBFs), and describes the proof-of-concept demonstrations performed to date validating the technique. These demonstrations of the technique have utilized many commercial off-the-shelf (COTS) components including the ones used in the endoscope objective.

  3. Quantitative evaluation of three advanced laparoscopic viewing technologies: a stereo endoscope, an image projection display, and a TFT display.

    PubMed

    Wentink, M; Jakimowicz, J J; Vos, L M; Meijer, D W; Wieringa, P A

    2002-08-01

    Compared to open surgery, minimally invasive surgery (MIS) relies heavily on advanced technology, such as endoscopic viewing systems and innovative instruments. The aim of the study was to objectively compare three technologically advanced laparoscopic viewing systems with the standard viewing system currently used in most Dutch hospitals. We evaluated the following advanced laparoscopic viewing systems: a Thin Film Transistor (TFT) display, a stereo endoscope, and an image projection display. The standard viewing system was comprised of a monocular endoscope and a high-resolution monitor. Task completion time served as the measure of performance. Eight surgeons with laparoscopic experience participated in the experiment. The average task time was significantly greater (p <0.05) with the stereo viewing system than with the standard viewing system. The average task times with the TFT display and the image projection display did not differ significantly from the standard viewing system. Although the stereo viewing system promises improved depth perception and the TFT and image projection displays are supposed to improve hand-eye coordination, none of these systems provided better task performance than the standard viewing system in this pelvi-trainer experiment.

  4. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives

    PubMed Central

    Doradla, Pallavi; Joseph, Cecil; Giles, Robert H

    2017-01-01

    Terahertz (THz) imaging is progressing as a robust platform for myriad applications in the field of security, health, and material science. The THz regime, which comprises wavelengths spanning from microns to millimeters, is non-ionizing and has very low photon energy: Making it inherently safe for biological imaging. Colorectal cancer is one of the most common causes of death in the world, while the conventional screening and standard of care yet relies exclusively on the physician’s experience. Researchers have been working on the development of a flexible THz endoscope, as a potential tool to aid in colorectal cancer screening. This involves building a single-channel THz endoscope, and profiling the THz response from colorectal tissue, and demonstrating endogenous contrast levels between normal and diseased tissue when imaging in reflection modality. The current level of contrast provided by the prototype THz endoscopic system represents a significant step towards clinical endoscopic application of THz technology for in-vivo colorectal cancer screening. The aim of this paper is to provide a short review of the recent advances in THz endoscopic technology and cancer imaging. In particular, the potential of single-channel THz endoscopic imaging for colonic cancer screening will be highlighted. PMID:28874955

  5. Imaging pancreatobiliary ductal system with optical coherence tomography: A review

    PubMed Central

    Mahmud, Mohammad S; May, Gray R; Kamal, Mohammad M; Khwaja, Ahmed S; Sun, Carry; Vitkin, Alex; Yang, Victor XD

    2013-01-01

    An accurate, noninvasive and cost-effective method of in situ tissue evaluation during endoscopy would be highly advantageous for the detection of dysplasia or early cancer and for identifying different disease stages. Optical coherence tomography (OCT) is a noninvasive, high-resolution (1-10 μm) emerging optical imaging method with potential for identifying microscopic subsurface features in the pancreatic and biliary ductal system. Tissue microstructure of pancreaticobiliary ductal system has been successfully imaged by inserting an OCT probe through a standard endoscope operative channel. High-resolution OCT images and the technique’s endoscopic compatibility have allowed for the microstructural diagnostic of the pancreatobiliary diseases. In this review, we discussed currently available pancreaticobiliary ductal imaging systems to assess the pancreatobiliary tissue microstructure and to evaluate varieties of pancreaticobiliary disorders and diseases. Results show that OCT can improve the quality of images of pancreatobiliary system during endoscopic retrograde cholangiopancheatography procedure, which may be important in distinguishing between the neoplastic and non-neoplastic lesions. PMID:24255746

  6. Catheter-based photoacoustic endoscope

    PubMed Central

    Yang, Joon-Mo; Li, Chiye; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2014-01-01

    Abstract. We report a flexible shaft-based mechanical scanning photoacoustic endoscopy (PAE) system that can be potentially used for imaging the human gastrointestinal tract via the instrument channel of a clinical video endoscope. The development of such a catheter endoscope has been an important challenge to realize the technique’s benefits in clinical settings. We successfully implemented a prototype PAE system that has a 3.2-mm diameter and 2.5-m long catheter section. As the instrument’s flexible shaft and scanning tip are fully encapsulated in a plastic catheter, it easily fits within the 3.7-mm diameter instrument channel of a clinical video endoscope. Here, we demonstrate the intra-instrument channel workability and in vivo animal imaging capability of the PAE system. PMID:24887743

  7. A Knowledge-Based System for the Computer Assisted Diagnosis of Endoscopic Images

    NASA Astrophysics Data System (ADS)

    Kage, Andreas; Münzenmayer, Christian; Wittenberg, Thomas

    Due to the actual demographic development the use of Computer-Assisted Diagnosis (CAD) systems becomes a more important part of clinical workflows and clinical decision making. Because changes on the mucosa of the esophagus can indicate the first stage of cancerous developments, there is a large interest to detect and correctly diagnose any such lesion. We present a knowledge-based system which is able to support a physician with the interpretation and diagnosis of endoscopic images of the esophagus. Our system is designed to support the physician directly during the examination of the patient, thus prodving diagnostic assistence at the point of care (POC). Based on an interactively marked region in an endoscopic image of interest, the system provides a diagnostic suggestion, based on an annotated reference image database. Furthermore, using relevant feedback mechanisms, the results can be enhanced interactively.

  8. Full optical model of micro-endoscope with optical coherence microscopy, multiphoton microscopy and visible capabilities

    NASA Astrophysics Data System (ADS)

    Vega, David; Kiekens, Kelli C.; Syson, Nikolas C.; Romano, Gabriella; Baker, Tressa; Barton, Jennifer K.

    2018-02-01

    While Optical Coherence Microscopy (OCM), Multiphoton Microscopy (MPM), and narrowband imaging are powerful imaging techniques that can be used to detect cancer, each imaging technique has limitations when used by itself. Combining them into an endoscope to work in synergy can help achieve high sensitivity and specificity for diagnosis at the point of care. Such complex endoscopes have an elevated risk of failure, and performing proper modelling ensures functionality and minimizes risk. We present full 2D and 3D models of a multimodality optical micro-endoscope to provide real-time detection of carcinomas, called a salpingoscope. The models evaluate the endoscope illumination and light collection capabilities of various modalities. The design features two optical paths with different numerical apertures (NA) through a single lens system with a scanning optical fiber. The dual path is achieved using dichroic coatings embedded in a triplet. A high NA optical path is designed to perform OCM and MPM while a low NA optical path is designed for the visible spectrum to navigate the endoscope to areas of interest and narrowband imaging. Different tests such as the reflectance profile of homogeneous epithelial tissue were performed to adjust the models properly. Light collection models for the different modalities were created and tested for efficiency. While it is challenging to evaluate the efficiency of multimodality endoscopes, the models ensure that the system is design for the expected light collection levels to provide detectable signal to work for the intended imaging.

  9. Towards standardized assessment of endoscope optical performance: geometric distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Desai, Viraj N.; Ngo, Ying Z.; Cheng, Wei-Chung; Pfefer, Joshua

    2013-12-01

    Technological advances in endoscopes, such as capsule, ultrathin and disposable devices, promise significant improvements in safety, clinical effectiveness and patient acceptance. Unfortunately, the industry lacks test methods for preclinical evaluation of key optical performance characteristics (OPCs) of endoscopic devices that are quantitative, objective and well-validated. As a result, it is difficult for researchers and developers to compare image quality and evaluate equivalence to, or improvement upon, prior technologies. While endoscope OPCs include resolution, field of view, and depth of field, among others, our focus in this paper is geometric image distortion. We reviewed specific test methods for distortion and then developed an objective, quantitative test method based on well-defined experimental and data processing steps to evaluate radial distortion in the full field of view of an endoscopic imaging system. Our measurements and analyses showed that a second-degree polynomial equation could well describe the radial distortion curve of a traditional endoscope. The distortion evaluation method was effective for correcting the image and can be used to explain other widely accepted evaluation methods such as picture height distortion. Development of consensus standards based on promising test methods for image quality assessment, such as the method studied here, will facilitate clinical implementation of innovative endoscopic devices.

  10. Image-guided intervention in the human bile duct using scanning fiber endoscope system

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.; Jo, Javier A.; Melville, C. David; Johnston, Richard S.; Naumann, Christopher R.; Saunders, Michael D.

    2012-01-01

    Bile duct cancers are increasing in frequency while being difficult to diagnose. Currently available endoscopic imaging devices used in the biliary tree are low resolution with poor image quality, leading to inadequate evaluation of indeterminate biliary strictures. However, a new ultrathin and flexible cholangioscope system has been successfully demonstrated in a human subject. This mini-cholangioscope system uses a scanning fiber endoscope (SFE) as a forward-imaging guidewire, dimensions of 1.2-mm diameter and 3-m length. Full color video (500-line resolution at 30Hz) is the standard SFE imaging mode using spiral scanning of red, green, and blue laser light at low power. Image-guided operation of the biopsy forceps was demonstrated in healthy human bile ducts with and without saline flushing. The laser-based video imaging can be switched to various modes to enhance tissue markers of disease, such as widefield fluorescence and enhanced spectral imaging. In parallel work, biochemical discrimination of tissue health in pig bile duct has been accomplished using fiberoptic delivery of pulsed UV illumination and time-resolved autofluorescence spectroscopic measurements. Implementation of time-resolved fluorescence spectroscopy for biochemical assessment of the bile duct wall is being done through a secondary endoscopic channel. Preliminary results indicate that adequate SNR levels (> 30 dB) can be achieved through a 50 micron fiber, which could serve as an optical biopsy probe. The SFE is an ideal mini-cholangioscope for integration of both tissue and molecular specific image contrast in the future. This will provide the physician with unprecedented abilities to target biopsy locations and perform endoscopically-guided therapies.

  11. Correction of rotational distortion for catheter-based en face OCT and OCT angiography

    PubMed Central

    Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.

    2015-01-01

    We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133

  12. Design and implementation of magnetically maneuverable capsule endoscope system with direction reference for image navigation.

    PubMed

    Sun, Zhen-Jun; Ye, Bo; Sun, Yi; Zhang, Hong-Hai; Liu, Sheng

    2014-07-01

    This article describes a novel magnetically maneuverable capsule endoscope system with direction reference for image navigation. This direction reference was employed by utilizing a specific magnet configuration between a pair of external permanent magnets and a magnetic shell coated on the external capsule endoscope surface. A pair of customized Cartesian robots, each with only 4 degrees of freedom, was built to hold the external permanent magnets as their end-effectors. These robots, together with their external permanent magnets, were placed on two opposite sides of a "patient bed." Because of the optimized configuration based on magnetic analysis between the external permanent magnets and the magnetic shell, a simplified control strategy was proposed, and only two parameters, yaw step angle and moving step, were necessary for the employed robotic system. Step-by-step experiments demonstrated that the proposed system is capable of magnetically maneuvering the capsule endoscope while providing direction reference for image navigation. © IMechE 2014.

  13. Implemented a wireless communication system for VGA capsule endoscope.

    PubMed

    Moon, Yeon-Kwan; Lee, Jyung Hyun; Park, Hee-Joon; Cho, Jin-Ho; Choi, Hyun-Chul

    2014-01-01

    Recently, several medical devices that use wireless communication are under development. In this paper, the small size frequency shift keying (FSK) transmitter and a monofilar antenna for the capsule endoscope, enabling the medical device to transmit VGA-size images of the intestine. To verify the functionality of the proposed wireless communication system, computer simulations and animal experiments were performed with the implemented capsule endoscope that includes the proposed wireless communication system. Several fundamental experiments are carried out using the implemented transmitter and antenna, and animal in-vivo experiments were performed to verify VGA image transmission.

  14. Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei

    2018-05-01

    Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.

  15. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study

    PubMed Central

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365

  16. A Novel Augmented Reality Navigation System for Endoscopic Sinus and Skull Base Surgery: A Feasibility Study.

    PubMed

    Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei

    2016-01-01

    To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.

  17. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy.

    PubMed

    Kominami, Yoko; Yoshida, Shigeto; Tanaka, Shinji; Sanomura, Yoji; Hirakawa, Tsubasa; Raytchev, Bisser; Tamaki, Toru; Koide, Tetsusi; Kaneda, Kazufumi; Chayama, Kazuaki

    2016-03-01

    It is necessary to establish cost-effective examinations and treatments for diminutive colorectal tumors that consider the treatment risk and surveillance interval after treatment. The Preservation and Incorporation of Valuable Endoscopic Innovations (PIVI) committee of the American Society for Gastrointestinal Endoscopy published a statement recommending the establishment of endoscopic techniques that practice the resect and discard strategy. The aims of this study were to evaluate whether our newly developed real-time image recognition system can predict histologic diagnoses of colorectal lesions depicted on narrow-band imaging and to satisfy some problems with the PIVI recommendations. We enrolled 41 patients who had undergone endoscopic resection of 118 colorectal lesions (45 nonneoplastic lesions and 73 neoplastic lesions). We compared the results of real-time image recognition system analysis with that of narrow-band imaging diagnosis and evaluated the correlation between image analysis and the pathological results. Concordance between the endoscopic diagnosis and diagnosis by a real-time image recognition system with a support vector machine output value was 97.5% (115/118). Accuracy between the histologic findings of diminutive colorectal lesions (polyps) and diagnosis by a real-time image recognition system with a support vector machine output value was 93.2% (sensitivity, 93.0%; specificity, 93.3%; positive predictive value (PPV), 93.0%; and negative predictive value, 93.3%). Although further investigation is necessary to establish our computer-aided diagnosis system, this real-time image recognition system may satisfy the PIVI recommendations and be useful for predicting the histology of colorectal tumors. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  18. Ultra-high definition (8K UHD) endoscope: our first clinical success.

    PubMed

    Yamashita, Hiromasa; Aoki, Hisae; Tanioka, Kenkichi; Mori, Toshiyuki; Chiba, Toshio

    2016-01-01

    We have started clinical application of 8K ultra-high definition (UHD; 7680 × 4320 pixels) imaging technology, which is a 16-fold higher resolution than the current 2K high-definition (HD; 1920 × 1080 pixels) technology, to an endoscope for advanced laparoscopic surgery. Based on preliminary testing experience and with subsequent technical and system improvements, we then proceeded to perform two cases of cholecystectomy and were able to achieve clinical success with an 8K UHD endoscopic system, which consisted of an 8K camera, a 30-degrees angled rigid endoscope with a lens adapter, a pair of 300-W xenon light sources, an 85-inch 8K LCD and an 8K video recorder. These experimental and clinical studies revealed the engineering and clinical feasibility of the 8K UHD endoscope, enabling us to have a positive outlook on its prospective use in clinical practice. The 8K UHD endoscopy promises to open up new possibilities for intricate procedures including anastomoses of thin nerves and blood vessels as well as more confident surgical resections of a diversity of cancer tissues. 8K endoscopic imaging, compared to imaging by the current 2K imaging technology, is very likely to lead to major changes in the future of medical practice.

  19. Ultrahigh-resolution optical coherence elastography through a micro-endoscope: towards in vivo imaging of cellular-scale mechanics

    PubMed Central

    Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Yeow, Yen Ling; Hamzah, Juliana; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Ganss, Ruth; Kim, Jun Ki; Lee, Woei M.; Kennedy, Brendan F.

    2017-01-01

    In this paper, we describe a technique capable of visualizing mechanical properties at the cellular scale deep in living tissue, by incorporating a gradient-index (GRIN)-lens micro-endoscope into an ultrahigh-resolution optical coherence elastography system. The optical system, after the endoscope, has a lateral resolution of 1.6 µm and an axial resolution of 2.2 µm. Bessel beam illumination and Gaussian mode detection are used to provide an extended depth-of-field of 80 µm, which is a 4-fold improvement over a fully Gaussian beam case with the same lateral resolution. Using this system, we demonstrate quantitative elasticity imaging of a soft silicone phantom containing a stiff inclusion and a freshly excised malignant murine pancreatic tumor. We also demonstrate qualitative strain imaging below the tissue surface on in situ murine muscle. The approach we introduce here can provide high-quality extended-focus images through a micro-endoscope with potential to measure cellular-scale mechanics deep in tissue. We believe this tool is promising for studying biological processes and disease progression in vivo. PMID:29188108

  20. Progress in molecular imaging in endoscopy and endomicroscopy for cancer imaging

    PubMed Central

    Khondee, Supang; Wang, Thomas D.

    2014-01-01

    Imaging is an essential tool for effective cancer management. Endoscopes are important medical instruments for performing in vivo imaging in hollow organs. Early detection of cancer can be achieved with surveillance using endoscopy, and has been shown to reduce mortality and to improve outcomes. Recently, great advancements have been made in endoscopic instruments, including new developments in optical designs, light sources, optical fibers, miniature scanners, and multimodal systems, allowing for improved resolution, greater tissue penetration, and multispectral imaging. In addition, progress has been made in the development of highly-specific optical probes, allowing for improved specificity for molecular targets. Integration of these new endoscopic instruments with molecular probes provides a unique opportunity for significantly improving patient outcomes and has potential to further improve early detection, image guided therapy, targeted therapy, and personalized medicine. This work summarizes current and evolving endoscopic technologies, and provides an overview of various promising optical molecular probes. PMID:23502247

  1. MEMS scanning micromirror for optical coherence tomography.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y

    2015-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.

  2. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  3. Automatic localization of endoscope in intraoperative CT image: A simple approach to augmented reality guidance in laparoscopic surgery.

    PubMed

    Bernhardt, Sylvain; Nicolau, Stéphane A; Agnus, Vincent; Soler, Luc; Doignon, Christophe; Marescaux, Jacques

    2016-05-01

    The use of augmented reality in minimally invasive surgery has been the subject of much research for more than a decade. The endoscopic view of the surgical scene is typically augmented with a 3D model extracted from a preoperative acquisition. However, the organs of interest often present major changes in shape and location because of the pneumoperitoneum and patient displacement. There have been numerous attempts to compensate for this distortion between the pre- and intraoperative states. Some have attempted to recover the visible surface of the organ through image analysis and register it to the preoperative data, but this has proven insufficiently robust and may be problematic with large organs. A second approach is to introduce an intraoperative 3D imaging system as a transition. Hybrid operating rooms are becoming more and more popular, so this seems to be a viable solution, but current techniques require yet another external and constraining piece of apparatus such as an optical tracking system to determine the relationship between the intraoperative images and the endoscopic view. In this article, we propose a new approach to automatically register the reconstruction from an intraoperative CT acquisition with the static endoscopic view, by locating the endoscope tip in the volume data. We first describe our method to localize the endoscope orientation in the intraoperative image using standard image processing algorithms. Secondly, we highlight that the axis of the endoscope needs a specific calibration process to ensure proper registration accuracy. In the last section, we present quantitative and qualitative results proving the feasibility and the clinical potential of our approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ultrahigh-resolution endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.

    2005-01-01

    Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.

  5. Design and analysis of radial imaging capsule endoscope (RICE) system.

    PubMed

    Ou-Yang, Mang; Jeng, Wei-De

    2011-02-28

    In this study, a radial imaging capsule endoscope (RICE) system is designed, which differs from a conventional front imaging capsule endoscope (FICE) system. To observe the wrinkled intima of the intestine, which spreads without folding around the circumference of the capsule when a capsule endoscope with a diameter that slightly exceeds that of the intestine passes through it, the RICE uses a cone mirror, a radial window shell, and a focus optical module that comprise the radial imaging system. This concept was demonstrated in a packaged optical simulator. The RICE optical model also has been established and verified by many simulations and experiments. In minimizing the sagittal and tangential aberrations, the optical module of the RICE has achieved an F-number of 4.2, a viewing angle of 65.08°, and an RMS radius of the 4th to 6th fields of less than 17 um. A comparison of these characteristics with those of the focus optical module that is used in FICE lenses reveals that the spot size is 50% larger for each field, and the modulation transfer function (MTF) is remarkably improved from 7% to 36% at 100 lp/mm on the 5th field of the sagittal plane.

  6. Oblique incidence reflectometry: optical models and measurements using a side-viewing gradient index lens-based endoscopic imaging system

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2014-06-01

    A side-viewing, 2.3-mm diameter oblique incidence reflectometry endoscope has been designed to obtain optical property measurements of turbid samples. Light from a single-mode fiber is relayed obliquely onto the tissue with a gradient index lens-based distal optics assembly and the resulting diffuse reflectance profile is imaged and collected with a 30,000 element, 0.72 mm clear aperture fiber bundle. Sampling the diffuse reflectance in two-dimensions allows for fitting of the reflected intensity profile to a well-known theoretical model, permitting the extraction of both absorption and reduced scattering coefficients of the tissue sample. Models and measurements of the endoscopic imaging system are presented in tissue phantoms and in vivo mouse colon, verifying the endoscope's capabilities to accurately measure effective attenuation coefficient and differentiate diseased from normal colon.

  7. Design of illumination system in ring field capsule endoscope

    NASA Astrophysics Data System (ADS)

    Jeng, Wei-De; Mang, Ou-Yang; Chen, Yu-Ta; Wu, Ying-Yi

    2011-03-01

    This paper is researching about the illumination system in ring field capsule endoscope. It is difficult to obtain the uniform illumination on the observed object because the light intensity of LED will be changed along its angular displacement and same as luminous intensity distribution curve. So we use the optical design software which is Advanced Systems Analysis Program (ASAP) to build a photometric model for the optimal design of LED illumination system in ring field capsule endoscope. In this paper, the optimal design of illumination uniformity in the ring field capsule endoscope is from origin 0.128 up to optimum 0.603 and it would advance the image quality of ring field capsule endoscope greatly.

  8. Systems workplace for endoscopic surgery.

    PubMed

    Irion, K M; Novak, P

    2000-01-01

    With the advent of minimally invasive surgery (MIS) a decade ago, the requirements for operating rooms (OR) and their equipment have been increased. Compared with conventional open surgery, the new endoscopic techniques require additional tools. Television systems, for video-assisted image acquisition and visualisation, including cameras, monitors and light systems, as well as insufflators, pumps, high-frequency units, lasers and motorised therapy units, are nowadays usually made available on carts during endoscopic surgery. In conjunction with a set of endoscopic instruments, these high-tech units allow new operating techniques to be performed. The benefit for patients has become clear in recent years; however, the technical complexity of OR has also increased considerably. To minimise this problem for the OR personnel, the MIS concept 'OR1' (Operating Room 1) was developed and implemented. OR1 is a fully functional and integrated multi-speciality surgical suite for MIS. The centrepieces of the OR1 are the Storz Communication Bus (SCB) and the advanced image and data archiving system (Aida) from Karl Storz, Tuttlingen, Germany. Both components allow monitoring, access and networking of the MIS equipment and other OR facilities, as well as the acquisition, storage and display of image, patient and equipment data during the endoscopic procedure. A central user interface allows efficient, simplified operation and online clinical images. Due to the system integration, the handling of complex equipment is considerably simplified, logistical procedures in the OR are improved, procedure times are shorter and, particularly noteworthy, operative risk can be reduced through simplified device operation.

  9. 3D endoscopic imaging using structured illumination technique (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Le, Hanh N. D.; Nguyen, Hieu; Wang, Zhaoyang; Kang, Jin U.

    2017-02-01

    Surgeons have been increasingly relying on minimally invasive surgical guidance techniques not only to reduce surgical trauma but also to achieve accurate and objective surgical risk evaluations. A typical minimally invasive surgical guidance system provides visual assistance in two-dimensional anatomy and pathology of internal organ within a limited field of view. In this work, we propose and implement a structure illumination endoscope to provide a simple, inexpensive 3D endoscopic imaging to conduct high resolution 3D imagery for use in surgical guidance system. The system is calibrated and validated for quantitative depth measurement in both calibrated target and human subject. The system exhibits a depth of field of 20 mm, depth resolution of 0.2mm and a relative accuracy of 0.1%. The demonstrated setup affirms the feasibility of using the structured illumination endoscope for depth quantization and assisting medical diagnostic assessments

  10. Optical Design with Narrow-Band Imaging for a Capsule Endoscope.

    PubMed

    Yen, Chih-Ta; Lai, Zong-Wei; Lin, Yu-Ting; Cheng, Hsu-Chih

    2018-01-01

    The study proposes narrow-band imaging (NBI) lens design of 415 nm and 540 nm of a capsule endoscope (CE). The researches show that in terms of the rate of accuracy in detecting and screening neoplastic and nonneoplastic intestinal lesions, the NBI system outperformed that of traditional endoscopes and rivaled that of chromoendoscopes. In the proposed NBI CE optical system, the simulation result shows the field of view (FOV) was 109.8°; the modulation transfer function (MTF) could achieve 12.5% at 285 lp/mm and 34.1% at 144 lp/mm. The relative illumination reaches more than 60%, and the system total length was less than 4 mm. Finally, this design provides high-quality images for a 300-megapixel 1/4 ″ CMOS image sensor with a pixel size of 1.75  μ m.

  11. Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and Applications.

    PubMed

    Luo, Xiongbiao; Mori, Kensaku; Peters, Terry M

    2018-06-04

    Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.

  12. Expanding Functionality of Commercial Optical Coherence Tomography Systems by Integrating a Custom Endoscope

    PubMed Central

    Welge, Weston A.; Barton, Jennifer K.

    2015-01-01

    Optical coherence tomography (OCT) is a useful imaging modality for detecting and monitoring diseases of the gastrointestinal tract and other tubular structures. The non-destructiveness of OCT enables time-serial studies in animal models. While turnkey commercial research OCT systems are plenty, researchers often require custom imaging probes. We describe the integration of a custom endoscope with a commercial swept-source OCT system and generalize this description to any imaging probe and OCT system. A numerical dispersion compensation method is also described. Example images demonstrate that OCT can visualize the mouse colon crypt structure and detect adenoma in vivo. PMID:26418811

  13. Rendering-based video-CT registration with physical constraints for image-guided endoscopic sinus surgery

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Leonard, S.; Reiter, A.; Rajan, P.; Siewerdsen, J. H.; Ishii, M.; Taylor, R. H.; Hager, G. D.

    2015-03-01

    We present a system for registering the coordinate frame of an endoscope to pre- or intra- operatively acquired CT data based on optimizing the similarity metric between an endoscopic image and an image predicted via rendering of CT. Our method is robust and semi-automatic because it takes account of physical constraints, specifically, collisions between the endoscope and the anatomy, to initialize and constrain the search. The proposed optimization method is based on a stochastic optimization algorithm that evaluates a large number of similarity metric functions in parallel on a graphics processing unit. Images from a cadaver and a patient were used for evaluation. The registration error was 0.83 mm and 1.97 mm for cadaver and patient images respectively. The average registration time for 60 trials was 4.4 seconds. The patient study demonstrated robustness of the proposed algorithm against a moderate anatomical deformation.

  14. Comparison of methods for quantitative evaluation of endoscopic distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Castro, Kurt; Desai, Viraj N.; Cheng, Wei-Chung; Pfefer, Joshua

    2015-03-01

    Endoscopy is a well-established paradigm in medical imaging, and emerging endoscopic technologies such as high resolution, capsule and disposable endoscopes promise significant improvements in effectiveness, as well as patient safety and acceptance of endoscopy. However, the field lacks practical standardized test methods to evaluate key optical performance characteristics (OPCs), in particular the geometric distortion caused by fisheye lens effects in clinical endoscopic systems. As a result, it has been difficult to evaluate an endoscope's image quality or assess its changes over time. The goal of this work was to identify optimal techniques for objective, quantitative characterization of distortion that are effective and not burdensome. Specifically, distortion measurements from a commercially available distortion evaluation/correction software package were compared with a custom algorithm based on a local magnification (ML) approach. Measurements were performed using a clinical gastroscope to image square grid targets. Recorded images were analyzed with the ML approach and the commercial software where the results were used to obtain corrected images. Corrected images based on the ML approach and the software were compared. The study showed that the ML method could assess distortion patterns more accurately than the commercial software. Overall, the development of standardized test methods for characterizing distortion and other OPCs will facilitate development, clinical translation, manufacturing quality and assurance of performance during clinical use of endoscopic technologies.

  15. The combination design for open and endoscopic surgery using fluorescence molecular imaging technology

    NASA Astrophysics Data System (ADS)

    Mao, Yamin; Jiang, Shixin; Ye, Jinzuo; An, Yu; Yang, Xin; Chi, Chongwei; Tian, Jie

    2015-03-01

    For clinical surgery, it is still a challenge to objectively determine tumor margins during surgery. With the development of medical imaging technology, fluorescence molecular imaging (FMI) method can provide real-time intraoperative tumor margin information. Furthermore, surgical navigation system based on FMI technology plays an important role for the aid of surgeons' precise tumor margin decision. However, detection depth is the most limitation exists in the FMI technique and the method convenient for either macro superficial detection or micro deep tissue detection is needed. In this study, we combined advantages of both open surgery and endoscopic imaging systems with FMI technology. Indocyanine green (ICG) experiments were performed to confirm the feasibility of fluorescence detection in our system. Then, the ICG signal was photographed in the detection area with our system. When the system connected with endoscope lens, the minimum quantity of ICG detected by our system was 0.195 ug. For aspect of C mount lens, the sensitivity of ICG detection with our system was 0.195ug. Our experiments results proved that it was feasible to detect fluorescence images with this combination method. Our system shows great potential in the clinical applications of precise dissection of various tumors

  16. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system

    PubMed Central

    Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil

    2018-01-01

    Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849

  17. Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system.

    PubMed

    Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon

    2018-01-01

    Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.

  18. Endoscopic optical coherence tomography: technologies and clinical applications [Invited

    PubMed Central

    Gora, Michalina J.; Suter, Melissa J.; Tearney, Guillermo J.; Li, Xingde

    2017-01-01

    In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed. PMID:28663882

  19. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    NASA Astrophysics Data System (ADS)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  20. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review.

    PubMed

    Liedlgruber, Michael; Uhl, Andreas

    2011-01-01

    Today, medical endoscopy is a widely used procedure to inspect the inner cavities of the human body. The advent of endoscopic imaging techniques-allowing the acquisition of images or videos-created the possibility for the development of the whole new branch of computer-aided decision support systems. Such systems aim at helping physicians to identify possibly malignant abnormalities more accurately. At the beginning of this paper, we give a brief introduction to the history of endoscopy, followed by introducing the main types of endoscopes which emerged so far (flexible endoscope, wireless capsule endoscope, and confocal laser endomicroscope). We then give a brief introduction to computer-aided decision support systems specifically targeted at endoscopy in the gastrointestinal tract. Then we present general facts and figures concerning computer-aided decision support systems and summarize work specifically targeted at computer-aided decision support in the gastrointestinal tract. This summary is followed by a discussion of some common issues concerning the approaches reviewed and suggestions of possible ways to resolve them.

  1. Optical transfection using an endoscope-like system.

    PubMed

    Ma, Nan; Gunn-Moore, Frank; Dholakia, Kishan

    2011-02-01

    Optical transfection is a powerful method for targeted delivery of therapeutic agents to biological cells. A tightly focused pulsed laser beam may transiently change the permeability of a cell membrane to facilitate the delivery of foreign genetic material into cells. We report the first realization of an endoscope-like integrated system for optical transfection. An imaging fiber (coherent optical fiber bundle) with ∼ 6000 cores (pixels) embedded in a fiber cladding of ∼ 300 μm in diameter, produces an image circle (area) of ∼ 270 μm diam. This imaging fiber, with an ordered axicon lens array chemically etched at its exit face, is used for the delivery of a femtosecond laser to the cell membrane for optical transfection along with subcellular resolution imaging. A microcapillary-based microfluidic system for localized drug delivery was also combined in this miniature, flexible system. Using this novel system, a plasmid transfection efficiency up to ∼ 72% was obtained for CHO-K1 cells. This endoscope-like system opens a range of exciting applications, in particular, in the targeted in vivo optical microsurgery area.

  2. Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics

    NASA Astrophysics Data System (ADS)

    Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong

    2015-03-01

    Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.

  3. An Innovate Robotic Endoscope Guidance System for Transnasal Sinus and Skull Base Surgery: Proof of Concept.

    PubMed

    Friedrich, D T; Sommer, F; Scheithauer, M O; Greve, J; Hoffmann, T K; Schuler, P J

    2017-12-01

    Objective  Advanced transnasal sinus and skull base surgery remains a challenging discipline for head and neck surgeons. Restricted access and space for instrumentation can impede advanced interventions. Thus, we present the combination of an innovative robotic endoscope guidance system and a specific endoscope with adjustable viewing angle to facilitate transnasal surgery in a human cadaver model. Materials and Methods  The applicability of the robotic endoscope guidance system with custom foot pedal controller was tested for advanced transnasal surgery on a fresh frozen human cadaver head. Visualization was enabled using a commercially available endoscope with adjustable viewing angle (15-90 degrees). Results  Visualization and instrumentation of all paranasal sinuses, including the anterior and middle skull base, were feasible with the presented setup. Controlling the robotic endoscope guidance system was effectively precise, and the adjustable endoscope lens extended the view in the surgical field without the common change of fixed viewing angle endoscopes. Conclusion  The combination of a robotic endoscope guidance system and an advanced endoscope with adjustable viewing angle enables bimanual surgery in transnasal interventions of the paranasal sinuses and the anterior skull base in a human cadaver model. The adjustable lens allows for the abandonment of fixed-angle endoscopes, saving time and resources, without reducing the quality of imaging.

  4. Results from the commissioning of a multi-modal endoscope for ultrasound and time of flight PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bugalho, Ricardo

    2015-07-01

    The EndoTOFPET-US collaboration has developed a multi-modal imaging system combining Ultrasound with Time-of-Flight Positron Emission Tomography into an endoscopic imaging device. The objective of the project is to obtain a coincidence time resolution of about 200 ps FWHM and to achieve about 1 mm spatial resolution of the PET system, while integrating all the components in a very compact detector suitable for endoscopic use. This scanner aims to be exploited for diagnostic and surgical oncology, as well as being instrumental in the clinical test of new biomarkers especially targeted for prostate and pancreatic cancer. (authors)

  5. Endoscopic high-resolution auto fluorescence imaging and optical coherence tomography of airways in vivo (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carley; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    In this work, we present multimodal imaging of peripheral airways in vivo using an endoscopic imaging system capable of co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI). This system employs a 0.9 mm diameter double-clad fiber optic-based catheter for endoscopic imaging of small peripheral airways. Optical coherence tomography (OCT) can visualize detailed airway morphology in the lung periphery and autofluorescence imaging (AFI) can visualize fluorescent tissue components such as collagen and elastin, improving the detection of airway lesions. Results from in vivo imaging of 40 patients indicate that OCT and AFI offer complementary information that may increase the ability to identify pulmonary nodules in the lung periphery and improve the safety of biopsy collection by identifying large blood vessels. AFI can rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. By providing complementary information about structure and function of tissue, OCT-AFI may improve site selection during biopsy collection in the lung periphery.

  6. A portable high-definition electronic endoscope based on embedded system

    NASA Astrophysics Data System (ADS)

    Xu, Guang; Wang, Liqiang; Xu, Jin

    2012-11-01

    This paper presents a low power and portable highdefinition (HD) electronic endoscope based on CortexA8 embedded system. A 1/6 inch CMOS image sensor is used to acquire HD images with 1280 *800 pixels. The camera interface of A8 is designed to support images of various sizes and support multiple inputs of video format such as ITUR BT601/ 656 standard. Image rotation (90 degrees clockwise) and image process functions are achieved by CAMIF. The decode engine of the processor plays back or records HD videos at speed of 30 frames per second, builtin HDMI interface transmits high definition images to the external display. Image processing procedures such as demosaicking, color correction and auto white balance are realized on the A8 platform. Other functions are selected through OSD settings. An LCD panel displays the real time images. The snapshot pictures or compressed videos are saved in an SD card or transmited to a computer through USB interface. The size of the camera head is 4×4.8×15 mm with more than 3 meters working distance. The whole endoscope system can be powered by a lithium battery, with the advantages of miniature, low cost and portability.

  7. Classification of endoscopic capsule images by using color wavelet features, higher order statistics and radial basis functions.

    PubMed

    Lima, C S; Barbosa, D; Ramos, J; Tavares, A; Monteiro, L; Carvalho, L

    2008-01-01

    This paper presents a system to support medical diagnosis and detection of abnormal lesions by processing capsule endoscopic images. Endoscopic images possess rich information expressed by texture. Texture information can be efficiently extracted from medium scales of the wavelet transform. The set of features proposed in this paper to code textural information is named color wavelet covariance (CWC). CWC coefficients are based on the covariances of second order textural measures, an optimum subset of them is proposed. Third and forth order moments are added to cope with distributions that tend to become non-Gaussian, especially in some pathological cases. The proposed approach is supported by a classifier based on radial basis functions procedure for the characterization of the image regions along the video frames. The whole methodology has been applied on real data containing 6 full endoscopic exams and reached 95% specificity and 93% sensitivity.

  8. A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot

    NASA Astrophysics Data System (ADS)

    Zheng, Dongtian; Tan, Haishu; Zhou, Fuqiang

    2017-03-01

    An endoscopic imaging system of hyper long pipeline is designed to acquire the inner surface image in advance for the hyper long pipeline detects measurement. The system consists of structured light sensors, pipe robots and control system. The pipe robot is in the form of wheel structure, with the sensor which is at the front of the vehicle body. The control system is at the tail of the vehicle body in the form of upper and lower computer. The sensor can be translated and scanned in three steps: walking, lifting and scanning, then the inner surface image can be acquired at a plurality of positions and different angles. The results of imaging experiments show that the system's transmission distance is longer, the acquisition angle is more diverse and the result is more comprehensive than the traditional imaging system, which lays an important foundation for later inner surface vision measurement.

  9. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy

    PubMed Central

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo

    2015-01-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality. PMID:26473119

  10. Analysis and design of stereoscopic display in stereo television endoscope system

    NASA Astrophysics Data System (ADS)

    Feng, Dawei

    2008-12-01

    Many 3D displays have been proposed for medical use. When we design and evaluate new system, there are three demands from surgeons. Priority is the precision. Secondly, displayed images should be easy to understand, In addition, surgery lasts hours and hours, they do not like fatiguing display. The stereo television endoscope researched in this paper make celiac viscera image on the photosurface of the left and right CCD by imitating human binocular stereo vision effect by using the double-optical lines system. The left and right video signal will be processed by frequency multiplication and display on the monitor, people can observe the stereo image which has depth impression by using a polarized LCD screen and a pair of polarized glasses. Clinical experiments show that by using the stereo TV endoscope people can make minimally invasive surgery more safe and reliable, and can shorten the operation time, and can improve the operation accuracy.

  11. Single lens system for forward-viewing navigation and scanning side-viewing optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tate, Tyler H.; McGregor, Davis; Barton, Jennifer K.

    2017-02-01

    The optical design for a dual modality endoscope based on piezo scanning fiber technology is presented including a novel technique to combine forward-viewing navigation and side viewing OCT. Potential applications include navigating body lumens such as the fallopian tube, biliary ducts and cardiovascular system. A custom cover plate provides a rotationally symmetric double reflection of the OCT beam to deviate and focus the OCT beam out the side of the endoscope for cross-sectional imaging of the tubal lumen. Considerations in the choice of the scanning fiber are explored and a new technique to increase the divergence angle of the scanning fiber to improve system performance is presented. Resolution and the necessary scanning density requirements to achieve Nyquist sampling of the full image are considered. The novel optical design lays the groundwork for a new approach integrating side-viewing OCT into multimodality endoscopes for small lumen imaging. KEYWORDS:

  12. Integrated endoscopic OCT system and in-vivo images of human internal organs

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Kuranov, Roman V.; Gladkova, Natalia D.; Shakhova, Natalia M.; Snopova, Ludmila; Shakhov, Andrei; Kuznetzova, Irina N.; Denisenko, Arkady; Pochinko, Vitaly; Chumakov, Yuri; Almasov, Valentin

    1998-04-01

    First results of endoscopic applications of optical coherence tomography (OCT) for in vivo studies of human mucosa in respiratory, gastrointestinal, urinary and genital tracts are presented. A novel endoscopic OCT (EOCT) system has been created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, larynx, stomach, urinary bladder, uterine cervix and endometrium as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancered tissue is distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  13. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2012-02-01

    A side-viewing, 2 mm diameter, surface magnifying chromoendoscopy (SMC)-optical coherence tomography (OCT) endoscope has been designed for simultaneous, non-destructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of mouse colon. A 30,000 element fiber bundle is combined with single mode fibers. The distal optics consist of a gradient-index lens and spacer to provide a magnification of 1 at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23 mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the GRIN lens assembly. The resulting 1:1 imaging system is capable of 3.9 μm lateral and 2.3 μm axial resolution in the OCT channel, and 125 lp/mm resolution across a 0.70 mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.

  14. Panorama imaging for image-to-physical registration of narrow drill holes inside spongy bones

    NASA Astrophysics Data System (ADS)

    Bergmeier, Jan; Fast, Jacob Friedemann; Ortmaier, Tobias; Kahrs, Lüder Alexander

    2017-03-01

    Image-to-physical registration based on volumetric data like computed tomography on the one side and intraoperative endoscopic images on the other side is an important method for various surgical applications. In this contribution, we present methods to generate panoramic views from endoscopic recordings for image-to-physical registration of narrow drill holes inside spongy bone. One core application is the registration of drill poses inside the mastoid during minimally invasive cochlear implantations. Besides the development of image processing software for registration, investigations are performed on a miniaturized optical system, achieving 360° radial imaging with one shot by extending a conventional, small, rigid, rod lens endoscope. A reflective cone geometry is used to deflect radially incoming light rays into the endoscope optics. Therefore, a cone mirror is mounted in front of a conventional 0° endoscope. Furthermore, panoramic images of inner drill hole surfaces in artificial bone material are created. Prior to drilling, cone beam computed tomography data is acquired from this artificial bone and simulated endoscopic views are generated from this data. A qualitative and quantitative image comparison of resulting views in terms of image-to-image registration is performed. First results show that downsizing of panoramic optics to a diameter of 3mm is possible. Conventional rigid rod lens endoscopes can be extended to produce suitable panoramic one-shot image data. Using unrolling and stitching methods, images of the inner drill hole surface similar to computed tomography image data of the same surface were created. Registration is performed on ten perturbations of the search space and results in target registration errors of (0:487 +/- 0:438)mm at the entry point and (0:957 +/- 0:948)mm at the exit as well as an angular error of (1:763 +/- 1:536)°. The results show suitability of this image data for image-to-image registration. Analysis of the error components in different directions reveals a strong influence of the pattern structure, meaning higher diversity results into smaller errors.

  15. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    NASA Astrophysics Data System (ADS)

    Frisch, Benjamin

    2013-12-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype detector system with a CTR better than 240 ps FWHM. We discuss the challenges in simulating such a system and introduce reconstruction algorithms based on graphics processing units (GPU).

  16. Dual-Channel Endoscopic Indocyanine Green Fluorescence Angiography for Clipping of Cerebral Aneurysms.

    PubMed

    Cho, Won-Sang; Kim, Jeong Eun; Kang, Hyun-Seung; Ha, Eun Jin; Jung, Minwoong; Lee, Choonghee; Shin, Il Hyung; Kang, Uk

    2017-04-01

    Neuroendoscopy is useful for assessing status of perforators, parent arteries, and aneurysms beyond the straight line of microscopic view during aneurysm clipping. We aimed to evaluate the clinical usefulness of our endoscopic indocyanine green angiography (ICGA) system, which can simultaneously display visible light and indocyanine green fluorescent images. Surgical clipping of 16 unruptured aneurysms in 10 patients was performed via the keyhole approach. Using our endoscopic ICGA and commercial microscopic ICGA systems, we prospectively compared 10 targeted cerebral aneurysms at the posterior communicating (n = 4) and anterior choroidal (n = 6) arteries. Microscopic ICGA and endoscopic ICGA were feasible during surgery. Microscopic ICGA displayed 50% of branch orifices, 100% of branch trunks, and 20% of exact clip positions, whereas endoscopic ICGA showed 100% of these. Based on endoscopic ICGA findings such as incomplete clipping and compromise of parent arteries or branches, clips were repositioned in 2 cases, and additional clips were applied in 2 cases. Complete occlusion and residual neck states were achieved in 6 and 4 aneurysms after surgery. There were no neurologic deficits within 3 months after surgery except for frontalis palsy and anosmia in each patient. The endoscopic ICGA system with dual imaging of visible light and indocyanine green fluorescence was very useful for assessing geometry of aneurysms and surrounding vessels before clipping and for evaluating completeness of clip position after clipping. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts

    NASA Astrophysics Data System (ADS)

    Yang, Victor X. D.; Gordon, Maggie L.; Tang, Shou-Jiang; Marcon, Norman E.; Gardiner, Geoffrey; Qi, Bing; Bisland, Stuart; Seng-Yue, Emily; Lo, Stewart; Pekar, Julius; Wilson, Brian C.; Vitkin, I. Alex

    2003-09-01

    We previously described a fiber based Doppler optical coherence tomography system [1] capable of imaging embryo cardiac blood flow at 4~16 frames per second with wide velocity dynamic range [2]. Coupling this system to a linear scanning fiber optical catheter design that minimizes friction and vibrations, we report here the initial results of in vivo endoscopic Doppler optical coherence tomography (EDOCT) imaging in normal rat and human esophagus. Microvascular flow in blood vessels less than 100 µm diameter was detected using a combination of color-Doppler and velocity variance imaging modes, during clinical endoscopy using a mobile EDOCT system.

  18. Design and validation of a near-infrared fluorescence endoscope for detection of early esophageal malignancy

    NASA Astrophysics Data System (ADS)

    Waterhouse, Dale J.; Joseph, James; Neves, André A.; di Pietro, Massimiliano; Brindle, Kevin M.; Fitzgerald, Rebecca C.; Bohndiek, Sarah E.

    2016-08-01

    Barrett's esophagus is a known precursor lesion to esophageal adenocarcinoma. In these patients, early detection of premalignant disease, known as dysplasia, allows curative minimally invasive endoscopic therapy, but is confounded by a lack of contrast in white light endoscopy. Imaging fluorescently labeled lectins applied topically to the tissue has the potential to more accurately delineate dysplasia, but tissue autofluorescence limits both sensitivity and contrast when operating in the visible region. To overcome this challenge, we synthesized near-infrared (NIR) fluorescent wheat germ agglutinin (WGA-IR800CW) and constructed a clinically translatable bimodal NIR and white light endoscope. Images of NIR and white light with a field of view of 63 deg and an image resolution of 182 μm are coregistered and the honeycomb artifact arising from the fiber bundle is removed. A minimum detectable concentration of 110 nM was determined using a dilution series of WGA-IR800CW. We demonstrated ex vivo that this system can distinguish between gastric and squamous tissue types in mouse stomachs (p=0.0005) and accurately detect WGA-IR800CW fluorescence in human esophageal resections (compared with a gold standard imaging system, rs>0.90). Based on these findings, future work will optimize the bimodal endoscopic system for clinical trials in Barrett's surveillance.

  19. Optical design of an optical coherence tomography and multispectral fluorescence imaging endoscope to detect early stage ovarian cancer

    NASA Astrophysics Data System (ADS)

    Tate, Tyler; Keenan, Molly; Swan, Elizabeth; Black, John; Utzinger, Urs; Barton, Jennifer

    2014-12-01

    The five year survival rate for ovarian cancer is over 90% if early detection occurs, yet no effective early screening method exists. We have designed and are constructing a dual modality Optical Coherence Tomography (OCT) and Multispectral Fluorescence Imaging (MFI) endoscope to optically screen the Fallopian tube and ovary for early stage cancer. The endoscope reaches the ovary via the natural pathway of the vagina, cervix, uterus and Fallopian tube. In order to navigate the Fallopian tube the endoscope must have an outer diameter of 600 μm, be highly flexible, steerable, tracking and nonperforating. The imaging systems consists of six optical subsystems, two from OCT and four from MFI. The optical subsystems have independent and interrelated design criteria. The endoscope will be tested on realistic tissue models and ex vivo tissue to prove feasibility of future human trials. Ultimately the project aims to provide women the first effective ovarian cancer screening technique.

  20. Ultrahigh resolution optical coherence elastography combined with a rigid micro-endoscope (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fang, Qi; Curatolo, Andrea; Wijesinghe, Philip; Hamzah, Juliana; Ganss, Ruth; Noble, Peter B.; Karnowski, Karol; Sampson, David D.; Kim, Jun Ki; Lee, Wei M.; Kennedy, Brendan F.

    2017-02-01

    The mechanical forces that living cells experience represent an important framework in the determination of a range of intricate cellular functions and processes. Current insight into cell mechanics is typically provided by in vitro measurement systems; for example, atomic force microscopy (AFM) measurements are performed on cells in culture or, at best, on freshly excised tissue. Optical techniques, such as Brillouin microscopy and optical elastography, have been used for ex vivo and in situ imaging, recently achieving cellular-scale resolution. The utility of these techniques in cell mechanics lies in quick, three-dimensional and label-free mechanical imaging. Translation of these techniques toward minimally invasive in vivo imaging would provide unprecedented capabilities in tissue characterization. Here, we take the first steps along this path by incorporating a gradient-index micro-endoscope into an ultrahigh resolution optical elastography system. Using this endoscope, a lateral resolution of 2 µm is preserved over an extended depth-of-field of 80 µm, achieved by Bessel beam illumination. We demonstrate this combined system by imaging stiffness of a silicone phantom containing stiff inclusions and a freshly excised murine liver tissue. Additionally, we test this system on murine ribs in situ. We show that our approach can provide high quality extended depth-of-field images through an endoscope and has the potential to measure cell mechanics deep in tissue. Eventually, we believe this tool will be capable of studying biological processes and disease progression in vivo.

  1. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    NASA Astrophysics Data System (ADS)

    Wall, R. Andrew; Barton, Jennifer K.

    2012-08-01

    A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-μm lateral and 2.3-μm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure.

  2. Fluorescence-based surface magnifying chromoendoscopy and optical coherence tomography endoscope

    PubMed Central

    Wall, R. Andrew

    2012-01-01

    Abstract. A side-viewing, 2.3-mm diameter, surface magnifying chromoendoscopy-optical coherence tomography (SMC-OCT) endoscope has been designed for simultaneous, nondestructive surface fluorescence visualization and cross-sectional imaging. We apply this endoscope to in vivo examination of the mouse colon. A 30,000 element fiber bundle is combined with single mode fibers, for SMC and OCT imaging, respectively. The distal optics consist of a gradient-index lens and spacer to provide a 1× magnification at a working distance of 1.58 mm in air, necessary to image the sample through a 0.23-mm thick outer glass envelope, and an aluminized right-angle prism fixed to the distal end of the gradient-index lens assembly. The resulting 1∶1 imaging system is capable of 3.9-µm lateral and 2.3-µm axial resolution in the OCT channel, and 125-lp/mm resolution across a 0.70-mm field of view in the SMC channel. The endoscope can perform high contrast crypt visualization, molecular imaging, and cross-sectional imaging of colon microstructure. PMID:23224190

  3. LC-lens array with light field algorithm for 3D biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  4. Miniature, minimally invasive, tunable endoscope for investigation of the middle ear.

    PubMed

    Pawlowski, Michal E; Shrestha, Sebina; Park, Jesung; Applegate, Brian E; Oghalai, John S; Tkaczyk, Tomasz S

    2015-06-01

    We demonstrate a miniature, tunable, minimally invasive endoscope for diagnosis of the auditory system. The probe is designed to sharply image anatomical details of the middle ear without the need for physically adjusting the position of the distal end of the endoscope. This is achieved through the addition of an electrowetted, tunable, electronically-controlled lens to the optical train. Morphological imaging is enabled by scanning light emanating from an optical coherence tomography system. System performance was demonstrated by imaging part of the ossicular chain and wall of the middle ear cavity of a normal mouse. During the experiment, we electronically moved the plane of best focus from the incudo-stapedial joint to the stapedial artery. Repositioning the object plane allowed us to image anatomical details of the middle ear beyond the depth of field of a static optical system. We also demonstrated for the first time to our best knowledge, that an optical system with an electrowetted, tunable lens may be successfully employed to measure sound-induced vibrations within the auditory system by measuring the vibratory amplitude of the tympanic membrane in a normal mouse in response to pure tone stimuli.

  5. Fluorescence endoscopy using fiber speckle illumination

    NASA Astrophysics Data System (ADS)

    Nakano, Shuhei; Katagiri, Takashi; Matsuura, Yuji

    2018-02-01

    An endoscopic fluorescence imaging system based on fiber speckle illumination is proposed. In this system, a multimode fiber for transmission of excitation laser light and collection of fluorescence is inserted into a conventional flexible endoscope. Since the excitation laser light has random speckle structure, one can detect fluorescence signal corresponding to the irradiation pattern if the sample contains fluorophores. The irradiation pattern can be captured by the endoscope camera when the excitation wavelength is within the sensitivity range of the camera. By performing multiple measurements while changing the irradiation pattern, a fluorescence image is reconstructed by solving a norm minimization problem. The principle of our method was experimentally demonstrated. A 2048 pixels image of quantum dots coated on a frosted glass was successfully reconstructed by 32 measurements. We also confirmed that our method can be applied on biological tissues.

  6. A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and a pig.

    PubMed

    Lee, Sang Heun; Lee, Jaebok; Yoon, Young Joong; Park, Sangbok; Cheon, Changyul; Kim, Kihyun; Nam, Sangwook

    2011-06-01

    This paper presents the design of a wideband spiral antenna for ingestible capsule endoscope systems and a comparison between the experimental results in a human phantom and a pig under general anesthesia. As wireless capsule endoscope systems transmit real-time internal biological image data at a high resolution to external receivers and because they operate in the human body, a small wideband antenna is required. To incorporate these properties, a thick-arm spiral structure is applied to the designed antenna. To make practical and efficient use of antennas inside the human body, which is composed of a high dielectric and lossy material, the resonance characteristics and radiation patterns were evaluated through a measurement setup using a liquid human phantom. The total height of the designed antenna is 5 mm and the diameter is 10 mm. The fractional bandwidth of the fabricated antenna is about 21% with a voltage standing-wave ratio of less than 2, and it has an isotropic radiation pattern. These characteristics are suitable for wideband capsule endoscope systems. Moreover, the received power level was measured using the proposed antenna, a circular polarized receiver antenna, and a pig under general anesthesia. Finally, endoscopic capsule images in the stomach and large intestine were captured using an on-off keying transceiver system.

  7. Image-Based Navigation for Functional Endoscopic Sinus Surgery Using Structure From Motion.

    PubMed

    Leonard, Simon; Reiter, Austin; Sinha, Ayushi; Ishii, Masaru; Taylor, Russel H; Hager, Gregory D

    2016-01-01

    Functional Endoscopic Sinus Surgery (FESS) is a challenging procedure for otolaryngologists and is the main surgical approach for treating chronic sinusitis, to remove nasal polyps and open up passageways. To reach the source of the problem and to ultimately remove it, the surgeons must often remove several layers of cartilage and tissues. Often, the cartilage occludes or is within a few millimeters of critical anatomical structures such as nerves, arteries and ducts. To make FESS safer, surgeons use navigation systems that register a patient to his/her CT scan and track the position of the tools inside the patient. Current navigation systems, however, suffer from tracking errors greater than 1 mm, which is large when compared to the scale of the sinus cavities, and errors of this magnitude prevent from accurately overlaying virtual structures on the endoscope images. In this paper, we present a method to facilitate this task by 1) registering endoscopic images to CT data and 2) overlaying areas of interests on endoscope images to improve the safety of the procedure. First, our system uses structure from motion (SfM) to generate a small cloud of 3D points from a short video sequence. Then, it uses iterative closest point (ICP) algorithm to register the points to a 3D mesh that represents a section of a patients sinuses. The scale of the point cloud is approximated by measuring the magnitude of the endoscope's motion during the sequence. We have recorded several video sequences from five patients and, given a reasonable initial registration estimate, our results demonstrate an average registration error of 1.21 mm when the endoscope is viewing erectile tissues and an average registration error of 0.91 mm when the endoscope is viewing non-erectile tissues. Our implementation SfM + ICP can execute in less than 7 seconds and can use as few as 15 frames (0.5 second of video). Future work will involve clinical validation of our results and strengthening the robustness to initial guesses and erectile tissues.

  8. Image-based navigation for functional endoscopic sinus surgery using structure from motion

    NASA Astrophysics Data System (ADS)

    Leonard, Simon; Reiter, Austin; Sinha, Ayushi; Ishii, Masaru; Taylor, Russell H.; Hager, Gregory D.

    2016-03-01

    Functional Endoscopic Sinus Surgery (FESS) is a challenging procedure for otolaryngologists and is the main surgical approach for treating chronic sinusitis, to remove nasal polyps and open up passageways. To reach the source of the problem and to ultimately remove it, the surgeons must often remove several layers of cartilage and tissues. Often, the cartilage occludes or is within a few millimeters of critical anatomical structures such as nerves, arteries and ducts. To make FESS safer, surgeons use navigation systems that register a patient to his/her CT scan and track the position of the tools inside the patient. Current navigation systems, however, suffer from tracking errors greater than 1 mm, which is large when compared to the scale of the sinus cavities, and errors of this magnitude prevent from accurately overlaying virtual structures on the endoscope images. In this paper, we present a method to facilitate this task by 1) registering endoscopic images to CT data and 2) overlaying areas of interests on endoscope images to improve the safety of the procedure. First, our system uses structure from motion (SfM) to generate a small cloud of 3D points from a short video sequence. Then, it uses iterative closest point (ICP) algorithm to register the points to a 3D mesh that represents a section of a patients sinuses. The scale of the point cloud is approximated by measuring the magnitude of the endoscope's motion during the sequence. We have recorded several video sequences from five patients and, given a reasonable initial registration estimate, our results demonstrate an average registration error of 1.21 mm when the endoscope is viewing erectile tissues and an average registration error of 0.91 mm when the endoscope is viewing non-erectile tissues. Our implementation SfM + ICP can execute in less than 7 seconds and can use as few as 15 frames (0.5 second of video). Future work will involve clinical validation of our results and strengthening the robustness to initial guesses and erectile tissues.

  9. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Herz, P. R.; Chen, Y.; Aguirre, A. D.; Schneider, K.; Hsiung, P.; Fujimoto, J. G.; Madden, K.; Schmitt, J.; Goodnow, J.; Petersen, C.

    2004-10-01

    A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-µm axial resolution by use of a femtosecond Crforsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.

  10. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

    PubMed

    Komeda, Yoriaki; Handa, Hisashi; Watanabe, Tomohiro; Nomura, Takanobu; Kitahashi, Misaki; Sakurai, Toshiharu; Okamoto, Ayana; Minami, Tomohiro; Kono, Masashi; Arizumi, Tadaaki; Takenaka, Mamoru; Hagiwara, Satoru; Matsui, Shigenaga; Nishida, Naoshi; Kashida, Hiroshi; Kudo, Masatoshi

    2017-01-01

    Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps. A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp. The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases. A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy. © 2017 S. Karger AG, Basel.

  11. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.

    PubMed

    Hirasawa, Toshiaki; Aoyama, Kazuharu; Tanimoto, Tetsuya; Ishihara, Soichiro; Shichijo, Satoki; Ozawa, Tsuyoshi; Ohnishi, Tatsuya; Fujishiro, Mitsuhiro; Matsuo, Keigo; Fujisaki, Junko; Tada, Tomohiro

    2018-07-01

    Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images. A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN. The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface. The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

  12. Improving patient and user safety during endoscopic investigation of the pancreatic and biliary ducts

    NASA Astrophysics Data System (ADS)

    Chandler, John E.; Melville, C. David; Lee, Cameron M.; Saunders, Michael D.; Burkhardt, Matthew R.; Seibel, Eric J.

    2011-03-01

    Endoscopic investigation of the main pancreatic duct and biliary ducts is called endoscopic retrograde cholangiopancreatography (ERCP), and carries a risk of pancreatitis for the patient. During ERCP, a metal guidewire is inserted into the pancreatobiliary duct from a side-viewing large endoscope within the duodenum. To verify correct placement of the ERCP guidewire, an injection of radiopaque dye is required for fluoroscopic imaging, which exposes the patient and clinical team to x-ray radiation. A safer and more effective means to access the pancreatobiliary system can use direct optical imaging, although the endoscope diameter and stiffness will be significantly larger than a guidewire's. To quantify this invasiveness before human testing, a synthetic force-sensing pancreas was fabricated and attached to an ERCP training model. The invasiveness of a new, 1.7-mm diameter, steerable scanning fiber endoscope (SFE) was compared to the standard ERCP guidewire of 0.89-mm (0.035") diameter that is not steerable. Although twice as large and significantly stiffer than the ERCP guidewire, the SFE generated lower or significantly less average force during insertion at all 4 sensor locations (P<0.05) within the main pancreatic duct. Therefore, the addition of steering and forward visualization at the tip of the endoscope reduced the invasiveness of the in vitro ERCP procedure. Since fluoroscopy is not required, risks associated with dye injection and x-ray exposure can be eliminated when using direct optical visualization. Finally, the SFE provides wide-field high resolution imaging for image-guided interventions, laser-based fluorescence biomarker imaging, and spot spectral analysis for future optical biopsy.

  13. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography.

    PubMed

    Herz, P R; Chen, Y; Aguirre, A D; Schneider, K; Hsiung, P; Fujimoto, J G; Madden, K; Schmitt, J; Goodnow, J; Petersen, C

    2004-10-01

    A distally actuated, rotational-scanning micromotor endoscope catheter probe is demonstrated for ultrahigh-resolution in vivo endoscopic optical coherence tomography (OCT) imaging. The probe permits focus adjustment for visualization of tissue morphology at varying depths with improved transverse resolution compared with standard OCT imaging probes. The distal actuation avoids nonuniform scanning motion artifacts that are present with other probe designs and can permit a wider range of imaging speeds. Ultrahigh-resolution endoscopic imaging is demonstrated in a rabbit with <4-microm axial resolution by use of a femtosecond Cr:forsterite laser light source. The micromotor endoscope catheter probe promises to improve OCT imaging performance in future endoscopic imaging applications.

  14. An enhanced narrow-band imaging method for the microvessel detection

    NASA Astrophysics Data System (ADS)

    Yu, Feng; Song, Enmin; Liu, Hong; Wan, Youming; Zhu, Jun; Hung, Chih-Cheng

    2018-02-01

    A medical endoscope system combined with the narrow-band imaging (NBI), has been shown to be a superior diagnostic tool for early cancer detection. The NBI can reveal the morphologic changes of microvessels in the superficial cancer. In order to improve the conspicuousness of microvessel texture, we propose an enhanced NBI method to improve the conspicuousness of endoscopic images. To obtain the more conspicuous narrow-band images, we use the edge operator to extract the edge information of the narrow-band blue and green images, and give a weight to the extracted edges. Then, the weighted edges are fused with the narrow-band blue and green images. Finally, the displayed endoscopic images are reconstructed with the enhanced narrow-band images. In addition, we evaluate the performance of enhanced narrow-band images with different edge operators. Experimental results indicate that the Sobel and Canny operators achieve the best performance of all. Compared with traditional NBI method of Olympus company, our proposed method has more conspicuous texture of microvessel.

  15. Microfabricated endoscopic probe integrated MEMS micromirror for optical coherence tomography bioimaging.

    PubMed

    Wang, Ming-Fang; Xu, Yingshun; Prem, C S; Chen, Kelvin Wei Sheng; Xie, Jin; Mu, Xiaojing; Tan, Chee Wei; Yu, Aibin; Feng, Hanhua

    2010-01-01

    In this paper, we present a miniaturized endoscopic probe, consisted of MEMS micromirror, silicon optical bench (SiOB), grade index (GRIN) lens, single mode optical fiber (SMF) and transparent housing, for optical coherence tomography (OCT) bioimaging. Due to the use of the MEMS micromirror, the endoscopic OCT system is highly suitable for non-invasive imaging diagnosis of a wide variety of inner organs. The probe engineering and proof of concept were demonstrated by obtaining the two-dimensional OCT images with a cover slide and an onion used as standard samples and the axial resolution was around 10µm.

  16. Medical imaging systems

    DOEpatents

    Frangioni, John V

    2013-06-25

    A medical imaging system provides simultaneous rendering of visible light and diagnostic or functional images. The system may be portable, and may include adapters for connecting various light sources and cameras in open surgical environments or laparascopic or endoscopic environments. A user interface provides control over the functionality of the integrated imaging system. In one embodiment, the system provides a tool for surgical pathology.

  17. Method for radiometric calibration of an endoscope's camera and light source

    NASA Astrophysics Data System (ADS)

    Rai, Lav; Higgins, William E.

    2008-03-01

    An endoscope is a commonly used instrument for performing minimally invasive visual examination of the tissues inside the body. A physician uses the endoscopic video images to identify tissue abnormalities. The images, however, are highly dependent on the optical properties of the endoscope and its orientation and location with respect to the tissue structure. The analysis of endoscopic video images is, therefore, purely subjective. Studies suggest that the fusion of endoscopic video images (providing color and texture information) with virtual endoscopic views (providing structural information) can be useful for assessing various pathologies for several applications: (1) surgical simulation, training, and pedagogy; (2) the creation of a database for pathologies; and (3) the building of patient-specific models. Such fusion requires both geometric and radiometric alignment of endoscopic video images in the texture space. Inconsistent estimates of texture/color of the tissue surface result in seams when multiple endoscopic video images are combined together. This paper (1) identifies the endoscope-dependent variables to be calibrated for objective and consistent estimation of surface texture/color and (2) presents an integrated set of methods to measure them. Results show that the calibration method can be successfully used to estimate objective color/texture values for simple planar scenes, whereas uncalibrated endoscopes performed very poorly for the same tests.

  18. Endoscopic Cerenkov luminescence imaging: in vivo small animal tumor model validation

    NASA Astrophysics Data System (ADS)

    Song, Tianming; Bao, Chengpeng; Hu, Zhenhua; Wang, Kun; Liu, Xia; Tian, Jie

    2015-03-01

    Background: Cerenkov luminescence imaging (CLI) provides a great potential for clinical translation of optical molecular imaging techniques through using clinical approved radiotracers. However, it is difficult to obtain the Cerenkov luminescence signal of deeper biological tissues due to the small magnitude of the signal. To efficiently acquire the weak Cerenkov luminescence, we developed an endoscopic Cerenkov luminescence imaging (ECLI) system to reduce the in vivo imaging depth with minimum invasion, and validated the system on small animal tumor models. Methods: For the ECLI system, the laparoscope was connected to a high sensitive charge-couple device (CCD) camera (DU888+, Andor, UK) by a custom made adapter. We conducted a series of in vitro and in vivo experiments by use of the system. In the in vitro experiment, the endoscopic luminescence images of the 18F-FDG with various activities in EP tubes were acquired using ECLI system, and the sensitivity was compared with conventional CLI system. In the in vivo tumor experiment, 18F-FDG with the activity of 200μCi were intravenously injected into 3 tumor mice. Then the ECLI system was used to acquire the optical images for both non-invasive and invasive conditions. Conclusion: Experimental data showed the ECLI system could detect the 18F-FDG with the activity as low as 1μCi. Furthermore, our preliminary results indicated the possibility of ECLI technique for detecting Cerenkov signals inside the tumor tissue with deeper depth and guiding the surgical operation of tumor excision. We believe that this technique can help to accelerate the clinical translation of CLI.

  19. Endoscopic trans-nasal approach for biopsy of orbital tumours using image-guided neuro-navigation system.

    PubMed

    Sieskiewicz, A; Lyson, T; Mariak, Z; Rogowski, M

    2008-05-01

    Histopathological diagnosis of intraorbital tumours is of crucial value for planning further therapy. The aim of the study was to explore clinical utility of image-guided endoscopy for biopsy of orbital tumours. Trans-nasal endoscopic biopsy of intraorbital mass lesions was performed in 6 patients using a neuro-navigation system (Medtronic Stealth Station Treon plus). The CT and MRI 1 mm slice images were fused by the system in order to visualise both bony and soft tissue structures. The anatomic fiducial registration protocol was used during the procedure. All lesions were precisely localised and the biopsies could be taken from the representative part of the pathological mass. None of the patients developed aggravation of ocular symptoms after the procedure. The operative corridor as well as the size of orbital wall fenestration could be limited to a minimum. The accuracy of neuro-navigation remained high and stable during the entire procedure. The image-guided neuro-navigation system facilitated endoscopic localisation and biopsy of intraorbital tumours and contributed to the reduction of surgical trauma during the procedure. The technique was particularly useful in small, medially located, retrobulbar tumours and in unclear situations when the structure of the lesion resembled surrounding intraorbital tissue.

  20. A robust motion estimation system for minimal invasive laparoscopy

    NASA Astrophysics Data System (ADS)

    Marcinczak, Jan Marek; von Öhsen, Udo; Grigat, Rolf-Rainer

    2012-02-01

    Laparoscopy is a reliable imaging method to examine the liver. However, due to the limited field of view, a lot of experience is required from the surgeon to interpret the observed anatomy. Reconstruction of organ surfaces provide valuable additional information to the surgeon for a reliable diagnosis. Without an additional external tracking system the structure can be recovered from feature correspondences between different frames. In laparoscopic images blurred frames, specular reflections and inhomogeneous illumination make feature tracking a challenging task. We propose an ego-motion estimation system for minimal invasive laparoscopy that can cope with specular reflection, inhomogeneous illumination and blurred frames. To obtain robust feature correspondence, the approach combines SIFT and specular reflection segmentation with a multi-frame tracking scheme. The calibrated five-point algorithm is used with the MSAC robust estimator to compute the motion of the endoscope from multi-frame correspondence. The algorithm is evaluated using endoscopic videos of a phantom. The small incisions and the rigid endoscope limit the motion in minimal invasive laparoscopy. These limitations are considered in our evaluation and are used to analyze the accuracy of pose estimation that can be achieved by our approach. The endoscope is moved by a robotic system and the ground truth motion is recorded. The evaluation on typical endoscopic motion gives precise results and demonstrates the practicability of the proposed pose estimation system.

  1. Applications of rigid and flexible GRIN-endoscopes

    NASA Astrophysics Data System (ADS)

    Schenkl, Selma; Ehlers, Alexander; Riemann, Iris; Messerschmidt, Bernhard; Bückle, Rainer; König, Karsten

    2007-02-01

    Multiphoton autofluorescence imaging became an important technique for minimal invasive examination of cells in biological tissue. Rigid and flexible endoscopes based on gradient index lenses (GRIN-lenses) extend this minimalinvasive technique to deep lying cell layers, inner body and specimens, difficult to access. In the rigid endoscope, a GRIN-lens overcomes the limited depth range, given by the working distance of the microscope objective. The focus of the conventional laser scanning tomography is reproduced tens of millimeters in the specimen under study by the GRIN-lens (diameter 1.8 and 3 μm). We will present images of fluorescent beads, proteins cells and skin tissue, as well as first in vivo measurements on human skin. The autofluorescence signal stems from the endogenous fluorophore elastin and SHG from collagen. The flexible endoscope dispenses completely the need of a microscope next to the specimen of interest. The excitation laser pulses is delivered via a well-characterized photonic crystal fiber and subsequently focused by a newly designed GRIN-lens system. The fluorescence, also transferred by a fiber is detected by a PMT detector. We will show the excellent imaging qualities of a newly developed GRIN-lens system with high-resolution images of proteins, cells and plant tissue and give an out-look on multiphoton endoscopy.

  2. The cervical cancer detection system based on an endoscopic rotary probe

    NASA Astrophysics Data System (ADS)

    Yang, Yanshuang; Hou, Qiang; Zhao, Huijuan; Qin, Zhuanping; Gao, Feng

    2012-03-01

    To acquire the optical diffuse tomographic image of the cervix, a novel endoscopic rotary probe is designed and the frequency domain measurement system is developed. The finite element method and Gauss-Newton method are proposed to reconstruct the image of the phantom. In the optical diffuse tomographic imaging of the cervix, an endoscopic probe is needed and the detection of light at different separation to the irradiation spot is necessary. To simplify the system, only two optical fibers are adopted for light irradiation and collection, respectively. Two small stepper motors are employed to control the rotation of the incident fiber and the detection fiber, respectively. For one position of source fiber, the position of the detection fiber is changed from -61.875° to -50.625° and 50.625° to 61.875° to the source fiber, respectively. Then, the position of the source fiber is changed to another preconcerted position, which deviates the precious source position in an angle of 11.25°, and the detection fiber rotates within the above angles. To acquire the efficient irradiation and collection of the light, a gradient-index (GRIN) lens is connected at the head of the optical fiber. The other end of the GRIN lens is cut to 45°. With this design, light from optical fiber is reflected to the cervix wall, which is perpendicular to the optical fiber or vice versa. Considering the cervical size, the external diameter of the endoscopic probe is made to 20mm. A frequency domain (FD) near-infrared diffuse system is developed aiming at the detection of early cervical cancer, which modulates the light intensity in radio frequency and measures the amplitude attenuation and the phase delay of the diffused light using heterodyne detection. Phantom experiment results demonstrate that the endoscopic rotary scan probe and the system perform well in the endoscopic measurement.

  3. Endoscopic OCT for in-vivo imaging of precancer and cancer states of human mucosa

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander M.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Kuranov, Roman V.; Gladkova, Natalia D.; Shakhova, Natalia M.; Kuznetzova, Irina N.; Snopova, Ludmila; Denisenko, Arkady; Almasov, Valentin

    1998-01-01

    First results of endoscopic applications of optical coherence tomography for in vivo studies of human mucosa in gastrointestinal and genital tracts are presented. A novel endoscopic OCT system has ben created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, stomach and uterine cervix as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancerous tissue is distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  4. Morphologic 3D scanning of fallopian tubes to assist ovarian cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Madore, Wendy-Julie; De Montigny, Etienne; Deschênes, Andréanne; Benboujja, Fouzi; Leduc, Mikael; Mes-Masson, Anne-Marie; Provencher, Diane M.; Rahimi, Kurosh; Boudoux, Caroline; Godbout, Nicolas

    2016-02-01

    Pathological evaluation of the fallopian tubes is an important diagnostic result but tumors can be missed using routine approaches. As the majority of high-grade serous ovarian cancers are now believed to originate in the fallopian tubes, pathological examination should include in a thorough examination of the excised ovaries and fallopian tubes. We present an dedicated imaging system for diagnostic exploration of human fallopian tubes. This system is based on optical coherence tomography (OCT), a laser imaging modality giving access to sub- epithelial tissue architecture. This system produces cross-sectional images up to 3 mm in depth, with a lateral resolution of ≍15μm and an axial resolution of ≍12μm. An endoscopic single fiber probe was developed to fit in a human fallopian tube. This 1.2 mm probe produces 3D volume data of the entire inner tube within a few minutes. To demonstrate the clinical potential of OCT for lesion identification, we studied 5 different ovarian lesions and healthy fallopian tubes. We imaged 52 paraffin-embedded human surgical specimens with a benchtop system and compared these images with histology slides. We also imaged and compared healthy oviducts from 3 animal models to find one resembling the human anatomy and to develop a functional ex vivo imaging procedure with the endoscopic probe. We also present an update on an ongoing clinical pilot study on women undergoing prophylactic or diagnostic surgery in which we image ex vivo fallopian tubes with the endoscopic probe.

  5. Quantitative endoscopy: initial accuracy measurements.

    PubMed

    Truitt, T O; Adelman, R A; Kelly, D H; Willging, J P

    2000-02-01

    The geometric optics of an endoscope can be used to determine the absolute size of an object in an endoscopic field without knowing the actual distance from the object. This study explores the accuracy of a technique that estimates absolute object size from endoscopic images. Quantitative endoscopy involves calibrating a rigid endoscope to produce size estimates from 2 images taken with a known traveled distance between the images. The heights of 12 samples, ranging in size from 0.78 to 11.80 mm, were estimated with this calibrated endoscope. Backup distances of 5 mm and 10 mm were used for comparison. The mean percent error for all estimated measurements when compared with the actual object sizes was 1.12%. The mean errors for 5-mm and 10-mm backup distances were 0.76% and 1.65%, respectively. The mean errors for objects <2 mm and > or =2 mm were 0.94% and 1.18%, respectively. Quantitative endoscopy estimates endoscopic image size to within 5% of the actual object size. This method remains promising for quantitatively evaluating object size from endoscopic images. It does not require knowledge of the absolute distance of the endoscope from the object, rather, only the distance traveled by the endoscope between images.

  6. Fibre-optic nonlinear optical microscopy and endoscopy.

    PubMed

    Fu, L; Gu, M

    2007-06-01

    Nonlinear optical microscopy has been an indispensable laboratory tool of high-resolution imaging in thick tissue and live animals. Rapid developments of fibre-optic components in terms of growing functionality and decreasing size provide enormous opportunities for innovations in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy is the sole instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible to a conventional optical microscope. This article reviews the current development of fibre-optic nonlinear optical microscopy and endoscopy, which includes crucial technologies for miniaturized nonlinear optical microscopy and their embodiments of endoscopic systems. A particular attention is given to several classes of photonic crystal fibres that have been applied to nonlinear optical microscopy due to their unique properties for ultrashort pulse delivery and signal collection. Furthermore, fibre-optic nonlinear optical imaging systems can be classified into portable microscopes suitable for imaging behaving animals, rigid endoscopes that allow for deep tissue imaging with minimally invasive manners, and flexible endoscopes enabling imaging of internal organs. Fibre-optic nonlinear optical endoscopy is coming of age and a paradigm shift leading to optical microscope tools for early cancer detection and minimally invasive surgery.

  7. Dual-modality endoscopic probe for tissue surface shape reconstruction and hyperspectral imaging enabled by deep neural networks.

    PubMed

    Lin, Jianyu; Clancy, Neil T; Qi, Ji; Hu, Yang; Tatla, Taran; Stoyanov, Danail; Maier-Hein, Lena; Elson, Daniel S

    2018-06-15

    Surgical guidance and decision making could be improved with accurate and real-time measurement of intra-operative data including shape and spectral information of the tissue surface. In this work, a dual-modality endoscopic system has been proposed to enable tissue surface shape reconstruction and hyperspectral imaging (HSI). This system centers around a probe comprised of an incoherent fiber bundle, whose fiber arrangement is different at the two ends, and miniature imaging optics. For 3D reconstruction with structured light (SL), a light pattern formed of randomly distributed spots with different colors is projected onto the tissue surface, creating artificial texture. Pattern decoding with a Convolutional Neural Network (CNN) model and a customized feature descriptor enables real-time 3D surface reconstruction at approximately 12 frames per second (FPS). In HSI mode, spatially sparse hyperspectral signals from the tissue surface can be captured with a slit hyperspectral imager in a single snapshot. A CNN based super-resolution model, namely "super-spectral-resolution" network (SSRNet), has also been developed to estimate pixel-level dense hypercubes from the endoscope cameras standard RGB images and the sparse hyperspectral signals, at approximately 2 FPS. The probe, with a 2.1 mm diameter, enables the system to be used with endoscope working channels. Furthermore, since data acquisition in both modes can be accomplished in one snapshot, operation of this system in clinical applications is minimally affected by tissue surface movement and deformation. The whole apparatus has been validated on phantoms and tissue (ex vivo and in vivo), while initial measurements on patients during laryngeal surgery show its potential in real-world clinical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. In vivo imaging in the oral cavity by endoscopic optical coherence tomography.

    PubMed

    Walther, Julia; Schnabel, Christian; Tetschke, Florian; Rosenauer, Tobias; Golde, Jonas; Ebert, Nadja; Baumann, Michael; Hannig, Christian; Koch, Edmund

    2018-03-01

    The common way to diagnose hard and soft tissue irregularities in the oral cavity is initially the visual inspection by an experienced dentist followed by further medical examinations, such as radiological imaging and/or histopathological investigation. For the diagnosis of oral hard and soft tissues, the detection of early transformations is mostly hampered by poor visual access, low specificity of the diagnosis techniques, and/or limited feasibility of frequent screenings. Therefore, optical noninvasive diagnosis of oral tissue is promising to improve the accuracy of oral screening. Considering this demand, a rigid handheld endoscopic scanner was developed for optical coherence tomography (OCT). The novelty is the usage of a commercially near-infrared endoscope with fitting optics in combination with an established spectral-domain OCT system of our workgroup. By reaching a high spatial resolution, in vivo images of anterior and especially posterior dental and mucosal tissues were obtained from the oral cavity of two volunteers. The convincing image quality of the endoscopic OCT device is particularly obvious for the imaging of different regions of the human soft palate with highly scattering fibrous layer and capillary network within the lamina propria. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. Endoscopic Skull Base Surgery

    PubMed Central

    Senior, Brent A

    2008-01-01

    Endoscopic skull base surgery has undergone rapid advancement in the past decade moving from pituitary surgery to suprasellar lesions and now to a myriad of lesions extending from the cribriform plate to C2 and laterally out to the infratemporal fossa and petrous apex. Evolution of several technological advances as well as advances in understanding of endoscopic anatomy and the development of surgical techniques both in resection and reconstruction have fostered this capability. Management of benign disease via endoscopic methods is largely accepted now but more data is needed before the controversy on the role of endoscopic management of malignant disease is decided. Continued advances in surgical technique, navigation systems, endoscopic imaging technology, and robotics assure continued brisk evolution in this expanding field. PMID:19434274

  10. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander M.; Gelikonov, V. M.; Gelikonov, G. V.; Feldchtein, Felix I.; Kuranov, R. V.; Gladkova, N. D.; Shakhova, N. M.; Snopova, L. B.; Shakhov, A. V.; Kuznetzova, I. A.; Denisenko, A. N.; Pochinko, V. V.; Chumakov, Yu P.; Streltzova, O. S.

    1997-12-01

    First results of endoscopic applications of optical coherence tomography for in vivo studies of human mucosa in respiratory, gastrointestinal, urinary and genital tracts are presented. A novel endoscopic OCT (EOCT) system has been created that is based on the integration of a sampling arm of an all-optical-fiber interferometer into standard endoscopic devices using their biopsy channel to transmit low-coherence radiation to investigated tissue. We have studied mucous membranes of esophagus, larynx, stomach, urinary bladder, uterine cervix and body as typical localization for carcinomatous processes. Images of tumor tissues versus healthy tissues have been recorded and analyzed. Violations of well-defined stratified healthy mucosa structure in cancered tissue are distinctly seen by EOCT, thus making this technique promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  11. Design of signal reception and processing system of embedded ultrasonic endoscope

    NASA Astrophysics Data System (ADS)

    Li, Ming; Yu, Feng; Zhang, Ruiqiang; Li, Yan; Chen, Xiaodong; Yu, Daoyin

    2009-11-01

    Embedded Ultrasonic Endoscope, based on embedded microprocessor and embedded real-time operating system, sends a micro ultrasonic probe into coelom through the biopsy channel of the Electronic Endoscope to get the fault histology features of digestive organs by rotary scanning, and acquires the pictures of the alimentary canal mucosal surface. At the same time, ultrasonic signals are processed by signal reception and processing system, forming images of the full histology of the digestive organs. Signal Reception and Processing System is an important component of Embedded Ultrasonic Endoscope. However, the traditional design, using multi-level amplifiers and special digital processing circuits to implement signal reception and processing, is no longer satisfying the standards of high-performance, miniaturization and low power requirements that embedded system requires, and as a result of the high noise that multi-level amplifier brought, the extraction of small signal becomes hard. Therefore, this paper presents a method of signal reception and processing based on double variable gain amplifier and FPGA, increasing the flexibility and dynamic range of the Signal Reception and Processing System, improving system noise level, and reducing power consumption. Finally, we set up the embedded experiment system, using a transducer with the center frequency of 8MHz to scan membrane samples, and display the image of ultrasonic echo reflected by each layer of membrane, with a frame rate of 5Hz, verifying the correctness of the system.

  12. Endoscopic Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Fujimoto, James G.; Tsai, Tsung-Han; Mashimo, Hiroshi

    New gastrointestinal (GI) cancers are expected to affect more than 290,200 new patients and will cause more than 144,570 deaths in the United States in 2013 [1]. When detected and treated early, the 5-year survival rate for colorectal cancer increases by a factor of 1.4 [1]. For esophageal cancer, the rate increases by a factor of 2 [1]. The majority of GI cancers begin as small lesions that are difficult to identify with conventional endoscopy. With resolutions approaching that of histopathology, optical coherence tomography (OCT) is well suited for detecting the changes in tissue microstructure associated with early GI cancers. Since the lesions are not endoscopically apparent, however, it is necessary to survey a relatively large area of the GI tract. Tissue motion is another limiting factor in the GI tract; therefore, in vivo imaging must be performed at extremely high speeds. OCT imaging can be performed using fiber optics and miniaturized lens systems, enabling endoscopic OCT inside the human body in conjunction with conventional video endoscopy. An OCT probe can be inserted through the working channel of a standard endoscope, thus enabling depth-resolved imaging of tissue microstructure in the GI tract with micron-scale resolution simultaneously with the endoscopic view (Fig. 68.1).

  13. A Wireless Capsule Endoscope System With Low-Power Controlling and Processing ASIC.

    PubMed

    Xinkai Chen; Xiaoyu Zhang; Linwei Zhang; Xiaowen Li; Nan Qi; Hanjun Jiang; Zhihua Wang

    2009-02-01

    This paper presents the design of a wireless capsule endoscope system. The proposed system is mainly composed of a CMOS image sensor, a RF transceiver and a low-power controlling and processing application specific integrated circuit (ASIC). Several design challenges involving system power reduction, system miniaturization and wireless wake-up method are resolved by employing optimized system architecture, integration of an area and power efficient image compression module, a power management unit (PMU) and a novel wireless wake-up subsystem with zero standby current in the ASIC design. The ASIC has been fabricated in 0.18-mum CMOS technology with a die area of 3.4 mm * 3.3 mm. The digital baseband can work under a power supply down to 0.95 V with a power dissipation of 1.3 mW. The prototype capsule based on the ASIC and a data recorder has been developed. Test result shows that proposed system architecture with local image compression lead to an average of 45% energy reduction for transmitting an image frame.

  14. Endoscopic spectral-domain polarization-sensitive optical coherence tomography system

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Chen, Xiaodong; Hu, Zhiqiang; Li, Qiao; Yu, Daoyin

    2008-02-01

    In this paper, we introduced a fiber-based endoscopic Spectral-domain Polarization-sensitive OCT (SD-PS-OCT) experimental scheme for detecting the internal organ disease, which is based on low-coherence interferometer and two spectrometers. The SD-PS-OCT has the advantages of both Spectral-domain OCT (SD-OCT) and Polarization-sensitive OCT (PS-OCT). It is able to get the real-time image of reflectivity and birefringence distribution of tissue at the same time. The usage of SD-PS-OCT in endoscopic diagnosing system provides it the possibility to detect the internal organ disease. Since SD-PS-OCT can image the pathological changes of biological tissue below surface (1-3mm) with high resolution (1-15μm), it is able to help diagnosing early diseases of internal organs, which makes it a biomedical technology with bright future.

  15. A wireless narrowband imaging chip for capsule endoscope.

    PubMed

    Lan-Rong Dung; Yin-Yi Wu

    2010-12-01

    This paper presents a dual-mode capsule gastrointestinal endoscope device. An endoscope combined with a narrowband image (NBI), has been shown to be a superior diagnostic tool for early stage tissue neoplasms detection. Nevertheless, a wireless capsule endoscope with the narrowband imaging technology has not been presented in the market up to now. The narrowband image acquisition and power dissipation reduction are the main challenges of NBI capsule endoscope. In this paper, we present the first narrowband imaging capsule endoscope that can assist clinical doctors to effectively diagnose early gastrointestinal cancers, profited from our dedicated dual-mode complementary metal-oxide semiconductor (CMOS) sensor. The dedicated dual-mode CMOS sensor can offer white-light and narrowband images. Implementation results show that the proposed 512 × 512 CMOS sensor consumes only 2 mA at a 3-V power supply. The average current of the NBI capsule with an 8-Mb/s RF transmitter is nearly 7 ~ 8 mA that can continuously work for 6 ~ 8 h with two 1.5-V 80-mAh button batteries while the frame rate is 2 fps. Experimental results on backside mucosa of a human tongue and pig's small intestine showed that the wireless NBI capsule endoscope can significantly improve the image quality, compared with a commercial-of-the-shelf capsule endoscope for gastrointestinal tract diagnosis.

  16. 3-D video techniques in endoscopic surgery.

    PubMed

    Becker, H; Melzer, A; Schurr, M O; Buess, G

    1993-02-01

    Three-dimensional visualisation of the operative field is an important requisite for precise and fast handling of open surgical operations. Up to now it has only been possible to display a two-dimensional image on the monitor during endoscopic procedures. The increasing complexity of minimal invasive interventions requires endoscopic suturing and ligatures of larger vessels which are difficult to perform without the impression of space. Three-dimensional vision therefore may decrease the operative risk, accelerate interventions and widen the operative spectrum. In April 1992 a 3-D video system developed at the Nuclear Research Center Karlsruhe, Germany (IAI Institute) was applied in various animal experimental procedures and clinically in laparoscopic cholecystectomy. The system works with a single monitor and active high-speed shutter glasses. Our first trials with this new 3-D imaging system clearly showed a facilitation of complex surgical manoeuvres like mobilisation of organs, preparation in the deep space and suture techniques. The 3-D-system introduced in this article will enter the market in 1993 (Opticon Co., Karlsruhe, Germany.

  17. Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.

    PubMed

    Szpala, Stanislaw; Wierzbicki, Marcin; Guiraudon, Gerard; Peters, Terry M

    2005-09-01

    Minimally invasive robotically assisted cardiac surgical systems currently do not routinely employ 3-D image guidance. However, preoperative magnetic resonance and computed tomography (CT) images have the potential to be used in this role, if appropriately registered with the patient anatomy and animated synchronously with the motion of the actual heart. This paper discusses the fusion of optical images of a beating heart phantom obtained from an optically tracked endoscope, with volumetric images of the phantom created from a dynamic CT dataset. High quality preoperative dynamic CT images are created by first extracting the motion parameters of the heart from the series of temporal frames, and then applying this information to animate a high-quality heart image acquired at end systole. Temporal synchronization of the endoscopic and CT model is achieved by selecting the appropriate CT image from the dynamic set, based on an electrocardiographic trigger signal. The spatial error between the optical and virtual images is 1.4 +/- 1.1 mm, while the time discrepancy is typically 50-100 ms. Index Terms-Image guidance, image warping, minimally invasive cardiac surgery, virtual endoscopy, virtual reality.

  18. Capsule endoscope localization based on computer vision technique.

    PubMed

    Liu, Li; Hu, Chao; Cai, Wentao; Meng, Max Q H

    2009-01-01

    To build a new type of wireless capsule endoscope with interactive gastrointestinal tract examination, a localization and orientation system is needed for tracking 3D location and 3D orientation of the capsule movement. The magnetic localization and orientation method produces only 5 DOF, but misses the information of rotation angle along capsule's main axis. In this paper, we presented a complementary orientation approach for the capsule endoscope, and the 3D rotation can be determined by applying computer vision technique on the captured endoscopic images. The experimental results show that the complementary orientation method has good accuracy and high feasibility.

  19. The Clinical Accuracy of Endoscopic Ultrasonography and White Light Imaging in Gastric Endoscopic Submucosal Dissection

    PubMed Central

    Park, Soon Hong; Sung, Sang Hun; Lee, Seung Jun; Jung, Min Kyu; Kim, Sung Kook

    2012-01-01

    Purpose Gastric mucosal neoplastic lesions should have characteristic endoscopic features for successful endoscopic submucosal dissection. Materials and Methods Out of the 1,010 endoscopic submucosal dissection, we enrolled 62 patients that had the procedure cancelled. Retrospectively, whether the reasons for cancelling the endoscopic submucosal dissection were consistent with the indications for an endoscopic submucosal dissection were assessed by analyzing the clinical outcomes of the patients that had the surgery. Results The cases were divided into two groups; the under-diagnosed group (30 cases; unable to perform an endoscopic submucosal dissection) and the over-diagnosed group (32 cases; unnecessary to perform an endoscopic submucosal dissection), according to the second endoscopic findings, compared with the index conventional white light image. There were six cases in the under-diagnosed group with advanced gastric cancer on the second conventional white light image endoscopy, 17 cases with submucosal invasion on endoscopic ultrasonography findings, 5 cases with a size greater than 3 cm and ulcer, 1 case with diffuse infiltrative endoscopic features, and 1 case with lymph node involvement on computed tomography. A total of 25 patients underwent a gastrectomy to remove a gastric adenocarcinoma. The overall accuracy of the decision to cancel the endoscopic submucosal dissection was 40% (10/25) in the subgroup that had the surgery. Conclusions The accuracy of the decision to cancel the endoscopic submucosal dissection, after conventional white light image and endoscopic ultrasonography, was low in this study. Other diagnostic options are needed to arrive at an accurate decision on whether to perform a gastric endoscopic submucosal dissection. PMID:22792522

  20. Toward Intraoperative Image-Guided Transoral Robotic Surgery

    PubMed Central

    Liu, Wen P.; Reaugamornrat, Sureerat; Deguet, Anton; Sorger, Jonathan M.; Siewerdsen, Jeffrey H.; Richmon, Jeremy; Taylor, Russell H.

    2014-01-01

    This paper presents the development and evaluation of video augmentation on the stereoscopic da Vinci S system with intraoperative image guidance for base of tongue tumor resection in transoral robotic surgery (TORS). Proposed workflow for image-guided TORS begins by identifying and segmenting critical oropharyngeal structures (e.g., the tumor and adjacent arteries and nerves) from preoperative computed tomography (CT) and/or magnetic resonance (MR) imaging. These preoperative planned data can be deformably registered to the intraoperative endoscopic view using mobile C-arm cone-beam computed tomography (CBCT) [1, 2]. Augmentation of TORS endoscopic video defining surgical targets and critical structures has the potential to improve navigation, spatial orientation, and confidence in tumor resection. Experiments in animal specimens achieved statistically significant improvement in target localization error when comparing the proposed image guidance system to simulated current practice. PMID:25525474

  1. The use of neuronavigation and intraoperative imaging systems in the surgical treatment of orbital tumors.

    PubMed

    Hodaj, Irgen; Kutlay, Murat; Gonul, Engin; Solmaz, Ilker; Tehli, Ozkan; Temiz, Caglar; Kural, Cahit; Daneyemez, Mehmet K; Izci, Yusuf

    2014-01-01

    We aimed to show the effects of neuronavigation and intraoperative imaging systems on the surgical outcomes of orbital tumors. Seventeen patients who underwent surgical treatment for orbital tumors by transcranial and transnasal approaches between 2008 and 2013 were analyzed retrospectively. Twelve of them were male and 5 were female. The mean age was 41.6 years. Neuronavigation systems were used in all cases. Four patients were operated using intraoperative imaging systems. The transcranial approach was used in 9 (53%) patients, endoscopic medial orbital approach in 4 (23.5%), endoscopic inferolateral approach in 1 (6%), cranioorbitozygomatic approach in 1, lateral approach in 1, and the combined (medial endoscopic and lateral) approach in 1 patients. Total resection was achieved in 5 patients, gross total excision in 2, subtotal in 9 and partial in 1 patients. Modern technology has made a significant contribution to the treatment of orbital tumors. Although technological equipments facilitate the excision of tumors, the level of resection is mainly determined by the nature of tumor and adhesion to the adjacent neurovascular structures. It should not be forgotten that advanced technology never replaces a good anatomical knowledge and surgical experience, but has a complementary role.

  2. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Han; Ahsen, Osman O.; Lee, Hsiang-Chieh; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Kraus, Martin F.; Hornegger, Joachim; Figueiredo, Marisa; Huang, Qin; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2014-03-01

    We developed an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor based imaging catheter, which provided an imaging speed of 600 kHz axial scan rate and 8 μm axial resolution in tissue. The micromotor catheter was 3.2 mm in diameter and could be introduced through the 3.7 mm accessory port of an endoscope. Imaging was performed at 400 frames per second with an 8 μm spot size using a pullback to generate volumetric data over 16 mm with a pixel spacing of 5 μm in the longitudinal direction. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing standard upper and lower endoscopy at the Veterans Affairs Boston Healthcare System (VABHS). Patients with Barrett's esophagus, dysplasia, and inflammatory bowel disease were imaged. The use of distally actuated imaging catheters allowed OCT imaging with more flexibility such as volumetric imaging in the terminal ileum and the assessment of the hiatal hernia using retroflex imaging. The high rotational stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face and cross-sectional imaging. The ability to perform 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies to investigate the ability of OCT to detect pathology as well as assess treatment response.

  3. [Video recording system of endoscopic procedures for digital forensics].

    PubMed

    Endo, Chiaki; Sakurada, A; Kondo, T

    2009-07-01

    Recently, endoscopic procedures including surgery, intervention, and examination have been widely performed. Medical practitioners are required to record the procedures precisely in order to check the procedures retrospectively and to get the legally reliable record. Medical Forensic System made by KS Olympus Japan offers 2 kinds of movie and patient's data, such as heart rate, blood pressure, and Spo, which are simultaneously recorded. We installed this system into the bronchoscopy room and have experienced its benefit. Under this system, we can get bronchoscopic image, bronchoscopy room view, and patient's data simultaneously. We can check the quality of the bronchoscopic procedures retrospectively, which is useful for bronchoscopy staff training. Medical Forensic System should be installed in any kind of endoscopic procedures.

  4. The universal serial bus endoscope: design and initial clinical experience.

    PubMed

    Hernandez-Zendejas, Gregorio; Dobke, Marek K; Guerrerosantos, Jose

    2004-01-01

    Endoscopic forehead lift is a well-established procedure in aesthetic plastic surgery. Many agree that currently available video-endoscopic equipment is bulky, multipieced and sometimes cumbersome in the operating theater. A novel system, the Universal Serial Bus Endoscope (USBE) was designed to simplify and reduce the number of necessary equipment pieces in the endoscopic setup. The USBE is attached by a single cable to a Universal Serial Bus (USB) port of a laptop computer. A built-in miniaturized cold light source provides illumination. A built-in digital camera chip enables procedure recording. The real-time images and movies obtained with USBE are displayed on the computer's screen and recorded on the laptop's hard disk drive. In this study, 25 patients underwent endoscopic browlift using the USBE system to test its clinical usefulness, all with good results and without complications or need for revision. The USBE was found to be reliable and easier to use than current video-endoscope equipment. The operative time needed to complete the procedure by the authors was reduced approximately 50%. The design and main technical characteristics of the USBE are presented.

  5. Phantom testing of a novel endoscopic OCT probe: a prelude to clinical in-vivo laryngeal use

    NASA Astrophysics Data System (ADS)

    Tatla, Taran; Pang, J. Y.; Cernat, R.; Dobre, G.; Tadrous, P. J.; Bradu, A.; Gelikonov, G.; Gelikonov, V.; Podoleanu, A. G.

    2012-12-01

    Optical coherence tomography is a novel imaging technique providing potentially high resolution tri-dimensional images of tissue microstructure up to 2-3mm deep. We present pre-clinical data from a novel miniaturised OCT probe utilised for endoscopic imaging of laryngeal mucosa. A 1300nm SS-OCT probe was passed in tandem with a flexible fibreoptic nasoendoscope into the larynx of a manikin. Ex vivo OCT images were acquired using a desktop 1300nm TD-OCT imaging system. The feasibility, robustness and safety of this set-up was demonstrated as a preliminary step to extending the use of this assembly to a clinical patient cohort with varying laryngeal pathologies.

  6. Simple fibre based dispersion management for two-photon excited fluorescence imaging through an endoscope

    NASA Astrophysics Data System (ADS)

    Dimopoulos, Konstantinos; Marti, Dominik; Andersen, Peter E.

    2018-02-01

    We want to implement two-photon excitation fluorescence microscopy (TPEFM) into endoscopes, since TPEFM can provide relevant biomarkers for cancer staging and grading in hollow organs, endoscopically accessible through natural orifices. However, many obstacles must be overcome, among others the delivery of short laser pulses to the distal end of the endoscope. To this avail, we present imaging results using an all-fibre dispersion management scheme in a TPEFM setup. The scheme has been conceived by Jespersen et al. in 20101 and relies on the combination of a single mode fibre with normal and a higher order mode fibre with anomalous dispersion properties, fused in series using a long period grating. We show that using this fibre assembly, a simple and robust pulsed laser delivery system without any free-space optics, which is thus suitable for clinical use, can be realised.

  7. Optical design of a dual wave band catadioptric endoscope for the Joint European Torus

    NASA Astrophysics Data System (ADS)

    Greco, Vincenzo; Maddaluno, Giorgio

    2004-02-01

    In this paper we describe the optical design of a catadioptric endoscope for the Joint European Torus (JET). The JET is the flagship experiment in the European nuclear fusion research programme. It is a large tokamak (Russian acronym for "toroidal magnetic chamber") system located at Culham (UK). At the centre of this machine there is a toroidal (ring - shaped) vacuum vessel where the plasma is confined by magnetic fields. The endoscope explores in two wave bands (4.2 μm - 4.4 μm and 0.6 μm - 0.7 μm) an entire cross section of the vacuum vessel. It then creates for each wave band an image onto a separate area image sensor, located 5500 mm away from the plasma behind a concrete shield. The endoscope performs two different functions namely: infrared thermography on plasma facing components and in vessel inspection.

  8. Evaluation of endoscopic entire 3D image acquisition of the digestive tract using a stereo endoscope

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kayo; Watabe, Kenji; Fujinaga, Tetsuji; Iijima, Hideki; Tsujii, Masahiko; Takahashi, Hideya; Takehara, Tetsuo; Yamada, Kenji

    2017-02-01

    Because the view angle of the endoscope is narrow, it is difficult to get the whole image of the digestive tract at once. If there are more than two lesions in the digestive tract, it is hard to understand the 3D positional relationship among the lesions. Virtual endoscopy using CT is a present standard method to get the whole view of the digestive tract. Because the virtual endoscopy is designed to detect the irregularity of the surface, it cannot detect lesions that lack irregularity including early cancer. In this study, we propose a method of endoscopic entire 3D image acquisition of the digestive tract using a stereo endoscope. The method is as follows: 1) capture sequential images of the digestive tract by moving the endoscope, 2) reconstruct 3D surface pattern for each frame by stereo images, 3) estimate the position of the endoscope by image analysis, 4) reconstitute the entire image of the digestive tract by combining the 3D surface pattern. To confirm the validity of this method, we experimented with a straight tube inside of which circles were allocated at equal distance of 20 mm. We captured sequential images and the reconstituted image of the tube revealed that the distance between each circle was 20.2 +/- 0.3 mm (n=7). The results suggest that this method of endoscopic entire 3D image acquisition may help us understand 3D positional relationship among the lesions such as early esophageal cancer that cannot be detected by virtual endoscopy using CT.

  9. Image-enhanced endoscopy for diagnosis of colorectal tumors in view of endoscopic treatment

    PubMed Central

    Yoshida, Naohisa; Yagi, Nobuaki; Yanagisawa, Akio; Naito, Yuji

    2012-01-01

    Recently, image-enhanced endoscopy (IEE) has been used to diagnose gastrointestinal tumors. This method is a change from conventional white-light (WL) endoscopy without dyeing solution, requiring only the push of a button. In IEE, there are many advantages in diagnosis of neoplastic tumors, evaluation of invasion depth for cancerous lesions, and detection of neoplastic lesions. In narrow band imaging (NBI) systems (Olympus Medical Co., Tokyo, Japan), optical filters that allow narrow-band light to pass at wavelengths of 415 and 540 nm are used. Mucosal surface blood vessels are seen most clearly at 415 nm, which is the wavelength that corresponds to the hemoglobin absorption band, while vessels in the deep layer of the mucosa can be detected at 540 nm. Thus, NBI also can detect pit-like structures named surface pattern. The flexible spectral imaging color enhancement (FICE) system (Fujifilm Medical Co., Tokyo, Japan) is also an IEE but different to NBI. FICE depends on the use of spectral-estimation technology to reconstruct images at different wavelengths based on WL images. FICE can enhance vascular and surface patterns. The autofluorescence imaging (AFI) video endoscope system (Olympus Medical Co., Tokyo, Japan) is a new illumination method that uses the difference in intensity of autofluorescence between the normal area and neoplastic lesions. AFI light comprises a blue light for emitting and a green light for hemoglobin absorption. The aim of this review is to highlight the efficacy of IEE for diagnosis of colorectal tumors for endoscopic treatment. PMID:23293724

  10. Image guidance systems for minimally invasive sinus and skull base surgery in children.

    PubMed

    Benoit, Margo McKenna; Silvera, V Michelle; Nichollas, Richard; Jones, Dwight; McGill, Trevor; Rahbar, Reza

    2009-10-01

    The use of image guidance for sinonasal and skull base surgery has been well-characterized in adults but there is limited information on the use of these systems in the pediatric population, despite their widespread use. The aim of this study is to evaluate the use of image guidance systems to facilitate an endoscopic minimally invasive approach to sinonasal and skull base surgery in a pediatric population. A retrospective cohort study was performed at a tertiary pediatric hospital. Thirty-three children presented with complications of sinusitis, tumors, traumatic, or congenital lesions of the skull base and underwent endoscopic surgery using image guidance from March 2000 to April 2007. Patient variables including diagnosis, extent of disease, and complications were extracted from paper and computer charts. Additional surgical variables including set-up time, accuracy, surgeon satisfaction index and number of uses per case were also reviewed. Twenty-eight patients (85%) underwent sinonasal surgery and five (15%) underwent skull base surgery. Indications included infectious complications of acute sinusitis (N=15), neoplasms (N=12), choanal atresia (N=4), and cerebrospinal fluid leak (N=2). Thirty-one patients (94%) required only one procedure. No surgical complications were reported. Surgeon satisfaction, mean accuracy and number of uses per procedure increased over time (p<0.05). Image guidance systems are safe and effective tools that facilitate a minimally invasive approach to sinonasal and skull base surgery in children. Consistent with adult literature, usage and surgeon comfort increased with experience. The additional anatomical information obtained by image guidance systems facilitates a minimally invasive endoscopic approach for sinonasal and skull base pathologies.

  11. Image navigation as a means to expand the boundaries of fluorescence-guided surgery

    NASA Astrophysics Data System (ADS)

    Brouwer, Oscar R.; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L.; Wendler, Thomas; Valdés-Olmos, Renato A.; van der Poel, Henk G.; van Leeuwen, Fijs W. B.

    2012-05-01

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  12. Fiber-optic-bundle-based optical coherence tomography.

    PubMed

    Xie, Tuqiang; Mukai, David; Guo, Shuguang; Brenner, Matthew; Chen, Zhongping

    2005-07-15

    A fiber-optic-bundle-based optical coherence tomography (OCT) probe method is presented. The experimental results demonstrate this multimode optical fiber-bundle-based OCT system can achieve a lateral resolution of 12 microm and an axial resolution of 10 microm with a superluminescent diode source. This novel OCT imaging approach eliminates any moving parts in the probe and has a primary advantage for use in extremely compact and safe OCT endoscopes for imaging internal organs and great potential to be combined with confocal endoscopic microscopy.

  13. Ultrahigh sensitivity endoscopic camera using a new CMOS image sensor: providing with clear images under low illumination in addition to fluorescent images.

    PubMed

    Aoki, Hisae; Yamashita, Hiromasa; Mori, Toshiyuki; Fukuyo, Tsuneo; Chiba, Toshio

    2014-11-01

    We developed a new ultrahigh-sensitive CMOS camera using a specific sensor that has a wide range of spectral sensitivity characteristics. The objective of this study is to present our updated endoscopic technology that has successfully integrated two innovative functions; ultrasensitive imaging as well as advanced fluorescent viewing. Two different experiments were conducted. One was carried out to evaluate the function of the ultrahigh-sensitive camera. The other was to test the availability of the newly developed sensor and its performance as a fluorescence endoscope. In both studies, the distance from the endoscopic tip to the target was varied and those endoscopic images in each setting were taken for further comparison. In the first experiment, the 3-CCD camera failed to display the clear images under low illumination, and the target was hardly seen. In contrast, the CMOS camera was able to display the targets regardless of the camera-target distance under low illumination. Under high illumination, imaging quality given by both cameras was quite alike. In the second experiment as a fluorescence endoscope, the CMOS camera was capable of clearly showing the fluorescent-activated organs. The ultrahigh sensitivity CMOS HD endoscopic camera is expected to provide us with clear images under low illumination in addition to the fluorescent images under high illumination in the field of laparoscopic surgery.

  14. Analysis of Preoperative Airway Examination with the CMOS Video Rhino-laryngoscope.

    PubMed

    Tsukamoto, Masanori; Hitosugi, Takashi; Yokoyama, Takeshi

    2017-05-01

    Endoscopy is one of the most useful clinical techniques in difficult airway management Comparing with the fibroptic endoscope, this compact device is easy to operate and can provide the clear image. In this study, we investigated its usefulness in the preoperative examination of endoscopy. Patients undergoing oral maxillofacial surgery were enrolled in this study. We performed preoperative airway examination by electronic endoscope (The CMOS video rhino-laryngoscope, KARL STORZ Endoscopy Japan, Tokyo). The system is composed of a videoendoscope, a compact video processor and a video recorder. In addition, the endoscope has a small color charge coupled device (CMOS) chip built into the tip of the endoscope. The outer diameter of the tip of this scope is 3.7 mm. In this study, electronic endoscope was used for preoperative airway examination in 7 patients. The preoperative airway examination with electronic endoscope was performed successfully in all the patients except one patient The patient had the symptoms such as nausea and vomiting at the examination. We could perform preoperative airway examination with excellent visualization and convenient recording of video sequence images with the CMOS video rhino-laryngoscope. It might be a especially useful device for the patients of difficult airways.

  15. Color calibration of swine gastrointestinal tract images acquired by radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Wu, Hsien-Ming; Lin, Jyh-Hung

    2016-01-01

    The type of illumination systems and color filters used typically generate varying levels of color difference in capsule endoscopes, which influence medical diagnoses. In order to calibrate the color difference caused by the optical system, this study applied a radial imaging capsule endoscope (RICE) to photograph standard color charts, which were then employed to calculate the color gamut of RICE. Color gamut was also measured using a spectrometer in order to get a high-precision color information, and the results obtained using both methods were compared. Subsequently, color-correction methods, namely polynomial transform and conformal mapping, were used to improve the color difference. Before color calibration, the color difference value caused by the influences of optical systems in RICE was 21.45±1.09. Through the proposed polynomial transformation, the color difference could be reduced effectively to 1.53±0.07. Compared to another proposed conformal mapping, the color difference value was substantially reduced to 1.32±0.11, and the color difference is imperceptible for human eye because it is <1.5. Then, real-time color correction was achieved using this algorithm combined with a field-programmable gate array, and the results of the color correction can be viewed from real-time images.

  16. Development of a fluorescence endoscopic system for pH mapping of gastric tissue

    NASA Astrophysics Data System (ADS)

    Rochon, Philippe; Mordon, Serge; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Chopin, Claude

    2003-10-01

    Measurement of gastro intestinal intramucosal pH (pHim) has been recognized as an important factor in the detection of hypoxia induced dysfonctions. However, current pH measurements techniques are limited in terms of time and spatial resolutions. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). BCECF which pKa is in the physiological pH range is suitable for pH tissue measurements in vivo. This study aimed to develop and evaluate an endoscopic imaging system for real time pH measurements in the stomach in order to provide to ICU a new tool for gastro intestinal intramucosal pH (pHim) measurements. This fluorescence imaging technique should allow the temporal exploration of sequential events, particularly in ICU where the pHim provides a predictive information of the patient' status. The experimental evaluations of this new and innovative endoscopic fluorescence system confirms the accuracy of pH measurement using BCECF.

  17. Augmented Endoscopic Images Overlaying Shape Changes in Bone Cutting Procedures.

    PubMed

    Nakao, Megumi; Endo, Shota; Nakao, Shinichi; Yoshida, Munehito; Matsuda, Tetsuya

    2016-01-01

    In microendoscopic discectomy for spinal disorders, bone cutting procedures are performed in tight spaces while observing a small portion of the target structures. Although optical tracking systems are able to measure the tip of the surgical tool during surgery, the poor shape information available during surgery makes accurate cutting difficult, even if preoperative computed tomography and magnetic resonance images are used for reference. Shape estimation and visualization of the target structures are essential for accurate cutting. However, time-varying shape changes during cutting procedures are still challenging issues for intraoperative navigation. This paper introduces a concept of endoscopic image augmentation that overlays shape changes to support bone cutting procedures. This framework handles the history of the location of the measured drill tip as a volume label and visualizes the remains to be cut overlaid on the endoscopic image in real time. A cutting experiment was performed with volunteers, and the feasibility of this concept was examined using a clinical navigation system. The efficacy of the cutting aid was evaluated with respect to the shape similarity, total moved distance of a cutting tool, and required cutting time. The results of the experiments showed that cutting performance was significantly improved by the proposed framework.

  18. High Resolution Sub-MM Fiberoptic Endoscope Final Report CRADA No. TSB-1447-97

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Gary F.; Smith, John

    2018-01-22

    At the time of the CRADA, LLNL needed to develop a sub-mm outer diameter fiberoptic endoscope with 25pm or better resolution at 3-lOmm working distance to support the Enhanced Surveillance Program (ESP) and the Core Surveillance Program for DOE. The commercially available systems did not meet the image resolution requirements and development work was needed to reach three goals. We also needed to perform preliminary investigations into the production of such an endoscope with a steerable-articulated distal end. The goal of such an endoscope was to allow for a 45 degree inspection cone including the lens field of view.

  19. Cascade classification of endocytoscopic images of colorectal lesions for automated pathological diagnosis

    NASA Astrophysics Data System (ADS)

    Itoh, Hayato; Mori, Yuichi; Misawa, Masashi; Oda, Masahiro; Kudo, Shin-ei; Mori, Kensaku

    2018-02-01

    This paper presents a new classification method for endocytoscopic images. Endocytoscopy is a new endoscope that enables us to perform conventional endoscopic observation and ultramagnified observation of cell level. This ultramagnified views (endocytoscopic images) make possible to perform pathological diagnosis only on endo-scopic views of polyps during colonoscopy. However, endocytoscopic image diagnosis requires higher experiences for physicians. An automated pathological diagnosis system is required to prevent the overlooking of neoplastic lesions in endocytoscopy. For this purpose, we propose a new automated endocytoscopic image classification method that classifies neoplastic and non-neoplastic endocytoscopic images. This method consists of two classification steps. At the first step, we classify an input image by support vector machine. We forward the image to the second step if the confidence of the first classification is low. At the second step, we classify the forwarded image by convolutional neural network. We reject the input image if the confidence of the second classification is also low. We experimentally evaluate the classification performance of the proposed method. In this experiment, we use about 16,000 and 4,000 colorectal endocytoscopic images as training and test data, respectively. The results show that the proposed method achieves high sensitivity 93.4% with small rejection rate 9.3% even for difficult test data.

  20. 3-D endoscopic imaging using plenoptic camera.

    PubMed

    Le, Hanh N D; Decker, Ryan; Opferman, Justin; Kim, Peter; Krieger, Axel; Kang, Jin U

    2016-06-01

    Three-dimensional endoscopic imaging using plenoptic technique combined with F-matching algorithm has been pursued in this study. A custom relay optics was designed to integrate a commercial surgical straight endoscope with a plenoptic camera.

  1. Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Xie, Huikai; Fedder, Gary K.; Pan, Yingtian

    2003-11-01

    Experimental results of a modified micromachined microelectromechanical systems (MEMS) mirror for substantial enhancement of the transverse laser scanning performance of endoscopic optical coherence tomography (EOCT) are presented. Image distortion due to buckling of MEMS mirror in our previous designs was analyzed and found to be attributed to excessive internal stress of the transverse bimorph meshes. The modified MEMS mirror completely eliminates bimorph stress and the resultant buckling effect, which increases the wobbling-free angular optical actuation to greater than 37°, exceeding the transverse laser scanning requirements for EOCT and confocal endoscopy. The new optical coherence tomography (OCT) endoscope allows for two-dimensional cross-sectional imaging that covers an area of 4.2 mm × 2.8 mm (limited by scope size) and at roughly 5 frames/s instead of the previous area size of 2.9 mm × 2.8 mm and is highly suitable for noninvasive and high-resolution imaging diagnosis of epithelial lesions in vivo. EOCT images of normal rat bladders and rat bladder cancers are compared with the same cross sections acquired with conventional bench-top OCT. The results clearly demonstrate the potential of EOCT for in vivo imaging diagnosis and precise guidance for excisional biopsy of early bladder cancers.

  2. Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery.

    PubMed

    Wolfsberger, Stefan; Neubauer, André; Bühler, Katja; Wegenkittl, Rainer; Czech, Thomas; Gentzsch, Stephan; Böcher-Schwarz, Hans-Gerd; Knosp, Engelbert

    2006-11-01

    Virtual endoscopy (vE) is the navigation of a camera through a virtual anatomical space that is computationally reconstructed from radiological image data. Inside this three-dimensional space, arbitrary movements and adaptations of viewing parameters are possible. Thereby, vE can be used for noninvasive diagnostic purposes and for simulation of surgical tasks. This article describes the development of an advanced system of vE for endoscopic transsphenoidal pituitary surgery and its application to teaching, training, and in the routine clinical setting. The vE system was applied to a series of 35 patients with pituitary pathology (32 adenomas, three Rathke's cleft cysts) operated endoscopically via the transsphenoidal route at the Department of Neurosurgery of the Medical University Vienna between 2004 and 2006. The virtual endoscopic images correlated well with the intraoperative view. For the transsphenoidal approach, vE improved intraoperative orientation by depicting anatomical landmarks and variations. For planning a safe and tailored opening of the sellar floor, transparent visualization of the pituitary adenoma and the normal gland in relation to the internal carotid arteries was useful. According to our experience, vE can be a valuable tool for endoscopic transsphenoidal pituitary surgery for training purposes and preoperative planning. For the novice, it can act as a simulator for endoscopic anatomy and for training surgical tasks. For the experienced pituitary surgeon, vE can depict the individual patient's anatomy, and may, therefore, improve intraoperative orientation. By prospectively visualizing unpredictable anatomical variations, vE may increase the safety of this surgical procedure.

  3. 3-D endoscopic imaging using plenoptic camera

    PubMed Central

    Le, Hanh N. D.; Decker, Ryan; Opferman, Justin; Kim, Peter; Krieger, Axel

    2017-01-01

    Three-dimensional endoscopic imaging using plenoptic technique combined with F-matching algorithm has been pursued in this study. A custom relay optics was designed to integrate a commercial surgical straight endoscope with a plenoptic camera. PMID:29276806

  4. Flexible Ultrathin Endoscope Integrated with Irrigation Suction Apparatus for Assisting Microneurosurgery.

    PubMed

    Otani, Naoki; Morimoto, Yuji; Fujii, Kazuya; Toyooka, Terushige; Wada, Kojiro; Mori, Kentaro

    2017-12-01

    Endoscopy can observe the anatomical components in a deeply located and/or hidden area during neurosurgical procedures under the operating microscope. We have newly developed a flexible ultrathin endoscope integrated with irrigation suction apparatus (FUEISA) to visualize deeply located and/or hidden areas for assisting microneurosurgery. The present study investigated the usefulness of the FUEISA system for direct clipping surgery of cerebral aneurysms. Twenty-one patients underwent microneurosurgery assisted with the FUEISA system for direct clipping of cerebral aneurysms. The flexible ultrathin endoscope (outer diameter 0.75mm) consists of an image guide (6000 dpi) and a light guide, integrated with the irrigation suction apparatus. This endoscopic system was inserted before and after clipping to observe the anatomical conditions surrounding the lesions. In all cases, handling and operation of the FUEISA was technically successful during the surgical procedure. The ultrathin endoscope was adequately integrated with the irrigation suction apparatus in all cases. General anatomy visualization including the lenticulostriate arteries, medial striate arteries, and/or internal carotid artery perforators was possible, and the correct clip positioning and vessel conditions were easily checked. The endoscope revealed that the clip had been positioned incorrectly in one case. No complications associated with the endoscopic system occurred. The FUEISA system can be applied with safe manipulation, which was remarkably useful for confirmation of the presence of perforators and cranial nerves behind the lesions, particularly anatomical components located in deep and/or hidden areas during clipping of cerebral aneurysms. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Microarthroscopy System With Image Processing Technology Developed for Minimally Invasive Surgery

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    In a joint effort, NASA, Micro Medical Devices, and the Cleveland Clinic have developed a microarthroscopy system with digital image processing. This system consists of a disposable endoscope the size of a needle that is aimed at expanding the use of minimally invasive surgery on the knee, ankle, and other small joints. This device not only allows surgeons to make smaller incisions (by improving the clarity and brightness of images), but it gives them a better view of the injured area to make more accurate diagnoses. Because of its small size, the endoscope helps reduce physical trauma and speeds patient recovery. The faster recovery rate also makes the system cost effective for patients. The digital image processing software used with the device was originally developed by the NASA Glenn Research Center to conduct computer simulations of satellite positioning in space. It was later modified to reflect lessons learned in enhancing photographic images in support of the Center's microgravity program. Glenn's Photovoltaic Branch and Graphics and Visualization Lab (G-VIS) computer programmers and software developers enhanced and speed up graphic imaging for this application. Mary Vickerman at Glenn developed algorithms that enabled Micro Medical Devices to eliminate interference and improve the images.

  6. Improving the uniformity of luminous system in radial imaging capsule endoscope system

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De

    2013-02-01

    This study concerns the illumination system in a radial imaging capsule endoscope (RICE). Uniformly illuminating the object is difficult because the intensity of the light from the light emitting diodes (LEDs) varies with angular displacement. When light is emitted from the surface of the LED, it first encounters the cone mirror, from which it is reflected, before directly passing through the lenses and complementary metal oxide semiconductor (CMOS) sensor. The light that is strongly reflected from the transparent view window (TVW) propagates again to the cone mirror, to be reflected and to pass through the lenses and CMOS sensor. The above two phenomena cause overblooming on the image plane. Overblooming causes nonuniform illumination on the image plane and consequently reduced image quality. In this work, optical design software was utilized to construct a photometric model for the optimal design of the LED illumination system. Based on the original RICE model, this paper proposes an optimal design to improve the uniformity of the illumination. The illumination uniformity in the RICE is increased from its original value of 0.128 to 0.69, greatly improving light uniformity.

  7. Development of a biologically inspired locomotion system for a capsule endoscope.

    PubMed

    Hosokawa, Daisuke; Ishikawa, Takuji; Morikawa, Hirohisa; Imai, Yohsuke; Yamaguchi, Takami

    2009-12-01

    A capsule endoscope has a limited ability to obtain images of the digestive organs because its movement depends on peristaltic motion. To overcome this problem, capsule endoscopes require a propulsion system. This paper proposes a propulsion system for a capsule endoscope that mimics the locomotive mechanism of snails and earthworms. The prototype crawler can elongate and contract itself longitudinally and adhere to a wall via suction cups. We investigated the effect of the inclination angle of the propulsion plane, the mucus viscosity between the propulsion plane and the crawler, and the stiffness of the propulsion plane on the locomotion of the prototype crawler. We found that the crawler could move on a rubber sheet and on inclined planes covered with mucus. We discussed advantages and limitations of the prototype crawler compared to the different locomotive systems developed in former studies. We believe that the prototype crawler provides a better understanding of the propulsion mechanism for use in the gastrointestinal tract. Copyright (c) 2009 John Wiley & Sons, Ltd.

  8. Endoscopic laser range scanner for minimally invasive, image guided kidney surgery

    NASA Astrophysics Data System (ADS)

    Friets, Eric; Bieszczad, Jerry; Kynor, David; Norris, James; Davis, Brynmor; Allen, Lindsay; Chambers, Robert; Wolf, Jacob; Glisson, Courtenay; Herrell, S. Duke; Galloway, Robert L.

    2013-03-01

    Image guided surgery (IGS) has led to significant advances in surgical procedures and outcomes. Endoscopic IGS is hindered, however, by the lack of suitable intraoperative scanning technology for registration with preoperative tomographic image data. This paper describes implementation of an endoscopic laser range scanner (eLRS) system for accurate, intraoperative mapping of the kidney surface, registration of the measured kidney surface with preoperative tomographic images, and interactive image-based surgical guidance for subsurface lesion targeting. The eLRS comprises a standard stereo endoscope coupled to a steerable laser, which scans a laser fan beam across the kidney surface, and a high-speed color camera, which records the laser-illuminated pixel locations on the kidney. Through calibrated triangulation, a dense set of 3-D surface coordinates are determined. At maximum resolution, the eLRS acquires over 300,000 surface points in less than 15 seconds. Lower resolution scans of 27,500 points are acquired in one second. Measurement accuracy of the eLRS, determined through scanning of reference planar and spherical phantoms, is estimated to be 0.38 +/- 0.27 mm at a range of 2 to 6 cm. Registration of the scanned kidney surface with preoperative image data is achieved using a modified iterative closest point algorithm. Surgical guidance is provided through graphical overlay of the boundaries of subsurface lesions, vasculature, ducts, and other renal structures labeled in the CT or MR images, onto the eLRS camera image. Depth to these subsurface targets is also displayed. Proof of clinical feasibility has been established in an explanted perfused porcine kidney experiment.

  9. [Development of a video image system for wireless capsule endoscopes based on DSP].

    PubMed

    Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua

    2008-02-01

    A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.

  10. A beam-splitter-type 3-D endoscope for front view and front-diagonal view images.

    PubMed

    Kamiuchi, Hiroki; Masamune, Ken; Kuwana, Kenta; Dohi, Takeyoshi; Kim, Keri; Yamashita, Hiromasa; Chiba, Toshio

    2013-01-01

    In endoscopic surgery, surgeons must manipulate an endoscope inside the body cavity to observe a large field-of-view while estimating the distance between surgical instruments and the affected area by reference to the size or motion of the surgical instruments in 2-D endoscopic images on a monitor. Therefore, there is a risk of the endoscope or surgical instruments physically damaging body tissues. To overcome this problem, we developed a Ø7- mm 3-D endoscope that can switch between providing front and front-diagonal view 3-D images by simply rotating its sleeves. This 3-D endoscope consists of a conventional 3-D endoscope and an outer and inner sleeve with a beam splitter and polarization plates. The beam splitter was used for visualizing both the front and front-diagonal view and was set at 25° to the outer sleeve's distal end in order to eliminate a blind spot common to both views. Polarization plates were used to avoid overlap of the two views. We measured signal-to-noise ratio (SNR), sharpness, chromatic aberration (CA), and viewing angle of this 3-D endoscope and evaluated its feasibility in vivo. Compared to the conventional 3-D endoscope, SNR and sharpness of this 3-D endoscope decreased by 20 and 7 %, respectively. No significant difference was found in CA. The viewing angle for both the front and front-diagonal views was about 50°. In the in vivo experiment, this 3-D endoscope can provide clear 3-D images of both views by simply rotating its inner sleeve. The developed 3-D endoscope can provide the front and front-diagonal view by simply rotating the inner sleeve, therefore the risk of damage to fragile body tissues can be significantly decreased.

  11. Miniaturized Fourier-plane fiber scanner for OCT endoscopy

    NASA Astrophysics Data System (ADS)

    Vilches, Sergio; Kretschmer, Simon; Ataman, Çağlar; Zappe, Hans

    2017-10-01

    A forward-looking endoscopic optical coherence tomography (OCT) probe featuring a Fourier-plane fiber scanner is designed, manufactured and characterized. In contrast to common image-plane fiber scanners, the Fourier-plane scanner is a telecentric arrangement that eliminates vignetting and spatial resolution variations across the image plane. To scan the OCT beam in a spiral pattern, a tubular piezoelectric actuator is used to resonate an optical fiber bearing a collimating GRIN lens at its tip. The free-end of the GRIN lens sits at the back focal plane of an objective lens, such that its rotation replicates the beam angles in the collimated region of a classical telecentric 4f optical system. Such an optical arrangement inherently has a low numerical aperture combined with a relatively large field-of-view, rendering it particularly useful for endoscopic OCT imaging. Furthermore, the optical train of the Fourier-plane scanner is shorter than that of a comparable image-plane scanner by one focal length of the objective lens, significantly shortening the final arrangement. As a result, enclosed within a 3D printed housing of 2.5 mm outer diameter and 15 mm total length, the developed probe is the most compact forward-looking endoscopic OCT imager to date. Due to its compact form factor and compatibility with real-time OCT imaging, the developed probe is also ideal for use in the working channel of flexible endoscopes as a potential optical biopsy tool.

  12. Novel, high-definition 3-D endoscopy system with real-time compression communication system to aid diagnoses and treatment between hospitals in Thailand.

    PubMed

    Uemura, Munenori; Kenmotsu, Hajime; Tomikawa, Morimasa; Kumashiro, Ryuichi; Yamashita, Makoto; Ikeda, Testuo; Yamashita, Hiromasa; Chiba, Toshio; Hayashi, Koichi; Sakae, Eiji; Eguchi, Mitsuo; Fukuyo, Tsuneo; Chittmittrapap, Soottiporn; Navicharern, Patpong; Chotiwan, Pornarong; Pattana-Arum, Jirawat; Hashizume, Makoto

    2015-05-01

    Traditionally, laparoscopy has been based on 2-D imaging, which represents a considerable challenge. As a result, 3-D visualization technology has been proposed as a way to better facilitate laparoscopy. We compared the latest 3-D systems with high-end 2-D monitors to validate the usefulness of new systems for endoscopic diagnoses and treatment in Thailand. We compared the abilities of our high-definition 3-D endoscopy system with real-time compression communication system with a conventional high-definition (2-D) endoscopy system by asking health-care staff to complete tasks. Participants answered questionnaires and whether procedures were easier using our system or the 2-D endoscopy system. Participants were significantly faster at suture insertion with our system (34.44 ± 15.91 s) than with the 2-D system (52.56 ± 37.51 s) (P < 0.01). Most surgeons thought that the 3-D system was good in terms of contrast, brightness, perception of the anteroposterior position of the needle, needle grasping, inserting the needle as planned, and needle adjustment during laparoscopic surgery. Several surgeons highlighted the usefulness of exposing and clipping the bile duct and gallbladder artery, as well as dissection from the liver bed during laparoscopic surgery. In an image-transfer experiment with RePure-L®, participants at Rajavithi Hospital could obtain reconstructed 3-D images that were non-inferior to conventional images from Chulalongkorn University Hospital (10 km away). These data suggest that our newly developed system could be of considerable benefit to the health-care system in Thailand. Transmission of moving endoscopic images from a center of excellence to a rural hospital could help in the diagnosis and treatment of various diseases. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  13. Endoscopic surgical management of sinonasal inverted papilloma extending to frontal sinuses.

    PubMed

    Takahashi, Yukiko; Shoji, Fumi; Katori, Yukio; Hidaka, Hiroshi; Noguchi, Naoya; Abe, Yasuhiro; Kakuta, Risako Kakuta; Suzuki, Takahiro; Suzuki, Yusuke; Ohta, Nobuo; Kakehata, Seiji; Okamoto, Yoshitaka

    2016-11-10

    Sinonasal inverted papilloma has been traditionally managed with external surgical approaches. Advances in imaging guidance systems, surgical instrumentation, and intraoperative multi-visualization have led to a gradual shift from external approaches to endoscopic surgery. However, for anatomical and technical reasons, endoscopic surgery of sinonasal inverted papilloma extending to the frontal sinuses is still challenging. Here, we present our experience in endoscopic surgical management of sinonasal inverted papilloma extending to one or both frontal sinuses. We present 10 cases of sinonasal inverted papilloma extending to the frontal sinuses and successfully removed by endoscopic median drainage (Draf III procedure) under endoscopic guidance without any additional external approach. The whole cavity of the frontal sinuses was easily inspected at the end of the surgical procedure. No early or late complications were observed. No recurrence was identified after an average follow-up period of 39.5 months. Use of an endoscopic median drainage approach to manage sinonasal inverted papilloma extending to one or both frontal sinuses is feasible and seems effective.

  14. [Digital imaging and robotics in endoscopic surgery].

    PubMed

    Go, P M

    1998-05-23

    The introduction of endoscopical surgery has among other things influenced technical developments in surgery. Owing to digitalisation, major progress will be made in imaging and in the sophisticated technology sometimes called robotics. Digital storage makes the results of imaging diagnostics (e.g. the results of radiological examination) suitable for transmission via video conference systems for telediagnostic purposes. The availability of digital video technique renders possible the processing, storage and retrieval of moving images as well. During endoscopical operations use may be made of a robot arm which replaces the camera man. The arm does not grow tired and provides a stable image. The surgeon himself can operate or address the arm and it can remember fixed image positions to which it can return if ordered to do so. The next step is to carry out surgical manipulations via a robot arm. This may make operations more patient-friendly. A robot arm can also have remote control: telerobotics. At the Internet site of this journal a number of supplements to this article can be found, for instance three-dimensional (3D) illustrations (which is the purpose of the 3D spectacles enclosed with this issue) and a quiz (http:@appendix.niwi. knaw.nl).

  15. Duodenal endoscopic findings and histopathologic confirmation of intestinal lymphangiectasia in dogs.

    PubMed

    Larson, R N; Ginn, J A; Bell, C M; Davis, M J; Foy, D S

    2012-01-01

    The diagnosis of intestinal lymphangiectasia (IL) has been associated with characteristic duodenal mucosal changes. However, the sensitivity and specificity of the endoscopic duodenal mucosal appearance for the diagnosis of IL are not reported. To evaluate the utility of endoscopic images of the duodenum for diagnosis of IL. Endoscopic appearance of the duodenal mucosal might predict histopathologic diagnosis of IL with a high degree of sensitivity and specificity. 51 dogs that underwent upper gastrointestinal (GI) endoscopy and endoscopic biopsies. Retrospective review of images acquired during endoscopy. Dogs were included if adequate biopsies were obtained during upper GI endoscopy and digital images were saved during the procedure. Images were assessed for the presence and severity of IL. Using histopathology as the gold standard, the sensitivity and specificity of endoscopy for diagnosing IL were calculated. Intestinal lymphangiectasia (IL) was diagnosed in 25/51 dogs. Gross endoscopic appearance of the duodenal mucosa had a sensitivity and specificity (95% confidence interval) of 68% (46%, 84%) and 42% (24%, 63%), respectively for diagnosis of IL. Endoscopic images in cases with lymphopenia, hypocholesterolemia, and hypoalbuminemia had a sensitivity of 80%. Endoscopic duodenal mucosa appearance alone lacks specificity and has only a moderate sensitivity for diagnosis of IL. Evaluation of biomarkers associated with PLE improved the sensitivity; however, poor specificity for diagnosis of IL supports the need for histopathologic confirmation. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  16. Towards real time 2D to 3D registration for ultrasound-guided endoscopic and laparoscopic procedures.

    PubMed

    San José Estépar, Raúl; Westin, Carl-Fredrik; Vosburgh, Kirby G

    2009-11-01

    A method to register endoscopic and laparoscopic ultrasound (US) images in real time with pre-operative computed tomography (CT) data sets has been developed with the goal of improving diagnosis, biopsy guidance, and surgical interventions in the abdomen. The technique, which has the potential to operate in real time, is based on a new phase correlation technique: LEPART, which specifies the location of a plane in the CT data which best corresponds to the US image. Validation of the method was carried out using an US phantom with cyst regions and with retrospective analysis of data sets from animal model experiments. The phantom validation study shows that local translation displacements can be recovered for each US frame with a root mean squared error of 1.56 +/- 0.78 mm in less than 5 sec, using non-optimized algorithm implementations. A new method for multimodality (preoperative CT and intraoperative US endoscopic images) registration to guide endoscopic interventions was developed and found to be efficient using clinically realistic datasets. The algorithm is inherently capable of being implemented in a parallel computing system so that full real time operation appears likely.

  17. Endoscope system with plasma flushing and coaxial round jet nozzle for off-pump cardiac surgery.

    PubMed

    Horiuchi, Tetsuya; Masamune, Ken; Iwase, Yuki; Ymashita, Hiromasa; Tsukihara, Hiroyuki; Motomura, Noboru; Ohta, Yuji; Dohi, Takeyoshi

    2011-07-01

    To develop a new endoscope for performing simple surgical tasks inside the blood-filled cardiac atrium/chamber, that is, "off-pump" cardiac surgeries. We developed the endoscope system with plasma flushing and coaxial round jet nozzle. The "plasma flushing" system was invented to observe the interior of the blood-filled heart by displacing blood cells in front of the endoscope tip. However, some areas could not be observed with simple flushing of the liquid because the flushed liquid mixed with blood. Further, a large amount of liquid had to be flushed, which posed a risk of cardiac damage caused by excess volume. Therefore, to safely capture high-resolution images of the interior of the heart, an endoscope with a coaxial round jet nozzle through which plasma is flushed has been developed. And to reduce the volume of flushed liquid, the synchronization system of heartbeat and the endoscope system with plasma flushing has been developed. We conducted an in vivo experiment to determine whether we could observe intracardiac tissues in swine without the use of a heart-lung machine. As a result, we successfully observed intracardiac tissues without using a heart-lung machine. By using a coaxial nozzle, we could even observe the tricuspid valve. Moreover, we were able to save up to 30% of the flushed liquid by replacing the original system with a synchronization system. And we evaluated the performance of the endoscope with the coaxial round jet nozzle by conducting fluid analysis and an in vitro experiment. We successfully observed intracardiac tissues without using a heart-lung machine. By using a coaxial nozzle, we could even observe the tricuspid valve. And by replacing an original system to a synchronization system, we were able to save up to 30% of the flushed liquid. As a follow-up study, we plan to create a surgical flexible device for valve disease that can grasp, staple, and repair cardiac valves by endoscopic visualization.

  18. An Insect Eye Inspired Miniaturized Multi-Camera System for Endoscopic Imaging.

    PubMed

    Cogal, Omer; Leblebici, Yusuf

    2017-02-01

    In this work, we present a miniaturized high definition vision system inspired by insect eyes, with a distributed illumination method, which can work in dark environments for proximity imaging applications such as endoscopy. Our approach is based on modeling biological systems with off-the-shelf miniaturized cameras combined with digital circuit design for real time image processing. We built a 5 mm radius hemispherical compound eye, imaging a 180 ° ×180 ° degrees field of view while providing more than 1.1 megapixels (emulated ommatidias) as real-time video with an inter-ommatidial angle ∆ϕ = 0.5 ° at 18 mm radial distance. We made an FPGA implementation of the image processing system which is capable of generating 25 fps video with 1080 × 1080 pixel resolution at a 120 MHz processing clock frequency. When compared to similar size insect eye mimicking systems in literature, the system proposed in this paper features 1000 × resolution increase. To the best of our knowledge, this is the first time that a compound eye with built-in illumination idea is reported. We are offering our miniaturized imaging system for endoscopic applications like colonoscopy or laparoscopic surgery where there is a need for large field of view high definition imagery. For that purpose we tested our system inside a human colon model. We also present the resulting images and videos from the human colon model in this paper.

  19. Development and Preliminary Application of High-Resolution Endoscopic Piv for Quantification of Flow Structure Within a Pore Space

    NASA Astrophysics Data System (ADS)

    Blois, G.; Sambrook Smith, G.; Best, J.; Hardy, R.; Lead, J.

    2008-12-01

    Most natural rivers have beds of loose, cohesionless sediment that form a porous bed, thus permitting significant interactions between the free flow above the bed and that within the pore spaces. Many unresolved problems in channel engineering and ecohydraulics are related to an incomplete understanding of this interstitial flow. For example, the mechanisms of pollutant transport and prediction of river bed morphodynamics may be strongly influenced by flow occurring within the pore spaces. While this lack of understanding has been widely acknowledged, the direct experimental investigation of flow within the pore spaces has been restricted by the practical difficulties in collecting such data. This has also created drawbacks in the numerical modeling of pore flow as there remains a dearth of robust experimental data with which to validate such models. In order to help address these issues, we present details of a new endoscopic PIV system designed to tackle some of the challenges highlighted above. The work presented in this paper is also being used to validate a numerical model that is being developed as part of this project. A fully endoscopic PIV system has been developed to collect velocity and turbulence data for flow within the pore space of a gravel bed. The system comprises a pulsed Nd:YAG laser that provides high intensity illumination for single exposure pairs of images on a high-resolution digital camera. The use of rigid endoscopes for both the laser light source and camera allows measurement of quasi-instantaneous flow fields by high-resolution PIV images (2352*1728 pixels). In the first instance, the endoscopic PIV system has been used to study flow within an artificial pore space model constructed from 38 and 51 mm diameter spheres, used to represent a simplified version of a natural gravel-bed river. Across-correlation processing approach has been applied to the PIV images and the processing parameters have been optimized for the experimental conditions. A series of instantaneous two-dimensional flow fields in a simple pore space has been reconstructed permitting quantification of the mean flow. A not symmetric flow structure has been highlighted showing the strong dependence of flow on the bed geometry and presence of the free surface. Preliminary results will be discussed here in order to highlight the critical aspects of the technique. Illumination from the laser endoscope must be optimized in terms of angle of divergence, uniformity and stability, with any source of irregular illumination causing strong reflections from the surface of the spheres resulting in saturation of huge image areas. The preliminary results obtained demonstrate the utility of the fully endoscopic PIV technique for investigation of flow structure in pore spaces. Further developments of the technique will include improving light uniformity, removing reflections from images and increasing the illuminated portion of the pore space area.

  20. Optical imaging of hemoglobin oxygen saturation using a small number of spectral images for endoscopic application.

    PubMed

    Saito, Takaaki; Yamaguchi, Hiroshi

    2015-01-01

    Tissue hypoxia is associated with tumor and inflammatory diseases, and detection of hypoxia is potentially useful for their detailed diagnosis. An endoscope system that can optically observe hemoglobin oxygen saturation (StO2) would enable minimally invasive, real-time detection of lesion hypoxia in vivo. Currently, point measurement of tissue StO2 via endoscopy is possible using the commercial fiber-optic oximeter T-Stat, which is based on visible light spectroscopy at many wavelengths. For clinical use, however, imaging of StO2 is desirable to assess the distribution of tissue oxygenation around a lesion. Here, we describe our StO2 imaging technique based on a small number of wavelength ranges in the visible range. By assuming a homogeneous tissue, we demonstrated that tissue StO2 can be obtained independently from the scattering property and blood concentration of tissue using four spectral bands. We developed a prototype endoscope system and used it to observe tissue-simulating phantoms. The StO2 (%) values obtained using our technique agreed with those from the T-Stat within 10%. We also showed that tissue StO2 can be derived using three spectral band if the scattering property is fixed at preliminarily measured values.

  1. Software-assisted live visualization system for subjacent blood vessels in endonasal endoscopic approaches

    NASA Astrophysics Data System (ADS)

    Lempe, B.; Taudt, Ch.; Maschke, R.; Gruening, J.; Ernstberger, M.; Basan, F.; Baselt, T.; Grunert, R.; Hartmann, P.

    2013-02-01

    Minimal invasive surgery methods have received growing attention in recent years. In vital important areas, it is crucial for the surgeon to have a precise knowledge of the tissue structure. Especially the visualization of arteries is desirable, as the destruction of the same can be lethal to the patient. In order to meet this requirement, the study presents a novel assistance system for endoscopic surgery. While state-of-the art systems rely on pre-operational data like computer-tomographic maps and require the use of radiation, the goal of the presented approach is to provide the clarification of subjacent blood vessels on live images of the endoscope camera system. Based on the transmission and reflection spectra of various human tissues, a prototype system with a NIR illumination unit working at 808 nm was established. Several image filtering, processing and enhancement techniques have been investigated and evaluated on the raw pictures in order to obtain high quality results. The most important were increasing contrast and thresholding by difference of Gaussian method. Based on that, it is possible to rectify a fragmented artery pattern and extract geometrical information about the structure in terms of position and orientation. By superposing the original image and the extracted segment, the surgeon is assisted with valuable live pictures of the region of interest. The whole system has been tested on a laboratory scale. An outlook on the integration of such a system in a clinical environment and obvious benefits are discussed.

  2. A navigation system for flexible endoscopes using abdominal 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Kaar, M.; Bathia, Amon; Bathia, Amar; Lampret, A.; Birkfellner, W.; Hummel, J.; Figl, M.

    2014-09-01

    A navigation system for flexible endoscopes equipped with ultrasound (US) scan heads is presented. In contrast to similar systems, abdominal 3D-US is used for image fusion of the pre-interventional computed tomography (CT) to the endoscopic US. A 3D-US scan, tracked with an optical tracking system (OTS), is taken pre-operatively together with the CT scan. The CT is calibrated using the OTS, providing the transformation from CT to 3D-US. Immediately before intervention a 3D-US tracked with an electromagnetic tracking system (EMTS) is acquired and registered intra-modal to the preoperative 3D-US. The endoscopic US is calibrated using the EMTS and registered to the pre-operative CT by an intra-modal 3D-US/3D-US registration. Phantom studies showed a registration error for the US to CT registration of 5.1 mm ± 2.8 mm. 3D-US/3D-US registration of patient data gave an error of 4.1 mm compared to 2.8 mm with the phantom. From this we estimate an error on patient experiments of 5.6 mm.

  3. Analysis of multimode fiber bundles for endoscopic spectral-domain optical coherence tomography

    PubMed Central

    Risi, Matthew D.; Makhlouf, Houssine; Rouse, Andrew R.; Gmitro, Arthur F.

    2016-01-01

    A theoretical analysis of the use of a fiber bundle in spectral-domain optical coherence tomography (OCT) systems is presented. The fiber bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the OCT data. However, the multimode characteristic of the fibers in the fiber bundle affects the depth sensitivity of the imaging system. A description of light interference in a multimode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis. PMID:25967012

  4. Development of a telediagnosis endoscopy system over secure internet.

    PubMed

    Ohashi, K; Sakamoto, N; Watanabe, M; Mizushima, H; Tanaka, H

    2008-01-01

    We developed a new telediagnosis system to securely transmit high-quality endoscopic moving images over the Internet in real time. This system would enable collaboration between physicians seeking advice from endoscopists separated by long distances, to facilitate diagnosis. We adapted a new type of digital video streaming system (DVTS) to our teleendoscopic diagnosis system. To investigate its feasibility, we conducted a two-step experiment. A basic experiment was first conducted to transmit endoscopic video images between hospitals using a plain DVTS. After investigating the practical usability, we incorporated a secure and reliable communication function into the system, by equipping DVTS with "TCP2", a new security technology that establishes secure communication in the transport layer. The second experiment involved international transmission of teleendoscopic image between Hawaii and Japan using the improved system. In both the experiments, no serious transmission delay was observed to disturb physicians' communications and, after subjective evaluation by endoscopists, the diagnostic qualities of the images were found to be adequate. Moreover, the second experiment showed that "TCP2-equipped DVTS" successfully executed high-quality secure image transmission over a long distance network. We conclude that DVTS technology would be promising for teleendoscopic diagnosis. It was also shown that a high quality, secure teleendoscopic diagnosis system can be developed by equipping DVTS with TCP2.

  5. Applications of optical fibers and miniature photonic elements in medical diagnostics

    NASA Astrophysics Data System (ADS)

    Blaszczak, Urszula; Gilewski, Marian; Gryko, Lukasz; Zajac, Andrzej; Kukwa, Andrzej; Kukwa, Wojciech

    2014-05-01

    Construction of endoscopes which are known for decades, in particular in small devices with the diameter of few millimetres, are based on the application of fibre optic imaging bundles or bundles of fibers in the illumination systems (usually with a halogen source). Cameras - CCD and CMOS - with the sensor size of less than 5 mm emerging commercially and high power LED solutions allow to design and construct modern endoscopes characterized by many innovative properties. These constructions offer higher resolution. They are also relatively cheaper especially in the context of the integration of the majority of the functions on a single chip. Mentioned features of the CMOS sensors reduce the cycle of introducing the newly developed instruments to the market. The paper includes a description of the concept of the endoscope with a miniature camera built on the basis of CMOS detector manufactured by Omni Vision. The set of LEDs located at the operator side works as the illuminating system. Fibre optic system and the lens of the camera are used in shaping the beam illuminating the observed tissue. Furthermore, to broaden the range of applications of the endoscope, the illuminator allows to control the spectral characteristics of emitted light. The paper presents the analysis of the basic parameters of the light-and-optical system of the endoscope. The possibility of adjusting the magnifications of the lens, the field of view of the camera and its spatial resolution is discussed. Special attention was drawn to the issues related to the selection of the light sources used for the illumination in terms of energy efficiency and the possibility of providing adjusting the colour of the emitted light in order to improve the quality of the image obtained by the camera.

  6. A high definition Mueller polarimetric endoscope for tissue characterisation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Elson, Daniel

    2016-03-01

    The mechanism of most medical endoscopes is based on the interaction between light and biological tissue, inclusive of absorption, elastic scattering and fluorescence. In essence, the metrics of those interactions are obtained from the fundamental properties of light as an electro-magnetic waves, namely, the radiation intensity and wavelength. As another fundamental property of light, polarisation can not only reveal tissue scattering and absorption information from a different perspective, but is also able to provide a fresh insight into directional tissue birefringence properties induced by birefringent compositions and anisotropic fibrous structures, such as collagen, elastin, muscle fibre, etc at the same time. Here we demonstrate a low cost high definition Muller polarimetric endoscope with minimal alteration of a rigid endoscope. By imaging birefringent tissue mimicking phantoms and a porcine bladder, we show that this novel endoscopic imaging modality is able to provide different information of interest from unpolarised endoscopic imaging, including linear depolarization, circular depolarization, birefringence, optic axis orientation and dichroism. This endoscope can potentially be employed for better tissue visualisation and benefit endoscopic investigations and intra-operative guidance.

  7. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology.

    PubMed

    Tsai, Tsung-Han; Lee, Hsiang-Chieh; Ahsen, Osman O; Liang, Kaicheng; Giacomelli, Michael G; Potsaid, Benjamin M; Tao, Yuankai K; Jayaraman, Vijaysekhar; Figueiredo, Marisa; Huang, Qin; Cable, Alex E; Fujimoto, James; Mashimo, Hiroshi

    2014-12-01

    We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology.

  8. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology

    PubMed Central

    Tsai, Tsung-Han; Lee, Hsiang-Chieh; Ahsen, Osman O.; Liang, Kaicheng; Giacomelli, Michael G.; Potsaid, Benjamin M.; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Figueiredo, Marisa; Huang, Qin; Cable, Alex E.; Fujimoto, James; Mashimo, Hiroshi

    2014-01-01

    We describe an ultrahigh speed endoscopic swept source optical coherence tomography (OCT) system for clinical gastroenterology using a vertical-cavity surface-emitting laser (VCSEL) and micromotor imaging catheter. The system had a 600 kHz axial scan rate and 8 µm axial resolution in tissue. Imaging was performed with a 3.2 mm diameter imaging catheter at 400 frames per second with a 12 µm spot size. Three-dimensional OCT (3D-OCT) imaging was performed in patients with a cross section of pathologies undergoing upper and lower endoscopy. The use of distally actuated imaging catheters enabled OCT imaging with more flexibility, such as volumetric imaging in the small intestine and the assessment of hiatal hernia using retroflex imaging. The high rotational scanning stability of the micromotor enabled 3D volumetric imaging with micron scale volumetric accuracy for both en face OCT and cross-sectional imaging, as well as OCT angiography (OCTA) for 3D visualization of subsurface microvasculature. The ability to perform both structural and functional 3D OCT imaging in the GI tract with microscopic accuracy should enable a wide range of studies and enhance the sensitivity and specificity of OCT for detecting pathology. PMID:25574446

  9. A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic cameras on ex vivo and in vivo NOTES surgical performance.

    PubMed

    Chang, Victoria C; Tang, Shou-Jiang; Swain, C Paul; Bergs, Richard; Paramo, Juan; Hogg, Deborah C; Fernandez, Raul; Cadeddu, Jeffrey A; Scott, Daniel J

    2013-08-01

    The influence of endoscopic video camera (VC) image quality on surgical performance has not been studied. Flexible endoscopes are used as substitutes for laparoscopes in natural orifice translumenal endoscopic surgery (NOTES), but their optics are originally designed for intralumenal use. Manipulable wired or wireless independent VCs might offer advantages for NOTES but are still under development. To measure the optical characteristics of 4 VC systems and to compare their impact on the performance of surgical suturing tasks. VC systems included a laparoscope (Storz 10 mm), a flexible endoscope (Olympus GIF 160), and 2 prototype deployable cameras (magnetic anchoring and guidance system [MAGS] Camera and PillCam). In a randomized fashion, the 4 systems were evaluated regarding standardized optical characteristics and surgical manipulations of previously validated ex vivo (fundamentals of laparoscopic surgery model) and in vivo (live porcine Nissen model) tasks; objective metrics (time and errors/precision) and combined surgeon (n = 2) performance were recorded. Subtle differences were detected for color tests, and field of view was variable (65°-115°). Suitable resolution was detected up to 10 cm for the laparoscope and MAGS camera but only at closer distances for the endoscope and PillCam. Compared with the laparoscope, surgical suturing performances were modestly lower for the MAGS camera and significantly lower for the endoscope (ex vivo) and PillCam (ex vivo and in vivo). This study documented distinct differences in VC systems that may be used for NOTES in terms of both optical characteristics and surgical performance. Additional work is warranted to optimize cameras for NOTES. Deployable systems may be especially well suited for this purpose.

  10. Development of stereo endoscope system with its innovative master interface for continuous surgical operation.

    PubMed

    Kim, Myungjoon; Lee, Chiwon; Hong, Nhayoung; Kim, Yoon Jae; Kim, Sungwan

    2017-06-24

    Although robotic laparoscopic surgery has various benefits when compared with conventional open surgery and minimally invasive surgery, it also has issues to overcome and one of the issues is the discontinuous surgical flow that occurs whenever control is swapped between the endoscope system and the operating robot arm system. This can lead to problems such as collision between surgical instruments, injury to patients, and increased operation time. To achieve continuous surgical operation, a wireless controllable stereo endoscope system is proposed which enables the simultaneous control of the operating robot arm system and the endoscope system. The proposed system consists of two improved novel master interfaces (iNMIs), a four-degrees of freedom (4-DOFs) endoscope control system (ECS), and a simple three-dimensional (3D) endoscope. In order to simultaneously control the proposed system and patient side manipulators of da Vinci research kit (dVRK), the iNMIs are installed to the master tool manipulators of dVRK system. The 4-DOFs ECS consists of four servo motors and employs a two-parallel link structure to provide translational and fulcrum point motion to the simple 3D endoscope. The images acquired by the endoscope undergo stereo calibration and rectification to provide a clear 3D vision to the surgeon as available in clinically used da Vinci surgical robot systems. Tests designed to verify the accuracy, data transfer time, and power consumption of the iNMIs were performed. The workspace was calculated to estimate clinical applicability and a modified peg transfer task was conducted with three novice volunteers. The iNMIs operated for 317 min and moved in accordance with the surgeon's desire with a mean latency of 5 ms. The workspace was calculated to be 20378.3 cm 3 , which exceeds the reference workspace of 549.5 cm 3 . The novice volunteers were able to successfully execute the modified peg transfer task designed to evaluate the proposed system's overall performance. The experimental results verify that the proposed 3D endoscope system enables continuous surgical flow. The workspace is suitable for the performance of numerous types of surgeries. Therefore, the proposed system is expected to provide much higher safety and efficacy for current surgical robot systems.

  11. Advanced endoscopic imaging in gastric neoplasia and preneoplasia

    PubMed Central

    Lee, Jonathan W J; Lim, Lee Guan; Yeoh, Khay Guan

    2017-01-01

    Conventional white light endoscopy remains the current standard in routine clinical practice for early detection of gastric cancer. However, it may not accurately diagnose preneoplastic gastric lesions. The technological advancements in the field of endoscopic imaging for gastric lesions are fast growing. This article reviews currently available advanced endoscopic imaging modalities, in particular chromoendoscopy, narrow band imaging and confocal laser endomicroscopy, and their corresponding evidence shown to improve diagnosis of preneoplastic gastric lesions. Raman spectrometry and polarimetry are also introduced as promising emerging technologies. PMID:28176895

  12. Integrated biophotonics in endoscopic oncology

    NASA Astrophysics Data System (ADS)

    Muguruma, Naoki; DaCosta, Ralph S.; Wilson, Brian C.; Marcon, Norman E.

    2009-02-01

    Gastrointestinal endoscopy has made great progress during last decade. Diagnostic accuracy can be enhanced by better training, improved dye-contrast techniques method, and the development of new image processing technologies. However, diagnosis using conventional endoscopy with white-light optical imaging is essentially limited by being based on morphological changes and/or visual attribution: hue, saturation and intensity, interpretation of which depends on the endoscopist's eye and brain. In microlesions in the gastrointestinal tract, we still rely ultimately on the histopathological diagnosis from biopsy specimens. Autofluorescence imaging system has been applied for lesions which have been difficult to morphologically recognize or are indistinct with conventional endoscope, and this approach has potential application for the diagnosis of dysplastic lesions and early cancers in the gastrointestinal tract, supplementing the information from white light endoscopy. This system has an advantage that it needs no administration of a photosensitive agent, making it suitable as a screening method for the early detection of neoplastic tissues. Narrow band imaging (NBI) is a novel endoscopic technique which can distinguish neoplastic and non-neoplastic lesions without chromoendoscopy. Magnifying endoscopy in combination with NBI has an obvious advantage, namely analysis of the epithelial pit pattern and the vascular network. This new technique allows a detailed visualization in early neoplastic lesions of esophagus, stomach and colon. However, problems remain; how to combine these technologies in an optimum diagnostic strategy, how to apply them into the algorithm for therapeutic decision-making, and how to standardize several classifications surrounding them. 'Molecular imaging' is a concept representing the most novel imaging methods in medicine, although the definition of the word is still controversial. In the field of gastrointestinal endoscopy, the future of endoscopic diagnosis is likely to be impacted by a combination of biomarkers and technology, and 'endoscopic molecular imaging' should be defined as "visualization of molecular characteristics with endoscopy". These innovations will allow us not only to locate a tumor or dysplastic lesion but also to visualize its molecular characteristics (e.g., DNA mutations and polymorphisms, gene and/or protein expression), and the activity of specific molecules and biological processes that affect tumor behavior and/or its response to therapy. In the near future, these methods should be promising technologies that will play a central role in gastrointestinal oncology.

  13. Flexible Vesiculovasoscopy Using a Microoptical System in a Human Cadaver Model: An Experimental Approach for Atraumatic Endoscopy of the Seminal Tract.

    PubMed

    Schlager, Daniel; Maas, Moritz; Hein, Simon; Adams, Fabian; Schoenthaler, Martin; Wetterauer, Ulrich; Diemer, Thorsten; Weidner, Wolfgang; Miernik, Arkadiusz

    2016-08-01

    The most common pathologies of the seminal tract are persistent hematospermia, seminal vesicle stones, and seminal duct obstruction. Endoscopic diagnostic work-up of the seminal tract is impeded by complex anatomy and lack of technical equipment. To date, there is no standardized endoscopic approach. The purpose of this study was to investigate the applicability and feasibility of a flexible microoptical device for atraumatic endoscopy of the seminal tract in a male human cadaver. The transurethral endoscopic examination was performed on a male cadaver. No premortal interventions or diseases of the genitourinary tract had been reported. The seminal orifice was identified via cystoscopy and accessed by the Seldinger technique using a hydrophilic guidewire and ureteral catheter. Retrograde endoscopic inspection of the distal seminal tract was performed using a miniaturized flexible endoscope. An antegrade endoscopic inspection of the seminal tract was carried out via high scrotal access to the vas deferens. Structures of the seminal tract, such as the ejaculatory duct, seminal vesicles, and distal portion of the ductus deferentes, were visualized using the miniaturized endoscope. Image quality allowed identification of anatomical structures and characterization of tissue properties. The technical limitations we observed involved the system's maneuverability. Initial results of this novel endoscopic approach to the seminal tract using a flexible microoptical system are encouraging. However, considerable anatomical limitations of the targeted organs necessitate further refinements of the technical equipment. This approach might improve diagnostics and treatment of genitourinary diseases. Future surgical techniques may include intraseminal laser therapy or endoocclusion to monitor fertility in men.

  14. Optical imaging modalities: From design to diagnosis of skin cancer

    NASA Astrophysics Data System (ADS)

    Korde, Vrushali Raj

    This study investigates three high resolution optical imaging modalities to better detect and diagnose skin cancer. The ideal high resolution optical imaging system can visualize pre-malignant tissue growth non-invasively with resolution comparable to histology. I examined 3 modalities which approached this goal. The first method examined was high magnification microscopy of thin stained tissue sections, together with a statistical analysis of nuclear chromatin patterns termed Karyometry. This method has subcellular resolution, but it necessitates taking a biopsy at the desired tissue site and imaging the tissue ex-vivo. My part of this study was to develop an automated nuclear segmentation algorithm to segment cell nuclei in skin histology images for karyometric analysis. The results of this algorithm were compared to hand segmented cell nuclei in the same images, and it was concluded that the automated segmentations can be used for karyometric analysis. The second optical imaging modality I investigated was Optical Coherence Tomography (OCT). OCT is analogous to ultrasound, in which sound waves are delivered into the body and the echo time and reflected signal magnitude are measured. Due to the fast speed of light and detector temporal integration times, low coherence interferometry is needed to gate the backscattered light. OCT acquires cross sectional images, and has an axial resolution of 1-15 mum (depending on the source bandwidth) and a lateral resolution of 10-20 mum (depending on the sample arm optics). While it is not capable of achieving subcellular resolution, it is a non-invasive imaging modality. OCT was used in this study to evaluate skin along a continuum from normal to sun damaged to precancer. I developed algorithms to detect statistically significant differences between images of sun protected and sun damaged skin, as well as between undiseased and precancerous skin. An Optical Coherence Microscopy (OCM) endoscope was developed in the third portion of this study. OCM is a high resolution en-face imaging modality. It is a hybrid system that combines the principles of confocal microscopy with coherence gating to provide an increased imaging depth. It can also be described as an OCT system with a high NA objective. Similar to OCT, the axial resolution is determined by the source center wavelength and bandwidth. The NA of the sample arm optics determines the lateral resolution, usually on the order of 1-5 mum. My effort on this system was to develop a handheld endoscope. To my knowledge, an OCM endoscope has not been developed prior to this work. An image of skin was taken as a proof of concept. This rigid handheld OCM endoscope will be useful for applications ranging from minimally invasive surgical imaging to non-invasively assessing dysplasia and sun damage in skin.

  15. Image stitching and image reconstruction of intestines captured using radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Wu, Yin-Yi; Dung, Lan-Rong; Wu, Hsien-Ming; Weng, Ping-Kuo; Huang, Ker-Jer; Chiu, Luan-Jiau

    2012-05-01

    This study investigates image processing using the radial imaging capsule endoscope (RICE) system. First, an experimental environment is established in which a simulated object has a shape that is similar to a cylinder, such that a triaxial platform can be used to push the RICE into the sample and capture radial images. Then four algorithms (mean absolute error, mean square error, Pearson correlation coefficient, and deformation processing) are used to stitch the images together. The Pearson correlation coefficient method is the most effective algorithm because it yields the highest peak signal-to-noise ratio, higher than 80.69 compared to the original image. Furthermore, a living animal experiment is carried out. Finally, the Pearson correlation coefficient method and vector deformation processing are used to stitch the images that were captured in the living animal experiment. This method is very attractive because unlike the other methods, in which two lenses are required to reconstruct the geometrical image, RICE uses only one lens and one mirror.

  16. Dual instrument for in vivo and ex vivo OCT imaging in an ENT department

    PubMed Central

    Cernat, Ramona; Tatla, Taran S.; Pang, Jingyin; Tadrous, Paul J.; Bradu, Adrian; Dobre, George; Gelikonov, Grigory; Gelikonov, Valentin; Podoleanu, Adrian Gh.

    2012-01-01

    A dual instrument is assembled to investigate the usefulness of optical coherence tomography (OCT) imaging in an ear, nose and throat (ENT) department. Instrument 1 is dedicated to in vivo laryngeal investigation, based on an endoscope probe head assembled by compounding a miniature transversal flying spot scanning probe with a commercial fiber bundle endoscope. This dual probe head is used to implement a dual channel nasolaryngeal endoscopy-OCT system. The two probe heads are used to provide simultaneously OCT cross section images and en face fiber bundle endoscopic images. Instrument 2 is dedicated to either in vivo imaging of accessible surface skin and mucosal lesions of the scalp, face, neck and oral cavity or ex vivo imaging of the same excised tissues, based on a single OCT channel. This uses a better interface optics in a hand held probe. The two instruments share sequentially, the swept source at 1300 nm, the photo-detector unit and the imaging PC. An aiming red laser is permanently connected to the two instruments. This projects visible light collinearly with the 1300 nm beam and allows pixel correspondence between the en face endoscopy image and the cross section OCT image in Instrument 1, as well as surface guidance in Instrument 2 for the operator. The dual channel instrument was initially tested on phantom models and then on patients with suspect laryngeal lesions in a busy ENT practice. This feasibility study demonstrates the OCT potential of the dual imaging instrument as a useful tool in the testing and translation of OCT technology from the lab to the clinic. Instrument 1 is under investigation as a possible endoscopic screening tool for early laryngeal cancer. Larger size and better quality cross-section OCT images produced by Instrument 2 provide a reference base for comparison and continuing research on imaging freshly excised tissue, as well as in vivo interrogation of more superficial skin and mucosal lesions in the head and neck patient. PMID:23243583

  17. Virtual endoscopy in neurosurgery: a review.

    PubMed

    Neubauer, André; Wolfsberger, Stefan

    2013-01-01

    Virtual endoscopy is the computerized creation of images depicting the inside of patient anatomy reconstructed in a virtual reality environment. It permits interactive, noninvasive, 3-dimensional visual inspection of anatomical cavities or vessels. This can aid in diagnostics, potentially replacing an actual endoscopic procedure, and help in the preparation of a surgical intervention by bridging the gap between plain 2-dimensional radiologic images and the 3-dimensional depiction of anatomy during actual endoscopy. If not only the endoscopic vision but also endoscopic handling, including realistic haptic feedback, is simulated, virtual endoscopy can be an effective training tool for novice surgeons. In neurosurgery, the main fields of the application of virtual endoscopy are third ventriculostomy, endonasal surgery, and the evaluation of pathologies in cerebral blood vessels. Progress in this very active field of research is achieved through cooperation between the technical and the medical communities. While the technology advances and new methods for modeling, reconstruction, and simulation are being developed, clinicians evaluate existing simulators, steer the development of new ones, and explore new fields of application. This review introduces some of the most interesting virtual reality systems for endoscopic neurosurgery developed in recent years and presents clinical studies conducted either on areas of application or specific systems. In addition, benefits and limitations of single products and simulated neuroendoscopy in general are pointed out.

  18. Imaging efficacy of a targeted imaging agent for fluorescence endoscopy

    NASA Astrophysics Data System (ADS)

    Healey, A. J.; Bendiksen, R.; Attramadal, T.; Bjerke, R.; Waagene, S.; Hvoslef, A. M.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. A significant unmet clinical need exists in the area of screening for earlier and more accurate diagnosis and treatment. We have identified a fluorescence imaging agent targeted to an early stage molecular marker for colorectal cancer. The agent is administered intravenously and imaged in a far red imaging channel as an adjunct to white light endoscopy. There is experimental evidence of preclinical proof of mechanism for the agent. In order to assess potential clinical efficacy, imaging was performed with a prototype fluorescence endoscope system designed to produce clinically relevant images. A clinical laparoscope system was modified for fluorescence imaging. The system was optimised for sensitivity. Images were recorded at settings matching those expected with a clinical endoscope implementation (at video frame rate operation). The animal model was comprised of a HCT-15 xenograft tumour expressing the target at concentration levels expected in early stage colorectal cancer. Tumours were grown subcutaneously. The imaging agent was administered intravenously at a dose of 50nmol/kg body weight. The animals were killed 2 hours post administration and prepared for imaging. A 3-4mm diameter, 1.6mm thick slice of viable tumour was placed over the opened colon and imaged with the laparoscope system. A receiver operator characteristic analysis was applied to imaging results. An area under the curve of 0.98 and a sensitivity of 87% [73, 96] and specificity of 100% [93, 100] were obtained.

  19. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    NASA Astrophysics Data System (ADS)

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  20. Primary Central Nervous System Lymphoma of Optic Chiasma: Endoscopic Endonasal Treatment.

    PubMed

    Ozdemir, Evin Singar; Yildirim, Ali Erdem; Can, Aslihan Yavas

    2018-01-01

    Isolated primary central nervous system lymphoma arising from anterior visual pathway is very rare. A 76-year-old immunocompetent previously healthy man presented bilateral decreased visual acuity in 1 month. Pituitary magnetic resonans imaging (MRI) showed a lobulated mass with homogeneous enhancement after gadolinium administration that arising from optic chiasm suggested that inflammatory disease or an optic glioma. The patient underwent an extended endoscopic endonasal transsphenoidal surgery. Postoperative course and outcomes were wonderful. Histopathological diagnosis was diffuse large B-cell lymphoma. The patient underwent investigations for systemic lymphomatous involvement, did not detect any evidence of systemic disease. In this case, we claimed that differential diagnoses of anterior visual pathway lesions are difficult because of similarity of lesions on clinical and radiological examinations. Biopsy is essential for these lesions. As a biopsy technique, endoscopic endonasal transsphenoidal approach is safer and more effective than open procedures.

  1. In vivo endoscopic Doppler optical coherence tomography imaging of mouse colon

    NASA Astrophysics Data System (ADS)

    Welge, Weston A.; Barton, Jennifer K.

    2016-03-01

    Colorectal cancer remains the second deadliest cancer in the United States, despite the high sensitivity and specificity of colonoscopy and sigmoidoscopy. While these standard imaging procedures can accurately detect medium and large polyps, some studies have shown miss rates up to 25% for polyps less than 5 mm in diameter. An imaging modality capable of detecting small lesions could potentially improve patient outcomes. Optical coherence tomography (OCT) has been shown to be a powerful imaging modality for adenoma detection in a mouse model of colorectal cancer. While previous work has focused on analyzing the structural OCT images based on thickening of the mucosa and changes in light attenuation in depth, imaging the microvasculature of the colon may enable earlier detection of polyps. The structure and function of vessels grown to support tumor growth are markedly different from healthy vessels. Doppler OCT is capable of imaging microvessels in vivo. We developed a method of processing raw fringe data from a commercial swept-source OCT system using a lab-built miniature endoscope to extract microvessels. This method can be used to measure vessel count and density and to measure flow velocities. This may improve early detection and aid in the development of new chemopreventive and chemotherapeutic drugs. We present, to the best of our knowledge, the first endoscopic Doppler OCT images of in vivo mouse colon.

  2. Smartphone-coupled rhinolaryngoscopy at the point of care

    NASA Astrophysics Data System (ADS)

    Mink, Jonah; Bolton, Frank J.; Sebag, Cathy M.; Peterson, Curtis W.; Assia, Shai; Levitz, David

    2018-02-01

    Rhinolaryngoscopy remains difficult to perform in resource-limited settings due to the high cost of purchasing and maintaining equipment as well as the need for specialists to interpret exam findings. While the lack of expertise can be obviated by adopting telemedicine-based approaches, the capture, storage, and sharing of images/video is not a common native functionality of medical devices. Most rhinolaryngoscopy systems consist of an endoscope that interfaces with the patient's naso/oropharynx, and a tower of modules that record video/images. However, these expensive and bulky modules can be replaced by a smartphone that can fulfill the same functions but at a lower cost. To demonstrate this, a commercially available rhinolaryngoscope was coupled to a smartphone using a 3D-printed adapter. Software developed for other clinical applications was repurposed for ENT use, including an application that controls image and video capture, a HIPAA-compliant image/video storage and transfer cloud database, and customized software features developed to improve practitioner competency. Audio recording capabilities to assess speech pathology were also integrated into the smartphone rhinolaryngoscope system. The illumination module coupled onto the endoscope remained unchanged. The spatial resolution of the rhinolaryngoscope system was defined by the fiber diameter of endoscope fiber bundle, rather than the smartphone camera. The mobile rhinolaryngoscope system was used with appropriate patients by a general practitioner in an office setting. The general practitioner then consulted with an ENT specialist via the HIPAA compliant cloud database and workflow modules on difficult cases. These results suggest the smartphone-based rhinolaryngoscope holds promise for use in low-resource settings.

  3. Variety and evolution of American endoscopic image management and recording systems.

    PubMed

    Korman, L Y

    1996-03-01

    The rapid evolution of computing technology has and will continue to alter the practice of gastroenterology and gastrointestinal endoscopy. Development of communication standards for text, images, and security systems will be necessary for medicine to take advantage of high-speed computing and communications. Professional societies can have an important role in guiding the development process.

  4. Fast calibration of electromagnetically tracked oblique-viewing rigid endoscopes.

    PubMed

    Liu, Xinyang; Rice, Christina E; Shekhar, Raj

    2017-10-01

    The oblique-viewing (i.e., angled) rigid endoscope is a commonly used tool in conventional endoscopic surgeries. The relative rotation between its two moveable parts, the telescope and the camera head, creates a rotation offset between the actual and the projection of an object in the camera image. A calibration method tailored to compensate such offset is needed. We developed a fast calibration method for oblique-viewing rigid endoscopes suitable for clinical use. In contrast to prior approaches based on optical tracking, we used electromagnetic (EM) tracking as the external tracking hardware to improve compactness and practicality. Two EM sensors were mounted on the telescope and the camera head, respectively, with considerations to minimize EM tracking errors. Single-image calibration was incorporated into the method, and a sterilizable plate, laser-marked with the calibration pattern, was also developed. Furthermore, we proposed a general algorithm to estimate the rotation center in the camera image. Formulas for updating the camera matrix in terms of clockwise and counterclockwise rotations were also developed. The proposed calibration method was validated using a conventional [Formula: see text], 5-mm laparoscope. Freehand calibrations were performed using the proposed method, and the calibration time averaged 2 min and 8 s. The calibration accuracy was evaluated in a simulated clinical setting with several surgical tools present in the magnetic field of EM tracking. The root-mean-square re-projection error averaged 4.9 pixel (range 2.4-8.5 pixel, with image resolution of [Formula: see text] for rotation angles ranged from [Formula: see text] to [Formula: see text]. We developed a method for fast and accurate calibration of oblique-viewing rigid endoscopes. The method was also designed to be performed in the operating room and will therefore support clinical translation of many emerging endoscopic computer-assisted surgical systems.

  5. Adjustable-Viewing-Angle Endoscopic Tool for Skull Base and Brain Surgery

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; Liao, Anna; Manohara, Harish; Shahinian, Hrayr

    2008-01-01

    The term Multi-Angle and Rear Viewing Endoscopic tooL (MARVEL) denotes an auxiliary endoscope, now undergoing development, that a surgeon would use in conjunction with a conventional endoscope to obtain additional perspective. The role of the MARVEL in endoscopic brain surgery would be similar to the role of a mouth mirror in dentistry. Such a tool is potentially useful for in-situ planetary geology applications for the close-up imaging of unexposed rock surfaces in cracks or those not in the direct line of sight. A conventional endoscope provides mostly a frontal view that is, a view along its longitudinal axis and, hence, along a straight line extending from an opening through which it is inserted. The MARVEL could be inserted through the same opening as that of the conventional endoscope, but could be adjusted to provide a view from almost any desired angle. The MARVEL camera image would be displayed, on the same monitor as that of the conventional endoscopic image, as an inset within the conventional endoscopic image. For example, while viewing a tumor from the front in the conventional endoscopic image, the surgeon could simultaneously view the tumor from the side or the rear in the MARVEL image, and could thereby gain additional visual cues that would aid in precise three-dimensional positioning of surgical tools to excise the tumor. Indeed, a side or rear view through the MARVEL could be essential in a case in which the object of surgical interest was not visible from the front. The conceptual design of the MARVEL exploits the surgeon s familiarity with endoscopic surgical tools. The MARVEL would include a miniature electronic camera and miniature radio transmitter mounted on the tip of a surgical tool derived from an endo-scissor (see figure). The inclusion of the radio transmitter would eliminate the need for wires, which could interfere with manipulation of this and other surgical tools. The handgrip of the tool would be connected to a linkage similar to that of an endo-scissor, but the linkage would be configured to enable adjustment of the camera angle instead of actuation of a scissor blade. It is envisioned that thicknesses of the tool shaft and the camera would be less than 4 mm, so that the camera-tipped tool could be swiftly inserted and withdrawn through a dime-size opening. Electronic cameras having dimensions of the order of millimeters are already commercially available, but their designs are not optimized for use in endoscopic brain surgery. The variety of potential endoscopic, thoracoscopic, and laparoscopic applications can be expected to increase as further development of electronic cameras yields further miniaturization and improvements in imaging performance.

  6. A Look from the Inside

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hubble Space Telescope has given the world amazing images of the distant stars, planets, and galaxies. The cutting-edge imaging technology that enhances the Hubble images also extends its benefits to life here on Earth, from deciphering previously unreadable portions of the Dead Sea Scrolls to improving digital mammographies for advanced cancer detection. This imaging technology is now helping physicians to perform micro-invasive arthroscopic surgery, which is the visual examination of an interior joint such as the knee. In 1997, NASA's Glenn Research Center signed a Space Act Agreement with Micro Medical Devices, Inc. (MMD), a medical device engineering company that licenses miniature surgical devices. At that time, MMD was in the process of developing a new micro-endoscope. This tool enables surgeons to view what is happening inside the body on a screen, eliminating the need for a more invasive diagnostic procedure. The images from the micro-endoscope needed to be extremely clear, a challenge with the tool s small size. The images also needed to be viewed in real time to allow surgeons to see what was happening in the body at that very moment. MMD established Clear Image Technology, LLC, of Elyria, Ohio, to commercialize the miniature endoscope. Clear Image Technology then partnered with Arthrotek, Inc., a sports medicine subsidiary of Biomet, Inc., to introduce the tool to the commercial market as the InnerVue[TM] Diagnostic Scope System. The InnerVue system is designed for use in a diagnostic environment, such as an office or outpatient service, to evaluate conditions within a joint. While the InnerVue scope is primarily being applied to the knee and shoulder, other small joints such as the wrist, elbow, and ankle are being investigated. A physician can use the system alone or in conjunction with magnetic resonance imaging (MRI) to determine the next treatment step for each patient. The procedure can be more accurate than MRI, particularly with diagnosing cartilage and articular surface damage and assessing arthritis severity.

  7. Enhanced differential evolution to combine optical mouse sensor with image structural patches for robust endoscopic navigation.

    PubMed

    Luo, Xiongbiao; Jayarathne, Uditha L; McLeod, A Jonathan; Mori, Kensaku

    2014-01-01

    Endoscopic navigation generally integrates different modalities of sensory information in order to continuously locate an endoscope relative to suspicious tissues in the body during interventions. Current electromagnetic tracking techniques for endoscopic navigation have limited accuracy due to tissue deformation and magnetic field distortion. To avoid these limitations and improve the endoscopic localization accuracy, this paper proposes a new endoscopic navigation framework that uses an optical mouse sensor to measure the endoscope movements along its viewing direction. We then enhance the differential evolution algorithm by modifying its mutation operation. Based on the enhanced differential evolution method, these movement measurements and image structural patches in endoscopic videos are fused to accurately determine the endoscope position. An evaluation on a dynamic phantom demonstrated that our method provides a more accurate navigation framework. Compared to state-of-the-art methods, it improved the navigation accuracy from 2.4 to 1.6 mm and reduced the processing time from 2.8 to 0.9 seconds.

  8. Photometric stereo endoscopy.

    PubMed

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S; Vakoc, Benjamin J; Durr, Nicholas J

    2013-07-01

    While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging.

  9. A discriminative structural similarity measure and its application to video-volume registration for endoscope three-dimensional motion tracking.

    PubMed

    Luo, Xiongbiao; Mori, Kensaku

    2014-06-01

    Endoscope 3-D motion tracking, which seeks to synchronize pre- and intra-operative images in endoscopic interventions, is usually performed as video-volume registration that optimizes the similarity between endoscopic video and pre-operative images. The tracking performance, in turn, depends significantly on whether a similarity measure can successfully characterize the difference between video sequences and volume rendering images driven by pre-operative images. The paper proposes a discriminative structural similarity measure, which uses the degradation of structural information and takes image correlation or structure, luminance, and contrast into consideration, to boost video-volume registration. By applying the proposed similarity measure to endoscope tracking, it was demonstrated to be more accurate and robust than several available similarity measures, e.g., local normalized cross correlation, normalized mutual information, modified mean square error, or normalized sum squared difference. Based on clinical data evaluation, the tracking error was reduced significantly from at least 14.6 mm to 4.5 mm. The processing time was accelerated more than 30 frames per second using graphics processing unit.

  10. A high definition Mueller polarimetric endoscope for tissue characterisation

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Elson, Daniel S.

    2016-05-01

    The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance.

  11. Endoscopic ultrasound

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007646.htm Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  12. Feasibility for detection of autofluorescent signatures in rat organs using a novel excitation-scanning hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Favreau, Peter F.; Deal, Joshua A.; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.

    2016-04-01

    The natural fluorescence (autofluorescence) of tissues has been noted as a biomarker for cancer for several decades. Autofluorescence contrast between tumors and healthy tissues has been of significant interest in endoscopy, leading to development of autofluorescence endoscopes capable of visualizing 2-3 fluorescence emission wavelengths to achieve maximal contrast. However, tumor detection with autofluorescence endoscopes is hindered by low fluorescence signal and limited quantitative information, resulting in prolonged endoscopic procedures, prohibitive acquisition times, and reduced specificity of detection. Our lab has designed a novel excitation-scanning hyperspectral imaging system with high fluorescence signal detection, low acquisition time, and enhanced spectral discrimination. In this study, we surveyed a comprehensive set of excised tissues to assess the feasibility of detecting tissue-specific pathologies using excitation-scanning. Fresh, untreated tissue specimens were imaged from 360 to 550 nm on an inverted fluorescence microscope equipped with a set of thin-film tunable filters (Semrock, A Unit of IDEX). Images were subdivided into training and test sets. Automated endmember extraction (ENVI 5.1, Exelis) with PCA identified endmembers within training images of autofluorescence. A spectral library was created from 9 endmembers. The library was used for identification of endmembers in test images. Our results suggest (1) spectral differentiation of multiple tissue types is possible using excitation scanning; (2) shared spectra between tissue types; and (3) the ability to identify unique morphological features in disparate tissues from shared autofluorescent components. Future work will focus on isolating specific molecular signatures present in tissue spectra, and elucidating the contribution of these signatures in pathologies.

  13. Advances in combined endoscopic fluorescence confocal microscopy and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Risi, Matthew D.

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure. Results from an ongoing clinical study to detect ovarian cancer with a novel confocal fluorescent microendoscope are presented. As an imaging modality, confocal fluorescence microendoscopy typically requires exogenous fluorophores, has a relatively limited penetration depth (100 μm), and often employs specialized aperture configurations to achieve real-time imaging in vivo. Two primary research directions designed to overcome these limitations and improve diagnostic capability are presented. Ideal confocal imaging performance is obtained with a scanning point illumination and confocal aperture, but this approach is often unsuitable for real-time, in vivo biomedical imaging. By scanning a slit aperture in one direction, image acquisition speeds are greatly increased, but at the cost of a reduction in image quality. The design, implementation, and experimental verification of a custom multi-point-scanning modification to a slit-scanning multi-spectral confocal microendoscope is presented. This new design improves the axial resolution while maintaining real-time imaging rates. In addition, the multi-point aperture geometry greatly reduces the effects of tissue scatter on imaging performance. Optical coherence tomography (OCT) has seen wide acceptance and FDA approval as a technique for ophthalmic retinal imaging, and has been adapted for endoscopic use. As a minimally invasive imaging technique, it provides morphological characteristics of tissues at a cellular level without requiring the use of exogenous fluorophores. OCT is capable of imaging deeper into biological tissue (˜1-2 mm) than confocal fluorescence microscopy. A theoretical analysis of the use of a fiber-bundle in spectral-domain OCT systems is presented. The fiber-bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the optical coherence tomography data. However, the multi-mode characteristic of the fibers in the fiber-bundle affects the depth sensitivity of the imaging system. A description of light interference in a multi-mode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis.

  14. 2D-3D registration using gradient-based MI for image guided surgery systems

    NASA Astrophysics Data System (ADS)

    Yim, Yeny; Chen, Xuanyi; Wakid, Mike; Bielamowicz, Steve; Hahn, James

    2011-03-01

    Registration of preoperative CT data to intra-operative video images is necessary not only to compare the outcome of the vocal fold after surgery with the preplanned shape but also to provide the image guidance for fusion of all imaging modalities. We propose a 2D-3D registration method using gradient-based mutual information. The 3D CT scan is aligned to 2D endoscopic images by finding the corresponding viewpoint between the real camera for endoscopic images and the virtual camera for CT scans. Even though mutual information has been successfully used to register different imaging modalities, it is difficult to robustly register the CT rendered image to the endoscopic image due to varying light patterns and shape of the vocal fold. The proposed method calculates the mutual information in the gradient images as well as original images, assigning more weight to the high gradient regions. The proposed method can emphasize the effect of vocal fold and allow a robust matching regardless of the surface illumination. To find the viewpoint with maximum mutual information, a downhill simplex method is applied in a conditional multi-resolution scheme which leads to a less-sensitive result to local maxima. To validate the registration accuracy, we evaluated the sensitivity to initial viewpoint of preoperative CT. Experimental results showed that gradient-based mutual information provided robust matching not only for two identical images with different viewpoints but also for different images acquired before and after surgery. The results also showed that conditional multi-resolution scheme led to a more accurate registration than single-resolution.

  15. Force sensor attachable to thin fiberscopes/endoscopes utilizing high elasticity fabric.

    PubMed

    Watanabe, Tetsuyou; Iwai, Takanobu; Fujihira, Yoshinori; Wakako, Lina; Kagawa, Hiroyuki; Yoneyama, Takeshi

    2014-03-12

    An endoscope/fiberscope is a minimally invasive tool used for directly observing tissues in areas deep inside the human body where access is limited. However, this tool only yields visual information. If force feedback information were also available, endoscope/fiberscope operators would be able to detect indurated areas that are visually hard to recognize. Furthermore, obtaining such feedback information from tissues in areas where collecting visual information is a challenge would be highly useful. The major obstacle is that such force information is difficult to acquire. This paper presents a novel force sensing system that can be attached to a very thin fiberscope/endoscope. To ensure a small size, high resolution, easy sterilization, and low cost, the proposed force visualization-based system uses a highly elastic material-panty stocking fabric. The paper also presents the methodology for deriving the force value from the captured image. The system has a resolution of less than 0.01 N and sensitivity of greater than 600 pixels/N within the force range of 0-0.2 N.

  16. Biplane reconstruction and visualization of virtual endoscopic and fluoroscopic views for interventional device navigation

    NASA Astrophysics Data System (ADS)

    Wagner, Martin G.; Strother, Charles M.; Schafer, Sebastian; Mistretta, Charles A.

    2016-03-01

    Biplane fluoroscopic imaging is an important tool for minimally invasive procedures for the treatment of cerebrovascular diseases. However, finding a good working angle for the C-arms of the angiography system as well as navigating based on the 2D projection images can be a difficult task. The purpose of this work is to propose a novel 4D reconstruction algorithm for interventional devices from biplane fluoroscopy images and to propose new techniques for a better visualization of the results. The proposed reconstruction methods binarizes the fluoroscopic images using a dedicated noise reduction algorithm for curvilinear structures and a global thresholding approach. A topology preserving thinning algorithm is then applied and a path search algorithm minimizing the curvature of the device is used to extract the 2D device centerlines. Finally, the 3D device path is reconstructed using epipolar geometry. The point correspondences are determined by a monotonic mapping function that minimizes the reconstruction error. The three dimensional reconstruction of the device path allows the rendering of virtual fluoroscopy images from arbitrary angles as well as 3D visualizations like virtual endoscopic views or glass pipe renderings, where the vessel wall is rendered with a semi-transparent material. This work also proposes a combination of different visualization techniques in order to increase the usability and spatial orientation for the user. A combination of synchronized endoscopic and glass pipe views is proposed, where the virtual endoscopic camera position is determined based on the device tip location as well as the previous camera position using a Kalman filter in order to create a smooth path. Additionally, vessel centerlines are displayed and the path to the target is highlighted. Finally, the virtual endoscopic camera position is also visualized in the glass pipe view to further improve the spatial orientation. The proposed techniques could considerably improve the workflow of minimally invasive procedures for the treatment of cerebrovascular diseases.

  17. A clinical pilot study of a modular video-CT augmentation system for image-guided skull base surgery

    NASA Astrophysics Data System (ADS)

    Liu, Wen P.; Mirota, Daniel J.; Uneri, Ali; Otake, Yoshito; Hager, Gregory; Reh, Douglas D.; Ishii, Masaru; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-02-01

    Augmentation of endoscopic video with preoperative or intraoperative image data [e.g., planning data and/or anatomical segmentations defined in computed tomography (CT) and magnetic resonance (MR)], can improve navigation, spatial orientation, confidence, and tissue resection in skull base surgery, especially with respect to critical neurovascular structures that may be difficult to visualize in the video scene. This paper presents the engineering and evaluation of a video augmentation system for endoscopic skull base surgery translated to use in a clinical study. Extension of previous research yielded a practical system with a modular design that can be applied to other endoscopic surgeries, including orthopedic, abdominal, and thoracic procedures. A clinical pilot study is underway to assess feasibility and benefit to surgical performance by overlaying CT or MR planning data in realtime, high-definition endoscopic video. Preoperative planning included segmentation of the carotid arteries, optic nerves, and surgical target volume (e.g., tumor). An automated camera calibration process was developed that demonstrates mean re-projection accuracy (0.7+/-0.3) pixels and mean target registration error of (2.3+/-1.5) mm. An IRB-approved clinical study involving fifteen patients undergoing skull base tumor surgery is underway in which each surgery includes the experimental video-CT system deployed in parallel to the standard-of-care (unaugmented) video display. Questionnaires distributed to one neurosurgeon and two otolaryngologists are used to assess primary outcome measures regarding the benefit to surgical confidence in localizing critical structures and targets by means of video overlay during surgical approach, resection, and reconstruction.

  18. Intra-operative registration for image enhanced endoscopic sinus surgery using photo-consistency.

    PubMed

    Chen, Min Si; Gonzalez, Gerardo; Lapeer, Rudy

    2007-01-01

    The purpose of this paper is to present an intensity based algorithm for aligning 2D endoscopic images with virtual images generated from pre-operative 3D data. The proposed algorithm uses photo-consistency as the measurement of similarity between images, provided the illumination is independent from the viewing direction.

  19. Workspace definition for navigated control functional endoscopic sinus surgery

    NASA Astrophysics Data System (ADS)

    Gessat, Michael; Hofer, Mathias; Audette, Michael; Dietz, Andreas; Meixensberger, Jürgen; Stauß, Gero; Burgert, Oliver

    2007-03-01

    For the pre-operative definition of a surgical workspace for Navigated Control ® Functional Endoscopic Sinus Surgery (FESS), we developed a semi-automatic image processing system. Based on observations of surgeons using a manual system, we implemented a workflow-based engineering process that led us to the development of a system reducing time and workload spent during the workspace definition. The system uses a feature based on local curvature to align vertices of a polygonal outline along the bone structures defining the cavities of the inner nose. An anisotropic morphologic operator was developed solve problems arising from artifacts from noise and partial volume effects. We used time measurements and NASA's TLX questionnaire to evaluate our system.

  20. Robust feature tracking for endoscopic pose estimation and structure recovery

    NASA Astrophysics Data System (ADS)

    Speidel, S.; Krappe, S.; Röhl, S.; Bodenstedt, S.; Müller-Stich, B.; Dillmann, R.

    2013-03-01

    Minimally invasive surgery is a highly complex medical discipline with several difficulties for the surgeon. To alleviate these difficulties, augmented reality can be used for intraoperative assistance. For visualization, the endoscope pose must be known which can be acquired with a SLAM (Simultaneous Localization and Mapping) approach using the endoscopic images. In this paper we focus on feature tracking for SLAM in minimally invasive surgery. Robust feature tracking and minimization of false correspondences is crucial for localizing the endoscope. As sensory input we use a stereo endoscope and evaluate different feature types in a developed SLAM framework. The accuracy of the endoscope pose estimation is validated with synthetic and ex vivo data. Furthermore we test the approach with in vivo image sequences from da Vinci interventions.

  1. Wide-field phase imaging for the endoscopic detection of dysplasia and early-stage esophageal cancer

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C. R. M.; Gordon, G. S. D.; Sawyer, T. W.; Wilkinson, T. D.; Bohndiek, S. E.

    2018-02-01

    Esophageal cancer has a 5-year survival rate below 20%, but can be curatively resected if it is detected early. At present, poor contrast for early lesions in white light imaging leads to a high miss rate in standard-of- care endoscopic surveillance. Early lesions in the esophagus, referred to as dysplasia, are characterized by an abundance of abnormal cells with enlarged nuclei. This tissue has a different refractive index profile to healthy tissue, which results in different light scattering properties and provides a source of endogenous contrast that can be exploited for advanced endoscopic imaging. For example, point measurements of such contrast can be made with scattering spectroscopy, while optical coherence tomography generates volumetric data. However, both require specialist interpretation for diagnostic decision making. We propose combining wide-field phase imaging with existing white light endoscopy in order to provide enhanced contrast for dysplasia and early-stage cancer in an image format that is familiar to endoscopists. Wide-field phase imaging in endoscopy can be achieved using coherent illumination combined with phase retrieval algorithms. Here, we present the design and simulation of a benchtop phase imaging system that is compatible with capsule endoscopy. We have undertaken preliminary optical modelling of the phase imaging setup, including aberration correction simulations and an investigation into distinguishing between different tissue phantom scattering coefficients. As our approach is based on phase retrieval rather than interferometry, it is feasible to realize a device with low-cost components for future clinical implementation.

  2. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment.

    PubMed

    Fan, Yingwei; Zhang, Boyu; Chang, Wei; Zhang, Xinran; Liao, Hongen

    2018-03-01

    Complete resection of diseased lesions reduces the recurrence of cancer, making it critical for surgical treatment. However, precisely resecting residual tumors is a challenge during operation. A novel integrated spectral-domain optical-coherence-tomography (SD-OCT) and laser-ablation therapy system for soft-biological-tissue resection is proposed. This is a prototype optical integrated diagnosis and therapeutic system as well as an optical theranostics system. We develop an optical theranostics system, which integrates SD-OCT, a laser-ablation unit, and an automatic scanning platform. The SD-OCT image of biological tissue provides an intuitive and clear view for intraoperative diagnosis and monitoring in real time. The effect of laser ablation is analyzed using a quantitative mathematical model. The automatic endoscopic scanning platform combines an endoscopic probe and an SD-OCT sample arm to provide optical theranostic scanning motion. An optical fiber and a charge-coupled device camera are integrated into the endoscopic probe, allowing detection and coupling of the OCT-aiming beam and laser spots. The integrated diagnostic and therapeutic system combines SD-OCT imaging and laser-ablation modules with an automatic scanning platform. OCT imaging, laser-ablation treatment, and the integration and control of diagnostic and therapeutic procedures were evaluated by performing phantom experiments. Furthermore, SD-OCT-guided laser ablation provided precision laser ablation and resection for the malignant lesions in soft-biological-tissue-lesion surgery. The results demonstrated that the appropriate laser-radiation power and duration time were 10 W and 10 s, respectively. In the laser-ablation evaluation experiment, the error reached approximately 0.1 mm. Another validation experiment was performed to obtain OCT images of the pre- and post-ablated craters of ex vivo porcine brainstem. We propose an optical integrated diagnosis and therapeutic system. The primary experimental results show the high efficiency and feasibility of our theranostics system, which is promising for realizing accurate resection of tumors in vivo and in situ in the future.

  3. Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes.

    PubMed

    Bell, Charreau S; Obstein, Keith L; Valdastri, Pietro

    2013-11-01

    Colorectal cancer is one of the leading causes of cancer-related deaths in the world, although it can be effectively treated if detected early. Teleoperated flexible endoscopes are an emerging technology to ease patient apprehension about the procedure, and subsequently increase compliance. Essential to teleoperation is robust feedback reflecting the change in pose (i.e., position and orientation) of the tip of the endoscope. The goal of this study is to first describe a novel image-based tracking system for teleoperated flexible endoscopes, and subsequently determine its viability in a clinical setting. The proposed approach leverages artificial neural networks (ANNs) to learn the mapping that links the optical flow between two sequential images to the change in the pose of the camera. Secondly, the study investigates for the first time how narrow band illumination (NBI) - today available in commercial gastrointestinal endoscopes - can be applied to enhance feature extraction, and quantify the effect of NBI and white light illumination (WLI), as well as their color information, on the strength of features extracted from the endoscopic camera stream. In order to provide the best features for the neural networks to learn the change in pose based on the image stream, we investigated two different imaging modalities - WLI and NBI - and we applied two different spatial partitions - lumen-centered and grid-based - to create descriptors used as input to the ANNs. An experiment was performed to compare the error of these four variations, measured in root mean square error (RMSE) from ground truth given by a robotic arm, to that of a commercial state-of-the-art magnetic tracker. The viability of this technique for a clinical setting was then tested using the four ANN variations, a magnetic tracker, and a commercial colonoscope. The trial was performed by an expert endoscopist (>2000 lifetime procedures) on a colonoscopy training model with porcine blood, and the RMSE of the ANN output was calculated with respect to the magnetic tracker readings. Using the image stream obtained from the commercial endoscope, the strength of features extracted was evaluated. In the first experiment, the best ANNs resulted from grid-based partitioning under WLI (2.42mm RMSE) for position, and from lumen-centered partitioning under NBI (1.69° RMSE) for rotation. By comparison, the performance of the tracker was 2.49mm RMSE in position and 0.89° RMSE in rotation. The trial with the commercial endoscope indicated that lumen-centered partitioning was the best overall, while NBI outperformed WLI in terms of illumination modality. The performance of lumen-centered partitioning with NBI was 1.03±0.8mm RMSE in positional degrees of freedom (DOF), and 1.26±0.98° RMSE in rotational DOF, while with WLI, the performance was 1.56±1.15mm RMSE in positional DOF and 2.45±1.90° RMSE in rotational DOF. Finally, the features extracted under NBI were found to be twice as strong as those extracted under WLI, but no significance in feature strengths was observed between a grayscale version of the image, and the red, blue, and green color channels. This work demonstrates that both WLI and NBI, combined with feature partitioning based on the anatomy of the colon, provide valid mechanisms for endoscopic camera pose estimation via image stream. Illumination provided by WLI and NBI produce ANNs with similar performance which are comparable to that of a state-of-the-art magnetic tracker. However, NBI produces features that are stronger than WLI, which enables more robust feature tracking, and better performance of the ANN in terms of accuracy. Thus, NBI with lumen-centered partitioning resulted the best approach among the different variations tested for vision-based pose estimation. The proposed approach takes advantage of components already available in commercial gastrointestinal endoscopes to provide accurate feedback about the motion of the tip of the endoscope. This solution may serve as an enabling technology for closed-loop control of teleoperated flexible endoscopes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A low-cost multimodal head-mounted display system for neuroendoscopic surgery.

    PubMed

    Xu, Xinghua; Zheng, Yi; Yao, Shujing; Sun, Guochen; Xu, Bainan; Chen, Xiaolei

    2018-01-01

    With rapid advances in technology, wearable devices as head-mounted display (HMD) have been adopted for various uses in medical science, ranging from simply aiding in fitness to assisting surgery. We aimed to investigate the feasibility and practicability of a low-cost multimodal HMD system in neuroendoscopic surgery. A multimodal HMD system, mainly consisted of a HMD with two built-in displays, an action camera, and a laptop computer displaying reconstructed medical images, was developed to assist neuroendoscopic surgery. With this intensively integrated system, the neurosurgeon could freely switch between endoscopic image, three-dimensional (3D) reconstructed virtual endoscopy images, and surrounding environment images. Using a leap motion controller, the neurosurgeon could adjust or rotate the 3D virtual endoscopic images at a distance to better understand the positional relation between lesions and normal tissues at will. A total of 21 consecutive patients with ventricular system diseases underwent neuroendoscopic surgery with the aid of this system. All operations were accomplished successfully, and no system-related complications occurred. The HMD was comfortable to wear and easy to operate. Screen resolution of the HMD was high enough for the neurosurgeon to operate carefully. With the system, the neurosurgeon might get a better comprehension on lesions by freely switching among images of different modalities. The system had a steep learning curve, which meant a quick increment of skill with it. Compared with commercially available surgical assistant instruments, this system was relatively low-cost. The multimodal HMD system is feasible, practical, helpful, and relatively cost efficient in neuroendoscopic surgery.

  5. Narrow band imaging versus autofluorescence imaging for head and neck squamous cell carcinoma detection: a prospective study.

    PubMed

    Ni, X-G; Zhang, Q-Q; Wang, G-Q

    2016-11-01

    This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.

  6. Linked color imaging application for improving the endoscopic diagnosis accuracy: a pilot study.

    PubMed

    Sun, Xiaotian; Dong, Tenghui; Bi, Yiliang; Min, Min; Shen, Wei; Xu, Yang; Liu, Yan

    2016-09-19

    Endoscopy has been widely used in diagnosing gastrointestinal mucosal lesions. However, there are still lack of objective endoscopic criteria. Linked color imaging (LCI) is newly developed endoscopic technique which enhances color contrast. Thus, we investigated the clinical application of LCI and further analyzed pixel brightness for RGB color model. All the lesions were observed by white light endoscopy (WLE), LCI and blue laser imaging (BLI). Matlab software was used to calculate pixel brightness for red (R), green (G) and blue color (B). Of the endoscopic images for lesions, LCI had significantly higher R compared with BLI but higher G compared with WLE (all P < 0.05). R/(G + B) was significantly different among 3 techniques and qualified as a composite LCI marker. Our correlation analysis of endoscopic diagnosis with pathology revealed that LCI was quite consistent with pathological diagnosis (P = 0.000) and the color could predict certain kinds of lesions. ROC curve demonstrated at the cutoff of R/(G+B) = 0.646, the area under curve was 0.646, and the sensitivity and specificity was 0.514 and 0.773. Taken together, LCI could improve efficiency and accuracy of diagnosing gastrointestinal mucosal lesions and benefit target biopsy. R/(G + B) based on pixel brightness may be introduced as a objective criterion for evaluating endoscopic images.

  7. Image-enhanced endoscopy with I-scan technology for the evaluation of duodenal villous patterns.

    PubMed

    Cammarota, Giovanni; Ianiro, Gianluca; Sparano, Lucia; La Mura, Rossella; Ricci, Riccardo; Larocca, Luigi M; Landolfi, Raffaele; Gasbarrini, Antonio

    2013-05-01

    I-scan technology is the newly developed endoscopic tool that works in real time and utilizes a digital contrast method to enhance endoscopic image. We performed a feasibility study aimed to determine the diagnostic accuracy of i-scan technology for the evaluation of duodenal villous patterns, having histology as the reference standard. In this prospective, single center, open study, patients undergoing upper endoscopy for an histological evaluation of duodenal mucosa were enrolled. All patients underwent upper endoscopy using high resolution view in association with i-scan technology. During endoscopy, duodenal villous patterns were evaluated and classified as normal, partial villous atrophy, or marked villous atrophy. Results were then compared with histology. One hundred fifteen subjects were recruited in this study. The endoscopist was able to find marked villous atrophy of the duodenum in 12 subjects, partial villous atrophy in 25, and normal villi in the remaining 78 individuals. The i-scan system was demonstrated to have great accuracy (100 %) in the detection of marked villous atrophy patterns. I-scan technology showed quite lower accuracy in determining partial villous atrophy or normal villous patterns (respectively, 90 % for both items). Image-enhancing endoscopic technology allows a clear visualization of villous patterns in the duodenum. By switching from the standard to the i-scan view, it is possible to optimize the accuracy of endoscopy in recognizing villous alteration in subjects undergoing endoscopic evaluation.

  8. Towards non-contact photo-acoustic endoscopy using speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Lengenfelder, Benjamin; Mehari, Fanuel; Tang, Yuqi; Klämpfl, Florian; Zalevsky, Zeev; Schmidt, Michael

    2017-03-01

    Photoacoustic Tomography combines the advantages of optical and acoustic imaging as it makes use of the high optical contrast of tissue and the high resolution of ultrasound. Furthermore, high penetration depths in tissue in the order of several centimeters can be achieved by the combination of these modalities. Extensive research is being done in the field of miniaturization of photoacoustic devices, as photoacoustic imaging could be of significant benefits for the physician during endoscopic interventions. All the existing miniature systems are based on contact transducers for signal detection that are placed at the distal end of an endoscopic device. This makes the manufacturing process difficult and impedance matching to the inspected surface a requirement. The requirement for contact limits the view of the physician during the intervention. Consequently, a fiber based non-contact optical sensing technique would be highly beneficial for the development of miniaturized photoacoustic endoscopic devices. This work demonstrates the feasibility of surface displacement detection using remote speckle-sensing using a high speed camera and an imaging fiber bundle that is used in commercially available video endoscopes. The feasibility of displacement sensing is demonstrated by analysis of phantom vibrations which are induced by loudspeaker membrane oscillations. Since the usability of the remote speckle-sensing for photo-acoustic signal detection was already demonstrated, the fiber bundle approach demonstrates the potential for non-contact photoacoustic detections during endoscopy.

  9. Comprehensive preoperative staging system for endoscopic single and multicorridor approaches to juvenile nasal angiofibromas

    PubMed Central

    Janakiram, Trichy N.; Sharma, Shilpee B.; Kasper, Ekkehard; Deshmukh, Onkar; Cherian, Iype

    2017-01-01

    Background: Juvenile nasal angiofibromas (JNA) is a benign lesion with high vascularity and propensity of bone erosion leading to skull base invasion and intracranial extension. It is known to involve multiple compartments, which are often surgically difficult to access. With evolution in surgical expertise and technical innovations, endoscopic and endoscopic-assisted management has become the preferred choice of surgical management. Over the last four decades, various staging systems have been proposed, which are largely based on the extent of nasal angiofibroma. However, no clear guidelines exist for the stage-appropriate surgical management. In this study, we aim to formulate a novel staging system based on the analysis of high quality preoperative imaging and propose detailed surgical guidelines related to disease stages as observed in 242 primary cases of JNA. Methods: A retrospective analysis of the case records of 242 primary JNA cases was performed at our center. Patients were staged according to various existing staging systems as well as our own new staging system, and outcome variables were compared with respect to intraoperative blood loss, multiple staged operations, and tumor recurrences. Operative records were studied and precise endoscopic surgical guidelines were formulated for each stage. Results: Comparing the intraoperative blood loss seen in stages of various classifications, it was found that intraoperative blood loss correlated best and statistically significantly with stages in the newly proposed Janakiram staging system when compared to the existing staging systems. Staged operations were performed in a total of 7/242 patients, and there was a significant association between the requirement of a staged operation and tumor extent (Fischer's exact test, P < 0.001). Tumor recurrence was seen in 22 cases and the pterygoid wedge was found to be the most frequent site of recurrence initially. As the extent of resection improved with better surgical technique over time, recurrences were only found in superior orbital fissure, around the internal carotid artery, and in the middle cranial fossa. Conclusion: This new Janakiram staging system is based on preoperative imaging data from one of the largest JNA case series reported thus far. Respective guidelines reliably stratify patients into treatment groups with definite surgical approaches and predicts outcome. Improved surgical approaches in the modern endoscopic era have redefined JNA management with improved outcome. This study shows the importance of precise presurgical imaging and the choice of the most suitable surgical approach in reducing morbidity and mortality in JNA surgery. PMID:28540121

  10. Endoscopic and keyhole endoscope-assisted neurosurgical approaches: a qualitative survey on technical challenges and technological solutions.

    PubMed

    Marcus, Hani J; Cundy, Thomas P; Hughes-Hallett, Archie; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar

    2014-10-01

    The literature reflects a resurgence of interest in endoscopic and keyhole endoscope-assisted neurosurgical approaches as alternatives to conventional microsurgical approaches in carefully selected cases. The aim of this study was to assess the technical challenges of neuroendoscopy, and the scope for technological innovations to overcome these barriers. All full members of the Society of British Neurosurgeons (SBNS) were electronically invited to participate in an online survey. The open-ended structured survey asked three questions; firstly, whether the surgeon presently utilises or has experience with endoscopic or endoscope-assisted approaches; secondly, what they consider to be the major technical barriers to adopting such approaches; and thirdly, what technological advances they foresee improving safety and efficacy in the field. Responses were subjected to a qualitative research method of multi-rater emergent theme analysis. Three clear themes emerged: 1) surgical approach and better integration with image-guidance systems (20%), 2) intra-operative visualisation and improvements in neuroendoscopy (49%), and 3) surgical manipulation and improvements in instruments (74%). The analysis of responses to our open-ended survey revealed that although opinion was varied three major themes could be identified. Emerging technological advances such as augmented reality, high-definition stereo-endoscopy, and robotic joint-wristed instruments may help overcome the technical difficulties associated with neuroendoscopic approaches. Results of this qualitative survey provide consensus amongst the technology end-user community such that unambiguous goals and priorities may be defined. Systems integrating these advances could improve the safety and efficacy of endoscopic and endoscope-assisted neurosurgical approaches.

  11. Endoscopic and Keyhole Endoscope-assisted Neurosurgical Approaches: A Qualitative Survey on Technical Challenges and Technological Solutions

    PubMed Central

    Marcus, Hani J; Cundy, Thomas P; Hughes-Hallett, Archie; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar

    2014-01-01

    Introduction The literature reflects a resurgence of interest in endoscopic and keyhole endoscope-assisted neurosurgical approaches as alternatives to conventional microsurgical approaches in carefully selected cases. The aim of this study was to assess the technical challenges of neuroendoscopy, and the scope for technological innovations to overcome these barriers. Materials and Methods All full members of the Society of British Neurosurgeons (SBNS) were electronically invited to participate in an online survey. The open-ended structured survey asked three questions; firstly, whether the surgeon presently utilises or has experience with endoscopic or endoscope-assisted approaches; secondly, what they consider to be the major technical barriers to adopting such approaches; and thirdly, what technological advances they foresee improving safety and efficacy in the field. Responses were subjected to a qualitative research method of multi-rater emergent themes analysis. Results Three clear themes emerged: 1) surgical approach and better integration with image-guidance systems (20%), 2) intra-operative visualisation and improvements in neuroendoscopy (49%), and 3) surgical manipulation and improvements in instruments (74%). Discussion The analysis of responses to our open-ended survey revealed that although opinion was varied three major themes could be identified. Emerging technological advances such as augmented reality, high-definition stereo-endoscopy, and robotic joint-wristed instruments may help overcome the technical difficulties associated with neuroendoscopic approaches. Conclusions Results of this qualitative survey provide consensus amongst the technology end-user community such that unambiguous goals and priorities may be defined. Systems integrating these advances could improve the safety and efficacy of endoscopic and endoscope-assisted neurosurgical approaches. PMID:24533591

  12. Technical feasibility of patient-friendly screening and treatment of digestive disease by remote control robotic capsule endoscopes via the internet.

    PubMed

    Ohta, Hidetoshi; Kawashima, Makoto

    2014-01-01

    A few types of steerable capsule endoscopes have been proposed but disappointingly their systems were not applicable to common endoscopic treatment or pathological diagnosis. This study validates the possibility of treatment and biopsy by using an internet-linked (wireless control via the internet) robotic capsule endoscope (iRoboCap). iRoboCap consisted of three parts: an imaging unit, a movement control unit and a therapeutic tool unit. Two types of iRoboCaps were designed, one was a submarine type (iRoboCap-S) and the other was an amphibious type (iRoboCap-A). They were remotely and wirelessly steered by a portable tablet device using Bluetooth and via the internet. The success rates of biopsy or clipping were evaluated in a phantom. Although the two prototypes have various problems that need improving, we hope that our robotic and wireless innovations have opened the door to new endoscopic procedures and will pioneer various new applications in medicine.

  13. Three-Dimensional Photoacoustic Endoscopic Imaging of the Rabbit Esophagus

    PubMed Central

    Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy. PMID:25874640

  14. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.

    PubMed

    Yang, Joon Mo; Favazza, Christopher; Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.

  15. Reevaluation of JPEG image compression to digitalized gastrointestinal endoscopic color images: a pilot study

    NASA Astrophysics Data System (ADS)

    Kim, Christopher Y.

    1999-05-01

    Endoscopic images p lay an important role in describing many gastrointestinal (GI) disorders. The field of radiology has been on the leading edge of creating, archiving and transmitting digital images. With the advent of digital videoendoscopy, endoscopists now have the ability to generate images for storage and transmission. X-rays can be compressed 30-40X without appreciable decline in quality. We reported results of a pilot study using JPEG compression of 24-bit color endoscopic images. For that study, the result indicated that adequate compression ratios vary according to the lesion and that images could be compressed to between 31- and 99-fold smaller than the original size without an appreciable decline in quality. The purpose of this study was to expand upon the methodology of the previous sty with an eye towards application for the WWW, a medium which would expand both clinical and educational purposes of color medical imags. The results indicate that endoscopists are able to tolerate very significant compression of endoscopic images without loss of clinical image quality. This finding suggests that even 1 MB color images can be compressed to well under 30KB, which is considered a maximal tolerable image size for downloading on the WWW.

  16. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.

  17. Intraventricular and skull base neuroendoscopy in 2012: a global survey of usage patterns and the role of intraoperative neuronavigation.

    PubMed

    Esposito, Felice; Di Rocco, Federico; Zada, Gabriel; Cinalli, Giuseppe; Schroeder, Henry W S; Mallucci, Conor; Cavallo, Luigi M; Decq, Philippe; Chiaramonte, Carmela; Cappabianca, Paolo

    2013-12-01

    During the past decade, endoscopic intraventricular and skull base operations have become widely used for a variety of evolving indications. A global survey of practicing endoscopic neurosurgeons was performed to characterize patterns of usage regarding endoscopy equipment, instrumentation, and the indications for using image-guided surgery systems (IGSs). An online survey consisting of 8 questions was completed by 235 neurosurgeons with endoscopic surgical experience. Responses were entered into a database and subsequently analyzed. The median number of operations performed per year by intraventricular and skull base endoscopic surgeons was 27 and 25, respectively. Data regarding endoscopic equipment brand, diameter, and length are presented. The most commonly reported indications for IGSs during intraventricular endoscopic surgery were tumor biopsy/resection, intraventricular cyst fenestration, septostomy/pellucidotomy, endoscopic third ventriculostomy, and aqueductal stent placement. Intraventricular surgeons reported using IGSs for all cases in 16.6% and never in 24.4%. Overall, endoscopic skull base surgeons reported using IGSs for all cases in 23.9% and never in 18.9%. The most commonly reported indications for IGSs during endoscopic skull base operations were complex sinus/skull base anatomy, extended approaches, and reoperation. Many variations and permutations for performing intraventricular and skull base endoscopic surgery exist worldwide. Much can be learned by studying the patterns and indications for using various types of equipment and operative adjuncts such as IGSs. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Correlation of endoscopic optical coherence tomography with histology

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Rollins, Andrew M.; Willis, Joseph; Sivak, Michael J., Jr.; Izatt, Joseph A.

    2000-04-01

    Optical Coherence Tomography (OCT) is a noninvasive optical imaging technique that allows high-resolution cross- sectional imaging of tissue microstructure. We have recently developed a system for endoscopic OCT (EOCT) to examine the gastrointestinal tract of humans in vivo. Compared to endoscopic ultrasonic devices it offers a higher resolution and does not require coupling gels or fluids. EOCT may lead to a versatile tool for biopsy site selection or optical biopsy itself. The EOCT unit is comprised of an interferometer unit with a high speed scanning reference arm and an endoscopically compatible radially scanning probe as the sample arm. Fast data acquisition allows real-time display. Temporal averaging for speckle reduction and a transformation to correct nonlinear scanning were included in the EOCT control software, both in real-time. During in vivo clinical trials, we have observe the structure of the mucosa and submucosa in several gastrointestinal organs as well as glands, blood vessels, pits, villi and crypts. The purpose of this study was to correlate images acquired in vitro with EOCT to corresponding histological sections. EOCT images were obtained on fresh specimens, which were then fixed in formalin and submitted for standard histology. Tissues examined were normal specimens, which were then fixed in formalin and submitted for standard histology. Tissues examined were normal specimens of stomach, ileum, colon and rectum. It was shown that he thickness of the mucosa correlates well with the first bright layer in EOCT. The R2-value was determined to be 0.69. The submucosa and the muscularis propria could be identified. Furthermore, we were able to show the effect of pressure on the tissue on the visible details in the EOCT images.

  19. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  20. Dual-modality smartphone endoscope for cervical pre-cancer detection (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hong, Xiangqian; Yu, Bing

    2017-02-01

    Early detection is the key to the prevention of cervical cancer. There is an urgent need for a portable, affordable, and easy-to-use device for cervical pre-cancer detection, especially in low-resource settings. We have developed a dual-modality fiber-optic endoscope system (SmartME) that integrates high-resolution fluorescence imaging (FLI) and quantitative diffuse reflectance spectroscopy (DRS) onto a smartphone platform. The SmartME consists of a smartphone, a miniature fiber-optic endoscope, a phone attachment containing imaging optics, and a smartphone application (app). FLI is obtained by painting the tissue with a contrast agent (e.g., proflavine), illuminating the tissue and collecting its fluorescence images through an imaging bundle that is coupled to the phone camera. DRS is achieved by using a white LED, attaching additional source and detection fibers to the imaging bundle, and converting the phone camera into a spectrometer. The app collects images/spectra and transmits them to a remote server for analysis to extract the tissue parameters, including nuclear-to-cytoplasm ratio (calculated from FLI), concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) as well as scattering (measured by DRS). These parameters can be used to detect cervical dysplasia. Our preliminary studies have demonstrated that the SmartME can clearly visualize the nuclei in living cells and in vivo biological samples, with a high spatial resolution of 3.1μm. The device can also measure tissue absorption and scattering properties with comparable accuracy to those of a benchtop DRS system. The SmartME has great potential to provide a compact, affordable, and `smart' solution for early detection of neoplastic changes in cervix.

  1. Adaptive marker-free registration using a multiple point strategy for real-time and robust endoscope electromagnetic navigation.

    PubMed

    Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku

    2015-02-01

    Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. LED-based endoscopic light source for spectral imaging

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Favreau, Peter; Rich, Thomas C.; Leavesley, Silas J.

    2016-03-01

    Colorectal cancer is the United States 3rd leading cancer in death rates.1 The current screening for colorectal cancer is an endoscopic procedure using white light endoscopy (WLE). There are multiple new methods testing to replace WLE, for example narrow band imaging and autofluorescence imaging.2 However, these methods do not meet the need for a higher specificity or sensitivity. The goal for this project is to modify the presently used endoscope light source to house 16 narrow wavelength LEDs for spectral imaging in real time while increasing sensitivity and specificity. The process to do such was to take an Olympus CLK-4 light source, replace the light and electronics with 16 LEDs and new circuitry. This allows control of the power and intensity of the LEDs. This required a larger enclosure to house a bracket system for the solid light guide (lightpipe), three new circuit boards, a power source and National Instruments hardware/software for computer control. The results were a successfully designed retrofit with all the new features. The LED testing resulted in the ability to control each wavelength's intensity. The measured intensity over the voltage range will provide the information needed to couple the camera for imaging. Overall the project was successful; the modifications to the light source added the controllable LEDs. This brings the research one step closer to the main goal of spectral imaging for early detection of colorectal cancer. Future goals will be to connect the camera and test the imaging process.

  3. 3D handheld endoscope for optical coherence tomography of the human oral mucosa in vivo

    NASA Astrophysics Data System (ADS)

    Walther, Julia; Schnabel, Christian; Ebert, Nadja; Baumann, Michael; Koch, Edmund

    2017-07-01

    The early non-invasive diagnosis of epithelial tissue alterations in daily clinical routine is still challenging. Since optical coherence tomography (OCT) shows the potential to differentiate between benign and malignant tissue of primal endothelium, OCT could be beneficial for the early diagnosis of malignancies in routine health checks. In this research, a new handheld endoscopic scanning unit was designed and connected to a spectral domain OCT system of our workgroup for the in vivo imaging of the human oral mucosa.

  4. Faecal calprotectin and magnetic resonance imaging in detecting Crohn’s disease endoscopic postoperative recurrence

    PubMed Central

    Baillet, Pierre; Cadiot, Guillaume; Goutte, Marion; Goutorbe, Felix; Brixi, Hedia; Hoeffel, Christine; Allimant, Christophe; Reymond, Maud; Obritin-Guilhen, Hélène; Magnin, Benoit; Bommelaer, Gilles; Pereira, Bruno; Hordonneau, Constance; Buisson, Anthony

    2018-01-01

    AIM To assess magnetic resonance imaging (MRI) and faecal calprotectin to detect endoscopic postoperative recurrence in patients with Crohn’s disease (CD). METHODS From two tertiary centers, all patients with CD who underwent ileocolonic resection were consecutively and prospectively included. All the patients underwent MRI and endoscopy within the first year after surgery or after the restoration of intestinal continuity [median = 6 mo (5.0-9.3)]. The stools were collected the day before the colonoscopy to evaluate faecal calprotectin level. Endoscopic postoperative recurrence (POR) was defined as Rutgeerts’ index ≥ i2b. The MRI was analyzed independently by two radiologists blinded from clinical data. RESULTS Apparent diffusion coefficient (ADC) was lower in patients with endoscopic POR compared to those with no recurrence (2.03 ± 0.32 vs 2.27 ± 0.38 × 10-3 mm²/s, P = 0.032). Clermont score (10.4 ± 5.8 vs 7.4 ± 4.5, P = 0.038) and relative contrast enhancement (RCE) (129.4% ± 62.8% vs 76.4% ± 32.6%, P = 0.007) were significantly associated with endoscopic POR contrary to the magnetic resonance index of activity (MaRIA) (7.3 ± 4.5 vs 4.8 ± 3.7; P = 0.15) and MR scoring system (P = 0.056). ADC < 2.35 × 10-3 mm²/s [sensitivity = 0.85, specificity = 0.65, positive predictive value (PPV) = 0.85, negative predictive value (NPV) = 0.65] and RCE > 100% (sensitivity = 0.75, specificity = 0.81, PPV = 0.75, NPV = 0.81) were the best cut-off values to identify endoscopic POR. Clermont score > 6.4 (sensitivity = 0.61, specificity = 0.82, PPV = 0.73, NPV = 0.74), MaRIA > 3.76 (sensitivity = 0.61, specificity = 0.82, PPV = 0.73, NPV = 0.74) and a MR scoring system ≥ MR1 (sensitivity = 0.54, specificity = 0.82, PPV = 0.70, and NPV = 0.70) demonstrated interesting performances to detect endoscopic POR. Faecal calprotectin values were significantly higher in patients with endoscopic POR (114 ± 54.5 μg/g vs 354.8 ± 432.5 μg/g; P = 0.0075). Faecal calprotectin > 100 μg/g demonstrated high performances to detect endoscopic POR (sensitivity = 0.67, specificity = 0.93, PPV = 0.89 and NPV = 0.77). CONCLUSION Faecal calprotectin and MRI are two reliable tools to detect endoscopic POR in patients with CD. PMID:29434453

  5. Faecal calprotectin and magnetic resonance imaging in detecting Crohn's disease endoscopic postoperative recurrence.

    PubMed

    Baillet, Pierre; Cadiot, Guillaume; Goutte, Marion; Goutorbe, Felix; Brixi, Hedia; Hoeffel, Christine; Allimant, Christophe; Reymond, Maud; Obritin-Guilhen, Hélène; Magnin, Benoit; Bommelaer, Gilles; Pereira, Bruno; Hordonneau, Constance; Buisson, Anthony

    2018-02-07

    To assess magnetic resonance imaging (MRI) and faecal calprotectin to detect endoscopic postoperative recurrence in patients with Crohn's disease (CD). From two tertiary centers, all patients with CD who underwent ileocolonic resection were consecutively and prospectively included. All the patients underwent MRI and endoscopy within the first year after surgery or after the restoration of intestinal continuity [median = 6 mo (5.0-9.3)]. The stools were collected the day before the colonoscopy to evaluate faecal calprotectin level. Endoscopic postoperative recurrence (POR) was defined as Rutgeerts' index ≥ i2b. The MRI was analyzed independently by two radiologists blinded from clinical data. Apparent diffusion coefficient (ADC) was lower in patients with endoscopic POR compared to those with no recurrence (2.03 ± 0.32 vs 2.27 ± 0.38 × 10 -3 mm²/s, P = 0.032). Clermont score (10.4 ± 5.8 vs 7.4 ± 4.5, P = 0.038) and relative contrast enhancement (RCE) (129.4% ± 62.8% vs 76.4% ± 32.6%, P = 0.007) were significantly associated with endoscopic POR contrary to the magnetic resonance index of activity (MaRIA) (7.3 ± 4.5 vs 4.8 ± 3.7; P = 0.15) and MR scoring system ( P = 0.056). ADC < 2.35 × 10 -3 mm²/s [sensitivity = 0.85, specificity = 0.65, positive predictive value (PPV) = 0.85, negative predictive value (NPV) = 0.65] and RCE > 100% (sensitivity = 0.75, specificity = 0.81, PPV = 0.75, NPV = 0.81) were the best cut-off values to identify endoscopic POR. Clermont score > 6.4 (sensitivity = 0.61, specificity = 0.82, PPV = 0.73, NPV = 0.74), MaRIA > 3.76 (sensitivity = 0.61, specificity = 0.82, PPV = 0.73, NPV = 0.74) and a MR scoring system ≥ MR1 (sensitivity = 0.54, specificity = 0.82, PPV = 0.70, and NPV = 0.70) demonstrated interesting performances to detect endoscopic POR. Faecal calprotectin values were significantly higher in patients with endoscopic POR (114 ± 54.5 μg/g vs 354.8 ± 432.5 μg/g; P = 0.0075). Faecal calprotectin > 100 μg/g demonstrated high performances to detect endoscopic POR (sensitivity = 0.67, specificity = 0.93, PPV = 0.89 and NPV = 0.77). Faecal calprotectin and MRI are two reliable tools to detect endoscopic POR in patients with CD.

  6. Cascaded deep decision networks for classification of endoscopic images

    NASA Astrophysics Data System (ADS)

    Murthy, Venkatesh N.; Singh, Vivek; Sun, Shanhui; Bhattacharya, Subhabrata; Chen, Terrence; Comaniciu, Dorin

    2017-02-01

    Both traditional and wireless capsule endoscopes can generate tens of thousands of images for each patient. It is desirable to have the majority of irrelevant images filtered out by automatic algorithms during an offline review process or to have automatic indication for highly suspicious areas during an online guidance. This also applies to the newly invented endomicroscopy, where online indication of tumor classification plays a significant role. Image classification is a standard pattern recognition problem and is well studied in the literature. However, performance on the challenging endoscopic images still has room for improvement. In this paper, we present a novel Cascaded Deep Decision Network (CDDN) to improve image classification performance over standard Deep neural network based methods. During the learning phase, CDDN automatically builds a network which discards samples that are classified with high confidence scores by a previously trained network and concentrates only on the challenging samples which would be handled by the subsequent expert shallow networks. We validate CDDN using two different types of endoscopic imaging, which includes a polyp classification dataset and a tumor classification dataset. From both datasets we show that CDDN can outperform other methods by about 10%. In addition, CDDN can also be applied to other image classification problems.

  7. Photometric stereo endoscopy

    PubMed Central

    Parot, Vicente; Lim, Daryl; González, Germán; Traverso, Giovanni; Nishioka, Norman S.; Vakoc, Benjamin J.

    2013-01-01

    Abstract. While color video endoscopy has enabled wide-field examination of the gastrointestinal tract, it often misses or incorrectly classifies lesions. Many of these missed lesions exhibit characteristic three-dimensional surface topographies. An endoscopic system that adds topographical measurements to conventional color imagery could therefore increase lesion detection and improve classification accuracy. We introduce photometric stereo endoscopy (PSE), a technique which allows high spatial frequency components of surface topography to be acquired simultaneously with conventional two-dimensional color imagery. We implement this technique in an endoscopic form factor and demonstrate that it can acquire the topography of small features with complex geometries and heterogeneous optical properties. PSE imaging of ex vivo human gastrointestinal tissue shows that surface topography measurements enable differentiation of abnormal shapes from surrounding normal tissue. Together, these results confirm that the topographical measurements can be obtained with relatively simple hardware in an endoscopic form factor, and suggest the potential of PSE to improve lesion detection and classification in gastrointestinal imaging. PMID:23864015

  8. Generation of light-sheet at the end of multimode fibre (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Plöschner, Martin; Kollárová, Véra; Dostál, Zbyněk.; Nylk, Jonathan; Barton-Owen, Thomas; Ferrier, David E. K.; Chmelik, Radim; Dholakia, Kishan; Cizmár, TomáÅ.¡

    2017-02-01

    Light-sheet fluorescence microscopy is quickly becoming one of the cornerstone imaging techniques in biology as it provides rapid, three-dimensional sectioning of specimens at minimal levels of phototoxicity. It is very appealing to bring this unique combination of imaging properties into an endoscopic setting and be able to perform optical sectioning deep in tissues. Current endoscopic approaches for delivery of light-sheet illumination are based on single-mode optical fibre terminated by cylindrical gradient index lens. Such configuration generates a light-sheet plane that is axially fixed and a mechanical movement of either the sample or the endoscope is required to acquire three-dimensional information about the sample. Furthermore, the axial resolution of this technique is limited to 5um. The delivery of the light-sheet through the multimode fibre provides better axial resolution limited only by its numerical aperture, the light-sheet is scanned holographically without any mechanical movement, and multiple advanced light-sheet imaging modalities, such as Bessel and structured illumination Bessel beam, are intrinsically supported by the system due to the cylindrical symmetry of the fibre. We discuss the holographic techniques for generation of multiple light-sheet types and demonstrate the imaging on a sample of fluorescent beads fixed in agarose gel, as well as on a biological sample of Spirobranchus Lamarcki.

  9. Multiphoton imaging of low grade, high grade intraepithelial neoplasia and intramucosal invasive cancer of esophagus

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2017-04-01

    Esophageal squamous cell carcinoma (ESCC) is devastating because of its aggressive lymphatic spread and clinical course. It is believed to occur through low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and intramucosal invasive cancer (IMC) before transforming to submucosal cancer. In particular, these early lesions (LGIN, HGIN and IMC), which involve no lymph node nor distant metastasis, can be cured by endoscopic treatment. Therefore, early identification of these lesions is important so as to offer a curative endoscopic resection, thus slowing down the development of ESCC. In this work, spectral information and morphological features of the normal esophageal mucosa are first studied. Then, the morphological changes of LGIN, HGIN and IMC are described. Lastly, quantitative parameters are also extracted by calculating the nuclear-to-cytoplasmic ratio of epithelial cells and the pixel density of collagen in the lamina propria. These results show that multiphoton microscopy (MPM) has the ability to identify normal esophageal mucosa, LGIN, HGIN and IMC. With the development of multiphoton endoscope systems for in vivo imaging, combined with a laser ablation system, MPM has the potential to provide immediate pathologic diagnosis and curative treatment of ESCC before the transformation to submucosal cancer in the future.

  10. Multiple LEDs luminous system in capsule endoscope

    NASA Astrophysics Data System (ADS)

    Mang, Ou-Yang; Huang, Shih-Wei; Lee, Hsin-Hung; Chen, Yung-Lin; Huang, Ko-Chih; Kuo, Yi-Ting

    2007-02-01

    Developing the luminous system in a capsule endoscope, it is difficult to obtain an uniform illumination[1] on the observed object because of several reasons: the light pattern of LED is sensitively depend on the driving current, location and projective angles; the optical path of LED light source is not parallel to the optical axis of the nearby imaging lenses; the strong reflection from the inner surface of the dome may saturate the CMOS sensors; the object plane of the observed intestine is not flat. Those reasons induce the over-blooming and deep-dark contrast in a picture and distort the original image strongly. The purpose of the article is to construct a photometric model to analyze the LED projection light pattern, and, furthermore, design a novel multiple LEDs luminous system for obtaining an uniform-brightness image. Several key parameters resulting as illumination uniformity has been taken under the model consideration and proven by experimental results. Those parameters include LED light pattern accuracy, choosing LED position relative to the imaging optical axis, LED numbers, arrangement, and the inner curvature of the dome. The novel structure improves the uniformity from 41% to 71% and reduces the light energy loss under 2%. The progress will help medical professionals to diagnose diseases and give treatment precisely based on the vivid image.

  11. A novel endoscopic fluorescent band ligation method for tumor localization.

    PubMed

    Hyun, Jong Hee; Kim, Seok-Ki; Kim, Kwang Gi; Kim, Hong Rae; Lee, Hyun Min; Park, Sunup; Kim, Sung Chun; Choi, Yongdoo; Sohn, Dae Kyung

    2016-10-01

    Accurate tumor localization is essential for minimally invasive surgery. This study describes the development of a novel endoscopic fluorescent band ligation method for the rapid and accurate identification of tumor sites during surgery. The method utilized a fluorescent rubber band, made of indocyanine green (ICG) and a liquid rubber solution mixture, as well as a near-infrared fluorescence laparoscopic system with a dual light source using a high-powered light-emitting diode (LED) and a 785-nm laser diode. The fluorescent rubber bands were endoscopically placed on the mucosae of porcine stomachs and colons. During subsequent conventional laparoscopic stomach and colon surgery, the fluorescent bands were assayed using the near-infrared fluorescence laparoscopy system. The locations of the fluorescent clips were clearly identified on the fluorescence images in real time. The system was able to distinguish the two or three bands marked on the mucosal surfaces of the stomach and colon. Resection margins around the fluorescent bands were sufficient in the resected specimens obtained during stomach and colon surgery. These novel endoscopic fluorescent bands could be rapidly and accurately localized during stomach and colon surgery. Use of these bands may make possible the excision of exact target sites during minimally invasive gastrointestinal surgery.

  12. Motion magnification for endoscopic surgery

    NASA Astrophysics Data System (ADS)

    McLeod, A. Jonathan; Baxter, John S. H.; de Ribaupierre, Sandrine; Peters, Terry M.

    2014-03-01

    Endoscopic and laparoscopic surgeries are used for many minimally invasive procedures but limit the visual and haptic feedback available to the surgeon. This can make vessel sparing procedures particularly challenging to perform. Previous approaches have focused on hardware intensive intraoperative imaging or augmented reality systems that are difficult to integrate into the operating room. This paper presents a simple approach in which motion is visually enhanced in the endoscopic video to reveal pulsating arteries. This is accomplished by amplifying subtle, periodic changes in intensity coinciding with the patient's pulse. This method is then applied to two procedures to illustrate its potential. The first, endoscopic third ventriculostomy, is a neurosurgical procedure where the floor of the third ventricle must be fenestrated without injury to the basilar artery. The second, nerve-sparing robotic prostatectomy, involves removing the prostate while limiting damage to the neurovascular bundles. In both procedures, motion magnification can enhance subtle pulsation in these structures to aid in identifying and avoiding them.

  13. [Design of Adjustable Magnetic Field Generating Device in the Capsule Endoscope Tracking System].

    PubMed

    Ruan, Chao; Guo, Xudong; Yang, Fei

    2015-08-01

    The capsule endoscope swallowed from the mouth into the digestive system can capture the images of important gastrointestinal tract regions. It can compensate for the blind spot of traditional endoscopic techniques. It enables inspection of the digestive system without discomfort or need for sedation. However, currently available clinical capsule endoscope has some limitations such as the diagnostic information being not able to correspond to the orientation in the body, since the doctor is unable to control the capsule motion and orientation. To solve the problem, it is significant to track the position and orientation of the capsule in the human body. This study presents an AC excitation wireless tracking method in the capsule endoscope, and the sensor embedded in the capsule can measure the magnetic field generated by excitation coil. And then the position and orientation of the capsule can be obtained by solving a magnetic field inverse problem. Since the magnetic field decays with distance dramatically, the dynamic range of the received signal spans three orders of magnitude, we designed an adjustable alternating magnetic field generating device. The device can adjust the strength of the alternating magnetic field automatically through the feedback signal from the sensor. The prototype experiment showed that the adjustable magnetic field generating device was feasible. It could realize the automatic adjustment of the magnetic field strength successfully, and improve the tracking accuracy.

  14. Multispectral image alignment using a three channel endoscope in vivo during minimally invasive surgery

    PubMed Central

    Clancy, Neil T.; Stoyanov, Danail; James, David R. C.; Di Marco, Aimee; Sauvage, Vincent; Clark, James; Yang, Guang-Zhong; Elson, Daniel S.

    2012-01-01

    Sequential multispectral imaging is an acquisition technique that involves collecting images of a target at different wavelengths, to compile a spectrum for each pixel. In surgical applications it suffers from low illumination levels and motion artefacts. A three-channel rigid endoscope system has been developed that allows simultaneous recording of stereoscopic and multispectral images. Salient features on the tissue surface may be tracked during the acquisition in the stereo cameras and, using multiple camera triangulation techniques, this information used to align the multispectral images automatically even though the tissue or camera is moving. This paper describes a detailed validation of the set-up in a controlled experiment before presenting the first in vivo use of the device in a porcine minimally invasive surgical procedure. Multispectral images of the large bowel were acquired and used to extract the relative concentration of haemoglobin in the tissue despite motion due to breathing during the acquisition. Using the stereoscopic information it was also possible to overlay the multispectral information on the reconstructed 3D surface. This experiment demonstrates the ability of this system for measuring blood perfusion changes in the tissue during surgery and its potential use as a platform for other sequential imaging modalities. PMID:23082296

  15. Visual servoing in medical robotics: a survey. Part I: endoscopic and direct vision imaging - techniques and applications.

    PubMed

    Azizian, Mahdi; Khoshnam, Mahta; Najmaei, Nima; Patel, Rajni V

    2014-09-01

    Intra-operative imaging is widely used to provide visual feedback to a clinician when he/she performs a procedure. In visual servoing, surgical instruments and parts of tissue/body are tracked by processing the acquired images. This information is then used within a control loop to manoeuvre a robotic manipulator during a procedure. A comprehensive search of electronic databases was completed for the period 2000-2013 to provide a survey of the visual servoing applications in medical robotics. The focus is on medical applications where image-based tracking is used for closed-loop control of a robotic system. Detailed classification and comparative study of various contributions in visual servoing using endoscopic or direct visual images are presented and summarized in tables and diagrams. The main challenges in using visual servoing for medical robotic applications are identified and potential future directions are suggested. 'Supervised automation of medical robotics' is found to be a major trend in this field. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Endoscopic image-guided thermal therapy using targeted near infrared fluorescent gold nanorods (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Elson, Daniel S.

    2016-09-01

    We present an in vivo study of endoscopic fluorescence image-guided photothermal therapy of human oesophageal adenocarcinoma in a murine xenograft model, using intratumoural or intravenous gold nanorods functionalised with Cy5.5 and EGFR.

  17. Development of CMOS Imager Block for Capsule Endoscope

    NASA Astrophysics Data System (ADS)

    Shafie, S.; Fodzi, F. A. M.; Tung, L. Q.; Lioe, D. X.; Halin, I. A.; Hasan, W. Z. W.; Jaafar, H.

    2014-04-01

    This paper presents the development of imager block to be associated in a capsule endoscopy system. Since the capsule endoscope is used to diagnose gastrointestinal diseases, the imager block must be in small size which is comfortable for the patients to swallow. In this project, a small size 1.5V button battery is used as the power supply while the voltage supply requirements for other components such as microcontroller and CMOS image sensor are higher. Therefore, a voltage booster circuit is proposed to boost up the voltage supply from 1.5V to 3.3V. A low power microcontroller is used to generate control pulses for the CMOS image sensor and to convert the 8-bits parallel data output to serial data to be transmitted to the display panel. The results show that the voltage booster circuit was able to boost the voltage supply from 1.5V to 3.3V. The microcontroller precisely controls the CMOS image sensor to produce parallel data which is then serialized again by the microcontroller. The serial data is then successfully translated to 2fps image and displayed on computer.

  18. A hands-free region-of-interest selection interface for solo surgery with a wide-angle endoscope: preclinical proof of concept.

    PubMed

    Jung, Kyunghwa; Choi, Hyunseok; Hong, Hanpyo; Adikrishna, Arnold; Jeon, In-Ho; Hong, Jaesung

    2017-02-01

    A hands-free region-of-interest (ROI) selection interface is proposed for solo surgery using a wide-angle endoscope. A wide-angle endoscope provides images with a larger field of view than a conventional endoscope. With an appropriate selection interface for a ROI, surgeons can also obtain a detailed local view as if they moved a conventional endoscope in a specific position and direction. To manipulate the endoscope without releasing the surgical instrument in hand, a mini-camera is attached to the instrument, and the images taken by the attached camera are analyzed. When a surgeon moves the instrument, the instrument orientation is calculated by an image processing. Surgeons can select the ROI with this instrument movement after switching from 'task mode' to 'selection mode.' The accelerated KAZE algorithm is used to track the features of the camera images once the instrument is moved. Both the wide-angle and detailed local views are displayed simultaneously, and a surgeon can move the local view area by moving the mini-camera attached to the surgical instrument. Local view selection for a solo surgery was performed without releasing the instrument. The accuracy of camera pose estimation was not significantly different between camera resolutions, but it was significantly different between background camera images with different numbers of features (P < 0.01). The success rate of ROI selection diminished as the number of separated regions increased. However, separated regions up to 12 with a region size of 160 × 160 pixels were selected with no failure. Surgical tasks on a phantom model and a cadaver were attempted to verify the feasibility in a clinical environment. Hands-free endoscope manipulation without releasing the instruments in hand was achieved. The proposed method requires only a small, low-cost camera and an image processing. The technique enables surgeons to perform solo surgeries without a camera assistant.

  19. A standardized imaging protocol for the endoscopic prediction of dysplasia within sessile serrated polyps (with video).

    PubMed

    Tate, David J; Jayanna, Mahesh; Awadie, Halim; Desomer, Lobke; Lee, Ralph; Heitman, Steven J; Sidhu, Mayenaaz; Goodrick, Kathleen; Burgess, Nicholas G; Mahajan, Hema; McLeod, Duncan; Bourke, Michael J

    2018-01-01

    Dysplasia within sessile serrated polyps (SSPs) is difficult to detect and may be mistaken for an adenoma, risking incomplete resection of the background serrated tissue, and is strongly implicated in interval cancer after colonoscopy. The use of endoscopic imaging to detect dysplasia within SSPs has not been systematically studied. Consecutively detected SSPs ≥8 mm in size were evaluated by using a standardized imaging protocol at a tertiary-care endoscopy center over 3 years. Lesions suspected as SSPs were analyzed with high-definition white light then narrow-band imaging. A demarcated area with a neoplastic pit pattern (Kudo type III/IV, NICE type II) was sought among the serrated tissue. If this was detected, the lesion was labeled dysplastic (sessile serrated polyp with dysplasia); if not, it was labeled non-dysplastic (sessile serrated polyp without dysplasia). Histopathology was reviewed by 2 blinded specialist GI pathologists. A total of 141 SSPs were assessed in 83 patients. Median lesion size was 15.0 mm (interquartile range 10-20), and 54.6% were in the right side of the colon. Endoscopic evidence of dysplasia was detected in 36 of 141 (25.5%) SSPs; of these, 5 of 36 (13.9%) lacked dysplasia at histopathology. Two of 105 (1.9%) endoscopically designated non-dysplastic SSPs had dysplasia at histopathology. Endoscopic imaging, therefore, had an accuracy of 95.0% (95% confidence interval [CI], 90.1%-97.6%) and a negative predictive value of 98.1% (95% CI, 92.6%-99.7%) for detection of dysplasia within SSPs. Dysplasia within SSPs can be detected accurately by using a simple, broadly applicable endoscopic imaging protocol that allows complete resection. Independent validation of this protocol and its dissemination to the wider endoscopic community may have a significant impact on rates of interval cancer. (Clinical trial registration number: NCT03100552.). Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  20. Development of the local magnification method for quantitative evaluation of endoscope geometric distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Cheng, Wei-Chung; Suresh, Nitin; Hua, Hong

    2016-05-01

    With improved diagnostic capabilities and complex optical designs, endoscopic technologies are advancing. As one of the several important optical performance characteristics, geometric distortion can negatively affect size estimation and feature identification related diagnosis. Therefore, a quantitative and simple distortion evaluation method is imperative for both the endoscopic industry and the medical device regulatory agent. However, no such method is available yet. While the image correction techniques are rather mature, they heavily depend on computational power to process multidimensional image data based on complex mathematical model, i.e., difficult to understand. Some commonly used distortion evaluation methods, such as the picture height distortion (DPH) or radial distortion (DRAD), are either too simple to accurately describe the distortion or subject to the error of deriving a reference image. We developed the basic local magnification (ML) method to evaluate endoscope distortion. Based on the method, we also developed ways to calculate DPH and DRAD. The method overcomes the aforementioned limitations, has clear physical meaning in the whole field of view, and can facilitate lesion size estimation during diagnosis. Most importantly, the method can facilitate endoscopic technology to market and potentially be adopted in an international endoscope standard.

  1. Quantitative, Noninvasive Imaging of DNA Damage in Vivo of Prostate Cancer Therapy by Transurethral Photoacoustic (TUPA) Imaging

    DTIC Science & Technology

    2014-10-01

    provided the funding to devise a trans-urethral photoacoustic endoscope , which has the potential to obtain higher resolution by using a high frequency...modality. This grant has provided the funding to devise a trans-urethral photoacoustic endoscope , which has the potential to obtain higher resolution by...multimode optical fiber (UM22-600, Thorlabs) was placed which is positioned statically along the axis of the endoscope . A parabolic acoustic

  2. Geometric estimation of intestinal contraction for motion tracking of video capsule endoscope

    NASA Astrophysics Data System (ADS)

    Mi, Liang; Bao, Guanqun; Pahlavan, Kaveh

    2014-03-01

    Wireless video capsule endoscope (VCE) provides a noninvasive method to examine the entire gastrointestinal (GI) tract, especially small intestine, where other endoscopic instruments can barely reach. VCE is able to continuously provide clear pictures in short fixed intervals, and as such researchers have attempted to use image processing methods to track the video capsule in order to locate the abnormalities inside the GI tract. To correctly estimate the speed of the motion of the endoscope capsule, the radius of the intestinal track must be known a priori. Physiological factors such as intestinal contraction, however, dynamically change the radius of the small intestine, which could bring large errors in speed estimation. In this paper, we are aiming to estimate the radius of the contracted intestinal track. First a geometric model is presented for estimating the radius of small intestine based on the black hole on endoscopic images. To validate our proposed model, a 3-dimentional virtual testbed that emulates the intestinal contraction is then introduced in details. After measuring the size of the black holes on the test images, we used our model to esimate the radius of the contracted intestinal track. Comparision between analytical results and the emulation model parameters has verified that our proposed method could preciously estimate the radius of the contracted small intestine based on endoscopic images.

  3. Kinect based real-time position calibration for nasal endoscopic surgical navigation system

    NASA Astrophysics Data System (ADS)

    Fan, Jingfan; Yang, Jian; Chu, Yakui; Ma, Shaodong; Wang, Yongtian

    2016-03-01

    Unanticipated, reactive motion of the patient during skull based tumor resective surgery is the source of the consequence that the nasal endoscopic tracking system is compelled to be recalibrated. To accommodate the calibration process with patient's movement, this paper developed a Kinect based Real-time positional calibration method for nasal endoscopic surgical navigation system. In this method, a Kinect scanner was employed as the acquisition part of the point cloud volumetric reconstruction of the patient's head during surgery. Then, a convex hull based registration algorithm aligned the real-time image of the patient head with a model built upon the CT scans performed in the preoperative preparation to dynamically calibrate the tracking system if a movement was detected. Experimental results confirmed the robustness of the proposed method, presenting a total tracking error within 1 mm under the circumstance of relatively violent motions. These results point out the tracking accuracy can be retained stably and the potential to expedite the calibration of the tracking system against strong interfering conditions, demonstrating high suitability for a wide range of surgical applications.

  4. Microelectromechanical-System-Based Variable-Focus Liquid Lens for Capsule Endoscopes

    NASA Astrophysics Data System (ADS)

    Seo, Sang Won; Han, Seungoh; Seo, Jun Ho; Kim, Young Mok; Kang, Moon Sik; Min, Nam Ki; Choi, Woo Beom; Sung, Man Young

    2009-05-01

    A liquid lens based on the electrowetting phenomenon was designed to be cylindrical to minimize dead area. The lens was fabricated with microelectromechanical-system (MEMS) technology using silicon thin film and wafer bonding processes. A multiple dielectric layer comprising Teflon, silicon nitride, and thermal oxide was formed on the cylinder wall. With a change of 11 Vrms in the applied bias, the lens module, including the fabricated liquid lens, showed a focal length change of approximately 166 mm. A capsule endoscope was assembled, including the lens module, and was successfully used to take images of a pig colon at various focal lengths.

  5. In vivo endoscopic Doppler optical coherence tomography imaging of the colon

    PubMed Central

    Welge, Weston A.; Barton, Jennifer K.

    2017-01-01

    Background and Objective Colorectal cancer remains the second deadliest cancer in the United States. Several screening methods exist, however detection of small polyps remains a challenge. Optical coherence tomography has been demonstrated to be capable of detecting lesions as small as 1 mm in the mouse colon, but detection is based on measuring a doubling of the mucosa thickness. The colon microvasculature may be an attractive biomarker of early tumor development because tumor vessels are characterized by irregular structure and dysfunction. Our goal was to develop an endoscopic method of detecting and segmenting colon vessels using Doppler optical coherence tomography to enable future studies for improving early detection and development of novel chemopreventive agents. Method We conducted in vivo colon imaging in an azoxymethane (AOM)-treated mouse model of colorectal cancer using a miniature endoscope and a swept-source OCT system at 1040 nm with a 16 kHz sweep rate. We applied the Kasai autocorrelation algorithm to laterally oversampled OCT B-scans to resolve vascular flow in the mucosa and submucosa. Vessels were segmented by applying a series of image processing steps: (1) intensity thresholding, (2) two-dimensional matched filtering, and (3) histogram segmentation. Results We observed differences in the vessels sizes and spatial distribution in a mature adenoma compared to surrounding undiseased tissue and compared the results with histology. We also imaged flow in four young mice (2 AOM-treated and 2 control) showing no significant differences, which is expected so early after carcinogen exposure. We also present flow images of adenoma in a living mouse and a euthanized mouse to demonstrate that no flow is detected after euthanasia. Conclusion We present, to the best of our knowledge, the first Doppler OCT images of in vivo mouse colon collected with a fiber-based endoscope. We also describe a fast and robust image processing method for segmenting vessels in the colon. These results suggest that Doppler OCT is a promising imaging modality for vascular imaging in the colon that requires no exogenous contrast agents. PMID:27546786

  6. Feasibility of Obtaining Quantitative 3-Dimensional Information Using Conventional Endoscope: A Pilot Study

    PubMed Central

    Hyun, Jong Jin; Keum, Bora; Seo, Yeon Seok; Kim, Yong Sik; Jeen, Yoon Tae; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Ryu, Ho Sang; Lim, Jong-Wook; Woo, Dong-Gi; Kim, Young-Joong; Lim, Myo-Taeg

    2012-01-01

    Background/Aims Three-dimensional (3D) imaging is gaining popularity and has been partly adopted in laparoscopic surgery or robotic surgery but has not been applied to gastrointestinal endoscopy. As a first step, we conducted an experiment to evaluate whether images obtained by conventional gastrointestinal endoscopy could be used to acquire quantitative 3D information. Methods Two endoscopes (GIF-H260) were used in a Borrmann type I tumor model made of clay. The endoscopes were calibrated by correcting the barrel distortion and perspective distortion. Obtained images were converted to gray-level image, and the characteristics of the images were obtained by edge detection. Finally, data on 3D parameters were measured by using epipolar geometry, two view geometry, and pinhole camera model. Results The focal length (f) of endoscope at 30 mm was 258.49 pixels. Two endoscopes were fixed at predetermined distance, 12 mm (d12). After matching and calculating disparity (v2-v1), which was 106 pixels, the calculated length between the camera and object (L) was 29.26 mm. The height of the object projected onto the image (h) was then applied to the pinhole camera model, and the result of H (height and width) was 38.21 mm and 41.72 mm, respectively. Measurements were conducted from 2 different locations. The measurement errors ranged from 2.98% to 7.00% with the current Borrmann type I tumor model. Conclusions It was feasible to obtain parameters necessary for 3D analysis and to apply the data to epipolar geometry with conventional gastrointestinal endoscope to calculate the size of an object. PMID:22977798

  7. Correction of motion artifacts in endoscopic optical coherence tomography and autofluorescence images based on azimuthal en face image registration.

    PubMed

    Abouei, Elham; Lee, Anthony M D; Pahlevaninezhad, Hamid; Hohert, Geoffrey; Cua, Michelle; Lane, Pierre; Lam, Stephen; MacAulay, Calum

    2018-01-01

    We present a method for the correction of motion artifacts present in two- and three-dimensional in vivo endoscopic images produced by rotary-pullback catheters. This method can correct for cardiac/breathing-based motion artifacts and catheter-based motion artifacts such as nonuniform rotational distortion (NURD). This method assumes that en face tissue imaging contains slowly varying structures that are roughly parallel to the pullback axis. The method reduces motion artifacts using a dynamic time warping solution through a cost matrix that measures similarities between adjacent frames in en face images. We optimize and demonstrate the suitability of this method using a real and simulated NURD phantom and in vivo endoscopic pulmonary optical coherence tomography and autofluorescence images. Qualitative and quantitative evaluations of the method show an enhancement of the image quality. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. Novel computer-based endoscopic camera

    NASA Astrophysics Data System (ADS)

    Rabinovitz, R.; Hai, N.; Abraham, Martin D.; Adler, Doron; Nissani, M.; Fridental, Ron; Vitsnudel, Ilia

    1995-05-01

    We have introduced a computer-based endoscopic camera which includes (a) unique real-time digital image processing to optimize image visualization by reducing over exposed glared areas and brightening dark areas, and by accentuating sharpness and fine structures, and (b) patient data documentation and management. The image processing is based on i Sight's iSP1000TM digital video processor chip and Adaptive SensitivityTM patented scheme for capturing and displaying images with wide dynamic range of light, taking into account local neighborhood image conditions and global image statistics. It provides the medical user with the ability to view images under difficult lighting conditions, without losing details `in the dark' or in completely saturated areas. The patient data documentation and management allows storage of images (approximately 1 MB per image for a full 24 bit color image) to any storage device installed into the camera, or to an external host media via network. The patient data which is included with every image described essential information on the patient and procedure. The operator can assign custom data descriptors, and can search for the stored image/data by typing any image descriptor. The camera optics has extended zoom range of f equals 20 - 45 mm allowing control of the diameter of the field which is displayed on the monitor such that the complete field of view of the endoscope can be displayed on all the area of the screen. All these features provide versatile endoscopic camera with excellent image quality and documentation capabilities.

  9. Radiological and endoscopic imaging methods in the management of cystic pancreatic neoplasms.

    PubMed

    Aslan, Ahmet; Inan, Ibrahim; Orman, Süleyman; Aslan, Mine; Acar, Murat

    2017-01-01

    The management of cystic pancreatic neoplasm (CPN) is a clinical dilemma because of its clinical presentations and malignant potential. Surgery is the best treatment choice ; however, pancreatic surgery still has high complication rates, even in experienced centers. Imaging methods have a definitive role in the management of CPN and computed tomography, magnetic resonance imaging, and endoscopic ultrasonography are the preferred methods since they can reveal the suspicious features for malignancy. Therefore, radiologists, gastroenterologists, endoscopists, and surgeons should be aware of the common features of CPN, its discrete presentations on imaging methods, and the limitations of these modalities in the management of the disease. This study aims to review the radiological and endoscopic imaging methods used for the management of CPN. © Acta Gastro-Enterologica Belgica.

  10. Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms

    PubMed Central

    Kwon, Yong-Soo; Cho, Young-Seok; Yoon, Tae-Jong; Kim, Ho-Shik; Choi, Myung-Gyu

    2012-01-01

    Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer. PMID:22442742

  11. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  12. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  13. Design and modeling of a prototype fiber scanning CARS endoscope

    NASA Astrophysics Data System (ADS)

    Veilleux, Isra"l.; Doucet, Michel; Coté, Patrice; Verreault, Sonia; Fortin, Michel; Paradis, Patrick; Leclair, Sébastien; Da Costa, Ralph S.; Wilson, Brian C.; Seibel, Eric; Mermut, Ozzy; Cormier, Jean-François

    2010-02-01

    An endoscope capable of Coherent Anti-Stokes Raman scattering (CARS) imaging would be of significant clinical value for improving early detection of endoluminal cancers. However, developing this technology is challenging for many reasons. First, nonlinear imaging techniques such as CARS are single point measurements thus requiring fast scanning in a small footprint if video rate is to be achieved. Moreover, the intrinsic nonlinearity of this modality imposes several technical constraints and limitations, mainly related to pulse and beam distortions that occur within the optical fiber and the focusing objective. Here, we describe the design and report modeling results of a new CARS endoscope. The miniature microscope objective design and its anticipated performance are presented, along with its compatibility with a new spiral scanningfiber imaging technology developed at the University of Washington. This technology has ideal attributes for clinical use, with its small footprint, adjustable field-of-view and high spatial-resolution. This compact hybrid fiber-based endoscopic CARS imaging design is anticipated to have a wide clinical applicability.

  14. Ex vivo detection of macrophages in atherosclerotic plaques using intravascular ultrasonic-photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Quang Bui, Nhat; Hlaing, Kyu Kyu; Lee, Yong Wook; Kang, Hyun Wook; Oh, Junghwan

    2017-01-01

    Macrophages are excellent imaging targets for detecting atherosclerotic plaques as they are involved in all the developmental stages of atherosclerosis. However, no imaging technique is currently capable of visualizing macrophages inside blood vessel walls. The current study develops an intravascular ultrasonic-photoacoustic (IVUP) imaging system combined with indocyanine green (ICG) as a contrast agent to provide morphological and compositional information about the targeted samples. Both tissue-mimicking vessel phantoms and atherosclerotic plaque-mimicking porcine arterial tissues are used to demonstrate the feasibility of mapping macrophages labeled with ICG by endoscopically applying the proposed hybrid technique. A delay pulse triggering technique is able to sequentially acquire photoacoustic (PA) and ultrasound (US) signals from a single scan without using any external devices. The acquired PA and US signals are used to reconstruct 2D cross-sectional and 3D volumetric images of the entire tissue with the ICG-loaded macrophages injected. Due to high imaging contrast and sensitivity, the IVUP imaging vividly reveals structural information and detects the spatial distribution of the ICG-labeled macrophages inside the samples. ICG-assisted IVUP imaging can be a feasible imaging modality for the endoscopic detection of atherosclerotic plaques.

  15. Optic for industrial endoscope/borescope with narrow field of view and low distortion

    DOEpatents

    Stone, Gary F.; Trebes, James E.

    2005-08-16

    An optic for the imaging optics on the distal end of a flexible fiberoptic endoscope or rigid borescope inspection tool. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion), compared to the typical <20% distortion. The optic will permit non-contact surface roughness measurements using optical techniques. This optic will permit simultaneous collection of selected image plane data, which data can then be subsequently optically processed. The image analysis will yield non-contact surface topology data for inspection where access to the surface does not permit a mechanical styles profilometer verification of surface topology. The optic allows a very broad spectral band or range of optical inspection. It is capable of spectroscopic imaging and fluorescence induced imaging when a scanning illumination source is used. The total viewing angle for this optic is 10 degrees for the full field of view of 10 degrees, compared to 40-70 degrees full angle field of view of the conventional gradient index or GRIN's lens systems.

  16. Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae

    NASA Astrophysics Data System (ADS)

    Kanamori, Katsuhiro

    2016-07-01

    An endoscopic image processing technique for enhancing the appearance of microstructures on translucent mucosae is described. This technique employs two pairs of co- and cross-polarization images under two different linearly polarized lights, from which the averaged subtracted polarization image (AVSPI) is calculated. Experiments were then conducted using an acrylic phantom and excised porcine stomach tissue using a manual experimental setup with ring-type lighting, two rotating polarizers, and a color camera; better results were achieved with the proposed method than with conventional color intensity image processing. An objective evaluation method that uses texture analysis was developed and used to evaluate the enhanced microstructure images. This paper introduces two types of online, rigid-type, polarimetric endoscopic implementations using a polarized ring-shaped LED and a polarimetric camera. The first type uses a beam-splitter-type color polarimetric camera, and the second uses a single-chip monochrome polarimetric camera. Microstructures on the mucosa surface were enhanced robustly with these online endoscopes regardless of the difference in the extinction ratio of each device. These results show that polarimetric endoscopy using AVSPI is both effective and practical for hardware implementation.

  17. EndoTOFPET-US - A Miniaturised Calorimeter for Endoscopic Time-of-Flight Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Zvolský, Milan; EndoTOFPET-US Collaboration

    2015-02-01

    In the scope of the EndoTOFPET-US project, a novel multimodal device for Ultrasound (US) Endoscopy and Positron Emission Tomography (PET) is being developed. The project aims at detecting and quantifying morphologic and functional markers and developing new biomarkers for pancreas and prostate oncology. Exploiting the Time-of-Flight (TOF) information of the gamma rays allows for a more sensitive, more precise and lower radiation- dose imaging and intervention on small internal structures. The detection of the gamma rays is realised with the help of scintillator crystals with Silicon Photomultiplier (SiPM) read-out, aiming at a coincidence time resolution of 200 ps and a spatial resolution of ≈ 1 mm. For the endoscopic detector, digital SiPMs are utilised for the first time in an instrument planned for clinical applications. The functionality of the instrument as well as the challenges that accompany the high miniaturisation of the endoscopic detector and the asymmetric and variable geometry of the system, are presented. The demands on the system involve the fields of scintillating crystallography, ultra-fast photon detection, highly integrated electronics, system integration as well as image reconstruction. The single detector components have been fully characterised and are performing up to specifications. Two dedicated ASIC chips have been developed for the project. The first PET images have been acquired with a test setup that consists solely of hardware and software developed within the collaboration and demonstrate that the data acquisition and reconstruction chain is operational. In this talk, the characterisation of the single components and the status of the detector integration and comissioning is presented.

  18. Optic for an endoscope/borescope having high resolution and narrow field of view

    DOEpatents

    Stone, Gary F.; Trebes, James E.

    2003-10-28

    An optic having optimized high spatial resolution, minimal nonlinear magnification distortion while at the same time having a limited chromatic focal shift or chromatic aberrations. The optic located at the distal end of an endoscopic inspection tool permits a high resolution, narrow field of view image for medical diagnostic applications, compared to conventional optics for endoscopic instruments which provide a wide field of view, low resolution image. The image coverage is over a narrow (<20 degrees) field of view with very low optical distortion (<5% pin cushion or barrel distortion. The optic is also optimized for best color correction as well as to aid medical diagnostics.

  19. Toward two-photon excited fluorescence lifetime endomicroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hage, Charles-Henri; Leclerc, Pierre; Fabert, Marc; Brevier, Julien; Habert, Rémi; Braud, Flavie; Kudlinski, Alexandre; Louradour, Frédéric

    2017-02-01

    Fluorescence lifetime imaging microscopy (FLIM) represents a powerful tool for biological studies. Endoscopic FLIM applied to the intracellular native biomarker NADH and FAD represents a promising mean for in vivo in situ malignant tissue diagnosis in the medical field. Else, 2-photon-excited fluorescence (2PEF) provides increased 3D resolution and imaging depth. But very few demonstrations about 2PEF lifetime measurement through a fiber have been reported and none about endoscopic 2P-FLIM through a practical fiber length (< 3m). Our group has recently demonstrated the possibility to efficiently deliver through a very long optical fiber the short and intense excitation pulses required for 2P-FLIM. Our goal is now to check that collecting fluorescence through the same endoscopic fiber does not deteriorate the lifetime measurement. Relying on the basis previously published in case of 1PEF by P. French and co-workers (J. Biophotonics, 2015), we have experimentally quantitatively evaluated the influence on the lifetime measurement of the fiber chromatic and intermodal dispersions. The main result is that the fiber contribution to the system impulse response function, even in the case of a 3-meter long double-clad optical fiber, does not hinder the separation between free and bound NADH states using FLIM. Related calibrations and measurements will be detailed. Ongoing experiments about the development of a 2P-FLIM endomicroscope on the basis of an previously reported 2P-endomicroscope (Ducourthial et al., Sc. Reports, 2015), used under various configurations (i.e. point measurement in the center of the 2P-endomicroscope image, averaged lifetime, binned endoscopic 2P-FLIM image), will be also presented.

  20. The effect of light intensity on image quality in endoscopic ear surgery.

    PubMed

    McCallum, R; McColl, J; Iyer, A

    2018-05-16

    Endoscopic ear surgery is a rapidly developing field with many advantages. But endoscopes can reach temperatures of over 110°C at the tip, raising safety concerns. Reducing the intensity of the light source reduces temperatures produced. However, quality of images at lower light intensities has not yet been studied. We set out to study the effect of light intensity on image quality in EES. Prospective study of patients undergoing EES from April to October 2016. Consecutive images of the same operative field at 10%, 30%, 50% and 100% light intensities were taken. Eight international experts were asked to each evaluate 100 anonymised, randomised images. District General Hospital. Twenty patients. Images were evaluated on a 5-point Likert scale (1 = significantly worse than average; 5 = significantly better than average) for detail of anatomy; colour contrast; overall quality; and suitability for operating. Mean scores for photographs at 10%, 30%, 50% and 100% light intensity were 3.22 (SD 0.93), 3.15 (SD 0.84), 3.08 (SD 0.88) and 3.10 (SD 0.86), respectively. In ANOVA models for the scores on each of the scales (anatomy, colour contrast, overall quality and suitability for operating), the effects of rater and patient were highly significant (P < .0005) but light intensity was non-significant (P = .34, .32, .21, .15, respectively). Images taken during surgery by our endoscope and operative camera have no loss of quality when taken at lower light intensities. We recommend the surgeon considers use of lower light intensities in endoscopic ear surgery. © 2018 John Wiley & Sons Ltd.

  1. EVA: laparoscopic instrument tracking based on Endoscopic Video Analysis for psychomotor skills assessment.

    PubMed

    Oropesa, Ignacio; Sánchez-González, Patricia; Chmarra, Magdalena K; Lamata, Pablo; Fernández, Alvaro; Sánchez-Margallo, Juan A; Jansen, Frank Willem; Dankelman, Jenny; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-03-01

    The EVA (Endoscopic Video Analysis) tracking system is a new system for extracting motions of laparoscopic instruments based on nonobtrusive video tracking. The feasibility of using EVA in laparoscopic settings has been tested in a box trainer setup. EVA makes use of an algorithm that employs information of the laparoscopic instrument's shaft edges in the image, the instrument's insertion point, and the camera's optical center to track the three-dimensional position of the instrument tip. A validation study of EVA comprised a comparison of the measurements achieved with EVA and the TrEndo tracking system. To this end, 42 participants (16 novices, 22 residents, and 4 experts) were asked to perform a peg transfer task in a box trainer. Ten motion-based metrics were used to assess their performance. Construct validation of the EVA has been obtained for seven motion-based metrics. Concurrent validation revealed that there is a strong correlation between the results obtained by EVA and the TrEndo for metrics, such as path length (ρ = 0.97), average speed (ρ = 0.94), or economy of volume (ρ = 0.85), proving the viability of EVA. EVA has been successfully validated in a box trainer setup, showing the potential of endoscopic video analysis to assess laparoscopic psychomotor skills. The results encourage further implementation of video tracking in training setups and image-guided surgery.

  2. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    PubMed

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Scanning fiber endoscopy with highly flexible, 1-mm catheterscopes for wide-field, full-color imaging

    PubMed Central

    Lee, Cameron M.; Engelbrecht, Christoph J.; Soper, Timothy D.; Helmchen, Fritjof; Seibel, Eric J.

    2011-01-01

    In modern endoscopy, wide field of view and full color are considered necessary for navigating inside the body, inspecting tissue for disease and guiding interventions such as biopsy or surgery. Current flexible endoscope technologies suffer from reduced resolution when device diameter shrinks. Endoscopic procedures today using coherent fiber bundle technology, on the scale of 1 mm, are performed with such poor image quality that the clinician’s vision meets the criteria for legal blindness. Here, we review a new and versatile scanning fiber imaging technology and describe its implementation for ultrathin and flexible endoscopy. This scanning fiber endoscope (SFE) or catheterscope enables high quality, laser-based, video imaging for ultrathin clinical applications while also providing new options for in vivo biological research of subsurface tissue and high resolution fluorescence imaging. PMID:20336702

  4. Early outcomes of endoscopic transsphenoidal surgery for adult craniopharyngiomas.

    PubMed

    Jane, John A; Kiehna, Erin; Payne, Spencer C; Early, Stephen V; Laws, Edward R

    2010-04-01

    Although the transsphenoidal approach for subdiaphragmatic craniopharyngiomas has been performed for many years, there are few reports describing the role of the endoscopic transsphenoidal technique for suprasellar craniopharyngiomas. The purpose of this study was to report the outcomes of the endoscopic transsphenoidal approach for adults with craniopharyngiomas in whom the goal was gross-total resection. Twelve patients were identified who were older than 18 years at the time of their pure endoscopic transsphenoidal surgery. Their medical records and imaging studies were retrospectively reviewed. Gross-total resection was achieved in 42% of cases when assessed by intraoperative impression alone and in 75% when assessed by the first postoperative MR imaging study. However, 83% of patients achieved at least a 95% resection when assessed by both intraoperative impression and the first postoperative MR imaging study. Permanent diabetes insipidus occurred postoperatively in 44% of patients. Six (67%) of 9 patients who had a functioning hypothalamic-pituitary axis preoperatively developed panhypopituitarism after surgery. Visual improvement or normalization occurred in 78% of patients with preoperative visual deficits. Although no patient experienced a postoperative CSF leak, 1 patient was treated for meningitis. The authors have achieved a high rate of radical resection and symptomatic improvement with the endoscopic transsphenoidal technique for both subdiaphragmatic (sellar/suprasellar) and supradiaphragmatic (suprasellar) craniopharyngiomas. However, this is also associated with a high incidence of new endocrinopathy. Endoscopic assessment of tumor resection may be more sensitive for residual tumor than the first postoperative MR imaging study.

  5. Optical characterization and polarization calibration for rigid endoscopes

    NASA Astrophysics Data System (ADS)

    Garcia, Missael; Gruev, Viktor

    2017-02-01

    Polarization measurements give orthogonal information to spectral images making them a great tool in the characterization of environmental parameters in nature. Thus, polarization imagery has proven to be remarkably useful in a vast range of biomedical applications. One such application is the early diagnosis of flat cancerous lesions in murine colorectal tumor models, where polarization data complements NIR fluorescence analysis. Advances in nanotechnology have led to compact and precise bio-inspired imaging sensors capable of accurately co-registering multidimensional spectral and polarization information. As more applications emerge for these imagers, the optics used in these instruments get very complex and can potentially compromise the original polarization state of the incident light. Here we present a complete optical and polarization characterization of three rigid endoscopes of size 1.9mm x 10cm (Karl Storz, Germany), 5mm x 30cm, and 10mm x 33cm (Olympus, Germany), used in colonoscopy for the prevention of colitis-associated cancer. Characterization results show that the telescope optics act as retarders and effectively depolarize the linear component. These incorrect readings can cause false-positives or false-negatives leading to an improper diagnosis. In this paper, we offer a polarization calibration scheme for these endoscopes based on Mueller calculus. By modeling the optical properties from training data as real-valued Mueller matrices, we are able to successfully reconstruct the initial polarization state acquired by the imaging system.

  6. An endoscopic fluorescence imaging system for simultaneous visual examination and photodetection of cancers

    NASA Astrophysics Data System (ADS)

    Wagnières, Georges A.; Studzinski, André P.; van den Bergh, Hubert E.

    1997-01-01

    We describe the design and performance tested during six years of clinical trials of a fluorescence endoscope for the detection and delineation of cancers in several hollow organs. The apparatus is based on the imaging of the laser-induced fluorescence that differs between a tumor and its surrounding normal tissue. The tests are carried out in the upper aerodigestive tract, the tracheobronchial tree, the esophagus, and the colon. In the three former cases an exogenous dye is used (Photofrin II), whereas in the latter case fluorescein molecules conjugated with monoclonal antibodies directed against carcinoembryonic antigen are injected. The decrease of native tissue autofluorescence observed in early cancers is also used for detecting lesions in the tracheobronchial tree. The fluorescence contrast between the tumor and surrounding normal tissue is enhanced by real time image processing. This is done by simultaneously recording the fluorescence image in two spectral domains, after which these two images are digitized and manipulated with a mathematical operator (look-up table) at video frequency. Moreover, the device that is described below allows for an immediate observation of the endoscopic area under white light illumination during fluorescence detection in order to localize the origin of the "positive" fluorescence signals. Typical results obtained in the tracheobronchial tree and in the colon are presented and the sources of false positives and false negatives are evaluated in terms of the fluorescent dye, tissue optical properties, and illumination optics.

  7. Broadband rotary joint for high speed ultrahigh resolution endoscopic OCT imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alemohammad, Milad; Yuan, Wu; Mavadia-Shukla, Jessica; Liang, Wenxuan; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    Endoscopic OCT is a promising technology enabling noninvasive in vivo imaging of internal organs, such as the gastrointestinal tract and airways. The past few years have witnessed continued efforts to achieve ultrahigh resolution and speed. It is well-known that the axial resolution in OCT imaging has a quadratic dependence on the central wavelength. While conventional OCT endoscopes operate in 1300 nm wavelength, the second-generation endoscopes are designed for operation around 800 nm where turn-key, broadband sources are becoming readily available. Traditionally 1300 nm OCT endoscopes are scanned at the proximal end, and a broadband fiber-optic rotary joint as a key component in scanning endoscopic OCT is commercially available. Bandwidths in commercial 800 nm rotary joints are unfortunately compromised due to severe chromatic aberration, which limits the resolution afforded by the broadband light source. In the past we remedied this limitation by using a home-made capillary-tube-based rotary joint where the maximum reliable speed is ~10 revolutions/second. In this submission we report our second-generation, home-built high-speed and broadband rotary joint for 800 nm wavelength, which uses achromatic doublets in order achieve broadband achromatic operation. The measured one-way throughput of the rotary joint is >67 % while the fluctuation of the double-pass coupling efficiency during 360° rotation is less than +/-5 % at a speed of 70 revolutions/second. We demonstrate the operation of this rotary joint in conjunction with our ultrahigh-resolution (2.4 µm in air) diffractive catheter by three-dimensional full-circumferential endoscopic imaging of guinea pig esophagus at 70 frames per second in vivo.

  8. Fabrication of bundle-structured tube-leaky optical fibers for infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Katagiri, T.; Matsuura, Y.

    2017-02-01

    Bundled glass tubular fibers were fabricated by glass drawing technique for endoscopic infrared-thermal imaging. The bundle fibers were made of borosilicate glass and have a structure like a photonic crystal fiber having multiple hollow cores. Fabricated fibers have a length of 90 cm and each pixel sizes are less than 80 μm. By setting the thickness of glass wall to a quarter-wavelength optical thickness, light is confined in the air core as a leaky mode with a low loss owing to the interference effect of the thin glass wall and this type of hollow-core fibers is known as tube leaky fibers. The transmission losses of bundled fibers were firstly measured and it was found that bundled tube-leaky fibers have reasonably low transmission losses in spite of the small pixel size. Then thermal images were delivered by the bundled fibers combining with an InSb infrared camera. Considering applications with rigid endoscopes, an imaging system composed of a 30-cm long fiber bundle and a half-ball lens with a diameter of 2 mm was fabricated. By using this imaging system, a metal wire with a thickness of 200 μm was successfully observed and another test showed that the minimum detected temperature was 32.0 °C and the temperature resolution of the system was around 0.7 °C.

  9. A pilot trial of ambulatory monitoring of gastric motility using a modified magnetic capsule endoscope.

    PubMed

    Kim, Hee Man; Choi, Ja Sung; Cho, Jae Hee

    2014-04-30

    The magnetic capsule endoscope has been modified to be fixed inside the stomach and to monitor the gastric motility. This pilot trial was designed to investigate the feasibility of the magnetic capsule endoscope for monitoring gastric motility. The magnetic capsule endoscope was swallowed by the healthy volunteer and maneuvered by the external magnet on his abdomen surface inside the stomach. The magnetic capsule endoscope transmitted image of gastric peristalsis. This simple trial suggested that the real-time ambulatory monitoring of gastric motility should be feasible by using the magnetic capsule endoscope.

  10. Endoscopic low-coherence topography measurement for upper airways and hollow samples

    NASA Astrophysics Data System (ADS)

    Delacrétaz, Yves; Shaffer, Etienne; Pavillon, Nicolas; Kühn, Jonas; Lang, Florian; Depeursinge, Christian

    2010-11-01

    To evaluate the severity of airway pathologies, quantitative dimensioning of airways is of utmost importance. Endoscopic vision gives a projective image and thus no true scaling information can be directly deduced from it. In this article, an approach based on an interferometric setup, a low-coherence laser source and a standard rigid endoscope is presented, and applied to hollow samples measurements. More generally, the use of the low-coherence interferometric setup detailed here could be extended to any other endoscopy-related field of interest, e.g., gastroscopy, arthroscopy and other medical or industrial applications where tri-dimensional topology is required. The setup design with a multiple fibers illumination system is presented. Demonstration of the method ability to operate on biological samples is assessed through measurements on ex vivo pig bronchi.

  11. Proof-of-concept of a laser mounted endoscope for touch-less navigated procedures

    PubMed Central

    Kral, Florian; Gueler, Oezguer; Perwoeg, Martina; Bardosi, Zoltan; Puschban, Elisabeth J; Riechelmann, Herbert; Freysinger, Wolfgang

    2013-01-01

    Background and Objectives During navigated procedures a tracked pointing device is used to define target structures in the patient to visualize its position in a registered radiologic data set. When working with endoscopes in minimal invasive procedures, the target region is often difficult to reach and changing instruments is disturbing in a challenging, crucial moment of the procedure. We developed a device for touch less navigation during navigated endoscopic procedures. Materials and Methods A laser beam is delivered to the tip of a tracked endoscope angled to its axis. Thereby the position of the laser spot in the video-endoscopic images changes according to the distance between the tip of the endoscope and the target structure. A mathematical function is defined by a calibration process and is used to calculate the distance between the tip of the endoscope and the target. The tracked tip of the endoscope and the calculated distance is used to visualize the laser spot in the registered radiologic data set. Results In comparison to the tracked instrument, the touch less target definition with the laser spot yielded in an over and above error of 0.12 mm. The overall application error in this experimental setup with a plastic head was 0.61 ± 0.97 mm (95% CI −1.3 to +2.5 mm). Conclusion Integrating a laser in an endoscope and then calculating the distance to a target structure by image processing of the video endoscopic images is accurate. This technology eliminates the need for tracked probes intraoperatively and therefore allows navigation to be integrated seamlessly in clinical routine. However, it is an additional chain link in the sequence of computer-assisted surgery thus influencing the application error. Lasers Surg. Med. 45:377–382, 2013. © 2013 Wiley Periodicals, Inc. PMID:23737122

  12. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms.

    PubMed

    Marcus, Hani J; Seneci, Carlo A; Payne, Christopher J; Nandi, Dipankar; Darzi, Ara; Yang, Guang-Zhong

    2014-03-01

    Over the past decade, advances in image guidance, endoscopy, and tube-shaft instruments have allowed for the further development of keyhole transcranial endoscope-assisted microsurgery, utilizing smaller craniotomies and minimizing exposure and manipulation of unaffected brain tissue. Although such approaches offer the possibility of shorter operating times, reduced morbidity and mortality, and improved long-term outcomes, the technical skills required to perform such surgery are inevitably greater than for traditional open surgical techniques, and they have not been widely adopted by neurosurgeons. Surgical robotics, which has the ability to improve visualization and increase dexterity, therefore has the potential to enhance surgical performance. To evaluate the role of surgical robots in keyhole transcranial endoscope-assisted microsurgery. The technical challenges faced by surgeons utilizing keyhole craniotomies were reviewed, and a thorough appraisal of presently available robotic systems was performed. Surgical robotic systems have the potential to incorporate advances in augmented reality, stereoendoscopy, and jointed-wrist instruments, and therefore to significantly impact the field of keyhole neurosurgery. To date, over 30 robotic systems have been applied to neurosurgical procedures. The vast majority of these robots are best described as supervisory controlled, and are designed for stereotactic or image-guided surgery. Few telesurgical robots are suitable for keyhole neurosurgical approaches, and none are in widespread clinical use in the field. New robotic platforms in minimally invasive neurosurgery must possess clear and unambiguous advantages over conventional approaches if they are to achieve significant clinical penetration.

  13. Automated endoscopic navigation and advisory system from medical image

    NASA Astrophysics Data System (ADS)

    Kwoh, Chee K.; Khan, Gul N.; Gillies, Duncan F.

    1999-05-01

    In this paper, we present a review of the research conducted by our group to design an automatic endoscope navigation and advisory system. The whole system can be viewed as a two-layer system. The first layer is at the signal level, which consists of the processing that will be performed on a series of images to extract all the identifiable features. The information is purely dependent on what can be extracted from the 'raw' images. At the signal level, the first task is performed by detecting a single dominant feature, lumen. Few methods of identifying the lumen are proposed. The first method used contour extraction. Contours are extracted by edge detection, thresholding and linking. This method required images to be divided into overlapping squares (8 by 8 or 4 by 4) where line segments are extracted by using a Hough transform. Perceptual criteria such as proximity, connectivity, similarity in orientation, contrast and edge pixel intensity, are used to group edges both strong and weak. This approach is called perceptual grouping. The second method is based on a region extraction using split and merge approach using spatial domain data. An n-level (for a 2' by 2' image) quadtree based pyramid structure is constructed to find the most homogenous large dark region, which in most cases corresponds to the lumen. The algorithm constructs the quadtree from the bottom (pixel) level upward, recursively and computes the mean and variance of image regions corresponding to quadtree nodes. On reaching the root, the largest uniform seed region, whose mean corresponds to a lumen is selected that is grown by merging with its neighboring regions. In addition to the use of two- dimensional information in the form of regions and contours, three-dimensional shape can provide additional information that will enhance the system capabilities. Shape or depth information from an image is estimated by various methods. A particular technique suitable for endoscopy is the shape from shading, which is developed to obtain the relative depth of the colon surface in the image by assuming a point light source very close to the camera. If we assume the colon has a shape similar to a tube, then a reasonable approximation of the position of the center of the colon (lumen) will be a function of the direction in which the majority of the normal vectors of shape are pointing. The second layer is the control layer and at this level, a decision model must be built for endoscope navigation and advisory system. The system that we built is the models of probabilistic networks that create a basic, artificial intelligence system for navigation in the colon. We have constructed the probabilistic networks from correlated objective data using the maximum weighted spanning tree algorithm. In the construction of a probabilistic network, it is always assumed that the variables starting from the same parent are conditionally independent. However, this may not hold and will give rise to incorrect inferences. In these cases, we proposed the creation of a hidden node to modify the network topology, which in effect models the dependency of correlated variables, to solve the problem. The conditional probability matrices linking the hidden node to its neighbors are determined using a gradient descent method which minimizing the objective cost function. The error gradients can be treated as updating messages and ca be propagated in any direction throughout any singly connected network to adjust the network parameters. With the above two- level approach, we have been able to build an automated endoscope navigation and advisory system successfully.

  14. Techniques of imaging of the aorta and its first order branches by endoscopic ultrasound (with videos)

    PubMed Central

    Sharma, Malay; Rai, Praveer; Mehta, Varun; Rameshbabu, C. S.

    2015-01-01

    Endoscopic ultrasonography (EUS) is a useful modality for imaging of the blood vessels of the mediastinum and abdomen. The aorta acts as an important home base during EUS imaging. The aorta and its branches are accessible by standard angiographic methods, but endosonography also provides a unique opportunity to evaluate the aorta and its branches. This article describes the techniques of imaging of different part of the aorta by EUS. PMID:26020043

  15. Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Muldoon, Timothy J.; Thekkek, Nadhi; Roblyer, Darren; Maru, Dipen; Harpaz, Noam; Potack, Jonathan; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2010-03-01

    Early detection of neoplasia in patients with Barrett's esophagus is essential to improve outcomes. The aim of this ex vivo study was to evaluate the ability of high-resolution microendoscopic imaging and quantitative image analysis to identify neoplastic lesions in patients with Barrett's esophagus. Nine patients with pathologically confirmed Barrett's esophagus underwent endoscopic examination with biopsies or endoscopic mucosal resection. Resected fresh tissue was imaged with fiber bundle microendoscopy; images were analyzed by visual interpretation or by quantitative image analysis to predict whether the imaged sites were non-neoplastic or neoplastic. The best performing pair of quantitative features were chosen based on their ability to correctly classify the data into the two groups. Predictions were compared to the gold standard of histopathology. Subjective analysis of the images by expert clinicians achieved average sensitivity and specificity of 87% and 61%, respectively. The best performing quantitative classification algorithm relied on two image textural features and achieved a sensitivity and specificity of 87% and 85%, respectively. This ex vivo pilot trial demonstrates that quantitative analysis of images obtained with a simple microendoscope system can distinguish neoplasia in Barrett's esophagus with good sensitivity and specificity when compared to histopathology and to subjective image interpretation.

  16. New endoscopic and cytologic tools for cancer surveillance in the digestive tract

    PubMed Central

    Brentnall, Teresa A.; Dominitz, Jason A.

    2009-01-01

    Synopsis Cancer surveillance is an increasing part of everyday practice in gastrointestinal endoscopy due to the identification of high risk groups from genetic and biomarker testing, genealogic and epidemiologic studies, and the increasing number of cancer survivors. An efficient surveillance program requires a cost-effective means for image-guided cancer detection and biopsy. A laser-based tethered-capsule endoscope with enhanced spectral imaging is introduced for unsedated surveillance of the lower esophagus. An ultrathin version of this same endoscope technology provides a 1.2-mm guidewire with imaging capability and cannula-style tools are proposed for image-guided biopsy. Advanced 3D cell visualization techniques are described for increasing the sensitivity of early cancer diagnosis from hematoxylin-stained cells sampled from the pancreatic and biliary ducts. PMID:19423026

  17. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y

    2013-10-07

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias.

  18. Clinical performance of dental fiberscope image guided system for endodontic treatment.

    PubMed

    Yamazaki, Yasushi; Ogawa, Takumi; Shigeta, Yuko; Ikawa, Tomoko; Kasama, Shintaro; Hattori, Asaki; Suzuki, Naoki; Yamamoto, Takatsugu; Ozawa, Toshiko; Arai, Takashi

    2011-01-01

    We developed a dental fiberscope that can be navigated. As a result we are able to better grasp the device position relative to the teeth, aiming at the lesion more precisely. However, the device position and the precise target setting were difficult to consistently ascertain. The aim of this study is to navigate the position of tip of the dental fiberscope fiber in the root canal with our navigation system. A 3D tooth model was made from the raw dental CT data. In addition, the optical position of the measurement device, OPTOTRAK system was used for registration of the 3D model and actual teeth position and to chase the scope movement. We developed exclusive software to unify information. We were subsequently able to precisely indicate the relation of the position between the device and the teeth on the 3D model in the monitor. This allowed us to aim at the lesion more precisely, as the revised endoscopic image matched the 3D model. The application of this endoscopic navigation system could increase the success rate for root canal treatments with recalcitrant lesion.

  19. Video-based measurements for wireless capsule endoscope tracking

    NASA Astrophysics Data System (ADS)

    Spyrou, Evaggelos; Iakovidis, Dimitris K.

    2014-01-01

    The wireless capsule endoscope is a swallowable medical device equipped with a miniature camera enabling the visual examination of the gastrointestinal (GI) tract. It wirelessly transmits thousands of images to an external video recording system, while its location and orientation are being tracked approximately by external sensor arrays. In this paper we investigate a video-based approach to tracking the capsule endoscope without requiring any external equipment. The proposed method involves extraction of speeded up robust features from video frames, registration of consecutive frames based on the random sample consensus algorithm, and estimation of the displacement and rotation of interest points within these frames. The results obtained by the application of this method on wireless capsule endoscopy videos indicate its effectiveness and improved performance over the state of the art. The findings of this research pave the way for a cost-effective localization and travel distance measurement of capsule endoscopes in the GI tract, which could contribute in the planning of more accurate surgical interventions.

  20. Integrated Raman spectroscopy and trimodal wide-field imaging techniques for real-time in vivo tissue Raman measurements at endoscopy.

    PubMed

    Huang, Zhiwei; Teh, Seng Khoon; Zheng, Wei; Mo, Jianhua; Lin, Kan; Shao, Xiaozhuo; Ho, Khek Yu; Teh, Ming; Yeoh, Khay Guan

    2009-03-15

    We report an integrated Raman spectroscopy and trimodal (white-light reflectance, autofluorescence, and narrow-band) imaging techniques for real-time in vivo tissue Raman measurements at endoscopy. A special 1.8 mm endoscopic Raman probe with filtering modules is developed, permitting effective elimination of interference of fluorescence background and silica Raman in fibers while maximizing tissue Raman collections. We demonstrate that high-quality in vivo Raman spectra of upper gastrointestinal tract can be acquired within 1 s or subseconds under the guidance of wide-field endoscopic imaging modalities, greatly facilitating the adoption of Raman spectroscopy into clinical research and practice during routine endoscopic inspections.

  1. Endoscopic ultrasound: state-of-the-art GI tumor staging

    NASA Astrophysics Data System (ADS)

    Trowers, Eugene A.

    1999-06-01

    Videoendoscopy has truly enlarged the scope of diagnostic and therapeutic gastroenterology. However, videoendoscopic examinations are limited to the mucosal surface. Endoscopic ultrasound allows the endoscopist a view beyond the intestinal wall which opens the door to a variety of new gastroenterologic techniques. The evaluation of plain images in combination with contrast-enhanced imags has been found to be helpful when applied to CT and MRI. A similar advantage may be found for endoscopic ultrasound (EUS) studies. The efficacy of EUS with and without contrast enhancement is critically reviewed.

  2. Tuberculosis and the pancreas: a diagnostic challenge solved by endoscopic ultrasound. A case series.

    PubMed

    Chatterjee, Suvadip; Schmid, Matthias L; Anderson, Kirsty; Oppong, Kofi W

    2012-03-01

    Pancreatic tuberculosis is a rare disease. It can be easily confused with malignancy or pancreatitis on imaging. This could result in unnecessary surgery. As this is a treatable disease it is imperative to diagnose this condition pre-operatively. We report three cases of pancreatic tuberculosis that were diagnosed by endoscopic ultrasound. In conclusion, endoscopic ultrasound is the diagnostic modality of choice for pancreatic tuberculosis facilitating high resolution imaging, as well as sampling of tissue for staining, cytology, culture and polymerase chain reaction assay.

  3. An automatic detection method for the boiler pipe header based on real-time image acquisition

    NASA Astrophysics Data System (ADS)

    Long, Yi; Liu, YunLong; Qin, Yongliang; Yang, XiangWei; Li, DengKe; Shen, DingJie

    2017-06-01

    Generally, an endoscope is used to test the inner part of the thermal power plants boiler pipe header. However, since the endoscope hose manual operation, the length and angle of the inserted probe cannot be controlled. Additionally, it has a big blind spot observation subject to the length of the endoscope wire. To solve these problems, an automatic detection method for the boiler pipe header based on real-time image acquisition and simulation comparison techniques was proposed. The magnetic crawler with permanent magnet wheel could carry the real-time image acquisition device to complete the crawling work and collect the real-time scene image. According to the obtained location by using the positioning auxiliary device, the position of the real-time detection image in a virtual 3-D model was calibrated. Through comparing of the real-time detection images and the computer simulation images, the defects or foreign matter fall into could be accurately positioning, so as to repair and clean up conveniently.

  4. A CMOS One-chip Wireless Camera with Digital Image Transmission Function for Capsule Endoscopes

    NASA Astrophysics Data System (ADS)

    Itoh, Shinya; Kawahito, Shoji; Terakawa, Susumu

    This paper presents the design and implementation of a one-chip camera device for capsule endoscopes. This experimental chip integrates functional circuits required for capsule endoscopes and digital image transmission function. The integrated functional blocks include an image array, a timing generator, a clock generator, a voltage regulator, a 10b cyclic A/D converter, and a BPSK modulator. It can be operated autonomously with 3 pins (VDD, GND, and DATAOUT). A prototype image sensor chip which has 320x240 effective pixels was fabricated using 0.25μm CMOS image sensor process and the autonomous imaging was demonstrated. The chip size is 4.84mmx4.34mm. With a 2.0 V power supply, the analog part consumes 950μW and the total power consumption at 2 frames per second (fps) is 2.6mW. Error-free image transmission over a distance of 48cm at 2.5Mbps corresponding to 2fps has been succeeded with inductive coupling.

  5. Towards an ultra-thin medical endoscope: multimode fibre as a wide-field image transferring medium

    NASA Astrophysics Data System (ADS)

    Duriš, Miroslav; Bradu, Adrian; Podoleanu, Adrian; Hughes, Michael

    2018-03-01

    Multimode optical fibres are attractive for biomedical and industrial applications such as endoscopes because of the small cross section and imaging resolution they can provide in comparison to widely-used fibre bundles. However, the image is randomly scrambled by propagation through a multimode fibre. Even though the scrambling is unpredictable, it is deterministic, and therefore the scrambling can be reversed. To unscramble the image, we treat the multimode fibre as a linear, disordered scattering medium. To calibrate, we scan a focused beam of coherent light over thousands of different beam positions at the distal end and record complex fields at the proximal end of the fibre. This way, the inputoutput response of the system is determined, which then allows computational reconstruction of reflection-mode images. However, there remains the problem of illuminating the tissue via the fibre while avoiding back reflections from the proximal face. To avoid this drawback, we provide here the first preliminary confirmation that an image can be transferred through a 2x2 fibre coupler, with the sample at its distal port interrogated in reflection. Light is injected into one port for illumination and then collected from a second port for imaging.

  6. Advances in engineering of high contrast CARS imaging endoscopes

    PubMed Central

    Deladurantaye, Pascal; Paquet, Alex; Paré, Claude; Zheng, Huimin; Doucet, Michel; Gay, David; Poirier, Michel; Cormier, Jean-François; Mermut, Ozzy; Wilson, Brian C.; Seibel, Eric J.

    2014-01-01

    The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment. PMID:25401538

  7. [Study of Image Quality Comparison Based on the MTF Method Between Different Medical Rigid Endoscopes in an In Vitro Model].

    PubMed

    Wang, Yunlong; Ji, Jun; Jiang, Changsong; Huang, Zengyue

    2015-04-01

    This study was aimed to use the method of modulation transfer function (MTF) to compare image quality among three different Olympus medical rigid cystoscopes in an in vitro model. During the experimental processes, we firstly used three different types of cystoscopes (i. e. OLYMPUS cystourethroscopy with FOV of 12 degrees, OLYMPUS Germany A22003A and OLYMPUS A2013A) to collect raster images at different brightness with industrial camera and computer from the resolution target which is with different spatial frequency, and then we processed the collected images using MALAB software with the optical transfer function MTF to obtain the values of MTF at different brightness and different spatial frequency. We then did data mathematical statistics and compared imaging quality. The statistical data showed that all three MTF values were smaller than 1. MTF values with the spatial frequency gradually increasing would decrease approaching 0 at the same brightness. When the brightness enhanced in the same process at the same spatial frequency, MTF values showed a slowly increasing trend. The three endoscopes' MTF values were completely different. In some cases the MTF values had a large difference, and the maximum difference could reach 0.7. Conclusion can be derived from analysis of experimental data that three Olympus medical rigid cystoscopes have completely different imaging quality abilities. The No. 3 endoscope OLYMPUS A2013A has low resolution but high contrast. The No. 1 endoscope OLYMPUS cystourethroscopy with FOV of 12 degrees, on the contrary, had high resolution and lower contrast. The No. 2 endoscope OLYMPUS Germany A22003A had high contrast and high resolution, and its image quality was the best.

  8. Improving the image discontinuous problem by using color temperature mapping method

    NASA Astrophysics Data System (ADS)

    Jeng, Wei-De; Mang, Ou-Yang; Lai, Chien-Cheng; Wu, Hsien-Ming

    2011-09-01

    This article mainly focuses on image processing of radial imaging capsule endoscope (RICE). First, it used the radial imaging capsule endoscope (RICE) to take the images, the experimental used a piggy to get the intestines and captured the images, but the images captured by RICE were blurred due to the RICE has aberration problems in the image center and lower light uniformity affect the image quality. To solve the problems, image processing can use to improve it. Therefore, the images captured by different time can use Person correlation coefficient algorithm to connect all the images, and using the color temperature mapping way to improve the discontinuous problem in the connection region.

  9. High resolution axicon-based endoscopic FD OCT imaging with a large depth range

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Hurley, William; Deegan, John; Dean, Scott; Rolland, Jannick P.

    2010-02-01

    Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF). This optics could accommodate for varying sizes of tubular structures across patients and along the tree within a single patient. In the paper, we demonstrate an extended DOF without sacrificing resolution showing rotational images in biological tubular samples with 2.5 μm axial resolution, 10 ìm lateral resolution, and > 4 mm depth range using a custom designed probe.

  10. SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, S; Rao, A; Wendt, R

    Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the cameramore » by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination.« less

  11. A video-based speed estimation technique for localizing the wireless capsule endoscope inside gastrointestinal tract.

    PubMed

    Bao, Guanqun; Mi, Liang; Geng, Yishuang; Zhou, Mingda; Pahlavan, Kaveh

    2014-01-01

    Wireless Capsule Endoscopy (WCE) is progressively emerging as one of the most popular non-invasive imaging tools for gastrointestinal (GI) tract inspection. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease. For the WCE, the position of the capsule is defined as the linear distance it is away from certain fixed anatomical landmarks. In order to measure the distance the capsule has traveled, a precise knowledge of how fast the capsule moves is urgently needed. In this paper, we present a novel computer vision based speed estimation technique that is able to extract the speed of the endoscopic capsule by analyzing the displacements between consecutive frames. The proposed approach is validated using a virtual testbed as well as the real endoscopic images. Results show that the proposed method is able to precisely estimate the speed of the endoscopic capsule with 93% accuracy on average, which enhances the localization accuracy of the WCE to less than 2.49 cm.

  12. Augmented real-time navigation with critical structure proximity alerts for endoscopic skull base surgery.

    PubMed

    Dixon, Benjamin J; Daly, Michael J; Chan, Harley; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C

    2014-04-01

    Image-guided surgery (IGS) systems are frequently utilized during cranial base surgery to aid in orientation and facilitate targeted surgery. We wished to assess the performance of our recently developed localized intraoperative virtual endoscopy (LIVE)-IGS prototype in a preclinical setting prior to deployment in the operating room. This system combines real-time ablative instrument tracking, critical structure proximity alerts, three-dimensional virtual endoscopic views, and intraoperative cone-beam computed tomographic image updates. Randomized-controlled trial plus qualitative analysis. Skull base procedures were performed on 14 cadaver specimens by seven fellowship-trained skull base surgeons. Each subject performed two endoscopic transclival approaches; one with LIVE-IGS and one using a conventional IGS system in random order. National Aeronautics and Space Administration Task Load Index (NASA-TLX) scores were documented for each dissection, and a semistructured interview was recorded for qualitative assessment. The NASA-TLX scores for mental demand, effort, and frustration were significantly reduced with the LIVE-IGS system in comparison to conventional navigation (P < .05). The system interface was judged to be intuitive and most useful when there was a combination of high spatial demand, reduced or absent surface landmarks, and proximity to critical structures. The development of auditory icons for proximity alerts during the trial better informed the surgeon while limiting distraction. The LIVE-IGS system provided accurate, intuitive, and dynamic feedback to the operating surgeon. Further refinements to proximity alerts and visualization settings will enhance orientation while limiting distraction. The system is currently being deployed in a prospective clinical trial in skull base surgery. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  13. Current state and future development of intracranial neuroendoscopic surgery.

    PubMed

    Cinalli, Giuseppe; Cappabianca, Paolo; de Falco, Raffaele; Spennato, Pietro; Cianciulli, Emilio; Cavallo, Luigi Maria; Esposito, Felice; Ruggiero, Claudio; Maggi, Giuseppe; de Divitiis, Enrico

    2005-05-01

    Since the introduction of the modern, smaller endoscopes in the 1960s, neuroendoscopy has become an expanding field of neurosurgery. Neuroendoscopy reflects the tendency of modern neurosurgery to aim towards minimalism; that is, access and visualization through the narrowest practical corridor and maximum effective action at the target point with minimal disruption of normal tissue. Transventricular neuroendoscopy allows the treatment of several pathologies inside the ventricular system, such as obstructive hydrocephalus and intra-/paraventricular tumors or cysts, often avoiding the implantation of extracranial shunts or more invasive craniotomic approaches. Endoscopic endonasal transphenoidal surgery allows the treatment of pathologies of the sellar and parasellar region, with the advantage of a wider vision of the surgical field, less traumatism of the nasal structures, greater facility in the treatment of possible recurrences and reduced complications. However, an endoscope may be used to assist microsurgery in virtually any kind of neurosurgical procedures (endoscope-assisted microsurgery), particularly in aneurysm and tumor surgery. Basic principles of optical imaging and the physics of optic fibers are discussed, focusing on the neuroendoscope. The three main chapters of neuroendoscopy (transventricular, endonasal transphenoidal and endoscope-assisted microsurgery) are reviewed, concerning operative instruments, surgical procedures, main indications and results.

  14. Fully wireless pressure sensor based on endoscopy images

    NASA Astrophysics Data System (ADS)

    Maeda, Yusaku; Mori, Hirohito; Nakagawa, Tomoaki; Takao, Hidekuni

    2018-04-01

    In this paper, the result of developing a fully wireless pressure sensor based on endoscopy images for an endoscopic surgery is reported for the first time. The sensor device has structural color with a nm-scale narrow gap, and the gap is changed by air pressure. The structural color of the sensor is acquired from camera images. Pressure detection can be realized with existing endoscope configurations only. The inner air pressure of the human body should be measured under flexible-endoscope operation using the sensor. Air pressure monitoring, has two important purposes. The first is to quantitatively measure tumor size under a constant air pressure for treatment selection. The second purpose is to prevent the endangerment of a patient due to over transmission of air. The developed sensor was evaluated, and the detection principle based on only endoscopy images has been successfully demonstrated.

  15. In vivo white light and contrast-enhanced vital-dye fluorescence imaging of Barrett's-related neoplasia in a single-endoscopic insertion

    NASA Astrophysics Data System (ADS)

    Tang, Yubo; Carns, Jennifer; Polydorides, Alexandros D.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca R.

    2016-08-01

    A modular video endoscope is developed to enable both white light imaging (WLI) and vital-dye fluorescence imaging (VFI) in a single-endoscopic insertion for the early detection of cancer in Barrett's esophagus (BE). We demonstrate that VFI can be achieved in conjunction with white light endoscopy, where appropriate white balance is used to correct for the presence of the emission filter. In VFI mode, a contrast enhancement feature is implemented in real time to further highlight glandular patterns in BE and related malignancies without introducing artifacts. In a pilot study, we demonstrate accurate correlation of images in two widefield modalities, with representative images showing the disruption and effacement of glandular architecture associated with cancer development in BE. VFI images of these alterations exhibit enhanced contrast when compared to WLI. Results suggest that the usefulness of VFI in the detection of BE-related neoplasia should be further evaluated in future in vivo studies.

  16. MEMS-based liquid lens for capsule endoscope

    NASA Astrophysics Data System (ADS)

    Seo, S. W.; Han, S.; Seo, J. H.; Kim, Y. M.; Kang, M. S.; Min, N. G.; Choi, W. B.; Sung, M. Y.

    2008-03-01

    The capsule endoscope, a new application area of digital imaging, is growing rapidly but needs the versatile imaging capabilities such as auto-focusing and zoom-in to be an active diagnostic tool. The liquid lens based on MEMS technology can be a strong candidate because it is able to be small enough. In this paper, a cylinder-type liquid lens was designed based on Young-Lippmann model and then fabricated with MEMS technology combining the silicon thin-film process and the wafer bonding process. The focal length of the lens module including the fabricated liquid lens was changed reproducibly as a function of the applied voltage. With the change of 30V in the applied bias, the focal length of the constructed lens module could be tuned in the range of about 42cm. The fabricated liquid lens was also proven to be small enough to be adopted in the capsule endoscope, which means the liquid lens can be utilized for the imaging capability improvement of the capsule endoscope.

  17. Study on image feature extraction and classification for human colorectal cancer using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Shu-Wei; Yang, Shan-Yi; Huang, Wei-Cheng; Chiu, Han-Mo; Lu, Chih-Wei

    2011-06-01

    Most of the colorectal cancer has grown from the adenomatous polyp. Adenomatous lesions have a well-documented relationship to colorectal cancer in previous studies. Thus, to detect the morphological changes between polyp and tumor can allow early diagnosis of colorectal cancer and simultaneous removal of lesions. OCT (Optical coherence tomography) has been several advantages including high resolution and non-invasive cross-sectional image in vivo. In this study, we investigated the relationship between the B-scan OCT image features and histology of malignant human colorectal tissues, also en-face OCT image and the endoscopic image pattern. The in-vitro experiments were performed by a swept-source optical coherence tomography (SS-OCT) system; the swept source has a center wavelength at 1310 nm and 160nm in wavelength scanning range which produced 6 um axial resolution. In the study, the en-face images were reconstructed by integrating the axial values in 3D OCT images. The reconstructed en-face images show the same roundish or gyrus-like pattern with endoscopy images. The pattern of en-face images relate to the stages of colon cancer. Endoscopic OCT technique would provide three-dimensional imaging and rapidly reconstruct en-face images which can increase the speed of colon cancer diagnosis. Our results indicate a great potential for early detection of colorectal adenomas by using the OCT imaging.

  18. Optical Coherence Microscopy

    NASA Astrophysics Data System (ADS)

    Aguirre, Aaron D.; Zhou, Chao; Lee, Hsiang-Chieh; Ahsen, Osman O.; Fujimoto, James G.

    Cellular imaging of human tissues remains an important advance for many clinical applications of optical coherence tomography (OCT). Imaging cells with traditional OCT systems has not been possible due to the limited transverse resolution of such techniques. Optical coherence microscopy (OCM) refers to OCT methods that achieve high transverse resolution to visualize cells and subcellular features. This chapter provides a comprehensive discussion of the rationale for cellular imaging in human tissues as well as a review of the key technological advances required to achieve it. Time domain and Fourier domain OCM approaches are described with an emphasis on state of the art system designs, including miniaturized endoscopic imaging probes. Clinical applications are discussed and multiple examples of cellular imaging in human tissues are provided.

  19. The UTCOMS: a wireless video capsule nanoendoscope

    NASA Astrophysics Data System (ADS)

    Lee, Mike M.; Lee, Eun-Mi; Cho, Byung Lok; Eshraghian, Kamran; Kim, Yun-Hyun

    2006-02-01

    This research shows a 1mW Low Power and real-time imaging Tx/Rx communication system via RF-delay smart Antenna using up to 10GHz UWB(Ultra WideBand) as a concept of Wireless Medical Telemetry Service (WMTS). This UTCOMS (COMmunication System for Nano-scale USLI designed Endoscope using UWB technology) results in less body loss(about 6~13dB) at high frequency, disposable and ingestible compact size of 5×10 mm2 and multifunction, bidirectional communications, independent subsystem control multichannel, and high sensitivity smart receiving antenna of three-dimensional image captured still and moving images.

  20. Narrow band imaging in the diagnosis of intra-epithelial and invasive laryngeal squamous cell carcinoma: a preliminary report of two cases.

    PubMed

    Masaki, Takashi; Katada, Chikatoshi; Nakayama, Meijin; Takeda, Masahiko; Miyamoto, Shunsuke; Seino, Yutomo; Koizumi, Wasaburo; Tanabe, Satoshi; Horiguchi, Satoshi; Okamoto, Makito

    2009-12-01

    Narrow band imaging (NBI) is a novel optical technique that enhances the diagnostic capability of the gastrointestinal endoscope (GIE) by illuminating the intraepithelial papillary capillary loop (IPCL) using narrow bandwidth filters in a red-green-blue sequential illumination system (CV-260SL processor and CLV-260SL light source, Olympus Optical Co. Ltd, Tokyo, Japan). The NBI filter sets (415 nm and 540 nm) are selected to obtain fine images of the microvascular structure. Because 415 nm is the hemoglobin absorption band, capillaries on the mucosal surface can be seen most clearly at this wavelength. NBI is able to represent more clearly both capillary patterns and the boundary between different types of tissue, which are necessary for diagnosing a tumor in its early stage (Gono K, Yamazaki K, Doguchi N, Nonami T, Obi T, Yamaguchi M, et al. Endoscopic observation of tissue by narrow band illumination. Opt Rev 2003;10:211-215, Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, Sano Y, et al. Appearance of enhanced tissue feature in narrow-band endoscopic imaging. J Biomed Opt 2004;9:568-577). We present two patients with laryngeal squamous cell carcinoma in whom the spread and the depth of invasion was evaluated with transnasal GIE equipped with NBI. Based on our results, the vascular neoplastic changes of carcinoma in situ of the larynx could be similar to carcinoma in situ of the esophagus.

  1. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 μm under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.

  2. Automated Adaptive Brightness in Wireless Capsule Endoscopy Using Image Segmentation and Sigmoid Function.

    PubMed

    Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A

    2016-08-01

    Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule.

  3. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y.

    2013-01-01

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias. PMID:24104304

  4. Hyperspectral imaging fluorescence excitation scanning for colon cancer detection

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas J.; Walters, Mikayla; Lopez, Carmen; Baker, Thomas; Favreau, Peter F.; Rich, Thomas C.; Rider, Paul F.; Boudreaux, Carole W.

    2016-10-01

    Optical spectroscopy and hyperspectral imaging have shown the potential to discriminate between cancerous and noncancerous tissue with high sensitivity and specificity. However, to date, these techniques have not been effectively translated to real-time endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents new technology that may be well suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The goal of this study was to evaluate the initial feasibility of using fluorescence excitation-scanning hyperspectral imaging for measuring changes in fluorescence excitation spectrum concurrent with colonic adenocarcinoma using a small pre-pilot-scale sample size. Ex vivo analysis was performed using resected pairs of colorectal adenocarcinoma and normal mucosa. Adenocarcinoma was confirmed by histologic evaluation of hematoxylin and eosin (H&E) permanent sections. Specimens were imaged using a custom hyperspectral imaging fluorescence excitation-scanning microscope system. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation range of 390 to 450 nm that could be the basis for wavelength-dependent detection of colorectal cancers. Hence, excitation-scanning hyperspectral imaging may offer an alternative approach for discriminating adenocarcinoma from surrounding normal colonic mucosa, but further studies will be required to evaluate the accuracy of this approach using a larger patient cohort.

  5. Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives.

    PubMed

    Andresen, Esben Ravn; Sivankutty, Siddharth; Tsvirkun, Viktor; Bouwmans, Géraud; Rigneault, Hervé

    2016-12-01

    We take stock of the progress that has been made into developing ultrathin endoscopes assisted by wave front shaping. We focus our review on multicore fiber-based lensless endoscopes intended for multiphoton imaging applications. We put the work into perspective by comparing with alternative approaches and by outlining the challenges that lie ahead.

  6. Multi-modality endoscopic imaging for the detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Wall, Richard Andrew

    Optical coherence tomography (OCT) is an imaging method that is considered the optical analog to ultrasound, using the technique of optical interferometry to construct two-dimensional depth-resolved images of tissue microstructure. With a resolution on the order of 10 um and a penetration depth of 1-2 mm in highly scattering tissue, fiber optics-coupled OCT is an ideal modality for the inspection of the mouse colon with its miniaturization capabilities. In the present study, the complementary modalities laser-induced fluorescence (LIF), which offers information on the biochemical makeup of the tissue, and surface magnifying chromoendoscopy, which offers high contrast surface visualization, are combined with OCT in endoscopic imaging systems for the greater specificity and sensitivity in the differentiation between normal and neoplastic tissue, and for the visualization of biomarkers which are indicative of early events in colorectal carcinogenesis. Oblique incidence reflectometry (OIR) also offers advantages, allowing the calculation of bulk tissue optical properties for use as a diagnostic tool. The study was broken up into three specific sections. First, a dual-modality OCTLIF imaging system was designed, capable of focusing light over 325-1300 nm using a reflective distal optics design. A dual-modality fluorescence-based SMC-OCT system was then designed and constructed, capable of resolving the stained mucosal crypt structure of the in vivo mouse colon. The SMC-OCT instrument's OIR capabilities were then modeled, as a modified version of the probe was used measure tissue scattering and absorption coefficients.

  7. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  8. Flexible endoscopes: structure and function: the endoscopic retrograde cholangiopancreatography elevator system.

    PubMed

    Holland, Pat; Shoop, Nancy M

    2002-01-01

    Flexible endoscopes are complex medical instruments that are easily damaged. In order to maintain the flexible endoscope in optimum working condition, the user must have a thorough understanding of the structure and function of the instrument. This is the fourth in a series of articles presenting an in-depth look at the care and handling of the flexible endoscope. The first three articles discussed the air-water system, the suction channel system, and the mechanical system. This article will focus specifically on the endoscopic retrograde cholangiopancreatography elevator system.

  9. Real-time microstructural and functional imaging and image processing in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Westphal, Volker

    Optical Coherence Tomography (OCT) is a noninvasive optical imaging technique that allows high-resolution cross-sectional imaging of tissue microstructure, achieving a spatial resolution of about 10 mum. OCT is similar to B-mode ultrasound (US) except that it uses infrared light instead of ultrasound. In contrast to US, no coupling gel is needed, simplifying the image acquisition. Furthermore, the fiber optic implementation of OCT is compatible with endoscopes. In recent years, the transition from slow imaging, bench-top systems to real-time clinical systems has been under way. This has lead to a variety of applications, namely in ophthalmology, gastroenterology, dermatology and cardiology. First, this dissertation will demonstrate that OCT is capable of imaging and differentiating clinically relevant tissue structures in the gastrointestinal tract. A careful in vitro correlation study between endoscopic OCT images and corresponding histological slides was performed. Besides structural imaging, OCT systems were further developed for functional imaging, as for example to visualize blood flow. Previously, imaging flow in small vessels in real-time was not possible. For this research, a new processing scheme similar to real-time Doppler in US was introduced. It was implemented in dedicated hardware to allow real-time acquisition and overlayed display of blood flow in vivo. A sensitivity of 0.5mm/s was achieved. Optical coherence microscopy (OCM) is a variation of OCT, improving the resolution even further to a few micrometers. Advances made in the OCT scan engine for the Doppler setup enabled real-time imaging in vivo with OCM. In order to generate geometrical correct images for all the previous applications in real-time, extensive image processing algorithms were developed. Algorithms for correction of distortions due to non-telecentric scanning, nonlinear scan mirror movements, and refraction were developed and demonstrated. This has led to interesting new applications, as for example in imaging of the anterior segment of the eye.

  10. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Rao, A; Wendt, R

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded asmore » it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration framework that is clinically valuable and requires no specialized equipment.« less

  11. Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett’s-associated neoplasia

    PubMed Central

    Thekkek, Nadhi; Lee, Michelle H.; Polydorides, Alexandros D.; Rosen, Daniel G.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-01-01

    Abstract. Current imaging tools are associated with inconsistent sensitivity and specificity for detection of Barrett’s-associated neoplasia. Optical imaging has shown promise in improving the classification of neoplasia in vivo. The goal of this pilot study was to evaluate whether in vivo vital dye fluorescence imaging (VFI) has the potential to improve the accuracy of early-detection of Barrett’s-associated neoplasia. In vivo endoscopic VFI images were collected from 65 sites in 14 patients with confirmed Barrett’s esophagus (BE), dysplasia, or esophageal adenocarcinoma using a modular video endoscope and a high-resolution microendoscope (HRME). Qualitative image features were compared to histology; VFI and HRME images show changes in glandular structure associated with neoplastic progression. Quantitative image features in VFI images were identified for objective image classification of metaplasia and neoplasia, and a diagnostic algorithm was developed using leave-one-out cross validation. Three image features extracted from VFI images were used to classify tissue as neoplastic or not with a sensitivity of 87.8% and a specificity of 77.6% (AUC=0.878). A multimodal approach incorporating VFI and HRME imaging can delineate epithelial changes present in Barrett’s-associated neoplasia. Quantitative analysis of VFI images may provide a means for objective interpretation of BE during surveillance. PMID:25950645

  12. Quantitative evaluation of in vivo vital-dye fluorescence endoscopic imaging for the detection of Barrett's-associated neoplasia.

    PubMed

    Thekkek, Nadhi; Lee, Michelle H; Polydorides, Alexandros D; Rosen, Daniel G; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-05-01

    Current imaging tools are associated with inconsistent sensitivity and specificity for detection of Barrett's-associated neoplasia. Optical imaging has shown promise in improving the classification of neoplasia in vivo. The goal of this pilot study was to evaluate whether in vivo vital dye fluorescence imaging (VFI) has the potential to improve the accuracy of early-detection of Barrett's-associated neoplasia. In vivo endoscopic VFI images were collected from 65 sites in 14 patients with confirmed Barrett's esophagus (BE), dysplasia, oresophageal adenocarcinoma using a modular video endoscope and a high-resolution microendoscope(HRME). Qualitative image features were compared to histology; VFI and HRME images show changes in glandular structure associated with neoplastic progression. Quantitative image features in VFI images were identified for objective image classification of metaplasia and neoplasia, and a diagnostic algorithm was developed using leave-one-out cross validation. Three image features extracted from VFI images were used to classify tissue as neoplastic or not with a sensitivity of 87.8% and a specificity of 77.6% (AUC = 0.878). A multimodal approach incorporating VFI and HRME imaging can delineate epithelial changes present in Barrett's-associated neoplasia. Quantitative analysis of VFI images may provide a means for objective interpretation of BE during surveillance.

  13. Fiber-optic fluorescence imaging

    PubMed Central

    Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J

    2010-01-01

    Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479

  14. Importance of histological evaluation in endoscopic resection of early colorectal cancer

    PubMed Central

    Yoshida, Naohisa; Naito, Yuji; Yagi, Nobuaki; Yanagisawa, Akio

    2012-01-01

    The diagnostic criteria for colonic intraepithelial tumors vary from country to country. While intramucosal adenocarcinoma is recognized in Japan, in Western countries adenocarcinoma is diagnosed only if the tumor invades to the submucosa and accesses the muscularis mucosae. However, endoscopic therapy, including endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD), is used worldwide to treat adenoma and early colorectal cancer. Precise histopathological evaluation is important for the curativeness of these therapies as inappropriate endoscopic therapy causes local recurrence of the tumor that may develop into fatal metastasis. Therefore, colorectal ESD and EMR are not indicated for cancers with massive submucosal invasion. However, diagnosis of cancer with massive submucosal invasion by endoscopy is limited, even when magnifying endoscopy for pit pattern and narrow band imaging and flexible spectral imaging color of enhancement are performed. Therefore, occasional cancers with massive submucosal invasion will be treated by ESD and EMR. Precise histopathological evaluation of these lesions should be performed in order to determine the necessity of additional therapy, including surgical resection. PMID:22532932

  15. A New Navigation System of Renal Puncture for Endoscopic Combined Intrarenal Surgery: Real-time Virtual Sonography-guided Renal Access.

    PubMed

    Hamamoto, Shuzo; Unno, Rei; Taguchi, Kazumi; Ando, Ryosuke; Hamakawa, Takashi; Naiki, Taku; Okada, Shinsuke; Inoue, Takaaki; Okada, Atsushi; Kohri, Kenjiro; Yasui, Takahiro

    2017-11-01

    To evaluate the clinical utility of a new navigation technique for percutaneous renal puncture using real-time virtual sonography (RVS) during endoscopic combined intrarenal surgery. Thirty consecutive patients who underwent endoscopic combined intrarenal surgery for renal calculi, between April 2014 and July 2015, were divided into the RVS-guided puncture (RVS; n = 15) group and the ultrasonography-guided puncture (US; n = 15) group. In the RVS group, renal puncture was repeated until precise piercing of a papilla was achieved under direct endoscopic vision, using the RVS system to synchronize the real-time US image with the preoperative computed tomography image. In the US group, renal puncture was performed under US guidance only. In both groups, 2 urologists worked simultaneously to fragment the renal calculi after inserting the miniature percutaneous tract. The mean sizes of the renal calculi in the RVS and the US group were 33.5 and 30.5 mm, respectively. A lower mean number of puncture attempts until renal access through the calyx was needed for the RVS compared with the US group (1.6 vs 3.4 times, respectively; P = .001). The RVS group had a lower mean postoperative hemoglobin decrease (0.93 vs 1.39 g/dL, respectively; P = .04), but with no between-group differences with regard to operative time, tubeless rate, and stone-free rate. None of the patients in the RVS group experienced postoperative complications of a Clavien score ≥2, with 3 patients experiencing such complications in the US group. RVS-guided renal puncture was effective, with a lower incidence of bleeding-related complications compared with US-guided puncture. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. White Paper AGA: Advanced Imaging in Barrett's Esophagus.

    PubMed

    Sharma, Prateek; Brill, Joel; Canto, Marcia; DeMarco, Daniel; Fennerty, Brian; Gupta, Neil; Laine, Loren; Lieberman, David; Lightdale, Charles; Montgomery, Elizabeth; Odze, Robert; Tokar, Jeffrey; Kochman, Michael

    2015-12-01

    Enhanced imaging technologies such as narrow band imaging, flexible spectral imaging color enhancement, i-Scan, confocal laser endomicroscopy, and optical coherence tomography are readily available for use by endoscopists in routine clinical practice. In November 2014, the American Gastroenterological Association's Center for GI Innovation and Technology conducted a 2-day workshop to discuss endoscopic image enhancement technologies, focusing on their role in 2 specific clinical conditions (colon polyps and Barrett's esophagus) and on issues relating to training and implementation of these technologies (white papers). Although the majority of the studies that use enhanced imaging technologies have been positive, these techniques ideally need to be validated in larger cohorts and in community centers. As it stands today, detailed endoscopic examination with high-definition white-light endoscopy and random 4-quadrant biopsy remains the standard of care. However, the workshop panelists agreed that in the hands of endoscopists who have met the preservation and incorporation of valuable endoscopic innovation thresholds (diagnostic accuracy) with enhanced imaging techniques (specific technologies), use of the technique in Barrett's esophagus patients is appropriate. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Capturing and stitching images with a large viewing angle and low distortion properties for upper gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Cheng; Chung, Chien-Kai; Lai, Jyun-Yi; Chang, Han-Chao; Hsu, Feng-Yi

    2013-06-01

    Upper gastrointestinal endoscopies are primarily performed to observe the pathologies of the esophagus, stomach, and duodenum. However, when an endoscope is pushed into the esophagus or stomach by the physician, the organs behave similar to a balloon being gradually inflated. Consequently, their shapes and depth-of-field of images change continually, preventing thorough examination of the inflammation or anabrosis position, which delays the curing period. In this study, a 2.9-mm image-capturing module and a convoluted mechanism was incorporated into the tube like a standard 10- mm upper gastrointestinal endoscope. The scale-invariant feature transform (SIFT) algorithm was adopted to implement disease feature extraction on a koala doll. Following feature extraction, the smoothly varying affine stitching (SVAS) method was employed to resolve stitching distortion problems. Subsequently, the real-time splice software developed in this study was embedded in an upper gastrointestinal endoscope to obtain a panoramic view of stomach inflammation in the captured images. The results showed that the 2.9-mm image-capturing module can provide approximately 50 verified images in one spin cycle, a viewing angle of 120° can be attained, and less than 10% distortion can be achieved in each image. Therefore, these methods can solve the problems encountered when using a standard 10-mm upper gastrointestinal endoscope with a single camera, such as image distortion, and partial inflammation displays. The results also showed that the SIFT algorithm provides the highest correct matching rate, and the SVAS method can be employed to resolve the parallax problems caused by stitching together images of different flat surfaces.

  18. Towards multispectral endoscopic imaging of cardiac lesion assessment and classification for cardiac ablation therapy

    NASA Astrophysics Data System (ADS)

    Park, Soo Young; Singh-Moon, Rajinder P.; Hendon, Christine P.

    2018-02-01

    Pulmonary vein (PV) isolation is a critical procedure for the treatment and termination of atrial fibrillation (AF). The success of such treatment depends on the extent of tissue damage, where partial lesions can allow abnormal electrical conduction and risk relapse of AF. Proper evaluation of lesion delivery and ablation line continuity remains challenging with current techniques and in part limit procedural efficacy. A tool for direct visualization of endo-myocardial lesions in vivo could potentially reduce ambiguity in treatment location and extent and improve the overall fidelity of lesion sets. In this work, we introduce a method for wide-field visualization of myocardial tissue including the discernment of ablated and non-ablated regions using an endoscopic multispectral imaging system (EMIS). The system was designed to fit the working channel of most commercial sheathes (<4 Fr) and supported quadruple-wavelength reflectance imaging through a flexible fiber-bundle. A total of 50 endocardial lesions were created and imaged on nine swine hearts, ex vivo in addition to 15 lesions on human LA samples near PV regions. A pixel-wise linear discriminant analysis algorithm was developed to classify regions of ablation treatment based on calibrated EMI maps. Results show good agreement of treatment severity and spatial extent compared to post-hoc tissue vital staining.

  19. Doppler imaging using spectrally-encoded endoscopy

    PubMed Central

    Yelin, Dvir; Bouma, B. E.; Rosowsky, J. J.; Tearney, G. J.

    2009-01-01

    The capability to image tissue motion such as blood flow through an endoscope could have many applications in medicine. Spectrally encoded endoscopy (SEE) is a recently introduced technique that utilizes a single optical fiber and miniature diffractive optics to obtain endoscopic images through small diameter probes. Using spectral-domain interferometry, SEE is furthermore capable of three-dimensional volume imaging at video rates. Here we show that by measuring relative spectral phases, this technology can additionally measure Doppler shifts. Doppler SEE is demonstrated in flowing Intralipid phantoms and vibrating middle ear ossicles. PMID:18795020

  20. Real-time tracking and virtual endoscopy in cone-beam CT-guided surgery of the sinuses and skull base in a cadaver model.

    PubMed

    Prisman, Eitan; Daly, Michael J; Chan, Harley; Siewerdsen, Jeffrey H; Vescan, Allan; Irish, Jonathan C

    2011-01-01

    Custom software was developed to integrate intraoperative cone-beam computed tomography (CBCT) images with endoscopic video for surgical navigation and guidance. A cadaveric head was used to assess the accuracy and potential clinical utility of the following functionality: (1) real-time tracking of the endoscope in intraoperative 3-dimensional (3D) CBCT; (2) projecting an orthogonal reconstructed CBCT image, at or beyond the endoscope, which is parallel to the tip of the endoscope corresponding to the surgical plane; (3) virtual reality fusion of endoscopic video and 3D CBCT surface rendering; and (4) overlay of preoperatively defined contours of anatomical structures of interest. Anatomical landmarks were contoured in CBCT of a cadaveric head. An experienced endoscopic surgeon was oriented to the software and asked to rate the utility of the navigation software in carrying out predefined surgical tasks. Utility was evaluated using a rating scale for: (1) safely completing the task; and (2) potential for surgical training. Surgical tasks included: (1) uncinectomy; (2) ethmoidectomy; (3) sphenoidectomy/pituitary resection; and (4) clival resection. CBCT images were updated following each ablative task. As a teaching tool, the software was evaluated as "very useful" for all surgical tasks. Regarding safety and task completion, the software was evaluated as "no advantage" for task (1), "minimal" for task (2), and "very useful" for tasks (3) and (4). Landmark identification for structures behind bone was "very useful" for both categories. The software increased surgical confidence in safely completing challenging ablative tasks by presenting real-time image guidance for highly complex ablative procedures. In addition, such technology offers a valuable teaching aid to surgeons in training. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  1. Intravital endoscopic technology for real-time monitoring of inflammation caused in experimental periodontitis.

    PubMed

    Movila, Alexandru; Kajiya, Mikihito; Wisitrasameewong, Wichaya; Stashenko, Philip; Vardar-Sengul, Saynur; Hernandez, Maria; Thomas Temple, H; Kawai, Toshihisa

    2018-06-01

    We report a novel method for in situ imaging of microvascular permeability in inflamed gingival tissue, using state-of-the-art Cellvizio™ intravital endoscopic technology and a mouse model of ligature-induced periodontitis. The silk ligature was first placed at the upper left second molar. Seven days later, the ligature was removed, and the animals were intravenously injected with Evans blue. Evans blue dye, which selectively binds to blood albumin, was used to monitor the level of inflammation by monitoring vascular permeability in control non-diseased and ligature-induced experimental periodontitis tissue. More specifically, leakage of Evans blue-bound albumin from the micro-capillary to connective tissue indicates the state of inflammation occurring in the specific site. Evans blue leakage from blood vessels was imaged in situ by directly attaching the endoscope (mini Z tip) of the Cellvizio™ system to the gingival tissue without any surgical incision. Evans blue emission intensity was significantly elevated in gingiva of periodontitis lesions, but not control non-ligature placed gingiva, indicating that this technology can be used as a potential minimally invasive diagnostic tool to monitor the level of inflammation at the periodontal disease site. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Wide-angle lens for miniature capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Chen, Yung-Lin; Lee, Hsin-Hung; LU, Shih-chieh; Wu, Hsien-Ming

    2006-02-01

    In recent years, using the capsule endoscope to inspect the pathological change of digestive system and intestine had a great break-through on the medical engineering. However, there are some problems needs to overcome. One is that, the field of view was not wide enough, and the other is that the image quality was not enough well. The drawbacks made medical professionals to examine digestive diseases unclearly and ambiguously. In order to solve these problems, the paper designed a novel miniature lenses which has a wide angle of field of view and a good quality of imaging. The lenses employed in the capsule endoscope consisted of a piece of plastic aspherical lens and a piece of glass lens and compacted in the 9.8mm (W) *9.8mm (L) *10.7mm (H) size. Taking the white LED light source and the 10μm pixel size of 256*256 CMOS sensor under considerations, the field of view of the lenses could be achieved to 86 degrees, and the MTF to 37% at 50lp/mm of space frequency. The experimental data proves that the design is consistent with the finished prototype.

  3. A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi

    For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.

  4. Sensitivity of endoscopic ultrasound, multidetector computed tomography, and magnetic resonance cholangiopancreatography in the diagnosis of pancreas divisum: a tertiary center experience.

    PubMed

    Kushnir, Vladimir M; Wani, Sachin B; Fowler, Kathryn; Menias, Christine; Varma, Rakesh; Narra, Vamsi; Hovis, Christine; Murad, Faris M; Mullady, Daniel K; Jonnalagadda, Sreenivasa S; Early, Dayna S; Edmundowicz, Steven A; Azar, Riad R

    2013-04-01

    There are limited data comparing imaging modalities in the diagnosis of pancreas divisum. We aimed to: (1) evaluate the sensitivity of endoscopic ultrasound (EUS), magnetic resonance cholangiopancreatography (MRCP), and multidetector computed tomography (MDCT) for pancreas divisum; and (2) assess interobserver agreement (IOA) among expert radiologists for detecting pancreas divisum on MDCT and MRCP. For this retrospective cohort study, we identified 45 consecutive patients with pancreaticobiliary symptoms and pancreas divisum established by endoscopic retrograde pancreatography who underwent EUS and cross-sectional imaging. The control group was composed of patients without pancreas divisum who underwent endoscopic retrograde pancreatography and cross-sectional imaging. The sensitivity of EUS for pancreas divisum was 86.7%, significantly higher than the sensitivity reported in the medical records for MDCT (15.5%) or MRCP (60%) (P < 0.001 for each). On review by expert radiologists, the sensitivity of MDCT increased to 83.3% in cases where the pancreatic duct was visualized, with fair IOA (κ = 0.34). Expert review of MRCPs did not identify any additional cases of pancreas divisum; IOA was moderate (κ = 0.43). Endoscopic ultrasound is a sensitive test for diagnosing pancreas divisum and is superior to MDCT and MRCP. Review of MDCT studies by expert radiologists substantially raises its sensitivity for pancreas divisum.

  5. Comparison of organic electroluminescence and liquid crystal displays for clinical utility in orthopedic endoscopic surgery.

    PubMed

    Dezawa, Akira; Sairyo, Koichi

    2014-05-01

    Organic electroluminescence displays (OELD) use organic materials that self-emit light with the passage of an electric current. OELD provide high contrast, excellent color reproducibility at low brightness, excellent video images, and less restricted viewing angles. OELD are thus promising for medical use. This study compared the utility of an OELD with conventional liquid crystal displays (LCD) for imaging in orthopedic endoscopic surgery. One OELD and two conventional LCD that were indistinguishable in external appearance were used in this study. Images from 18 patients were displayed simultaneously on three monitors and evaluated by six orthopedic surgeons with extensive surgical experience. Images were shown for 2 min, repeated twice, and viewed from the front and side (diagonally). Surgeon rated both clinical utility (12 parameters) and image quality (11 parameters) for each image on a 5-point scale: 1, very good; 2, good; 3, average; 4, poor; and 5, very poor. For clinical utility in 16 percutaneous endoscopic discectomy cases, mean scores for all 12 parameters were significantly better on the OELD than on the LCD, including organ distinguishability (2.1 vs 3.2, respectively), lesion identification (2.2 vs 3.1), and overall viewing impression (2.1 vs 3.1). For image quality, all 11 parameters were better on the OELD than on LCD. Significant differences were identified in six parameters, including contrast (1.8 vs 2.9), color reproducibility in dark areas (1.8 vs 2.9), and viewing angle (2.2 vs 2.9). The high contrast and excellent color reproducibility of the OELD reduced the constraints of imaging under endoscopy, in which securing a field of view may be difficult. Distinguishability of organs was good, including ligaments, dura mater, nerves, and adipose tissue, contributing to good stereoscopic images of the surgical field. These findings suggest the utility of OELD for excellent display of surgical images and for enabling safe and highly accurate endoscopic surgery. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  6. The cranial nuchal bursa: anatomy, ultrasonography, magnetic resonance imaging and endoscopic approach.

    PubMed

    Abuja, G A; García-López, J M; Manso-Díaz, G; Spoormakers, T J P; Taeymans, O

    2014-11-01

    Although an uncommon condition, cranial nuchal bursitis can affect the performance of the equine athlete. The anatomy is not well described and there are no reports of diagnostic imaging for endoscopic approaches. To describe the anatomy, ultrasonographic and magnetic resonance features of and endoscopic approach to the cranial nuchal bursa in horses. Experimental cadaver study. Four cranial nuchal bursae were dissected, 4 specimens were frozen to prepare anatomical sections and 2 were injected with latex to document surface landmarks and topographical anatomy and to identify the possible sites for endoscopic access. Six cadaveric specimens were used to describe the ultrasonographic and magnetic resonance features of the cranial nuchal bursa before and after intrabursal injection. Sixteen cadaver specimens were evaluated with a rigid arthroscope and gross dissection to determine the endoscopic appearance of the bursa. The cranial nuchal bursa could be identified consistently in all cadavers, using ultrasonographic and magnetic resonance on both pre- and post injection specimens. Cranial and caudal endoscopic approaches and instrument portals were developed for the cranial nuchal bursa. Using either approach, the entire extent of the bursa could be evaluated, but separate approaches for left and right compartments of the bursa were needed owing to the lack of manoeuvrability when examining the contralateral compartment. The cranial nuchal bursa can be identified on ultrasonographic and magnetic resonance images. An endoscopic approach to the cranial nuchal bursa is clinically feasible and offered an easy, repeatable entry into the cranial nuchal bursa, which allowed adequate observation of the structures within the bursa. This may be of help for diagnosis and treatment of conditions affecting the cranial nuchal bursa in horses. © 2014 EVJ Ltd.

  7. Multimodal 3D cancer-mimicking optical phantom

    PubMed Central

    Smith, Gennifer T.; Lurie, Kristen L.; Zlatev, Dimitar V.; Liao, Joseph C.; Ellerbee Bowden, Audrey K.

    2016-01-01

    Three-dimensional (3D) organ-mimicking phantoms provide realistic imaging environments for testing various aspects of optical systems, including for evaluating new probe designs, characterizing the diagnostic potential of new technologies, and assessing novel image processing algorithms prior to validation in real tissue. We introduce and characterize the use of a new material, Dragon Skin (Smooth-On Inc.), and fabrication technique, air-brushing, for fabrication of a 3D phantom that mimics the appearance of a real organ under multiple imaging modalities. We demonstrate the utility of the material and technique by fabricating the first 3D, hollow bladder phantom with realistic normal and multi-stage pathology features suitable for endoscopic detection using the gold standard imaging technique, white light cystoscopy (WLC), as well as the complementary imaging modalities of optical coherence tomography and blue light cystoscopy, which are aimed at improving the sensitivity and specificity of WLC to bladder cancer detection. The flexibility of the material and technique used for phantom construction allowed for the representation of a wide range of diseased tissue states, ranging from inflammation (benign) to high-grade cancerous lesions. Such phantoms can serve as important tools for trainee education and evaluation of new endoscopic instrumentation. PMID:26977369

  8. Identification of the duodenal papilla by colon capsule endoscope.

    PubMed

    Karagiannis, S; Dücker, C; Dautel, P; Strubenhoff, J; Faiss, S

    2010-07-01

    The sensitivity of small-bowel capsule endoscopy in visualizing a single finding present in everyone, the duodenal papilla, is limited. In this retrospective case series study we evaluated whether the duodenal papilla can be better visualized by a capsule endoscope equipped with cameras on both ends. The recordings of 45 colonic capsule endoscopies (PillCam Colon) performed in a single tertiary center were re-evaluated seeking for the duodenal papilla. The two-hour sleeping period of the colon capsule endoscopy system led to the imaging of duodenum in 10 / 45 patients. The duodenal papilla was identified in 6 / 10 (60 %) patients while the number of frames where the papilla was clearly visualized ranged from 2 - 9. Consequently, a small-bowel capsule endoscope containing two cameras could better identify the duodenal papilla and theoretically other obscure areas of the small bowel, expanding its diagnostic accuracy.

  9. Endoscopic detection of murine colonic dysplasia using a novel fluorescence-labeled peptide

    NASA Astrophysics Data System (ADS)

    Miller, Sharon J.; Joshi, Bishnu P.; Gaustad, Adam; Fearon, Eric R.; Wang, Thomas D.

    2011-03-01

    Current endoscopic screening does not detect all pre-malignant (dysplastic) colorectal mucosa, thus requiring the development of more sensitive, targeted techniques to improve detection. The presented work utilizes phage display to identify a novel peptide binder to colorectal dysplasia in a CPC;Apc mouse model. A wide-field, small animal endoscope capable of fluorescence excitation (450-475 nm) identified polyps via white light and also collected fluorescence images (510 nm barrier filter) of peptide binding. The peptide bound ~2-fold greater to the colonic adenomas when compared to the control peptide. We have imaged fluorescence-labeled peptide binding in vivo that is specific towards distal colonic adenomas.

  10. Imaging of endoscopic cystogastrostomy in pancreatic walled-off necrosis: what the radiologist needs to know.

    PubMed

    Abou Karam, Anthony; Bagherpour, Arya; Calleros, Jesus; Laks, Shaked

    2018-04-04

    Acute pancreatitis is a frequent entity encountered by radiologists. In 2012, the Atlanta criteria were revised to help radiologists use a common nomenclature when describing acute pancreatitis and its complications. One delayed complication of acute necrotizing pancreatitis in walled-off necrosis, a collection seen at least 4 weeks after an episode of acute pancreatic necrosis and/or acute peripancreatic necrosis. Multiple treatments have been adapted in the setting of walled-off necrosis, including endoscopic cystogastrostomy. The focus of this article is to familiarize the radiologist with the imaging appearance of this procedure as well as, review the outcomes and potential complications of endoscopic cystogastrostomy.

  11. Coherent anti-Stokes Raman scattering rigid endoscope toward robot-assisted surgery.

    PubMed

    Hirose, K; Aoki, T; Furukawa, T; Fukushima, S; Niioka, H; Deguchi, S; Hashimoto, M

    2018-02-01

    Label-free visualization of nerves and nervous plexuses will improve the preservation of neurological functions in nerve-sparing robot-assisted surgery. We have developed a coherent anti-Stokes Raman scattering (CARS) rigid endoscope to distinguish nerves from other tissues during surgery. The developed endoscope, which has a tube with a diameter of 12 mm and a length of 270 mm, achieved 0.91% image distortion and 8.6% non-uniformity of CARS intensity in the whole field of view (650 μm diameter). We demonstrated CARS imaging of a rat sciatic nerve and visualization of the fine structure of nerve fibers.

  12. Solid-state semiconductors are better alternatives to arc-lamps for efficient and uniform illumination in minimal access surgery.

    PubMed

    Lee, Alex C H; Elson, Daniel S; Neil, Mark A; Kumar, Sunil; Ling, Bingo W; Bello, Fernando; Hanna, George B

    2009-03-01

    Current arc-lamp illumination systems have a number of technical and ergonomic limitations. White light-emitting diodes (LEDs) are energy-efficient solid-state lighting devices which are small, durable and inexpensive. Their use as an alternative to arc-lamp light sources in minimal access surgery has not been explored. This study aims to develop an LED-based endo-illuminator and to determine its lighting characteristics for use in minimal access surgery. We developed an LED endo-illuminator using a white LED mounted at the tip of a steel rod. Offline image analysis was carried out to compare the illuminated field using the LED endo-illuminator or an arc-lamp based endoscope in terms of uniformity, shadow sharpness and overall image intensity. Direct radiometric power measurements in light intensity and stability were obtained. Visual perception of fine details at the peripheral endoscopic field was assessed by 13 subjects using the different illumination systems. Illumination from the LED endo-illuminator was more uniform compared to illumination from an arc-lamp source, especially at the closer distance of 4 cm (0.0006 versus 0.0028 arbitrary units--lower value indicates more uniform illumination). The shadows were also sharper (edge widths of 16 versus 44 pixels for the first edge and 15 versus 61 pixels for the second edge). The overall mean image intensity was higher (127 versus 100 arbitrary units) when using the autoshutter mode despite the lower direct radiometric power, about one tenth of the arc-lamp endoscopic system. The illumination was also more stable with less flickering (0.02% versus 5% of total power in non-DC components). Higher median scores on visual perception was also obtained (237 versus 157, p < 0.001). The LED endo-illuminator provides more uniform illumination with sharper shadows, less flickering and better illumination for visual perception than the arc-lamp-based system currently used.

  13. Real-time high-velocity resolution color Doppler OCT

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.

  14. Asymmetric Data Acquisition System for an Endoscopic PET-US Detector

    NASA Astrophysics Data System (ADS)

    Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João

    2016-02-01

    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.

  15. 4D motion modeling of the coronary arteries from CT images for robotic assisted minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Zhang, Dong Ping; Edwards, Eddie; Mei, Lin; Rueckert, Daniel

    2009-02-01

    In this paper, we present a novel approach for coronary artery motion modeling from cardiac Computed Tomography( CT) images. The aim of this work is to develop a 4D motion model of the coronaries for image guidance in robotic-assisted totally endoscopic coronary artery bypass (TECAB) surgery. To utilize the pre-operative cardiac images to guide the minimally invasive surgery, it is essential to have a 4D cardiac motion model to be registered with the stereo endoscopic images acquired intraoperatively using the da Vinci robotic system. In this paper, we are investigating the extraction of the coronary arteries and the modelling of their motion from a dynamic sequence of cardiac CT. We use a multi-scale vesselness filter to enhance vessels in the cardiac CT images. The centerlines of the arteries are extracted using a ridge traversal algorithm. Using this method the coronaries can be extracted in near real-time as only local information is used in vessel tracking. To compute the deformation of the coronaries due to cardiac motion, the motion is extracted from a dynamic sequence of cardiac CT. Each timeframe in this sequence is registered to the end-diastole timeframe of the sequence using a non-rigid registration algorithm based on free-form deformations. Once the images have been registered a dynamic motion model of the coronaries can be obtained by applying the computed free-form deformations to the extracted coronary arteries. To validate the accuracy of the motion model we compare the actual position of the coronaries in each time frame with the predicted position of the coronaries as estimated from the non-rigid registration. We expect that this motion model of coronaries can facilitate the planning of TECAB surgery, and through the registration with real-time endoscopic video images it can reduce the conversion rate from TECAB to conventional procedures.

  16. Design of microcamera for field curvature and distortion correction in monocentric multiscale foveated imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Xiongxiong; Wang, Xiaorui; Zhang, Jianlei; Yuan, Ying; Chen, Xiaoxiang

    2017-04-01

    To realize large field of view (FOV) and high-resolution dynamic gaze of the moving target, this paper proposes the monocentric multiscale foveated (MMF) imaging system based on monocentric multiscale design and foveated imaging. First we present the MMF imaging system concept. Then we analyze large field curvature and distortion of the secondary image when the spherical intermediate image produced by the primary monocentric objective lens is relayed by the microcameras. Further a type of zoom endoscope objective lens is selected as the initial structure and optimized to minimize the field curvature and distortion with ZEMAX optical design software. The simulation results show that the maximum field curvature in full field of view is below 0.25 mm and the maximum distortion in full field of view is below 0.6%, which can meet the requirements of the microcamera in the proposed MMF imaging system. In addition, a simple doublet is used to design the foveated imaging system. Results of the microcamera together with the foveated imager compose the results of the whole MMF imaging system.

  17. Flexible endoscopes: structure and function. The suction and biopsy channel.

    PubMed

    Holland, P

    2001-01-01

    Flexible endoscopes are complex medical instruments that are easily damaged. To maintain the flexible endoscope in optimum working condition, the user must have a thorough understanding of the structure and function of the instrument. This is the second in a series of articles presenting an in-depth look at the care and handling of the flexible endoscope. The first article discussed the air and water system. This article will focus specifically on the suction and biopsy channel system. The flexible endoscope is constructed of several systems that operate simultaneously to produce a highly technical, yet effective diagnostic and therapeutic medical device. These systems include the air and water system, the suction or operating channel system, the mechanical system, the endoscopic retrograde cholangiopancreatography (ERCP) elevator system, the optical system, and the electrical system. A review of the internal and external structure of the flexible endoscope and the functions of the channel system, including infection control issues, potential problems and evaluation, and prevention of minor problems to avoid expensive repairs, will be addressed.

  18. The Role of Adjunct Imaging in Endoscopic Detection of Dysplasia in Barrett's Esophagus.

    PubMed

    Kandel, Pujan; Wallace, Michael B

    2017-07-01

    Advances in imaging technologies have demonstrated promise in early detection of dysplasia and cancer in Barrett's esophagus (BE). Optical chromoendoscopy, dye-based chromoendoscopy, and novel technologies have provided the opportunity to visualize the cellular and subcellular structures. Only narrow-band imaging and acetic acid chromoendoscopy have reached benchmarks for clinical use. Volumetric laser endomicroscopy and molecular imaging are not established for routine use. Best practice in management of BE should be focused on careful endoscopic examination, resection, or ablation of the entire abnormal lesion, as well as the use of available imaging technique that has good diagnostic accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. First Application of 7-T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors.

    PubMed

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2017-07-01

    Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7-T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of the skull base. In this study, we apply a 7-T imaging protocol to patients with skull base tumors and compare the images with clinical standard of care. Images were acquired at 7 T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5-, 3-, and 7-T scans for detection of intracavernous cranial nerves and internal carotid artery (ICA) branches. Detection rates were compared. Images were used for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7 T. The 7-T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Our study represents the first application of 7-T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7-T MRI compared with 3- and 1.5-T MRI, and found that integration of 7 T into surgical planning and guidance was feasible. These results suggest a potential for 7-T MRI to reduce surgical complications. Future studies comparing standardized 7-, 3-, and 1.5-T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7-T MRI for endonasal endoscopic surgical efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. First Application of 7T Magnetic Resonance Imaging in Endoscopic Endonasal Surgery of Skull Base Tumors

    PubMed Central

    Barrett, Thomas F; Dyvorne, Hadrien A; Padormo, Francesco; Pawha, Puneet S; Delman, Bradley N; Shrivastava, Raj K; Balchandani, Priti

    2018-01-01

    Background Successful endoscopic endonasal surgery for the resection of skull base tumors is reliant on preoperative imaging to delineate pathology from the surrounding anatomy. The increased signal-to-noise ratio afforded by 7T MRI can be used to increase spatial and contrast resolution, which may lend itself to improved imaging of skull base. In this study, we apply a 7T imaging protocol to patients with skull base tumors and compare the images to clinical standard of care. Methods Images were acquired at 7T on 11 patients with skull base lesions. Two neuroradiologists evaluated clinical 1.5T, 3T, and 7T scans for detection of intracavernous cranial nerves and ICA branches. Detection rates were compared. Images were utilized for surgical planning and uploaded to a neuronavigation platform and used to guide surgery. Results Image analysis yielded improved detection rates of cranial nerves and ICA branches at 7T. 7T images were successfully incorporated into preoperative planning and intraoperative neuronavigation. Conclusion Our study represents the first application of 7T MRI to the full neurosurgical workflow for endoscopic endonasal surgery. We detected higher rates of cranial nerves and ICA branches at 7T MRI compared to 3T and 1.5 T, and found that integration of 7T into surgical planning and guidance was feasible. These results suggest a potential for 7T MRI to reduce surgical complications. Future studies comparing standardized 7T, 3T, and 1.5 T MRI protocols in a larger number of patients are warranted to determine the relative benefit of 7T MRI for endonasal endoscopic surgical efficacy. PMID:28359922

  1. An ultra-low-power image compressor for capsule endoscope.

    PubMed

    Lin, Meng-Chun; Dung, Lan-Rong; Weng, Ping-Kuo

    2006-02-25

    Gastrointestinal (GI) endoscopy has been popularly applied for the diagnosis of diseases of the alimentary canal including Crohn's Disease, Celiac disease and other malabsorption disorders, benign and malignant tumors of the small intestine, vascular disorders and medication related small bowel injury. The wireless capsule endoscope has been successfully utilized to diagnose diseases of the small intestine and alleviate the discomfort and pain of patients. However, the resolution of demosaicked image is still low, and some interesting spots may be unintentionally omitted. Especially, the images will be severely distorted when physicians zoom images in for detailed diagnosis. Increasing resolution may cause significant power consumption in RF transmitter; hence, image compression is necessary for saving the power dissipation of RF transmitter. To overcome this drawback, we have been developing a new capsule endoscope, called GICam. We developed an ultra-low-power image compression processor for capsule endoscope or swallowable imaging capsules. In applications of capsule endoscopy, it is imperative to consider battery life/performance trade-offs. Applying state-of-the-art video compression techniques may significantly reduce the image bit rate by their high compression ratio, but they all require intensive computation and consume much battery power. There are many fast compression algorithms for reducing computation load; however, they may result in distortion of the original image, which is not good for use in the medical care. Thus, this paper will first simplify traditional video compression algorithms and propose a scalable compression architecture. As the result, the developed video compressor only costs 31 K gates at 2 frames per second, consumes 14.92 mW, and reduces the video size by 75% at least.

  2. Low-dose intrathecal fluorescein for diagnosis of cerebrospinal fluid rhinorrhea using the scanning fiber endoscope in the human nasal cavities

    NASA Astrophysics Data System (ADS)

    Hou, Vivian W.; Davis, Calvin G.; Davis, Greg E.; Seibel, Eric J.

    2016-03-01

    Intrathecal fluorescein (ITF) enhances detection of cerebrospinal fluid rhinorrhea (CSFR). Clinically administered doses fall in the range of 0.1ml to 0.5ml of 5% to 10% fluorescein (1.3×10-3M to 1.3×10-2M). Though uncommon, significant morbidities associated with high doses of fluorescein have been reported. High concentrations are necessary for white light visual assessment; in contrast, fluorescent imaging enhances signal contrast and requires lower ITF concentrations for visualization. The ultrathin and flexible, multimodal scanning fiber endoscope (SFE) can visualize nanomolar concentrations of fluorescein as pseudocolor over reflectance, video-rate imaging. The application of the SFE for CSFR detection was assessed in a cadaver study. Briefly, 10μM (1×10-5M) fluorescein, 100X-1000X less than the standard clinical dose, was injected intra-cranially into the epidural space through an orbital roof puncture. The resulting rhinorrhea was assessed with a conventional, rigid ENT scope and second with the SFE in both video reflectance and multimodal fluorescent imaging modes. Neither system could visualize the 10μM ITF during white light imaging however the nanomolar sensitive SFE visualized the rhinorrhea during fluorescent imaging. Despite the low concentration used, a target-to-background ratio of 5.6 +/- 2.7 was achieved. To demonstrate SFE guidance of CSFR detection and repair, de-identified patient computed tomography (CT) scans were used to generate 3D printed phantoms. Cases were selected for unique anatomical features and overall clinical difficulty as determined by an experienced ENT clinician (GED). The sensitivity and minimally invasive nature of the SFE provide a unique platform for enhancing diagnosis and monitoring interventions in surgical endoscopic approaches into the sinuses.

  3. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer

    PubMed Central

    Coda, Sergio; Siersema, Peter D.; Stamp, Gordon W. H.; Thillainayagam, Andrew V.

    2015-01-01

    Detection, characterization, and staging constitute the fundamental elements in the endoscopic diagnosis of gastrointestinal diseases, but histology still remains the diagnostic gold standard. New developments in endoscopic techniques may challenge histopathology in the near future. An ideal endoscopic technique should combine a wide-field, “red flag” screening technique with an optical contrast or microscopy method for characterization and staging, all simultaneously available during the procedure. In theory, biophotonic advances have the potential to unite these elements to allow in vivo “optical biopsy.” These techniques may ultimately offer the potential to increase the rates of detection of high risk lesions and the ability to target biopsies and resections, and so reduce the need for biopsy, costs, and uncertainty for patients. However, their utility and sensitivity in clinical practice must be evaluated against those of conventional histopathology. This review describes some of the most recent applications of biophotonics in endoscopic optical imaging and metrology, along with their fundamental principles and the clinical experience that has been acquired in their deployment as tools for the endoscopist. Particular emphasis has been placed on translational label-free optical techniques, such as fluorescence spectroscopy, fluorescence lifetime imaging microscopy (FLIM), two-photon and multi-photon microscopy, second harmonic generation (SHG) and third harmonic generation (THG) imaging, optical coherence tomography (OCT), diffuse reflectance, Raman spectroscopy, and molecular imaging. PMID:26528489

  4. Fluoroscopy-Guided Endoscopic Removal of Foreign Bodies.

    PubMed

    Kim, Junhwan; Ahn, Ji Yong; So, Seol; Lee, Mingee; Oh, Kyunghwan; Jung, Hwoon-Yong

    2017-03-01

    In most cases of ingested foreign bodies, endoscopy is the first treatment of choice. Moreover, emergency endoscopic removal is required for sharp and pointed foreign bodies such as animal or fish bones, food boluses, and button batteries due to the increased risks of perforation, obstruction, and bleeding. Here, we presented two cases that needed emergency endoscopic removal of foreign bodies without sufficient fasting time. Foreign bodies could not be visualized by endoscopy due to food residue; therefore, fluoroscopic imaging was utilized for endoscopic removal of foreign bodies in both cases.

  5. Endoscopic ultrasound-guided techniques for diagnosing pancreatic mass lesions: Can we do better?

    PubMed Central

    Storm, Andrew C; Lee, Linda S

    2016-01-01

    The diagnostic approach to a possible pancreatic mass lesion relies first upon various non-invasive imaging modalities, including computed tomography, ultrasound, and magnetic resonance imaging techniques. Once a suspect lesion has been identified, tissue acquisition for characterization of the lesion is often paramount in developing an individualized therapeutic approach. Given the high prevalence and mortality associated with pancreatic cancer, an ideal approach to diagnosing pancreatic mass lesions would be safe, highly sensitive, and reproducible across various practice settings. Tools, in addition to radiologic imaging, currently employed in the initial evaluation of a patient with a pancreatic mass lesion include serum tumor markers, endoscopic retrograde cholangiopancreatography, and endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). EUS-FNA has grown to become the gold standard in tissue diagnosis of pancreatic lesions. PMID:27818584

  6. The effect of augmented real-time image guidance on task workload during endoscopic sinus surgery.

    PubMed

    Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Vescan, Allan D; Witterick, Ian J; Irish, Jonathan C

    2012-01-01

    Due to proximity to critical structures, the need for spatial awareness during endoscopic sinus surgery (ESS) is essential. We have developed an augmented, real-time image-guided surgery (ART-IGS) system that provides live navigational data and proximity alerts to the operating surgeon during ablation. We wished to test the hypothesis that task workload would be reduced when using this technology. A trial involved 8 otolaryngology residents and fellows performing ESS on cadaveric specimens; 1 side in a conventional method (control) and 1 side with ART-IGS. After computed tomography scanning, anatomical contouring, and registration of the head, a three-dimensional (3D) virtual endoscopic view, ablative tool tracking, and proximity alerts were enabled. Each subject completed ESS tasks and rated their workload during and after the exercise using the National Aeronautics and Space Administration (NASA) Task Load Index (TLX). A questionnaire and open feedback interview were completed after the procedure. There was a significant reduction in mental demand, temporal demand, effort, and frustration when using the ART-IGS system in comparison to the control (p < 0.02). Perceived performance was increased (p = 0.02). Most subjects agreed that the system was sufficiently accurate, caused minimal interruption, and increased confidence. Optical tracking line-of-sight issues were frequently cited as the main limitation early in the study; however, this was largely resolved. ART-IGS reduces task workload for trainees performing ESS. Live navigation and alert zones may be a valuable intraoperative teaching aid. Copyright © 2012 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.

  7. Can an endocytoscope system (ECS) predict histology in neoplastic lesions?

    PubMed

    Eberl, T; Jechart, G; Probst, A; Golczyk, M; Bittinger, M; Scheubel, R; Arnholdt, H; Knuechel, R; Messmann, H

    2007-06-01

    An endocytoscope system (ECS) has recently been developed with the possibility of super-high magnification of gastrointestinal mucosa, thus allowing in vivo imaging of living cells. The aim of the present study was to assess the potential of ECS in the prediction of histology in both normal gastrointestinal mucosa and neoplastic lesions. In total, 76 patients (57 men, 19 women; age range 37-86 years) with neoplastic lesions in the esophagus, stomach, or colon were enrolled into the study and underwent esophagogastroduodenoscopy or colonoscopy. After staining with 1% methylene blue, the mucosa was examined with the ECS probe (x 450 and x 1100 magnification), and video sequences were recorded on video disk. Biopsies from the examined areas were taken for histology and served as the gold standard. The endocytoscope video sequences were evaluated by two blinded pathologists. Finally the results were compared with those resulting from the evaluation of an experienced endoscopist who was aware of the macroscopic endoscopic pictures and the endocytoscope image results. A total of 25 patients with esophageal lesions, 28 patients with colonic lesions, and 23 patients with gastric lesions were examined. The sensitivity and specificity for the evaluation of the blinded pathologists was 81% and 100%, respectively, in the esophagus, 56% and 89% in the stomach, and 79% and 90% in the colon. If an endoscopist evaluated the endocytoscopic pictures in combination with the macroscopic endoscopic images sensitivity and specificity increased significantly. First experiences with ECS show good sensitivity rates even by blinded assessment for esophageal and colonic lesions. Sensitivity for neoplastic lesions in the stomach is lower because of gastric mucous secretion. Combining the endoscopic and cytoscopic appearance of the lesion may further enhance the diagnostic value of the method.

  8. Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues.

    PubMed

    Poon, Carmen C Y; Leung, Billy; Chan, Cecilia K W; Lau, James Y W; Chiu, Philip W Y

    2016-02-01

    The current design of capsule endoscope is limited by the inability to control the motion within gastrointestinal tract. The rising incidence of gastrointestinal cancers urged improvement in the method of screening endoscopy. This preclinical study aimed to design and develop a novel locomotive module for capsule endoscope. We investigated the feasibility and physical properties of this newly designed caterpillar-like capsule endoscope with a view to enhancing screening endoscopy. This study consisted of preclinical design and experimental testing on the feasibility of automated locomotion for a prototype caterpillar endoscope. The movement was examined first in the PVC tube and then in porcine intestine. The image captured was transmitted to handheld device to confirm the control of movement. The balloon pressure and volume as well as the contact force between the balloon and surroundings were measured when the balloon was inflated inside (1) a hard PVC tube, (2) a soft PVC tube, (3) muscular sites of porcine colons and (4) less muscular sites of porcine colons. The prototype caterpillar endoscope was able to move inward and backward within the PVC tubing and porcine intestine. Images were able to be captured from the capsule endoscope attached and being observed with a handheld device. Using the onset of a contact force as indication of the buildup of the gripping force between the balloon and the lumen walls, it is concluded from the results of this study that the rate of change in balloon pressure and volume is two good estimators to optimize the inflation of the balloon. The results of this study will facilitate further refinement in the design of caterpillar robotic endoscope to move inside the GI tract.

  9. An algorithm for improving the quality of structural images of turbid media in endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Potlov, A. Yu.; Frolov, S. V.; Proskurin, S. G.

    2018-04-01

    High-quality OCT structural images reconstruction algorithm for endoscopic optical coherence tomography of biological tissue is described. The key features of the presented algorithm are: (1) raster scanning and averaging of adjacent Ascans and pixels; (2) speckle level minimization. The described algorithm can be used in the gastroenterology, urology, gynecology, otorhinolaryngology for mucous membranes and skin diagnostics in vivo and in situ.

  10. Hyperspectral imaging fluorescence excitation scanning for colon cancer detection

    PubMed Central

    Leavesley, Silas J.; Walters, Mikayla; Lopez, Carmen; Baker, Thomas; Favreau, Peter F.; Rich, Thomas C.; Rider, Paul F.; Boudreaux, Carole W.

    2016-01-01

    Abstract. Optical spectroscopy and hyperspectral imaging have shown the potential to discriminate between cancerous and noncancerous tissue with high sensitivity and specificity. However, to date, these techniques have not been effectively translated to real-time endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents new technology that may be well suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The goal of this study was to evaluate the initial feasibility of using fluorescence excitation-scanning hyperspectral imaging for measuring changes in fluorescence excitation spectrum concurrent with colonic adenocarcinoma using a small pre-pilot-scale sample size. Ex vivo analysis was performed using resected pairs of colorectal adenocarcinoma and normal mucosa. Adenocarcinoma was confirmed by histologic evaluation of hematoxylin and eosin (H&E) permanent sections. Specimens were imaged using a custom hyperspectral imaging fluorescence excitation-scanning microscope system. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation range of 390 to 450 nm that could be the basis for wavelength-dependent detection of colorectal cancers. Hence, excitation-scanning hyperspectral imaging may offer an alternative approach for discriminating adenocarcinoma from surrounding normal colonic mucosa, but further studies will be required to evaluate the accuracy of this approach using a larger patient cohort. PMID:27792808

  11. Endoscopic Therapy in Crohn's Disease: Principle, Preparation, and Technique.

    PubMed

    Chen, Min; Shen, Bo

    2015-09-01

    Stricture and fistula are common complications of Crohn's disease. Endoscopic balloon dilation and needle-knife stricturotomy has become a valid treatment option for Crohn's disease-associated strictures. Endoscopic therapy is also increasingly used in Crohn's disease-associated fistula. Preprocedural preparations, including routine laboratory testing, imaging examination, anticoagulant management, bowel cleansing and proper sedation, are essential to ensure a successful and safe endoscopic therapy. Adverse events, such as perforation and excessive bleeding, may occur during endoscopic intervention. The endoscopist should be well trained, always be cautious, anticipate for possible procedure-associated complications, be prepared for damage control during endoscopy, and have surgical backup ready. In this review, we discuss the principle, preparation, techniques of endoscopic therapy, as well as the prevention and management of endoscopic procedure-associated complications. We propose that inflammatory bowel disease endoscopy may be a part of training for "super" gastroenterology fellows, i.e., those seeking a career in advanced endoscopy or in inflammatory bowel disease.

  12. Anatomic optical coherence tomography for dynamic imaging of the upper airway

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Balakrishnan, Santosh; Iftimia, Nicusor; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-03-01

    To aid in diagnosis and treatment of upper airway obstructive disorders (UAOD), we propose anatomic Optical Coherence Tomography (aOCT) for endoscopic imaging of the upper airway lumen with high speed and resolution. aOCT and CT scans are performed sequentially on in vivo swine to compare dynamic airway imaging data. The aOCT system is capable of capturing the dynamic deformation of the airway during respiration. This may lead to methods for airway elastography and aid in our understanding of dynamic collapse in UAOD.

  13. Wireless technologies for robotic endoscope in gastrointestinal tract.

    PubMed

    Gao, P; Yan, G; Wang, Z; Liu, H

    2012-07-01

    This paper introduces wireless technologies for use with robotic endoscopes in the gastrointestinal tract. The technologies include wireless power transmission (WPT), wireless remote control (WRC), and wireless image transmission (WIT). WPT, based on the electromagnetic coupling principle, powers active locomotion actuators and other peripherals in large air gaps. WRC, based on real-time bidirectional communication, has a multikernel frame in vivo to realize real-time multitasking. WIT provides a continuous dynamic image with a revolution of 320 × 240 pixel at 30 fps for in vitro diagnosis. To test these wireless technologies, three robotic endoscope prototypes were fabricated and equipped with the customized modules. The experimental results show that the wireless technologies have value for clinical applications.

  14. Pneumoretroperitoneum and Sepsis After Transanal Endoscopic Resection of a Rectal Lateral Spreading Tumor

    PubMed Central

    Coura, Marcelo de Melo Andrade; de Almeida, Romulo Medeiros; Moreira, Natascha Mourão; de Sousa, João Batista; de Oliveira, Paulo Gonçalves

    2017-01-01

    Transanal endoscopic microsurgery is considered a safe, appropriate, and minimally invasive approach, and complications after endoscopic microsurgery are rare. We report a case of sepsis and pneumoretroperitoneum after resection of a rectal lateral spreading tumor. The patient presented with rectal mucous discharge. Colonoscopy revealed a rectal lateral spreading tumor. The patient underwent an endoscopic transanal resection of the lesion. He presented with sepsis of the abdominal focus, and imaging tests revealed pneumoretroperitoneum. A new surgical intervention was performed with a loop colostomy. Despite the existence of other reports on pneumoretroperitoneum after transanal endoscopic microsurgery, what draws attention to this case is the association with sepsis. PMID:28761873

  15. Asymptomatic bronchial aspiration and prolonged retention of a capsule endoscope: a case report.

    PubMed

    Pezzoli, Alessandro; Fusetti, Nadia; Carella, Alessandra; Gullini, Sergio

    2011-08-02

    Capsule endoscopy has, over the last few years, become a first-line test to visualize the mucosa of the small intestine. This technique is generally considered safe and does not cause discomfort for patients. However, although patients may have difficulty in swallowing the capsule, bronchial aspiration of a capsule endoscope is a very rare complication. We report the case of an 82-year-old man who experienced prolonged bronchial aspiration of a capsule endoscope without relevant symptoms, followed by a spontaneous return of the capsule to the gastrointestinal tract. An 82-year-old Caucasian man was referred to our unit from another local hospital to undergo capsule endoscopy. He swallowed the capsule without any apparent difficulties and did not show any overt symptoms. The following day, when we reviewed the capsule endoscopy images, we realized that the capsule was in the bronchial system and remained there for the duration of the study. An urgent X-ray of the chest confirmed the presence of the capsule in the left side of the bronchopulmonary tree. Two days later a repeat chest X-ray showed the capsule in the right bronchus. After two days the capsule was retrieved in the feces. Our patient remained asymptomatic during the entire admission period. Aspiration of a capsule endoscope is a rare complication; to the best of our knowledge this is the first reported case in which a capsule endoscope remained for six days in the bronchial system of a patient without causing airway compromise or pneumonitis and spontaneously returned to the gastrointestinal tract.

  16. Endoscopic probe optics for spectrally encoded confocal microscopy.

    PubMed

    Kang, Dongkyun; Carruth, Robert W; Kim, Minkyu; Schlachter, Simon C; Shishkov, Milen; Woods, Kevin; Tabatabaei, Nima; Wu, Tao; Tearney, Guillermo J

    2013-01-01

    Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal microscopy that can achieve high imaging speeds using relatively simple probe optics. Previously, the feasibility of conducting large-area SECM imaging of the esophagus in bench top setups has been demonstrated. Challenges remain, however, in translating SECM into a clinically-useable device; the tissue imaging performance should be improved, and the probe size needs to be significantly reduced so that it can fit into luminal organs of interest. In this paper, we report the development of new SECM endoscopic probe optics that addresses these challenges. A custom water-immersion aspheric singlet (NA = 0.5) was developed and used as the objective lens. The water-immersion condition was used to reduce the spherical aberrations and specular reflection from the tissue surface, which enables cellular imaging of the tissue deep below the surface. A custom collimation lens and a small-size grating were used along with the custom aspheric singlet to reduce the probe size. A dual-clad fiber was used to provide both the single- and multi- mode detection modes. The SECM probe optics was made to be 5.85 mm in diameter and 30 mm in length, which is small enough for safe and comfortable endoscopic imaging of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for the single- and multi- mode detection modes, respectively, and the axial resolution 11 and 17 µm. SECM images of the swine esophageal tissue demonstrated the capability of this device to enable the visualization of characteristic cellular structural features, including basal cell nuclei and papillae, down to the imaging depth of 260 µm. These results suggest that the new SECM endoscopic probe optics will be useful for imaging large areas of the esophagus at the cellular scale in vivo.

  17. [Inspecting the cochlear scala tympanic with flexible and semi-flexible micro-endoscope].

    PubMed

    Zhang, Daoxcing; Zhang, Yankun

    2006-02-01

    Flexible and semi-flexible micro-endoscopes were used in cochlear scala tympani inspection , to explore their application in inner ear examination. Fifteen profound hearing loss patients preparing for cochlear implant were included in this study. During the operation, micro-endoscopy was performed after opening the cochlear scala tympani. And 1 mm diameter semi-flexible micro-endoscope could go as deep as 9 mm into the cochlear scala tympani, while 0. 5 mm diameter flexible micro-endoscope could go as deep as 25 mm. The inspecting results were compared with video recording. Using 0.5 mm flexible micro-endoscope, we canould check cochlear scala tympani with depth range of 15-25 mm, but the video imaging was not clear enough to examine the microstructure in the cochlear. With 1 mm diameter semi-flexible micro-endoscope, we could reach 9 mm deep into the cochlear. During the examination, we found 3 cases with calcification deposit in osseous spiral lamina, l case with granulation tissue in the lateral wall of scala tympani, no abnormal findings in the other 11 cases. Inspecting the cochlear scala tympani with 0.5 mm flexible micro-endoscope, even though we can reach the second circuit of the cochlear, it is difficult to find the pathology in the cochlear because of the poor video imaging. With 1 mm semi-flexible micro-endoscope, we can identify the microstructure of the cochlear clearly and find the pathologic changes, but the inserting depth was limited to 9 mm with limitation to examine the whole cochlear.

  18. Upper Nasopharyngeal Corridor for Transnasal Endoscopic Drainage of Petroclival Cholesterol Granulomas: Alternative Access in Conchal Sphenoid Patients.

    PubMed

    Turan, Nefize; Baum, Griffin R; Holland, Christopher M; Ahmad, Faiz U; Henriquez, Oswaldo A; Pradilla, Gustavo

    2016-03-01

    Background Cholesterol granulomas arising at the petrous apex can be treated via traditional open surgical, endoscopic, and endoscopic-assisted approaches. Endoscopic approaches require access to the sphenoid sinus, which is technically challenging in patients with conchal sphenoidal anatomy. Clinical Presentation A 55-year-old woman presented with intermittent headaches and tinnitus. Formal audiometry demonstrated moderately severe bilateral hearing loss. CT of the temporal bones and sella revealed a well-demarcated expansile lytic mass. MRI of the face, orbit, and neck showed a right petrous apex mass measuring 22 × 18 × 19 mm that was hyperintense on T1- and T2-weighted images without enhancement, consistent with a cholesterol granuloma. The patient had a conchal sphenoidal anatomy. Operative Technique Herein, we present an illustrative case of a low-lying petroclival cholesterol granuloma in a patient with conchal sphenoidal anatomy to describe an alternative high nasopharyngeal corridor for endoscopic transnasal transclival access. Postoperative Course Postoperatively, the patient's symptoms recovered and no complications occurred. Follow-up imaging demonstrated a patent drainage tract without evidence of recurrence. Conclusion In patients with a conchal sphenoid sinus, endoscopic transnasal transclival access can be gained using a high nasopharyngeal approach. This corridor facilitates safe access to these lesions and others in this location.

  19. Design and performance of optical endoscopes for the early detection of cancer

    NASA Astrophysics Data System (ADS)

    Keenan, Maureen Molly

    Cancer is a multistage, heterogeneous disease that develops through a series of genetic mutations. Early stage cancer is most responsive to treatment but can be the hardest to detect due to its small size, lack of definitive symptoms and potential location deep in the body. Whole body imaging methods, MRI/CT/PET, lack the necessary resolution to detect cellular level abnormalities. Optical methods, which have sufficient resolution, can be miniaturized into endoscopes, which are necessary to overcome limited penetration of light into tissue. By combining optical coherence tomography (OCT) and fluorescence imaging methods it is possible to create endoscopes sensitive to molecular and structural changes. I applied a dual-modality 2mm diameter rigid endoscope to the study of the natural history of colon cancer in a mouse model, and later applied this knowledge to the design and characterization of a 0.8 mm dual-modality flexible probe for use in human fallopian tubes. By using this endoscope, which is introduced through the natural orifice and is compatible with existing hysteroscopes, high-risk women could be screened in a procedure at a similar level of invasiveness as a colonoscopy. Therefore, the endoscope fills this gap in clinical care for women at high-risk for ovarian cancer.

  20. Optical Biopsy: A New Frontier in Endoscopic Detection and Diagnosis

    PubMed Central

    WANG, THOMAS D.; VAN DAM, JACQUES

    2007-01-01

    Endoscopic diagnosis currently relies on the ability of the operator to visualize abnormal patterns in the image created by light reflected from the mucosal surface of the gastrointestinal tract. Advances in fiber optics, light sources, detectors, and molecular biology have led to the development of several novel methods for tissue evaluation in situ. The term “optical biopsy” refers to methods that use the properties of light to enable the operator to make an instant diagnosis at endoscopy, previously possible only by using histological or cytological analysis. Promising imaging techniques include fluorescence endoscopy, optical coherence tomography, confocal microendoscopy, and molecular imaging. Point detection schemes under development include light scattering and Raman spectroscopy. Such advanced diagnostic methods go beyond standard endoscopic techniques by offering improved image resolution, contrast, and tissue penetration and providing biochemical and molecular information about mucosal disease. This review describes the basic biophysics of light-tissue interactions, assesses the strengths and weaknesses of each method, and examines clinical and preclinical evidence for each approach. PMID:15354274

  1. [Design and Implementation of Image Interpolation and Color Correction for Ultra-thin Electronic Endoscope on FPGA].

    PubMed

    Luo, Qiang; Yan, Zhuangzhi; Gu, Dongxing; Cao, Lei

    This paper proposed an image interpolation algorithm based on bilinear interpolation and a color correction algorithm based on polynomial regression on FPGA, which focused on the limited number of imaging pixels and color distortion of the ultra-thin electronic endoscope. Simulation experiment results showed that the proposed algorithm realized the real-time display of 1280 x 720@60Hz HD video, and using the X-rite color checker as standard colors, the average color difference was reduced about 30% comparing with that before color correction.

  2. Endoscopic Endonasal Approach for a Suprasellar Craniopharyngioma.

    PubMed

    Zenonos, Georgios A; Snyderman, Carl H; Gardner, Paul A

    2018-04-01

    Objectives  The current video presents the nuances of an endoscopic endonasal approach to a suprasellar craniopharyngioma. Design  The video analyzes the presentation, preoperative workup and imaging, surgical steps and technical nuances of the surgery, the clinical outcome, and follow-up imaging. Setting  The patient was treated by a skull base team consisting of a neurosurgeon and an ENT surgeon, at a teaching academic institution. Participants  The case refers to a 67-year-old man who presented with vision loss and headaches, and was found to have a suprasellar mass, with imaging characteristics consistent with a craniopharyngioma. Main Outcome Measures  The main outcome measures consistent of the reversal of the patient symptoms (vision loss and headaches), the recurrence-free survival based on imaging, as well as the absence of any complications. Results  The patient's vision improved after the surgery; at his last follow-up there was no evidence of recurrence on imaging. Conclusions  The endoscopic endonasal approach is safe and effective in treating suprasellar craniopharyngiomas. The link to the video can be found at: https://youtu.be/p1VXbwnAWCo .

  3. Thulium fiber laser recanalization of occluded ventricular catheters in an ex vivo tissue model

    NASA Astrophysics Data System (ADS)

    Hutchens, Thomas C.; Gonzalez, David A.; Hardy, Luke A.; McLanahan, C. Scott; Fried, Nathaniel M.

    2017-04-01

    Hydrocephalus is a chronic medical condition that occurs in individuals who are unable to reabsorb cerebrospinal fluid (CSF) created within the ventricles of the brain. Treatment requires excess CSF to be diverted from the ventricles to another part of the body, where it can be returned to the vascular system via a shunt system beginning with a catheter within the ventricle. Catheter failures due to occlusion by brain tissues commonly occur and require surgical replacement of the catheter. In this preliminary study, minimally invasive clearance of occlusions is explored using an experimental thulium fiber laser (TFL), with comparison to a conventional holmium: yttrium aluminium garnet (YAG) laser. The TFL utilizes smaller optical fibers (<200-μm OD) compared with holmium laser (>450-μm OD), providing critical extra cross-sectional space within the 1.2-mm-inner-diameter ventricular catheter for simultaneous application of an endoscope for image guidance and a saline irrigation tube for visibility and safety. TFL ablation rates using 100-μm core fiber, 33-mJ pulse energy, 500-μs pulse duration, and 20- to 200-Hz pulse rates were compared to holmium laser using a 270-μm core fiber, 325-mJ, 300-μs, and 10 Hz. A tissue occluded catheter model was prepared using coagulated egg white within clear silicone tubing. An optimal TFL pulse rate of 50 Hz was determined, with an ablation rate of 150 μm/s and temperature rise outside the catheter of ˜10°C. High-speed camera images were used to explore the mechanism for removal of occlusions. Image guidance using a miniature, 0.7-mm outer diameter, 10,000 pixel endoscope was explored to improve procedure safety. With further development, simultaneous application of TFL with small fibers, miniature endoscope for image guidance, and irrigation tube for removal of tissue debris may provide a safe, efficient, and minimally invasive method of clearing occluded catheters in the treatment of hydrocephalus.

  4. TU-AB-202-12: A Novel Method to Map Endoscopic Video to CT for Treatment Planning and Toxicity Analysis in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, W; Yang, J; Beadle, B

    Purpose: Endoscopic examinations are routine procedures for head-and-neck cancer patients. Our goal is to develop a method to map the recorded video to CT, providing valuable information for radiotherapy treatment planning and toxicity analysis. Methods: We map video frames to CT via virtual endoscopic images rendered at the real endoscope’s CT-space coordinates. We developed two complementary methods to find these coordinates by maximizing real-to-virtual image similarity:(1)Endoscope Tracking: moves the virtual endoscope frame-by-frame until the desired frame is reached. Utilizes prior knowledge of endoscope coordinates, but sensitive to local optima. (2)Location Search: moves the virtual endoscope along possible paths through themore » volume to find the desired frame. More robust, but more computationally expensive. We tested these methods on clay phantoms with embedded markers for point mapping and protruding bolus material for contour mapping, and we assessed them qualitatively on three patient exams. For mapped points we calculated 3D-distance errors, and for mapped contours we calculated mean absolute distances (MAD) from CT contours. Results: In phantoms, Endoscope Tracking had average point error=0.66±0.50cm and average bolus MAD=0.74±0.37cm for the first 80% of each video. After that the virtual endoscope got lost, increasing these values to 4.73±1.69cm and 4.06±0.30cm. Location Search had point error=0.49±0.44cm and MAD=0.53±0.28cm. Point errors were larger where the endoscope viewed the surface at shallow angles<10 degrees (1.38±0.62cm and 1.22±0.69cm for Endoscope Tracking and Location Search, respectively). In patients, Endoscope Tracking did not make it past the nasal cavity. However, Location Search found coordinates near the correct location for 70% of test frames. Its performance was best near the epiglottis and in the nasal cavity. Conclusion: Location Search is a robust and accurate technique to map endoscopic video to CT. Endoscope Tracking is sensitive to erratic camera motion and local optima, but could be used in conjunction with anchor points found using Location Search.« less

  5. Development of an integrated endoscopic device for multiplexed low coherence interferometry measurements of microbicide gel coating thickness

    NASA Astrophysics Data System (ADS)

    Drake, Tyler K.; Robles, Francisco E.; DeSoto, Michael; Henderson, Marcus H.; Katz, David F.; Wax, Adam P.

    2009-02-01

    Microbicide gels are topical products that have recently been developed to combat sexually transmitted diseases including HIV/AIDS. The extent of gel coverage, thickness, and structure are crucial factors in gel effectiveness. It is necessary to be able to monitor gel distribution and behavior under various circumstances, such as coatis, and over an extended time scale in vivo. We have developed a multiplexed, Fourier-domain low coherence interferometry (LCI) system as a practical method of measuring microbicide gel distribution, with precision and accuracy comparable to currently used fluorometric techniques techniques. The multiplexed system achieved a broad scanning area without the need for a mechanical scanning device, typical of OCT systems, by utilizing six parallel channels with simultaneous data collection. We now propose an imaging module which will allow the integration of the multiplexed LCI system into the current fluorescence system in conjunction with an endoscope. The LCI imaging module will meet several key criteria in order to be compatible with the current system. The fluorescent system features a 4-mm diameter rigid endsoscope enclosed in a 27-mm diameter polycarbonate tube, with a water immersion tip. Therefore, the LCI module must be low-profile as well as water-resistant to fit inside the current design. It also must fulfill its primary function of delivering light from each of the six channels to the gel and collecting backscattered light. The performance of the imaging module will be characterized by scanning a calibration socket which contains grooves of known depths, and comparing these measurements to the fluorometric results.

  6. Advanced Image Enhancement Method for Distant Vessels and Structures in Capsule Endoscopy

    PubMed Central

    Pedersen, Marius

    2017-01-01

    This paper proposes an advanced method for contrast enhancement of capsule endoscopic images, with the main objective to obtain sufficient information about the vessels and structures in more distant (or darker) parts of capsule endoscopic images. The proposed method (PM) combines two algorithms for the enhancement of darker and brighter areas of capsule endoscopic images, respectively. The half-unit weighted-bilinear algorithm (HWB) proposed in our previous work is used to enhance darker areas according to the darker map content of its HSV's component V. Enhancement of brighter areas is achieved thanks to the novel threshold weighted-bilinear algorithm (TWB) developed to avoid overexposure and enlargement of specular highlight spots while preserving the hue, in such areas. The TWB performs enhancement operations following a gradual increment of the brightness of the brighter map content of its HSV's component V. In other words, the TWB decreases its averaged weights as the intensity content of the component V increases. Extensive experimental demonstrations were conducted, and, based on evaluation of the reference and PM enhanced images, a gastroenterologist (Ø.H.) concluded that the PM enhanced images were the best ones based on the information about the vessels, contrast in the images, and the view or visibility of the structures in more distant parts of the capsule endoscopy images. PMID:29225668

  7. Robot-assisted endoscope guidance versus manual endoscope guidance in functional endonasal sinus surgery (FESS).

    PubMed

    Eichhorn, Klaus Wolfgang; Westphal, Ralf; Rilk, Markus; Last, Carsten; Bootz, Friedrich; Wahl, Friedrich; Jakob, Mark; Send, Thorsten

    2017-10-01

    Having one hand occupied with the endoscope is the major disadvantage for the surgeon when it comes to functional endoscopic sinus surgery (FESS). Only the other hand is free to use the surgical instruments. Tiredness or frequent instrument changes can thus lead to shaky endoscopic images. We collected the pose data (position and orientation) of the rigid 0° endoscope and all the instruments used in 16 FESS procedures with manual endoscope guidance as well as robot-assisted endoscope guidance. In combination with the DICOM CT data, we tracked the endoscope poses and workspaces using self-developed tracking markers. All surgeries were performed once with the robot and once with the surgeon holding the endoscope. Looking at the durations required, we observed a decrease in the operating time because one surgeon doing all the procedures and so a learning curve occurred what we expected. The visual inspection of the specimens showed no damages to any of the structures outside the paranasal sinuses. Robot-assisted endoscope guidance in sinus surgery is possible. Further CT data, however, are desirable for the surgical analysis of a tracker-based navigation within the anatomic borders. Our marker-based tracking of the endoscope as well as the instruments makes an automated endoscope guidance feasible. On the subjective side, we see that RASS brings a relief for the surgeon.

  8. Two-photon microscopy using fiber-based nanosecond excitation.

    PubMed

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  9. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology.

    PubMed

    Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J S; Kraus, Martin F; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E; Fujimoto, James G

    2013-07-01

    We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.

  10. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology

    PubMed Central

    Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J. S.; Kraus, Martin F.; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2013-01-01

    We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated. PMID:23847737

  11. A Real-Time Clinical Endoscopic System for Intraluminal, Multiplexed Imaging of Surface-Enhanced Raman Scattering Nanoparticles

    PubMed Central

    Garai, Ellis; Loewke, Nathan O.; Rogalla, Stephan; Mandella, Michael J.; Felt, Stephen A.; Friedland, Shai; Liu, Jonathan T. C.; Gambhir, Sanjiv S.; Contag, Christopher H.

    2015-01-01

    The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy. PMID:25923788

  12. Endoscopic placement of the small-bowel video capsule by using a capsule endoscope delivery device.

    PubMed

    Holden, Jeremy P; Dureja, Parul; Pfau, Patrick R; Schwartz, Darren C; Reichelderfer, Mark; Judd, Robert H; Danko, Istvan; Iyer, Lalitha V; Gopal, Deepak V

    2007-05-01

    Capsule endoscopy performed via the traditional peroral route is technically challenging in patients with dysphagia, gastroparesis, and/or abnormal upper-GI (UGI) anatomy. To describe the indications and outcomes of cases in which the AdvanCE capsule endoscope delivery device, which has recently been cleared by the Food and Drug Administration, was used. Retrospective, descriptive, case series. Tertiary care, university hospital. We report a case series of 16 consecutive patients in whom the AdvanCE delivery device was used. The study period was May 2005 through July 2006. Endoscopic delivery of the video capsule to the proximal small bowel by using the AdvanCE delivery device. Indications, technique, and completeness of small bowel imaging in patients who underwent endoscopic video capsule delivery. The AdvanCE delivery device was used in 16 patients ranging in age from 3 to 74 years. The primary indications for endoscopic delivery included inability to swallow the capsule (10), altered UGI anatomy (4), and gastroparesis (2). Of the 4 patients with altered UGI anatomy, 3 had dual intestinal loop anatomy (ie, Bilroth-II procedure, Whipple surgery, Roux-en-Y gastric bypass) and 1 had a failed Nissen fundoplication. In all cases, the capsule was easily deployed without complication, and complete small intestinal imaging was achieved. Small patient size. Endoscopic placement of the Given PillCam by use of the AdvanCE delivery device was safe and easily performed in patients for whom capsule endoscopy would otherwise have been contraindicated or technically challenging.

  13. Successful treatment of Dandy-Walker syndrome by endoscopic third ventriculostomy in a 6-month-old girl with progressive hydrocephalus: a case report and literature review.

    PubMed

    Hu, Chih-Fen; Fan, Hueng-Chuen; Chang, Cheng-Fu; Wang, Chih-Chien; Chen, Shyi-Jou

    2011-02-01

    Dandy-Walker syndrome (DWS) is a congenital brain malformation involving the cerebellum and fourth ventricle. We report a 6-month-old girl with DWS presenting an initially normal ventricular system and mild cyst-like lesion over the posterior fossa as assessed by postnatal brain sonography. However, symptoms and signs of increased intracranial cerebral pressure in terms of frequent vomiting and tense anterior fontanel developed, and these were associated with mild hypotonia and poor neck support, and upward-gaze palsy at the age of 6 months. Magnetic resonance imaging revealed a huge cystic lesion of the fourth ventricle, which filled the posterior fossa and ventricular dilatation. The tentorium was progressively displaced upward by the cyst. A nearly complete agenesis of the cerebellar vermis was also confirmed. After a successful endoscopic third ventriculostomy, a series of brain magnetic resonance imaging scans, taken during a follow-up survey, showed normal lateral and third ventricles. Consequently, symptoms of intracranial cerebral pressure resolved, and a developmental milestone was achieved. In conclusion, DWS can be confirmed postpartum, and endoscopic third ventriculostomy was found to be a preferential operative procedure for DWS with hydrocephalus. It may be effective for patients younger than 1 year. Copyright © 2011. Published by Elsevier B.V.

  14. Endoscopic add-on stiffness probe for real-time soft surface characterisation in MIS.

    PubMed

    Faragasso, A; Stilli, A; Bimbo, J; Noh, Y; Liu, H; Nanayakkara, T; Dasgupta, P; Wurdemann, H A; Althoefer, K

    2014-01-01

    This paper explores a novel stiffness sensor which is mounted on the tip of a laparoscopic camera. The proposed device is able to compute stiffness when interacting with soft surfaces. The sensor can be used in Minimally Invasive Surgery, for instance, to localise tumor tissue which commonly has a higher stiffness when compared to healthy tissue. The purely mechanical sensor structure utilizes the functionality of an endoscopic camera to the maximum by visually analyzing the behavior of trackers within the field of view. Two pairs of spheres (used as easily identifiable features in the camera images) are connected to two springs with known but different spring constants. Four individual indenters attached to the spheres are used to palpate the surface. During palpation, the spheres move linearly towards the objective lens (i.e. the distance between lens and spheres is changing) resulting in variations of their diameters in the camera images. Relating the measured diameters to the different spring constants, a developed mathematical model is able to determine the surface stiffness in real-time. Tests were performed using a surgical endoscope to palpate silicon phantoms presenting different stiffness. Results show that the accuracy of the sensing system developed increases with the softness of the examined tissue.

  15. Super-achromatic microprobe for ultrahigh-resolution endoscopic OCT imaging at 800 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Alemohammad, Milad; Yu, Xiaoyun; Yu, Shaoyong; Li, Xingde

    2016-03-01

    In this paper, we report a super-achromatic microprobe made with fiber-optic ball lens to enable ultrahigh-resolution endoscopic OCT imaging. An axial resolution of ~2.4 µm (in air) can be achieved with a 7-fs Ti:Sapphire laser. The microprobe has minimal astigmatism which affords a high transverse resolution of ~5.6 µm. The miniaturized microprobe has an outer diameter of ~520 µm including the encasing metal guard and can be used to image small luminal organs. The performance of the ultrahigh-resolution OCT microprobe was demonstrated by imaging rat esophagus, guinea pig esophagus, and mouse rectum in vivo.

  16. A Haptic Guided Robotic System for Endoscope Positioning and Holding.

    PubMed

    Cabuk, Burak; Ceylan, Savas; Anik, Ihsan; Tugasaygi, Mehtap; Kizir, Selcuk

    2015-01-01

    To determine the feasibility, advantages, and disadvantages of using a robot for holding and maneuvering the endoscope in transnasal transsphenoidal surgery. The system used in this study was a Stewart Platform based robotic system that was developed by Kocaeli University Department of Mechatronics Engineering for positioning and holding of endoscope. After the first use on an artificial head model, the system was used on six fresh postmortem bodies that were provided by the Morgue Specialization Department of the Forensic Medicine Institute (Istanbul, Turkey). The setup required for robotic system was easy, the time for registration procedure and setup of the robot takes 15 minutes. The resistance was felt on haptic arm in case of contact or friction with adjacent tissues. The adaptation process was shorter with the mouse to manipulate the endoscope. The endoscopic transsphenoidal approach was achieved with the robotic system. The endoscope was guided to the sphenoid ostium with the help of the robotic arm. This robotic system can be used in endoscopic transsphenoidal surgery as an endoscope positioner and holder. The robot is able to change the position easily with the help of an assistant and prevents tremor, and provides a better field of vision for work.

  17. In vivo imaging of pulmonary nodule and vasculature using endoscopic co-registered optical coherence tomography and autofluorescence imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pahlevaninezhad, Hamid; Lee, Anthony; Hohert, Geoffrey; Schwartz, Carely; Shaipanich, Tawimas; Ritchie, Alexander J.; Zhang, Wei; MacAulay, Calum E.; Lam, Stephen; Lane, Pierre M.

    2016-03-01

    Peripheral lung nodules found by CT-scans are difficult to localize and biopsy bronchoscopically particularly for those ≤ 2 cm in diameter. In this work, we present the results of endoscopic co-registered optical coherence tomography and autofluorescence imaging (OCT-AFI) of normal and abnormal peripheral airways from 40 patients using 0.9 mm diameter fiber optic rotary pullback catheter. Optical coherence tomography (OCT) can visualize detailed airway morphology endoscopically in the lung periphery. Autofluorescence imaging (AFI) can visualize fluorescing tissue components such as collagen and elastin, enabling the detection of airway lesions with high sensitivity. Results indicate that AFI of abnormal airways is different from that of normal airways, suggesting that AFI can provide a sensitive visual presentation for rapidly identifying possible sites of pulmonary nodules. AFI can also rapidly visualize in vivo vascular networks using fast scanning parameters resulting in vascular-sensitive imaging with less breathing/cardiac motion artifacts compared to Doppler OCT imaging. It is known that tumor vasculature is structurally and functionally different from normal vessels. Thus, AFI can be potentially used for differentiating normal and abnormal lung vasculature for studying vascular remodeling.

  18. Clinical applications of commercially available video recording and monitoring systems: inexpensive, high-quality video recording and monitoring systems for endoscopy and microsurgery.

    PubMed

    Tsunoda, Koichi; Tsunoda, Atsunobu; Ishimoto, ShinnIchi; Kimura, Satoko

    2006-01-01

    The exclusive charge-coupled device (CCD) camera system for the endoscope and electronic fiberscopes are in widespread use. However, both are usually stationary in an office or examination room, and a wheeled cart is needed for mobility. The total costs of the CCD camera system and electronic fiberscopy system are at least US Dollars 10,000 and US Dollars 30,000, respectively. Recently, the performance of audio and visual instruments has improved dramatically, with a concomitant reduction in their cost. Commercially available CCD video cameras with small monitors have become common. They provide excellent image quality and are much smaller and less expensive than previous models. The authors have developed adaptors for the popular mini-digital video (mini-DV) camera. The camera also provides video and acoustic output signals; therefore, the endoscopic images can be viewed on a large monitor simultaneously. The new system (a mini-DV video camera and an adaptor) costs only US Dollars 1,000. Therefore, the system is both cost-effective and useful for the outpatient clinic or casualty setting, or on house calls for the purpose of patient education. In the future, the authors plan to introduce the clinical application of a high-vision camera and an infrared camera as medical instruments for clinical and research situations.

  19. A technical review of flexible endoscopic multitasking platforms.

    PubMed

    Yeung, Baldwin Po Man; Gourlay, Terence

    2012-01-01

    Further development of advanced therapeutic endoscopic techniques and natural orifice translumenal endoscopic surgery (NOTES) requires a powerful flexible endoscopic multitasking platform. Medline search was performed to identify literature relating to flexible endoscopic multitasking platform from year 2004-2011 using keywords: Flexible endoscopic multitasking platform, NOTES, Instrumentation, Endoscopic robotic surgery, and specific names of various endoscopic multitasking platforms. Key articles from articles references were reviewed. Flexible multitasking platforms can be classified as either mechanical or robotic. Purely mechanical systems include the dual channel endoscope (DCE) (Olympus), R-Scope (Olympus), the EndoSamurai (Olympus), the ANUBIScope (Karl-Storz), Incisionless Operating Platform (IOP) (USGI), and DDES system (Boston Scientific). Robotic systems include the MASTER system (Nanyang University, Singapore) and the Viacath (Hansen Medical). The DCE, the R-Scope, the EndoSamurai and the ANUBIScope have integrated visual function and instrument manipulation function. The IOP and DDES systems rely on the conventional flexible endoscope for visualization, and instrument manipulation is integrated through the use of a flexible, often lockable, multichannel access device. The advantage of the access device concept is that it allows optics and instrument dissociation. Due to the anatomical constrains of the pharynx, systems are designed to have a diameter of less than 20 mm. All systems are controlled by traction cable system actuated either by hand or by robotic machinery. In a flexible system, this method of actuation inevitably leads to significant hysteresis. This problem will be accentuated with a long endoscope such as that required in performing colonic procedures. Systems often require multiple operators. To date, the DCE, the R-Scope, the IOP, and the Viacath system have data published relating to their application in human. Alternative forms of instrument actuation, camera control and master console ergonomics should be explored to improve instrument precision, sphere of action, size and minimize assistance required. Copyright © 2012 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  20. A Clinical Wide-Field Fluorescence Endoscopic Device for Molecular Imaging Demonstrating Cathepsin Protease Activity in Colon Cancer.

    PubMed

    Sensarn, Steven; Zavaleta, Cristina L; Segal, Ehud; Rogalla, Stephan; Lee, Wansik; Gambhir, Sanjiv S; Bogyo, Matthew; Contag, Christopher H

    2016-12-01

    Early and effective detection of cancers of the gastrointestinal tract will require novel molecular probes and advances in instrumentation that can reveal functional changes in dysplastic and malignant tissues. Here, we describe adaptation of a wide-field clinical fiberscope to perform wide-field fluorescence imaging while preserving its white-light capability for the purpose of providing wide-field fluorescence imaging capability to point-of-care microscopes. We developed and used a fluorescent fiberscope to detect signals from a quenched probe, BMV109, that becomes fluorescent when cleaved by, and covalently bound to, active cathepsin proteases. Cathepsins are expressed in inflammation- and tumor-associated macrophages as well as directly from tumor cells and are a promising target for cancer imaging. The fiberscope has a 1-mm outer diameter enabling validation via endoscopic exams in mice, and therefore we evaluated topically applied BMV109 for the ability to detect colon polyps in an azoxymethane-induced colon tumor model in mice. This wide-field endoscopic imaging device revealed consistent and clear fluorescence signals from BMV109 that specifically localized to the polypoid regions as opposed to the normal adjacent colon tissue (p < 0.004) in the murine colon carcinoma model. The sensitivity of detection of BMV109 with the fluorescence fiberscope suggested utility of these tools for early detection at hard-to-reach sites. The fiberscope was designed to be used in conjunction with miniature, endoscope-compatible fluorescence microscopes for dual wide-field and microscopic cancer detection.

  1. Measurement of motion detection of wireless capsule endoscope inside large intestine.

    PubMed

    Zhou, Mingda; Bao, Guanqun; Pahlavan, Kaveh

    2014-01-01

    Wireless Capsule Endoscope (WCE) provides a noninvasive way to inspect the entire Gastrointestinal (GI) tract, including large intestine, where intestinal diseases most likely occur. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of detected intestinal diseases. Knowing how the capsule moves inside the large intestine would greatly complement the existing wireless localization systems by providing the motion information. Since the most recently released WCE can take up to 6 frames per second, it's possible to estimate the movement of the capsule by processing the successive image sequence. In this paper, a computer vision based approach without utilizing any external device is proposed to estimate the motion of WCE inside the large intestine. The proposed approach estimate the displacement and rotation of the capsule by calculating entropy and mutual information between frames using Fibonacci method. The obtained results of this approach show its stability and better performance over other existing approaches of motion measurements. Meanwhile, findings of this paper lay a foundation for motion pattern of WCEs inside the large intestine, which will benefit other medical applications.

  2. Wireless fluorescence capsule for endoscopy using single photon-based detection

    NASA Astrophysics Data System (ADS)

    Al-Rawhani, Mohammed A.; Beeley, James; Cumming, David R. S.

    2015-12-01

    Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.

  3. The application of coded excitation technology in medical ultrasonic Doppler imaging

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Chen, Xiaodong; Bao, Jing; Yu, Daoyin

    2008-03-01

    Medical ultrasonic Doppler imaging is one of the most important domains of modern medical imaging technology. The application of coded excitation technology in medical ultrasonic Doppler imaging system has the potential of higher SNR and deeper penetration depth than conventional pulse-echo imaging system, it also improves the image quality, and enhances the sensitivity of feeble signal, furthermore, proper coded excitation is beneficial to received spectrum of Doppler signal. Firstly, this paper analyzes the application of coded excitation technology in medical ultrasonic Doppler imaging system abstractly, showing the advantage and bright future of coded excitation technology, then introduces the principle and the theory of coded excitation. Secondly, we compare some coded serials (including Chirp and fake Chirp signal, Barker codes, Golay's complementary serial, M-sequence, etc). Considering Mainlobe Width, Range Sidelobe Level, Signal-to-Noise Ratio and sensitivity of Doppler signal, we choose Barker codes as coded serial. At last, we design the coded excitation circuit. The result in B-mode imaging and Doppler flow measurement coincided with our expectation, which incarnated the advantage of application of coded excitation technology in Digital Medical Ultrasonic Doppler Endoscope Imaging System.

  4. The proposal of the locomotive system for capsule endoscopes.

    PubMed

    Watada, Masaya; Ozawa, Ken-ichi

    2008-01-01

    The capsule endoscope authorized in some countries in late years has the advantage of preparing the observation in difficult small intestines in a past endoscope. However, because the promotion mechanism of a capsule endoscope depends only on the peristaltic motion of a digestive organ, the oversight of change to a morbid state is feared. Authors aim at the achievement of a free movement and remote diagnoses in small intestines, and are developing a locomotive system for capsule endoscopes. This paper describes the proposal of the locomotive system with an electromagnetic actuator, and examination of a simulation model for this locomotive system.

  5. Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells

    PubMed Central

    Fruhwirth, Gilbert O.; Ameer-Beg, Simon; Cook, Richard; Watson, Timothy; Ng, Tony; Festy, Frederic

    2010-01-01

    Development of remote imaging for diagnostic purposes has progressed dramatically since endoscopy began in the 1960’s. The recent advent of a clinically licensed intensity-based fluorescence micro-endoscopic instrument has offered the prospect of real-time cellular resolution imaging. However, interrogating protein-protein interactions deep inside living tissue requires precise fluorescence lifetime measurements to derive the Förster resonance energy transfer between two tagged fluorescent markers. We developed a new instrument combining remote fiber endoscopic cellular-resolution imaging with TCSPC-FLIM technology to interrogate and discriminate mixed fluorochrome labeled beads and expressible GFP/TagRFP tags within live cells. Endoscopic-FLIM (e-FLIM) data was validated by comparison with data acquired via conventional FLIM and e-FLIM was found to be accurate for both bright bead and dim live cell samples. The fiber based micro-endoscope allowed remote imaging of 4 µm and 10 µm beads within a thick Matrigel matrix with confident fluorophore discrimination using lifetime information. More importantly, this new technique enabled us to reliably measure protein-protein interactions in live cells embedded in a 3D matrix, as demonstrated by the dimerization of the fluorescent protein-tagged membrane receptor CXCR4. This cell-based application successfully demonstrated the suitability and great potential of this new technique for in vivo pre-clinical biomedical and possibly human clinical applications. PMID:20588974

  6. Multi Modality Brain Mapping System (MBMS) Using Artificial Intelligence and Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Kateb, Babak (Inventor)

    2017-01-01

    A Multimodality Brain Mapping System (MBMS), comprising one or more scopes (e.g., microscopes or endoscopes) coupled to one or more processors, wherein the one or more processors obtain training data from one or more first images and/or first data, wherein one or more abnormal regions and one or more normal regions are identified; receive a second image captured by one or more of the scopes at a later time than the one or more first images and/or first data and/or captured using a different imaging technique; and generate, using machine learning trained using the training data, one or more viewable indicators identifying one or abnormalities in the second image, wherein the one or more viewable indicators are generated in real time as the second image is formed. One or more of the scopes display the one or more viewable indicators on the second image.

  7. New flexible endoscope for otologic application

    NASA Astrophysics Data System (ADS)

    Marchan, Mark L.

    1993-07-01

    Endoscopy has become an important procedure in many medical specialties. For the Otologist, however, space limitations within the ear have restricted development of endoscopic procedures. The desire for minimally invasive techniques in Otology has demonstrated itself through the work of numerous physicians who have performed procedures ranging from diagnostic inspection of the middle ear to viewing the interior of the cochlea. To assist in performing such endoscopic procedures, Xomed-Treace has developed a line of flexible fiberoptic endoscopes for use by the Otologist. These scopes combine illumination and imaging fiber bundles within a small diameter unit ranging in size from 0.8 mm to 1.2 mm. The 1.2 mm scope is produced with an angled, rigid stainless steel sheath. The 0.8 mm scope is flexible with the ability to articulate 120 degree(s) in one direction. The fiberscopes have been designed for the Otologist to produce a good resolution image while allowing ease of operation through ergonomics and consideration of the surgical anatomy.

  8. Optic Nerve Atrophy Due to Long-Standing Compression by Planum Sphenoidale Meningioma.

    PubMed

    Di Somma, Alberto; Kaen, Ariel Matias; Cárdenas Ruiz-Valdepeñas, Eugenio; Cavallo, Luigi Maria

    2018-05-01

    In this study we report an uncommon endoscopic endonasal image of an atrophic optic nerve as seen after surgical removal of a suprasellar meningioma. The peculiarity of this case is the long-lasting underestimated ocular symptomatology of the patient who reported a 15-year history of impairment of vision on her left eye. A 51-year-old woman was admitted to our hospital complaining of a 15-year history of impairment of vision on her left eye. After making serendipitously the diagnosis of a suprasellar mass, we performed endoscopic endonasal surgery. The tumor was reached from below and removed safely, without manipulation of the optic pathways. At the end of tumor removal, the impressive left optic nerve atrophy due to enduring local tumor compression was visualized. To the best of our knowledge, no endoscopic endonasal image with such features has been provided in the pertinent literature. Possibly, this contribution will help identify damaged optic nerves during endoscopic endonasal surgery. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Endockscope: using mobile technology to create global point of service endoscopy.

    PubMed

    Sohn, William; Shreim, Samir; Yoon, Renai; Huynh, Victor B; Dash, Atreya; Clayman, Ralph; Lee, Hak J

    2013-09-01

    Recent advances and the widespread availability of smartphones have ushered in a new wave of innovations in healthcare. We present our initial experience with Endockscope, a new docking system that optimizes the coupling of the iPhone 4S with modern endoscopes. Using the United States Air Force resolution target, we compared the image resolution (line pairs/mm) of a flexible cystoscope coupled to the Endockscope+iPhone to the Storz high definition (HD) camera (H3-Z Versatile). We then used the Munsell ColorChecker chart to compare the color resolution with a 0° laparoscope. Furthermore, 12 expert endoscopists blindly compared and evaluated images from a porcine model using a cystoscope and ureteroscope for both systems. Finally, we also compared the cost (average of two company listed prices) and weight (lb) of the two systems. Overall, the image resolution allowed by the Endockscope was identical to the traditional HD camera (4.49 vs 4.49 lp/mm). Red (ΔE=9.26 vs 9.69) demonstrated better color resolution for iPhone, but green (ΔE=7.76 vs 10.95), and blue (ΔE=12.35 vs 14.66) revealed better color resolution with the Storz HD camera. Expert reviews of cystoscopic images acquired with the HD camera were superior in image, color, and overall quality (P=0.002, 0.042, and 0.003). In contrast, the ureteroscopic reviews yielded no statistical difference in image, color, and overall (P=1, 0.203, and 0.120) quality. The overall cost of the Endockscope+iPhone was $154 compared with $46,623 for a standard HD system. The weight of the mobile-coupled system was 0.47 lb and 1.01 lb for the Storz HD camera. Endockscope demonstrated feasibility of coupling endoscopes to a smartphone. The lighter and inexpensive Endockscope acquired images of the same resolution and acceptable color resolution. When evaluated by expert endoscopists, the quality of the images overall were equivalent for flexible ureteroscopy and somewhat inferior, but still acceptable for flexible cystoscopy.

  10. Endockscope: Using Mobile Technology to Create Global Point of Service Endoscopy

    PubMed Central

    Sohn, William; Shreim, Samir; Yoon, Renai; Huynh, Victor B.; Dash, Atreya; Clayman, Ralph

    2013-01-01

    Abstract Background and Purpose Recent advances and the widespread availability of smartphones have ushered in a new wave of innovations in healthcare. We present our initial experience with Endockscope, a new docking system that optimizes the coupling of the iPhone 4S with modern endoscopes. Materials and Methods Using the United States Air Force resolution target, we compared the image resolution (line pairs/mm) of a flexible cystoscope coupled to the Endockscope+iPhone to the Storz high definition (HD) camera (H3-Z Versatile). We then used the Munsell ColorChecker chart to compare the color resolution with a 0° laparoscope. Furthermore, 12 expert endoscopists blindly compared and evaluated images from a porcine model using a cystoscope and ureteroscope for both systems. Finally, we also compared the cost (average of two company listed prices) and weight (lb) of the two systems. Results Overall, the image resolution allowed by the Endockscope was identical to the traditional HD camera (4.49 vs 4.49 lp/mm). Red (ΔE=9.26 vs 9.69) demonstrated better color resolution for iPhone, but green (ΔE=7.76 vs 10.95), and blue (ΔE=12.35 vs 14.66) revealed better color resolution with the Storz HD camera. Expert reviews of cystoscopic images acquired with the HD camera were superior in image, color, and overall quality (P=0.002, 0.042, and 0.003). In contrast, the ureteroscopic reviews yielded no statistical difference in image, color, and overall (P=1, 0.203, and 0.120) quality. The overall cost of the Endockscope+iPhone was $154 compared with $46,623 for a standard HD system. The weight of the mobile-coupled system was 0.47 lb and 1.01 lb for the Storz HD camera. Conclusion Endockscope demonstrated feasibility of coupling endoscopes to a smartphone. The lighter and inexpensive Endockscope acquired images of the same resolution and acceptable color resolution. When evaluated by expert endoscopists, the quality of the images overall were equivalent for flexible ureteroscopy and somewhat inferior, but still acceptable for flexible cystoscopy. PMID:23701228

  11. 3D surface reconstruction for laparoscopic computer-assisted interventions: comparison of state-of-the-art methods

    NASA Astrophysics Data System (ADS)

    Groch, A.; Seitel, A.; Hempel, S.; Speidel, S.; Engelbrecht, R.; Penne, J.; Höller, K.; Röhl, S.; Yung, K.; Bodenstedt, S.; Pflaum, F.; dos Santos, T. R.; Mersmann, S.; Meinzer, H.-P.; Hornegger, J.; Maier-Hein, L.

    2011-03-01

    One of the main challenges related to computer-assisted laparoscopic surgery is the accurate registration of pre-operative planning images with patient's anatomy. One popular approach for achieving this involves intraoperative 3D reconstruction of the target organ's surface with methods based on multiple view geometry. The latter, however, require robust and fast algorithms for establishing correspondences between multiple images of the same scene. Recently, the first endoscope based on Time-of-Flight (ToF) camera technique was introduced. It generates dense range images with high update rates by continuously measuring the run-time of intensity modulated light. While this approach yielded promising results in initial experiments, the endoscopic ToF camera has not yet been evaluated in the context of related work. The aim of this paper was therefore to compare its performance with different state-of-the-art surface reconstruction methods on identical objects. For this purpose, surface data from a set of porcine organs as well as organ phantoms was acquired with four different cameras: a novel Time-of-Flight (ToF) endoscope, a standard ToF camera, a stereoscope, and a High Definition Television (HDTV) endoscope. The resulting reconstructed partial organ surfaces were then compared to corresponding ground truth shapes extracted from computed tomography (CT) data using a set of local and global distance metrics. The evaluation suggests that the ToF technique has high potential as means for intraoperative endoscopic surface registration.

  12. The reliability of endoscopic examination in assessment of arytenoid cartilage movement in horses. Part II. Influence of side of examination, reexamination, and sedation.

    PubMed

    Ducharme, N G; Hackett, R P; Fubini, S L; Erb, H N

    1991-01-01

    Twenty Thoroughbred and Standardbred horses underwent endoscopic evaluation of arytenoid cartilage movement twice within 1 week. Each time, a flexible endoscope was passed without sedation through the right nostril and the left nostril, and through the right nostril 5 minutes after administration of xylazine hydrochloride (0.55 mg/kg or 1.1 mg/kg intravenously). Laryngeal cartilage movement was videorecorded. All videotaped images were reviewed by three veterinarians and subjectively placed in one of four grades. The intraobserver agreement rate varied from 52.6% for examination under sedation with 1.1 mg/kg of xylazine to 89.5% for unsedated reexamination through the left nostril. The effect of the various observations on median laryngeal grade was calculated. Examination under xylazine hydrochloride at either dosage yielded a change in median laryngeal grade from the unsedated examination in 45% of the evaluations. Reevaluation through the right or left nostril resulted in a different median laryngeal grade in 21% and 5% of the examinations, respectively. Objective measurements of the rima glottidis obtained by computer-assisted morphometric analysis of the recorded laryngeal images allowed laryngeal images to be dichotomized regardless of the condition of endoscopic examination. Endoscopic evaluation of laryngeal cartilage movement is subjective and is influenced by sedation with xylazine, evaluation through the alternate nostril, and different day of examination. The most consistent evaluation was obtained during repeated examination through the left nostril.

  13. Capsule Endoscope Aspiration after Repeated Attempts for Ingesting a Patency Capsule

    PubMed Central

    Mannami, Tomohiko; Ikeda, Genyo; Seno, Satoru; Sonobe, Hiroshi; Fujiwara, Nobukiyo; Komoda, Minori; Edahiro, Satoru; Ohtawa, Yasuyuki; Fujimoto, Yoshimi; Sato, Naohiro; Kambara, Takeshi; Waku, Toshihiko

    2015-01-01

    Capsule endoscope aspiration into the respiratory tract is a rare complication of capsule endoscopy. Despite the potential seriousness of this complication, no accepted methods exist to accurately predict and therefore prevent it. We describe the case of an 85-year-old male who presented for evaluation of iron deficiency anemia. He complained of dysphagia while ingesting a patency capsule, with several attempts over a period of 5 min before he was successful. Five days later, he underwent capsule endoscopy, where he experienced similar symptoms in swallowing the capsule. The rest of the examination proceeded uneventfully. On reviewing the captured images, the capsule endoscope was revealed to be aspirated, remaining in the respiratory tract for approximately 220 s before images of the esophagus and stomach appeared. To our knowledge, this is the first documented case of a patient who experienced capsule endoscope aspiration after ingestion of a patency capsule. This case suggests that repeated attempts required for ingesting the patency capsule can predict capsule endoscope aspiration. We presume that paying sufficient attention to the symptoms of a patient who ingests a patency capsule could help us prevent serious complications such as aspiration of the capsule endoscope. In addition, this experience implies the potential risk for ingesting the patency capsule. We must be aware that the patency capsule could also be aspirated and there may be more unrecognized aspiration cases. PMID:26600772

  14. Capsule Endoscope Aspiration after Repeated Attempts for Ingesting a Patency Capsule.

    PubMed

    Mannami, Tomohiko; Ikeda, Genyo; Seno, Satoru; Sonobe, Hiroshi; Fujiwara, Nobukiyo; Komoda, Minori; Edahiro, Satoru; Ohtawa, Yasuyuki; Fujimoto, Yoshimi; Sato, Naohiro; Kambara, Takeshi; Waku, Toshihiko

    2015-01-01

    Capsule endoscope aspiration into the respiratory tract is a rare complication of capsule endoscopy. Despite the potential seriousness of this complication, no accepted methods exist to accurately predict and therefore prevent it. We describe the case of an 85-year-old male who presented for evaluation of iron deficiency anemia. He complained of dysphagia while ingesting a patency capsule, with several attempts over a period of 5 min before he was successful. Five days later, he underwent capsule endoscopy, where he experienced similar symptoms in swallowing the capsule. The rest of the examination proceeded uneventfully. On reviewing the captured images, the capsule endoscope was revealed to be aspirated, remaining in the respiratory tract for approximately 220 s before images of the esophagus and stomach appeared. To our knowledge, this is the first documented case of a patient who experienced capsule endoscope aspiration after ingestion of a patency capsule. This case suggests that repeated attempts required for ingesting the patency capsule can predict capsule endoscope aspiration. We presume that paying sufficient attention to the symptoms of a patient who ingests a patency capsule could help us prevent serious complications such as aspiration of the capsule endoscope. In addition, this experience implies the potential risk for ingesting the patency capsule. We must be aware that the patency capsule could also be aspirated and there may be more unrecognized aspiration cases.

  15. Covered Esophageal Stenting Is Effective for Symptomatic Gastric Lumen Narrowing and Related Complications Following Laparoscopic Sleeve Gastrectomy.

    PubMed

    Aburajab, Murad A; Max, Joshua B; Ona, Mel A; Gupta, Kapil; Burch, Miguel; Michael Feiz, F; Lo, Simon K; Jamil, Laith H

    2017-11-01

    Laparoscopic sleeve gastrectomy (LSG) is gaining popularity in treating morbid obesity. Prior studies showed a 3.5% risk of gastric sleeve stenosis (GSS). There is no consensus on how to treat these patients, and the role of endoscopic therapy has been addressed in only a few studies. We aim to assess the efficacy and safety of endoscopic stenting in the management of GSS following LSG. Retrospective data were reviewed from July 2009 to November 2013. Patients were referred for endoscopic therapy for symptoms or imaging findings suggestive of gastric leak or narrowing following LSG. Endoscopic therapy included the use of fully covered self-expanding esophageal metal stents (FCSEMS) in addition to over-the-scope clip system (OTSC) when necessary. All 27 patients were females with mean age of 40 years; six patients were excluded from the study. Major symptom was nausea and vomiting in 57% of the patients. Five of 21 patients had concomitant leaks. All 21 patients underwent FCSEMS placement, and four out of five patients (80%) with concomitant leak had OTSC. The success rate in both groups for resolution of stricture and leak was 100%, and no surgical intervention was required. There were no immediate or delayed complications of endoscopic therapy. Median follow-up of 6 months was available for 20/21 patients. Among patients with gastric leak, 80% had resolution of their symptoms compared with 93% of patients with GSS. Endoscopic therapy for LSG-related GSS or leaks with FCSEMS is highly effective and safe.

  16. Optically sectioned wide-field fluorescence lifetime imaging endoscopy enabled by structured illumination (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hinsdale, Taylor; Malik, Bilal H.; Rico-Jimenez, Jose J.; Jo, Javier A.; Maitland, Kristen C.

    2016-03-01

    We present a wide-field fluorescence lifetime imaging (FLIM) system with optical sectioning by structured illumination microscopy (SIM). FLIM measurements were made using a time gated ICCD camera in conjunction with a pulsed nitrogen dye laser operating at 450 nm. Intensity images were acquired at multiple time delays from a trigger initiated by a laser pulse to create a wide-field FLIM image, which was then combined with three phase SIM to provide optical sectioning. Such a mechanism has the potential to increase the reliability and accuracy of the FLIM measurements by rejecting background intensity. SIM also provides the opportunity to create volumetric FLIM images with the incorporation of scanning mechanisms for the sample plane. We present multiple embodiments of such a system: one as a free space endoscope and the other as a fiber microendoscope enabled by the introduction of a fiber bundle. Finally, we demonstrate the efficacy of such an imaging system by imaging dyes embedded in a tissue phantom.

  17. Ultrasound-assisted endoscopic partial plantar fascia release.

    PubMed

    Ohuchi, Hiroshi; Ichikawa, Ken; Shinga, Kotaro; Hattori, Soichi; Yamada, Shin; Takahashi, Kazuhisa

    2013-01-01

    Various surgical treatment procedures for plantar fasciitis, such as open surgery, percutaneous release, and endoscopic surgery, exist. Skin trouble, nerve disturbance, infection, and persistent pain associated with prolonged recovery time are complications of open surgery. Endoscopic partial plantar fascia release offers the surgeon clear visualization of the anatomy at the surgical site. However, the primary medial portal and portal tract used for this technique have been shown to be in close proximity to the posterior tibial nerves and their branches, and there is always the risk of nerve damage by introducing the endoscope deep to the plantar fascia. By performing endoscopic partial plantar fascia release under ultrasound assistance, we could dynamically visualize the direction of the endoscope and instrument introduction, thus preventing nerve damage from inadvertent insertion deep to the fascia. Full-thickness release of the plantar fascia at the ideal position could also be confirmed under ultrasound imaging. We discuss the technique for this new procedure.

  18. Ultrasound-Assisted Endoscopic Partial Plantar Fascia Release

    PubMed Central

    Ohuchi, Hiroshi; Ichikawa, Ken; Shinga, Kotaro; Hattori, Soichi; Yamada, Shin; Takahashi, Kazuhisa

    2013-01-01

    Various surgical treatment procedures for plantar fasciitis, such as open surgery, percutaneous release, and endoscopic surgery, exist. Skin trouble, nerve disturbance, infection, and persistent pain associated with prolonged recovery time are complications of open surgery. Endoscopic partial plantar fascia release offers the surgeon clear visualization of the anatomy at the surgical site. However, the primary medial portal and portal tract used for this technique have been shown to be in close proximity to the posterior tibial nerves and their branches, and there is always the risk of nerve damage by introducing the endoscope deep to the plantar fascia. By performing endoscopic partial plantar fascia release under ultrasound assistance, we could dynamically visualize the direction of the endoscope and instrument introduction, thus preventing nerve damage from inadvertent insertion deep to the fascia. Full-thickness release of the plantar fascia at the ideal position could also be confirmed under ultrasound imaging. We discuss the technique for this new procedure. PMID:24265989

  19. Training of polyp staging systems using mixed imaging modalities.

    PubMed

    Wimmer, Georg; Gadermayr, Michael; Kwitt, Roland; Häfner, Michael; Tamaki, Toru; Yoshida, Shigeto; Tanaka, Shinji; Merhof, Dorit; Uhl, Andreas

    2018-05-04

    In medical image data sets, the number of images is usually quite small. The small number of training samples does not allow to properly train classifiers which leads to massive overfitting to the training data. In this work, we investigate whether increasing the number of training samples by merging datasets from different imaging modalities can be effectively applied to improve predictive performance. Further, we investigate if the extracted features from the employed image representations differ between different imaging modalities and if domain adaption helps to overcome these differences. We employ twelve feature extraction methods to differentiate between non-neoplastic and neoplastic lesions. Experiments are performed using four different classifier training strategies, each with a different combination of training data. The specifically designed setup for these experiments enables a fair comparison between the four training strategies. Combining high definition with high magnification training data and chromoscopic with non-chromoscopic training data partly improved the results. The usage of domain adaptation has only a small effect on the results compared to just using non-adapted training data. Merging datasets from different imaging modalities turned out to be partially beneficial for the case of combining high definition endoscopic data with high magnification endoscopic data and for combining chromoscopic with non-chromoscopic data. NBI and chromoendoscopy on the other hand are mostly too different with respect to the extracted features to combine images of these two modalities for classifier training. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. High-sensitivity detection and monitoring of microcirculation using cutaneous and catheter probes for Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Victor X.; Gordon, M. L.; Qi, B.; Yue, E. Seng; Tang, S.; Bisland, Stuart K.; Pekar, J.; Lo, S.; Marcon, Norman E.; Wilson, B.; Vitkin, Alex

    2003-07-01

    Background: Currently clinical Doppler ultrasound cannot detect microvascular blood flow and it is difficult to provide depth discrimination using laser Doppler flowmetry. Doppler optical coherence tomography (DOCT) is a novel technique for noninvasive subsurface imaging of microcirculation and tissue structure. Aims: To design handheld and catheter-based DOCT probes for clinical cutaneous and endoscopic imaging. To develop signal processing techniques for real-time detection and quantification of microvascular blood flow. Methods: A DOCT system, with interchangeable cutaneous and catheter probes, was developed. The axial spatial resolution was 10 μm, and the velocity resolution was 20 μm/s, using a 1300 nm broadband infrared light. The system achieved real-time imaging with frame rates up to 32 Hz at 512 x 256 pixels per frame. We used the system to detect microcirculation in human skin and rat esophagus, and to monitor microvascular responses to photodynamic therapy (PDT) in a rat tumor model. Results: We present experimental results from in vivo DOCT imaging of microcirculation in human skin arterio-venous malformations (AVM), normal rat esophagus, and a rat gliosarcoma PDT model. In the PDT model, we followed microvascular responses to PDT and observed differences in the microcirculation during and after therapy, which can have important implications for PDT dosimetry and treatment optimization. Conclusions: To our knowledge, this is the first demonstration of endoscopic catheter-based DOCT detection of microcirculation in vivo. In addition, AVM can be detected using handheld cutaneous DOCT probes under clinical settings. DOCT may serve as a real-time monitoring tool for PDT dosimetry, especially for vascular targeting photosensitizers.

  1. Processing urinary endoscopes in a low-temperature steam and formaldehyde autoclave.

    PubMed Central

    Gibson, G L

    1977-01-01

    Methods of disinfection and sterilisation of urinary endoscopes are considered. A small mobile low-temperature steam and formaldehyde autoclave (Miniclave 80) is evaluated and shown to be satisfactory for this purpose as judged by a variety of relevant microbiological test pieces. Images PMID:557503

  2. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging

    PubMed Central

    Ohayon, Shay; Caravaca-Aguirre, Antonio; Piestun, Rafael; DiCarlo, James J.

    2018-01-01

    A major open challenge in neuroscience is the ability to measure and perturb neural activity in vivo from well defined neural sub-populations at cellular resolution anywhere in the brain. However, limitations posed by scattering and absorption prohibit non-invasive multi-photon approaches for deep (>2mm) structures, while gradient refractive index (GRIN) endoscopes are relatively thick and can cause significant damage upon insertion. Here, we present a novel micro-endoscope design to image neural activity at arbitrary depths via an ultra-thin multi-mode optical fiber (MMF) probe that has 5–10X thinner diameter than commercially available micro-endoscopes. We demonstrate micron-scale resolution, multi-spectral and volumetric imaging. In contrast to previous approaches, we show that this method has an improved acquisition speed that is sufficient to capture rapid neuronal dynamics in-vivo in rodents expressing a genetically encoded calcium indicator (GCaMP). Our results emphasize the potential of this technology in neuroscience applications and open up possibilities for cellular resolution imaging in previously unreachable brain regions. PMID:29675297

  3. Endoscopic OCT for imaging of uterine body and cervix pathologies

    NASA Astrophysics Data System (ADS)

    Shakhova, Natalia M.; Kuznetzova, Irina N.; Gladkova, Natalia D.; Snopova, Ludmila; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Feldchtein, Felix I.; Kuranov, Roman V.; Sergeev, Alexander M.

    1998-04-01

    First results of endoscopic applications of optical coherence tomography (OCT) in gynecology are presented. We have studied mucosa of uterus, uterine cervix and vagina in vivo. Images of healthy endometrium in different stages of menstrual cycle have been recorded. For uterine cervix not only OCT data of normal state but some kids of pathology have been analyzed. Capability of OCT to identify alterations of mucosa makes this method promising for early diagnosis of tumors and precise guiding of excisional biopsy.

  4. An Augmented Reality Endoscope System for Ureter Position Detection.

    PubMed

    Yu, Feng; Song, Enmin; Liu, Hong; Li, Yunlong; Zhu, Jun; Hung, Chih-Cheng

    2018-06-25

    Iatrogenic injury of ureter in the clinical operation may cause the serious complication and kidney damage. To avoid such a medical accident, it is necessary to provide the ureter position information to the doctor. For the detection of ureter position, an ureter position detection and display system with the augmented ris proposed to detect the ureter that is covered by human tissue. There are two key issues which should be considered in this new system. One is how to detect the covered ureter that cannot be captured by the electronic endoscope and the other is how to display the ureter position that provides stable and high-quality images. Simultaneously, any delayed processing of the system should disturb the surgery. The aided hardware detection method and target detection algorithms are proposed in this system. To mark the ureter position, a surface-lighting plastic optical fiber (POF) with the encoded light-emitting diode (LED) light is used to indicate the ureter position. The monochrome channel filtering algorithm (MCFA) is proposed to locate the ureter region more precisely. The ureter position is extracted using the proposed automatic region growing algorithm (ARGA) that utilizes the statistical information of the monochrome channel for the selection of growing seed point. In addition, according to the pulse signal of encoded light, the recognition of bright and dark frames based on the aided hardware (BDAH) is proposed to expedite the processing speed. Experimental results demonstrate that the proposed endoscope system can identify 92.04% ureter region in average.

  5. Endoscopic optical coherence tomography for imaging the tympanic membrane

    NASA Astrophysics Data System (ADS)

    Burkhardt, Anke; Walther, Julia; Cimalla, Peter; Bornitz, Matthias; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is an imaging modality that enables micrometer-scale contactless subsurface imaging of biological tissue. Endoscopy, as another imaging method, has the potential of imaging tubular organs and cavities and therefore has opened up several application areas not accessible before. The combination of OCT and endoscopy uses the advantages of both methods and consequently allows additional imaging of structures beneath surfaces inside cavities. Currently, visual investigations on the surface of the human tympanic membrane are possible but only with expert eyes. up to now, visual imaging of the outer ear up to the tympanic membrane can be carried out by an otoscope, an operating microscope or an endoscope. In contrast to these devices, endoscopy has the advantage of imaging the whole tympanic membrane with one view. The intention of this research is the development of an endoscopic optical coherence tomography (EOCT) device for imaging the tympanic membrane depth-resolved and structures behind it. Detection of fluids in the middle ear, which function as an indicator for otitis media, could help to avoid the application of antibiotics. It is possible to detect a congeries of fluids with the otoscope but the ambition is to the early detection by OCT. The developed scanner head allows imaging in working distances in the range from zero up to 5 mm with a field of view of 2 mm. In the next step, the scanner head should be improved to increase the working distance and the field of view.

  6. Calibration for single multi-mode fiber digital scanning microscopy imaging system

    NASA Astrophysics Data System (ADS)

    Yin, Zhe; Liu, Guodong; Liu, Bingguo; Gan, Yu; Zhuang, Zhitao; Chen, Fengdong

    2015-11-01

    Single multimode fiber (MMF) digital scanning imaging system is a development tendency of modern endoscope. We concentrate on the calibration method of the imaging system. Calibration method comprises two processes, forming scanning focused spots and calibrating the couple factors varied with positions. Adaptive parallel coordinate algorithm (APC) is adopted to form the focused spots at the multimode fiber (MMF) output. Compare with other algorithm, APC contains many merits, i.e. rapid speed, small amount calculations and no iterations. The ratio of the optics power captured by MMF to the intensity of the focused spots is called couple factor. We setup the calibration experimental system to form the scanning focused spots and calculate the couple factors for different object positions. The experimental result the couple factor is higher in the center than the edge.

  7. 2D and 3D visualization methods of endoscopic panoramic bladder images

    NASA Astrophysics Data System (ADS)

    Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til

    2011-03-01

    While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.

  8. Connection method of separated luminal regions of intestine from CT volumes

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Kitasaka, Takayuki; Furukawa, Kazuhiro; Watanabe, Osamu; Ando, Takafumi; Hirooka, Yoshiki; Goto, Hidemi; Mori, Kensaku

    2015-03-01

    This paper proposes a connection method of separated luminal regions of the intestine for Crohn's disease diagnosis. Crohn's disease is an inflammatory disease of the digestive tract. Capsule or conventional endoscopic diagnosis is performed for Crohn's disease diagnosis. However, parts of the intestines may not be observed in the endoscopic diagnosis if intestinal stenosis occurs. Endoscopes cannot pass through the stenosed parts. CT image-based diagnosis is developed as an alternative choice of the Crohn's disease. CT image-based diagnosis enables physicians to observe the entire intestines even if stenosed parts exist. CAD systems for Crohn's disease using CT volumes are recently developed. Such CAD systems need to reconstruct separated luminal regions of the intestines to analyze intestines. We propose a connection method of separated luminal regions of the intestines segmented from CT volumes. The luminal regions of the intestines are segmented from a CT volume. The centerlines of the luminal regions are calculated by using a thinning process. We enumerate all the possible sequences of the centerline segments. In this work, we newly introduce a condition using distance between connected ends points of the centerline segments. This condition eliminates unnatural connections of the centerline segments. Also, this condition reduces processing time. After generating a sequence list of the centerline segments, the correct sequence is obtained by using an evaluation function. We connect the luminal regions based on the correct sequence. Our experiments using four CT volumes showed that our method connected 6.5 out of 8.0 centerline segments per case. Processing times of the proposed method were reduced from the previous method.

  9. A Clinical Wide-Field Fluorescence Endoscopic Device for Molecular Imaging Demonstrating Cathepsin Protease Activity in Colon Cancer

    PubMed Central

    Sensarn, Steven; Zavaleta, Cristina L.; Segal, Ehud; Rogalla, Stephan; Lee, Wansik; Gambhir, Sanjiv S.; Bogyo, Matthew; Contag, Christopher H.

    2017-01-01

    Purpose Early and effective detection of cancers of the gastrointestinal tract will require novel molecular probes and advances in instrumentation that can reveal functional changes in dysplastic and malignant tissues. Here, we describe adaptation of a wide-field clinical fiberscope to perform wide-field fluorescence imaging while preserving its white-light capability for the purpose of providing wide-field fluorescence imaging capability to point-of-care microscopes. Procedures We developed and used a fluorescent fiberscope to detect signals from a quenched probe, BMV109, that becomes fluorescent when cleaved by, and covalently bound to, active cathepsin proteases. Cathepsins are expressed in inflammation- and tumor-associated macrophages as well as directly from tumor cells and are a promising target for cancer imaging. The fiberscope has a 1-mm outer diameter enabling validation via endoscopic exams in mice, and therefore we evaluated topically applied BMV109 for the ability to detect colon polyps in an azoxymethane-induced colon tumor model in mice. Results This wide-field endoscopic imaging device revealed consistent and clear fluorescence signals from BMV109 that specifically localized to the polypoid regions as opposed to the normal adjacent colon tissue (p < 0.004) in the murine colon carcinoma model. Conclusions The sensitivity of detection of BMV109 with the fluorescence fiberscope suggested utility of these tools for early detection at hard-to-reach sites. The fiberscope was designed to be used in conjunction with miniature, endoscope-compatible fluorescence microscopes for dual wide-field and microscopic cancer detection. PMID:27154508

  10. An endoscopic diffuse optical tomographic method with high resolution based on the improved FOCUSS method

    NASA Astrophysics Data System (ADS)

    Qin, Zhuanping; Ma, Wenjuan; Ren, Shuyan; Geng, Liqing; Li, Jing; Yang, Ying; Qin, Yingmei

    2017-02-01

    Endoscopic DOT has the potential to apply to cancer-related imaging in tubular organs. Although the DOT has relatively large tissue penetration depth, the endoscopic DOT is limited by the narrow space of the internal tubular tissue, so as to the relatively small penetration depth. Because some adenocarcinomas including cervical adenocarcinoma are located in deep canal, it is necessary to improve the imaging resolution under the limited measurement condition. To improve the resolution, a new FOCUSS algorithm along with the image reconstruction algorithm based on the effective detection range (EDR) is developed. This algorithm is based on the region of interest (ROI) to reduce the dimensions of the matrix. The shrinking method cuts down the computation burden. To reduce the computational complexity, double conjugate gradient method is used in the matrix inversion. For a typical inner size and optical properties of the cervix-like tubular tissue, reconstructed images from the simulation data demonstrate that the proposed method achieves equivalent image quality to that obtained from the method based on EDR when the target is close the inner boundary of the model, and with higher spatial resolution and quantitative ratio when the targets are far from the inner boundary of the model. The quantitative ratio of reconstructed absorption and reduced scattering coefficient can be up to 70% and 80% under 5mm depth, respectively. Furthermore, the two close targets with different depths can be separated from each other. The proposed method will be useful to the development of endoscopic DOT technologies in tubular organs.

  11. Navigation system for flexible endoscopes

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Figl, Michael; Birkfellner, Wolfgang; Häfner, Michael; Kollmann, Christian; Bergmann, Helmar

    2003-05-01

    Endoscopic Ultrasound (EUS) features flexible endoscopes equipped with a radial or linear array scanhead allowing high resolution examination of organs adjacent to the upper gastrointestinal tract. An optical system based on fibre-glass or a CCD-chip allows additional orientation. However, 3-dimensional orientation and correct identification of the various anatomical structures may be difficult. It therefore seems desirable to merge real-time US images with high resolution CT or MR images acquired prior to EUS to simplify navigation during the intervention. The additional information provided by CT or MR images might facilitate diagnosis of tumors and, ultimately, guided puncture of suspicious lesions. We built a grid with 15 plastic spheres and measured their positions relatively to five fiducial markers placed on the top of the grid. For this measurement we used an optical tracking system (OTS) (Polaris, NDI, Can). Two sensors of an electromagnetic tracking system (EMTS) (Aurora, NDI, Can) were mounted on a flexible endoscope (Pentax GG 38 UX, USA) to enable a free hand ultrasound calibration. To determine the position of the plastic spheres in the emitter coordinate system of the EMTS we applied a point-to-point registration (Horn) using the coordinates of the fiducial markers in both coordinate systems (OTS and EMTS). For the transformation between EMTS to the CT space the Horn algorithm was adopted again using the fiducial markers. Visualization was enabled by the use of the AVW-4.0 library (Biomedical Imaging Resource, Mayo Clinic, Rochester/MN, USA). To evaluate the suitability of our new navigation system we measured the Fiducial Registration Error (FRE) of the diverse registrations and the Target Registration Error (TRE) for the complete transformation from the US space to the CT space. The FRE for the ultrasound calibration amounted to 4.3 mm +/- 4.2 mm, resulting from 10 calibration procedures. For the transformation from the OTS reference system to the EMTS emitter space we found an average FRE of 0.8 mm +/- 0.2 mm. The FRE for the CT registration was 1.0 mm +/- 0.3 mm. The TRE was found to be 3.8 mm +/- 1.3 mm if we target the same spheres which where used for the calibration procedure. A movement of the phantom results in higher TREs because of the orientation sensitivity of the sensor. In that case the TRE in the area where the biopsy is supposed to be taken place was found to be 7.9 mm +/- 3.2 mm. Our system provides the interventionist with additional information about position and orientation of the used flexible instrument. Additionally, it improves the marksmanship of biopsies. The use of the miniaturized EMTS enables for the first time the navigation of flexible instruments in this way. For the successful application of navigation systems in interventional radiology, an accuracy in the range of 5 mm is desirable. The accuracy of the localization of a point in CT space are just 3 mm too high as required. One of the possibilities to overcome this difference is to mount the two sensors in such a way that the interference of their electromagnetic fields is minimized. A considerable restraint constitutes the small characteristic volume (360mm x 600mm x 600mm), which requires for most application an additional optical system.

  12. Automatic specular reflections removal for endoscopic images

    NASA Astrophysics Data System (ADS)

    Tan, Ke; Wang, Bin; Gao, Yuan

    2017-07-01

    Endoscopy imaging is utilized to provide a realistic view about the surfaces of organs inside the human body. Owing to the damp internal environment, these surfaces usually have a glossy appearance showing specular reflections. For many computer vision algorithms, the highlights created by specular reflections may become a significant source of error. In this paper, we present a novel method for restoration of the specular reflection regions from a single image. Specular restoration process starts with generating a substitute specular-free image with RPCA method. Then the specular removed image was obtained by taking the binary weighting template of highlight regions as the weighting for merging the original specular image and the substitute image. The modified template was furthermore discussed for the concealment of artificial effects in the edge of specular regions. Experimental results on the removal of the endoscopic image with specular reflections demonstrate the efficiency of the proposed method comparing to the existing methods.

  13. Ultrahigh speed en face OCT capsule for endoscopic imaging

    PubMed Central

    Liang, Kaicheng; Traverso, Giovanni; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Wang, Zhao; Potsaid, Benjamin; Giacomelli, Michael; Jayaraman, Vijaysekhar; Barman, Ross; Cable, Alex; Mashimo, Hiroshi; Langer, Robert; Fujimoto, James G.

    2015-01-01

    Depth resolved and en face OCT visualization in vivo may have important clinical applications in endoscopy. We demonstrate a high speed, two-dimensional (2D) distal scanning capsule with a micromotor for fast rotary scanning and a pneumatic actuator for precision longitudinal scanning. Longitudinal position measurement and image registration were performed by optical tracking of the pneumatic scanner. The 2D scanning device enables high resolution imaging over a small field of view and is suitable for OCT as well as other scanning microscopies. Large field of view imaging for screening or surveillance applications can also be achieved by proximally pulling back or advancing the capsule while scanning the distal high-speed micromotor. Circumferential en face OCT was demonstrated in living swine at 250 Hz frame rate and 1 MHz A-scan rate using a MEMS tunable VCSEL light source at 1300 nm. Cross-sectional and en face OCT views of the upper and lower gastrointestinal tract were generated with precision distal pneumatic longitudinal actuation as well as proximal manual longitudinal actuation. These devices could enable clinical studies either as an adjunct to endoscopy, attached to an endoscope, or as a swallowed tethered capsule for non-endoscopic imaging without sedation. The combination of ultrahigh speed imaging and distal scanning capsule technology could enable both screening and surveillance applications. PMID:25909001

  14. Ultrahigh speed en face OCT capsule for endoscopic imaging.

    PubMed

    Liang, Kaicheng; Traverso, Giovanni; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Wang, Zhao; Potsaid, Benjamin; Giacomelli, Michael; Jayaraman, Vijaysekhar; Barman, Ross; Cable, Alex; Mashimo, Hiroshi; Langer, Robert; Fujimoto, James G

    2015-04-01

    Depth resolved and en face OCT visualization in vivo may have important clinical applications in endoscopy. We demonstrate a high speed, two-dimensional (2D) distal scanning capsule with a micromotor for fast rotary scanning and a pneumatic actuator for precision longitudinal scanning. Longitudinal position measurement and image registration were performed by optical tracking of the pneumatic scanner. The 2D scanning device enables high resolution imaging over a small field of view and is suitable for OCT as well as other scanning microscopies. Large field of view imaging for screening or surveillance applications can also be achieved by proximally pulling back or advancing the capsule while scanning the distal high-speed micromotor. Circumferential en face OCT was demonstrated in living swine at 250 Hz frame rate and 1 MHz A-scan rate using a MEMS tunable VCSEL light source at 1300 nm. Cross-sectional and en face OCT views of the upper and lower gastrointestinal tract were generated with precision distal pneumatic longitudinal actuation as well as proximal manual longitudinal actuation. These devices could enable clinical studies either as an adjunct to endoscopy, attached to an endoscope, or as a swallowed tethered capsule for non-endoscopic imaging without sedation. The combination of ultrahigh speed imaging and distal scanning capsule technology could enable both screening and surveillance applications.

  15. Toward intravascular morphological and biochemical imaging of atherosclerosis with optical coherence tomography (OCT) and fluorescence lifetime imaging (FLIM) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Kim, Wihan; Serafino, Michael; Walton, Brian; Jo, Javier A.; Applegate, Brian E.

    2017-02-01

    We have shown in an ex vivo human coronary artery study that the biochemical information derived from FLIM interpreted in the context of the morphological information from OCT enables a detailed classification of human coronary plaques associated with atherosclerosis. The identification of lipid-rich plaques prone to erosion or rupture and associated with sudden coronary events can impact current clinical practice as well as future development of targeted therapies for "vulnerable" plaques. In order to realize clinical translation of intravascular OCT/FLIM we have had to develop several key technologies. A multimodal catheter endoscope capable of delivering near UV excitation for FLIM and shortwave IR for OCT has been fabricated using a ball lens design with a double clad fiber. The OCT illumination and the FLIM excitation propogate down the inner core while the large outer multimode core captures the fluorescence emission. To enable intravascular pullback imaging with this endoscope we have developed an ultra-wideband fiber optic rotary joint using the same double clad fiber. The rotary joint is based on a lensless design where two cleaved fibers, one fixed and one rotating, are brought into close proximity but not touching. Using water as the lubricant enabled operation over the near UV-shortwave IR range. Transmission over this bandwidth has been measured to be near 100% at rotational frequencies up to 147 Hz. The entire system has been assembled and placed on a mobile cart suitable for cath lab based imaging. System development, performance, and early ex vivo imaging results will be discussed.

  16. Fluorescence endoscopic imaging study of anastomotic recurrence of Crohn's disease after right ileocolonic resection

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Maunoury, Vincent; Klein, Olivier; Colombel, Jean-Frederic

    1995-12-01

    Crohn's disease is an inflammatory bowel disease of unknown etiology. Vasculitis is hypothesized but it was never demonstrated in vivo. This study aimed to evaluate the vascular mucosa perfusion using fluorescence imaging in 13 patients who had previously undergone eileocolonic resection and who agreed to participate in a prospective endoscopic study of anastomotic recurrence. This anastomotic recurrence rate is known to be high (73% after 1 year follow-up) and is characterized by ulcerations. The fluorescence study was started with an I.V. bolus injection of sodium fluorescein. The pre-anastomotic mucosa was endoscopically examined with blue light that stimulates fluorescein fluorescence. Fluorescence emission was recorded with an ultra-high-sensitivity camera connected to the endoscope via an interference filter (520 - 560 nm). A uniform fluorescence was observed a few seconds after the injection and lasted for 15 min in healthy subjects. In case of recurrence, the centers of the ulcerations displayed a very low fluorescence indicating localized ischemia. In contrast, the rims of the ulcers revealed brighter fluorescent images than those of normal mucosa. The anastomotic ulcerations of Crohn's disease recurrence exhibit a high fluorescence intensity at their margins indicating an increased mucosal blood flow and/or enhanced transcapillary diffusion. These findings support the hypothesis of a primary vasculitis in Crohn's disease.

  17. Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography

    PubMed Central

    Sharma, Giriraj K.; Loy, Anthony Chin; Su, Erica; Jing, Joe; Chen, Zhongping; Wong, Brian J-F.; Verma, Sunil

    2016-01-01

    Objectives To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS). Results Intraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual “fly through” bronchoscopy. Conclusions This is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS. PMID:27354215

  18. Learning neuroendoscopy with an exoscope system (video telescopic operating monitor): Early clinical results.

    PubMed

    Parihar, Vijay; Yadav, Y R; Kher, Yatin; Ratre, Shailendra; Sethi, Ashish; Sharma, Dhananjaya

    2016-01-01

    Steep learning curve is found initially in pure endoscopic procedures. Video telescopic operating monitor (VITOM) is an advance in rigid-lens telescope systems provides an alternative method for learning basics of neuroendoscopy with the help of the familiar principle of microneurosurgery. The aim was to evaluate the clinical utility of VITOM as a learning tool for neuroendoscopy. Video telescopic operating monitor was used 39 cranial and spinal procedures and its utility as a tool for minimally invasive neurosurgery and neuroendoscopy for initial learning curve was studied. Video telescopic operating monitor was used in 25 cranial and 14 spinal procedures. Image quality is comparable to endoscope and microscope. Surgeons comfort improved with VITOM. Frequent repositioning of scope holder and lack of stereopsis is initial limiting factor was compensated for with repeated procedures. Video telescopic operating monitor is found useful to reduce initial learning curve of neuroendoscopy.

  19. Endoscopic fluorescence imaging for early assessment of anastomotic recurrence of Crohn's disease

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Maunoury, Vincent; Geboes, K.; Klein, Olivier; Desreumaux, P.; Debaert, A.; Colombel, Jean-Frederic

    1999-02-01

    Crohn's disease is an inflammatory bowel disease of unknown etiology. The mechanism of the initial mucosal alterations is still unclear: ulcerations overlying lymphoid follicles and/or vasculitis have been proposed as the early lesions. We have developed a new and original method combining endoscopy of fluorescence angiography for identifying the early pathological lesions, occurring in the neo-terminal ileum after right ileocolonic resection. The patient population consisted of 10 subjects enrolled in a prospective protocol of endoscopic follow-up at 3 and 12 months after surgery. Fluorescence imaging showed small spots giving a bright fluorescence distributed singly in mucosa which appeared normal in routine endoscopy. Histopathological examination demonstrated that the fluorescence of small spots originated from small, usually superficial, erosive lesions. In several cases, these erosive lesions occurred over lymphoid follicles. Endoscopic fluorescence imaging provides a suitable means of investigating the initial aspect of the Crohn's disease process in displaying some correlative findings between fluorescent aspects and early pathological mucosal alterations.

  20. Novel application of simultaneous multi-image display during complex robotic abdominal procedures

    PubMed Central

    2014-01-01

    Background The surgical robot offers the potential to integrate multiple views into the surgical console screen, and for the assistant’s monitors to provide real-time views of both fields of operation. This function has the potential to increase patient safety and surgical efficiency during an operation. Herein, we present a novel application of the multi-image display system for simultaneous visualization of endoscopic views during various complex robotic gastrointestinal operations. All operations were performed using the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) with the assistance of Tilepro, multi-input display software, during employment of the intraoperative scopes. Three robotic operations, left hepatectomy with intraoperative common bile duct exploration, low anterior resection, and radical distal subtotal gastrectomy with intracorporeal gastrojejunostomy, were performed by three different surgeons at a tertiary academic medical center. Results The three complex robotic abdominal operations were successfully completed without difficulty or intraoperative complications. The use of the Tilepro to simultaneously visualize the images from the colonoscope, gastroscope, and choledochoscope made it possible to perform additional intraoperative endoscopic procedures without extra monitors or interference with the operations. Conclusion We present a novel use of the multi-input display program on the da Vinci Surgical System to facilitate the performance of intraoperative endoscopies during complex robotic operations. Our study offers another potentially beneficial application of the robotic surgery platform toward integration and simplification of combining additional procedures with complex minimally invasive operations. PMID:24628761

  1. Endoscopic Full-Field Swept-Source Optical Coherence Tomography Neuroimaging System

    NASA Astrophysics Data System (ADS)

    Felts Almog, Ilan

    Optical Coherence Tomography (OCT) has the capability to differentiate brain elements with intrinsic contrast and at a resolution an order-of-magnitude higher than other imaging modalities. This thesis investigates the feasibility of OCT for neuroimaging applied to neurosurgical guidance. We present, to our knowledge, the first Full-Field Swept-Source OCT system operating near a wavelength of 1310 nm, achieving a transverse imaging resolution of 6.5 mum, an axial resolution of 14 mum in tissue and a field of view of 270 mum x 180 mum x 400 mum. Imaging experiments were performed on rat brain tissues ex vivo, human cortical tissue ex vivo, and rats in vivo. A multi-level threshold metric applied on the intensity of the images led to a plausible correlation between the observed density and location in the brain. The proof-of-concept OCT system can be improved and miniaturized for clinical use.

  2. Intraoperative near-infrared autofluorescence imaging of parathyroid glands.

    PubMed

    Ladurner, Roland; Sommerey, Sandra; Arabi, Nora Al; Hallfeldt, Klaus K J; Stepp, Herbert; Gallwas, Julia K S

    2017-08-01

    To identify parathyroid glands intraoperatively by exposing their autofluorescence using near-infrared light. Fluorescence imaging was carried out during minimally invasive and open parathyroid and thyroid surgery. After identification, the parathyroid glands as well as the surrounding tissue were exposed to near-infrared (NIR) light with a wavelength of 690-770 nm using a modified Karl Storz near-infrared/indocyanine green (NIR/ICG) endoscopic system. Parathyroid tissue was expected to show near-infrared autofluorescence, captured in the blue channel of the camera. Whenever possible the visual identification of parathyroid tissue was confirmed histologically. In preliminary investigations, using the original NIR/ICG endoscopic system we noticed considerable interference of light in the blue channel overlying the autofluorescence. Therefore, we modified the light source by interposing additional filters. In a second series, we investigated 35 parathyroid glands from 25 patients. Twenty-seven glands were identified correctly based on NIR autofluorescence. Regarding the extent of autofluorescence, there were no noticeable differences between parathyroid adenomas, hyperplasia and normal parathyroid glands. In contrast, thyroid tissue, lymph nodes and adipose tissue revealed no substantial autofluorescence. Parathyroid tissue is characterized by showing autofluorescence in the near-infrared spectrum. This effect can be used to distinguish parathyroid glands from other cervical tissue entities.

  3. Motion analysis for duplicate frame removal in wireless capsule endoscope

    NASA Astrophysics Data System (ADS)

    Lee, Hyun-Gyu; Choi, Min-Kook; Lee, Sang-Chul

    2011-03-01

    Wireless capsule endoscopy (WCE) has been intensively researched recently due to its convenience for diagnosis and extended detection coverage of some diseases. Typically, a full recording covering entire human digestive system requires about 8 to 12 hours for a patient carrying a capsule endoscope and a portable image receiver/recorder unit, which produces 120,000 image frames on average. In spite of the benefits of close examination, WCE based test has a barrier for quick diagnosis such that a trained diagnostician must examine a huge amount of images for close investigation, normally over 2 hours. The main purpose of our work is to present a novel machine vision approach to reduce diagnosis time by automatically detecting duplicated recordings caused by backward camera movement, typically containing redundant information, in small intestine. The developed technique could be integrated with a visualization tool which supports intelligent inspection method, such as automatic play speed control. Our experimental result shows high accuracy of the technique by detecting 989 duplicate image frames out of 10,000, equivalently to 9.9% data reduction, in a WCE video from a real human subject. With some selected parameters, we achieved the correct detection ratio of 92.85% and the false detection ratio of 13.57%.

  4. Fluorescence multi-scale endoscopy and its applications in the study and diagnosis of gastro-intestinal diseases: set-up design and software implementation

    NASA Astrophysics Data System (ADS)

    Gómez-García, Pablo Aurelio; Arranz, Alicia; Fresno, Manuel; Desco, Manuel; Mahmood, Umar; Vaquero, Juan José; Ripoll, Jorge

    2015-06-01

    Endoscopy is frequently used in the diagnosis of several gastro-intestinal pathologies as Crohn disease, ulcerative colitis or colorectal cancer. It has great potential as a non-invasive screening technique capable of detecting suspicious alterations in the intestinal mucosa, such as inflammatory processes. However, these early lesions usually cannot be detected with conventional endoscopes, due to lack of cellular detail and the absence of specific markers. Due to this lack of specificity, the development of new endoscopy technologies, which are able to show microscopic changes in the mucosa structure, are necessary. We here present a confocal endomicroscope, which in combination with a wide field fluorescence endoscope offers fast and specific macroscopic information through the use of activatable probes and a detailed analysis at cellular level of the possible altered tissue areas. This multi-modal and multi-scale imaging module, compatible with commercial endoscopes, combines near-infrared fluorescence (NIRF) measurements (enabling specific imaging of markers of disease and prognosis) and confocal endomicroscopy making use of a fiber bundle, providing a cellular level resolution. The system will be used in animal models exhibiting gastro-intestinal diseases in order to analyze the use of potential diagnostic markers in colorectal cancer. In this work, we present in detail the set-up design and the software implementation in order to obtain simultaneous RGB/NIRF measurements and short confocal scanning times.

  5. Incidence of macroscopically occult neoplasias in Barrett's esophagus: are random biopsies dispensable in the era of advanced endoscopic imaging?

    PubMed

    Pohl, Juergen; Pech, Oliver; May, Andrea; Manner, Hendrik; Fissler-Eckhoff, Annette; Ell, Christian

    2010-11-01

    The gold standard for endoscopic surveillance of Barrett's esophagus (BE) includes targeted biopsies (TBs) from abnormalities as well as stepwise four-quadrant biopsies (4QBs) for detection of invisible high-grade intraepithelial neoplasias (HGINs) or early carcinomas (ECs). In a large mixed BE population, we investigated the rate of HGINs/ECs that are macroscopically occult to enhanced visualization with high-resolution endoscopy plus acetic acid chromoendoscopy. From January 2007 to December 2009, 701 consecutive BE patients were enrolled in a prospective study at a tertiary referral center. Of these, 406 patients had a history of HGIN/EC (high-risk group) and 295 patients did not (low-risk group). In 701 patients, 459 TBs and 5,485 4QBs were obtained. Altogether, 92 patients with 132 lesions containing HGINs/ECs were detected. For the diagnosis of HGINs/ECs, patient-related sensitivity and specificity rates of endoscopic imaging with TBs were 96.7 and 66.5%, with a positive and negative predictive value of 30.4 and 99.3%, respectively. In the high-risk group, 4QBs identified three additional patients (3.3%) with macroscopically occult HGINs/ECs. In the low-risk group, no HGINs/ECs were identified with either biopsy approach. Advanced endoscopic imaging identifies the vast majority of BE patients with early neoplasias, and the additive effect of 4QB is minimal. Therefore, in low- and high-risk patients, limiting endoscopic surveillance to guided biopsies is justified in specialized high-volume centers with permanent quality control. However, we do not advocate abandoning 4QB outside this setting.

  6. Percutaneous endoscopic holmium laser lithotripsy for management of complicated biliary calculi.

    PubMed

    Healy, Kelly; Chamsuddin, Abbas; Spivey, James; Martin, Louis; Nieh, Peter; Ogan, Kenneth

    2009-01-01

    Advances in endoscopic techniques have transformed the management of urolithiasis. We sought to evaluate the role of such urological interventions for the treatment of complex biliary calculi. We conducted a retrospective review of all patients (n=9) undergoing percutaneous holmium laser lithotripsy for complicated biliary calculi over a 4-year period (12/2003 to 12/2007). All previously failed standard techniques include ERCP with sphincterotomy (n=6), PTHC (n=7), or both of these. Access to the biliary system was obtained via an existing percutaneous transhepatic catheter or T-tube tracts. Endoscopic holmium laser lithotripsy was performed via a flexible cystoscope or ureteroscope. Stone clearance was confirmed intra- and post-operatively. A percutaneous transhepatic drain was left indwelling for follow-up imaging. Mean patient age was 65.6 years (range, 38 to 92). Total stone burden ranged from 1.7 cm to 5 cm. All 9 patients had stones located in the CBD, with 2 patients also having additional stones within the hepatic ducts. All 9 patients (100%) were visually stone-free after one endoscopic procedure. No major perioperative complications occurred. Mean length of stay was 2.4 days. At a mean radiological follow-up of 5.4 months (range, 0.5 to 21), no stone recurrence was noted. Percutaneous endoscopic holmium laser lithotripsy is a minimally invasive alternative to open salvage surgery for complex biliary calculi refractory to standard approaches. This treatment is both safe and efficacious. Success depends on a multidisciplinary approach.

  7. Percutaneous Endoscopic Holmium Laser Lithotripsy for Management of Complicated Biliary Calculi

    PubMed Central

    Healy, Kelly; Chamsuddin, Abbas; Spivey, James; Martin, Louis; Nieh, Peter

    2009-01-01

    Background and Objectives: Advances in endoscopic techniques have transformed the management of urolithiasis. We sought to evaluate the role of such urological interventions for the treatment of complex biliary calculi. Methods: We conducted a retrospective review of all patients (n=9) undergoing percutaneous holmium laser lithotripsy for complicated biliary calculi over a 4-year period (12/2003 to 12/2007). All previously failed standard techniques include ERCP with sphincterotomy (n=6), PTHC (n=7), or both of these. Access to the biliary system was obtained via an existing percutaneous transhepatic catheter or T-tube tracts. Endoscopic holmium laser lithotripsy was performed via a flexible cystoscope or ureteroscope. Stone clearance was confirmed intra- and postoperatively. A percutaneous transhepatic drain was left indwelling for follow-up imaging. Results: Mean patient age was 65.6 years (range, 38 to 92). Total stone burden ranged from 1.7 cm to 5 cm. All 9 patients had stones located in the CBD, with 2 patients also having additional stones within the hepatic ducts. All 9 patients (100%) were visually stone-free after one endoscopic procedure. No major perioperative complications occurred. Mean length of stay was 2.4 days. At a mean radiological follow-up of 5.4 months (range, 0.5 to 21), no stone recurrence was noted. Conclusions: Percutaneous endoscopic holmium laser lithotripsy is a minimally invasive alternative to open salvage surgery for complex biliary calculi refractory to standard approaches. This treatment is both safe and efficacious. Success depends on a multidisciplinary approach. PMID:19660213

  8. Measurement of distances between anatomical structures using a translating stage with mounted endoscope

    NASA Astrophysics Data System (ADS)

    Kahrs, Lueder A.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Labadie, Robert F.

    2012-02-01

    During endoscopic procedures it is often desirable to determine the distance between anatomical features. One such clinical application is percutaneous cochlear implantation (PCI), which is a minimally invasive approach to the cochlea via a single, straight drill path and can be achieved accurately using bone-implanted markers and customized microstereotactic frame. During clinical studies to validate PCI, traditional open-field cochlear implant surgery was performed and prior to completion of the surgery, a customized microstereotactic frame designed to achieve the desired PCI trajectory was attached to the bone-implanted markers. To determine whether this trajectory would have safely achieved the target, a sham drill bit is passed through the frame to ensure that the drill bit would reach the cochlea without damaging vital structures. Because of limited access within the facial recess, the distances from the bit to anatomical features could not be measured with calipers. We hypothesized that an endoscope mounted on a sliding stage that translates only along the trajectory, would provide sufficient triangulation to accurately measure these distances. In this paper, the design, fabrication, and testing of such a system is described. The endoscope is mounted so that its optical axis is approximately aligned with the trajectory. Several images are acquired as the stage is moved, and threedimensional reconstruction of selected points allows determination of distances. This concept also has applicability in a large variety of rigid endoscopic interventions including bronchoscopy, laparoscopy, and sinus endoscopy.

  9. Endoscopy Assisted Oncoplastic Breast Surgery (EAOBS)

    PubMed Central

    Soybir, Gürsel; Fukuma, Eisuke

    2015-01-01

    Endoscopic oncoplastic breast surgery represents a minimal invasive approach with the aim of both removing cancer safely and also restoring the breast image. It has less noticeable scar, excellent cosmetic outcomes, high patient satisfaction rate and recently reported relatively long term safety. Operative techniques for both endoscopic breast conserving surgery and endoscopic nipple/areola/skin sparing mastectomy have been described in detail. Two different working planes in which one of them is subcutaneous and the other one is sub-mammary planes are being used during the surgery. Surgical techniqe needs some instruments such as endoscopic retractor, light guided specific mammary retractor, wound protector and bipolar scissor. Endoscopic breast retractors provide magnified visualization and extensive posterior dissection facility. Tunneling method and hydrodissection simplify the technique in the subcutaneous field. Oncoplastic reconstruction techniques are also applied after the tumor resection by endoscopic method. Complication rates of endoscopic breast surgery are similar to open breast surgery rates. Quite succesful local recurrence, distant metastasis and overall survival rates have been declared. However it looks reasonable to wait for the results with longer follow-up before having a judgement about oncologic efficiency and safety of the endoscopic breast cancer surgery. PMID:28331692

  10. Quantitative ENT endoscopy: the future in the new millennium

    NASA Astrophysics Data System (ADS)

    Mueller, Andreas; Schubert, Mario

    1999-06-01

    In Otorhinolaryngology the endoscopic appraisal of luminal dimensions of the nose, the throat, the larynx and the trachea is a daily problem. Those concerned with endoscopy know, that endoscopes distort dimensions of examined anatomical structures. To draw conclusions on luminal dimensions from the endoscopic pictures additional measuring devices are required. We developed a new method of measuring luminal dimensions in rigid or flexible endoscopy. For this a laser beam directed radially marks the anatomical lumen of interest in the videoendoscopic vision. The laser ring becomes deformed according to the form of the cavity explored. By keeping the distance defined between the laser ring and the top of the endoscope, the endoscopic video image can be measured. A piece of software developed by us calculates from the pictures the cross sectional area as well as the extension of benign or malign stenosis of the cavity explored. The result of the endoscopic measuring procedure can be visualized 3D on a PC-monitor. We are going to demonstrate the result of our clinical experience in different otorhinolaryngological diseases with the new endoscopic measuring kit in comparison to standard endoscopy. A further perspective is the endoscopic measuring kit in comparison to standard endoscopy. A further perspective is the endoscopic assisted manufacturing (EAM) of anatomical adapted stents, tubes and cannules.

  11. Mitigating fluorescence spectral overlap in wide-field endoscopic imaging

    PubMed Central

    Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.

    2013-01-01

    Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226

  12. Computer-aided detection of early cancer in the esophagus using HD endoscopy images

    NASA Astrophysics Data System (ADS)

    van der Sommen, Fons; Zinger, Svitlana; Schoon, Erik J.; de With, Peter H. N.

    2013-02-01

    Esophageal cancer is the fastest rising type of cancer in the Western world. The recent development of High-Definition (HD) endoscopy has enabled the specialist physician to identify cancer at an early stage. Nevertheless, it still requires considerable effort and training to be able to recognize these irregularities associated with early cancer. As a first step towards a Computer-Aided Detection (CAD) system that supports the physician in finding these early stages of cancer, we propose an algorithm that is able to identify irregularities in the esophagus automatically, based on HD endoscopic images. The concept employs tile-based processing, so our system is not only able to identify that an endoscopic image contains early cancer, but it can also locate it. The identification is based on the following steps: (1) preprocessing, (2) feature extraction with dimensionality reduction, (3) classification. We evaluate the detection performance in RGB, HSI and YCbCr color space using the Color Histogram (CH) and Gabor features and we compare with other well-known features to describe texture. For classification, we employ a Support Vector Machine (SVM) and evaluate its performance using different parameters and kernel functions. In experiments, our system achieves a classification accuracy of 95.9% on 50×50 pixel tiles of tumorous and normal tissue and reaches an Area Under the Curve (AUC) of 0.990. In 22 clinical examples our algorithm was able to identify all (pre-)cancerous regions and annotate those regions reasonably well. The experimental and clinical validation are considered promising for a CAD system that supports the physician in finding early stage cancer.

  13. Miniaturized camera system for an endoscopic capsule for examination of the colonic mucosa

    NASA Astrophysics Data System (ADS)

    Wippermann, Frank; Müller, Martin; Wäny, Martin; Voltz, Stephan

    2014-09-01

    Todaýs standard procedure for the examination of the colon uses a digital endoscope located at the tip of a tube encasing wires for camera read out, fibers for illumination, and mechanical structures for steering and navigation. On the other hand, there are swallowable capsules incorporating a miniaturized camera which are more cost effective, disposable, and less unpleasant for the patient during examination but cannot be navigated along the path through the colon. We report on the development of a miniaturized endoscopic camera as part of a completely wireless capsule which can be safely and accurately navigated and controlled from the outside using an electromagnet. The endoscope is based on a global shutter CMOS-imager with 640x640 pixels and a pixel size of 3.6μm featuring through silicon vias. Hence, the required electronic connectivity is done at its back side using a ball grid array enabling smallest lateral dimensions. The layout of the f/5-objective with 100° diagonal field of view aims for low production cost and employs polymeric lenses produced by injection molding. Due to the need of at least one-time autoclaving, high temperature resistant polymers were selected. Optical and mechanical design considerations are given along with experimental data obtained from realized demonstrators.

  14. Juvenile psammomatoid ossifying fibroma in paranasal sinus and skull base.

    PubMed

    Wang, Mingjie; Zhou, Bing; Cui, Shunjiu; Li, Yunchuan

    2017-07-01

    The endoscopic transnasal approach with IGS is a safe and effective technique, allowing completely resection of JPOF, with minimal morbidity and recurrence. JPOF is a benign but locally aggressive fibro-osseous lesion. This study presents a series of JPOF cases, involving anterior skull base and orbit, treated by endoscopic transnasal approach with image guidance system (IGS) to resect the mass completely. This study retrospectively reviewed the clinical presentations, surgical procedures, and complications of 11 patients with JPOF who were treated by endoscopic approach from May 2009 to April 2014. All patients were followed by endoscopic and CT scan evaluations during follow-up. All of the 11 cases were boys, with a mean age of 11.8 years (range = 6-17 years). The size of mass in the paranasal sinus ranged from 2.5-4.6 cm in greatest dimension (mean = 3.7 cm), and the medial orbital wall and cranial base were involved in all patients. All 11 patients received successful operation and were relieved from symptoms without mortality and major complications. During follow-up (range from 17-67 months; mean follow-up = 25.8 months), only one patient was recurrent in local position. The skull base partial resected during surgery was found to rebuild after 1 year.

  15. Epigastric hernia contiguous with the laparoscopic port site after endoscopic robotic total prostatectomy.

    PubMed

    Moriwaki, Yoshihiro; Otani, Jun; Okuda, Junzo; Maemoto, Ryo

    2018-03-23

    Both laparoscopic and endoscopic robotic surgery are widely accepted for many abdominal surgeries. However, the port site for the laparoscope cannot be easily sutured without defect, particularly in the cranial end; this can result in a port-site incisional hernia and trigger the progressive thinning and stretching of the linea alba, leading to epigastric hernia. In the present case, we encountered an epigastric hernia contiguous with an incisional scar at the port site from a previous endoscopic robotic total prostatectomy. Abdominal ultrasound and CT revealed that the width of the linea alba was 30-48 mm. Previous CT images prepared before endoscopic robotic prostatectomy had shown a thinning of the linea alba. We should be aware of the possibility of epigastric hernia after laparoscopic and endoscopic robotic surgery. In laparoscopic and endoscopic robotic surgery for a high-risk patient for epigastric hernia, we should consider additional sutures cranial to the port-site incision to prevent of an epigastric hernia. © 2018 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and John Wiley & Sons Australia, Ltd.

  16. Quantitative and qualitative analysis of the working area obtained by endoscope and microscope in pterional and orbitozigomatic approach to the basilar artery bifurcation using computed tomography based frameless stereotaxy: A cadaver study

    PubMed Central

    Filipce, Venko; Ammirati, Mario

    2015-01-01

    Objective: Basilar aneurisms are one of the most complex and challenging pathologies for neurosurgeons to treat. Endoscopy is a recently rediscovered neurosurgical technique that could lend itself well to overcome some of the vascular visualization challenges associated with this pathology. The purpose of this study was to quantify and compare the basilar artery (BA) bifurcation (tip of the basilar) working area afforded by the microscope and the endoscope using different approaches and image guidance. Materials and Methods: We performed a total of 9 dissections, including pterional (PT) and orbitozygomatic (OZ) approaches bilaterally in five whole, fresh cadaver heads. We used computed tomography based image guidance for intraoperative navigation as well as for quantitative measurements. We estimated the working area of the tip of the basilar, using both a rigid endoscope and an operating microscope. Operability was qualitatively assessed by the senior authors. Results: In microscopic exposure, the OZ approach provided greater working area (160 ± 34.3 mm2) compared to the PT approach (129.8 ± 37.6 mm2) (P > 0.05). The working area in both PT and OZ approaches using 0° and 30° endoscopes was larger than the one available using the microscope alone (P < 0.05). In the PT approach, both 0° and 30° endoscopes provided a working area greater than a microscopic OZ approach (P < 0.05) and an area comparable to the OZ endoscopic approach (P > 0.05). Conclusion: Integration of endoscope and microscope in both PT and OZ approaches can provide significantly greater surgical exposure of the BA bifurcation compared to that afforded by the conventional approaches alone. PMID:25972933

  17. Using typical endoscopic features to diagnose esophageal squamous papilloma.

    PubMed

    Wong, Ming-Wun; Bair, Ming-Joug; Shih, Shou-Chuan; Chu, Cheng-Hsin; Wang, Horng-Yuan; Wang, Tsang-En; Chang, Chen-Wang; Chen, Ming-Jen

    2016-02-21

    To better understand some of the superficial tiny lesions that are recognized as squamous papilloma of the esophagus (SPE) and receive a different pathological diagnosis. All consecutive patients with esophageal polypoid lesions detected by routine endoscopy at our Endoscopy Centre between October 2009 and June 2014 were retrospectively analysed. We enrolled patients with SPE or other superficial lesions to investigate four key endoscopic appearances (whitish color, exophytic growth, wart-like shape, and surface vessels) and used narrow band imaging (NBI) to distinguish their differences. These series endoscopic images of each patient were retrospectively reviewed by three experienced endoscopists with no prior access to the images. All lesion specimens obtained by forceps biopsy were fixed in formalin and processed for pathological examination. The following data were collected from patient medical records: gender, age, indications for esophagogastroduodenoscopy, and endoscopic characteristics including lesion location, number, color, size, surface morphology, surrounding mucosa, and surface vessels under NBI. Clinicopathological features were also compared. During the study period, 41 esophageal polypoid lesions from 5698 endoscopic examinations were identified retrospectively. These included 24 patients with pathologically confirmed SPE, 11 patients with squamous hyperplasia, three patients with glycogenic acanthosis, two patients with ectopic sebaceous glands, and one patient with a xanthoma. In the χ (2) test, exophytic growth (P = 0.003), a wart-like shape (P < 0.001), and crossing surface vessels under NBI (P = 0.001) were more frequently observed in SPE than in other lesion types. By contrast, there was no significant difference regarding the appearance of a whitish color between SPE and other lesion types (P = 0.872). The most sensitive characteristic was wart-like projections (81.3%) and the most specific was exophytic growth (87.5%). Promising positive predictive values of 84.2%, 80.8%, and 82.6% were noted for exophytic growth, wart-like projections, and surface vessel crossing on NBI, respectively. The use of three key typical endoscopic appearances--exophytic growth, a wart-like shape, and vessel crossing on the lesion surface under NBI--has a promising positive predictive value of 88.2%. This diagnostic triad is useful for the endoscopic diagnosis of SPE.

  18. Using typical endoscopic features to diagnose esophageal squamous papilloma

    PubMed Central

    Wong, Ming-Wun; Bair, Ming-Joug; Shih, Shou-Chuan; Chu, Cheng-Hsin; Wang, Horng-Yuan; Wang, Tsang-En; Chang, Chen-Wang; Chen, Ming-Jen

    2016-01-01

    AIM: To better understand some of the superficial tiny lesions that are recognized as squamous papilloma of the esophagus (SPE) and receive a different pathological diagnosis. METHODS: All consecutive patients with esophageal polypoid lesions detected by routine endoscopy at our Endoscopy Centre between October 2009 and June 2014 were retrospectively analysed. We enrolled patients with SPE or other superficial lesions to investigate four key endoscopic appearances (whitish color, exophytic growth, wart-like shape, and surface vessels) and used narrow band imaging (NBI) to distinguish their differences. These series endoscopic images of each patient were retrospectively reviewed by three experienced endoscopists with no prior access to the images. All lesion specimens obtained by forceps biopsy were fixed in formalin and processed for pathological examination. The following data were collected from patient medical records: gender, age, indications for esophagogastroduodenoscopy, and endoscopic characteristics including lesion location, number, color, size, surface morphology, surrounding mucosa, and surface vessels under NBI. Clinicopathological features were also compared. RESULTS: During the study period, 41 esophageal polypoid lesions from 5698 endoscopic examinations were identified retrospectively. These included 24 patients with pathologically confirmed SPE, 11 patients with squamous hyperplasia, three patients with glycogenic acanthosis, two patients with ectopic sebaceous glands, and one patient with a xanthoma. In the χ2 test, exophytic growth (P = 0.003), a wart-like shape (P < 0.001), and crossing surface vessels under NBI (P = 0.001) were more frequently observed in SPE than in other lesion types. By contrast, there was no significant difference regarding the appearance of a whitish color between SPE and other lesion types (P = 0.872). The most sensitive characteristic was wart-like projections (81.3%) and the most specific was exophytic growth (87.5%). Promising positive predictive values of 84.2%, 80.8%, and 82.6% were noted for exophytic growth, wart-like projections, and surface vessel crossing on NBI, respectively. CONCLUSION: The use of three key typical endoscopic appearances - exophytic growth, a wart-like shape, and vessel crossing on the lesion surface under NBI - has a promising positive predictive value of 88.2%. This diagnostic triad is useful for the endoscopic diagnosis of SPE. PMID:26900297

  19. Blur spot limitations in distal endoscope sensors

    NASA Astrophysics Data System (ADS)

    Yaron, Avi; Shechterman, Mark; Horesh, Nadav

    2006-02-01

    In years past, the picture quality of electronic video systems was limited by the image sensor. In the present, the resolution of miniature image sensors, as in medical endoscopy, is typically superior to the resolution of the optical system. This "excess resolution" is utilized by Visionsense to create stereoscopic vision. Visionsense has developed a single chip stereoscopic camera that multiplexes the horizontal dimension of the image sensor into two (left and right) images, compensates the blur phenomena, and provides additional depth resolution without sacrificing planar resolution. The camera is based on a dual-pupil imaging objective and an image sensor coated by an array of microlenses (a plenoptic camera). The camera has the advantage of being compact, providing simultaneous acquisition of left and right images, and offering resolution comparable to a dual chip stereoscopic camera with low to medium resolution imaging lenses. A stereoscopic vision system provides an improved 3-dimensional perspective of intra-operative sites that is crucial for advanced minimally invasive surgery and contributes to surgeon performance. An additional advantage of single chip stereo sensors is improvement of tolerance to electronic signal noise.

  20. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  1. [New guidelines on chronic pancreatitis : interdisciplinary treatment strategies].

    PubMed

    Lerch, M M; Bachmann, K A; Izbicki, J R

    2013-02-01

    Chronic pancreatitis is a common disorder associated with significant morbidity and mortality. Interdisciplinary consensus guidelines have recently updated the definitions and diagnostic criteria for chronic pancreatitis and provide a critical assessment of therapeutic procedures. Diagnostic imaging relies on endoscopic ultrasound (EUS) as the most sensitive technique, whereas computed tomography (CT) and magnetic resonance imaging (MRI)/magnetic resonance cholangiopancreatography (MRCP) remain a frequent preoperative requirement. Endoscopic retrograde cholangiopancreatography (ERCP) is now used mostly as a therapeutic procedure except for the differential diagnosis of autoimmune pancreatitis. Complications of chronic pancreatitis, such as pseudocysts, duct stricture and intractable pain can be treated with endoscopic interventions as well as open surgery. In the treatment of pseudocysts endoscopic drainage procedures now prevail while pain treatment has greater long-term effectiveness following surgical procedures. Currently, endocopic as well as surgical treatment of chronic pancreatitis require an ever increasing degree of technical and medical expertise and are provided increasingly more often by interdisciplinary centres. Surgical treatment is superior to interventional therapy regarding the outcome of pain control and duodenum-preserving pancreatic head resection is presently the surgical procedure of choice.

  2. [Three-dimensional endoscopic endonasal study of skull base anatomy].

    PubMed

    Abarca-Olivas, Javier; Monjas-Cánovas, Irene; López-Álvarez, Beatriz; Lloret-García, Jaime; Sanchez-del Campo, Jose; Gras-Albert, Juan Ramon; Moreno-López, Pedro

    2014-01-01

    Training in dissection of the paranasal sinuses and the skull base is essential for anatomical understanding and correct surgical techniques. Three-dimensional (3D) visualisation of endoscopic skull base anatomy increases spatial orientation and allows depth perception. To show endoscopic skull base anatomy based on the 3D technique. We performed endoscopic dissection in cadaveric specimens fixed with formalin and with the Thiel technique, both prepared using intravascular injection of coloured material. Endonasal approaches were performed with conventional 2D endoscopes. Then we applied the 3D anaglyph technique to illustrate the pictures in 3D. The most important anatomical structures and landmarks of the sellar region under endonasal endoscopic vision are illustrated in 3D images. The skull base consists of complex bony and neurovascular structures. Experience with cadaver dissection is essential to understand complex anatomy and develop surgical skills. A 3D view constitutes a useful tool for understanding skull base anatomy. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  3. Central endoscopy reads in inflammatory bowel disease clinical trials: The role of the imaging core lab

    PubMed Central

    Ahmad, Harris; Berzin, Tyler M.; Yu, Hui Jing; Huang, Christopher S.; Mishkin, Daniel S.

    2014-01-01

    Clinical trials in inflammatory bowel disease (IBD) are evolving at a rapid pace by employing central reading for endoscopic mucosal assessment in a field that was, historically, largely based on assessments by local physicians. This transition from local to central reading carries with it numerous technical, operational, and scientific challenges, many of which can be resolved by imaging core laboratories (ICLs), a concept that has a longer history in clinical trials in a number of diseases outside the realm of gastroenterology. For IBD trials, ICLs have the dual goals of providing objective, consistent assessments of endoscopic findings using central-reading paradigms whilst providing important expertise with regard to operational issues and regulatory expectations. This review focuses on current approaches to using ICLs for central endoscopic reading in IBD trials. PMID:24994835

  4. A randomized comparison of laparoscopic, magnetically anchored, and flexible endoscopic cameras in performance and workload between laparoscopic and single-incision surgery.

    PubMed

    Arain, Nabeel A; Cadeddu, Jeffrey A; Best, Sara L; Roshek, Thomas; Chang, Victoria; Hogg, Deborah C; Bergs, Richard; Fernandez, Raul; Webb, Erin M; Scott, Daniel J

    2012-04-01

    This study aimed to evaluate the surgeon performance and workload of a next-generation magnetically anchored camera compared with laparoscopic and flexible endoscopic imaging systems for laparoscopic and single-site laparoscopy (SSL) settings. The cameras included a 5-mm 30° laparoscope (LAP), a magnetically anchored (MAGS) camera, and a flexible endoscope (ENDO). The three camera systems were evaluated using standardized optical characteristic tests. Each system was used in random order for visualization during performance of a standardized suturing task by four surgeons. Each participant performed three to five consecutive repetitions as a surgeon and also served as a camera driver for other surgeons. Ex vivo testing was conducted in a laparoscopic multiport and SSL layout using a box trainer. In vivo testing was performed only in the multiport configuration and used a previously validated live porcine Nissen model. Optical testing showed superior resolution for MAGS at 5 and 10 cm compared with LAP or ENDO. The field of view ranged from 39 to 99°. The depth of focus was almost three times greater for MAGS (6-270 mm) than for LAP (2-88 mm) or ENDO (1-93 mm). Both ex vivo and in vivo multiport combined surgeon performance was significantly better for LAP than for ENDO, but no significant differences were detected for MAGS. For multiport testing, workload ratings were significantly less ex vivo for LAP and MAGS than for ENDO and less in vivo for LAP than for MAGS or ENDO. For ex vivo SSL, no significant performance differences were detected, but camera drivers rated the workload significantly less for MAGS than for LAP or ENDO. The data suggest that the improved imaging element of the next-generation MAGS camera has optical and performance characteristics that meet or exceed those of the LAP or ENDO systems and that the MAGS camera may be especially useful for SSL. Further refinements of the MAGS camera are encouraged.

  5. A multiport MR-compatible neuroendoscope: spanning the gap between rigid and flexible scopes

    PubMed Central

    Manjila, Sunil; Mencattelli, Margherita; Rosa, Benoit; Price, Karl; Fagogenis, Georgios; Dupont, Pierre E.

    2017-01-01

    OBJECTIVE Rigid endoscopes enable minimally invasive access to the ventricular system; however, the operative field is limited to the instrument tip, necessitating rotation of the entire instrument and causing consequent tissue compression while reaching around corners. Although flexible endoscopes offer tip steerability to address this limitation, they are more difficult to control and provide fewer and smaller working channels. A middle ground between these instruments—a rigid endoscope that possesses multiple instrument ports (for example, one at the tip and one on the side)—is proposed in this article, and a prototype device is evaluated in the context of a third ventricular colloid cyst resection combined with septostomy. METHODS A prototype neuroendoscope was designed and fabricated to include 2 optical ports, one located at the instrument tip and one located laterally. Each optical port includes its own complementary metal-oxide semiconductor (CMOS) chip camera, light-emitting diode (LED) illumination, and working channels. The tip port incorporates a clear silicone optical window that provides 2 additional features. First, for enhanced safety during tool insertion, instruments can be initially seen inside the window before they extend from the scope tip. Second, the compliant tip can be pressed against tissue to enable visualization even in a blood-filled field. These capabilities were tested in fresh porcine brains. The image quality of the multiport endoscope was evaluated using test targets positioned at clinically relevant distances from each imaging port, comparing it with those of clinical rigid and flexible neuroendoscopes. Human cadaver testing was used to demonstrate third ventricular colloid cyst phantom resection through the tip port and a septostomy performed through the lateral port. To extend its utility in the treatment of periventricular tumors using MR-guided laser therapy, the device was designed to be MR compatible. Its functionality and compatibility inside a 3-T clinical scanner were also tested in a brain from a freshly euthanized female pig. RESULTS Testing in porcine brains confirmed the multiport endoscope’s ability to visualize tissue in a blood-filled field and to operate inside a 3-T MRI scanner. Cadaver testing confirmed the device’s utility in operating through both of its ports and performing combined third ventricular colloid cyst resection and septostomy with an endoscope rotation of less than 5°. CONCLUSIONS The proposed design provides freedom in selecting both the number and orientation of imaging and instrument ports, which can be customized for each ventricular pathological entity. The lightweight, easily manipulated device can provide added steerability while reducing the potential for the serious brain distortion that happens with rigid endoscope navigation. This capability would be particularly valuable in treating hydrocephalus, both primary and secondary (due to tumors, cysts, and so forth). Magnetic resonance compatibility can aid in endoscope-assisted ventricular aqueductal plasty and stenting, the management of multiloculated complex hydrocephalus, and postinflammatory hydrocephalus in which scarring obscures the ventricular anatomy. PMID:27581309

  6. Endoscopic device for functional imaging of the retina

    NASA Astrophysics Data System (ADS)

    Barriga, Simon; Lohani, Sweyta; Martell, Bret; Soliz, Peter; Ts'o, Dan

    2011-03-01

    Non-invasive imaging of retinal function based on the recording of spatially distributed reflectance changes evoked by visual stimuli has to-date been performed primarily using modified commercial fundus cameras. We have constructed a prototype retinal functional imager, using a commercial endoscope (Storz) for the frontend optics, and a low-cost back-end that includes the needed dichroic beam splitter to separate the stimulus path from the imaging path. This device has been tested to demonstrate its performance for the delivery of adequate near infrared (NIR) illumination, intensity of the visual stimulus and reflectance return in the imaging path. The current device was found to be capable of imaging reflectance changes of 0.1%, similar to that observable using the modified commercial fundus camera approach. The visual stimulus (a 505nm spot of 0.5secs) was used with an interrogation illumination of 780nm, and a sequence of imaged captured. At each pixel, the imaged signal was subtracted and normalized by the baseline reflectance, so that the measurement was ΔR/R. The typical retinal activity signal observed had a ΔR/R of 0.3-1.0%. The noise levels were measured when no stimulus was applied and found to vary between +/- 0.05%. Functional imaging has been suggested as a means to provide objective information on retina function that may be a preclinical indicator of ocular diseases, such as age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy. The endoscopic approach promises to yield a significantly more economical retinal functional imaging device that would be clinically important.

  7. The Value of Intraoperative Magnetic Resonance Imaging in Endoscopic and Microsurgical Transsphenoidal Pituitary Adenoma Resection.

    PubMed

    Pal'a, Andrej; Knoll, Andreas; Brand, Christine; Etzrodt-Walter, Gwendolin; Coburger, Jan; Wirtz, Christian Rainer; Hlaváč, Michal

    2017-06-01

    The routine use of intraoperative magnetic resonance imaging (iMRI) helps to achieve gross total resection in transsphenoidal pituitary surgery. We compared the added value of iMRI for extent of resection in endoscopic versus microsurgical transsphenoidal adenomectomy. A total of 96 patients with pituitary adenoma were included. Twenty-eight consecutive patients underwent endoscopic transsphenoidal tumor resection. For comparison, we used a historic cohort of 68 consecutive patients treated microsurgically. We evaluated the additional resection after conducting iMRI using intraoperative and late postoperative volumetric tumor analysis 3 months after surgery. Demographic data, clinical symptoms, and complications as well as pituitary function were evaluated. We found significantly fewer additional resections after conducting iMRI in the endoscopic group (P = 0.042). The difference was even more profound in Knosp grade 0-2 adenomas (P = 0.029). There was no significant difference in Knosp grade 3-4 adenomas (P = 0.520). The endoscopic approach was associated with smaller intraoperative tumor volume (P = 0.023). No significant difference was found between both techniques in postoperative tumor volume (P = 0.228). Satisfactory results of pituitary function were significantly more often associated with an endoscopic approach in the multiple regression analysis (P = 0.007; odds ratio, 17.614; confidence interval 95%, 2.164-143.396). With the endoscopic approach, significantly more tumor volume reduction was achieved before conducting iMRI, decreasing the need for further resection. This finding was even more pronounced in adenomas graded Knosp 0-2. In the case of extensive and invasive adenomas with infiltration of cavernous sinus and suprasellar or parasellar extension, additional tumor resection and increase in the extent of resection was achieved with iMRI in both groups. The endoscopic approach seems to result in better endocrine outcomes, especially in Knosp grade 0-2 pituitary adenomas. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Simultaneous fingerprint and high-wavenumber fiber-optic Raman endoscopy for in vivo diagnosis of laryngeal cancer

    NASA Astrophysics Data System (ADS)

    Lin, Kan; Zheng, Wei; Wang, Jianfeng; Lim, Chwee Ming; Huang, Zhiwei

    2016-02-01

    We report a unique simultaneous fingerprint (FP) and high-wavenumber (HW) fiber-optic confocal Raman spectroscopy for in vivo diagnosis of laryngeal cancer in the head and neck under wide-field endoscopic imaging. The simultaneous FP and HW Raman endoscopy technique was performed on 21 patients and differentiated laryngeal carcinoma from normal tissues with both sensitivity and specificity of ~85%. This study shows the great potential of the FP/HW Raman endoscopic technique developed for in vivo diagnosis of laryngeal carcinoma during routine endoscopic examination.

  9. Improved planning of endoscopic sinonasal surgery from 3-dimensional images with Osirix® and stereolithography.

    PubMed

    Sánchez-Gómez, Serafín; Herrero-Salado, Tomás F; Maza-Solano, Juan M; Ropero-Romero, Francisco; González-García, Jaime; Ambrosiani-Fernández, Jesús

    2015-01-01

    The high variability of sinonasal anatomy requires the best knowledge of its three-dimensional (3D) conformation to perform surgery more safely and efficiently. The aim of the study was to validate the utility of Osirix® and stereolithography in improving endoscopic sinonasal surgery planning. Osirix® was used as a viewer and Digital Imaging and Communications in Medicine (DICOM) 3D imaging manager to improve planning for 114 sinonasal endoscopic operations with polyposis (86) and chronic rhinosinusitis (CRS) (28). Stereolithography rapid prototyping was used for 7 frontoethmoidal mucoceles. Using Osirix® and stereolithography, a greater number of anatomical structures were identified and this was done faster, with a statistically-significant clinical-radiological correlation (P<.01) compared with 2D CT plates. With a share of more than 75% of surgery performed by residents, surgical time was reduced by 38±12.3min in CRS and 42±27.9 in sinonasal polyposis. The fourth-year residents reached 100% surgical competence in critical surgical milestones with 16 surgeries (CI 12-19). The systematic use of Osirix® for visualisation and treatment of 3D sinonasal images from DICOM data files, along with the surgical team's ability to manipulate them as virtual reality, allows surgeons to perform endoscopic sinonasal surgery with greater confidence and in less time than using 2D images. Residents also achieve surgical competence faster, more safely and with fewer complications. This beneficial impact is increased when the surgical team has stereolithography rapid prototyping in more complex cases. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  10. Use of acousto-optic tunable filter in fluorescence imaging endoscopy

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mounir; Whelan, Maurice; Aprahamian, Marc

    2003-10-01

    A prototype instrument for fluorescence-based medical diagnostics in vivo is described. The system consists of a rigid endoscope comprising a UV laser-source for fluorescence excitation and a white light source for direct imaging. An acousto-optic tuneable filter (AOTF) is employed as a full-field tuneable bandpass filter. This allows fast continuous or random-access tuning with high filtering efficiency. A study of the diagnostic potential of fluorescence imaging for pancreatitis was conducted on a rat model. In particular, the aim was to detect autofluorescence of endogenous protoporphyrin IX (PpIX) that has been shown to accumulate in early-stage diseased tissue undergoing an inflammatory response.

  11. Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Liang, Chen; Descour, Michael R.; Sung, Kung-Bin; Richards-Kortum, Rebecca R.; Gillenwater, Ann

    2002-12-01

    In collaboration with the Department of Biomedical Engineering at the University of Texas at Austin and the UT MD Anderson Cancer Center, a laser scanning fiber confocal reflectance microscope (FCRM) system has been designed and tested for in vivo detection of cervical and oral pre-cancers. This system along with specially developed diagnosis algorithms and techniques can achieve an unprecedented specificity and sensitivity for the diagnosis of pre-cancers in epithelial tissue. The FCRM imaging system consists of an NdYAG laser (1064 nm), scanning mirrors/optics, precision pinhole, detector, and an endoscopic probe (the objective). The objective is connected to the rest of the imaging system via a fiber bundle. The fiber bundle allows the rest of the system to be remotely positioned in a convenient location. Only the objective comes into contact with the patient. It is our intent that inexpensive mass-produced disposable endoscopic probes would be produced for large clinical trials. This paper touches on the general design process of developing a miniature, high numerical aperture, injection-molded (IM) objective. These IM optical designs are evaluated and modified based on manufacturing and application constraints. Based on these driving criteria, one specific optical design was chosen and a detailed tolerance analysis was conducted. The tolerance analysis was custom built to create a realistic statistical analysis for integrated IM lens elements that can be stacked one on top of another using micro-spheres resting in tiny circular grooves. These configurations allow each lens element to be rotated and possibly help compensate for predicted manufacturing errors. This research was supported by a grant from the National Institutes of Health (RO1 CA82880). Special thanks go to Applied Image Group/Optics for the numerous fabrication meetings concerning the miniature IM objective.

  12. Medical-grade Sterilizable Target for Fluid-immersed Fetoscope Optical Distortion Calibration.

    PubMed

    Nikitichev, Daniil I; Shakir, Dzhoshkun I; Chadebecq, François; Tella, Marcel; Deprest, Jan; Stoyanov, Danail; Ourselin, Sébastien; Vercauteren, Tom

    2017-02-23

    We have developed a calibration target for use with fluid-immersed endoscopes within the context of the GIFT-Surg (Guided Instrumentation for Fetal Therapy and Surgery) project. One of the aims of this project is to engineer novel, real-time image processing methods for intra-operative use in the treatment of congenital birth defects, such as spina bifida and the twin-to-twin transfusion syndrome. The developed target allows for the sterility-preserving optical distortion calibration of endoscopes within a few minutes. Good optical distortion calibration and compensation are important for mitigating undesirable effects like radial distortions, which not only hamper accurate imaging using existing endoscopic technology during fetal surgery, but also make acquired images less suitable for potentially very useful image computing applications, like real-time mosaicing. In this paper proposes a novel fabrication method to create an affordable, sterilizable calibration target suitable for use in a clinical setup. This method involves etching a calibration pattern by laser cutting a sandblasted stainless steel sheet. This target was validated using the camera calibration module provided by OpenCV, a state-of-the-art software library popular in the computer vision community.

  13. High-speed imaging with endoscopic optical coherence tomography using bending vibration of optical fiber

    NASA Astrophysics Data System (ADS)

    Isago, Ryoichi; Nakamura, Kentaro

    2009-10-01

    In this report, we propose an endoscopic scanner head for optical coherence tomography (OCT) using bending vibration of an optical fiber. The optical fiber is attached to the center of a cylindrical piezoelectric actuator with four outer electrodes, and the voltages with the phase shift of π/2 are applied to the electrodes to excite a circular vibration of the fiber end. The output light from the fiber end is collimated by a lens, and deflected by 90 degrees using a cone mirror. The collimated light is scanned along the circumference of the endoscope due to the vibration of the optical fiber end. We made a prototype scanner head of 7.0 mm in outer diameter, and demonstrated tomographic imaging of tubular objects. The circumferential scan is carried out at 1 kHz which is the frequency of the fiber vibration, while the radial (depth) scan is performed at 20 kHz by the wavelength sweep of the light source. Two-dimensional OCT images were obtained in a short measuring time of 5 ms (flame rate of 200 fps), and three-dimensional dynamic imaging were demonstrated.

  14. Medical-grade Sterilizable Target for Fluid-immersed Fetoscope Optical Distortion Calibration

    PubMed Central

    Chadebecq, François; Tella, Marcel; Deprest, Jan; Stoyanov, Danail; Ourselin, Sébastien; Vercauteren, Tom

    2017-01-01

    We have developed a calibration target for use with fluid-immersed endoscopes within the context of the GIFT-Surg (Guided Instrumentation for Fetal Therapy and Surgery) project. One of the aims of this project is to engineer novel, real-time image processing methods for intra-operative use in the treatment of congenital birth defects, such as spina bifida and the twin-to-twin transfusion syndrome. The developed target allows for the sterility-preserving optical distortion calibration of endoscopes within a few minutes. Good optical distortion calibration and compensation are important for mitigating undesirable effects like radial distortions, which not only hamper accurate imaging using existing endoscopic technology during fetal surgery, but also make acquired images less suitable for potentially very useful image computing applications, like real-time mosaicing. In this paper proposes a novel fabrication method to create an affordable, sterilizable calibration target suitable for use in a clinical setup. This method involves etching a calibration pattern by laser cutting a sandblasted stainless steel sheet. This target was validated using the camera calibration module provided by OpenCV, a state-of-the-art software library popular in the computer vision community. PMID:28287588

  15. [Review of the active locomotion system for capsule endoscope].

    PubMed

    Zhao, Dechun; Guo, Yijun; Peng, Chenglin

    2010-02-01

    This review summarized the progress of researches on the active locomotion system for capsule endoscope, analyzed the moving and controlling principles in different locomotion systems, and compared their merits and shortcomings. Owing to the complexity of human intestines and the limits to the size and consumption of locomotion system from the capsule endoscope, there is not yet one kind of active locomotion system currently used in clinical practice. The locomotive system driven by an outer rotational magnetic field could improve the commercial endoscope capsule, while its magnetic field controlling moving is complex. Active locomotion system driven by shape memory alloys will be the orientated development and the point of research in the future.

  16. Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori Infection Based on Endoscopic Images.

    PubMed

    Shichijo, Satoki; Nomura, Shuhei; Aoyama, Kazuharu; Nishikawa, Yoshitaka; Miura, Motoi; Shinagawa, Takahide; Takiyama, Hirotoshi; Tanimoto, Tetsuya; Ishihara, Soichiro; Matsuo, Keigo; Tada, Tomohiro

    2017-11-01

    The role of artificial intelligence in the diagnosis of Helicobacter pylori gastritis based on endoscopic images has not been evaluated. We constructed a convolutional neural network (CNN), and evaluated its ability to diagnose H. pylori infection. A 22-layer, deep CNN was pre-trained and fine-tuned on a dataset of 32,208 images either positive or negative for H. pylori (first CNN). Another CNN was trained using images classified according to 8 anatomical locations (secondary CNN). A separate test data set (11,481 images from 397 patients) was evaluated by the CNN, and 23 endoscopists, independently. The sensitivity, specificity, accuracy, and diagnostic time were 81.9%, 83.4%, 83.1%, and 198s, respectively, for the first CNN, and 88.9%, 87.4%, 87.7%, and 194s, respectively, for the secondary CNN. These values for the 23 endoscopists were 79.0%, 83.2%, 82.4%, and 230±65min (85.2%, 89.3%, 88.6%, and 253±92min by 6 board-certified endoscopists), respectively. The secondary CNN had a significantly higher accuracy than endoscopists (by 5.3%; 95% CI, 0.3-10.2). H. pylori gastritis could be diagnosed based on endoscopic images using CNN with higher accuracy and in a considerably shorter time compared to manual diagnosis by endoscopists. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system.

    PubMed

    Hashizume, M; Shimada, M; Tomikawa, M; Ikeda, Y; Takahashi, I; Abe, R; Koga, F; Gotoh, N; Konishi, K; Maehara, S; Sugimachi, K

    2002-08-01

    We performed a variety of complete total endoscopic general surgical procedures, including colon resection, distal gastrectomy, and splenectomy, successfully with the assistance of the da Vinci computer-enhanced surgical system. The robotic system allowed us to manipulate the endoscopic instruments as effectively as during open surgery. It enhanced visualization of both the operative field and precision of the necessary techniques, as well as being less stressful for the endoscopic operating team. This technological innovation can therefore help surgeons overcome many of the difficulties associated with the endoscopic approach and thus has the potential to enable more precise, safer, and more minimally invasive surgery in the future.

  18. Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)

    2018-01-01

    A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.

  19. Therapeutic aspects of endoscopic ultrasound

    NASA Astrophysics Data System (ADS)

    Woodward, Timothy A.

    1999-06-01

    Endoscopic ultrasound (EUS) is a technology that had been used primarily as a passive imaging modality. Recent advances have enabled us to move beyond the use of EUS solely as a staging tool to an interventional device. Current studies suggest that interventional applications of EUS will allow for minimally invasive assessment and therapies in a cost-effective manner. Endoscopic ultrasound with fine needle aspiration (EUS-FNA) has been demonstrated to be a technically feasible, relatively safe method of obtaining cytologic specimens. The clinical utility of EUS- FNA appears to be greatest in the diagnosis and staging of pancreatic cancer and in the nodal staging of gastrointestinal and pulmonary malignancies. In addition, EUS-FNA has demonstrated utility in the sampling pleural and ascitic fluid not generally appreciated or assessable to standard interventions. Interventional applications of EUS include EUS-guided pseudocyst drainage, EUS-guided injection of botulinum toxin in the treatment of achalasia, and EUS- guided celiac plexus neurolysis in the treatment of pancreatic cancer pain. Finally, EUS-guided fine-needle installation is being evaluated, in conjunction with recent bimolecular treatment modalities, as a delivery system in the treatment of certain gastrointestinal tumors.

  20. Volumetric structured illumination microscopy enabled by tunable focus lens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hinsdale, Taylor; Malik, Bilal; Olsovsky, Cory; Jo, Javier A.; Maitland, Kristen C.

    2016-03-01

    We present a volumetric imaging method for biological tissue that is free of mechanically scanning components. The optical sectioning in the system is obtained by structured illumination microscopy (SIM) with the depth of focus being varied by the use of an electronic tunable-focus lens (ETL). The performance of the axial scanning mechanism was evaluated and characterized in conjunction with SIM to ensure volumetric images could be recorded and reconstructed without significant losses in optical section thickness and lateral resolution over the full desired scan range. It was demonstrated that sub-cellular image resolutions were obtainable in both microsphere films and in ex vivo oral mucosa, spanning multiple cell layers, without significant losses in image quality. The mechanism proposed here has the ability to be integrated into any wide-field microscopy system to convert it into a three-dimensional imaging platform without the need for axial scanning of the sample or imaging optics. The ability to axially scan independent of mechanical movement also provides the opportunity for the development of endoscopic systems which can create volumetric images of tissue in vivo.

  1. Comparing the Roles of EUS, ERCP and MRCP in Idiopathic Acute Recurrent Pancreatitis

    PubMed Central

    Safari, Mohammad Taghi; Miri, Mohammad Bager; Ebadi, Shahram; Shahrokh, Shabnam; Alizadeh, Amir Houshang Mohammad

    2016-01-01

    Acute recurrent pancreatitis (ARP) is defined as more than two attacks of acute pancreatitis with complete or almost complete resolution of symptoms and signs of pancreatitis between episodes. The initial evaluation fails to detect the cause of ARP in 10%–30% of patients, whose condition is classified as idiopathic ARP. Endoscopic ultrasound (EUS) has gained increasing attention as a useful imaging modality for the pancreas and the extrahepatic biliary tree. The close proximity of the pancreas to the digestive tract allows EUS to obtain detailed images of this organ. This review aims to record pancreaticobiliary endoscopic ultrasound (EUS) and other imaging modalities in the clinical management of patients with idiopathic ARP. PMID:27375362

  2. Comparing the Roles of EUS, ERCP and MRCP in Idiopathic Acute Recurrent Pancreatitis.

    PubMed

    Safari, Mohammad Taghi; Miri, Mohammad Bager; Ebadi, Shahram; Shahrokh, Shabnam; Mohammad Alizadeh, Amir Houshang

    2016-01-01

    Acute recurrent pancreatitis (ARP) is defined as more than two attacks of acute pancreatitis with complete or almost complete resolution of symptoms and signs of pancreatitis between episodes. The initial evaluation fails to detect the cause of ARP in 10%-30% of patients, whose condition is classified as idiopathic ARP. Endoscopic ultrasound (EUS) has gained increasing attention as a useful imaging modality for the pancreas and the extrahepatic biliary tree. The close proximity of the pancreas to the digestive tract allows EUS to obtain detailed images of this organ. This review aims to record pancreaticobiliary endoscopic ultrasound (EUS) and other imaging modalities in the clinical management of patients with idiopathic ARP.

  3. Outcomes After Conservative, Endoscopic, and Surgical Treatment of Groove Pancreatitis: A Systematic Review.

    PubMed

    Kager, Liesbeth M; Lekkerkerker, Selma J; Arvanitakis, Marianna; Delhaye, Myriam; Fockens, Paul; Boermeester, Marja A; van Hooft, Jeanin E; Besselink, Marc G

    2017-09-01

    Groove pancreatitis (GP) is a focal form of chronic pancreatitis affecting the paraduodenal groove area, for which consensus on diagnosis and management is lacking. We performed a systematic review of the literature to determine patient characteristics and imaging features of GP and to evaluate clinical outcomes after treatment. Eight studies were included reporting on 335 GP patients with a median age of 47 years (range, 34 to 64 y), with 90% male, 87% smokers, and 87% alcohol consumption, and 47 months (range, 15 to 122 mo) of follow-up. Most patients presented with abdominal pain (91%) and/or weight loss (78%). Imaging frequently showed cystic lesions (91%) and duodenal stenosis (60%).Final treatment was conservative (eg, pain medication) in 29% of patients. Endoscopic treatment (eg, pseudocyst drainage) was applied in 19% of patients-34% of these patients were subsequently referred for surgery. Overall, 59% of patients were treated surgically (eg, pancreatoduodenectomy). Complete symptom relief was observed in 50% of patients who were treated conservatively, 57% who underwent endoscopic treatment, and 79% who underwent surgery. GP is associated with male gender, smoking, and alcohol consumption. The vast majority of patients presents with abdominal pain and with cystic lesions on imaging. Although surgical treatment seems to be the most effective, both conservative and endoscopic treatment are successful in about half of patients. A stepwise treatment algorithm starting with the least invasive treatment options seems advisable.

  4. [The effect of laryngoscopic surgery combined with nasal endoscopic system for the treatment of vocal cords benign lesions].

    PubMed

    Wang, Weian; Lu, Rong

    2013-06-01

    To investigate the effect of laryngoscopic surgery combined with nasal endoscopic system for the treatment of vocal cords benign lesions. Fifty-two patients admitted to our department with vocal cords benign lesions (including vocal polyps, vocal nodules, vocal cord cyst) underwent laryngoscopic surgery combined with nasal endoscopic system. All patients were treated successfully once and for all without any significant postoperative complication. The laryngoscopic surgery combined with nasal endoscopic system is a safe, minimally invasive and simple method for the treatment of benign lesions of vocal cords.

  5. Modelling of a laser-pumped light source for endoscopic surgery

    NASA Astrophysics Data System (ADS)

    Nadeau, Valerie J.; Elson, Daniel S.; Hanna, George B.; Neil, Mark A. A.

    2008-09-01

    A white light source, based on illumination of a yellow phosphor with a fibre-coupled blue-violet diode laser, has been designed and built for use in endoscopic surgery. This narrow light probe can be integrated into a standard laparoscope or inserted into the patient separately via a needle. We present a Monte Carlo model of light scattering and phosphorescence within the phosphor/silicone matrix at the probe tip, and measurements of the colour, intensity, and uniformity of the illumination. Images obtained under illumination with this light source are also presented, demonstrating the improvement in illumination quality over existing endoscopic light sources. This new approach to endoscopic lighting has the advantages of compact design, improved ergonomics, and more uniform illumination in comparison with current technologies.

  6. Endoscopic management of benign biliary strictures.

    PubMed

    Rustagi, Tarun; Jamidar, Priya A

    2015-01-01

    Benign biliary strictures are a common indication for endoscopic retrograde cholangiopancreatography (ERCP). Endoscopic management has evolved over the last 2 decades as the current standard of care. The most common etiologies of strictures encountered are following surgery and those related to chronic pancreatitis. High-quality cross-sectional imaging provides a road map for endoscopic management. Currently, sequential placement of multiple plastic biliary stents represents the preferred approach. There is an increasing role for the treatment of these strictures using covered metal stents, but due to conflicting reports of efficacies as well as cost and complications, this approach should only be entertained following careful consideration. Optimal management of strictures is best achieved using a team approach with the surgeon and interventional radiologist playing an important role.

  7. Blood detection in wireless capsule endoscope images based on salient superpixels.

    PubMed

    Iakovidis, Dimitris K; Chatzis, Dimitris; Chrysanthopoulos, Panos; Koulaouzidis, Anastasios

    2015-08-01

    Wireless capsule endoscopy (WCE) enables screening of the gastrointestinal (GI) tract with a miniature, optical endoscope packed within a small swallowable capsule, wirelessly transmitting color images. In this paper we propose a novel method for automatic blood detection in contemporary WCE images. Blood is an alarming indication for the presence of pathologies requiring further treatment. The proposed method is based on a new definition of superpixel saliency. The saliency of superpixels is assessed upon their color, enabling the identification of image regions that are likely to contain blood. The blood patterns are recognized by their color features using a supervised learning machine. Experiments performed on a public dataset using automatically selected first-order statistical features from various color components indicate that the proposed method outperforms state-of-the-art methods.

  8. Endoscopic intracranial surgery enhanced by electromagnetic-guided neuronavigation in children.

    PubMed

    Hermann, Elvis J; Esmaeilzadeh, Majid; Ertl, Philipp; Polemikos, Manolis; Raab, Peter; Krauss, Joachim K

    2015-08-01

    Navigated intracranial endoscopy with conventional technique usually requires sharp head fixation. In children, especially in those younger than 1 year of age and in older children with thin skulls due to chronic hydrocephalus, sharp head fixation is not possible. Here, we studied the feasibility, safety, and accuracy of electromagnetic (EM)-navigated endoscopy in a series of children, obviating the need of sharp head fixation. Seventeen children (ten boys, seven girls) between 12 days and 16.8 years (mean age 4.3 years; median 14 months) underwent EM-navigated intracranial endoscopic surgery based on 3D MR imaging of the head. Inclusion criteria for the study were intraventricular cysts, arachnoid cysts, aqueduct stenosis for endoscopic third ventriculostomy (ETV) with distorted ventricular anatomy, the need of biopsy in intraventricular tumors, and multiloculated hydrocephalus. A total of 22 endoscopic procedures were performed. Patients were registered for navigation by surface rendering in the supine position. After confirming accuracy, they were repositioned for endoscopic surgery with the head fixed slightly on a horseshoe headholder. EM navigation was performed using a flexible stylet introduced into the working channel of a rigid endoscope. Neuronavigation accuracy was checked for deviations measured in millimeters on screenshots after the referencing procedure and during surgery in the coronal (z = vertical), axial (x = mediolateral), and sagittal (y = anteroposterior) planes. EM-navigated endoscopy was feasible and safe. In all 17 patients, the aim of endoscopic surgery was achieved, except in one case in which a hemorrhage occurred, blurring visibility, and we proceeded with open surgery without complications for the patient. Navigation accuracy for extracranial markers such as the tragus, bregma, and nasion ranged between 1 and 2.5 mm. Accuracy for fixed anatomical structures like the optic nerve or the carotid artery varied between 2 and 4 mm, while there was a broader variance of accuracy at the target point of the cyst itself ranging between 2 and 9 mm. EM-navigated endoscopy in children is a safe and useful technique enhancing endoscopic intracranial surgery and obviating the need of sharp head fixation. It is a good alternative to the common opto-electric navigation system in this age group.

  9. Endoscopic Skipping of the Terminal Ileum in Pediatric Crohn Disease.

    PubMed

    Mansuri, Ishrat; Fletcher, Joel G; Bruining, David H; Kolbe, Amy B; Fidler, Jeff L; Samuel, Sunil; Tung, Jeanne

    2017-06-01

    Pediatric small-bowel (SB) Crohn disease (CD) may be missed if the terminal ileum (TI) appears normal at endoscopy and SB imaging is not performed. We sought to estimate the prevalence and clinical characteristics of pediatric patients with CD and endoscopic skipping of the TI-that is, pediatric patients with active SB or upper gut inflammation and an endoscopically normal TI. This retrospective study included pediatric patients with CD who underwent both CT enterography (CTE) or MR enterography (MRE) and ileocolonoscopy within a 30-day period between July 2004 and April 2014. The physician global assessment was used as the reference standard for SB CD activity. Radiologists reviewed the CTE and MRE studies for inflammatory parameters; severity, length, and multifocality of SB inflammation; and the presence of penetrating complications. Of 170 patients who underwent ileal intubation, the TI was macroscopically normal or showed nonspecific inflammation in 73 patients (43%). Nearly half (36/73, 49%) of the patients with normal or nonspecific findings at ileocolonoscopy had radiologically active disease with a median length of SB involvement of 20 cm (range, 1 to > 100 cm). Seventeen (47%) of these patients had multifocal SB involvement and five (14%) had penetrating complications. Overall, endoscopic TI skipping was present in 43 (59%) patients with normal or nonspecific ileocolonoscopic findings: 20 with histologic inflammation (17 with positive imaging findings), 14 with inflammation at imaging only, and nine with proximal disease (upper gut, jejunum, or proximal ileum). There were no significant differences in the clinical parameters of the patients with and those without endoscopic TI skipping. Ileocolonoscopy may miss SB CD in pediatric patients that is due to isolated histologic, intramural, or proximal inflammation. Enterography is complementary to ileocolonoscopy in the evaluation of pediatric CD.

  10. Endoscopic measurements using a panoramic annular lens

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Matthys, Donald R.

    1992-01-01

    The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.

  11. Basics of robotics and manipulators in endoscopic surgery.

    PubMed

    Rininsland, H H

    1993-06-01

    The experience with sophisticated remote handling systems for nuclear operations in inaccessible rooms can to a large extent be transferred to the development of robotics and telemanipulators for endoscopic surgery. A telemanipulator system is described consisting of manipulator, endeffector and tools, 3-D video-endoscope, sensors, intelligent control system, modeling and graphic simulation and man-machine interfaces as the main components or subsystems. Such a telemanipulator seems to be medically worthwhile and technically feasible, but needs a lot of effort from different scientific disciplines to become a safe and reliable instrument for future endoscopic surgery.

  12. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  13. Transsphenoidal Approach in Endoscopic Endonasal Surgery for Skull Base Lesions: What Radiologists and Surgeons Need to Know.

    PubMed

    García-Garrigós, Elena; Arenas-Jiménez, Juan José; Monjas-Cánovas, Irene; Abarca-Olivas, Javier; Cortés-Vela, Jesús Julián; De La Hoz-Rosa, Javier; Guirau-Rubio, Maria Dolores

    2015-01-01

    In the last 2 decades, endoscopic endonasal transsphenoidal surgery has become the most popular choice of neurosurgeons and otolaryngologists to treat lesions of the skull base, with minimal invasiveness, lower incidence of complications, and lower morbidity and mortality rates compared with traditional approaches. The transsphenoidal route is the surgical approach of choice for most sellar tumors because of the relationship of the sphenoid bone to the nasal cavity below and the pituitary gland above. More recently, extended approaches have expanded the indications for transsphenoidal surgery by using different corridors leading to specific target areas, from the crista galli to the spinomedullary junction. Computer-assisted surgery is an evolving technology that allows real-time anatomic navigation during endoscopic surgery by linking preoperative triplanar radiologic images and intraoperative endoscopic views, thus helping the surgeon avoid damage to vital structures. Preoperative computed tomography is the preferred modality to show bone landmarks and vascular structures. Radiologists play an important role in surgical planning by reporting extension of sphenoid pneumatization, recesses and septations of the sinus, and other relevant anatomic variants. Radiologists should understand the relationships of the sphenoid bone and skull base structures, anatomic variants, and image-guided neuronavigation techniques to prevent surgical complications and allow effective treatment of skull base lesions with the endoscopic endonasal transsphenoidal approach. ©RSNA, 2015.

  14. Central endoscopy reads in inflammatory bowel disease clinical trials: The role of the imaging core lab.

    PubMed

    Ahmad, Harris; Berzin, Tyler M; Yu, Hui Jing; Huang, Christopher S; Mishkin, Daniel S

    2014-08-01

    Clinical trials in inflammatory bowel disease (IBD) are evolving at a rapid pace by employing central reading for endoscopic mucosal assessment in a field that was, historically, largely based on assessments by local physicians. This transition from local to central reading carries with it numerous technical, operational, and scientific challenges, many of which can be resolved by imaging core laboratories (ICLs), a concept that has a longer history in clinical trials in a number of diseases outside the realm of gastroenterology. For IBD trials, ICLs have the dual goals of providing objective, consistent assessments of endoscopic findings using central-reading paradigms whilst providing important expertise with regard to operational issues and regulatory expectations. This review focuses on current approaches to using ICLs for central endoscopic reading in IBD trials. © The Author(s) 2014. Published by Oxford University Press and the Digestive Science Publishing Co. Limited.

  15. Diagnosis and management of pancreaticopleural fistula.

    PubMed

    Tay, Clifton Ming; Chang, Stephen Kin Yong

    2013-04-01

    Pancreaticopleural fistula is a rare diagnosis requiring a high index of clinical suspicion due to the predominant manifestation of thoracic symptoms. The current literature suggests that confirmation of elevated pleural fluid amylase is the most important diagnostic test. Magnetic resonance cholangiopancreatography is the recommended imaging modality to visualise the fistula, as it is superior to both computed tomography and endoscopic retrograde cholangiopancreatography (ERCP) in delineating the tract within the pancreatic region. It is also less invasive than ERCP. While a trial of medical regimen has traditionally been the first-line treatment, failure would result in higher rates of complications. Hence, it is suggested that management strategies be planned based on pancreatic ductal imaging, with patients having poor chances of spontaneous closure undergoing either endoscopic or surgical intervention. We also briefly describe a case of pancreaticopleural fistula in a patient who was treated using a modified Puestow procedure after failed endoscopic treatment.

  16. Finding of biliary fascioliasis by endoscopic ultrasonography in a patient with eosinophilic liver abscess.

    PubMed

    Behzad, Catherine; Lahmi, Farhad; Iranshahi, Majid; Mohammad Alizadeh, Amir Houshang

    2014-09-01

    Fascioliasis is an endemic zoonotic disease in Iran. It occurs mainly in sheep-rearing areas of temperate climates, but sporadic cases have been reported from many other parts of the world. The usual definitive host is the sheep. Humans are accidental hosts in the life cycle of Fasciola. Typical symptoms may be associated with fascioliasis, but in some cases diagnosis and treatment may be preceded by a long period of abdominal pain and vague gastrointestinal symptoms. We report a case with epigastric and upper quadrant abdominal pain for the last 6 months, with imaging suggesting liver abscess and normal biliary ducts. The patient had no eosinophilia with negative stool examinations, so she was initially treated with antibiotics for liver abscess. Her clinical condition as well as follow-up imagings showed appropriate response after antibiotic therapy. Finally, endoscopic ultrasonography revealed Fasciola hepatica, which was then extracted with endoscopic retrograde cholangiopancreatography.

  17. Screening, management and surveillance for the sessile serrated adenomas/polyps.

    PubMed

    Fu, Xiangsheng; Qiu, Ye; Zhang, Yali

    2014-01-01

    The incidence and mortality rates from right-sided colorectal cancers (CRCs) have not decreased, compared with the significant reduction of CRCs in the left colon in recent years. It is likely that a significant proportion of right-sided CRCs evolve from undetected sessile serrated adenomas/polyps (SSA/Ps) in the primary colonoscopy. Increasing evidences suggest that SSA/Ps are high-risk lesions, with 15% of the SSA/P patients developing subsequent CRCs or adenomas with high-grade dysplasia. However, there are many issues in the screening, management and surveillance of SSA/Ps. Based on new evidences, this review addresses major issues in the diagnostic criteria for the serrated polyps of the colorectum, new endoscopic techniques (high-resolution magnifying endoscopy, narrow-band imaging, autofluorescence imaging, confocal laser endoscopy, and endocytoscopy) for the realtime identification of SSA/Ps, and the management of SSA/Ps by endoscopic mucosal resection, endoscopic sub-mucosal dissection or surgical resection in practice.

  18. Neuro-endoscopic management of intraventricular neurocysticercosis (NCC).

    PubMed

    Husain, M; Jha, D K; Rastogi, M; Husain, N; Gupta, R K

    2007-01-01

    Various approaches including endoscopy have been used for the treatment of intraventricular and cisternal NCC. We present our technique of Neuro-endoscopic management of intraventricular NCC. Twenty-one cases, 13 females and 8 males (age range 12-50 years; mean, 25.7 years), of intraventricular NCC [lateral (n = 6), third (n = 6), fourth (n = 10) ventricles including a patient with both lateral and third ventricular cysts] producing obstructive hydrocephalus formed the group of study. Gaab Universal Endoscope System along with 4 mm 0 degrees and 30 degrees rigid telescopes were used through a frontal burr-hole for removal of intraventricular including intra-fourth ventricular (n = 10) NCC. Endoscopic third ventriculostomy (ETV) was done for internal cerebrospinal fluid (CSF) diversion. Average follow up was 18 months. Complete (n = 18) or partial (n = 2) removal of NCC was done in 20 patients, while a cyst located at foramen of Monro slipped and migrated to occipital or temporal horn in 1 patient. Thirty-degree 4-mm rigid telescope provided excellent image quality with ability to address even intra-fourth ventricular NCC through the dilated aqueduct using a curved tip catheter. No patient required further surgery for their hydrocephalus. There was no operative complication and post-operative ventriculitis was not seen in any case despite partial removal of NCC. Neuro-endoscopic surgery is an effective treatment modality for patients with intraventricular NCC. It effectively restores CSF flow and is capable of removing cysts completely or partially from accessible locations causing mass effect. Partial removal or rupture of the cyst does not affect the clinical outcome of the patients.

  19. Endoscopic skull base training using 3D printed models with pre-existing pathology.

    PubMed

    Narayanan, Vairavan; Narayanan, Prepageran; Rajagopalan, Raman; Karuppiah, Ravindran; Rahman, Zainal Ariff Abdul; Wormald, Peter-John; Van Hasselt, Charles Andrew; Waran, Vicknes

    2015-03-01

    Endoscopic base of skull surgery has been growing in acceptance in the recent past due to improvements in visualisation and micro instrumentation as well as the surgical maturing of early endoscopic skull base practitioners. Unfortunately, these demanding procedures have a steep learning curve. A physical simulation that is able to reproduce the complex anatomy of the anterior skull base provides very useful means of learning the necessary skills in a safe and effective environment. This paper aims to assess the ease of learning endoscopic skull base exposure and drilling techniques using an anatomically accurate physical model with a pre-existing pathology (i.e., basilar invagination) created from actual patient data. Five models of a patient with platy-basia and basilar invagination were created from the original MRI and CT imaging data of a patient. The models were used as part of a training workshop for ENT surgeons with varying degrees of experience in endoscopic base of skull surgery, from trainees to experienced consultants. The surgeons were given a list of key steps to achieve in exposing and drilling the skull base using the simulation model. They were then asked to list the level of difficulty of learning these steps using the model. The participants found the models suitable for learning registration, navigation and skull base drilling techniques. All participants also found the deep structures to be accurately represented spatially as confirmed by the navigation system. These models allow structured simulation to be conducted in a workshop environment where surgeons and trainees can practice to perform complex procedures in a controlled fashion under the supervision of experts.

  20. Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology.

    PubMed

    Waran, Vicknes; Narayanan, Vairavan; Karuppiah, Ravindran; Thambynayagam, Hari Chandran; Muthusamy, Kalai Arasu; Rahman, Zainal Ariff Abdul; Kirollos, Ramez Wadie

    2015-02-01

    Training in intraventricular endoscopy is particularly challenging because the volume of cases is relatively small and the techniques involved are unlike those usually used in conventional neurosurgery. Present training models are inadequate for various reasons. Using 3-dimensional (3D) printing techniques, models with pathology can be created using actual patient's imaging data. This technical article introduces a new training model based on a patient with hydrocephalus secondary to a pineal tumour, enabling the models to be used to simulate third ventriculostomies and pineal biopsies. Multiple models of the head of a patient with hydrocephalus were created using 3D rapid prototyping technique. These models were modified to allow for a fluid-filled ventricular system under appropriate tension. The models were qualitatively assessed in the various steps involved in an endoscopic third ventriculostomy and intraventricular biopsy procedure, initially by 3 independent neurosurgeons and subsequently by 12 participants of an intraventricular endoscopy workshop. All 3 surgeons agreed on the ease and usefulness of these models in the teaching of endoscopic third ventriculostomy, performing endoscopic biopsies, and the integration of navigation to ventriculoscopy. Their overall score for the ventricular model realism was above average. The 12 participants of the intraventricular endoscopy workshop averaged between a score of 4.0 to 4.6 of 5 for every individual step of the procedure. Neurosurgical endoscopic training currently is a long process of stepwise training. These 3D printed models provide a realistic simulation environment for a neuroendoscopy procedure that allows safe and effective teaching of navigation and endoscopy in a standardized and repetitive fashion.

Top