Science.gov

Sample records for endothelial cell migration

  1. Evidence of endothelial cell migration after descemet membrane endothelial keratoplasty.

    PubMed

    Jacobi, Christina; Zhivov, Andrey; Korbmacher, Judit; Falke, Karen; Guthoff, Rudolf; Schlötzer-Schrehardt, Ursula; Cursiefen, Claus; Kruse, Friedrich E

    2011-10-01

    To investigate the hypothesis that adult corneal endothelial cells can migrate after Descemet membrane endothelial keratoplasty (DMEK). Prospective observational study. Five patients with Fuchs endothelial dystrophy were examined 1 year after uneventful DMEK. These patients had been selected on the basis of slightly decentered grafts and/or large descemetorrhexis showing areas of denuded corneal stroma, which were covered by neither the patients' Descemet membrane (DM) nor the graft. These areas were investigated by in vivo confocal laser scanning microscopy using a specially designed Heidelberg Retina Tomograph II and Rostock cornea module equipped with custom-made software. Source data (frame rate 30 Hz, 384 × 384 pixels, 400 × 400 μm) were used to create large-scale maps of the scanned area in automatic real-time composite mode. In each case an on-line mapping with maximum size up to 3.2 × 3.2 mm (3072 × 3072 pixels) was performed. Corneal stroma overlying areas devoid of DM was transparent. In vivo confocal laser scanning microscopy of stroma devoid of DM revealed a monolayer of endothelial cells in all patients observed. The morphologic pattern of these cells was similar to that of endothelial cells on DM grafts but different from the morphology of the patients' own endothelium, suggesting migration of donor endothelial cells from DMEK grafts. The results strongly support the hypothesis that adult corneal endothelial cells are able to migrate in the human eye. Furthermore, we provide evidence to support the hypothesis that grafted endothelium migrates onto the host tissue, repopulating the corneal stroma with a regular endothelial phenotype. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    PubMed

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs.

  3. Excess centrosomes disrupt endothelial cell migration via centrosome scattering

    PubMed Central

    Kushner, Erich J.; Ferro, Luke S.; Liu, Jie-Yu; Durrant, Jessica R.; Rogers, Stephen L.; Dudley, Andrew C.

    2014-01-01

    Supernumerary centrosomes contribute to spindle defects and aneuploidy at mitosis, but the effects of excess centrosomes during interphase are poorly understood. In this paper, we show that interphase endothelial cells with even one extra centrosome exhibit a cascade of defects, resulting in disrupted cell migration and abnormal blood vessel sprouting. Endothelial cells with supernumerary centrosomes had increased centrosome scattering and reduced microtubule (MT) nucleation capacity that correlated with decreased Golgi integrity and randomized vesicle trafficking, and ablation of excess centrosomes partially rescued these parameters. Mechanistically, tumor endothelial cells with supernumerary centrosomes had less centrosome-localized γ-tubulin, and Plk1 blockade prevented MT growth, whereas overexpression rescued centrosome γ-tubulin levels and centrosome dynamics. These data support a model whereby centrosome–MT interactions during interphase are important for centrosome clustering and cell polarity and further suggest that disruption of interphase cell behavior by supernumerary centrosomes contributes to pathology independent of mitotic effects. PMID:25049273

  4. Excess centrosomes disrupt endothelial cell migration via centrosome scattering.

    PubMed

    Kushner, Erich J; Ferro, Luke S; Liu, Jie-Yu; Durrant, Jessica R; Rogers, Stephen L; Dudley, Andrew C; Bautch, Victoria L

    2014-07-21

    Supernumerary centrosomes contribute to spindle defects and aneuploidy at mitosis, but the effects of excess centrosomes during interphase are poorly understood. In this paper, we show that interphase endothelial cells with even one extra centrosome exhibit a cascade of defects, resulting in disrupted cell migration and abnormal blood vessel sprouting. Endothelial cells with supernumerary centrosomes had increased centrosome scattering and reduced microtubule (MT) nucleation capacity that correlated with decreased Golgi integrity and randomized vesicle trafficking, and ablation of excess centrosomes partially rescued these parameters. Mechanistically, tumor endothelial cells with supernumerary centrosomes had less centrosome-localized γ-tubulin, and Plk1 blockade prevented MT growth, whereas overexpression rescued centrosome γ-tubulin levels and centrosome dynamics. These data support a model whereby centrosome-MT interactions during interphase are important for centrosome clustering and cell polarity and further suggest that disruption of interphase cell behavior by supernumerary centrosomes contributes to pathology independent of mitotic effects. © 2014 Kushner et al.

  5. Microtopography and flow modulate the direction of endothelial cell migration.

    PubMed

    Uttayarat, P; Chen, M; Li, M; Allen, F D; Composto, R J; Lelkes, P I

    2008-02-01

    The migration of vascular endothelial cells under flow can be modulated by the addition of chemical or mechanical stimuli. The aim of this study was to investigate how topographic cues derived from a substrate containing three-dimensional microtopography interact with fluid shear stress in directing endothelial cell migration. Subconfluent bovine aortic endothelial cells were seeded on fibronectin-coated poly(dimethylsiloxane) substrates patterned with a combinatorial array of parallel and orthogonal microgrooves ranging from 2 to 5 microm in width at a constant depth of 1 microm. During a 4-h time-lapse observation in the absence of flow, the majority of the prealigned cells migrated parallel to the grooves with the distribution of their focal adhesions (FAs) depending on the groove width. No change in this migratory pattern was observed after the cells were exposed to moderate shear stress (13.5 dyn/cm(2)), irrespective of groove direction with respect to flow. After 4-h exposure to high shear stress (58 dyn/cm(2)) parallel to the grooves, the cells continued to migrate in the direction of both grooves and flow. By contrast, when microgrooves were oriented perpendicular to flow, most cells migrated orthogonal to the grooves and downstream with flow. Despite the change in the migration direction of the cells under high shear stress, most FAs and actin microfilaments maintained their original alignment parallel to the grooves, suggesting that topographic cues were more effective than those derived from shear stress in guiding the orientation of cytoskeletal and adhesion proteins during the initial exposure to flow.

  6. A mechanobiological model of endothelial cell migration and proliferation.

    PubMed

    Burke, Darren; Kelly, Daniel J

    2016-01-01

    How angiogenesis is regulated by local environmental cues is still not fully understood despite its importance to many regenerative events. Although mechanics is known to influence angiogenesis, the specific cellular mechanisms influenced by mechanical loading are poorly understood. This study adopts a lattice-based modelling approach to simulate endothelial cell (EC) migration and proliferation in order to explore how mechanical stretch regulates their behaviour. The approach enables the explicit modelling of ECs and, in particular, their migration/proliferation (specifically, rate and directionality) in response to such mechanical cues. The model was first used to simulate previously reported experiments of EC migration and proliferation in an unloaded environment. Next, three potential effects (increased cell migration, increased cell proliferation and biased cellular migration) of mechanical stretch on EC behaviour were simulated using the model and the observed changes in cell population characteristics were compared to experimental findings. Combinations of these three potential drivers were also investigated. The model demonstrates that only by incorporating all three changes in cellular physiology (increased EC migration, increased EC proliferation and biased EC migration in the direction perpendicular to the applied strain) in response to dynamic loading, it is possible to successfully predict experimental findings. This provides support for the underlying model hypotheses for how mechanics regulates EC behaviour.

  7. Effects of TNF-alpha on Endothelial Cell Collective Migration

    NASA Astrophysics Data System (ADS)

    Chen, Desu; Wu, Di; Helim Aranda-Espinoza, Jose; Losert, Wolfgang

    2013-03-01

    Tumor necrosis factor (TNF-alpha) is a small cell-signaling protein usually released by monocytes and macrophages during an inflammatory response. Previous work had shown the effects of TNF-alpha on single cell morphology, migration, and biomechanical properties. However, the effect on collective migrations remains unexplored. In this work, we have created scratches on monolayers of human umbilical endothelial cells (HUVECs) treated with 25ng/mL TNF-alpha on glass substrates. The wound healing like processes were imaged with phase contrast microscopy. Quantitative analysis of the collective migration of cells treated with TNF-alpha indicates that these cells maintain their persistent motion and alignment better than untreated cells. In addition, the collective migration was characterized by measuring the amount of non-affine deformations of the wound healing monolayer. We found a lower mean non-affinity and narrower distribution of non-affinities upon TNF-alpha stimulation. These results suggest that TNF-alpha introduces a higher degree of organized cell collective migration.

  8. [Functional regulation of endothelial Myosin light chain kinase in extravascular migration of fibrosarcoma cells].

    PubMed

    Xin, Hua; Han, Zhen-guo

    2009-03-01

    To evaluate the functional regulation of endothelial Myosin light chain kinase (MLCK) in extravascular migration of fibrosarcoma HT1080 cells. An in vitro model of fibrosarcoma cell transmigration across a monolayer of HUVEC cultured on collagen gel was applied to observe extravascular migration of HT1080 cells,and were the electrical resistance of HUVEC monolayer and endothelial MLC phosphorylation in extravascular migration of HT1080 cells. HT1080 cells migrated through endothelial cells into collagen gel, the electrical resistance of a HUVEC monolayer was reduced and endothelial MLC phosphorylation was enhanced in extravascular migration of fibrosarcoma cells. Endothelial MLCK inhibitor (ML-7) blocked extravascular migration of HT1080 cells and inhibited reduction of electrical resistance of a HUVEC monolayer and enhancement of endothelial MLC phosphorylation in extravascular migration of HT1080 cells in a dose-dependent manner. Endothelial MLCK regulates fibrosarcoma cell transendothelial migration through MLC phosphorylation, leading to cytoskeletal reorganization and endothelial cell constriction, then fibrosarcoma cells migrate into extravascular tissue through the gaps between endothelial cells.

  9. Endothelial cell migration on surfaces modified with immobilized adhesive peptides.

    PubMed

    Kouvroukoglou, S; Dee, K C; Bizios, R; McIntire, L V; Zygourakis, K

    2000-09-01

    Endothelial cell (EC) migration has been studied on aminophase surfaces with covalently bound RGDS and YIGSRG cell adhesion peptides. The fluorescent marker dansyl chloride was used to quantify the spatial distribution of the peptides on the modified surfaces. Peptides appeared to be distributed in uniformly dispersed large clusters separated by areas of lower peptide concentrations. We employed digital time-lapse video microscopy and image analysis to monitor EC migration on the modified surfaces and to reconstruct the cell trajectories. The persistent random walk model was then applied to analyze the cell displacement data and compute the mean root square speed, the persistence time, and the random motility coefficient of EC. We also calculated the time-averaged speed of cell locomotion. No differences in the speed of cell locomotion on the various substrates were noted. Immobilization of the cell adhesion peptides (RGDS and YIGSRG), however, significantly increased the persistence of cell movement and, thus, the random motility coefficient. These results suggest that immobilization of cell adhesion peptides on the surface of implantable biomaterials may lead to enhanced endothelization rates.

  10. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization.

    PubMed

    Maity, Gargi; Mehta, Smita; Haque, Inamul; Dhar, Kakali; Sarkar, Sandipto; Banerjee, Sushanta K; Banerjee, Snigdha

    2014-05-16

    The complex signaling networks between cancer cells and adjacent endothelial cells make it challenging to unravel how cancer cells send extracellular messages to promote aberrant vascularization or tumor angiogenesis. Here, in vitro and in vivo models show that pancreatic cancer cell generated unique microenvironments can underlie endothelial cell migration and tumor angiogenesis. Mechanistically, we find that pancreatic cancer cell secreted CCN1/Cyr61 matricellular protein rewires the microenvironment to promote endothelial cell migration and tumor angiogenesis. This event can be overcome by Sonic Hedgehog (SHh) antibody treatment. Collectively, these studies identify a novel CCN1 signaling program in pancreatic cancer cells which activates SHh through autocrine-paracrine circuits to promote endothelial cell migration and tumor angiogenesis and suggests that CCN1 signaling of pancreatic cancer cells is vital for the regulation of tumor angiogenesis. Thus CCN1 signaling could be an ideal target for tumor vascular disruption in pancreatic cancer.

  11. Pleiotrophin Induces Nitric Oxide Dependent Migration of Endothelial Progenitor Cells

    PubMed Central

    Heiss, Christian; Wong, Maelene L.; Block, Vanessa I.; Lao, David; Real, Wendy May; Yeghiazarians, Yerem; Lee, Randall J.; Springer, Matthew L.

    2009-01-01

    Pleiotrophin (PTN) is produced under ischemic conditions and has been shown to induce angiogenesis in vivo. We studied whether or not PTN exerts chemotaxis of pro-angiogenic early endothelial progenitor cells (EPCs), a population of circulating cells that have been reported to participate in and stimulate angiogenesis. Chemotaxis of EPCs, isolated from blood of healthy humans (n=5), was measured in transwell assays. PTN at 10–500 ng/mL elicited dose-dependent chemotaxis of both EPCs and human umbilical vein endothelial cells (HUVECs), but not of human coronary artery smooth muscle cells (CASMCs) and T98G glioblastoma cells that lack PTN receptors. The degree of chemotaxis was comparable to that induced by the angiogenic factors VEGF and SDF-1α. Chemotaxis to PTN was blocked by the NOS inhibitors L-NNA and L-NMMA, the NO scavenger PTIO, the phosphoinositide-3 kinase inhibitor wortmannin, and the guanylyl cyclase inhibitor ODQ, suggesting dependence of EPC chemotaxis on these pathways. PTN induced NOS-dependent production of NO to a similar degree as did VEGF, as indicated by the NO indicator DAF-2. PTN increased proliferation in EPCs and HUVECs to a similar extent as VEGF, but did not induce proliferation of CASMCs. While L-NNA abolished PTN-induced migration in EPCs and HUVECs, it did not inhibit PTN- and VEGF-enhanced proliferation and also caused proliferation by itself. These data suggest that PTN may mediate its pro-angiogenic effects by increasing the local number of not only endothelial cells but also early EPCs at angiogenic sites. PMID:17960557

  12. Glutamine fuels proliferation but not migration of endothelial cells.

    PubMed

    Kim, Boa; Li, Jia; Jang, Cholsoon; Arany, Zoltan

    2017-08-15

    Endothelial metabolism is a key regulator of angiogenesis. Glutamine metabolism in endothelial cells (ECs) has been poorly studied. We used genetic modifications and (13)C tracing approaches to define glutamine metabolism in these cells. Glutamine supplies the majority of carbons in the tricyclic acid (TCA) cycle of ECs and contributes to lipid biosynthesis via reductive carboxylation. EC-specific deletion in mice of glutaminase, the initial enzyme in glutamine catabolism, markedly blunts angiogenesis. In cell culture, glutamine deprivation or inhibition of glutaminase prevents EC proliferation, but does not prevent cell migration, which relies instead on aerobic glycolysis. Without glutamine catabolism, there is near complete loss of TCA intermediates, with no compensation from glucose-derived anaplerosis. Mechanistically, addition of exogenous alpha-ketoglutarate replenishes TCA intermediates and rescues cellular growth, but simultaneously unveils a requirement for Rac1-dependent macropinocytosis to provide non-essential amino acids, including asparagine. Together, these data outline the dependence of ECs on glutamine for cataplerotic processes; the need for glutamine as a nitrogen source for generation of biomass; and the distinct roles of glucose and glutamine in EC biology. © 2017 The Authors.

  13. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    NASA Astrophysics Data System (ADS)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-03-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  14. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    PubMed Central

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-01-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters. PMID:26936382

  15. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement.

    PubMed

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin

    2016-03-03

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  16. Oxytocin stimulates migration and invasion in human endothelial cells

    PubMed Central

    Cattaneo, M G; Chini, B; Vicentini, L M

    2007-01-01

    Background and purpose: It has recently been reported that oxytocin is produced by some tumour cell types, and that oxytocin receptors, belonging to the G-protein-coupled receptor (GPCR) family, are expressed in a variety of cell types. Among these, human umbilical vein endothelial cells (HUVECs) respond to oxytocin with an increased proliferation, suggesting a possible role for the hormone in the regulation of angiogenesis. Experimental approach: We employed chemotaxis and chemoinvasion assays to characterize the effect of oxytocin on HUVEC motility, and immunoblot analysis to study its molecular mechanisms of action. Key results: We showed that oxytocin stimulates migration and invasion in HUVECs via oxytocin receptor activation. Searching for the molecular mechanism(s) responsible for oxytocin's pro-migratory effect, we identified the Gq coupling of oxytocin receptors and phospholipase C (PLC) as the main effectors of oxytocin's action in HUVECs. We also found that oxytocin stimulates the phosphorylation of endothelial nitric oxide synthase (eNOS) via the phosphatidylinositol-3-kinase (PI-3-K)/AKT pathway, and that the activation of PI-3-K and formation of nitric oxide (NO) are required for the pro-migratory effect of oxytocin. Conclusions and implications: The ability of oxytocin to stimulate HUVEC motility and invasion suggests that the hormone can participate in physiopathological processes where activation of endothelial cells plays an important role, for example, in angiogenesis. Interestingly, both the AKT and eNOS phosphorylation induced by oxytocin receptor activation depended on PLC activity, thus suggesting the existence of a still undefined mechanism connecting PLC to the PI-3-K/AKT pathway, upon oxytocin stimulation. PMID:18059319

  17. Cathepsin L derived from skeletal muscle cells transfected with bFGF promotes endothelial cell migration.

    PubMed

    Chung, Ji Hyung; Im, Eun Kyoung; Jin, Tae Won; Lee, Seung-Min; Kim, Soo Hyuk; Choi, Eun Young; Shin, Min-Jeong; Lee, Kyung Hye; Jang, Yangsoo

    2011-04-30

    Gene transfer of basic fibroblast growth factor (bFGF) has been shown to induce significant endothelial migration and angiogenesis in ischemic disease models. Here, we investigate what factors are secreted from skeletal muscle cells (SkMCs) transfected with bFGF gene and whether they participate in endothelial cell migration. We constructed replication-defective adenovirus vectors containing the human bFGF gene (Ad/bFGF) or a control LacZ gene (Ad/LacZ) and obtained conditioned media, bFGF-CM and LacZ-CM, from SkMCs infected by Ad/bFGF or Ad/LacZ, respectively. Cell migration significantly increased in HUVECs incubated with bFGF-CM compared to cells incubated with LacZ-CM. Interestingly, HUVEC migration in response to bFGF-CM was only partially blocked by the addition of bFGF-neutralizing antibody, suggesting that bFGF-CM contains other factors that stimulate endothelial cell migration. Several proteins, matrix metalloproteinase-1 (MMP-1), plasminogen activator inhibitor-1 (PAI-1), and cathepsin L, increased in bFGF-CM compared to LacZ-CM; based on 1-dimensional gel electrophoresis and mass spectrometry. Their increased mRNA and protein levels were confirmed by RT-PCR and immunoblot analysis. The recombinant human bFGF protein induced MMP-1, PAI-1, and cathepsin L expression in SkMCs. Endothelial cell migration was reduced in groups treated with bFGF-CM containing neutralizing antibodies against MMP-1 or PAI-1. In particular, HUVECs treated with bFGF-CM containing cell-impermeable cathepsin L inhibitor showed the most significant decrease in cell migration. Cathepsin L protein directly promotes endothelial cell migration through the JNK pathway. These results indicate that cathepsin L released from SkMCs transfected with the bFGF gene can promote endothelial cell migration.

  18. Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF

    SciTech Connect

    Kim, Woo Ho; Lee, Sun Hee; Jung, Myung Hwan; Seo, Ji Heun; Kim, Jin; Kim, Min A; Lee, You Mie

    2009-08-01

    The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression is significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.

  19. The effects of kisspeptin-10 on migration and proliferation of endothelial cell

    PubMed Central

    Golzar, Fatemeh; Javanmard, Shaghayegh Haghjooy

    2015-01-01

    Background: Migration, expansion and survival of endothelial cells that are an important cellular component of blood vessels plays an important role in the induction of tumor growth. Kisspeptins (kp), peptides that bind to coupled-G protein receptor (GPR54), inhibit each step of metastatic cascade include invasion, migration and homing, angiogenesis, survival and proliferation. In this study we investigated effects of kisspeptin-10, the most potent member of kisspeptin family, on Migration and proliferation of endothelial cells that are necessary for angiogenesis and tumor metastasis. Materials and Methods: We compared migration of Human Umbilical Vein Endothelial Cells (HUVECs) were treated with 10-100 or 500 nM kp-10 for 24 hours and no treated cells using an in vitro trans membrane migration assay and HUVEC proliferation of treated endothelial cells with 10-100 or 500 nM kp-10 for 48 hours and no treated cells was measured by MTT Cell Proliferation Assay Kit. Analysis of data was performed using the Kruskal-Wallis test followed by the Mann-Whitney test. Results: Migration and proliferation of endothelial cells were increased at lower concentration of kp-10 specially at 100 nM while higher concentration reduced both migration and proliferation. Conclusion: Our data showed that different concentrations of kp-10 have distinct effects on migration and proliferation of endothelial cells. PMID:25789267

  20. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Endothelial cell migration is important to vascular wall regeneration following injury or stress. However, the mechanism(s) governing this response is not well understood. The microgravity environment of space may complicate the response of these cells to injury. To date, there are no reports in this area. We examined how bovine aortic (BAEC) and pulmonary (BPEC) endothelial cells respond to denudation injury under hypergravity (HGrav) and simulated microgravity (MGrav), using image analysis. In 10% FBS, the migration of confluent BAEC and BPEC into the denuded area was not affected by HGrav or MGrav. However, in low FBS (0.5%), signficantly retarded migration under MGrav, and increased migration under HGrav was found. MGrav also decreased the migration of postconfluent BPEC while HGrav showed no difference. Both MGrav and HGrav strongly decreased the migration of postconfluent BAEC. Also, both cell lines showed significant morphological changes by scanning electron microscopy. These studies indicate that endothelial cell function is affected by changes in gravity.

  1. CLASP1 regulates endothelial cell branching morphology and directed migration.

    PubMed

    Myer, Nicole M; Myers, Kenneth A

    2017-08-31

    Endothelial cell (EC) branching is critically dependent upon the dynamic nature of the microtubule (MT) cytoskeleton. Extracellular matrix (ECM) mechanosensing is a prominent mechanism by which cytoskeletal reorganization is achieved; yet how ECM-induced signaling is able to target cytoskeletal reorganization intracellularly to facilitate productive EC branching morphogenesis is not known. Here, we set out to test the hypothesis that the composition and density of the ECM drive the regulation of MT growth dynamics in ECs by targeting the MT stabilizing protein, CLASP1. High-resolution fluorescent microscopy coupled with computational image analysis reveal that CLASP1 promotes slow MT growth on glass ECMs and promotes short-lived MT growth on high-density collagen-I and fibronectin ECMs. Within EC branches, engagement of either high-density collagen or high-density fibronectin ECMs results in reduced MT growth speeds, while CLASP1-dependent effects on MT dynamics promotes elevated numbers of short, branched protrusions that guide persistent and directional EC migration. © 2017. Published by The Company of Biologists Ltd.

  2. Matrix metalloproteinase 13 mediates nitric oxide activation of endothelial cell migration

    PubMed Central

    López-Rivera, Esther; Lizarbe, Tania R.; Martínez-Moreno, Mónica; López-Novoa, José Miguel; Rodríguez-Barbero, Alicia; Rodrigo, José; Fernández, Ana Patricia; Álvarez-Barrientos, Alberto; Lamas, Santiago; Zaragoza, Carlos

    2005-01-01

    To explore the mechanisms by which NO elicits endothelial cell (EC) migration we used murine and bovine aortic ECs in an in vitro wound-healing model. We found that exogenous or endogenous NO stimulated EC migration. Moreover, migration was significantly delayed in ECs derived from endothelial NO synthase-deficient mice compared with WT murine aortic EC. To assess the contribution of matrix metalloproteinase (MMP)-13 to NO-mediated EC migration, we used RNA interference to silence MMP-13 expression in ECs. Migration was delayed in cells in which MMP-13 was silenced. In untreated cells MMP-13 was localized to caveolae, forming a complex with caveolin-1. Stimulation with NO disrupted this complex and significantly increased extracellular MMP-13 abundance, leading to collagen breakdown. Our findings show that MMP-13 is an important effector of NO-activated endothelial migration. PMID:15728377

  3. In-vivo cell tracking to quantify endothelial cell migration during zebrafish angiogenesis

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Rochon, Elizabeth R.; Roman, Beth L.

    2016-03-01

    The mechanism of endothelial cell migration as individual cells or collectively while remaining an integral component of a functional blood vessel has not been well characterized. In this study, our overarching goal is to define an image processing workflow to facilitate quantification of how endothelial cells within the first aortic arch and are proximal to the zebrafish heart behave in response to the onset of flow (i.e. onset of heart beating). Endothelial cell imaging was conducted at this developmental time-point i.e. ~24-28 hours post fertilization (hpf) when flow first begins, using 3D+time two-photon confocal microscopy of a live, wild-type, transgenic, zebrafish expressing green fluorescent protein (GFP) in endothelial cell nuclei. An image processing pipeline comprised of image signal enhancement, median filtering for speckle noise reduction, automated identification of the nuclei positions, extraction of the relative movement of nuclei between consecutive time instances, and finally tracking of nuclei, was designed for achieving the tracking of endothelial cell nuclei and the identification of their movement towards or away from the heart. Pilot results lead to a hypothesis that upon the onset of heart beat and blood flow, endothelial cells migrate collectively towards the heart (by 21.51+/-10.35 μm) in opposition to blood flow (i.e. subtending 142.170+/-21.170 with the flow direction).

  4. Carbon Ion Radiation Inhibits Glioma and Endothelial Cell Migration Induced by Secreted VEGF

    PubMed Central

    Liu, Yang; Liu, Yuanyuan; Sun, Chao; Gan, Lu; Zhang, Luwei; Mao, Aihong; Du, Yuting; Zhou, Rong; Zhang, Hong

    2014-01-01

    This study evaluated the effects of carbon ion and X-ray radiation and the tumor microenvironment on the migration of glioma and endothelial cells, a key process in tumorigenesis and angiogenesis during cancer progression. C6 glioma and human microvascular endothelial cells were treated with conditioned medium from cultures of glioma cells irradiated at a range of doses and the migration of both cell types, tube formation by endothelial cells, as well as the expression and secretion of migration-related proteins were evaluated. Exposure to X-ray radiation-conditioned medium induced dose-dependent increases in cell migration and tube formation, which were accompanied by an upregulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2 and -9 expression. However, glioma cells treated with conditioned medium of cells irradiated at a carbon ion dose of 4.0 Gy showed a marked decrease in migratory potential and VEGF secretion relative to non-irradiated cells. The application of recombinant VEGF165 stimulated migration in glioma and endothelial cells, which was associated with increased FAK phosphorylation at Tyr861, suggesting that the suppression of cell migration by carbon ion radiation could be via VEGF-activated FAK signaling. Taken together, these findings indicate that carbon ion may be superior to X-ray radiation for inhibiting tumorigenesis and angiogenesis through modulation of VEGF level in the glioma microenvironment. PMID:24893038

  5. Systematic high-content genome-wide RNAi screens of endothelial cell migration and morphology

    PubMed Central

    Williams, Steven P.; Gould, Cathryn M.; Nowell, Cameron J.; Karnezis, Tara; Achen, Marc G.; Simpson, Kaylene J.; Stacker, Steven A.

    2017-01-01

    Many cell types undergo migration during embryogenesis and disease. Endothelial cells line blood vessels and lymphatics, which migrate during development as part of angiogenesis, lymphangiogenesis and other types of vessel remodelling. These processes are also important in wound healing, cancer metastasis and cardiovascular conditions. However, the molecular control of endothelial cell migration is poorly understood. Here, we present a dataset containing siRNA screens that identify known and novel components of signalling pathways regulating migration of lymphatic endothelial cells. These components are compared to signalling in blood vascular endothelial cells. Further, using high-content microscopy, we captured a dataset of images of migrating cells following transfection with a genome-wide siRNA library. These datasets are suitable for the identification and analysis of genes involved in endothelial cell migration and morphology, and for computational approaches to identify signalling networks controlling the migratory response and integration of cell morphology, gene function and cell signaling. This may facilitate identification of protein targets for therapeutically modulating angiogenesis and lymphangiogenesis in the context of human disease. PMID:28248931

  6. [Sphingosine kinase regulates hepatocyte growth factor-induced migration of endothelial cells].

    PubMed

    Yi, Jun; Lu, Zhuao-Zhuang; Duan, Hai-Feng; Gai, Lu-Yue; Wang, Li-Sheng

    2006-05-01

    To elucidate the effect of sphingosine kinase (SPK) on the hepatocyte growth factor (HGF)-induced migration of endothelial cells. We constructed recombinant adenoviral vectors, which contain SPK gene and its mutant respectively. These adenoviral vectors were packaged and amplified in 293 cells. And intracellular SPK activity was assayed via measurement of [32]P radioisotope labeled S1P; the effect of SPK activation on HGF-induced migration of endothelial cell was observed by Transwell technique. Adenoviral mediated expression of SPK gene increased in ECV 304 cells intracellular SPK activity, which in turn enhanced the HGF-induced migration. Whereas these activities were blocked by the dominant negative SPK gene. These findings show that SPK activation plays important roles in the regulation of HGF-induced migration of endothelial cells.

  7. Paxillin controls endothelial cell migration and tumor angiogenesis by altering neuropilin 2 expression

    PubMed Central

    German, Alexandra E.; Mammoto, Tadanori; Jiang, Elisabeth; Ingber, Donald E.; Mammoto, Akiko

    2014-01-01

    ABSTRACT Although a number of growth factors and receptors are known to control tumor angiogenesis, relatively little is known about the mechanism by which these factors influence the directional endothelial cell migration required for cancer microvessel formation. Recently, it has been shown that the focal adhesion protein paxillin is required for directional migration of fibroblasts in vitro. Here, we show that paxillin knockdown enhances endothelial cell migration in vitro and stimulates angiogenesis during normal development and in response to tumor angiogenic factors in vivo. Paxillin produces these effects by decreasing expression of neuropilin 2 (NRP2). Moreover, soluble factors secreted by tumors that stimulate vascular ingrowth, including vascular endothelial growth factor (VEGF), also decrease endothelial cell expression of paxillin and NRP2, and overexpression of NRP2 reverses these effects. These results suggest that the VEGF–paxillin–NRP2 pathway could represent a new therapeutic target for cancer and other angiogenesis-related diseases. PMID:24522185

  8. Hypoxia Increases Breast Cancer Cell-Induced Lymphatic Endothelial Cell Migration12

    PubMed Central

    Mikhaylova, Maria; Mori, Noriko; Wildes, Flonné B; Walczak, Piotr; Gimi, Barjor; Bhujwalla, Zaver M

    2008-01-01

    Because tumors are characterized by hypoxic environments, we used a novel in vitro noninvasive magnetic resonance imaging assay to examine the influence of invasive MDA-MB-231 breast cancer cells on the invasion and migration of human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) under normoxic and hypoxic conditions. Nonmalignant immortalized MCF-12A human mammary epithelial cells instead of cancer cells or chambers with HMVEC-dLy alone were used as controls for comparison. HMVEC-dLy cells were labeled with a T2 contrast agent (Feridex), and their invasion and migration through extracellular matrix under normoxic and hypoxic conditions were monitored using magnetic resonance imaging. A significant increase in the invasion and migration of HMVEC-dLy cells was detected in the presence of cancer cells, which further increased significantly under hypoxic conditions. HMVEC-dLy cells formed interconnecting strands extending toward the cancer cells under normoxic but not under hypoxic conditions. Following reoxygenation, these interconnecting strands, extending from HMVEC-dLy cells toward the cancer cells, were observed. These data demonstrate the importance of hypoxia in lymphatic endothelial cell invasion and migration through extracellular matrix in the presence of cancer cells. PMID:18392137

  9. Functional interplay between endothelial nitric oxide synthase and membrane type 1 matrix metalloproteinase in migrating endothelial cells.

    PubMed

    Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S; Gálvez, Beatriz G; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S; Arroyo, Alicia G

    2007-10-15

    Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1-matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders.

  10. Functional interplay between endothelial nitric oxide synthase and membrane type 1–matrix metalloproteinase in migrating endothelial cells

    PubMed Central

    Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S.; Gálvez, Beatriz G.; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S.

    2007-01-01

    Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1–matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders. PMID:17606763

  11. Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration.

    PubMed

    Locard-Paulet, Marie; Lim, Lindsay; Veluscek, Giulia; McMahon, Kelly; Sinclair, John; van Weverwijk, Antoinette; Worboys, Jonathan D; Yuan, Yinyin; Isacke, Clare M; Jørgensen, Claus

    2016-02-09

    The exit of metastasizing tumor cells from the vasculature, extravasation, is regulated by their dynamic interactions with the endothelial cells that line the internal surface of vessels. To elucidate signals controlling tumor cell adhesion to the endothelium and subsequent transendothelial migration, we performed phosphoproteomic analysis to map cell-specific changes in protein phosphorylation that were triggered by contact between metastatic MDA-MB-231 breast cancer cells and endothelial cells. From the 2669 unique phosphorylation sites identified, 77 and 43 were differentially phosphorylated in the tumor cells and endothelial cells, respectively. The receptor tyrosine kinase ephrin type A receptor 2 (EPHA2) exhibited decreased Tyr(772) phosphorylation in the cancer cells upon endothelial contact. Knockdown of EPHA2 increased adhesion of the breast cancer cells to human umbilical vein endothelial cells (HUVECs) and their transendothelial migration in coculture cell assays, as well as early-stage lung colonization in vivo. EPHA2-mediated inhibition of transendothelial migration of breast cancer cells depended on interaction with the ligand ephrinA1 on HUVECs and phosphorylation of EPHA2-Tyr(772). When EPHA2 phosphorylation dynamics were compared between cell lines of different metastatic ability, EPHA2-Tyr(772) was rapidly dephosphorylated after ephrinA1 stimulation specifically in cells targeting the lung. Knockdown of the phosphatase LMW-PTP reduced adhesion and transendothelial migration of the breast cancer cells. Overall, cell-specific phosphoproteomic analysis provides a bidirectional map of contact-initiated signaling between tumor and endothelial cells that can be further investigated to identify mechanisms controlling the transendothelial cell migration of cancer cells.

  12. Testosterone promotes vascular endothelial cell migration via upregulation of ROCK-2/moesin cascade.

    PubMed

    Liao, Weiyong; Huang, Wenjun; Guo, Yanhong; Xin, Min; Fu, Xiaodong

    2013-12-01

    Cross-sectional studies have demonstrated a reverse relationship between serum level of testosterone (T) and the incidence rate of cardiovascular disease in men, indicating that T exerts beneficial effects in cardiovascular system. However, the endothelial effects of T are poorly understood. Actin remodeling is essential for endothelial cell movement and vascular repair and this process is controlled by the actin-binding protein moesin. In the present study, we studied the effects of T on actin remodeling, moesin expression and phosphorylation, as well as cell migration in cultured human umbilical endothelial cells (hUVECs). We found that T provoked the formation of cortical actin complexes and membrane protrusions in endothelial cells. Treatment with T induced dose- and time-dependent increase of moesin expression and phosphorylation, which was inhibited by the addition of androgen receptor antagonist hydroxyflutamide (HF). Moreover, T enhanced ROCK-2 activity. The ROCK-2 inhibitor Y27632 or the transfection of ROCK-2 siRNA largely inhibited T-induced moesin expression and phosphorylation, indicating that ROCK-2 pathway is crucial for these effects. T promoted endothelial cell migration, which was inhibited by the addition of HF or Y27632. In conclusion, T induces actin cytoskeleton remodeling by regulating moesin expression and activation, resulting in enhanced endothelial cell migration. Our work adds new insights into endothelial mechanisms of T, which is relevant for its vascular actions.

  13. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    SciTech Connect

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi; Shinya, Tomohiro; Sato, Keizo; Takahashi, Satoru

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  14. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  15. The Histone Demethylase PHF8 Is Essential for Endothelial Cell Migration

    PubMed Central

    Gu, Lunda; Hitzel, Juliane; Moll, Franziska; Kruse, Christoph; Malik, Randa Abdel; Preussner, Jens; Looso, Mario; Leisegang, Matthias S.; Steinhilber, Dieter; Brandes, Ralf P.; Fork, Christian

    2016-01-01

    Epigenetic marks critically control gene expression and thus the cellular activity state. The functions of many epigenetic modifiers in the vascular system have not yet been studied. We screened for histone modifiers in endothelial cells and observed a fairly high expression of the histone plant homeodomain finger protein 8 (PHF8). Given its high expression, we hypothesize that this histone demethylase is important for endothelial cell function. Overexpression of PHF8 catalyzed the removal of methyl-groups from histone 3 lysine 9 (H3K9) and H4K20, whereas knockdown of the enzyme increased H3K9 methylation. Knockdown of PHF8 by RNAi also attenuated endothelial proliferation and survival. As a functional readout endothelial migration and tube formation was studied. PHF8 siRNA attenuated the capacity for migration and developing of capillary-like structures. Given the impact of PHF8 on cell cycle genes, endothelial E2F transcription factors were screened, which led to the identification of the gene repressor E2F4 to be controlled by PHF8. Importantly, PHF8 maintains E2F4 but not E2F1 expression in endothelial cells. Consistently, chromatin immunoprecipitation revealed that PHF8 reduces the H3K9me2 level at the E2F4 transcriptional start site, demonstrating a direct function of PHF8 in endothelial E2F4 gene regulation. Conclusion: PHF8 by controlling E2F4 expression maintains endothelial function. PMID:26751588

  16. The Histone Demethylase PHF8 Is Essential for Endothelial Cell Migration.

    PubMed

    Gu, Lunda; Hitzel, Juliane; Moll, Franziska; Kruse, Christoph; Malik, Randa Abdel; Preussner, Jens; Looso, Mario; Leisegang, Matthias S; Steinhilber, Dieter; Brandes, Ralf P; Fork, Christian

    2016-01-01

    Epigenetic marks critically control gene expression and thus the cellular activity state. The functions of many epigenetic modifiers in the vascular system have not yet been studied. We screened for histone modifiers in endothelial cells and observed a fairly high expression of the histone plant homeodomain finger protein 8 (PHF8). Given its high expression, we hypothesize that this histone demethylase is important for endothelial cell function. Overexpression of PHF8 catalyzed the removal of methyl-groups from histone 3 lysine 9 (H3K9) and H4K20, whereas knockdown of the enzyme increased H3K9 methylation. Knockdown of PHF8 by RNAi also attenuated endothelial proliferation and survival. As a functional readout endothelial migration and tube formation was studied. PHF8 siRNA attenuated the capacity for migration and developing of capillary-like structures. Given the impact of PHF8 on cell cycle genes, endothelial E2F transcription factors were screened, which led to the identification of the gene repressor E2F4 to be controlled by PHF8. Importantly, PHF8 maintains E2F4 but not E2F1 expression in endothelial cells. Consistently, chromatin immunoprecipitation revealed that PHF8 reduces the H3K9me2 level at the E2F4 transcriptional start site, demonstrating a direct function of PHF8 in endothelial E2F4 gene regulation. Conclusion: PHF8 by controlling E2F4 expression maintains endothelial function.

  17. Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells.

    PubMed

    Duan, Hai-Feng; Wu, Chu-Tse; Lu, Ying; Wang, Hua; Liu, Hong-Jun; Zhang, Qun-Wei; Jia, Xiang-Xu; Lu, Zhu-Zhuang; Wang, Li-Sheng

    2004-08-15

    Hepatocyte growth factor (HGF)-induced migration of endothelial cells is critical for angiogenesis. Sphingosine kinase (SPK) is a key enzyme catalyzing the formation of sphingosine-1-phosphate (S1P), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through both intracellular and extracellular mechanisms. The aim of this study was to investigate whether activation of SPK is involved in the migration of endothelial cells induced by HGF. The biological functions of HGF are mediated through the activation of its high-affinity tyrosine kinase receptor, c-met protooncogene. In the present study, Treatment of ECV304 endothelial cells with HGF resulted in tyrosine phosphorylation of c-Met and activation of SPK in a concentration-dependent manner. Either Ly294002 or PD98059, specific inhibitor of the PI3K and ERK/MAPK pathways, respectively, blocked the HGF-induced activation of SPK. HGF stimulation significantly increased intracellular S1P level, but no detectable secretion of S1P into the cell culture medium was observed. Treatment of ECV304 cells with pertussis toxin (PTX) has no effect on the HGF-induced migration, indicating extracellular S1P is dispensable for this process. Overexpression of wild-type SPK gene in ECV 304 cells increased the intracellular S1P and enhanced the HGF-induced migration, whereas inhibition of cellular SPK activity by N,N-dimethylsphingosine (DMS), a potent inhibitor of SPK, or by expression of a dominant-negative SPK (DN-SK) blocked the HGF-induced migration of ECV 304 cells. It is suggested that PI3K and ERK/MAPK mediated the activation of SPK and would be involved in the HGF-induced migration of endothelial cells. These results elucidate a novel mechanism by which intracellularly generated S1P mediates signaling from HGF/c-Met to the endothelial cell migration.

  18. Directing migration of endothelial progenitor cells with applied DC electric fields.

    PubMed

    Zhao, Zhiqiang; Qin, Lu; Reid, Brian; Pu, Jin; Hara, Takahiko; Zhao, Min

    2012-01-01

    Naturally-occurring, endogenous electric fields (EFs) have been detected at skin wounds, damaged tissue sites and vasculature. Applied EFs guide migration of many types of cells, including endothelial cells to migrate directionally. Homing of endothelial progenitor cells (EPCs) to an injury site is important for repair of vasculature and also for angiogenesis. However, it has not been reported whether EPCs respond to applied EFs. Aiming to explore the possibility to use electric stimulation to regulate the progenitor cells and angiogenesis, we tested the effects of direct-current (DC) EFs on EPCs. We first used immunofluorescence to confirm the expression of endothelial progenitor markers in three lines of EPCs. We then cultured the progenitor cells in EFs. Using time-lapse video microscopy, we demonstrated that an applied DC EF directs migration of the EPCs toward the cathode. The progenitor cells also align and elongate in an EF. Inhibition of vascular endothelial growth factor (VEGF) receptor signaling completely abolished the EF-induced directional migration of the progenitor cells. We conclude that EFs are an effective signal that guides EPC migration through VEGF receptor signaling in vitro. Applied EFs may be used to control behaviors of EPCs in tissue engineering, in homing of EPCs to wounds and to an injury site in the vasculature.

  19. AP-1 transcription factor mediates VEGF-induced endothelial cell migration and proliferation.

    PubMed

    Jia, Jing; Ye, Taiyang; Cui, Pengfei; Hua, Qian; Zeng, Huiyan; Zhao, Dezheng

    2016-05-01

    VEGF, upon binding to its endothelial cell specific receptors VEGF-R1 and VEGF-R2, can induce endothelial cell migration, proliferation and angiogenesis. However, the molecular mechanism of these effects still remains unclear. In this study, we investigated whether VEGF promotes human umbilical vascular endothelial cell (HUVEC) migration and proliferation through activator protein-1 transcription factor (AP-1) family. We first showed that VEGF induces immediate-early genes AP-1 family gene expression differentially with the profound induction of JunB (both mRNA and protein) under various conditions (PBS, DMSO or control adenoviruses). The increase in AP-1 mRNA expression occurs primarily at the transcriptional level. Inhibition of AP-1 DNA binding activity by adenovirus expressing a potent dominant negative form of c-Fos (Afos) significantly attenuated VEGF-induced HUVEC migration and proliferation and cyclin D1 expression. Knockdown of JunB with adenovirus expressing JunB shRNA reduces VEGF-induced JunB expression and attenuated HUVEC migration. However the shJunB-expressing virus has no effect on VEGF-induced cyclin D1 protein expression and proliferation. These results suggest that VEGF-induced endothelial migration is mediated primarily by induction of JunB whereas the promotion of endothelial proliferation by VEGF is mediated by JunB-independent AP-1 family members.

  20. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling.

    PubMed

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine; De Lorenzo, Mariana S; Iwatsubo, Mizuka; Chen, Suzie; Goydos, James S; Ishikawa, Yoshihiro; Whitelock, John M; Iwatsubo, Kousaku

    2014-07-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2-mediated cell-cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS-FGF2-mediated cell-cell communication. © 2014 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd.

  1. Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells

    PubMed Central

    1987-01-01

    Cellular migration is an essential component of invasive biological processes, many of which have been correlated with an increase in plasminogen activator production. Endothelial cell migration occurs in vivo during repair of vascular lesions and angiogenesis, and can be induced in vitro by wounding a confluent monolayer of cells. By combining the wounded monolayer model with a substrate overlay technique, we show that cells migrating from the edges of an experimental wound display an increase in urokinase-type plasminogen activator (uPA) activity, and that this activity reverts to background levels upon cessation of movement, when the wound has closed. Our results demonstrate a direct temporal relationship between endothelial cell migration and uPA activity, and suggest that induction of uPA activity is a component of the migratory process. PMID:3121633

  2. Assessing the roles of galectins in regulating dendritic cell migration through extracellular matrix and across lymphatic endothelial cells.

    PubMed

    Thiemann, Sandra; Man, Jeanette H; Baum, Linda G

    2015-01-01

    Leukocyte migration from the bloodstream into tissues, and from tissues to lymph nodes, depends on expression of specific adhesion and signaling molecules by vascular endothelial cells and lymphatic endothelial cells. Tissue damage and microbial infection induce vascular endothelial cells to up-regulate expression of adhesion molecules to facilitate entry of several leukocyte populations from blood into tissues. Many of these cells then leave inflamed tissue and migrate to regional lymph nodes. A critical population that emigrates from inflamed tissue is dendritic cells. Dendritic cells in tissue have to migrate through extracellular matrix and across a layer of lymphatic endothelial cells to enter the lymphatic vasculature. Little is known about the adhesion molecules expressed by lymphatic endothelial cells or the processes required for the critical step of dendritic cell exit from tissues, specifically migration through the extracellular matrix and basal-to-apical migration across the lymphatic endothelial cell layer into lymphatic vasculature.Members of the galectin family of carbohydrate binding proteins are expressed in both vascular and lymphatic endothelial cells. Dynamic changes in galectin expression during inflammation are known to regulate leukocyte tissue entry during inflammation. However, the roles of galectin family members expressed by lymphatic endothelial cells in leukocyte tissue exit remain to be explored.Here, we describe an in vitro transmigration assay that mimics dendritic cell tissue exit in the presence and absence of galectin protein. Fluorescently labeled human dendritic cell migration through extracellular matrix and across human lymphatic endothelial cells is examined in the presence and absence of recombinant human galectin protein.

  3. Enhancement of endothelial cell migration by constitutively active LPA{sub 1}-expressing tumor cells

    SciTech Connect

    Kitayoshi, Misaho; Kato, Kohei; Tanabe, Eriko; Yoshikawa, Kyohei; Fukui, Rie; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Mutated LPA{sub 1} stimulates cell migration of endothelial cells. Black-Right-Pointing-Pointer VEGF expressions are increased by mutated LPA{sub 1}. Black-Right-Pointing-Pointer LPA signaling via mutated LPA{sub 1} is involved in angiogenesis. Black-Right-Pointing-Pointer Mutated LPA{sub 1} promotes cancer cell progression. -- Abstract: Lysophosphatidic acid (LPA) receptors belong to G protein-coupled transmembrane receptors (LPA receptors; LPA{sub 1} to LPA{sub 6}). They indicate a variety of cellular response by the interaction with LPA, including cell proliferation, migration and differentiation. Recently, we have reported that constitutive active mutated LPA{sub 1} induced the strong biological effects of rat neuroblastoma B103 cells. In the present study, we examined the effects of mutated LPA{sub 1} on the interaction between B103 cells and endothelial F-2 cells. Each LPA receptor expressing B103 cells were maintained in serum-free DMEM and cell motility assay was performed with a Cell Culture Insert. When F-2 cells were cultured with conditioned medium from Lpar1 and Lpar3-expressing cells, the cell motility of F-2 cells was significantly higher than control cells. Interestingly, the motile activity of F-2 cells was strongly induced by mutated LPA{sub 1} than other cells, correlating with the expression levels of vascular endothelial growth factor (Vegf)-A and Vegf-C. Pretreatment of LPA signaling inhibitors inhibited F-2 cell motility stimulated by mutated LPA{sub 1}. These results suggest that activation of LPA signaling via mutated LPA{sub 1} may play an important role in the promotion of angiogenesis in rat neuroblastoma cells.

  4. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    SciTech Connect

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun . E-mail: dli2@slu.edu

    2006-11-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), {delta}p85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.

  5. Assays to examine endothelial cell migration, tube formation, and gene expression profiles.

    PubMed

    Guo, Shuzhen; Lok, Josephine; Liu, Yi; Hayakawa, Kazuhide; Leung, Wendy; Xing, Changhong; Ji, Xunming; Lo, Eng H

    2014-01-01

    Common methods for studying angiogenesis in vitro include the tube formation assay, the migration assay, and the study of the endothelial genome. The formation of capillary-like tubes in vitro on basement membrane matrix mimics many steps of the angiogenesis process in vivo and is used widely as a screening test for angiogenic or antiangiogenic factors. Other assays related to the study of angiogenesis include the cell migration assay, the study of gene expression changes during the process of angiogenesis, and the study of endothelial-derived microparticles. Protocols for these procedures will be described here.

  6. Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival.

    PubMed

    Eremina, Vera; Cui, Shiying; Gerber, Hanspeter; Ferrara, Napoleone; Haigh, Jody; Nagy, Andras; Ema, Masatsugu; Rossant, Janet; Jothy, Serge; Miner, Jeffrey H; Quaggin, Susan E

    2006-03-01

    The glomerular filtration barrier separates the blood from the urinary space and consists of two major cell types: podocytes and fenestrated endothelial cells. Mesangial cells sit between the capillary loops and provide structural support. Proliferation and loss of mesangial cells both are central findings in a number of renal diseases, including diabetic nephropathy and mesangiolysis, respectively. Using cell-specific gene targeting, it was shown previously that vascular endothelial growth factor A (VEGF-A) production by podocytes is required for glomerular endothelial cell migration, differentiation, and survival. For further investigation of the effect of gene dose and VEGF-A knockdown within the glomerulus, mice that carry one hypomorphic VEGF-A allele and one podocyte-specific null VEGF-A allele (VEGFhypo/loxP,Neph-Cre+/-) were generated; in these mice, the "allelic dose" of VEGF-A is intermediate between glomerular-specific heterozygous and null states. VEGFhypo/loxP,Neph-Cre+/- mice die at 3 wk of age from renal failure. Although endothelial cell defects are observed, striking loss of mesangial cells occurs postnatally. In addition, differentiated mesangial cells cannot be found in glomeruli of podocyte-specific null VEGF-A mice (VEGFloxP/loxP,Cre+/-). Together, these results demonstrate a key role for VEGF-A production in the podocyte for mesangial cell survival and differentiation.

  7. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers

    NASA Astrophysics Data System (ADS)

    Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-03-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.

  8. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers

    PubMed Central

    Song, Kwang Hoon; Lee, Jaehyun; Park, HyoungJun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-01-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei. PMID:26996137

  9. Endothelial directed collective migration depends on substrate stiffness via localized myosin contractility and cell-matrix interactions.

    PubMed

    Canver, Adam Charles; Ngo, Olivia; Urbano, Rebecca Lownes; Clyne, Alisa Morss

    2016-05-24

    Macrovascular endothelial injury, which may be caused by percutaneous intervention, requires endothelial cell directed collective migration to restore an intact endothelial monolayer. While interventions are often performed in arteries stiffened by cardiovascular disease, the effect of substrate stiffness on endothelial cell collective migration has not been examined. We studied porcine aortic endothelial cell directed collective migration using a modified cage assay on 4, 14, and 50kPa collagen-coated polyacrylamide gels. Total cell migration distance was measured over time, as were nuclear alignment and nuclear:total β-catenin as measures of cell directedness and cell-cell junction integrity, respectively. In addition, fibronectin fibers were examined as a measure of extracellular matrix deposition and remodeling. We now show that endothelial cells collectively migrate farther on stiffer substrates by 24h. Cells were more directed in the migration direction on intermediate stiffness substrates from 12 to 24h, with an alignment peak 400-700µm back from the migratory interface. However, cells on the softest substrates had the highest cell-cell junction integrity. Cells on all substrates deposited fibronectin, however fibronectin fibers were most linear and aligned on the stiffer substrates. When Rho kinase (ROCK) was inhibited with Y27632, cells on soft substrates migrated farther and cells on both soft and stiff substrates were more directed. When α5 integrin was knocked down with siRNA, cells on stiffer substrates did not migrate as far and were less directed. These data suggest that ROCK-mediated myosin contractility inhibits endothelial cell collective migration on soft substrates, while cell-matrix interactions are critical to endothelial cell collective migration on stiff substrates.

  10. Galvanotactic migration of EA.Hy926 endothelial cells in a novel designed electric field bioreactor.

    PubMed

    Long, Haiyan; Yang, Gang; Wang, Zhengrong

    2011-12-01

    Endogenous direct current electric fields (dcEFs) play a significant role in major biological processes such as embryogenesis, wound healing, and tissue regeneration. In this study, the galvanotaxis of human umbilical vein endothelial cell line EA.Hy926 was investigated by using a novel designed bioreactor. The physical features of the bioreactor were discussed and analyzed by both numerical simulation method and equivalent circuit model method. EA.Hy926 cells were cultured in the bioreactor for 10-24 h under 50-250 mV/mm dcEFs. Cell migration direction, distance, and velocity were recorded under an online time-lapse microscope. The effects of serum and growth factor on cell galvanotatic migration were investigated. To further explore the role of dcEFs in regulating endothelial cells, we analyzed the endothelial cell proliferation and secretion of nitric oxide (NO), endothelin-1 (ET-1) in response to dcEFs of physiological strength. Our results showed that EA.Hy926 cells had an obvious directional migration to the cathode, and the EF-directed migration was voltage dependent. The results also showed dcEFs did not affect cell proliferation, but affected the productions of NO and ET-1. Our study also showed the novel bioreactor, with a compact and planar style, makes it more convenient and more reasonable for EF stimulation experiments than earlier chamber designs.

  11. Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration

    PubMed Central

    Wang, Dan; Tang, Jie

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK), an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs) play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1) and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C) on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34+/VEGFR-3+ endothelial progenitor cells (EPCs), and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34+/VEGFR-3+ EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources. PMID:27698675

  12. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration.

    PubMed

    Shen, Yang; Gao, Min; Ma, Yunlong; Yu, Hongchi; Cui, Fu-zhai; Gregersen, Hans; Yu, Qingsong; Wang, Guixue; Liu, Xiaoheng

    2015-02-01

    The migration of vascular endothelial cells (ECs) is essential for reendothelialization after implantation of cardiovascular biomaterials. Reendothelialization is largely determined by surface properties of implants. In this study, surfaces modified with various chemical functional groups (CH3, NH2, COOH, OH) prepared by self-assembled monolayers (SAMs) were used as model system. Expressions and distributions of critical proteins in the integrin-induced signaling pathway were examined to explore the mechanisms of surface chemistry regulating EC migration. The results showed that SAMs modulated cell migration were in the order CH3>NH2>OH>COOH, determined by differences in the expressions of focal adhesion components and Rho GTPases. Multiple integrin subunits showed difference in a surface chemistry-dependent manner, which induced a stepwise activation of signaling cascades associated with EC migration. This work provides a broad overview of surface chemistry regulated endothelial cell migration and establishes association among the surface chemistry, cell migration behavior and associated integrin signaling events. Understanding the relationship between these factors will help us to understand the surface/interface behavior between biomaterials and cells, reveal molecular mechanism of cells sensing surface characterization, and guide surface modification of cardiovascular implanted materials.

  13. EGFL6 Promotes Endothelial Cell Migration and Angiogenesis through the Activation of Extracellular Signal-regulated Kinase*

    PubMed Central

    Chim, Shek Man; Qin, An; Tickner, Jennifer; Pavlos, Nathan; Davey, Tamara; Wang, Hao; Guo, Yajun; Zheng, Ming Hao; Xu, Jiake

    2011-01-01

    Angiogenesis is required for bone development, growth, and repair. It is influenced by the local bone environment that involves cross-talks between endothelial cells and adjacent bone cells. However, data regarding factors that directly contribute to angiogenesis by bone cells remain poorly understood. Here, we report that EGFL6, a member of the epidermal growth factor (EGF) repeat superfamily proteins, induces angiogenesis by a paracrine mechanism in which EGFL6 is expressed in osteoblastic-like cells but promotes migration and angiogenesis of endothelial cells. Co-immunoprecipitation assays revealed that EGFL6 is secreted in culture medium as a homodimer protein. Using scratch wound healing and transwell assays, we found that conditioned medium containing EGFL6 potentiates SVEC (a simian virus 40-transformed mouse microvascular endothelial cell line) endothelial cell migration. In addition, EGFL6 promotes the endothelial cell tube-like structure formation in Matrigel assays and angiogenesis in a chick embryo chorioallantoic membrane. Furthermore, we show that EGFL6 recombinant protein induces phosphorylation of ERK in SVEC endothelial cells. Inhibition of ERK impaired EGFL6-induced ERK activation and endothelial cell migration. Together, these results demonstrate, for the first time, that osteoblastic-like cells express EGFL6 that is capable of promoting endothelial cell migration and angiogenesis via ERK activation. Thus, the EGLF6 mediates a paracrine mechanism of cross-talk between vascular endothelial cells and osteoblasts and might offer an important new target for the potential treatment of bone diseases, including osteonecrosis, osteoporosis, and fracture healing. PMID:21531721

  14. EGFL6 promotes endothelial cell migration and angiogenesis through the activation of extracellular signal-regulated kinase.

    PubMed

    Chim, Shek Man; Qin, An; Tickner, Jennifer; Pavlos, Nathan; Davey, Tamara; Wang, Hao; Guo, Yajun; Zheng, Ming Hao; Xu, Jiake

    2011-06-24

    Angiogenesis is required for bone development, growth, and repair. It is influenced by the local bone environment that involves cross-talks between endothelial cells and adjacent bone cells. However, data regarding factors that directly contribute to angiogenesis by bone cells remain poorly understood. Here, we report that EGFL6, a member of the epidermal growth factor (EGF) repeat superfamily proteins, induces angiogenesis by a paracrine mechanism in which EGFL6 is expressed in osteoblastic-like cells but promotes migration and angiogenesis of endothelial cells. Co-immunoprecipitation assays revealed that EGFL6 is secreted in culture medium as a homodimer protein. Using scratch wound healing and transwell assays, we found that conditioned medium containing EGFL6 potentiates SVEC (a simian virus 40-transformed mouse microvascular endothelial cell line) endothelial cell migration. In addition, EGFL6 promotes the endothelial cell tube-like structure formation in Matrigel assays and angiogenesis in a chick embryo chorioallantoic membrane. Furthermore, we show that EGFL6 recombinant protein induces phosphorylation of ERK in SVEC endothelial cells. Inhibition of ERK impaired EGFL6-induced ERK activation and endothelial cell migration. Together, these results demonstrate, for the first time, that osteoblastic-like cells express EGFL6 that is capable of promoting endothelial cell migration and angiogenesis via ERK activation. Thus, the EGLF6 mediates a paracrine mechanism of cross-talk between vascular endothelial cells and osteoblasts and might offer an important new target for the potential treatment of bone diseases, including osteonecrosis, osteoporosis, and fracture healing.

  15. Involvement of the cellular prion protein in the migration of brain microvascular endothelial cells.

    PubMed

    Watanabe, Takuya; Yasutaka, Yuki; Nishioku, Tsuyoshi; Kusakabe, Sae; Futagami, Koujiro; Yamauchi, Atsushi; Kataoka, Yasufumi

    2011-06-01

    The conversion of cellular prion protein (PrP(C)) to its protease-resistant isoform is involved in the pathogenesis of prion disease. Although PrP(C) is a ubiquitous glycoprotein that is present in various cell types, the physiological role of PrP(C) remains obscure. The present study aimed to determine whether PrP(C) mediates migration of brain microvascular endothelial cells. Small interfering RNAs (siRNAs) targeting PrP(C) were transfected into a mouse brain microvascular endothelial cell line (bEND.3 cells). siPrP1, selected among three siRNAs, reduced mRNA and protein levels of PrP(C) in bEND.3 cells. Cellular migration was evaluated with a scratch-wound assay. siPrP1 suppressed migration without significantly affecting cellular proliferation. This study provides the first evidence that PrP(C) may be necessary for brain microvascular endothelial cells to migrate into damaged regions in the brain. This function of PrP(C) in the brain endothelium may be a mechanism by which the neurovascular unit recovers from an injury such as an ischemic insult.

  16. Syndecan-4 regulates the bFGF-induced chemotactic migration of endothelial cells.

    PubMed

    Li, Ran; Wu, Han; Xie, Jun; Li, Guannan; Gu, Rong; Kang, Lina; Wang, Lian; Xu, Biao

    2016-10-01

    Chemotactic migration of endothelial cells (ECs) guided by extracellular attractants is essential for blood vessel formation. Synd4 is a ubiquitous heparin sulfate proteoglycan receptor on the cell surface that has been identified to promote angiogenesis during tissue repair. Here, the role synd4 played in chemotactic migration of ECs was investigated in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were transfected with Lenti-synd4-RNAi or Lenti-null. Cell migration was observed in a 2D-chemotaxis slide with a stable gradient of basic fibroblast growth factor (bFGF) for 18 h using time-lapse microscopy. Synd4 knockdown HUVECs showed reduced mobility compared with the control. In animal studies, Matrigel premixed with bFGF was used to induce the migration of ECs. The cells migrated less distance from the skin in the Matrigel plugs of synd4 null mice compared with the control mice. Then recombinant adenoviruses containing the synd4 gene (Ad-synd4) or null (Ad-null) were constructed to enhance the synd4 expression of migratory cells in Matrigel plugs of wild-type mice. Migratory cells with synd4 overexpression did not invade further in the Matrigel plugs of wild-type mice, but showed a high ability to proliferate.

  17. A quantitative in vitro study of fibroblast and endothelial cell migration in response to serum and wound fluid

    SciTech Connect

    Orredson, S.U.; Knighton, D.R.; Scheuenstuhl, H.; Hunt, T.K.

    1983-09-01

    Chemoattractant activity for irradiated and nonirradiated rabbit skin fibroblast and bovine aortic arch endothelial cells was assayed in rabbit wound fluid and sera using a modification of the agarose well method originally described for polymorphonuclear leukocytes. Both serum and wound fluid contained chemoattractants for fibroblasts and endothelial cells. Fibroblast migration was decreased by 70 to 80% when the serum or wound fluid was heated to 56 degrees C for 30 min while endothelial cell migration was reduced by 50 to 60%. Platelet-poor plasma-derived serum had no directive effect on the migration of either cell type.

  18. ATP increases the migration of microglia across the brain endothelial cell monolayer

    PubMed Central

    Maeda, Tomoji; Inagaki, Manato; Fujita, Yu; Kimoto, Takehiro; Tanabe-Fujimura, Chiaki; Zou, Kun; Liu, Junjun; Liu, Shuyu; Komano, Hiroto

    2016-01-01

    The cerebral microcapillary endothelium, known as the blood–brain barrier (BBB), acts as a barrier between the blood and the interstitial fluid of the brain. The BBB therefore controls the passage of nutrients into the central nervous system (CNS). Microglia show a specific affinity for migration into the CNS, and this migration appears to occur independently of BBB integrity. To study the migration of microglia across the BBB, we developed an in vitro co-culture system of mouse brain endothelial cells (MBECs) and Ra2 microglia using Transwell inserts. We first investigated the influence of microglia or ATP, a microglial chemotactic factor, on MBEC barrier integrity. The addition of microglia or ATP led to the disruption of the MBEC monolayer and significantly decreased barrier function as measured by trans-endothelial electrical resistance (TEER) and electric cell–substrate impedance sensing (ECIS). Furthermore, ATP promoted the migration of microglia but not macrophages across the MBEC monolayer. An inhibitor of matrix metalloproteinases (MMPs) decreased the transmigration of microglia in our system, indicating that MMPs play a role in microglial chemotaxis. We specifically identify a role for microglia-derived MMP-2. In conclusion, we offer evidence that microglia migration across the brain endothelial cell monolayer is increased in the presence of ATP in a manner that involves MMP secretion. PMID:26934979

  19. Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling.

    PubMed

    Williams, Steven P; Odell, Adam F; Karnezis, Tara; Farnsworth, Rae H; Gould, Cathryn M; Li, Jason; Paquet-Fifield, Sophie; Harris, Nicole C; Walter, Anne; Gregory, Julia L; Lamont, Sara F; Liu, Ruofei; Takano, Elena A; Nowell, Cameron J; Bower, Neil I; Resnick, Daniel; Smyth, Gordon K; Coultas, Leigh; Hogan, Benjamin M; Fox, Stephen B; Mueller, Scott N; Simpson, Kaylene J; Achen, Marc G; Stacker, Steven A

    2017-10-03

    Lymphatic vessels constitute a specialized vasculature that is involved in development, cancer, obesity, and immune regulation. The migration of lymphatic endothelial cells (LECs) is critical for vessel growth (lymphangiogenesis) and vessel remodeling, processes that modify the lymphatic network in response to developmental or pathological demands. Using the publicly accessible results of our genome-wide siRNA screen, we characterized the migratome of primary human LECs and identified individual genes and signaling pathways that regulate LEC migration. We compared our data set with mRNA differential expression data from endothelial and stromal cells derived from two in vivo models of lymphatic vessel remodeling, viral infection and contact hypersensitivity-induced inflammation, which identified genes selectively involved in regulating LEC migration and remodeling. We also characterized the top candidates in the LEC migratome in primary blood vascular endothelial cells to identify genes with functions common to lymphatic and blood vascular endothelium. On the basis of these analyses, we showed that LGALS1, which encodes the glycan-binding protein Galectin-1, promoted lymphatic vascular growth in vitro and in vivo and contributed to maintenance of the lymphatic endothelial phenotype. Our results provide insight into the signaling networks that control lymphangiogenesis and lymphatic remodeling and potentially identify therapeutic targets and biomarkers in disease specific to lymphatic or blood vessels. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Knockdown of ezrin suppresses the migration and angiogenesis of human umbilical vein endothelial cells in vitro.

    PubMed

    Zhao, Liang-ping; Huang, Lei; Tian, Xun; Liang, Feng-qi; Wei, Jun-cheng; Zhang, Xian; Li, Sha; Zhang, Qing-hua

    2016-04-01

    Progressive tumor growth is dependent on angiogenesis. The mechanisms by which endothelial cells (ECs) are incorporated to develop new blood vessels are not well understood. Recent studies reveal that the ezrin radixin moesin (ERM) family members are key regulators of cellular activities such as adhesion, morphogenetic change, and migration. We hypothesized that ezrin, one of the ERM family members, may play important roles in ECs organization during angiogenesis, and new vessels formation in preexisting tissues. To test this hypothesis, in this study, we investigated the effects of ezrin gene silencing on the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. HUVECs were transfected with plasmids with ezrin-targeting short hairpin RNA by using the lipofectamine-2000 system. Wound assay in vitro and three-dimensional culture were used to detect the migration and angiogenesis capacity of HUVECs. The morphological changes of transfected cells were observed by confocal and phase contrast microscopy. Our results demonstrated that the decreased expression of ezrin in HUVECs significantly induced the morphogenetic changes and cytoskeletal reorganization of the transfected cells, and also reduced cell migration and angiogenesis capacity in vitro, suggesting that ezrin play an important role in the process of HUVECs migration and angiogenesis.

  1. Microfibrils and fibrillin-1 induce integrin-mediated signaling, proliferation and migration in human endothelial cells.

    PubMed

    Mariko, Boubacar; Ghandour, Zeinab; Raveaud, Stéphanie; Quentin, Mickaël; Usson, Yves; Verdetti, Jean; Huber, Philippe; Kielty, Cay; Faury, Gilles

    2010-11-01

    Microfibrils are macromolecular complexes associated with elastin to form elastic fibers that endow extensible tissues, such as arteries, lungs, and skin, with elasticity property. Fibrillin-1, the main component of microfibrils, is a 350-kDa glycoprotein for which genetic haploinsufficiency in humans can lead to Marfan syndrome, a severe polyfeatured pathology including aortic aneurysms and dissections. Microfibrils and fibrillin-1 fragments mediate adhesion of several cell types, including endothelial cells, while fibrillin-1 additionally triggers lung and mesangial cell migration. However, fibrillin-1-induced intracellular signaling is unknown. We have studied the signaling events induced in human umbilical venous endothelial cells (HUVECs) by aortic microfibrils as well as recombinant fibrillin-1 Arg-Gly-Asp (RGD)-containing fragments PF9 and PF14. Aortic microfibrils and PF14, not PF9, substantially and dose dependently increased HUVEC cytoplasmic and nuclear calcium levels measured using the fluorescent dye Fluo-3. This effect of PF14 was confirmed in bovine aortic endothelial cells. PF14 action in HUVECs was mediated by αvβ3 and α5β1 integrins, phospholipase-C, inosital 1,4,5-trisphosphate, and mobilization of intracellular calcium stores, whereas membrane calcium channels were not or only slightly implicated, as shown in patch-clamp experiments. Finally, PF14 enhanced endothelial cell proliferation and migration. Hence, fibrillin-1 sequences may physiologically activate endothelial cells. Genetic fibrillin-1 deficiency could alter normal endothelial signaling and, since endothelium dysfunction is an important contributor to Marfan syndrome, participate in the arterial anomalies associated with this developmental disease.

  2. Mango extracts and the mango component mangiferin promote endothelial cell migration.

    PubMed

    Daud, Noor Huda; Aung, Cho Sanda; Hewavitharana, Amitha K; Wilkinson, Ashley S; Pierson, Jean-Thomas; Roberts-Thomson, Sarah J; Shaw, P Nicholas; Monteith, Gregory R; Gidley, Michael J; Parat, Marie-Odile

    2010-04-28

    This study tested the hypothesis that mango extracts contain bioactive molecules capable of modulating endothelial cell migration, an essential step in the formation of new blood vessels or angiogenesis. The formation of new blood vessels is an important therapeutic target for diseases such as limb ischemia, coronary infarction or stroke. We examined the effect of mango peel and flesh extracts as well as the individual polyphenolic molecules, mangiferin and quercetin, on bovine aortic cell migration using a modified Boyden chamber assay. Our results show that mangiferin, and extracts rich in mangiferin, increase endothelial cell migration. The dose-effect relationship for various extracts further suggests that this action of mangiferin is modulated by other components present in the extracts. The promigratory effect of mango extracts or mangiferin was unrelated to an effect on cell proliferation, and did not involve a change in the production of matrix metalloprotease-2 or -9 by the endothelial cells. Taken together, these results suggest that mangiferin present in mango extracts may have health promoting effects in diseases related to the impaired formation of new blood vessels.

  3. Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis

    PubMed Central

    Norton, Kerri-Ann; Popel, Aleksander S.

    2016-01-01

    Angiogenesis, the recruitment of new blood vessels, is a critical process for the growth, expansion, and metastatic dissemination of developing tumors. Three types of cells make up the new vasculature: tip cells, which migrate in response to gradients of vascular endothelial growth factor (VEGF), stalk cells, which proliferate and extend the vessels, and phalanx cells, which are quiescent and support the sprout. In this study we examine the contribution of tip cell migration rate and stalk cell proliferation rate on the formation of new vasculature. We calculate several vascular metrics, such as the number of vascular bifurcations per unit volume, vascular segment length per unit volume, and vascular tortuosity. These measurements predict that proliferation rate has a greater effect on the spread and extent of vascular growth compared to migration rate. Together, these findings provide strong implications for designing anti-angiogenic therapies that may differentially target endothelial cell proliferation and migration. Computational models can be used to predict optimal anti-angiogenic therapies in combination with other therapeutics to improve outcome. PMID:27841344

  4. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate.

    PubMed

    Stewart-Hutchinson, Phillip J; Szasz, Taylor P; Jaeger, Emily R; Onken, Michael D; Cooper, John A; Morley, Sharon Celeste

    2017-09-01

    Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL(-/-)) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL(-/-) B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration. © Society for Leukocyte Biology.

  5. Nuclear translocation of phosphorylated STAT3 regulates VEGF-A-induced lymphatic endothelial cell migration and tube formation

    SciTech Connect

    Okazaki, Hideki; Tokumaru, Sho; Hanakawa, Yasushi; Shiraishi, Ken; Shirakata, Yuji; Dai, Xiuju; Yang, Lijun; Tohyama, Mikiko; Hashimoto, Koji; Sayama, Koji

    2011-09-02

    Highlights: {yields} VEGF-A enhanced lymphatic endothelial cell migration and increased tube formation. {yields} VEGF-A treated lymphatic endothelial cell showed activation of STAT3. {yields} Dominant-negative STAT3 inhibited VEGF-A-induced lymphatic endothelial cell migration and tube formation. -- Abstract: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific growth factor that regulates endothelial functions, and signal transducers and activators of transcription (STATs) are known to be important during VEGF receptor signaling. The aim of this study was to determine whether STAT3 regulates VEGF-induced lymphatic endothelial cell (LEC) migration and tube formation. VEGF-A (33 ng/ml) enhanced LEC migration by 2-fold and increased tube length by 25% compared with the control, as analyzed using a Boyden chamber and Matrigel assay, respectively. Western blot analysis and immunostaining revealed that VEGF-A induced the nuclear translocation of phosphorylated STAT3 in LECs, and this translocation was blocked by the transfection of LECs with an adenovirus vector expressing a dominant-negative mutant of STAT3 (Ax-STAT3F). Transfection with Ax-STAT3F also almost completely inhibited VEGF-A-induced LEC migration and tube formation. These results indicate that STAT3 is essential for VEGF-A-induced LEC migration and tube formation and that STAT3 regulates LEC functions.

  6. Acrolein Decreases Endothelial Cell Migration and Insulin Sensitivity Through Induction of let-7a

    PubMed Central

    O'Toole, Timothy E.; Abplanalp, Wesley; Li, Xiaohong; Cooper, Nigel; Conklin, Daniel J.; Haberzettl, Petra; Bhatnagar, Aruni

    2014-01-01

    Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for these effects is unknown. Moreover, the effects of acrolein on microRNA (miRNA) have not been studied. Using AGILENT miRNA microarray high-throughput technology, we found that treatment of cultured human umbilical vein endothelial cells with acrolein led to a significant (>1.5-fold) upregulation of 12, and downregulation of 15, miRNAs. Among the miRNAs upregulated were members of the let-7 family and this upregulation was associated with decreased expression of their protein targets, β3 integrin, Cdc34, and K-Ras. Exposure to acrolein attenuated β3 integrin-dependent migration and reduced Akt phosphorylation in response to insulin. These effects of acrolein on endothelial cell migration and insulin signaling were reversed by expression of a let-7a inhibitor. Also, inhalation exposure of mice to acrolein (1 ppm x 6 h/day x 4 days) upregulated let-7a and led to a decrease in insulin-stimulated Akt phosphorylation in the aorta. These results suggest that acrolein exposure has broad effects on endothelial miRNA repertoire and that attenuation of endothelial cell migration and insulin signaling by acrolein is mediated in part by the upregulation of let-7a. This mechanism may be a significant feature of vascular injury caused by inflammation, oxidized lipids, and exposure to environmental pollutants. PMID:24812010

  7. Wnt5a-mediated non-canonical Wnt signalling regulates human endothelial cell proliferation and migration

    SciTech Connect

    Cheng Chingwen Yeh Juching; Fan Taiping; Smith, Stephen K.; Charnock-Jones, D. Stephen

    2008-01-11

    Cell to cell interaction is one of the key processes effecting angiogenesis and endothelial cell function. Wnt signalling is mediated through cell-cell interaction and is involved in many developmental processes and cellular functions. In this study, we investigated the possible function of Wnt5a and the non-canonical Wnt pathway in human endothelial cells. We found that Wnt5a-mediated non-canonical Wnt signalling regulated endothelial cell proliferation. Blocking this pathway using antibody, siRNA or a down-stream inhibitor led to suppression of endothelial cell proliferation, migration, and monolayer wound closure. We also found that the mRNA level of Wnt5a is up-regulated when endothelial cells are treated with a cocktail of inflammatory cytokines. Our findings suggest non-canonical Wnt signalling plays a role in regulating endothelial cell growth and possibly in angiogenesis.

  8. Effect of beta-escin sodium on endothelial cells proliferation, migration and apoptosis.

    PubMed

    Wang, Xu-Hua; Xu, Bo; Liu, Jing-Tao; Cui, Jing-Rong

    2008-01-01

    beta-Escin, the major active compound in extracts of the horse chestnut Aesculus hippocastanum seed, has shown clinically significant activity in chronic venous insufficiency (CVI). Our previous studies had shown that beta-escin sodium inhibited angiogenesis in chick chorioallantoic membrane (CAM) and in aortic disk assay. In this study, we explored the direct effect of beta-escin sodium on proliferation, migration and apoptosis in human umbilical vein endothelial cells (HUVECs) and ECV304 cells. Sulforhodamine B (SRB) assay showed that beta-escin sodium (10, 20, 40 microg/ml) inhibited endothelial cells (ECs) proliferation dose-dependently. beta-escin sodium also induced ECs apoptosis at 40 microg/ml. Cell migration was evaluated by an improved wound assay: barren spot assay. And the direct effect on cell motility excluding influence of cell proliferation was examined by High Content Screening (HCS, Cellomics) assay. The data indicated that beta-escin sodium suppressed ECs migration and cell motility. Western blot results suggested that beta-escin sodium acts on ECs possibly by increasing expression of thrombospondin-1 (TSP-1), and decreasing expression of PKC-alpha and activation of p44/42 mitogen-activated protein kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK). Our findings give the evidence that beta-escin sodium might have potential anti-angiogenic activity via its direct effects on ECs.

  9. Silymarin released from sterile wafers restores glucose impaired endothelial cell migration.

    PubMed

    Gadad, Pramod C; Matthews, Kerr H; Knott, Rachel M

    2013-11-30

    Reduced oxygen tension combined with high glucose concentration leads to chronic wounds in diabetic patients. Delayed wound healing is due in part to impaired angiogenesis as a result of reduced endothelial cell migration. Topical applications, in the form of sterile lyophilised wafers hold promise for the treatment of chronic diabetic wounds. In this study wafers containing silymarin were prepared using xanthan gum and sterilised with 25 and 40 kGy gamma radiation. The rheological properties of xanthan gels, before and after lyophilisation, were measured and it was concluded that an increased dose of gamma rays (40 kGy) increased the viscosity coefficient and yield stress of silymarin wafers. HPLC analysis indicated that 89-90% of silymarin was retained in the wafers after irradiation. Dermal microvascular cell migration studies in the presence of high glucose and reduced oxygen tension levels, using novel radial migration and wound healing assays developed 'in house', were also undertaken. Silymarin, when formulated as a lyophilised wafer, successfully retained its ability to overcome the high glucose induced reduction in endothelial cell migration. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Arachidonic acid randomizes endothelial cell motion and regulates adhesion and migration.

    PubMed

    Rossen, Ninna Struck; Hansen, Anker Jon; Selhuber-Unkel, Christine; Oddershede, Lene Broeng

    2011-01-01

    Cell adhesion and migration are essential for the evolution, organization, and repair of living organisms. An example of a combination of these processes is the formation of new blood vessels (angiogenesis), which is mediated by a directed migration and adhesion of endothelial cells (ECs). Angiogenesis is an essential part of wound healing and a prerequisite of cancerous tumor growth. We investigated the effect of the amphiphilic compound arachidonic acid (AA) on EC adhesion and migration by combining live cell imaging with biophysical analysis methods. AA significantly influenced both EC adhesion and migration, in either a stimulating or inhibiting fashion depending on AA concentration. The temporal evolution of cell adhesion area was well described by a two-phase model. In the first phase, the spreading dynamics were independent of AA concentration. In the latter phase, the spreading dynamics increased at low AA concentrations and decreased at high AA concentrations. AA also affected EC migration; though the instantaneous speed of individual cells remained independent of AA concentration, the individual cells lost their sense of direction upon addition of AA, thus giving rise to an overall decrease in the collective motion of a confluent EC monolayer into vacant space. Addition of AA also caused ECs to become more elongated, this possibly being related to incorporation of AA in the EC membrane thus mediating a change in the viscosity of the membrane. Hence, AA is a promising non-receptor specific regulator of wound healing and angiogenesis.

  11. Signalling mechanisms of SDF-induced endothelial cell proliferation and migration

    SciTech Connect

    Kuhlmann, Christoph Ruediger Wolfram . E-mail: Chr_Kuhlmann@web.de; Schaefer, Christian Alexander; Reinhold, Lars; Tillmanns, Harald; Erdogan, Ali

    2005-10-07

    The aim of our study was to investigate the effect of stromal-derived factor-1-{alpha} (SDF-1-{alpha}) on endothelial angiogenic effects. SDF-1-{alpha} (50 ng/ml) increased the number of cultured endothelial cells from 33,653 {+-} 1183 to 55,398 {+-} 2741, which significantly reduced by adding the BK{sub Ca}-inhibitor iberiotoxin, or the endothelial nitric oxide synthase-blocker, L-NMMA (n = 24, p < 0.05). Using the 'Fences'-assay a significant increase of HUVEC migration induced by SDF-1-{alpha} was reported, which was blocked by the addition of iberiotoxin or L-NMMA (n = 12, p < 0.05). BK{sub Ca} open-state probability (NPo) was analysed using the patch-clamp technique and NPo was increased from 0.003 (control) to 0.052 (SDF-1-{alpha}; n = 10, p < 0.05). NO synthesis was measured using a cGMP-radioimmunoassay. A significant increase of cGMP levels from 0.952 pmol/mg protein to 2.179 pmol/mg protein was observed, that was abolished by L-NMMA and significantly reduced by iberiotoxin (n = 15, p < 0.05). SDF-1-{alpha} increases endothelial proliferation and migration involving the activation of BK{sub Ca} and an increased production of NO.

  12. Transendothelial migration of effector T cells across inflamed endothelial barriers does not require heparan sulfate proteoglycans.

    PubMed

    Stoler-Barak, Liat; Barzilai, Sagi; Zauberman, Ayelet; Alon, Ronen

    2014-06-01

    Leukocyte diapedesis is a chemotactic multistep process that requires optimal chemoattractant presentation by the endothelial barrier. Recent studies have described a critical role for heparan sulfate glycosaminoglycans (HSGAGs) in the presentation and functions of chemokines essential for lymphocyte interactions with the lymph node vasculature. We wished to test whether HS expression by a prototypic endothelial cell type, i.e. human umbilical vein endothelial cells (HUVECs), is critical for their ability to support neutrophil and lymphocyte adhesion and transendothelial migration (TEM) under shear flow. We found that HUVECs deposit HS GAGs mainly at their basolateral compartments in both their resting and inflamed states. We next inactivated the key enzyme involved in HS biosynthesis, exostosin-1 (Ext1). Silencing Ext1 resulted in a complete loss of HS biosynthesis; nonetheless, TNF-α and IL-1β stimulation of key adhesion molecules and inflammatory chemokines necessary for neutrophil or lymphocyte adhesion and TEM remained intact. Ext1 silencing reduced neutrophil arrest and markedly impaired TEM, consistent with a role of basolateral HS GAGs in directing neutrophil crossing of inflamed endothelial barriers. Strikingly, however, the TEM of effector T cells across identically Ext1-silenced HUVECs remained normal. Importantly, the biosynthesis of the main promigratory chemokines for effector T cells and neutrophils, respectively, CCL2 and CXCL1, and their vesicle distributions were also Ext1 independent. These results suggest that transmigrating neutrophils must respond to chemokines transiently presented by apical and basolateral endothelial HS GAGs. In contrast, effector T cells can integrate chemotactic TEM signals directly from intra-endothelial chemokine stores rather than from externally deposited chemokines.

  13. Promotion of PDGF-induced endothelial cell migration by phosphorylated VASP depends on PKA anchoring via AKAP.

    PubMed

    Zhang, Deling; Ouyang, Jingping; Wang, Nian; Zhang, Yahui; Bie, Jinghua; Zhang, Yemin

    2010-02-01

    Vasodilator-stimulated phosphoprotein (VASP), an important substrate of PKA, plays a critical role in remodeling of actin cytoskeleton and actin-based cell motility. However, how PKA accurately transfers extracellular signals to VASP and then how phosphorylation of VASP regulates endothelial cell migration have not been clearly defined. Protein kinase A anchoring proteins (AKAPs) are considered to regulate intracellular-specific signal targeting of PKA via AKAP-mediated PKA anchoring. Thus, our study investigated the relationship among AKAP anchoring of PKA, PKA activity, and VASP phosphorylation, which is to clarify the exact role of VASP and its upstream regulatory mechanism in PKA-dependent migration. Our results show that chemotactic factor PDGF activated PKA, increased phosphorylation of VASP at Ser157, and enhanced ECV304 endothelial cell migration. However, phosphorylation site-directed mutation of VASP at Ser157 attenuated the chemotactic effect of PDGF on endothelial cells, suggesting phosphorylation of VASP at Ser157 promotes PKA-mediated endothelial cell migration. Furthermore, disrupting PKA anchoring to AKAP or PKA activity significantly attenuated the PKA activity, VASP phosphorylation, and subsequent cell migration. Meanwhile, disrupting PKA anchoring to AKAP abolished PDGF-induced lamellipodia formation and special VASP accumulation at leading edge of lamellipodia. These results indicate that PKA activation and PKA-mediated substrate responses in VASP phosphorylation and localization depend on PKA anchoring via AKAP in PDGF-induced endothelial cell migration. In conclusion, AKAP anchoring of PKA is an essential upstream event in regulation of PKA-mediated VASP phosphorylation and subsequent endothelial cell migration, which contributes to explore new methods for controlling endothelial cell migration related diseases and angiogenesis.

  14. Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells.

    PubMed

    Kuang, Chun-yan; Yu, Yang; Wang, Kui; Qian, De-hui; Den, Meng-yang; Huang, Lan

    2012-02-10

    Endothelial progenitor cells (EPCs) play an important role in accelerating endothelial repair after vascular injury. The proliferation and migration of EPCs is a critical first step in restoring endothelial. However, mechanisms for modulating EPC proliferation and migration are still being elucidated. Our previous study found that transient receptor potential canonical-1 (TRPC1) is involved in regulating store-operated Ca(2+) entry in EPCs through stromal interaction molecule 1. Therefore, in the present study, we sought to further investigate the regulation of proliferation and migration of EPCs by TRPC1. We found that the silencing of TRPC1 by 2 different RNA interference methods suppressed the proliferation and migration of EPCs. In addition, knockdown of TRPC1 significantly reduced of the amplitude of store-operated Ca(2+) entry and caused arrest of the EPC cell cycle in G1 phase. Analysis of the expression of 84 cell cycle genes by microarray showed that 9 genes were upregulated and 4 were downregulated by >2-fold in EPCs following TRPC1 silencing. The genes with expression changes were Ak1, Brca2, Camk2b, p21, Ddit3, Inha, Slfn1, Mdm2, Prm1, Bcl2, Mki67, Pmp22, and Ppp2r3a. Finally, we found that a Schlafen 1-blocking peptide partially reversed the abnormal cell cycle distribution and proliferation induced by TRPC1 knockdown, suggesting that Schlafen 1 is downstream of TRPC1 silencing in regulating EPC proliferation. In summary, these findings provide a new mechanism for modulating the biological properties of EPCs and suggest that TRPC1 may be a new target for inducing vascular repair by EPCs.

  15. Knockdown of Transient Receptor Potential Canonical-1 Reduces the Proliferation and Migration of Endothelial Progenitor Cells

    PubMed Central

    Kuang, Chun-yan; Yu, Yang; Wang, Kui; Qian, De-hui; Den, Meng-yang

    2012-01-01

    Endothelial progenitor cells (EPCs) play an important role in accelerating endothelial repair after vascular injury. The proliferation and migration of EPCs is a critical first step in restoring endothelial. However, mechanisms for modulating EPC proliferation and migration are still being elucidated. Our previous study found that transient receptor potential canonical-1 (TRPC1) is involved in regulating store-operated Ca2+ entry in EPCs through stromal interaction molecule 1. Therefore, in the present study, we sought to further investigate the regulation of proliferation and migration of EPCs by TRPC1. We found that the silencing of TRPC1 by 2 different RNA interference methods suppressed the proliferation and migration of EPCs. In addition, knockdown of TRPC1 significantly reduced of the amplitude of store-operated Ca2+ entry and caused arrest of the EPC cell cycle in G1 phase. Analysis of the expression of 84 cell cycle genes by microarray showed that 9 genes were upregulated and 4 were downregulated by >2-fold in EPCs following TRPC1 silencing. The genes with expression changes were Ak1, Brca2, Camk2b, p21, Ddit3, Inha, Slfn1, Mdm2, Prm1, Bcl2, Mki67, Pmp22, and Ppp2r3a. Finally, we found that a Schlafen 1-blocking peptide partially reversed the abnormal cell cycle distribution and proliferation induced by TRPC1 knockdown, suggesting that Schlafen 1 is downstream of TRPC1 silencing in regulating EPC proliferation. In summary, these findings provide a new mechanism for modulating the biological properties of EPCs and suggest that TRPC1 may be a new target for inducing vascular repair by EPCs. PMID:21361857

  16. Modulation of endothelial cell migration by ER stress and insulin resistance: a role during maternal obesity?

    PubMed

    Sáez, Pablo J; Villalobos-Labra, Roberto; Westermeier, Francisco; Sobrevia, Luis; Farías-Jofré, Marcelo

    2014-01-01

    Adverse microenvironmental stimuli can trigger the endoplasmic reticulum (ER) stress pathway, which initiates the unfolded protein response (UPR), to restore protein-folding homeostasis. Several studies show induction of ER stress during obesity. Chronic UPR has been linked to different mechanisms of disease in obese and diabetic individuals, including insulin resistance (IR) and impaired angiogenesis. Endothelial cell (EC) migration is an initial step for angiogenesis, which is associated with remodeling of existing blood vessels. EC migration occurs according to the leader-follower model, involving coordinated processes of chemotaxis, haptotaxis, and mechanotaxis. Thus, a fine-tuning of EC migration is necessary to provide the right timing to form the required vessels during angiogenesis. ER stress modulates EC migration at different levels, usually impairing migration and angiogenesis, although different effects may be observed depending on the tissue and/or microenvironment. In the context of pregnancy, maternal obesity (MO) induces IR in the offspring. Interestingly, several proteins associated with obesity-induced IR are also involved in EC migration, providing a potential link with the ER stress-dependent alterations observed in obese individuals. Different signaling cascades that converge on cytoskeleton regulation directly impact EC migration, including the Akt and/or RhoA pathways. In addition, ER is the main intracellular reservoir for Ca(2+), which plays a pivotal role during EC migration. Therefore, ER stress-related alterations in Ca(2+) signaling or Ca(2+) levels might also produce distorted EC migration. However, the above findings have been studied in the context of adult obesity, and no information has been reported regarding the effect of MO on fetal EC migration. Here we summarize the state of knowledge about the possible mechanisms by which ER stress and IR might impact EC migration and angiogenesis in fetal endothelium exposed to MO during

  17. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    SciTech Connect

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  18. SIRT1 mediates Sphk1/S1P-induced proliferation and migration of endothelial cells.

    PubMed

    Gao, Zhan; Wang, Hua; Xiao, Feng-Jun; Shi, Xue-Feng; Zhang, Yi-Kun; Xu, Qin Qin; Zhang, Xiao-Yan; Ha, Xiao-Qin; Wang, Li-Sheng

    2016-05-01

    Angiogenesis is one of the most important components of embryonic organ formation and vessel growth after birth. Sphingosine kinase 1 (Sphk1) and S1P has been confirmed to participate in various cell signaling pathways and physiological processes including neovascularisation. However, the mechanisms that Sphk1/S1P regulates neovascularisation remain unclear. In this study, we elucidated that Sphk1/S1P upregulates sirtuin 1 (SIRT1), a NAD+ dependent deacetylases protease which exerts multiple cellular functions, to regulate the proliferation and migration of endothelial cells. By using CCK8 and Transwell assays, we demonstrated that Sphk1 and SIRT1 knockdown could significantly decrease proliferation and migration of HUVEC cells. Sphk1 inhibition results in SIRT1 downregulation which could be reversed by exogenous S1P in HUVEC cells. Treatment of HUVECs with S1P reverses the impaired proliferation and migration caused by SIRT1 knockdown. Furthermore, Sphk1 knockdown inhibits the phosphorylation of P38 MAPK, ERK and AKT. Treatment of HUVECs with PD98059, SB203580 and Wortmannin, which are the inhibitors of ERK, P38 MAPK and AKT respectively, resulted in decreased SIRT1 expression and reduced migration of HUVEC cells. Thus, we conclude that Sphk1/S1P induces SIRT1 upregulation through multiple pathways including P38 MAPK, ERK and AKT signals. This is the first report to disclose the existence and roles of Sphk1/S1P/SIRT1 axis in regulation of endothelial cell proliferation and migration, which may provide a theoretical basis for angiogenesis.

  19. TNFα Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB

    PubMed Central

    Prisco, Anthony R.; Hoffmann, Brian R.; Kaczorowski, Catherine C.; McDermott-Roe, Chris; Stodola, Timothy J.; Exner, Eric C.; Greene, Andrew S.

    2016-01-01

    Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a co-culture assay where TNFα treated EPCs were tracked while migrating towards vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. PMID:26867147

  20. Nature's rheologists: Lymphatic endothelial cells control migration in response to shear stress

    NASA Astrophysics Data System (ADS)

    Fuller, Gerald; Dunn, Alex; Surya, Vinay

    2015-03-01

    Endothelial cells (ECs) line the inner surface of blood and lymphatic vessels and are sensitive to fluid flow as part of their physiological function. EC organization, migration and vessel development are profoundly influenced by shear stresses, with important implications in cardiovascular disease and tumor metastasis. How ECs sense fluid flow is a central and unanswered question in cardiovascular biology. We developed a high-throughput live-cell flow chamber that models the gradients in wall shear stress experienced by ECs in vivo. Live-cell imaging allows us to probe cellular responses to flow, most notably EC migration, which has a key role in vessel remodeling. We find that most EC subtypes, including ECs from the venous, arterial, and microvascular systems, migrate in the flow direction. In contrast, human lymphatic microvascular ECs (hLMVECs) migrate against flow and up spatial gradients in wall shear stress. Further experiments reveal that hLMVECs are sensitive to the magnitude, direction, and the local spatial gradients in wall shear stress. Lastly, recent efforts have aimed to link this directional migration to spatial gradients in cell-mediated small molecule emission that may be linked to the gradient in wall shear stress.

  1. Advanced Glycation Endproducts Impair Endothelial Progenitor Cell Migration and Homing via Syndecan 4 Shedding.

    PubMed

    Xie, Jun; Li, Ran; Wu, Han; Chen, Jianzhou; Li, Guannan; Chen, Qinhua; Wei, Zhonghai; He, Guixin; Wang, Lian; Ferro, Albert; Xu, Biao

    2017-02-01

    Endothelial progenitor cells (EPCs) are a subtype of bone marrow-derived progenitor cells. Stromal cell-derived factor 1 (SDF-1)-mediated EPC mobilization from bone marrow to areas of ischemia plays an important role in angiogenesis. Previous studies have reported that advanced glycation endproducts (AGEs), which are important mediators of diabetes-related vascular pathology, may impair EPC migration and homing, but the mechanism is unclear. Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan receptor on the cell surface, involved in SDF-1-dependent cell migration. The extracellular domain of synd4 (ext-synd4) is shed in the context of acute inflammation, but the shedding of ext-synd4 in response to AGEs is undefined. Here we investigated changes in ext-synd4 on EPCs in response to AGEs, focusing on the influence of impaired synd4 signaling on EPC migration and homing. We found decreased full length and increased residue of synd4 in cells incubated with AGEs, with concomitant increase in the soluble fragment of ext-synd4 in the cell medium. EPCs from patients with type 2 diabetes expressed less ext-synd4 as assessed by Western blotting. Flow cytometry analysis showed less ext-synd4 on circulating CD34(+) peripheral blood mononuclear cells, of which EPCs form a subgroup. We then explored the role of synd4 in EPC migration and homing. Impaired migration of synd4-deficient EPCs was observed by a 2D-chemotaxis slide. Furthermore, poor homing of synd4-/- EPCs was observed in a mouse model of lower limb ischemia. This study demonstrates that the shedding of synd4 from EPCs plays a key role in AGE-mediated dysfunction of EPC migration and homing. Stem Cells 2017;35:522-531.

  2. Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration

    PubMed Central

    Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain

    2016-01-01

    Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro. Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors. PMID:27833916

  3. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel.

    PubMed

    Jeong, Gi Seok; Kwon, Gu Han; Kang, Ah Ran; Jung, Bo Young; Park, Yongdoo; Chung, Seok; Lee, Sang-Hoon

    2011-08-01

    Cell migration through the extracellular matrix (ECM) is one of the key features for physiological and pathological processes such as angiogenesis, cancer metastasis, and wound healing. In particular, the quantitative assay of endothelial cell migration under the well-defined three dimensional (3D) microenvironment is important to analyze the angiogenesis mechanism. In this study, we report a microfluidic assay of endothelial cell sprouting and migration into an interpenetrating polymer semi-network HA-Collagen (SIPNs CH) hydrogel as ECM providing an enhanced in vivo mimicking 3D microenvironment to cells. The microfluidic chip could provide a well-controlled gradient of growth factor to cells, whereas the hydrogel could mimic a well-defined 3D microenvironment in vivo. (In addition/Furthermore, the microfluidic chip gives a well-controlled gradient of growth factor to cells) For this reason, three types of hydrogel, composed of semi-interpenetrating networks of collagen and hyaluronic acid were prepared, and firstly we proved the role of the hydrogel in endothelial cell migration. The diffusion property and swelling ratio of the hydrogel were characterized. It modulated the migration of endothelial cells in quantified manner, also being influenced by additional synthesis of Matrix metalloproteinase(MMP)-sensitive remodeling peptides and Arginine-glycine-lycinee (RGD) cell adhesion peptides. We successfully established a novel cell migration platform by changing major determinants such as ECM material under biochemical synthesis and under growth factor gradients in a microfluidic manner.

  4. ER Alpha Rapid Signaling Is Required for Estrogen Induced Proliferation and Migration of Vascular Endothelial Cells

    PubMed Central

    Lu, Qing; Schnitzler, Gavin R.; Ueda, Kazutaka; Iyer, Lakshmanan K.; Diomede, Olga I.; Andrade, Tiffany; Karas, Richard H.

    2016-01-01

    Estrogen promotes the proliferation and migration of vascular endothelial cells (ECs), which likely underlies its ability to accelerate re-endothelialization and reduce adverse remodeling after vascular injury. In previous studies, we have shown that the protective effects of E2 (the active endogenous form of estrogen) in vascular injury require the estrogen receptor alpha (ERα). ERα transduces the effects of estrogen via a classical DNA binding, “genomic” signaling pathway and via a more recently-described “rapid” signaling pathway that is mediated by a subset of ERα localized to the cell membrane. However, which of these pathways mediates the effects of estrogen on endothelial cells is poorly understood. Here we identify a triple point mutant version of ERα (KRR ERα) that is specifically defective in rapid signaling, but is competent to regulate transcription through the “genomic” pathway. We find that in ECs expressing wild type ERα, E2 regulates many genes involved in cell migration and proliferation, promotes EC migration and proliferation, and also blocks the adhesion of monocytes to ECs. ECs expressing KRR mutant ERα, however, lack all of these responses. These observations establish KRR ERα as a novel tool that could greatly facilitate future studies into the vascular and non-vascular functions of ERα rapid signaling. Further, they support that rapid signaling through ERα is essential for many of the transcriptional and physiological responses of ECs to E2, and that ERα rapid signaling in ECs, in vivo, may be critical for the vasculoprotective and anti-inflammatory effects of estrogen. PMID:27035664

  5. Cigarette smoke exposure impairs VEGF-induced endothelial cell migration: role of NO and reactive oxygen species.

    PubMed

    Michaud, Sophie Elise; Dussault, Sylvie; Groleau, Jessika; Haddad, Paola; Rivard, Alain

    2006-08-01

    Endothelial dysfunction is one of the earliest pathological effects of cigarette smoking. Vascular endothelial growth factor (VEGF) has been shown to be an important regulator of endothelial healing and growth. Accordingly, we tested the hypothesis that cigarette smoke exposure impairs VEGF actions in endothelial cells. In human umbilical vein endothelial cells (HUVECs), cigarette smoke extracts (CSE) inhibited VEGF-induced tube formation in the matrigel assay. CSE did not affect HUVECs proliferation, but significantly reduced cellular migration in response to VEGF. This impaired migratory activity was associated with a reduced expression of alpha(v)beta(3), alpha(v)beta(5), alpha(5)beta(1) and alpha(2)beta(1) integrins. The Akt/eNOS/NO pathway has been shown to be important for VEGF-induced endothelial cell migration. We found that CSE inhibited Akt/eNOS phosphorylation and NO release in VEGF-stimulated HUVECs. This was associated with an increased generation of reactive oxygen species (ROS). Importantly, in HUVECs exposed to CSE, treatment with antioxidants (NAC, vitamin C) reduced ROS formation and rescued VEGF-induced NO release, cellular migration and tube formation. Moreover, treatment with NO donors (SNAP, SNP) or a cGMP analog (8-Br-cGMP) rescued integrin expression, cellular migration and tube formation in endothelial cells exposed to CSE. (1) Cigarette smoke exposure impairs VEGF-induced endothelial cell migration and tube formation. (2) The mechanism involves increased generation of ROS, decreased expression of surface integrins together with a blockade of the Akt/eNOS/NO pathway. (3) These findings could contribute to explain the negative effect of cigarette smoking on endothelial function and vessel growth.

  6. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration.

    PubMed

    Kiosses, W B; Shattil, S J; Pampori, N; Schwartz, M A

    2001-03-01

    Integrin alphavbeta3 has an important role in the proliferation, survival, invasion and migration of vascular endothelial cells. Like other integrins, alphavbeta3 can exist in different functional states with respect to ligand binding. These changes involve both affinity modulation, by which conformational changes in the integrin heterodimer govern affinity for individual extracellular matrix proteins, and avidity modulation, by which changes in lateral mobility and integrin clustering affect the binding of cells to multivalent matrices. Here we have used an engineered monoclonal antibody Fab (antigen-binding fragment) named WOW-1, which binds to activated integrins alphavbeta3 and alphavbeta5 from several species, to investigate the role of alphavbeta3 activation in endothelial cell behaviour. Because WOW-1 is monovalent, it is insensitive to changes in integrin clustering and therefore reports only changes in affinity. WOW-1 contains an RGD tract in its variable region and binds only to unoccupied, high-affinity integrins. By using WOW-1, we have identified the selective recruitment of high-affinity integrins as a mechanism by which lamellipodia promote formation of new adhesions at the leading edge in cell migration.

  7. Endothelial cell activation promotes foam cell formation by monocytes following transendothelial migration in an in vitro model.

    PubMed

    Westhorpe, Clare L V; Dufour, Eric M; Maisa, Anna; Jaworowski, Anthony; Crowe, Suzanne M; Muller, William A

    2012-10-01

    Foam cells are a pathological feature present at all stages of atherosclerosis. Foam cells develop from monocytes that enter the nascent atheroma and subsequently ingest modified low density lipoproteins (LDL). The regulation of this process has previously been studied in vitro using cultured macrophage fed modified LDL. We used our existing in vitro model of transendothelial migration (TEM) to study this process in a more physiologically relevant setting. In our model, monocytes undergo TEM across a primary endothelial monolayer into an underlying three-dimensional collagen matrix in the presence of 20% human serum. Foam cells were detected by Oil Red O staining for intracellular lipid droplets. We demonstrate that sub-endothelial monocytes can develop into foam cells within 48 h of TEM across TNF-α activated endothelium, in the absence of additional lipids. Our data indicate a role for both monocyte-endothelial interactions and soluble factors in the regulation of foam cell development, including oxidation of LDL in situ from lipid present in culture medium following TNF-α stimulation of the endothelial cells. Our study provides a simple model for investigating foam cell development in vitro that mimics cell migration in vivo, and demonstrates the critical role of inflammation in regulating early atherogenic events.

  8. A Unique Role for Endothelial Cell Kinesin Light Chain 1, Variant 1 in Leukocyte Transendothelial Migration

    PubMed Central

    Cyrus, Bita F.; Muller, William A.

    2017-01-01

    A reservoir of parajunctional membrane in endothelial cells, the lateral border recycling compartment (LBRC), is critical for transendothelial migration (TEM). We have previously shown that targeted recycling of the LBRC to the site of TEM requires microtubules and a kinesin molecular motor. However, the identity of the kinesin and mechanism of cargo binding were not known. We show that microinjection of endothelial cells with a monoclonal antibody specific for kinesin-1 significantly blocked LBRC-targeted recycling and TEM. In complementary experiments, knocking down KIF5B, a ubiquitous kinesin-1 isoform, in endothelial cells significantly decreased targeted recycling of the LBRC and leukocyte TEM. Kinesin heavy chains move cargo along microtubules by one of many kinesin light chains (KLCs), which directly bind the cargo. Knocking down KLC 1 isoform variant 1 (KLC1C) significantly decreased LBRC-targeted recycling and TEM, whereas knocking down other isoforms of KLC1 had no effect. Re-expression of KLC1C resistant to the knockdown shRNA restored targeted recycling and TEM. Thus kinesin-1 and KLC1C are specifically required for targeted recycling and TEM. These data suggest that of the many potential combinations of the 45 kinesin family members and multiple associated light chains, KLC1C links the LBRC to kinesin-1 (KIF5B) during targeted recycling and TEM. Thus, KLC1C can potentially be used as a target for anti-inflammatory therapy. PMID:26994343

  9. Soluble tissue factor has unique angiogenic activities that selectively promote migration and differentiation but not proliferation of endothelial cells

    SciTech Connect

    He Yingbo; Chang Guodong; Zhan Shunli; Song Xiaomin; Wang Xiaofeng; Luo Yongzhang

    2008-06-06

    The level of circulating tissue factor (TF) is up-regulated in human angiogenesis-related malignancies. However, whether circulating TF has angiogenic activities has not been determined. Soluble TF (sTF) is the main domain of circulating TF. Here, using cell migration, wound healing, and tubule formation assays, human recombinant sTF was found to significantly promote the migration and differentiation of endothelial cells. The stress fiber formation and rearrangement induced by sTF observed through immunofluorescence microscope may be responsible for the stimulatory migration effect of sTF. Nevertheless, sTF had no effects on endothelial cell proliferation. Interestingly, sTF can be internalized by endothelial cells, which implies a novel mechanism for sTF in angiogenesis. These results suggest that sTF has unique angiogenic activities and may serve as a potential therapeutic target to treat diseases associated with angiogenesis such as cancer and rheumatoid arthritis.

  10. Rac1 and Aurora A regulate MCAK to polarize microtubule growth in migrating endothelial cells

    PubMed Central

    Braun, Alexander; Dang, Kyvan; Buslig, Felinah; Baird, Michelle A.; Davidson, Michael W.

    2014-01-01

    Endothelial cells (ECs) migrate directionally during angiogenesis and wound healing by polarizing to extracellular cues to guide directional movement. EC polarization is controlled by microtubule (MT) growth dynamics, which are regulated by MT-associated proteins (MAPs) that alter MT stability. Mitotic centromere-associated kinesin (MCAK) is a MAP that promotes MT disassembly within the mitotic spindle, yet its function in regulating MT dynamics to promote EC polarity and migration has not been investigated. We used high-resolution fluorescence microscopy coupled with computational image analysis to elucidate the role of MCAK in regulating MT growth dynamics, morphology, and directional migration of ECs. Our results show that MCAK-mediated depolymerization of MTs is specifically targeted to the trailing edge of polarized wound-edge ECs. Regulation of MCAK function is dependent on Aurora A kinase, which is regionally enhanced by signaling from the small guanosine triphosphatase, Rac1. Thus, a Rac1–Aurora A–MCAK signaling pathway mediates EC polarization and directional migration by promoting regional differences in MT dynamics in the leading and trailing cell edges. PMID:25002679

  11. Activated T cell trans-endothelial migration relies on myosin-IIA contractility for squeezing the cell nucleus through endothelial cell barriers.

    PubMed

    Jacobelli, Jordan; Estin Matthews, Miriam; Chen, Stephanie; Krummel, Matthew F

    2013-01-01

    Following activation, T cells are released from lymph nodes to traffic via the blood to effector sites. The re-entry of these activated T cells into tissues represents a critical step for them to carry out local effector functions. Here we have assessed defects in effector T cells that are acutely depleted in Myosin-IIA (MyoIIA) and show a T cell intrinsic requirement for this motor to facilitate the diapedesis step of extravasation. We show that MyoIIA accumulates at the rear of T cells undergoing trans-endothelial migration. T cells can extend protrusions and project a substantial portion of their cytoplasm through the endothelial wall in the absence of MyoIIA. However, this motor protein plays a crucial role in allowing T cells to complete the movement of their relatively rigid nucleus through the endothelial junctions. In vivo, this defect manifests as poor entry into lymph nodes, tumors and into the spinal cord, during tissue-specific autoimmunity, but not the spleen. This suggests that therapeutic targeting of this molecule may allow for differential attenuation of tissue-specific inflammatory responses.

  12. Estradiol induces endothelial cell migration and proliferation through estrogen receptor-enhanced RhoA/ROCK pathway.

    PubMed

    Oviedo, Pilar J; Sobrino, Agua; Laguna-Fernandez, Andrés; Novella, Susana; Tarín, Juan J; García-Pérez, Miguel-Angel; Sanchís, Juan; Cano, Antonio; Hermenegildo, Carlos

    2011-03-30

    Migration and proliferation of endothelial cells are involved in re-endothelialization and angiogenesis, two important cardiovascular processes that are increased in response to estrogens. RhoA, a small GTPase which controls multiple cellular processes, is involved in the control of cell migration and proliferation. Our aim was to study the role of RhoA on estradiol-induced migration and proliferation and its dependence on estrogen receptors activity. Human umbilical vein endothelial cells were stimulated with estradiol, in the presence or absence of ICI 182780 (estrogen receptors antagonist) and Y-27632 (Rho kinase inhibitor). Estradiol increased Rho GEF-1 gene expression and RhoA (gene and protein expression and activity) in an estrogen receptor-dependent manner. Cell migration, stress fiber formation and cell proliferation were increased in response to estradiol and were also dependent on the estrogen receptors and RhoA activation. Estradiol decreased p27 levels, and significantly raised the expression of cyclins and CDK. These effects were counteracted by the use of either ICI 182780 or Y-27632. In conclusion, estradiol enhances the RhoA/ROCK pathway and increases cell cycle-related protein expression by acting through estrogen receptors. This results in an enhanced migration and proliferation of endothelial cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. [Slfn1 inhibited the migration of endothelial progenitor cells in vitro].

    PubMed

    Zhang, Lu; Kuang, Chunyan; Yang, Tianhe; Wu, Qiang; Zhang, Yang

    2014-11-01

    To explore the effect of Schlafen 1 (Slfn1) on the migration of endothelial progenitor cells (EPCs). Rat bone marrow derived EPCs were isolated and cultured. Ad-Slfn1, ShRNA-Slfn1, ShRNA-control and Ad-control were transfected into EPCs respectively. The mRNA expression of Slfn1 and Cyclin D1 was examined by reverse transcriptase-PCR, and their protein expression was detected by Western blot. The migration of EPCs was examined by a modified Boyden chamber assay.EPCs cell cycle was determined using flow cytometry analysis. Forty-eight hours after ShRNA-Slfn1 transfection, the mRNA and protein expression of Slfn1 in EPCs was significantly down-regulated compared to ShRNA-control EPCs (P < 0.05). Transfection of Ad-Slfn1 reversed these changes.Overexpression of Slfn1 reduced the migration capacity of EPCs while the silencing of Slfn1 by shRNA-Slfn1 increased the migration capacity of EPCs.In addition, cell cycle was arrested at G1 phase in Slfn1 overexpression group while transfection of shRNA-Slfn1 reversed these responses.Interestingly, the mRNA and protein expression of Cyclin D1 was significantly up-regulated after shRNA-Slfn1 transfection compared to ShRNA-control group (all P < 0.05), but overexpression of Slfn1 reversed these results, suggesting Cyclin D1 was involved in regulating EPCs cell cycle via Slfn1 signaling. Slfn1 could reduce the migration capacity of EPCs via Cyclin D1 pathway.

  14. Dihydroartemisinin inhibits vascular endothelial growth factor-induced endothelial cell migration by a p38 mitogen-activated protein kinase-independent pathway.

    PubMed

    Guo, Ling; Dong, Fengyun; Hou, Yinglong; Cai, Weidong; Zhou, Xia; Huang, Ai-Ling; Yang, Min; Allen, Thaddeus D; Liu, Ju

    2014-12-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has been demonstrated to possess a strong antiangiogenic activity. However, the molecular mechanisms underlying this effect remain unclear. Endothelial cell (EC) migration is an essential component of angiogenesis, and the p38 mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in the regulation of migration induced by vascular endothelial growth factor (VEGF). The aim of the present study was to investigate the effects of DHA on EC migration and the p38 MAPK signaling pathway. Human umbilical vein ECs (HUVECs) were treated with DHA and VEGF-induced migration was analyzed. The activation of p38 MAPK was detected by western blot analysis, and the migration assays were performed with a p38-specific inhibitor, SB203850. It was revealed that 20 μM DHA significantly reduced EC migration in the transwell migration assay, wound healing assay and electrical cell-substrate impedance sensing real-time analysis. However, DHA did not affect p38 MAPK phosphorylation or expression. In the absence or presence of SB203850, DHA induced a similar proportional reduction of EC migration in the three migration assays. Therefore, the present study demonstrated that DHA inhibits VEGF-induced EC migration via a p38 MAPK-independent pathway.

  15. A Gestational Profile of Placental Exosomes in Maternal Plasma and Their Effects on Endothelial Cell Migration

    PubMed Central

    Salomon, Carlos; Torres, Maria Jose; Kobayashi, Miharu; Scholz-Romero, Katherin; Sobrevia, Luis; Dobierzewska, Aneta; Illanes, Sebastian E.; Mitchell, Murray D.; Rice, Gregory E.

    2014-01-01

    Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group) were obtained from non-pregnant and pregnant women in the first (FT, 6–12 weeks), second (ST, 22–24 weeks) and third (TT, 32–38 weeks) trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP), respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte). Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001). During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001). Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction. PMID:24905832

  16. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.

    PubMed

    Salomon, Carlos; Torres, Maria Jose; Kobayashi, Miharu; Scholz-Romero, Katherin; Sobrevia, Luis; Dobierzewska, Aneta; Illanes, Sebastian E; Mitchell, Murray D; Rice, Gregory E

    2014-01-01

    Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group) were obtained from non-pregnant and pregnant women in the first (FT, 6-12 weeks), second (ST, 22-24 weeks) and third (TT, 32-38 weeks) trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP), respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte). Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001). During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001). Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction.

  17. Cell proliferation and migration are modulated by Cdk-1-phosphorylated endothelial-monocyte activating polypeptide II.

    PubMed

    Schwarz, Margaret A; Thornton, Janet; Xu, Haiming; Awasthi, Niranjan; Schwarz, Roderich E

    2012-01-01

    Endothelial-Monocyte Activating Polypeptide (EMAP II) is a secreted protein with well-established anti-angiogenic activities. Intracellular EMAP II expression is increased during fetal development at epithelial/mesenchymal boundaries and in pathophysiologic fibroproliferative cells of bronchopulmonary dysplasia, emphysema, and scar fibroblast tissue following myocardial ischemia. Precise function and regulation of intracellular EMAP II, however, has not been explored to date. Here we show that high intracellular EMAP II suppresses cellular proliferation by slowing progression through the G2M cell cycle transition in epithelium and fibroblast. Furthermore, EMAP II binds to and is phosphorylated by Cdk1, and exhibits nuclear/cytoplasmic partitioning, with only nuclear EMAP II being phosphorylated. We observed that extracellular secreted EMAP II induces endothelial cell apoptosis, where as excess intracellular EMAP II facilitates epithelial and fibroblast cells migration. Our findings suggest that EMAP II has specific intracellular effects, and that this intracellular function appears to antagonize its extracellular anti-angiogenic effects during fetal development and pulmonary disease progression.

  18. Formation of a PKCζ/β-catenin complex in endothelial cells promotes angiopoietin-1–induced collective directional migration and angiogenic sprouting

    PubMed Central

    Oubaha, Malika; Lin, Michelle I.; Margaron, Yoran; Filion, Dominic; Price, Emily N.; Zon, Leonard I.; Côté, Jean-François

    2012-01-01

    Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and β-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and β-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1–induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and β-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis. PMID:22936663

  19. Stimulated migration and penetration of vascular endothelial cells into poly (L-lactic acid) scaffolds under flow conditions.

    PubMed

    Koo, Min-Ah; Kang, Jae Kyeong; Lee, Mi Hee; Seo, Hyok Jin; Kwon, Byeong-Ju; You, Kyung Eun; Kim, Min Sung; Kim, Dohyun; Park, Jong-Chul

    2014-01-01

    The initial procedure of the development of engineered tissues is cell seeding into three-dimensional polymer scaffolds. However, it is hard to make the cells invade into scaffold due to the characteristic of pore and material. Electrospun poly (L-lactic acid) scaffold and flow perfusion system were used to overcome these seeding problems. Before starting the experiment, we set up the parallel plate chamber system to observe endothelial cell migration under flow condition. In individual cell migration model, human umbilical endothelial cells started to migrate in the direction of flow at 8 dyne/cm(2) and we observed the cytoskeleton alignment at 8 dyne/cm(2). This study has demonstrated the possibility to evaluate and analyze cell migration using the parallel plate chamber system and we may predict in vivo cell migration under flow condition based on these results. Also the flow perfusion system was established for the effective cell seeding into at three dimensional scaffolds. Moreover, shear stress induced by flow can enhance cell migration into PLLA scaffold that is in the form of cotton. Result indicated that cell penetration was achieved under flow condition better and more than under static condition throughout the matrix.

  20. Phentolamine inhibits angiogenesis in vitro: Suppression of proliferation migration and differentiation of human endothelial cells.

    PubMed

    Pan, Liangli; Liu, Chenyang; Kong, Yanan; Piao, Zhengguo; Cheng, Biao

    2016-06-16

    It is widely known that the β-adrenergic receptor (AR) blocker (propranolol) inhibits human endothelial cell (EC) angiogenesis in vitro, but how the α-AR antagonist (phentolamine) affects human EC angiogenesis has not yet been studied. Here, we show for the first time that both human dermal microvascular ECs (HDMECs) and human brain microvascular ECs (HBMECs) express α-ARs. Moreover, our results indicate that phentolamine inhibits the proliferation, migration, and tubulogenesis of HDMECs and HBMECs. Finally, VEGFR-2 and Ang1/2 expression of HDMECs was suppressed by phentolamine. Together, these results indicate that phentolamine impairs several critical events of neovascularization, and α-ARs, as well as the VEGF/VEGFR-2 and Ang/Tie-2 signaling pathways, may be involved in these processes. Our results suggest a novel therapeutic strategy for the use of α-blockers in the treatment of human angiogenesis-dependent diseases.

  1. Endothelial Myocyte Enhancer Factor 2c Inhibits Migration of Smooth Muscle Cells Through Fenestrations in the Internal Elastic Lamina.

    PubMed

    Lu, Yao Wei; Lowery, Anthony M; Sun, Li-Yan; Singer, Harold A; Dai, Guohao; Adam, Alejandro P; Vincent, Peter A; Schwarz, John J

    2017-07-01

    Laminar flow activates myocyte enhancer factor 2 (MEF2) transcription factors in vitro to induce expression of atheroprotective genes in the endothelium. Here we sought to establish the role of Mef2c in the vascular endothelium in vivo. To study endothelial Mef2c, we generated endothelial-specific deletion of Mef2c using Tie2-Cre or Cdh5-Cre-ER(T2) and examined aortas and carotid arteries by en face immunofluorescence. We observed enhanced actin stress fiber formation in the Mef2c-deleted thoracic aortic endothelium (laminar flow region), similar to those observed in normal aortic inner curvature (disturbed flow region). Furthermore, Mef2c deletion resulted in the de novo formation of subendothelial intimal cells expressing markers of differentiated smooth muscle in the thoracic aortas and carotids. Lineage tracing showed that these cells were not of endothelial origin. To define early events in intimal development, we induced endothelial deletion of Mef2c and examined aortas at 4 and 12 weeks postinduction. The number of intimal cell clusters increased from 4 to 12 weeks, but the number of cells within a cluster peaked at 2 cells in both cases, suggesting ongoing migration but minimal proliferation. Moreover, we identified cells extending from the media through fenestrations in the internal elastic lamina into the intima, indicating transfenestral smooth muscle migration. Similar transfenestral migration was observed in wild-type carotid arteries ligated to induce neointimal formation. These results indicate that endothelial Mef2c regulates the endothelial actin cytoskeleton and inhibits smooth muscle cell migration into the intima. © 2017 American Heart Association, Inc.

  2. Gold Nanoparticles Inhibit VEGF165-Induced Migration and Tube Formation of Endothelial Cells via the Akt Pathway

    PubMed Central

    Pan, Yunlong; Wu, Qing; Qin, Li; Cai, Jiye; Du, Bin

    2014-01-01

    The early stages of angiogenesis can be divided into three steps: endothelial cell proliferation, migration, and tube formation. Vascular endothelial growth factor (VEGF) is considered the most important proangiogenic factor; in particular, VEGF165 plays a critical role in angiogenesis. Here, we evaluated whether gold nanoparticles (AuNPs) could inhibit the VEGF165-induced human umbilical vein endothelial cell (HUVEC) migration and tube formation. AuNPs and VEGF165 were coincubated overnight at 4°C, after which the effects on cell migration and tube formation were assessed. Cell migration was assessed using a modified wound-healing assay and a transwell chamber assay; tube formation was assessed using a capillary-like tube formation assay and a chick chorioallantoic membrane (CAM) assay. We additionally detected the cell surface morphology and ultrastructure using atomic force microscopy (AFM). Furthermore, Akt phosphorylation downstream of VEGFR-2/PI3K in HUVECs was determined in a Western blot analysis. Our study demonstrated that AuNPs significantly inhibited VEGF165-induced HUVEC migration and tube formation by affecting the cell surface ultrastructure, cytoskeleton and might have inhibited angiogenesis via the Akt pathway. PMID:24987682

  3. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis.

    PubMed

    Salomon, Carlos; Ryan, Jennifer; Sobrevia, Luis; Kobayashi, Miharu; Ashman, Keith; Mitchell, Murray; Rice, Gregory E

    2013-01-01

    Vasculogenesis and angiogenesis are critical processes in fetal circulation and placental vasculature development. Placental mesenchymal stem cells (pMSC) are known to release paracrine factors (some of which are contained within exosomes) that promote angiogenesis and cell migration. The aims of this study were: to determine the effects of oxygen tension on the release of exosomes from pMSC; and to establish the effects of pMSC-derived exosomes on the migration and angiogenic tube formation of placental microvascular endothelial cells (hPMEC). pMSC were isolated from placental villi (8-12 weeks of gestation, n = 6) and cultured under an atmosphere of 1%, 3% or 8% O2. Cell-conditioned media were collected and exosomes (exo-pMSC) isolated by differential and buoyant density centrifugation. The dose effect (5-20 µg exosomal protein/ml) of pMSC-derived exosomes on hPMEC migration and tube formation were established using a real-time, live-cell imaging system (Incucyte™). The exosome pellet was resuspended in PBS and protein content was established by mass spectrometry (MS). Protein function and canonical pathways were identified using the PANTHER program and Ingenuity Pathway Analysis, respectively. Exo-pMSC were identified, by electron microscopy, as spherical vesicles, with a typical cup-shape and diameters around of 100 nm and positive for exosome markers: CD63, CD9 and CD81. Under hypoxic conditions (1% and 3% O2) exo-pMSC released increased by 3.3 and 6.7 folds, respectively, when compared to the controls (8% O2; p<0.01). Exo-pMSC increased hPMEC migration by 1.6 fold compared to the control (p<0.05) and increased hPMEC tube formation by 7.2 fold (p<0.05). MS analysis identified 390 different proteins involved in cytoskeleton organization, development, immunomodulatory, and cell-to-cell communication. The data obtained support the hypothesis that pMSC-derived exosomes may contribute to placental vascular adaptation to low oxygen tension under both

  4. Selected activities of Citrus maxima Merr. fruits on human endothelial cells: enhancing cell migration and delaying cellular aging.

    PubMed

    Buachan, Paiwan; Chularojmontri, Linda; Wattanapitayakul, Suvara K

    2014-04-21

    Endothelial injury and damage as well as accumulated reactive oxygen species (ROS) in aging play a significant role in the development of cardiovascular disease (CVD). Recent studies show an association of high citrus fruit intake with a lower risk of CVD and stroke but the mechanisms involved are not fully understood. This study investigated the effects of pummelo (Citrus maxima Merr. var. Tubtim Siam, CM) fruit extract on human umbilical vein endothelial cell (HUVECs) migration and aging. The freeze-dried powder of fruit extract was characterized for antioxidant capacity (FRAP assay) and certain natural antioxidants, including ascorbic acid, gallic acid, hesperidin, and naringin (HPLC). Short-term (48 h) co-cultivation of HUVECs with CM enhanced cell migration as evaluated by a scratch wound assay and Boyden chamber assay. A long-term treatment with CM for 35 days significantly increased HUVEC proliferation capability as indicated by population doubling level (PDL). CM also delayed the onset of aging phenotype shown by senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, CM was able to attenuate increased ROS levels in aged cells when determined by 2',7'-dichlorodihydrofluorescein diacetate (DCDHF) while eNOS mRNA expression was increased but the eNOS protein level was not changed. Thus, further in vivo and clinical studies are warranted to support the use of pummelo as a functional fruit for endothelial health and CVD risk reduction.

  5. Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome.

    PubMed

    Zhang, Li-jie; Liu, Wen-xian; Chen, Yun-dai; Song, Xian-tao; Jin, Ze-ning; Lü, Shu-zheng

    2010-10-01

    There are numerous articles on the endothelial progenitor cells (EPCs) in different disease conditions. However, the functional properties of EPCs in acute coronary syndrome (ACS) are still uncertain. Here we aimed to study the number and functions of EPCs in ACS patients. Patients were enrolled with admitted ACS (n = 25) and another 25 gender-, age-, atherosclerotic risk factors-matched stable coronary artery disease (CAD) controls. EPCs were defined as CD34(+)/CD133(+)/VEGFR-2(+) and quantified by flow cytometry. Moreover, functional properties of EPCs including colony-forming unit (CFU), proliferation, migration as well as apoptosis were evaluated and compared between the two groups. Plasma matrix metalloproteinase-9 (MMP-9) was detected in all patients as well. The two groups had similar medication and clinical characteristics on admission. The EPCs in ACS patients were more than 2.6 times that in stable CAD subjects (15.6 ± 2.7 vs. 6.0 ± 0.8/100 000 events, P < 0.01). CFU was not statistically different between the two groups (10.8 ± 2.9 vs. 8.2 ± 1.8, number/well, P > 0.05). Furthermore, EPCs isolated from ACS patients were significantly impaired in their proliferation (0.498 ± 0.035 vs. 0.895 ± 0.067, OD value, P < 0.01) and migration capacity (20.5 ± 3.4 vs. 30.7 ± 4.3, number/well, P < 0.01) compared with controls. Moreover, the apoptosis cell in cultured EPCs was drastically increased in ACS group ((18.3 ± 2.1)% vs. (7.8 ± 0.4)%, P < 0.01). Patients with ACS exhibited apparently increased circulating EPCs as well as cultured apoptosis percentage together with a remarkable impairment of proliferation and migration activities compared with stable CAD subjects.

  6. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    PubMed

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking.

  7. Kaposi's sarcoma-associated herpesvirus-G protein-coupled receptor-expressing endothelial cells exhibit reduced migration and stimulated chemotaxis by chemokine inverse agonists.

    PubMed

    Couty, Jean-Pierre; Lupu-Meiri, Monica; Oron, Yoram; Gershengorn, Marvin C

    2009-06-01

    A constitutively active G protein-coupled receptor (GPCR) encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) (KSHV) is expressed in endothelial (spindle) cells of Kaposi's sarcoma lesions. In this study, we report novel effects of basal signaling by this receptor and of inverse agonist chemokines on migration of KSHV-GPCR-expressing mouse lung endothelial cells. We show that basal signaling by KSHV-GPCR inhibits migration of endothelial cells in two systems, movement through porous filters and in vitro wound closure. Naturally occurring chemokines, interferon gamma-inducible protein-10 and stromal-derived factor-1, which act as inverse agonists at KSHV-GPCR, abrogate the inhibition of migration and stimulate directed migration (or chemotaxis) of these cells. Thus, the expression of KSHV-GPCR may allow infected endothelial cells in situ to remain in a localized environment or to directionally migrate along a gradient of specific chemokines that are inverse agonists at KSHV-GPCR.

  8. Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-β(2).

    PubMed

    Joko, Takeshi; Shiraishi, Atsushi; Akune, Yoko; Tokumaru, Sho; Kobayashi, Takeshi; Miyata, Kazunori; Ohashi, Yuichi

    2013-03-01

    Because human corneal endothelial cells do not proliferate once the endothelial monolayer is formed, corneal wound healing is thought to be mediated by cell enlargement or migration rather than proliferation. However, the cellular mechanisms involved in corneal wound healing have not been fully determined. Because transforming growth factor-β(2) (TGF-β(2)) isoform is present in high concentrations in normal human aqueous humor, it may play a role in human corneal endothelial cell wound healing. The purpose of this study was to determine the effect of TGF-β(2) on the proliferation and migration of cultured human corneal endothelial cells (HCECs). To achieve this, we first examined the effect of TGF-β(2) on the wound closure rate in an in vitro HCEC wound healing model. However, unexpectedly TGF-β(2) had no effect on the wound closure rate in this model. Therefore, a real-time cell electronic sensing (RT-CES) system and the BrdU incorporation assay were used to determine the effect of TGF-β(2) (0.1-10 ng/ml) on cultured HCEC proliferation during in vitro wound healing. The specificity of this effect was confirmed by adding the TGF-β receptor I kinase inhibitor. TGF-β(2) inhibited the proliferation of HCECs in a dose dependent way and was blocked by TGF-β receptor I kinase inhibitor. Next, the Boyden chamber assay was used to determine how TGF-β(2) (10 ng/ml) affect HCEC migration. Exposure to TGF-β(2) increased cell migration, and a synergistic effect was observed when FGF-2 was added. To determine whether the mitogen-activated protein kinase (MAPK) signaling pathway is involved in the migration of HCECs, western blot analysis and Bio-Plex™ suspension array were used to detect phosphorylation of Erk1/2, p38, and JNK in HCECs stimulated by TGF-β(2) and/or FGF-2. The effect of the p38 MAPK inhibitor, SB239063 (10 μM), on TGF-β(2) and/or FGF-2-induced cellular migration was determined by the Boyden chamber assay. Both TGF-β(2) and FGF-2-induced p38

  9. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: A new step in migration.

    PubMed

    Patten, Daniel A; Wilson, Garrick K; Bailey, Dalan; Shaw, Robert K; Jalkanen, Sirpa; Salmi, Marko; Rot, Antal; Weston, Chris J; Adams, David H; Shetty, Shishir

    2017-01-01

    The recruitment of lymphocytes via the hepatic sinusoidal channels and positioning within liver tissue is a critical event in the development and persistence of chronic inflammatory liver diseases. The hepatic sinusoid is a unique vascular bed lined by hepatic sinusoidal endothelial cells (HSECs), a functionally and phenotypically distinct subpopulation of endothelial cells. Using flow-based adhesion assays to study the migration of lymphocytes across primary human HSECs, we found that lymphocytes enter into HSECs, confirmed by electron microscopy demonstrating clear intracellular localization of lymphocytes in vitro and by studies in human liver tissues. Stimulation by interferon-γ increased intracellular localization of lymphocytes within HSECs. Furthermore, using confocal imaging and time-lapse recordings, we demonstrated "intracellular crawling" of lymphocytes entering into one endothelial cell from another. This required the expression of intracellular adhesion molecule-1 and stabilin-1 and was facilitated by the junctional complexes between HSECs.

  10. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells

    PubMed Central

    Burgett, Monica E.; Lathia, Justin D.; Roth, Patrick; Nowacki, Amy S.; Galileo, Deni S.; Pugacheva, Elena; Huang, Ping; Vasanji, Amit; Li, Meizhang; Byzova, Tatiana; Mikkelsen, Tom; Bao, Shideng; Rich, Jeremy N.; Weller, Michael; Gladson, Candece L.

    2016-01-01

    The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting. PMID:27270311

  11. G-Protein-Coupled Receptor 35 Mediates Human Saphenous Vein Vascular Smooth Muscle Cell Migration and Endothelial Cell Proliferation

    PubMed Central

    McCallum, Jennifer E.; Mackenzie, Amanda E.; Divorty, Nina; Clarke, Carolyn; Delles, Christian; Milligan, Graeme; Nicklin, Stuart A.

    2016-01-01

    Vascular smooth muscle cell (VSMC) migration and proliferation is central to neointima formation in vein graft failure following coronary artery bypass. However, there are currently no pharmacological interventions that prevent vein graft failure through intimal occlusion. It is hence a therapeutic target. Here, we investigated the contribution of GPR35 to human VSMC and endothelial cell (EC) migration, using a scratch-wound assay, and also the contribution to proliferation, using MTS and BrdU assays, in in vitro models using recently characterized human GPR35 ortholog-selective small-molecule agonists and antagonists. Real-time PCR studies showed GPR35 to be robustly expressed in human VSMCs and ECs. Stimulation of GPR35, with either the human-selective agonist pamoic acid or the reference agonist zaprinast, promoted VSMC migration in the scratch-wound assay. These effects were blocked by coincubation with either of the human GPR35-specific antagonists, CID-2745687 or ML-145. These GPR35-mediated effects were produced by inducing alterations in the actin cytoskeleton via the Rho A/Rho kinase signaling axis. Additionally, the agonist ligands stimulated a proliferative response in ECs. These studies highlight the potential that small molecules that stimulate or block GPR35 activity can modulate vascular proliferation and migration. These data propose GPR35 as a translational therapeutic target in vascular remodeling. PMID:27064272

  12. MIP-1α enhances Jurkat cell transendothelial migration by up-regulating endothelial adhesion molecules VCAM-1 and ICAM-1.

    PubMed

    Ma, Yi-Ran; Ma, Ying-Huan

    2014-11-01

    The aim of this study is to evaluate the expression of macrophage inflammatory protein-1α (MIP-1α) in Jurkat cells and its effect on transendothelial migration. In the present study, human acute lymphoblastic leukemia Jurkat cells (Jurkat cells) were used as a model of T cells in human T-cell acute lymphoblastic leukemia (T-ALL), which demonstrated significantly higher MIP-1α expression compared with that in normal T-cell controls. The ability of Jurkat cells to cross a human brain microvascular endothelial cell (HBMEC) monolayer was almost completely abrogated by MIP-1α siRNA. In addition, the overexpression of MIP-1α resulted in the up-regulated expression of endothelial adhesion molecules, which enhanced the migration of Jurkat cells through a monolayer of HBMEC. MIP-1α levels in Jurkat cells appeared to be an important factor for its transendothelial migration, which may provide the theoretical basis to understand the mechanisms of brain metastases of T-ALL at cellular and molecular levels.

  13. Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR-BI expression.

    PubMed

    Pan, Bing; Ma, Yijing; Ren, Hui; He, Yubin; Wang, Yongyu; Lv, Xiaofeng; Liu, Donghui; Ji, Liang; Yu, Baoqi; Wang, Yuhui; Chen, Y Eugene; Pennathur, Subramaniam; Smith, Jonathan D; Liu, George; Zheng, Lemin

    2012-01-01

    Diabetic HDL had diminished capacity to stimulate endothelial cell (EC) proliferation, migration, and adhesion to extracellular matrix. The mechanism of such dysfunction is poorly understood and we therefore sought to determine the mechanistic features of diabetic HDL dysfunction. We found that the dysfunction of diabetic HDL on human umbilical vein endothelial cells (HUVECs) was associated with the down regulation of the HDL receptor protein, SR-BI. Akt-phosphorylation in HUVECs was induced in a biphasic manner by normal HDL. While diabetic HDL induced Akt phosphorylation normally after 20 minutes, the phosphorylation observed 24 hours after diabetic HDL treatment was reduced. To determine the role of SR-BI down regulation on diminished EC responses of diabetic HDL, Mouse aortic endothelial cells (MAECs) were isolated from wild type and SR-BI (-/-) mice, and treated with normal and diabetic HDL. The proliferative and migratory effects of normal HDL on wild type MAECs were greatly diminished in SR-BI (-/-) cells. In contrast, response to diabetic HDL was impaired in both types suggesting diminished effectiveness of diabetic HDL on EC proliferation and migration might be due to the down regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL's capacity to activate Akt chronically. Diabetic HDL was dysfunctional in promoting EC proliferation, migration, and adhesion to matrix which was associated with the down-regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL's capacity to activate Akt chronically.

  14. Thy-1 Regulates VEGF-Mediated Choroidal Endothelial Cell Activation and Migration: Implications in Neovascular Age-Related Macular Degeneration

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Kunz, Eric; Hartnett, M. Elizabeth

    2016-01-01

    Purpose This study addresses the hypothesis that age-related stresses upregulate Thy-1 in choroidal endothelial cells (CECs) and contribute to CEC activation and migration, processes important in choroidal neovascularization (CNV). Methods Measurements were made of Thy-1 protein (Western blot) in CECs and Thy-1 mRNA (real time quantitative PCR) in CECs treated with VEGF, CCL11, or PBS or in RPE/choroids from young or old donors or lasered or nonlasered mice. Immunolabeled Thy-1 in ocular sections was compared from young versus old human donor eyes or those with or without neovascular AMD or from lasered versus nonlasered mice. Choroidal endothelial cells transfected with Thy-1 or control siRNA or pretreated with Thy-1 blocking peptide or control were stimulated with VEGF or 7-ketocholesterol (7-KC). Choroidal endothelial cell migration, proliferation, cytoskeletal stress fibers, Rac1 activation, and phosphorylated VEGF receptor 2 (VEGFR2), integrin β3, and Src were measured. Statistics were performed using ANOVA. Results Thy-1 was expressed in retinal ganglion cells and in vascular endothelial-cadherin–labeled choroid and localized to human or mouse laser-induced CNV lesions. Thy-1 protein and mRNA were significantly increased in CECs treated with VEGF or CCL11 and in RPE/choroids from aged versus young donor eyes or from lasered mice versus nonlasered controls. Knockdown or inhibition of Thy-1 in CECs significantly reduced VEGF-induced CEC migration and proliferation, stress fiber formation and VEGFR2, Src, integrin β3 and Rac1 activation, and 7-KC–induced Rac1 and Src activation. Conclusions Thy-1 in CECs regulates VEGF-induced CEC activation and migration and links extracellular 7-KC to intracellular signaling. Future studies elucidating Thy-1 mechanisms in neovascular AMD are warranted. PMID:27768790

  15. Aspalatone Prevents VEGF-Induced Lipid Peroxidation, Migration, Tube Formation, and Dysfunction of Human Aortic Endothelial Cells

    PubMed Central

    Sonowal, Himangshu; Pal, Pabitra B.; Shukla, Kirtikar

    2017-01-01

    Although aspalatone (acetylsalicylic acid maltol ester) is recognized as an antithrombotic agent with antioxidative and antiplatelet potential; its efficacy in preventing endothelial dysfunction is not known. In this study, we examined the antiangiogenic, antioxidative, and anti-inflammatory effect of aspalatone in human aortic endothelial cells (HAECs). Specifically, the effect of aspalatone on VEGF-induced HAECs growth, migration, tube formation, and levels of lipid peroxidation-derived malondialdehyde (MDA) was examined. Our results indicate that the treatment of HAECs with aspalatone decreased VEGF-induced cell migration, tube formation, and levels of MDA. Aspalatone also inhibited VEGF-induced decrease in the expression of eNOS and increase in the expression of iNOS, ICAM-1, and VCAM-1. Aspalatone also prevented the VEGF-induced adhesion of monocytes to endothelial cells. Furthermore, aspalatone also prevented VEGF-induced release of inflammatory markers such as Angiopoietin-2, Leptin, EGF, G-CSF, HB-EGF, and HGF in HAECs. Thus, our results suggest that aspalatone could be used to prevent endothelial dysfunction, an important process in the pathophysiology of cardiovascular diseases. PMID:28243353

  16. Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers.

    PubMed

    Lin, Mei-Na; Shang, De-Shu; Sun, Wei; Li, Bo; Xu, Xin; Fang, Wen-Gang; Zhao, Wei-Dong; Cao, Liu; Chen, Yu-Hua

    2013-06-04

    Bone marrow-derived mesenchymal stem cells (MSC) represent an important and easily available source of stem cells for potential therapeutic use in neurological diseases. The entry of circulating cells into the central nervous system by intravenous administration requires, firstly, the passage of the cells across the blood-brain barrier (BBB). However, little is known of the details of MSC transmigration across the BBB. In the present study, we employed an in vitro BBB model constructed using a human brain microvascular endothelial cell monolayer to study the mechanism underlying MSC transendothelial migration. Transmigration assays, transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) flux assays showed that MSC could transmigrate through human brain microvascular endothelial cell monolayers by a paracellular pathway. Cell fractionation and immunofluorescence assays confirmed the disruption of tight junctions. Inhibition assays showed that a Rho-kinase (ROCK) inhibitor (Y27632) effectively promoted MSC transendothelial migration; conversely, a PI3K inhibitor (LY294002) blocked MSC transendothelial migration. Interestingly, adenovirus-mediated interference with ROCK in MSC significantly increased MSC transendothelial migration, and overexpression of a PI3K dominant negative mutant in MSC cells could block transendothelial migration. Our findings provide clear evidence that the PI3K and ROCK pathways are involved in MSC migration through human brain microvascular endothelial cell monolayers. The information yielded by this study may be helpful in constructing gene-modified mesenchymal stem cells that are able to penetrate the BBB effectively for cell therapy.

  17. Borrelia burgdorferi upregulates expression of adhesion molecules on endothelial cells and promotes transendothelial migration of neutrophils in vitro.

    PubMed Central

    Sellati, T J; Burns, M J; Ficazzola, M A; Furie, M B

    1995-01-01

    The accumulation of leukocytic infiltrates in perivascular tissues is a key step in the pathogenesis of Lyme disease, a chronic inflammatory disorder caused by Borrelia burgdorferi. During an inflammatory response, endothelial cell adhesion molecules mediate the attachment of circulating leukocytes to the blood vessel wall and their subsequent extravasation into perivascular tissues. Using cultured human umbilical vein endothelial cells (HUVEC) in a whole-cell enzyme-linked immunosorbent assay, we demonstrated that B. burgdorferi activated endothelium in a dose- and time-dependent fashion as measured by upregulation of the adhesion molecules E-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1). As few as one spirochete per endothelial cell stimulated increased expression of these molecules. Expression of E-selectin peaked after spirochetes and HUVEC were coincubated for 4 h and returned to near-basal levels by 24 h. In contrast, expression of VCAM-1 and ICAM-1 peaked at 12 h and remained elevated at 24 h. HUVEC monolayers cultured on acellular amniotic tissue were used to investigate the consequences of endothelial cell activation by spirochetes. After incubation of HUVEC-amnion cultures with B. burgdorferi, subsequently added neutrophils migrated across the endothelial monolayers. This process was mediated by E-selectin and by CD11/CD18 leukocytic integrins. The extent of migration depended on both the number of spirochetes used to stimulate the HUVEC and the length of the coincubation period. These results raise the possibility that B. burgdorferi induces a host inflammatory response and accompanying perivascular damage through activation of vascular endothelium. PMID:7591083

  18. Tumor Necrosis Factor α Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB.

    PubMed

    Prisco, Anthony R; Hoffmann, Brian R; Kaczorowski, Catherine C; McDermott-Roe, Chris; Stodola, Timothy J; Exner, Eric C; Greene, Andrew S

    2016-07-01

    Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a coculture assay where TNFα treated EPCs were tracked while migrating toward vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. Stem Cells 2016;34:1922-1933. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Galectin-1 Controls the Proliferation and Migration of Liver Sinusoidal Endothelial Cells and Their Interaction With Hepatocarcinoma Cells.

    PubMed

    Manzi, Malena; Bacigalupo, María L; Carabias, Pablo; Elola, María T; Wolfenstein-Todel, Carlota; Rabinovich, Gabriel A; Espelt, María V; Troncoso, María F

    2016-07-01

    Galectin-1 (Gal1), a β-galactoside-binding protein elevated in hepatocellular carcinoma (HCC), promotes epithelial-mesenchymal transition (EMT) and its expression correlates with HCC growth, invasiveness, and metastasis. During the early stages of HCC, transforming growth factor β1 (TGF-β1 ) acts as a tumor suppressor; however in advanced stages, HCC cells lose their cytostatic response to TGF-β1 and undergo EMT. Here, we investigated the role of Gal1 on liver endothelial cell biology, and the interplay between Gal1 and TGF-β1 in HCC progression. By Western blot and immunofluorescence, we analyzed Gal1 expression, secretion and localization in HepG2 and HuH-7 human HCC cells, and in SK-HEP-1 human liver sinusoidal endothelial cells (SECs). We used loss-of-function and gain-of-function experiments to down- or up-regulate Gal1 expression, respectively, in HepG2 cells. We cultured SK-HEP-1 cells with conditioned media from HCC cells secreting different levels of Gal1, and demonstrated that Gal1 derived from tumor hepatocytes induced its own expression in SECs. Colorimetric and scratch-wound assays revealed that secretion of Gal1 by HCC cells induced SEC proliferation and migration. Moreover, by fluorescence microscopy we demonstrated that Gal1 promoted glycan-dependent heterotypic adhesion of HepG2 cells to SK-HEP-1 SECs. Furthermore, TGF-β1 induced Gal1 expression and secretion by HCC cells, and promoted HepG2 cell adhesion to SK-HEP-1 SECs through a Gal1-dependent mechanism. Finally, Gal1 modulated HepG2 cell proliferation and sensitivity to TGF-β1 -induced growth inhibition. Our results suggest that Gal1 and TGF-β1 might function coordinately within the HCC microenvironment to regulate tumor growth, invasion, metastasis, and angiogenesis.

  20. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling

    PubMed Central

    Fernandez-Alonso, R; Martin-Lopez, M; Gonzalez-Cano, L; Garcia, S; Castrillo, F; Diez-Prieto, I; Fernandez-Corona, A; Lorenzo-Marcos, M E; Li, X; Claesson-Welsh, L; Marques, M M; Marin, M C

    2015-01-01

    Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity. PMID:25571973

  1. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling.

    PubMed

    Fernandez-Alonso, R; Martin-Lopez, M; Gonzalez-Cano, L; Garcia, S; Castrillo, F; Diez-Prieto, I; Fernandez-Corona, A; Lorenzo-Marcos, M E; Li, X; Claesson-Welsh, L; Marques, M M; Marin, M C

    2015-08-01

    Vasculogenesis, the establishment of the vascular plexus and angiogenesis, branching of new vessels from the preexisting vasculature, involves coordinated endothelial differentiation, proliferation and migration. Disturbances in these coordinated processes may accompany diseases such as cancer. We hypothesized that the p53 family member p73, which regulates cell differentiation in several contexts, may be important in vascular development. We demonstrate that p73 deficiency perturbed vascular development in the mouse retina, decreasing vascular branching, density and stability. Furthermore, p73 deficiency could affect non endothelial cells (ECs) resulting in reduced in vivo proangiogenic milieu. Moreover, p73 functional inhibition, as well as p73 deficiency, hindered vessel sprouting, tubulogenesis and the assembly of vascular structures in mouse embryonic stem cell and induced pluripotent stem cell cultures. Therefore, p73 is necessary for EC biology and vasculogenesis and, in particular, that DNp73 regulates EC migration and tube formation capacity by regulation of expression of pro-angiogenic factors such as transforming growth factor-β and vascular endothelial growth factors. DNp73 expression is upregulated in the tumor environment, resulting in enhanced angiogenic potential of B16-F10 melanoma cells. Our results demonstrate, by the first time, that differential p73-isoform regulation is necessary for physiological vasculogenesis and angiogenesis and DNp73 overexpression becomes a positive advantage for tumor progression due to its pro-angiogenic capacity.

  2. Silencing stromal interaction molecule 1 by RNA interference inhibits the proliferation and migration of endothelial progenitor cells

    SciTech Connect

    Kuang, Chun-yan; Yu, Yang; Guo, Rui-wei; Qian, De-hui; Wang, Kui; Den, Meng-yang; Shi, Yan-kun; Huang, Lan

    2010-07-23

    Research highlights: {yields} STIM1 and TRPC1 are expressed in EPCs. {yields} Knockdown of STIM1 inhibits the proliferation, migration and SOCE of EPCs. {yields} TRPC1-SOC cooperates with STIM1 to mediate the SOCE of EPCs. -- Abstract: Knockdown of stromal interaction molecule 1 (STIM1) significantly suppresses neointima hyperplasia after vascular injury. Endothelial progenitor cells (EPCs) are the major source of cells that respond to endothelium repair and contribute to re-endothelialization by reducing neointima formation after vascular injury. We hypothesized that the effect of STIM1 on neointima hyperplasia inhibition is mediated through its effect on the biological properties of EPCs. In this study, we investigated the effects of STIM1 on the proliferation and migration of EPCs and examined the effect of STIM1 knockdown using cultured rat bone marrow-derived EPCs. STIM1 was expressed in EPCs, and knockdown of STIM1 by adenoviral delivery of small interfering RNA (siRNA) significantly suppressed the proliferation and migration of EPCs. Furthermore, STIM1 knockdown decreased store-operated channel entry 48 h after transfection. Replenishment with recombinant human STIM1 reversed the effects of STIM1 knockdown. Our data suggest that the store-operated transient receptor potential canonical 1 channel is involved in regulating the biological properties of EPCs through STIM1. STIM1 is a potent regulator of cell proliferation and migration in rat EPCs and may play an important role in the biological properties of EPCs.

  3. Notch regulation of myogenic versus endothelial fates of cells that migrate from the somite to the limb

    PubMed Central

    Mayeuf-Louchart, Alicia; Lagha, Mounia; Danckaert, Anne; Rocancourt, Didier; Relaix, Frederic; Vincent, Stéphane D.; Buckingham, Margaret

    2014-01-01

    Multipotent Pax3-positive (Pax3+) cells in the somites give rise to skeletal muscle and to cells of the vasculature. We had previously proposed that this cell-fate choice depends on the equilibrium between Pax3 and Foxc2 expression. In this study, we report that the Notch pathway promotes vascular versus skeletal muscle cell fates. Overactivating the Notch pathway specifically in Pax3+ progenitors, via a conditional Pax3NICD allele, results in an increase of the number of smooth muscle and endothelial cells contributing to the aorta. At limb level, Pax3+ cells in the somite give rise to skeletal muscles and to a subpopulation of endothelial cells in blood vessels of the limb. We now demonstrate that in addition to the inhibitory role of Notch signaling on skeletal muscle cell differentiation, the Notch pathway affects the Pax3:Foxc2 balance and promotes the endothelial versus myogenic cell fate, before migration to the limb, in multipotent Pax3+ cells in the somite of the mouse embryo. PMID:24927569

  4. VEGF189 stimulates endothelial cells proliferation and migration in vitro and up-regulates the expression of Flk-1/KDR mRNA

    SciTech Connect

    Herve, Marie-Astrid . E-mail: applanat@chu-stlouis.fr

    2005-09-10

    The vascular endothelial growth factor (VEGF) is a critical factor for development of the vascular system in physiological and pathological angiogenesis. This growth factor exists under at least three isoforms, VEGF120/121, VEGF164/165 and VEGF188/189 which are generated by alternative splicing. VEGF isoforms have different affinities for heparan sulphate as well as for VEGF receptors, and may play distinct roles in vascular development. The role of VEGF189 as an endothelial mitogen, however, remains controversial. VEGF189 is almost entirely bound to the cell surface or extracellular matrix, and is considered active after its cleavage and release from its extracellular binding site. In the present study, we demonstrate that VEGF189 induces endothelial cell proliferation and migration in vitro. The 30-60% increase observed with VEGF189 (10 ng/ml) in HUVEC proliferation was similar to that observed with VEGF165. However, the proliferative effect observed with VEGF189 appeared dependent on the origin of the endothelial cell, since the proliferation was clearly observed with HUVEC but not with BAEC or capillary endothelial cells from dermis (HMEC). The effect of VEGF189 on endothelial cell migration was also analyzed using the wound healing and the Boyden chamber assays. The migration effect was observed with BAEC which do not proliferate with VEGF189, suggesting that different mechanisms are involved in proliferation and migration. In addition, VEGF189 as well as VEGF165 induced a 2-fold increase of Flk-1/KDR expression in HUVEC, the receptor involved in proliferation and migration of endothelial cells. In the Matrigel plug assay in vivo, both VEGF189 and 165 (100 ng/ml) increased the infiltration of endothelial cells. These data suggest that VEGF189 induced endothelial cell migration and proliferation under certain circumstances.

  5. Inhibitory effect of serotonin derivatives on high glucose-induced adhesion and migration of monocytes on human aortic endothelial cells.

    PubMed

    Piga, Rosaria; Naito, Yuji; Kokura, Satoshi; Handa, Osamu; Yoshikawa, Toshikazu

    2009-07-01

    Previous reports have shown that safflower-seed extract and its major antioxidant constituents, serotonin hydroxycinnamic amides, attenuated atherosclerotic lesion formation in apoE-deficient mice, as well as inflammation and aortic stiffness in human subjects. In the present report, we examined a still unknown cell-based mechanism of serotonin derivatives against the development of atherosclerosis, focusing our attention on their action against the increase of adhesion molecules and the release of chemotactic factors on human aortic endothelial cells, phenomena that represent the key events in the early stages of atherosclerogenesis. Serotonin derivatives N-(p-coumaroyl)serotonin and N-feruloylserotonin exerted an inhibitory effect on short-term high glucose-induced up-regulation of mRNA and protein of adhesion and migration factors, and the consequent adhesion and migration of monocytes to endothelial cells; they inhibited the activation of transcription factors such as NF-kappaB, and the overproduction of the mitochondrial superoxide by acting as scavengers of the superoxide radical. In addition, serotonin derivative concentration inside the cells and inside the mitochondria was increased in a time-dependent manner. These results identify a mechanism of action of serotonin derivatives against endothelial damage at a cellular level, and underline their benefits against the disorders and complications related to reactive oxygen species.

  6. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    SciTech Connect

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku; Yabata, Masayuki; Izuoka, Kiyora; Suzuki, Masako; Sakai, Kiyoshi; Ichihara, Sahoko

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  7. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment- a new step in migration

    PubMed Central

    Patten, Daniel A.; Wilson, Garrick K.; Bailey, Dalan; Shaw, Robert K.; Jalkanen, Sirpa; Salmi, Marko; Rot, Antal; Weston, Christopher J.; Adams, David H.; Shetty, Shishir

    2017-01-01

    The recruitment of lymphocytes via the hepatic sinusoidal channels and positioning within liver tissue is a critical event in the development and persistence of chronic inflammatory liver diseases. The hepatic sinusoid is a unique vascular bed lined by hepatic sinusoidal endothelial cells (HSEC), a functionally and phenotypically distinct sub-population of endothelial cells. Using flow based adhesion assays to study the migration of lymphocytes across primary human HSEC, we found that lymphocytes enter into HSEC, confirmed by electron microscopy demonstrating clear intracellular localization of lymphocytes in vitro and by studies in human liver tissues. Stimulation by interferon gamma increased intracellular localization of lymphocytes within HSECs. Furthermore using confocal imaging and time-lapse recordings we demonstrated ‘intracellular crawling’ of lymphocytes entering into one endothelial cell from another. This required the expression of ICAM-1 and stabilin-1 and was facilitated by the junctional complexes between HSEC. Conclusion: We demonstrate a new step in lymphocyte migration which is facilitated by the unique structure of HSEC. We believe ‘intracellular crawling’ contributes to optimal lymphocyte positioning in liver tissue during chronic hepatitis. PMID:27770554

  8. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells

    SciTech Connect

    Tagami, Mizuki; Kusuhara, Sentaro; Imai, Hisanori; Uemura, Akiyoshi; Honda, Shigeru; Tsukahara, Yasutomo; Negi, Akira

    2010-10-01

    Research highlights: {yields} Exogenous VEGF decreases MRP4 expression in a dose-dependent manner. {yields} MRP4 knockdown leads to enhanced cell migration. {yields} MRP4 knockdown suppresses caspase-3-mediated cell apoptosis. {yields} MRP4 knockdown produces cell assembly and cell aggregation. -- Abstract: The multidrug resistance protein (MRP) MRP4/ABCC4 is an ATP-binding cassette transporter that actively effluxes endogenous and xenobiotic substrates out of cells. In the rodent retina, Mrp4 mRNA and protein are exclusively expressed in vascular endothelial cells, but the angiogenic properties of Mrp4 are poorly understood so far. This study aims to explore the angiogenic properties of MRP4 in human retinal microvascular endothelial cells (HRECs) utilizing the RNA interference (RNAi) technique. MRP4 expression was decreased at the mRNA and protein levels after stimulation with exogenous vascular endothelial growth factor in a dose-dependent manner. RNAi-mediated MRP4 knockdown in HRECs do not affect cell proliferation but enhances cell migration. Moreover, cell apoptosis induced by serum starvation was less prominent in MRP4 siRNA-treated HRECs as compared to control siRNA-treated HRECs. In a Matrigel-based tube-formation assay, although MRP4 knockdown did not lead to a significant change in the total tube length, MRP4 siRNA-treated HRECs assembled and aggregated into a massive tube-like structure, which was not observed in control siRNA-treated HRECs. These results suggest that MRP4 is uniquely involved in retinal angiogenesis.

  9. LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets α-parvin to control cell adhesion and migration

    PubMed Central

    Devallière, Julie; Chatelais, Mathias; Fitau, Juliette; Gérard, Nathalie; Hulin, Philippe; Velazquez, Laura; Turner, Christopher E.; Charreau, Béatrice

    2012-01-01

    Focal adhesion (FA) formation and disassembly play an essential role in adherence and migration of endothelial cells. These processes are highly regulated and involve various signaling molecules that are not yet completely identified. Lnk [Src homology 2-B3 (SH2B3)] belongs to a family of SH2-containing proteins with important adaptor functions. In this study, we showed that Lnk distribution follows that of vinculin, localizing Lnk in FAs. Inhibition of Lnk by RNA interference resulted in decreased spreading, whereas sustained expression dramatically increases the number of focal and cell-matrix adhesions. We demonstrated that Lnk expression impairs FA turnover and cell migration and regulates β1-integrin-mediated signaling via Akt and GSK3β phosphorylation. Moreover, the α-parvin protein was identified as one of the molecular targets of Lnk responsible for impaired FA dynamics and cell migration. Finally, we established the ILK protein as a new molecular partner for Lnk and proposed a model in which Lnk regulates α-parvin expression through its interaction with ILK. Collectively, our results underline the adaptor Lnk as a novel and effective key regulator of integrin-mediated signaling controlling endothelial cell adhesion and migration.—Devallière, J., Chatelais, M., Fitau, J., Gérard, N., Hulin, P., Velazquez, L., Turner, C. E. Charreau, B. LNK (SH2B3) is a key regulator of integrin signaling in endothelial cells and targets α-parvin to control cell adhesion and migration. PMID:22441983

  10. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells.

    PubMed

    Tagami, Mizuki; Kusuhara, Sentaro; Imai, Hisanori; Uemura, Akiyoshi; Honda, Shigeru; Tsukahara, Yasutomo; Negi, Akira

    2010-10-01

    The multidrug resistance protein (MRP) MRP4/ABCC4 is an ATP-binding cassette transporter that actively effluxes endogenous and xenobiotic substrates out of cells. In the rodent retina, Mrp4 mRNA and protein are exclusively expressed in vascular endothelial cells, but the angiogenic properties of Mrp4 are poorly understood so far. This study aims to explore the angiogenic properties of MRP4 in human retinal microvascular endothelial cells (HRECs) utilizing the RNA interference (RNAi) technique. MRP4 expression was decreased at the mRNA and protein levels after stimulation with exogenous vascular endothelial growth factor in a dose-dependent manner. RNAi-mediated MRP4 knockdown in HRECs do not affect cell proliferation but enhances cell migration. Moreover, cell apoptosis induced by serum starvation was less prominent in MRP4 siRNA-treated HRECs as compared to control siRNA-treated HRECs. In a Matrigel-based tube-formation assay, although MRP4 knockdown did not lead to a significant change in the total tube length, MRP4 siRNA-treated HRECs assembled and aggregated into a massive tube-like structure, which was not observed in control siRNA-treated HRECs. These results suggest that MRP4 is uniquely involved in retinal angiogenesis.

  11. Diabetic HDL Is Dysfunctional in Stimulating Endothelial Cell Migration and Proliferation Due to Down Regulation of SR-BI Expression

    PubMed Central

    Pan, Bing; Ma, Yijing; Ren, Hui; He, Yubin; Wang, Yongyu; Lv, Xiaofeng; Liu, Donghui; Ji, Liang; Yu, Baoqi; Wang, Yuhui; Chen, Y. Eugene; Pennathur, Subramaniam; Smith, Jonathan D.; Liu, George; Zheng, Lemin

    2012-01-01

    Background Diabetic HDL had diminished capacity to stimulate endothelial cell (EC) proliferation, migration, and adhesion to extracellular matrix. The mechanism of such dysfunction is poorly understood and we therefore sought to determine the mechanistic features of diabetic HDL dysfunction. Methodology/Principal Findings We found that the dysfunction of diabetic HDL on human umbilical vein endothelial cells (HUVECs) was associated with the down regulation of the HDL receptor protein, SR-BI. Akt-phosphorylation in HUVECs was induced in a biphasic manner by normal HDL. While diabetic HDL induced Akt phosphorylation normally after 20 minutes, the phosphorylation observed 24 hours after diabetic HDL treatment was reduced. To determine the role of SR-BI down regulation on diminished EC responses of diabetic HDL, Mouse aortic endothelial cells (MAECs) were isolated from wild type and SR-BI (−/−) mice, and treated with normal and diabetic HDL. The proliferative and migratory effects of normal HDL on wild type MAECs were greatly diminished in SR-BI (−/−) cells. In contrast, response to diabetic HDL was impaired in both types suggesting diminished effectiveness of diabetic HDL on EC proliferation and migration might be due to the down regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL’s capacity to activate Akt chronically. Conclusions/Significance Diabetic HDL was dysfunctional in promoting EC proliferation, migration, and adhesion to matrix which was associated with the down-regulation of SR-BI. Additionally, SR-BI down regulation diminishes diabetic HDL’s capacity to activate Akt chronically. PMID:23133640

  12. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro

    PubMed Central

    2012-01-01

    Background Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18) expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. Methods A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. Results We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Conclusion Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration. PMID:23039186

  13. The matrix protein CCN1 (CYR61) promotes proliferation, migration and tube formation of endothelial progenitor cells

    SciTech Connect

    Yu Yang; Gao Yu; Wang, Hong; Huang Lan Qin Jun; Guo Ruiwei; Song Mingbao; Yu Shiyong; Chen Jianfei; Cui Bin; Gao Pan

    2008-10-15

    Neovascularization and re-endothelialization relies on circulating endothelial progenitor cells (EPCs), but their recruitment and angiogenic roles are subjected to regulation by the vascular microenvironment, which remains largely unknown. The present study was designed to investigate the effects of mature ECs and matrix protein CCN1 on the properties of EPCs. In a coculture system, effects of ECs on proliferation, migration and participation in tube-like formation of EPCs were evaluated, and functional assays were employed to identify the exact role of CCN1 in EPCs vitality and function. We demonstrated that ECs, as an indispensable part of the cellular milieu, significantly promoted the proliferation, migration and tube formation activities of EPCs, and more importantly, CCN1 was potentially involved in such effects of ECs. Expression of CCN1 in EPCs was significantly increased by serum, VEGF, ECs-cocultivation and ECs conditioned medium. Moreover, Ad-CCN1-mediated overexpression of CCN1 directly enhanced migration and tube formation of EPCs, whereas silencing of endogenous CCN1 in EPCs inhibits cell functions. Furthermore, CCN1 induced the expressions of chemokines and growth factors, such as MCP-1 and VEGF, suggesting a complex interaction between those proangiogenic factors. Our data suggest that matrix protein CCN1 may play an important role in microenvironment-mediated biological properties of EPCs.

  14. The matrix protein CCN1 (CYR61) promotes proliferation, migration and tube formation of endothelial progenitor cells.

    PubMed

    Yu, Yang; Gao, Yu; Wang, Hong; Huang, Lan; Qin, Jun; Guo, Ruiwei; Song, Mingbao; Yu, Shiyong; Chen, Jianfei; Cui, Bin; Gao, Pan

    2008-10-15

    Neovascularization and re-endothelialization relies on circulating endothelial progenitor cells (EPCs), but their recruitment and angiogenic roles are subjected to regulation by the vascular microenvironment, which remains largely unknown. The present study was designed to investigate the effects of mature ECs and matrix protein CCN1 on the properties of EPCs. In a coculture system, effects of ECs on proliferation, migration and participation in tube-like formation of EPCs were evaluated, and functional assays were employed to identify the exact role of CCN1 in EPCs vitality and function. We demonstrated that ECs, as an indispensable part of the cellular milieu, significantly promoted the proliferation, migration and tube formation activities of EPCs, and more importantly, CCN1 was potentially involved in such effects of ECs. Expression of CCN1 in EPCs was significantly increased by serum, VEGF, ECs-cocultivation and ECs conditioned medium. Moreover, Ad-CCN1-mediated overexpression of CCN1 directly enhanced migration and tube formation of EPCs, whereas silencing of endogenous CCN1 in EPCs inhibits cell functions. Furthermore, CCN1 induced the expressions of chemokines and growth factors, such as MCP-1 and VEGF, suggesting a complex interaction between those proangiogenic factors. Our data suggest that matrix protein CCN1 may play an important role in microenvironment-mediated biological properties of EPCs.

  15. Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells.

    PubMed

    Chao, Che-Yi; Lii, Chong-Kuei; Ye, Siou-Yu; Li, Chien-Chun; Lu, Chia-Yang; Lin, Ai-Hsuan; Liu, Kai-Li; Chen, Haw-Wen

    2014-05-07

    Cell migration plays an important role in angiogenesis and wound repair. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is essential for endothelial cell survival, proliferation, and migration. Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, shows both anti-inflammatory and antioxidant activities in vitro and in vivo. This study investigated the molecular mechanism by which DHA down-regulates VEGF-induced cell migration. HUVECs were used as the study model, and the MTT assay, Western blot, wound-healing assay, and phosphatase activity assay were used to explore the effects of DHA on cell migration. GPR120 is the putative receptor for DHA action. The results showed that DHA, PD98059 (an ERK1/2 inhibitor), and GW9508 (a GPR120 agonist) inhibited VEGF-induced cell migration. In contrast, pretreatment with okadaic acid (OA, a PP2A inhibitor) and S-nitroso-N-acetyl-DL-penicillamine (an NO donor) reversed the inhibition of cell migration by DHA. VEGF-induced cell migration was accompanied by phosphorylation of ERK1/2 and eNOS. Treatment of HUVECs with DHA increased PP2A enzyme activity and decreased VEGF-induced phosphorylation of ERK1/2 and eNOS. However, pretreatment with OA significantly decreased DHA-induced PP2A enzyme activity and reversed the DHA inhibition of VEGF-induced ERK1/2 and eNOS phosphorylation. These results suggest that stimulation of PP2A activity and inhibition of the VEGF-induced ERK1/2/eNOS signaling pathway may be involved in the DHA suppression of VEGF-induced cell migration. Thus, the effect of DHA on angiogenesis and wound repair is at least partly by virtue of its attenuation of cell migration.

  16. Sema3d controls collective endothelial cell migration by distinct mechanisms via Nrp1 and PlxnD1

    PubMed Central

    Hamm, Mailin Julia; Kirchmaier, Bettina Carmen

    2016-01-01

    During cardiovascular development, tight spatiotemporal regulation of molecular cues is essential for controlling endothelial cell (EC) migration. Secreted class III Semaphorins play an important role in guidance of neuronal cell migration and were lately linked to regulating cardiovascular development. Recently, SEMA3D gene disruptions were associated with cardiovascular defects in patients; however, the mechanisms of action were not revealed. Here we show for the first time that Sema3d regulates collective EC migration in zebrafish through two separate mechanisms. Mesenchymal Sema3d guides outgrowth of the common cardinal vein via repulsion and signals through PlexinD1. Additionally, within the same ECs, we identified a novel function of autocrine Sema3d signaling in regulating Actin network organization and EC morphology. We show that this new function requires Sema3d signaling through Neuropilin1, which then regulates Actin network organization through RhoA upstream of Rock, stabilizing the EC sheet. Our findings are highly relevant for understanding EC migration and the mechanisms of collective migration in other contexts. PMID:27799363

  17. Endothelial cells use dynamic actin to facilitate lymphocyte transendothelial migration and maintain the monolayer barrier.

    PubMed

    Mooren, Olivia L; Li, Jinmei; Nawas, Julie; Cooper, John A

    2014-12-15

    The vascular endothelium is a highly dynamic structure, and the integrity of its barrier function is tightly regulated. Normally impenetrable to cells, the endothelium actively assists lymphocytes to exit the bloodstream during inflammation. The actin cytoskeleton of the endothelial cell (EC) is known to facilitate transmigration, but the cellular and molecular mechanisms are not well understood. Here we report that actin assembly in the EC, induced by Arp2/3 complex under control of WAVE2, is important for several steps in the process of transmigration. To begin transmigration, ECs deploy actin-based membrane protrusions that create a cup-shaped docking structure for the lymphocyte. We found that docking structure formation involves the localization and activation of Arp2/3 complex by WAVE2. The next step in transmigration is creation of a migratory pore, and we found that endothelial WAVE2 is needed for lymphocytes to follow a transcellular route through an EC. Later, ECs use actin-based protrusions to close the gap behind the lymphocyte, which we discovered is also driven by WAVE2. Finally, we found that ECs in resting endothelial monolayers use lamellipodial protrusions dependent on WAVE2 to form and maintain contacts and junctions between cells.

  18. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    PubMed Central

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  19. The phosphatase PTP-PEST/PTPN12 regulates endothelial cell migration and adhesion, but not permeability, and controls vascular development and embryonic viability.

    PubMed

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C; Veillette, André

    2012-12-14

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability.

  20. Silencing heme oxygenase-1 gene expression in retinal pigment epithelial cells inhibits proliferation, migration and tube formation of cocultured endothelial cells

    SciTech Connect

    Zhang, Wenjie; Zhang, Xiaomei; Lu, Hong; Matsukura, Makoto; Zhao, Jien; Shinohara, Makoto

    2013-05-10

    Highlights: •HO-1 is highly induced in RPE cells by hypoxia. •Inhibition of HO-1 activity and knockdown of HO-1 expression inhibit VEGF expression in RPE cells under hypoxia. •Knockdown of HO-1 in RPE cells inhibits angiogenesis of endothelial cells in vitro. -- Abstract: Heme oxygenase-1 (HO-1) plays an important role in the vasculature and in the angiogenesis of tumors, wounds and other environments. Retinal pigment epithelial (RPE) cells and choroidal endothelial cells (CECs) are the main cells involved in choroidal neovascularization (CNV), a process in which hypoxia plays an important role. Our aim was to evaluate the role of human RPE-cell HO-1 in the angiogenic activities of cocultured endothelial cells under hypoxia. Small interfering RNA (siRNA) for HO-1 was transfected into human RPE cell line ARPE-19, and zinc protoporphyrin (ZnPP) was used to inhibit HO-1 activity. Knockdown of HO-1 expression and inhibition of HO-1 activity resulted in potent reduction of the expression of vascular endothelial growth factor (VEGF) under hypoxia. Furthermore, knockdown of HO-1 suppressed the proliferation, migration and tube formation of cocultured endothelial cells. These findings indicated that HO-1 might have an angiogenic effect in CNV through modulation of VEGF expression and might be a potential target for treating CNV.

  1. Star-shaped copolymer grafted PEI and REDV as a gene carrier to improve migration of endothelial cells.

    PubMed

    Lv, Juan; Hao, Xuefang; Li, Qian; Akpanyung, Mary; Nejjari, Abdelilah; Neve, Agnaldo Luis; Ren, Xiangkui; Feng, Yakai; Shi, Changcan; Zhang, Wencheng

    2017-02-28

    In this work, a biodegradable star-shaped copolymer poly(lactide-co-3(S)-methyl-morpholine-2,5-dione)6 (Star-(PLMD)6) was synthesized via ring-opening polymerization (ROP), and subsequently a gene carrier Star-PLMD-g-PEI-g-PEG-CREDVW was prepared by grafting polyethyleneimine (PEI), polyethylene glycol (PEG) and targeting peptide REDV onto Star-(PLMD)6. This gene carrier could form stable micelles to condense pEGFP-ZNF580 through electrostatic interaction. The resulting complexes were biocompatible and showed high efficiency in gene delivery. In addition, these complexes exhibited high selectivity for endothelial cells (ECs), high transfection efficiency and enhanced migration of ECs. The protein level of ZNF580 expression was significantly high (up to 85%), while the control group was only 51%. This combination of degradability, targeting ligand and star-structure strategy exhibits a significant advantage in transfection efficiency and migration of ECs.

  2. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including

  3. Endothelial activation drives lateral migration and diapedesis of leukocytes.

    PubMed

    Stock, Christian; Riethmuller, Christoph

    2011-01-01

    To invade a tissue, leukocytes have to overcome the endothelial barrier. Prior to trans-endothelial migration, leukocytes move laterally on the endothelial surface-searching for an emigration site. It is still unclear, how the actual diapedesis step is initiated and whether the endothelium has a decisive role. Here, video-microscopy was employed to investigate, whether lateral migration of leukocytes is correlated to their diapedesis rate. To address the contribution of each cell type, selective stimulation of either leukocytes or endothelial cells with TNFα was performed. Stimulation of endothelial cells alone was sufficient for maximal effects, thereby underlining their decisive role for leukocyte diapedesis. Concomitant to the TNFα-enhanced diapedesis rate, leukocyte adhesion was intensified and, unexpectedly, the lateral leukocyte migration was accelerated.

  4. Pleiotrophin-induced endothelial cell migration is regulated by xanthine oxidase-mediated generation of reactive oxygen species.

    PubMed

    Tsirmoula, Sotiria; Lamprou, Margarita; Hatziapostolou, Maria; Kieffer, Nelly; Papadimitriou, Evangelia

    2015-03-01

    Pleiotrophin (PTN) is a heparin-binding growth factor that induces cell migration through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and integrin alpha v beta 3 (ανβ3). In the present work, we studied the effect of PTN on the generation of reactive oxygen species (ROS) in human endothelial cells and the involvement of ROS in PTN-induced cell migration. Exogenous PTN significantly increased ROS levels in a concentration and time-dependent manner in both human endothelial and prostate cancer cells, while knockdown of endogenous PTN expression in prostate cancer cells significantly down-regulated ROS production. Suppression of RPTPβ/ζ through genetic and pharmacological approaches, or inhibition of c-src kinase activity abolished PTN-induced ROS generation. A synthetic peptide that blocks PTN-ανβ3 interaction abolished PTN-induced ROS generation, suggesting that ανβ3 is also involved. The latter was confirmed in CHO cells that do not express β3 or over-express wild-type β3 or mutant β3Y773F/Y785F. PTN increased ROS generation in cells expressing wild-type β3 but not in cells not expressing or expressing mutant β3. Phosphoinositide 3-kinase (PI3K) or Erk1/2 inhibition suppressed PTN-induced ROS production, suggesting that ROS production lays down-stream of PI3K or Erk1/2 activation by PTN. Finally, ROS scavenging and xanthine oxidase inhibition completely abolished both PTN-induced ROS generation and cell migration, while NADPH oxidase inhibition had no effect. Collectively, these data suggest that xanthine oxidase-mediated ROS production is required for PTN-induced cell migration through the cell membrane functional complex of ανβ3 and RPTPβ/ζ and activation of c-src, PI3K and ERK1/2 kinases. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Identification of VLDLR as a novel endothelial cell receptor for fibrin that modulates fibrin-dependent transendothelial migration of leukocytes.

    PubMed

    Yakovlev, Sergiy; Mikhailenko, Irina; Cao, Chunzhang; Zhang, Li; Strickland, Dudley K; Medved, Leonid

    2012-01-12

    While testing the effect of the (β15-66)(2) fragment, which mimics a pair of fibrin βN-domains, on the morphology of endothelial cells, we found that this fragment induces redistribution of vascular endothelial-cadherin in a process that is inhibited by the receptor-associated protein (RAP). Based on this finding, we hypothesized that fibrin may interact with members of RAP-dependent low-density lipoprotein (LDL) receptor family. To test this hypothesis, we examined the interaction of (β15-66)(2), fibrin, and several fibrin-derived fragments with 2 members of this family by ELISA and surface plasmon resonance. The experiments showed that very LDL (VLDL) receptor (VLDLR) interacts with high affinity with fibrin through its βN-domains, and this interaction is inhibited by RAP and (β15-66)(2). Furthermore, RAP inhibited transendothelial migration of neutrophils induced by fibrin-derived NDSK-II fragment containing βN-domains, suggesting the involvement of VLDLR in fibrin-dependent leukocyte transmigration. Our experiments with VLDLR-deficient mice confirmed this suggestion by showing that, in contrast to wild-type mice, fibrin-dependent leukocyte transmigration does not occur in such mice. Altogether, the present study identified VLDLR as a novel endothelial cell receptor for fibrin that promotes fibrin-dependent leukocyte transmigration and thereby inflammation. Establishing the molecular mechanism underlying this interaction may result in the development of novel inhibitors of fibrin-dependent inflammation.

  6. The RhoA GEF, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration

    PubMed Central

    Lessey-Morillon, Elizabeth C.; Osborne, Lukas D.; Monaghan-Benson, Elizabeth; Guilluy, Christophe; O’Brien, E. Timothy; Superfine, Richard; Burridge, Keith

    2014-01-01

    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. While much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared to ICAM-1 clustering alone. We have identified that the RhoA GEF LARG/ARHGEF12 acts downstream of clustered ICAM-1 to increase RhoA activity and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. This is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes. PMID:24585879

  7. Age-related impairment of endothelial progenitor cell migration correlates with structural alterations of heparan sulfate proteoglycans.

    PubMed

    Williamson, Kate A; Hamilton, Andrew; Reynolds, John A; Sipos, Peter; Crocker, Ian; Stringer, Sally E; Alexander, Yvonne M

    2013-02-01

    Aging poses one of the largest risk factors for the development of cardiovascular disease. The increased propensity toward vascular pathology with advancing age maybe explained, in part, by a reduction in the ability of circulating endothelial progenitor cells to contribute to vascular repair and regeneration. Although there is evidence to suggest that colony forming unit-Hill cells and circulating angiogenic cells are subject to age-associated changes that impair their function, the impact of aging on human outgrowth endothelial cell (OEC) function has been less studied. We demonstrate that OECs isolated from cord blood or peripheral blood samples from young and old individuals exhibit different characteristics in terms of their migratory capacity. In addition, age-related structural changes were discovered in OEC heparan sulfate (HS), a glycocalyx component that is essential in many signalling pathways. An age-associated decline in the migratory response of OECs toward a gradient of VEGF significantly correlated with a reduction in the relative percentage of the trisulfated disaccharide, 2-O-sulfated-uronic acid, N, 6-O-sulfated-glucosamine (UA[2S]-GlcNS[6S]), within OEC cell surface HS polysaccharide chains. Furthermore, disruption of cell surface HS reduced the migratory response of peripheral blood-derived OECs isolated from young subjects to levels similar to that observed for OECs from older individuals. Together these findings suggest that aging is associated with alterations in the fine structure of HS on the cell surface of OECs. Such changes may modulate the migration, homing, and engraftment capacity of these repair cells, thereby contributing to the progression of endothelial dysfunction and age-related vascular pathologies.

  8. [Effects of constant magnetic fields on proliferation and migration of endothelial progenitor cells under rapamycin intervention: experiment with rats].

    PubMed

    Cheng, He-xiang; Xu, Xu-dong; Zhang, Rong-qing; Luan, Rong-hua; Guo, Wen-yi; Wang, Hai-chang; Yu, Zhen-tao; Zhou, Lian

    2008-10-21

    To investigate the effects of constant magnetic field (CMF) on proliferation and migration of bone marrow-derived endothelial progenitor cells (EPCs) under rapamycin intervention. EPCs were isolated from rat bone marrow by density gradient centrifugation and cultured on fibronectin-coated dishes. Six days later the attached cells were divided into 5 groups: control group, rapamycin (1 ng/ml) group, and 3 rapamycin + CMF groups (treated with CMF of the doses 0.1 mT, 0.5 mT, and 1.0 mT respectively). Samples were collected 24 hours after incubation. Cell proliferation was measured by MTT chromatometre. EPC migration was detected with modified Boyden chamber assay. The EPC proliferation ability of the rapamycin group, expressed by absorbance, was (0.252 +/- 0.006), significantly lower than that of the control group [(0.328 +/- 0.025), P < 0.05]. The number of migrating EPC was (31 +/- 3) cells, significantly lower than that of the control group [(48 +/- 5), P < 0.05]. The EPC proliferation ability of the rapamycin + CMF 0.5 mT and 1.0 mT groups, expressed by absorbance, were (0.278 +/- 0.008) and (0.280 +/- 0.010) respectively, both significantly higher than that of the control group (both P < 0.05). The migrating EPC number of the rapamycin + CMF 0.5 mT and 1.0 mT groups were (37 +/- 3) and (38 +/- 4) respectively, both significantly higher than that of the control group (both P < 0.05). CMF of the doses of 0.5 mT and 1.0 mT antagonizes the effects of rapamycin on EPCs, increasing the proliferation and migration of EPCs.

  9. Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells: a role for platelet-activating factor and IL-8

    PubMed Central

    1992-01-01

    In a previous study we observed that neutrophils respond with a rapid rise in [Ca2+]i during adherence to cytokine-activated endothelial cells (EC), caused by EC membrane-associated platelet-activating factor (PAF). In the present study, we investigated whether this form of PAF was important in neutrophil adherence and migration across monolayers of rIL-1 beta- or rTNF alpha-prestimulated EC. PAF receptor antagonists prevented neutrophil migration across cytokine-pretreated EC by approximately 60% (P less than 0.005) without interfering with the process of adherence. The antagonists WEB 2086 and L-652,731 had no effect on neutrophil migration across resting EC induced by formylmethionyl-leucyl-phenylalanine (FMLP). A murine anti-IL-8 antiserum was found to also partially inhibit the neutrophil transmigration across cytokine-activated EC. When the anti-IL-8 antiserum was used in combination with a PAF receptor antagonist, neutrophil migration across cytokine-pretreated monolayers of EC was completely prevented. During transmigration, LAM-1 and CD44 on the neutrophils were down-modulated; both WEB 2086 and anti-IL-8 antiserum partially prevented this down-modulation caused by cytokine- prestimulated EC. Our results indicate that human neutrophils are activated and guided by EC-associated PAF and EC-derived IL-8 during the in vitro diapedesis in between cytokine-stimulated EC. PMID:1315317

  10. Brain-derived neurotrophic factor induces migration of endothelial cells through a TrkB-ERK-integrin αVβ3-FAK cascade.

    PubMed

    Matsuda, Shinji; Fujita, Tsuyoshi; Kajiya, Mikihito; Takeda, Katsuhiro; Shiba, Hideki; Kawaguchi, Hiroyuki; Kurihara, Hidemi

    2012-05-01

    Brain-derived neurotrophic factor (BDNF) promotes the regeneration of periodontal tissue. Since angiogenesis is important for tissue regeneration, investigating effect of BDNF on endothelial cell function may help to reveal its mechanism, whereby, BDNF promotes periodontal tissue regeneration. In this study, we examined the influence of BDNF on migration in human microvascular endothelial cells (HMVECs), focusing on the effects on extracellular signal-regulated kinase (ERK), integrin α(V)β(3), and focal adhesion kinase (FAK). The migration of endothelial cells was assessed with a modified Boyden chamber and a wound healing assay. The expression of integrin α(V)β(3) and the phosphorylation of ERK and FAK were analyzed by immunoblotting and immunofluorescence microscopy. BDNF (25 ng/ml) induced cell migration. PD98059, an ERK inhibitor, K252a, a specific inhibitor for TrkB, a high affinity receptor of BDNF, and an anti-integrin α(V)β(3) antibody suppressed the BDNF-induced migration. BDNF increased the levels of integrin α(V)β(3) and phosphorylated ERK1/2 and FAK. The ERK inhibitor and TrkB inhibitor also reduced levels of integrin α(V)β(3) and phosphorylated FAK. We propose that BDNF stimulates endothelial cell migration by a process involving TrkB/ERK/integrin α(V)β(3)/FAK, and this may help to enhance the regeneration of periodontal tissue.

  11. Autocrine VEGF and IL-8 Promote Migration via Src/Vav2/Rac1/PAK1 Signaling in Human Umbilical Vein Endothelial Cells.

    PubMed

    Ju, Li; Zhou, Zhiwen; Jiang, Bo; Lou, Yue; Guo, Xirong

    2017-01-01

    Pro-angiogenic factors VEGF and IL-8 play a major role in modulating the migratory potential of endothelial cells. The goal of this study was to investigate the effect of autocrine VEGF and IL-8 in the form of self-conditioned medium (CM) on human umbilical vein endothelial cells (HUVECs). Enzyme-linked immunosorbent assay (ELISA) examined the automatic secretion of VEGF and IL-8 protein by HUVECs. Western blot, small interfering RNA (siRNA), pulldown and Transwell assays were used to explore the role and the mechanism of autocrine VEGF and IL-8 in migration of HUVECs. Neutralizing VEGF and IL-8 in CM significantly abrogated CM-induced migration of HUVECs. Autocrine VEGF and IL-8 increased Src phosphorylation, Rac1 activity and PAK1 phosphorylation in a time dependent manner. Additionally, blocking Rac1 activity with Rac1 siRNA largely abolished autocrine VEGF and IL-8-induced cell migration. Vav2 siRNA suppressed autocrine VEGF and IL-8-induced Rac1 activation and cell migration. Furthermore, blocking Src signaling with PP2, a specific inhibitor for Src, markedly prevented autocrine VEGF and IL-8-induced Vav2 and Rac1 activation as well as consequently cell migration. PAK1 siRNA also significantly abolished autocrine VEGF and IL-8-induced cell migration. We demonstrated for the first time that autocrine VEGF and IL-8 promoted endothelial cell migration via the Src/Vav2/Rac1/PAK1 signaling pathway. This finding reveals the molecular mechanism in the increase of endothelial cell migration induced by autocrine growth factors and cytokines, which is expected to provide a novel therapeutic target in vascular diseases. © 2017 The Author(s)Published by S. Karger AG, Basel.

  12. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  13. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways.

    PubMed

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-02-07

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiO(x):H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiO(x):H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events.

  14. Hypoxia augments outgrowth endothelial cell (OEC) sprouting and directed migration in response to sphingosine-1-phosphate (S1P).

    PubMed

    Williams, Priscilla A; Stilhano, Roberta S; To, Vivian P; Tran, Lyndon; Wong, Kevin; Silva, Eduardo A

    2015-01-01

    Therapeutic angiogenesis provides a promising approach to treat ischemic cardiovascular diseases through the delivery of proangiogenic cells and/or molecules. Outgrowth endothelial cells (OECs) are vascular progenitor cells that are especially suited for therapeutic strategies given their ease of noninvasive isolation from umbilical cord or adult peripheral blood and their potent ability to enhance tissue neovascularization. These cells are recruited to sites of vascular injury or tissue ischemia and directly incorporate within native vascular endothelium to participate in neovessel formation. A better understanding of how OEC activity may be boosted under hypoxia with external stimulation by proangiogenic molecules remains a challenge to improving their therapeutic potential. While vascular endothelial growth factor (VEGF) is widely established as a critical factor for initiating angiogenesis, sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, has recently gained great enthusiasm as a potential mediator in neovascularization strategies. This study tests the hypothesis that hypoxia and the presence of VEGF impact the angiogenic response of OECs to S1P stimulation in vitro. We found that hypoxia altered the dynamically regulated S1P receptor 1 (S1PR1) expression on OECs in the presence of S1P (1.0 μM) and/or VEGF (1.3 nM). The combined stimuli of S1P and VEGF together promoted OEC angiogenic activity as assessed by proliferation, wound healing, 3D sprouting, and directed migration under both normoxia and hypoxia. Hypoxia substantially augmented the response to S1P alone, resulting in ~6.5-fold and ~25-fold increases in sprouting and directed migration, respectively. Overall, this report highlights the importance of establishing hypoxic conditions in vitro when studying ischemia-related angiogenic strategies employing vascular progenitor cells.

  15. MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1

    PubMed Central

    Mo, Jianwen; Zhang, Daifen; Yang, Renze

    2016-01-01

    Deep vein thrombosis (DVT) is a common type of venous thrombosis. Successful resolution of DVT-related thrombi is important in the treatment of DVT. Endothelial progenitor cells (EPCs) have emerged as a promising therapeutic choice for DVT-related thrombus resolution; however, the clinical application of EPCs faces many challenges. In the present study, the expression of miR-582, miR-195 and miR-532 under hypoxic or normoxic conditions was measured using quantitative real-time PCR analysis (qRT-PCR) and the results showed that the increased fold of miR-195 was highest in human EPCs (hEPCs) under hypoxic conditions. Then the role and regulating mechanism of miR-195 in improving the function of EPCs was investigated. To investigate the effect of miR-195 inhibition on the autophagy of hEPCs, the expression of the autophagy-related genes LC3B and beclin1 was examined using western blotting, and the formation of autophagosomes was observed using TEM. The results indicated that the inhibition of miR-195 expression could promote autophagy of hEPCs. In addition, we investigated the role of miR-195 on the proliferation, migration and angiogenesis of hEPCs under hypoxia. The results revealed that miR-195 inhibition promotes cell proliferation, migration and angiogenesis of hEPCs under hypoxia. Furthermore, GABA type A receptor associated protein like 1 (GABARAPL1) was identified as a directed target of miR-195 and GABARAPL1 silencing could decrease the effect of miR-195 knockdown on cell proliferation, migration, angiogenesis and autophagy of hEPCs under hypoxia. Together, these results indicate that miR-195 regulates cell proliferation, migration, angiogenesis and autophagy of hEPCs by targeting GABARAPL1. PMID:27623937

  16. Far-infrared radiation inhibits proliferation, migration, and angiogenesis of human umbilical vein endothelial cells by suppressing secretory clusterin levels.

    PubMed

    Hwang, Soojin; Lee, Dong-Hoon; Lee, In-Kyu; Park, Young Mi; Jo, Inho

    2014-04-28

    Far-infrared (FIR) radiation is known to lessen the risk of angiogenesis-related diseases including cancer. Because deficiency of secretory clusterin (sCLU) has been reported to inhibit angiogenesis of endothelial cells (EC), we investigated using human umbilical vein EC (HUVEC) whether sCLU mediates the inhibitory effects of FIR radiation. Although FIR radiation ranging 3-25μm wavelength at room temperature for 60min did not alter EC viability, further incubation in the culture incubator (at 37°C under 5% CO2) after radiation significantly inhibited EC proliferation, in vitro migration, and tube formation in a time-dependent manner. Under these conditions, we found decreased sCLU mRNA and protein expression in HUVEC and decreased sCLU protein secreted in culture medium. Expectedly, the replacement of control culture medium with the FIR-irradiated conditioned medium significantly decreased wound closure and tube formation of HUVEC, and vice versa. Furthermore, neutralization of sCLU with anti-sCLU antibody also mimicked all observed inhibitory effects of FIR radiation. Moreover, treatment with recombinant human sCLU protein completely reversed the inhibitory effects of FIR radiation on EC migration and angiogenesis. Lastly, vascular endothelial growth factor also increased sCLU secretion in the culture medium, and wound closure and tube formation of HUVEC, which were significantly reduced by FIR radiation. Our results demonstrate a novel mechanism by which FIR radiation inhibits the proliferation, migration, and angiogenesis of HUVEC, via decreasing sCLU.

  17. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  18. Fibroblast growth factor 16 and 18 are expressed in human cardiovascular tissues and induce on endothelial cells migration but not proliferation

    SciTech Connect

    Antoine, M.; Wirz, W.; Tag, C.G.; Gressner, A.M.; Wycislo, M.; Mueller, R.; Kiefer, P. . E-mail: pkiefer@ukaachen.de

    2006-07-21

    Endothelial cells line the blood vessel and precursor endothelial cells appear to have a pivotal effect on the organ formation of the heart, the embryonic development of the kidney, and the liver. Several growth factors including the fibroblast growth factors (FGF) seem to be involved in these processes. Ligands such as basic FGF produced and secreted by endothelial cells may also coordinate cellular migration, differentiation, and proliferation under pathological conditions including wound healing, tumorgenesis, and fibrogenesis in the adult. Recently we demonstrated the expression of two secreted FGFs, FGF16, and FGF18, in HUVEC and in rat aortic tissue. In the present report, we confirmed by RT-PCR analysis that FGF18 is wildly expressed in the cardiovascular tissue, while FGF16 showed a more restricted expression pattern. HUVEC clearly demonstrated chemotaxis towards FGF16 and FGF18. Both FGFs also enhanced cell migration in response to mechanical damage. However, recombinant FGF16 and FGF18 failed to induce endothelial cell proliferation or sprouting in a three-dimensional in vitro angiogenesis assay. Fgf18 expression was earlier reported in the liver, and we detected FGF18 expression in liver vascular and liver sinusoidal endothelial cells (LSECs), but not in hepatic parenchymal cells. Recombinant FGF18 stimulated DNA synthesis in primary hepatocytes, suggesting, that endothelial FGF18 might have a paracrine function in promoting growth of the parenchymal tissue. Interestingly, FGF2, which is mitogenic on endothelial cells and hepatocytes stimulates a sustained MAPK activation in both cell types, while FGF18 causes a short transient activation of the MAPK pathway in endothelial cells but a sustained activation in hepatocytes. Therefore, the difference in the time course of MAPK activation by the different FGFs appears to be the cause for the different cellular responses.

  19. Human mesenchymal stem cells stimulate EaHy926 endothelial cell migration: combined proteomic and in vitro analysis of the influence of donor-donor variability

    PubMed Central

    Walter, Merlin N.M.; Kohli, Nupur; Khan, Neelam; Major, Triin; Fuller, Heidi; Wright, Karina T.; Kuiper, Jan-Herman; Johnson, William E.B.

    2015-01-01

    Mesenchymal stem cells (MSCs) stimulate angiogenesis within a wound environment and this effect is mediated through paracrine interactions with the endothelial cells present. Here we report that human MSC-conditioned medium (n=3 donors) significantly increased EaHy-926 endothelial cell adhesion and cell migration, but that this stimulatory effect was markedly donor-dependent. MALDI-TOF/TOF mass spectrometry demonstrated that whilst collagen type I and fibronectin were secreted by all of the MSC cultures, the small leucine rich proteoglycan, decorin was secreted only by the MSC culture that was least effective upon EaHy-926 cells. These individual extracellular matrix components were then tested as culture substrata. EaHy-926 cell adherence was greatest on fibronectin-coated surfaces with least adherence on decorin-coated surfaces. Scratch wound assays were used to examine cell migration. EaHy-926 cell scratch wound closure was quickest on substrates of fibronectin and slowest on decorin. However, EaHy-926 cell migration was stimulated by the addition of MSC-conditioned medium irrespective of the types of culture substrates. These data suggest that whilst the MSC secretome may generally be considered angiogenic, the composition of the secretome is variable and this variation probably contributes to donor-donor differences in activity. Hence, screening and optimizing MSC secretomes will improve the clinical effectiveness of pro-angiogenic MSC-based therapies. PMID:26195891

  20. Chlorambucil (nitrogen mustard) induced impairment of early vascular endothelial cell migration - effects of α-linolenic acid and N-acetylcysteine.

    PubMed

    Steinritz, Dirk; Schmidt, Annette; Simons, Thilo; Ibrahim, Marwa; Morguet, Christian; Balszuweit, Frank; Thiermann, Horst; Kehe, Kai; Bloch, Wilhelm; Bölck, Birgit

    2014-08-05

    Alkylating agents (e.g. sulfur and nitrogen mustards) cause a variety of cell and tissue damage including wound healing disorder. Migration of endothelial cells is of utmost importance for effective wound healing. In this study we investigated the effects of chlorambucil (a nitrogen mustard) on early endothelial cells (EEC) with special focus on cell migration. Chlorambucil significantly inhibited migration of EEC in Boyden chamber and wound healing experiments. Cell migration is linked to cytoskeletal organization. We therefore investigated the distribution pattern of the Golgi apparatus as a marker of cell polarity. Cells are polarized under control conditions, whereas chlorambucil caused an encircling perinuclear position of the Golgi apparatus, indicating non-polarized cells. ROS are discussed to be involved in the pathophysiology of alkylating substances and are linked to cell migration and cell polarity. Therefore we investigated the influence of ROS-scavengers (α-linolenic acid (ALA) and N-acetylcysteine (NAC)) on the impaired EEC migration. Both substances, in particular ALA, improved EEC migration. Notably ALA restored cell polarity. Remarkably, investigations of ROS and RNS biomarkers (8-isoprostane and nitrotyrosine) did not reveal a significant increase after chlorambucil exposure when assessed 24h post exposure. A distinct breakdown of mitochondrial membrane potential (measured by TMRM) that recovered under ALA treatment was observed. In conclusion our results provide compelling evidence that the alkylating agent chlorambucil dramatically impairs directed cellular migration, which is accompanied by perturbations of cell polarity and mitochondrial membrane potential. ALA treatment was able to reconstitute cell polarity and to stabilize mitochondrial potential resulting in improved cell migration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Human chorionic gonadotropin regulates endothelial cell responsiveness to interleukin 1 and amplifies the cytokine-mediated effect on cell proliferation, migration and the release of angiogenic factors.

    PubMed

    Bourdiec, Amélie; Bédard, David; Rao, C V; Akoum, Ali

    2013-08-01

    Successful embryonic implantation requires an appropriate communication network between the embryo and its near environment within the implantation site. Herein, we examined whether human chorionic gonadotropin (hCG), the major embryonic signal, targets endothelial cells and regulate their responsiveness to interleukin 1 (IL1), one of the earliest signals released by embryonic cells. Human microvascular endothelial cell proliferation and migration following exposure to various concentrations of hCG and/or IL1B for different time periods were analyzed by BrdU incorporation and wound healing assays. The expression of soluble (s) and membrane-bound (mb) IL1 receptors (IL1Rs), IL1R antagonist (IL1RN), luteinizing hormone/choriogonadotropin receptor (LHCGR), and IL8 was determined by real-time PCR, Western blot, and ELISA. Cell proliferation and migration increased in response to IL1B and further in the presence of hCG. IL1B up-regulated both the signaling IL1R1 and the inhibitory IL1R2, while adding hCG further increased IL1R1 and significantly downregulated IL1R2. This translated into an increased secretion of IL8, which was inhibited in cells where IL1R2 was overexpressed. These findings reveal a new mechanism by which hCG may target endothelial cells to directly stimulate angiogenesis and favor embryonic growth. © 2013 John Wiley & Sons A/S.

  2. Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow

    SciTech Connect

    Semino, Carlos E. . E-mail: semino@mit.edu; Kamm, Roger D.; Lauffenburger, Douglas A.

    2006-02-01

    We show here that autocrine ligand activation of epidermal growth factor (EGF) receptor in combination with interstitial flow is critically involved in the morphogenetic response of endothelial cells to VEGF stimulation. Human umbilical vein endothelial cell (HUVEC) monolayers cultured on a collagen gel and exposed to low interstitial flow in the absence of EGF and VEGF remained viable and mitotic but exhibited little evidence of vascular morphogenesis. Addition of VEGF produced a flow-dependent morphogenetic response within 48 to 72 h, characterized by branched capillary-like structures. The response was substantially abolished by inhibitors related to the autocrine EGF receptor pathway including Galardin, AG1478, PD98059, and an EGF receptor-blocking antibody, indicating that regulation of the morphogenetic process operates via autocrine EGF receptor activation. Moreover, we observed that in our system the EGF receptor was always activated independently of the interstitial flow, and, in addition, the EGF receptor inhibitors used above reduced the phosphorylation state of the receptor, correlating with inhibition of capillary morphogenesis. Finally, 5'bromo-2'-deoxyuridine (BrdU) labeling identified dividing cells at the monolayer but not in the extending capillary-like structures. EGF pathway inhibitors Galardin and AG1478 did not reduce BrdU incorporation in the monolayer, indicating that the EGF-receptor-mediated morphogenetic behavior is mainly due to cell migration rather than proliferation. Based on these results, we propose a two-step model for in vitro capillary morphogenesis in response to VEGF stimulation with interstitial fluid flow: monolayer maintenance by mitotic activity independent of EGF receptors and a migratory response mediated by autocrine EGF receptor activation wherein cells establish capillary-like structures.

  3. Tetraspanins in Cell Migration

    PubMed Central

    Jiang, Xupin; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention. PMID:26091149

  4. VEGF induces proliferation, migration, and TGF-{beta}1 expression in mouse glomerular endothelial cells via mitogen-activated protein kinase and phosphatidylinositol 3-kinase

    SciTech Connect

    Li Zhaodong; Bork, Jens Peter; Krueger, Bettina; Patsenker, Eleonora; Schulze-Krebs, Anja; Hahn, Eckhart G.; Schuppan, Detlef; E-mail: dschuppa@bidmc.harvard.edu

    2005-09-09

    The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-{beta}1 mRNA, enhanced TGF-{beta}1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-{beta}1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.

  5. Glucocorticoid-Mediated Inhibition of Angiogenic Changes in Human Endothelial Cells Is Not Caused by Reductions in Cell Proliferation or Migration

    PubMed Central

    Logie, James J.; Ali, Sadaf; Marshall, Kathryn M.; Heck, Margarete M. S.; Walker, Brian R.; Hadoke, Patrick W. F.

    2010-01-01

    Background Glucocorticoid-mediated inhibition of angiogenesis is important in physiology, pathophysiology and therapy. However, the mechanisms through which glucocorticoids inhibit growth of new blood vessels have not been established. This study addresses the hypothesis that physiological levels of glucocorticoids inhibit angiogenesis by directly preventing tube formation by endothelial cells. Methodology/Principal Findings Cultured human umbilical vein (HUVEC) and aortic (HAoEC) endothelial cells were used to determine the influence of glucocorticoids on tube-like structure (TLS) formation, and on cellular proliferation (5-bromo-2′-deoxyuridine (BrdU) incorporation), viability (ATP production) and migration (Boyden chambers). Dexamethasone or cortisol (at physiological concentrations) inhibited both basal and prostaglandin F2α (PGF2α)-induced and vascular endothelial growth factor (VEGF) stimulated TLS formation in endothelial cells (ECs) cultured on Matrigel, effects which were blocked with the glucocorticoid receptor antagonist RU38486. Glucocorticoids had no effect on EC viability, migration or proliferation. Time-lapse imaging showed that cortisol blocked VEGF-stimulated cytoskeletal reorganisation and initialisation of tube formation. Real time PCR suggested that increased expression of thrombospodin-1 contributed to glucocorticoid-mediated inhibition of TLS formation. Conclusions/Significance We conclude that glucocorticoids interact directly with glucocorticoid receptors on vascular ECs to inhibit TLS formation. This action, which was conserved in ECs from two distinct vascular territories, was due to alterations in cell morphology rather than inhibition of EC viability, migration or proliferation and may be mediated in part by induction of thrombospodin-1. These findings provide important insights into the anti-angiogenic action of endogenous glucocorticoids in health and disease. PMID:21217824

  6. Influence of HMG-CoA reductase inhibitors on leptin-induced endothelial cell proliferation, migration, and capillary-like tube formation.

    PubMed

    Burgazli, K M; Stein, N I; Mericliler, M; Parahuleva, M; Erdogan, A

    2014-05-01

    This study investigated the impact of the hepatic hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on the leptin-induced human umbilical vein endothelial (HUVE) cell proliferation, migration, and capillary-like tube formation. The HUVE cells were isolated and cultured, and stimulated with leptin, statins (cerivastatin, fluvastatin, simvastatin), mevalonate, farnesyl pyrophosphate, geranylgeranyl pyrophosphate, or methyl-β-cyclodextrin. The endothelial cell proliferation was assessed using the Neubauer counting chamber. The migration of HUVE cells was examined with the planar migration assay. In vitro capillary sprouting was quantified by measuring the sprout length, number, and cumulative sprout length. The HMG-CoA reductase inhibitors significantly reduced leptin-induced proliferation and migration, which was reversed by mevalonate. Further, the inhibitory effect of the statins on leptin-induced migration was shown to be modulated by the prenylation of farnesyl pyrophosphate and geranylgeranyl pyrophosphate. Although stimulation with a leptin showed no significant effect, a marked increase in capillary-like tube formation was observed with a joint stimulation with HMG-CoA reductase inhibitors. Although statins caused inhibition of proliferation and migration, the same dose of the agents amplified the selective growth of capillary-like tube formation. Membranous cholesterol depletion by methyl-β-cyclodextrin showed a weaker effect compared with statins. Through modulation of prenylation, leptin-induced pro-atherosclerotic events including proliferation and migration were inhibited by HMG-CoA reductase inhibitors.

  7. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration: The role for KDR and MMP-9

    SciTech Connect

    Yao, Jianhua S.; Zhai Wenwu; Young, William L.; Yang Guoyuan . E-mail: gyyang@anesthesia.ucsf.edu

    2006-04-21

    Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for First time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p < 0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression.

  8. Aprotinin stimulates angiogenesis and human endothelial cell migration through the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta.

    PubMed

    Koutsioumpa, Marina; Hatziapostolou, Maria; Mikelis, Constantinos; Koolwijk, Pieter; Papadimitriou, Evangelia

    2009-01-14

    Pleiotrophin is an 18 kDa secreted polypeptide growth factor with direct pro-angiogenic and tumorigenic properties. Pleiotrophin is a substrate for proteolytic enzymes, such as plasmin, leading to proteolytic fragments with distinct activities on endothelial cell activation in vitro or angiogenesis in vivo. Aprotinin is a naturally occurring broad spectrum protease inhibitor, used widely in cardiac surgery due to its ability to inhibit plasmin and reduce perioperative bleeding. Since we have seen that aprotinin inhibits proteolysis of pleiotrophin by plasmin, the aim of the present study was to evaluate the possible role of pleiotrophin in the effects of aprotinin on angiogenesis and human endothelial cell migration. Our data demonstrate that aprotinin, in a concentration-dependent manner, is angiogenic in the chicken embryo chorioallantoic membrane assay in vivo and induces human endothelial cell migration in vitro. Aprotinin inhibits pleiotrophin proteolysis and induces expression and secretion of pleiotrophin through an AP-1-dependent transcriptional activation of the pleiotrophin gene, and pleiotrophin seems to mediate the stimulatory effects of aprotinin on cell migration through its receptor protein tyrosine phosphatase beta/zeta. The stimulatory effect of aprotinin on pleiotrophin expression and cell migration may explain, at least partly, the problems observed with the clinical use of aprotinin.

  9. Norepinephrine inhibits mesenchymal stem cell chemotaxis migration by increasing stromal cell-derived factor-1 secretion by vascular endothelial cells via NE/abrd3/JNK pathway.

    PubMed

    Wu, Baolei; Wang, Lei; Yang, Xi; Mao, Ming; Ye, Chen; Liu, Peng; Yang, Zihui; Yang, Xinjie; Lei, Delin; Zhang, Chenping

    2016-12-10

    Mesenchymal stem cells (MSCs), which are physiologically maintained in vascular endothelial cell (VEC)-based niches, play a critical role in tissue regeneration. Our previous studies demonstrated that sympathetic denervation could promote MSC mobilization, thereby enhancing bone formation in distraction osteogenesis (DO), a self-tissue engineering for craniofacial and orthopeadic surgeries. However, the mechanisms on how sympathetic neurotransmitter norepinephrine (NE) regulates MSC migration are not well understood. Here we showed that deprivation of NE by transection of cervical sympathetic trunk (TCST) inhibited stromal cell-derived factor-1 (SDF-1) expression in the perivascular regions in rat mandibular DO. In vitro studies showed that NE treatment markedly upregulated p-JNK and therefore stimulated higher SDF-1 expression in VECs than control groups, and siRNA knockdown of the abrd3 gene abolished the NE-induced p-JNK activation. On the other hand, osteoblasts differentiated from MSCs showed an increase in SDF-1 secretion with lack of NE. Importantly, NE-treated VECs inhibited the MSC chemotaxis migration along the SDF-1 concentration gradient as demonstrated in a novel 3-chamber Transwell assay. Collectively, our study suggested that NE may increase the SDF-1 secretion by VECs via NE/abrd3/JNK pathway, thereby inhibiting the MSC chemotaxis migration from perivascular regions toward bone trabecular frontlines along the SDF-1 concentration gradient in bone regeneration. Copyright © 2016. Published by Elsevier Inc.

  10. Mosquito Saliva Increases Endothelial Permeability in the Skin, Immune Cell Migration, and Dengue Pathogenesis during Antibody-Dependent Enhancement

    PubMed Central

    Schmid, Michael A.; Glasner, Dustin R.; Shah, Sanjana; Michlmayr, Daniela; Kramer, Laura D.; Harris, Eva

    2016-01-01

    Dengue remains the most prevalent arthropod-borne viral disease in humans. While probing for blood vessels, Aedes aegypti and Ae. albopictus mosquitoes transmit the four serotypes of dengue virus (DENV1-4) by injecting virus-containing saliva into the skin. Even though arthropod saliva is known to facilitate transmission and modulate host responses to other pathogens, the full impact of mosquito saliva on dengue pathogenesis is still not well understood. Inoculating mice lacking the interferon-α/β receptor intradermally with DENV revealed that mosquito salivary gland extract (SGE) exacerbates dengue pathogenesis specifically in the presence of enhancing serotype-cross-reactive antibodies—when individuals already carry an increased risk for severe disease. We further establish that SGE increases viral titers in the skin, boosts antibody-enhanced DENV infection of dendritic cells and macrophages in the dermis, and amplifies dendritic cell migration to skin-draining lymph nodes. We demonstrate that SGE directly disrupts endothelial barrier function in vitro and induces endothelial permeability in vivo in the skin. Finally, we show that surgically removing the site of DENV transmission in the skin after 4 hours rescued mice from disease in the absence of SGE, but no longer prevented lethal antibody-enhanced disease when SGE was present. These results indicate that SGE accelerates the dynamics of dengue pathogenesis after virus transmission in the skin and induces severe antibody-enhanced disease systemically. Our study reveals novel aspects of dengue pathogenesis and suggests that animal models of dengue and pre-clinical testing of dengue vaccines should consider mosquito-derived factors as well as enhancing antibodies. PMID:27310141

  11. Core-shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration.

    PubMed

    Merkle, Valerie M; Tran, Phat L; Hutchinson, Marcus; Ammann, Kaitlyn R; DeCook, Katrina; Wu, Xiaoyi; Slepian, Marvin J

    2015-11-01

    Cardiovascular disease is the leading cause of death in the world. In this study, coaxial electrospinning is employed to fabricate fibers in a core-shell structure with polyvinyl alcohol (PVA) in the core and gelatin in the shell for evaluation as a potential vascular tissue engineering construct. PVA, a synthetic polymer, provides mechanical strength to the biocompatible and weak gelatin sheath. The HUVEC (human umbilical vein endothelial cells) and rSMC (rat smooth muscle cells) demonstrated a flattened morphology with multiple attachment sites on the gelatin and coaxial scaffolds, with an increase in cell spreading seen as mechanical stiffness of the scaffold increased. Additionally, HUVEC had an increase in migration on the coaxial scaffolds, which was attributed to the increase in stiffness; however, this increase in migration was not seen with the rSMC, which had the highest outward migration on the flat surfaces (tissue culture polystyrene and gelatin film). Overall, these scaffolds are appealing substrates for vascular tissue engineering applications. The worldwide burden of cardiovascular disease presents an ongoing need and opportunity for creating a variety of vascular prostheses. Fabrication of novel scaffolds and constructs for these are needed, providing strength and biological properties facilitating endothelial (EC) and smooth muscle (SMC) cell attachment, migration, and integration. Using electrospinning we formed 3D core:shell nanofibers and examined their effectiveness as substrates for EC and SMC attachment and growth, compared to a 2D (flat) substrate. We found that ECs attached and grew best on 3D core:shell fibers, whereas SMCs favored 2D gelatin surfaces. Interestingly, we found that EC attachment, migration and growth correlated and improved with increasing fiber stiffness. These materials and insights may foster novel vascular prostheses development. Copyright © 2015. Published by Elsevier Ltd.

  12. miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration

    PubMed Central

    Khoo, Cheen P.; Roubelakis, Maria G.; Schrader, Jack B.; Tsaknakis, Grigorios; Konietzny, Rebecca; Kessler, Benedikt; Harris, Adrian L.; Watt, Suzanne M.

    2017-01-01

    Circulating endothelial colony forming cells (ECFCs) contribute to vascular repair where they are a target for therapy. Since ECFC proliferative potential is increased in cord versus peripheral blood and to define regulatory factors controlling this proliferation, we compared the miRNA profiles of cord blood and peripheral blood ECFC-derived cells. Of the top 25 differentially regulated miRNAs selected, 22 were more highly expressed in peripheral blood ECFC-derived cells. After validating candidate miRNAs by q-RT-PCR, we selected miR-193a-3p for further investigation. The miR-193a-3p mimic reduced cord blood ECFC-derived cell proliferation, migration and vascular tubule formation, while the miR-193a-3p inhibitor significantly enhanced these parameters in peripheral blood ECFC-derived cells. Using in silico miRNA target database analyses combined with proteome arrays and luciferase reporter assays of miR-193a-3p mimic treated cord blood ECFC-derived cells, we identified 2 novel miR-193a-3p targets, the high mobility group box-1 (HMGB1) and the hypoxia upregulated-1 (HYOU1) gene products. HMGB1 silencing in cord blood ECFC-derived cells confirmed its role in regulating vascular function. Thus, we show, for the first time, that miR-193a-3p negatively regulates human ECFC vasculo/angiogenesis and propose that antagonising miR-193a-3p in less proliferative and less angiogenic ECFC-derived cells will enhance their vasculo/angiogenic function. PMID:28276476

  13. miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration.

    PubMed

    Khoo, Cheen P; Roubelakis, Maria G; Schrader, Jack B; Tsaknakis, Grigorios; Konietzny, Rebecca; Kessler, Benedikt; Harris, Adrian L; Watt, Suzanne M

    2017-03-09

    Circulating endothelial colony forming cells (ECFCs) contribute to vascular repair where they are a target for therapy. Since ECFC proliferative potential is increased in cord versus peripheral blood and to define regulatory factors controlling this proliferation, we compared the miRNA profiles of cord blood and peripheral blood ECFC-derived cells. Of the top 25 differentially regulated miRNAs selected, 22 were more highly expressed in peripheral blood ECFC-derived cells. After validating candidate miRNAs by q-RT-PCR, we selected miR-193a-3p for further investigation. The miR-193a-3p mimic reduced cord blood ECFC-derived cell proliferation, migration and vascular tubule formation, while the miR-193a-3p inhibitor significantly enhanced these parameters in peripheral blood ECFC-derived cells. Using in silico miRNA target database analyses combined with proteome arrays and luciferase reporter assays of miR-193a-3p mimic treated cord blood ECFC-derived cells, we identified 2 novel miR-193a-3p targets, the high mobility group box-1 (HMGB1) and the hypoxia upregulated-1 (HYOU1) gene products. HMGB1 silencing in cord blood ECFC-derived cells confirmed its role in regulating vascular function. Thus, we show, for the first time, that miR-193a-3p negatively regulates human ECFC vasculo/angiogenesis and propose that antagonising miR-193a-3p in less proliferative and less angiogenic ECFC-derived cells will enhance their vasculo/angiogenic function.

  14. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe

    2015-03-01

    A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    SciTech Connect

    Pourgholami, Mohammad H.; Khachigian, Levon M.; Fahmy, Roger G.; Badar, Samina; Wang, Lisa; Chu, Stephanie Wai Ling; Morris, David Lawson

    2010-07-09

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  16. Endoglin promotes transforming growth factor beta-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC.

    PubMed

    Lee, Nam Y; Ray, Bridgette; How, Tam; Blobe, Gerard C

    2008-11-21

    Transforming growth factor beta (TGF-beta) signals through two distinct pathways to regulate endothelial cell proliferation, migration, and angiogenesis, the ALK-1/Smad 1/5/8 and ALK-5/Smad2/3 pathways. Endoglin is a co-receptor predominantly expressed in endothelial cells that participates in TGFbeta-mediated signaling with ALK-1 and ALK-5 and regulates critical aspects of cellular and biological responses. The embryonic lethal phenotype of knock-out mice because of defects in angiogenesis and disease-causing mutations resulting in human vascular diseases both support essential roles for endoglin, ALK-1, and ALK-5 in the vasculature. However, the mechanism by which endoglin mediates TGF-beta signaling through ALK-1 and ALK-5 has remained elusive. Here we describe a novel interaction between endoglin and GIPC, a scaffolding protein known to regulate cell surface receptor expression and trafficking. Co-immunoprecipitation and immunofluorescence confocal studies both demonstrate a specific interaction between endoglin and GIPC in endothelial cells, mediated by a class I PDZ binding motif in the cytoplasmic domain of endoglin. Subcellular distribution studies demonstrate that endoglin recruits GIPC to the plasma membrane and co-localizes with GIPC in a TGFbeta-independent manner, with GIPC-promoting cell surface retention of endoglin. Endoglin specifically enhanced TGF-beta1-induced phosphorylation of Smad 1/5/8, increased a Smad 1/5/8 responsive promoter, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with GIPC. These studies define a novel mechanism for the regulation of endoglin signaling and function in endothelial cells and demonstrate a new role for GIPC in TGF-beta signaling.

  17. Endoglin Promotes Transforming Growth Factor β-mediated Smad 1/5/8 Signaling and Inhibits Endothelial Cell Migration through Its Association with GIPC*

    PubMed Central

    Lee, Nam Y.; Ray, Bridgette; How, Tam; Blobe, Gerard C.

    2008-01-01

    Transforming growth factor β (TGF-β) signals through two distinct pathways to regulate endothelial cell proliferation, migration, and angiogenesis, the ALK-1/Smad 1/5/8 and ALK-5/Smad2/3 pathways. Endoglin is a co-receptor predominantly expressed in endothelial cells that participates in TGFβ-mediated signaling with ALK-1 and ALK-5 and regulates critical aspects of cellular and biological responses. The embryonic lethal phenotype of knock-out mice because of defects in angiogenesis and disease-causing mutations resulting in human vascular diseases both support essential roles for endoglin, ALK-1, and ALK-5 in the vasculature. However, the mechanism by which endoglin mediates TGF-β signaling through ALK-1 and ALK-5 has remained elusive. Here we describe a novel interaction between endoglin and GIPC, a scaffolding protein known to regulate cell surface receptor expression and trafficking. Co-immunoprecipitation and immunofluorescence confocal studies both demonstrate a specific interaction between endoglin and GIPC in endothelial cells, mediated by a class I PDZ binding motif in the cytoplasmic domain of endoglin. Subcellular distribution studies demonstrate that endoglin recruits GIPC to the plasma membrane and co-localizes with GIPC in a TGFβ-independent manner, with GIPC-promoting cell surface retention of endoglin. Endoglin specifically enhanced TGF-β1-induced phosphorylation of Smad 1/5/8, increased a Smad 1/5/8 responsive promoter, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with GIPC. These studies define a novel mechanism for the regulation of endoglin signaling and function in endothelial cells and demonstrate a new role for GIPC in TGF-β signaling. PMID:18775991

  18. Conditioned media from human ovarian cancer endothelial progenitor cells induces ovarian cancer cell migration by activating epithelial-to-mesenchymal transition.

    PubMed

    Teng, L; Peng, S; Guo, H; Liang, H; Xu, Z; Su, Y; Gao, L

    2015-11-01

    Bone marrow-derived endothelial progenitor cells (EPCs) migrate to and engraft at ovarian cancer sites. Understanding the interactions between ovarian cancer cells and EPCs is fundamental for determining whether to harness EPC-tumor interactions for delivery of therapeutic agents or target them for intervention. Ovarian cancer cell lines (SKOV-3 and OVCAR-3) were cultured alone or in EPC-conditioned media (EPC-CM). Migration of ovarian cancer cells was detected by transwell chamber. N-cadherin and E-cadherin expression were analyzed by real-time reverse transcription PCR and western blot. EPC-CM can increase transforming growth factor-beta (TGF-β) secretion in SKOV-3 and OVCAR-3 cells. EPC-CM induced loss of ovarian cancer cell-cell junctions, downregulation of E-cadherin, upregulation of N-cadherin and acquisition of a fibroblastic phenotype, consistent with an epithelial-to-mesenchymal transition (EMT). The specific TGF-β inhibitor SB431542 abolished the SKOV-3 and OVCAR-3 ovarian cancer cell migration induced by EPC-CM. In SKOV-3 and OVCAR-3 cells, EPC-CM downregulated E-cadherin and concurrently upregulated N-cadherin. EPC-CM upregulated the expression of transcriptional repressors of E-cadherin, Snail and Twist. Treatment with SB431542 abolished the effects of EPC-CM on the relative expression levels of cadherin, Snail and Twist. This study demonstrates that TGF-β has a role in EPC-CM-induced ovarian cancer migration by activating EMT.

  19. TGF-β1 enhances SDF-1-induced migration and tube formation of choroid-retinal endothelial cells by up-regulating CXCR4 and CXCR7 expression.

    PubMed

    Feng, Yi-fan; Yuan, Fei; Guo, Hua; Wu, Wei-zhong

    2014-12-01

    Stromal derived factor (SDF)-1 has been confirmed to regulate angiogenesis in choroidal neovascularization formation via its two receptors, CXC chemokine receptors 4 (CXCR4) and 7 (CXCR7). Previous studies found that there is cross-talk between the transforming growth factor beta (TGF-β) and SDF-1 pathways in some types of immune or tumor cells, but much less is known about this interaction in endothelial cells. This study investigated the effects of TGF-β1 on CXCR4 and CXCR7 expression as well as SDF-1-induced migration and tube formation in choroid-retinal endothelial (RF/6A) cells. RF/6A cells were treated with recombinant TGF-β1 at various concentrations and time points. Real-time PCR and Western blotting were used to examine the mRNA and protein levels of CXCR4 and CXCR7. In addition, transwell migration and Matrigel tube formation analyses were performed to investigate the role of TGF-β1 pretreatment in SDF-1-induced RF/6A cell migration and tube formation. Our results showed that treatment with recombinant human TGF-β1 enhanced the CXCR4 and CXCR7 levels in time- and dose-dependent manners. The increased CXCR4 and CXCR7 expression resulted in increased SDF-1-induced RF/6A cell migration and tube formation. In addition, the transcriptional regulation of CXCR4 and CXCR7 by TGF-β1 was found to be mediated by phosphorylation of the extracellular signal-related kinase1/2 pathway. Altogether, these results demonstrate that a cross-talk exists between the TGF-β1 and SDF-1 pathways in choroid-retinal endothelial cells, reflecting a novel molecular mechanism that explains the pro-angiogenic effects of TGF-β1 and possibly provides new perspectives for the treatment of CNV-associated diseases.

  20. Diallyl trisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth.

    PubMed

    Lai, Kuang-Chi; Hsu, Shu-Chun; Yang, Jai-Sing; Yu, Chien-Chih; Lein, Jin-Cherng; Chung, Jing-Gung

    2015-02-01

    Angiogenesis inhibitors are beneficial for the prevention and treatment of angiogenesis-dependent diseases including cancer. We examined the cytotoxic, anti-metastatic, anti-cancer and anti-angiogenic effects of diallyl trisulfide (DATS). In HT29 cells, DATS inhibited migration and invasion through the inhibition of focal adhesion kinase (FAK), extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38 which was associated with inhibition of matrix metalloproteinases-2, -7 and -9 and VEGF. In human umbilical vein endothelial cells (HUVEC), DATS inhibited the migration and angiogenesis through FAK, Src and Ras. DATS also inhibited the secretion of VEGF. The capillary-like tube structure formation and migration by HUVEC was inhibited by DATS. The chicken egg chorioallantoic membrane (CAM) assay indicated that DATS treatment inhibited ex-vivo angiogenesis. We investigated the anti-tumour effects of DATS against human colon cancer xenografts in BALB/c(nu/nu) mice and its anti-angiogenic activity in vivo. In this in-vivo study, DATS also inhibited the tumour growth, tumour weight and angiogenesis (decreased the levels of haemoglobin) in HT29 cells. In conclusion, the present results suggest that the inhibition of angiogenesis may be an important mechanism in colon cancer chemotherapy by DATS. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Diallyl trisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth

    PubMed Central

    Lai, Kuang-Chi; Hsu, Shu-Chun; Yang, Jai-Sing; Yu, Chien-Chih; Lein, Jin-Cherng; Chung, Jing-Gung

    2015-01-01

    Angiogenesis inhibitors are beneficial for the prevention and treatment of angiogenesis-dependent diseases including cancer. We examined the cytotoxic, anti-metastatic, anti-cancer and anti-angiogenic effects of diallyl trisulfide (DATS). In HT29 cells, DATS inhibited migration and invasion through the inhibition of focal adhesion kinase (FAK), extracellular signal-regulated kinase, c-Jun N-terminal kinase and p38 which was associated with inhibition of matrix metalloproteinases-2, -7 and -9 and VEGF. In human umbilical vein endothelial cells (HUVEC), DATS inhibited the migration and angiogenesis through FAK, Src and Ras. DATS also inhibited the secretion of VEGF. The capillary-like tube structure formation and migration by HUVEC was inhibited by DATS. The chicken egg chorioallantoic membrane (CAM) assay indicated that DATS treatment inhibited ex-vivo angiogenesis. We investigated the anti-tumour effects of DATS against human colon cancer xenografts in BALB/cnu/nu mice and its anti-angiogenic activity in vivo. In this in-vivo study, DATS also inhibited the tumour growth, tumour weight and angiogenesis (decreased the levels of haemoglobin) in HT29 cells. In conclusion, the present results suggest that the inhibition of angiogenesis may be an important mechanism in colon cancer chemotherapy by DATS. PMID:25403643

  2. Inhibition of mTOR down-regulates scavenger receptor, class B, type I (SR-BI) expression, reduces endothelial cell migration and impairs nitric oxide production.

    PubMed

    Fruhwürth, Stefanie; Krieger, Sigurd; Winter, Katharina; Rosner, Margit; Mikula, Mario; Weichhart, Thomas; Bittman, Robert; Hengstschläger, Markus; Stangl, Herbert

    2014-07-01

    The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment.

  3. Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro.

    PubMed

    Dorward, Hilary S; Du, Alice; Bruhn, Maressa A; Wrin, Joseph; Pei, Jinxin V; Evdokiou, Andreas; Price, Timothy J; Yool, Andrea J; Hardingham, Jennifer E

    2016-02-24

    Aquaporins (AQP) are water channel proteins that enable fluid fluxes across cell membranes, important for homeostasis of the tissue environment and for cell migration. AQP1 knockout mouse models of human cancers showed marked inhibition of tumor-induced angiogenesis, and in pre-clinical studies of colon adenocarcinomas, forced over-expression of AQP1 was shown to increase angiogenesis, invasion and metastasis. We have synthesized small molecule antagonists of AQP1. Our hypothesis is that inhibition of AQP1 will reduce migration and invasiveness of colon cancer cells, and the migration and tube-forming capacity of endothelial cells in vitro. Expression of AQP1 in cell lines was assessed by quantitative (q) PCR, western blot and immunofluorescence, while expression of AQP1 in human colon tumour tissue was assessed by immunohistochemistry. The effect of varying concentrations of the AQP1 inhibitor AqB013 was tested on human colon cancer cell lines expressing high versus low levels of AQP1, using wound closure (migration) assays, matrigel invasion assays, and proliferation assays. The effect of AqB013 on angiogenesis was tested using an endothelial cell tube-formation assay. HT29 colon cancer cells with high AQP1 levels showed significant inhibition of migration compared to vehicle control of 27.9% ± 2.6% (p < 0.0001) and 41.2% ± 2.7 (p <0.0001) treated with 160 or 320 μM AqB013 respectively, whereas there was no effect on migration of HCT-116 cells with low AQP1 expression. In an invasion assay, HT29 cells treated with 160 μM of AqB013, showed a 60.3% ± 8.5% decrease in invasion at 144 hours (p < 0.0001) and significantly decreased rate of invasion compared with the vehicle control (F-test, p = 0.001). Almost complete inhibition of endothelial tube formation (angiogenesis assay) was achieved at 80 μM AqB013 compared to vehicle control (p < 0.0001). These data provide good evidence for further testing of the inhibitor as a therapeutic agent in colon cancer.

  4. Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells

    PubMed Central

    Wu, Qianqian; Fang, Tao; Lang, Hongxin; Chen, Min; Shi, Ping; Pang, Xining; Qi, Guoxian

    2017-01-01

    In vivo studies have shown that amnion-produced growth factors participate in many diseases that involve angiogenesis, re-epithelialization and immunomodulation. Although human amniotic epithelial cells (hAECs) and human amniotic mesenchymal stem cells (hAMSCs) can be obtained from amniotic membranes, there is little information regarding their biological differences. The aim of the present study was to isolate and characterize cells from human amnions, to investigate the biological potential and behavior of these cells on the function of endothelial cells in vivo and in vitro and to examine variations in the expression profile of growth factors in different human amnion-derived cell types. Amnion fragments were enzymatically digested into two cell fractions, which were analyzed by mesenchymal and epithelial cell markers. Human aortic endothelial cells (hAoECs) were cultured with conditioned medium (CdM) collected from hAECs or hAMSCs. We used scratch and Transwell assays to evaluate migration ability; Cell Counting Kit-8 (CCK-8) and cell cycle analysis to evaluate proliferation ability; and a Matrigel tube formation assay to evaluate angiogenesis ability. To detect expression of angiogenesis-related genes, qPCR and enzyme-linked immunosorbent assay (ELISA) analyses were conducted. As stem cells, hAECs and hAMSCs all expressed the stem cell markers SSEA-4, OCT-4 and SOX-2. CdM obtained from hAECs promoted cell migration; CdM obtained from hAMSCs promoted cell proliferation; CdM obtained from hAECs and hAMSCs both promoted angiogenesis in hAoECs. Amnion-derived cells secreted significant amounts of angiogenic factors including HGF, IGF-1, VEGF, EGF, HB-EGF and bFGF, although differences in the cellular expression profile of these soluble factors were observed. Our results highlight that human amniotic epithelial and mesenchymal stem cells, which showed differences in their soluble factor secretion and angiogenic functions, could be ideal cell sources for

  5. The CXCL10/CXCR3 axis promotes cardiac microvascular endothelial cell migration via the p38/FAK pathway in a proliferation-independent manner.

    PubMed

    Xia, Jing-Bo; Mao, Cheng-Zhou; Chen, Zhuo-Ying; Liu, Guang-Hui; Wu, Hai-Yan; Zhou, Deng-Cheng; Park, Kyu-Sang; Zhao, Hui; Kim, Soo-Ki; Cai, Dong-Qing; Qi, Xu-Feng

    2016-04-01

    CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.

  6. [The stimulation of human pulmonary artery endothelial cells by cigarette smoke extract contributed to cell senescence and induced human pulmonary artery smooth cell migration].

    PubMed

    Cai, L; Zhu, P C; Wang, Y E; Gao, Y T; Ao, Q L

    2017-06-12

    Objective: To observe the senescent effect of human pulmonary arterial endothelial cells (HPAEC) stimulated by cigarette smoke extract (CSE) and the effect of secretion of senescent cells on human pulmonary arterial smooth muscles cell (HPASMC) proliferation and migration. Methods: HPAEC was treated with different concentrations of CSE in vitro and cell proliferation was determined by CCK8, senescence cells analyzed by detecting the β-gal activity, and the senescent proteins of cells measured by Western blot. The concentration of senescence-associated secretory phenotype (SASP) was detected by ELISA and the expression of MCP-1 and TGF-β1 was measured by Real-time PCR. The number of the proliferated cells was measured by Transwell assay and immunoflurescence. Results: The HPAEC was aging with the stimulation concentration of CSE increasing and the stimulation time prolonging (P<0.05). Western blot indicated that the senescent associated protein p53 or p21 increased markedly after 48 h and 72 h CSE-exposure (n=3, P<0.05). The SA-β-Gal staining showed that the number of senescent cells increased as the exposure time prolonged. Compared with the control group, cell viability of 48 h group(1.8±0.1) and 72 h group (1.8±0.1) decreased significantly. The flow cytometry showed a significant difference between the CSE group(14.1±1.2) and the control group(28.5±1.8) in S phase(P<0.01), indicating cell cycle arrest. The SASP was increasing as the CSE-exposure prolonged. Compared with the control group(177±39), the 48 h group(460±43) and the 72 h group(609±64) showed a marked increase in MCP-1(P<0.05). For TGF-β1, it had a same tendency and a significant difference between the control group(121±18) and the 48 h group(413±32) or 72 h group(606±67, both P<0.05). In the meantime, the bFGF increased after 48 h stimulation(291±13, P<0.05). Besides MCP-1, TGF-β1 showed a significant difference between the control group and the 72 h CSE-exposure group (P<0

  7. Interleukin 15 is produced by endothelial cells and increases the transendothelial migration of T cells In vitro and in the SCID mouse-human rheumatoid arthritis model In vivo.

    PubMed Central

    Oppenheimer-Marks, N; Brezinschek, R I; Mohamadzadeh, M; Vita, R; Lipsky, P E

    1998-01-01

    The capacity of endothelial cells (EC) to produce IL-15 and the capacity of IL-15 to influence transendothelial migration of T cells was examined. Human umbilical vein endothelial cells expressed both IL-15 mRNA and protein. Moreover, endothelial-derived IL-15 enhanced transendothelial migration of T cells as evidenced by the inhibition of this process by blocking monoclonal antibodies to IL-15. IL-15 enhanced transendothelial migration of T cells by activating the binding capacity of the integrin adhesion molecule LFA-1 (CD11a/CD18) and also increased T cell motility. In addition, IL-15 induced expression of the early activation molecule CD69. The importance of IL-15 in regulating migration of T cells in vivo was documented by its capacity to enhance accumulation of adoptively transferred human T cells in rheumatoid arthritis synovial tissue engrafted into immune deficient SCID mice. These results demonstrate that EC produce IL-15 and imply that endothelial IL-15 plays a critical role in stimulation of T cells to extravasate into inflammatory tissue. PMID:9502767

  8. Role of plasminogen activator inhibitor in the reciprocal regulation of bovine aortic endothelial and smooth muscle cell migration by TGF-beta 1.

    PubMed Central

    Petzelbauer, E.; Springhorn, J. P.; Tucker, A. M.; Madri, J. A.

    1996-01-01

    Vascular endothelial and smooth muscle cells exhibit reciprocal migratory responses after transforming growth factor (TGF)-beta 1 treatment. Endothelial cells exhibit a decreased migratory rate and smooth muscle cells exhibit an increased migratory rate. Previous studies have demonstrated increases in extracellular matrix and integrin synthesis and expression in response to TGF-beta 1. In this report, we illustrate the roles of plasminogen activator inhibitor in modulating the migratory rates in these two cell types. Endothelial cells appear to require a proteolytic phenotype for rapid migration, whereas vascular smooth muscle cells appear to require an anti-proteolytic phenotype. Modulation of proteinase/anti-proteinase activity ratios was accomplished via TGF-beta 1 induction, addition of exogenous plasminogen activator inhibitor, addition of anti-catalytic antibodies directed against urokinase plasminogen activator, overexpression of plasminogen activator inhibitor utilizing stable transfectants, and the use of vitronectin as a substratum. The reciprocal migratory behaviors exhibited by these two vascular cell types in response to TGF-beta 1 is discussed in the context that these two vascular cell types utilize distinct adhesive and signaling pathways in their interactions with extracellular matrix components and responsiveness to proteolytic activity. Images Figure 1 Figure 2 Figure 3 PMID:8780396

  9. MiR-145 facilitates proliferation and migration of endothelial progenitor cells and recanalization of arterial thrombosis in cerebral infarction mice via JNK signal pathway

    PubMed Central

    Chen, Rongbo; Chen, Siqia; Liao, Juan; Chen, Xiaopu; Xu, Xiaoling

    2015-01-01

    Arterial thrombosis in cerebral infarction severely affects patients’ lives. Classical treatment including surgery and medication both had significantly adverse effects, making it necessary to find novel strategy. Endothelial progenitor cells (EPCs) have been shown to enhance the recanalization of thrombosis, while leaving its molecular mechanism unclear. EPCs were separated from peripheral blood, and were transfected by microRNA (miR)-145. The growth, proliferation and migration abilities were quantified by MTT, clone formation and Transwell assays, respectively. Cell apoptosis was evaluated by flow cytometry. The activation of JNK signaling pathway was measured by Western blotting, followed by JNK inhibitor SP600125. In a mouse cerebral infarction model, miR-145 transfected EPCs were injected to observe the condition of arterial thrombosis. MiR-145 transfection enhanced growth, migration and proliferation of EPCs without induction of apoptosis. MiR-145 exerts its effects via JNK signaling pathway, as the blocking inhibited cell migration/proliferation. In vivo injection of miR-145 transfected EPCs also potentiated cell proliferation and migration, in addition to the recanalization of arterial thrombosis. MiR-145 facilitates proliferation and migration of EPCs and recanalization of arterial thrombosis in cerebral infarction mice via JNK signal pathway. This study provided new insights regarding infarction treatment. PMID:26722607

  10. Preparation of gelatin density gradient on poly(ε-caprolactone) membrane and its influence on adhesion and migration of endothelial cells.

    PubMed

    Yu, Shan; Mao, Zhengwei; Gao, Changyou

    2015-08-01

    Directional migration of endothelial cells (ECs) can be achieved by gradient cues in vitro, which mimics the corresponding biological events in vivo. Currently, most of the gradients have been prepared on model surfaces which are too simple compared to real degradable biomaterials. In this study, the amino group density gradient was prepared on poly(ε-caprolactone) (PCL) membrane surface by a gradient aminolysis method, which was transferred into gelatin density gradient by covalent linking with glutaraldehyde. The resulted gelatin density gradient ranged from 0.49 to 1.57μg/cm(2) on the PCL membrane. The adhesion, orientation and migration of ECs on the PCL membrane with the gelatin density gradient were studied. The ECs showed preferred orientation and directional migration toward the gradient direction with enhanced gelatin density at proper position (gelatin density), forwarding a new step toward the preparation of applicable gradient biomaterials in tissue regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  12. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression.

    PubMed

    Lamy, Sylvie; Ben Saad, Aroua; Zgheib, Alain; Annabi, Borhane

    2016-01-01

    The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties of olive oil compounds traditionally found within the Mediterranean diet. In this study, we investigated whether tyrosol (Tyr), hydroxytyrosol, oleuropein and oleic acid (OA), four compounds contained in extra virgin olive oil, can prevent tumor necrosis factor (TNF)-α-induced expression of cyclooxygenase (COX)-2 (an inflammation biomarker) in a human glioblastoma cell (U-87 MG) model. We found that Tyr and OA significantly inhibited TNF-α-induced COX-2 gene and protein expression, as well as PGE2 secretion. Both compounds also inhibited TNF-α-induced JNK and ERK phosphorylation, whereas only Tyr inhibited TNF-α-induced NF-κB phosphorylation. Paracrine-regulated migration of human brain microvascular endothelial cells (HBMECs) was assessed using growth factor-enriched conditioned media (CM) isolated from U-87 MG cells. We found that while PGE2 triggered HBMEC migration, the CM isolated from U-87 MG cells, where either COX-2 or NF-κB had been silenced or had been treated with Tyr or OA, exhibited decreased chemotactic properties. These observations demonstrate that olive oil compounds inhibit the effect of the chronic inflammatory microenvironment on glioblastoma progression through TNF-α actions and may be useful in cancer chemoprevention.

  13. Spliced stromal cell-derived factor-1α analog stimulates endothelial progenitor cell migration and improves cardiac function in a dose-dependent manner after myocardial infarction

    PubMed Central

    Hiesinger, William; Frederick, John R.; Atluri, Pavan; McCormick, Ryan C.; Marotta, Nicole; Muenzer, Jeffrey R.; Woo, Y. Joseph

    2011-01-01

    Objectives Stromal cell-derived factor (SDF)-1α is a potent endogenous endothelial progenitor cell (EPC) chemokine and key angiogenic precursor. Recombinant SDF-1α has been demonstrated to improve neovasculogenesis and cardiac function after myocardial infarction (MI) but SDF-1α is a bulky protein with a short half-life. Small peptide analogs might provide translational advantages, including ease of synthesis, low manufacturing costs, and the potential to control delivery within tissues using engineered biomaterials. We hypothesized that a minimized peptide analog of SDF-1α, designed by splicing the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a truncated amino acid linker, would induce EPC migration and preserve ventricular function after MI. Methods EPC migration was first determined in vitro using a Boyden chamber assay. For in vivo analysis, male rats (n=48) underwent left anterior descending coronary artery ligation. At infarction, the rats were randomized into 4 groups and received peri-infarct intramyocardial injections of saline, 3 μg/kg of SDF-1α, 3 μg/kg of spliced SDF analog, or 6 μg/kg spliced SDF analog. After 4 weeks, the rats underwent closed chest pressure volume conductance catheter analysis. Results EPCs showed significantly increased migration when placed in both a recombinant SDF-1α and spliced SDF analog gradient. The rats treated with spliced SDF analog at MI demonstrated a significant dose-dependent improvement in end-diastolic pressure, stroke volume, ejection fraction, cardiac output, and stroke work compared with the control rats. Conclusions A spliced peptide analog of SDF-1α containing both the N- and C- termini of the native protein induced EPC migration, improved ventricular function after acute MI, and provided translational advantages compared with recombinant human SDF-1α. PMID:20951261

  14. Spliced stromal cell-derived factor-1α analog stimulates endothelial progenitor cell migration and improves cardiac function in a dose-dependent manner after myocardial infarction.

    PubMed

    Hiesinger, William; Frederick, John R; Atluri, Pavan; McCormick, Ryan C; Marotta, Nicole; Muenzer, Jeffrey R; Woo, Y Joseph

    2010-11-01

    Stromal cell-derived factor (SDF)-1α is a potent endogenous endothelial progenitor cell (EPC) chemokine and key angiogenic precursor. Recombinant SDF-1α has been demonstrated to improve neovasculogenesis and cardiac function after myocardial infarction (MI) but SDF-1α is a bulky protein with a short half-life. Small peptide analogs might provide translational advantages, including ease of synthesis, low manufacturing costs, and the potential to control delivery within tissues using engineered biomaterials. We hypothesized that a minimized peptide analog of SDF-1α, designed by splicing the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a truncated amino acid linker, would induce EPC migration and preserve ventricular function after MI. EPC migration was first determined in vitro using a Boyden chamber assay. For in vivo analysis, male rats (n = 48) underwent left anterior descending coronary artery ligation. At infarction, the rats were randomized into 4 groups and received peri-infarct intramyocardial injections of saline, 3 μg/kg of SDF-1α, 3 μg/kg of spliced SDF analog, or 6 μg/kg spliced SDF analog. After 4 weeks, the rats underwent closed chest pressure volume conductance catheter analysis. EPCs showed significantly increased migration when placed in both a recombinant SDF-1α and spliced SDF analog gradient. The rats treated with spliced SDF analog at MI demonstrated a significant dose-dependent improvement in end-diastolic pressure, stroke volume, ejection fraction, cardiac output, and stroke work compared with the control rats. A spliced peptide analog of SDF-1α containing both the N- and C- termini of the native protein induced EPC migration, improved ventricular function after acute MI, and provided translational advantages compared with recombinant human SDF-1α. Copyright © 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  15. Purification of a Factor from Human Placenta That Stimulates Capillary Endothelial Cell Protease Production, DNA Synthesis, and Migration

    NASA Astrophysics Data System (ADS)

    Moscatelli, David; Presta, Marco; Rifkin, Daniel B.

    1986-04-01

    A protein that stimulates the production of plasminogen activator and latent collagenase in cultured bovine capillary endothelial cells has been purified 106-fold from term human placenta by using a combination of heparin affinity chromatography, ion-exchange chromatography, and gel chromatography. The purified molecule has a molecular weight of 18,700 as determined by NaDodSO4/PAGE under both reducing and nonreducing conditions. The purified molecule stimulates the production of plasminogen activator and latent collagenase in a dose-dependent manner between 0.1 and 10 ng of protein/ml. The purified protein also stimulates DNA synthesis and chemotaxis in capillary endothelial cells in the same concentration range. Thus, this molecule has all of the properties predicted for an angiogenic factor.

  16. Endothelial cell micropatterning: Methods, effects, and applications

    PubMed Central

    Anderson, Deirdre E.J.; Hinds, Monica T.

    2012-01-01

    The effects of flow on endothelial cells have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of endothelial cell morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines endothelial cell micropatterning research by exploring both the many alternative methods used to alter endothelial cell morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in endothelial cell proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, is discussed. PMID:21761242

  17. Nox4- and Nox2-dependent oxidant production is required for VEGF-induced SERCA cysteine-674 S-glutathiolation and endothelial cell migration.

    PubMed

    Evangelista, Alicia M; Thompson, Melissa D; Bolotina, Victoria M; Tong, Xiaoyong; Cohen, Richard A

    2012-12-15

    Endothelial cell (EC) migration in response to vascular endothelial growth factor (VEGF) is a critical step in both physiological and pathological angiogenesis. Although VEGF signaling has been extensively studied, the mechanisms by which VEGF-dependent reactive oxygen species (ROS) production affects EC signaling are not well understood. The aim of this study was to elucidate the involvement of Nox2- and Nox4-dependent ROS in VEGF-mediated EC Ca(2+) regulation and migration. VEGF induced migration of human aortic ECs into a scratch wound over 6 h, which was inhibited by overexpression of either catalase or superoxide dismutase (SOD). EC stimulation by micromolar concentrations of H2O2 was inhibited by catalase, but also unexpectedly by SOD. Both VEGF and H2O2 increased S-glutathiolation of SERCA2b and increased Ca(2+) influx into EC, and these events could be blocked by overexpression of catalase or overexpression of SERCA2b in which the reactive cysteine-674 was mutated to a serine. In determining the source of VEGF-mediated ROS production, our studies show that specific knockdown of either Nox2 or Nox4 inhibited VEGF-induced S-glutathiolation of SERCA, Ca(2+) influx, and EC migration. Treatment with H2O2 induced S-glutathiolation of SERCA and EC Ca(2+) influx, overcoming the knockdown of Nox4, but not Nox2, and Amplex red measurements indicated that Nox4 is the source of H2O2. These results demonstrate that VEGF stimulates EC migration through increased S-glutathiolation of SERCA and Ca(2+) influx in a Nox4- and H2O2-dependent manner, requiring Nox2 downstream. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells

    PubMed Central

    Amodio, Nicola; Bellizzi, Dina; Leotta, Marzia; Raimondi, Lavinia; Biamonte, Lavinia; D’Aquila, Patrizia; Di Martino, Maria Teresa; Calimeri, Teresa; Rossi, Marco; Lionetti, Marta; Leone, Emanuela; Passarino, Giuseppe; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-01-01

    Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells. PMID:24091729

  19. miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells.

    PubMed

    Amodio, Nicola; Bellizzi, Dina; Leotta, Marzia; Raimondi, Lavinia; Biamonte, Lavinia; D'Aquila, Patrizia; Di Martino, Maria Teresa; Calimeri, Teresa; Rossi, Marco; Lionetti, Marta; Leone, Emanuela; Passarino, Giuseppe; Neri, Antonino; Giordano, Antonio; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2013-12-01

    Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells.

  20. Angiopoietin-related growth factor (AGF) supports adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells through interaction with RGD-binding integrins

    SciTech Connect

    Zhang Yueqing; Hu Xiaobo; Tian Ruiyang; Wei Wangui; Hu Wei; Chen Xia; Han Wei; Chen Huayou; Gong Yi . E-mail: ygong@sibs.ac.cn

    2006-08-18

    Angiopoietin-related growth factor (AGF) is a newly identified member of angiopoietin-related proteins (ARPs)/angiopoietin-like proteins (Angptls). AGF has been considered as a novel growth factor in accelerating cutaneous wound healing, as it is capable of stimulating keratinocytes proliferation as well as angiogenesis. But in our paper, we demonstrate that AGF stimulates keratinocytes proliferation only at high protein concentration, however, it can potently promote adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells. Furthermore, we confirm that the adhesion and migration cellular events are mediated by RGD-binding integrins, most possibly the {alpha}{sub v}-containing integrins, by in vitro inhibition assays using synthetic competitive peptides. Our results strongly suggest that AGF is an integrin ligand as well as a mitogenic growth factor and theoretically participates in cutaneous wound healing in a more complex mechanism.

  1. Inducing the migration behavior of endothelial cells by tuning the ligand density on a density-gradient poly(ethylene glycol) surface.

    PubMed

    Li, Tiantian; Xu, Kui; Fu, Ya; Cai, Kaiyong

    2016-07-01

    The migration of endothelial cells (ECs) is crucially important for many biological processes, including early embryonic vasculogenesis, wound healing and angiogenesis. To investigate the effect of the surface poly(ethylene glycol) (mPEG-CHO) density on the migration of ECs, we developed a convenient and effective method to fabricate a series of silicon slides with graded PEG densities on their surfaces based on gradual treatment with 3-glycidoxypropyltrimethoxysilane (GPTMS), backfilling with 3-aminopropyltriethoxysilane (APTES) and subsequent conjugation of m-PEG. The PEG gradient was confirmed by X-ray photoelectron spectrometry (XPS), contact angle measurement and spectroscopic ellipsometry and determined to range from 0.56 to 0.75chains/nm(2). The impact of the PEG gradient on the EC migration was evaluated by real-time observation via a time-lapse phase-contrast microscope. ECs adhered to the silicon surfaces with high and modest PEG densities displayed a higher tendency of migration than those on corresponding non-graded samples. The results suggest that the motility of ECs could be modulated by the PEG gradient. This study would be helpful for understanding cell-substrate interactions.

  2. The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration.

    PubMed

    Lessey-Morillon, Elizabeth C; Osborne, Lukas D; Monaghan-Benson, Elizabeth; Guilluy, Christophe; O'Brien, E Timothy; Superfine, Richard; Burridge, Keith

    2014-04-01

    RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. Although much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared with ICAM-1 clustering alone. We have identified that leukemia-associated Rho guanine nucleotide exchange factor (LARG), also known as Rho GEF 12 (ARHGEF12) acts downstream of clustered ICAM-1 to increase RhoA activity, and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. To our knowledge, this is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes.

  3. Vascular endothelial growth factor influences migration and focal adhesions, but not proliferation or viability, of human neural stem/progenitor cells derived from olfactory epithelium.

    PubMed

    Ramírez-Rodríguez, Gerardo Bernabé; Perera-Murcia, Gerardo Rodrigo; Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; García-Anaya, Maria; González-Olvera, Jorge Julio

    2017-09-01

    In humans, new neurons are continuously added in the olfactory epithelium even in the adulthood. The resident neural stem/progenitor cells (hNS/PCs-OE) in the olfactory epithelium are influenced by several growth factors and neurotrophins. Among these modulators the vascular endothelial growth factor (VEGF) has attracted attention due its implicated in cell proliferation, survival and migration of other type of neural/stem progenitor cells. Interestingly, VEGFr2 receptor expression in olfactory epithelium has been described in amphibians but not in humans. Here we show that VEGFr is expressed in the hNS/PCs-OE. We also investigated the effect of VEGF on the hNS/PCs-OE proliferation, viability and migration in vitro. Additionally, pharmacological approaches showed that VEGF (0.5 ng/ml)-stimulated migration of hNS/PCs-OE was blocked with the compound DMH4, which prevents the activation of VEGFr2. Similar effects were found with the inhibitors for Rac (EHT1864) and p38MAPK (SB203850) proteins, respectively. These observations occurred with changes in focal adhesion contacts. However, no effects of VEGF on proliferation or viability were found in hNS/PCs-OE. Our results suggest that hNS/PCs-OE respond to VEGF involving VEGFr2, Rac and p38MAPK. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling

    PubMed Central

    Avanzato, D.; Genova, T.; Fiorio Pla, A.; Bernardini, M.; Bianco, S.; Bussolati, B.; Mancardi, D.; Giraudo, E.; Maione, F.; Cassoni, P.; Castellano, I.; Munaron, L.

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1–10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  5. Temsirolimus Inhibits Proliferation and Migration in Retinal Pigment Epithelial and Endothelial Cells via mTOR Inhibition and Decreases VEGF and PDGF Expression

    PubMed Central

    Siedlecki, Jakob; Haritoglou, Christos; Kampik, Anselm; Kernt, Marcus

    2014-01-01

    Due to their high prevalence, retinal vascular diseases including age related macular degeneration (AMD), retinal vein occlusions (RVO), diabetic retinopathy (DR) and diabetic macular edema have been major therapeutic targets over the last years. The pathogenesis of these diseases is complex and yet not fully understood. However, increased proliferation, migration and angiogenesis are characteristic cellular features in almost every retinal vascular disease. The introduction of vascular endothelial growth factor (VEGF) binding intravitreal treatment strategies has led to great advances in the therapy of these diseases. While the predominant part of affected patients benefits from the specific binding of VEGF by administering an anti-VEGF antibody into the vitreous cavity, a small number of non-responders exist and alternative or additional therapeutic strategies should therefore be evaluated. The mammalian target of rapamycin (mTOR) is a central signaling pathway that eventually triggers up-regulation of cellular proliferation, migration and survival and has been identified to play a key role in angiogenesis. In the present study we were able to show that both retinal pigment epithelial (RPE) cells as wells as human umbilical vein endothelial cells (HUVEC) are inhibited in proliferating and migrating after treatment with temsirolimus in non-toxic concentrations. Previous studies suggest that the production of VEGF, platelet derived growth factor (PDGF) and other important cytokines is not only triggered by hypoxia but also by mTOR itself. Our results indicate that temsirolimus decreases VEGF and PDGF expression on RNA and protein levels significantly. We therefore believe that the mTOR inhibitor temsirolimus might be a promising drug in the future and it seems worthwhile to evaluate complementary therapeutic effects with anti-VEGF drugs for patients not profiting from mono anti-VEGF therapy alone. PMID:24586308

  6. NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia: NEU1 restrains endothelial cell migration, whereas NEU3 does not.

    PubMed

    Cross, Alan S; Hyun, Sang Won; Miranda-Ribera, Alba; Feng, Chiguang; Liu, Anguo; Nguyen, Chinh; Zhang, Lei; Luzina, Irina G; Atamas, Sergei P; Twaddell, William S; Guang, Wei; Lillehoj, Erik P; Puché, Adam C; Huang, Wei; Wang, Lai-Xi; Passaniti, Antonino; Goldblum, Simeon E

    2012-05-04

    The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not.

  7. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis

    PubMed Central

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-01-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal

  8. Claudin-5 regulates blood-brain barrier permeability by modifying brain microvascular endothelial cell proliferation, migration, and adhesion to prevent lung cancer metastasis.

    PubMed

    Ma, Shun-Chang; Li, Qi; Peng, Jia-Yi; Zhouwen, Jian-Long; Diao, Jin-Fu; Niu, Jian-Xing; Wang, Xi; Guan, Xiu-Dong; Jia, Wang; Jiang, Wen-Guo

    2017-09-29

    To investigate the roles of Claudin-5 (CLDN5) in regulating the permeability of the blood-brain barrier (BBB) during lung cancer brain metastasis. By silencing and overexpressing the CLDN5 gene in human brain vascular endothelial (hCMEC/D3) cells, we demonstrated the attenuation of cell migration ability and CLDN5's significant positive role in cell proliferation in CLDN5-overexpressing hCMEC/D3 cells and observed the opposite result in the CLDN5 knockdown group. The reinforced CLDN5 expression reduced the paracellular permeability of hCMEC/D3 cells and decreased the invasion of lung adenocarcinoma A549 cells. Overall, 1685 genes were found to be differentially expressed between the CLDN5-overexpressing cells and the control cells using the Affymetrix Human Transcriptome Array 2.0 (HTA 2.0), and the function of these genes was determined by Gene Ontology and pathway analyses. The possible biological functions of the 1685 genes include cell proliferation, adhesion molecules, and the Jak-STAT, PI3K-Akt, Wnt, and Notch signaling pathways. The identified sets of mRNAs that were specific to CLDN5-overexpressing hCMEC/D3 cells were verified by a qRT-PCR experiment. CLDN5 regulates the permeability of BBB by regulating the proliferation, migration, and permeability of hCMEC/D3 cells, especially through the cell adhesion molecule signaling pathway, to enhance the function of the tight junctions, which was involved in reducing the formation of lung cancer brain metastasis. © 2017 John Wiley & Sons Ltd.

  9. Colorectal resection is associated with persistent proangiogenic plasma protein changes: postoperative plasma stimulates in vitro endothelial cell growth, migration, and invasion.

    PubMed

    Kumara, H M C Shantha; Shantha Kumara, H M C; Feingold, Daniel; Kalady, Matthew; Dujovny, Nadav; Senagore, Anthony; Hyman, Neil; Cekic, Vesna; Whelan, Richard L

    2009-06-01

    Plasma vascular endothelial growth factor (VEGF) levels are elevated for weeks after minimally invasive colorectal resection (MICR). Decreased plasma angiopoietin-(Ang) 1 and increased Ang-2 levels have been noted on postoperative days (POD) 1 and 3. These proangiogenic changes may stimulate tumor growth postoperatively (postop). This study's purpose was to track plasma VEGF, Ang-1, and Ang-2 levels for 4 to 8 weeks after MICR for cancer and to assess the impact of preoperative (preop) and postop plasma on in vitro endothelial cell (EC) behavior. Blood samples from 105 MICR patients were taken preop, on POD 5 and at varying time points for 2 months. Samples from 7 day time blocks after POD 5 were bundled to permit statistical analysis. Plasma protein levels were measured via enzyme-linked immunosorbent assay. In vitro EC branch point formation, EC invasion, and EC migration assays were carried out with preop, POD 7 to 13 and 14 to 20 plasma. The t test and Bonferonni correction was used. VEGF levels were significantly elevated on POD 5 and 7 to 13; lesser increases were noted on POD 14 to 20 and 21 to 27. Ang-2 levels were significantly increased at all time points postop. No significant Ang-1 changes were noted. When compared to preop EC culture results, there was significantly more EC branch point formation, EC invasion, and EC migration assays noted with POD 7 to 13 and POD 14 to 20 plasma. MICR is associated with proangiogenic plasma changes for 2 to 4 weeks and plasma from POD 7 to 13 and 14 to 20 stimulated EC growth, invasion, and migration. Postop plasma may stimulate the growth of residual tumor.

  10. Nox4- and Nox2-dependent oxidant production is required for VEGF-induced SERCA cysteine-674 S-glutathiolation and endothelial cell migration

    PubMed Central

    Evangelista, Alicia M.; Thompson, Melissa D.; Bolotina, Victoria M.; Tong, XiaoYong; Cohen, Richard A.

    2012-01-01

    Endothelial cell (EC) migration in response to VEGF is a critical step in both physiological and pathological angiogenesis. Although VEGF signaling has been extensively studied, the mechanisms by which VEGF-dependent reactive oxygen species (ROS) production affects EC signaling are not well-understood. The aim of this study was to elucidate the involvement of Nox2- and Nox4-dependent ROS in VEGF-mediated EC Ca2+ regulation and migration. VEGF induced migration of human aortic EC into a scratch wound over 6 hours that was inhibited by overexpression of either catalase or SOD. EC stimulation by micromolar concentrations of H2O2 was inhibited by catalase, but also unexpectedly by SOD. Both VEGF and H2O2 increased S-glutathiolation of SERCA2b and increased Ca2+ influx into EC, and these events could be blocked by overexpression of catalase or overexpression of SERCA2b in which the reactive cysteine-674 was mutated to a serine. In determining the source of VEGF-mediated ROS production, our studies show that specific knock down of either Nox2 or Nox4 inhibited VEGF-induced S-glutathiolation of SERCA, Ca2+ influx, and EC migration. Treatment with H2O2 induced S-glutathiolation of SERCA and EC Ca2+ influx, overcoming the knockdown of Nox4, but not Nox2, and Amplex Red measurements indicated that Nox4 is the source of H2O2. These results demonstrate that VEGF stimulates EC migration through increased S-glutathiolation of SERCA and Ca2+ influx in a Nox4- and H2O2-dependent manner, requiring Nox2 downstream. PMID:23089226

  11. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways

    PubMed Central

    CUI, JINJIN; ZHANG, FENGYUN; WANG, YONGSHUN; LIU, JINGJIN; MING, XING; HOU, JINGBO; LV, BO; FANG, SHAOHONG; YU, BO

    2016-01-01

    Macrophage migration inhibitory factor (MIF) has pleiotropic immune functions in a number of inflammatory diseases. Recent evidence from expression and functional studies has indicated that MIF is involved in various aspects of cardiovascular disease. In this study, we aimed to determine whether MIF supports in vitro c-kit+CD45− cardiac stem cell (CSC) survival, proliferation and differentiation into endothelial cells, as well as the possible mechanisms involved. We observed MIF receptor (CD74) expression in mouse CSCs (mCSCs) using PCR and immunofluorescence staining, and MIF secretion by mCSCs using PCR and ELISA in vitro. Increasing amounts of exogenous MIF did not affect CD74 expression, but promoted mCSC survival, proliferation and endothelial differentiation. By contrast, treatment with an MIF inhibitor (ISO-1) or siRNA targeting CD74 (CD74-siRNA) suppressed the biological changes induced by MIF in the mCSCs. Increasing amounts of MIF increased the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which are known to support cell survival, proliferation and differentiation. These effects of MIF on the mCSCs were abolished by LY294002 [a phosphoinositide 3-kinase (PI3K) inhibitor] and MK-2206 (an Akt inhibitor). Moreover, adenosine monophosphate-activated protein kinase (AMPK) phosphorylation increased following treatment with MIF. The AMPK inhibitor, compound C, partly blocked the pro-proliferative effects of MIF on the mCSCs. In conclusion, our results suggest that MIF promotes mCSC survival, proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK signaling pathways. Thus, MIF may prove to be a potential therapeutic factor in the treatment of heart failure and myocardial infarction by activating CSCs. PMID:27035848

  12. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis.

    PubMed

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-02-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. © 2014 The Authors. Journal of Cellular Physiology Published by

  13. Microtubule Dynamics Control Tail Retraction in Migrating Vascular Endothelial Cells†

    PubMed Central

    Ganguly, Anutosh; Yang, Hailing; Zhang, Hong; Cabral, Fernando; Patel, Kamala D.

    2014-01-01

    Drugs that target microtubules are potent inhibitors of angiogenesis but their mechanism of action is not well understood. To explore this, we treated human umbilical vein endothelial cells with paclitaxel, vinblastine, and colchicine and measured the effects on microtubule dynamics and cell motility. In general, lower drug concentrations suppressed microtubule dynamics and inhibited cell migration whereas higher concentrations were needed to inhibit cell division; but, surprisingly, large drug-dependent differences were seen in the relative concentrations needed to inhibit these two processes. Suppression of microtubule dynamics did not significantly affect excursions of lamellipodia away from the nucleus or prevent cells from elongating; but, it did inhibit retraction of the trailing edges that are normally enriched in dynamic microtubules, thereby limiting cell locomotion. Complete removal of microtubules with a high vinblastine concentration caused a loss of polarity that resulted in roundish rather than elongated cells, rapid but non-directional membrane activity, and little cell movement. The results are consistent with a model in which more static microtubules stabilize the leading edge of migrating cells while more dynamic microtubules locate to the rear where they can remodel and allow tail retraction. Suppressing microtubule dynamics interferes with tail retraction, but removal of microtubules destroys the asymmetry needed for cell elongation and directional motility. The prediction that suppressing microtubule dynamics might be sufficient to prevent angiogenesis was supported by showing that low concentrations of paclitaxel could prevent the formation of capillary-like structures in an in vitro tube formation assay. PMID:24107446

  14. NAMPT regulates senescence, proliferation, and migration of endothelial progenitor cells through the SIRT1 AS lncRNA/miR-22/SIRT1 pathway.

    PubMed

    Ming, Guang-Feng; Wu, Kai; Hu, Kai; Chen, Yao; Xiao, Jian

    2016-09-23

    The importance of endothelial progenitor cells (EPCs) in cardiovascular diseases has been demonstrated by numerous studies. Previous studies have shown that Nicotinamide phosphoribosyltransferase (NAMPT) plays a role in EPC development by regulating Sirtuin 1 (SIRT1), but the specific mechanism has not yet been elucidated. After stimulating EPCs with NAMPT, expression of SIRT1 and SIRT1 antisense long non-coding RNA (AS lncRNA) was upregulated. Upon transfection of an SIRT1 AS lncRNA overexpression vector into EPCs, SIRT1 expression was upregulated. Upon transfection of a small interfering RNA (siRNA) that targets SIRT1 AS lncRNA along with NAMPT, SIRT1 AS lncRNA was downregulated and NAMPT-induced SIRT1 expression was reduced. We used software analyses and a dual-luciferase reporter assay to demonstrate that microRNA (miR)-22 regulated SIRT1 and SIRT1 AS lncRNA. Our data suggest that SIRT1 AS lncRNA relieves miR-22-induced SIRT1 downregulation by competitively sponging miR-22. By measuring EPC senescence, proliferation, and migration, we found that NAMPT inhibited EPC senescence through an SIRT1 AS lncRNA/miR-22/SIRT1 pathway and promoted EPC proliferation and migration. These findings provide a new theoretical basis for the prevention and treatment of atherosclerosis (AS) and other cardiovascular diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Regulation of endothelial migration and proliferation by ephrin-A1.

    PubMed

    Wiedemann, Elisa; Jellinghaus, Stefanie; Ende, Georg; Augstein, Antje; Sczech, Ronny; Wielockx, Ben; Weinert, Sönke; Strasser, Ruth H; Poitz, David M

    2017-01-01

    Endothelial migration and proliferation are fundamental processes in angiogenesis and wound healing of injured or inflamed vessels. The present study aimed to investigate the regulation of the Eph/ephrin-system during endothelial proliferation and the impact of the ligand ephrin-A1 on proliferation and migration of human umbilical venous (HUVEC) and arterial endothelial cells (HUAEC). Endothelial cells that underwent contact inhibition showed a massive induction of ephrin-A1. In contrast, an injury to a confluent endothelial layer, associated with induction of migration and proliferation, showed reduced ephrin-A1 levels. In addition, reducing ephrin-A1 expression by siRNA led to increased proliferation, whereas the overexpression of ephrin-A1 led to decreased proliferative activity. Due to the fact that wound healing is a combination of proliferation and migration, migration was investigated in detail. First, classical wound-healing assays showed increased wound closure in both ephrin-A1 silenced and overexpressing cells. Live-cell imaging enlightened the underlying differences. Silencing of ephrin-A1 led to a faster but more disorientated migration. In contrast, ephrin-A1 overexpression did not influence velocity of the cells, but the migration was more directed in comparison to the controls. Additional analysis of EphA2-silenced cells showed similar results in terms of proliferation and migration compared to ephrin-A1 silenced cells. Detailed analysis of EphA2 phosphorylation on ligand-dependent phospho-site (Y588) and autonomous activation site (S897) revealed a distinct phosphorylation pattern. Furthermore, the endothelial cells ceased to migrate when they came in contact with an ephrin-A1 coated surface. Using a baculoviral-mediated expression system, ephrin-A1 silencing and overexpression was shown to modulate the formation of focal adhesions. This implicates that ephrin-A1 is involved in changes of the actin cytoskeleton which explains the alterations in

  16. Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1.

    PubMed

    Lake, Andrew C; Vassy, Roger; Di Benedetto, Mélanie; Lavigne, Damien; Le Visage, Catherine; Perret, Gérard Y; Letourneur, Didier

    2006-12-08

    Therapeutic induction of angiogenesis is a potential treatment for chronic ischemia. Heparan sulfate proteoglycans are known to play an important role by their interactions with proangiogenic growth factors such as vascular endothelial growth factor (VEGF). Low molecular weight fucoidan (LMWF), a sulfated polysaccharide from brown seaweeds that mimic some biological activities of heparin, has been shown recently to promote revascularization in rat critical hindlimb ischemia. In this report, we first used cultured human endothelial cells (ECs) to investigate the possible ability of LMWF to enhance the actions of VEGF(165). Data showed that LMWF greatly enhances EC tube formation in growth factor reduced matrigel. LMWF is a strong enhancer of VEGF(165)-induced EC chemotaxis, but not proliferation. In addition, LMWF has no effect on VEGF(121)-induced EC migration, a VEGF isoform that does not bind to heparan sulfate proteoglycans. Then, with binding studies using (125)I-VEGF(165), we observed that LMWF enhances the binding of VEGF(165) to recombinant VEGFR-2 and Neuropilin-1 (NRP1), but not to VEGFR-1. Surface plasmon resonance analysis showed that LMWF binds with high affinity to VEGF(165) (1.2 nm) and its receptors (5-20 nm), but not to VEGF(121). Pre-injection of LMWF on immobilized receptors shows that VEGF(165) has the highest affinity for VEGFR-2 and NRP1, as compared with VEGFR-1. Overall, the effects of LMWF were much more pronounced than those of LMW heparin. These findings suggested an efficient mechanism of action of LMWF by promoting VEGF(165) binding to VEGFR-2 and NRP1 on ECs that could help in stimulating therapeutic revascularization.

  17. TRPC6 is the endothelial calcium channel that regulates leukocyte transendothelial migration during the inflammatory response

    PubMed Central

    Weber, Evan W.; Han, Fei; Tauseef, Mohammad; Birnbaumer, Lutz; Mehta, Dolly

    2015-01-01

    Leukocyte transendothelial migration (TEM) is a tightly regulated, multistep process that is critical to the inflammatory response. A transient increase in endothelial cytosolic free calcium ion concentration (↑[Ca2+]i) is required for TEM. However, the mechanism by which endothelial ↑[Ca2+]i regulates TEM and the channels mediating this ↑[Ca2+]i are unknown. Buffering ↑[Ca2+]i in endothelial cells does not affect leukocyte adhesion or locomotion but selectively blocks TEM, suggesting a role for ↑[Ca2+]i specifically for this step. Transient receptor potential canonical 6 (TRPC6), a Ca2+ channel expressed in endothelial cells, colocalizes with platelet/endothelial cell adhesion molecule-1 (PECAM) to surround leukocytes during TEM and clusters when endothelial PECAM is engaged. Expression of dominant-negative TRPC6 or shRNA knockdown in endothelial cells arrests neutrophils apically over the junction, similar to when PECAM is blocked. Selectively activating endothelial TRPC6 rescues TEM during an ongoing PECAM blockade, indicating that TRPC6 functions downstream of PECAM. Furthermore, endothelial TRPC6 is required for trafficking of lateral border recycling compartment membrane, which facilitates TEM. Finally, mice lacking TRPC6 in the nonmyeloid compartment (i.e., endothelium) exhibit a profound defect in neutrophil TEM with no effect on leukocyte trafficking. Our findings identify endothelial TRPC6 as the calcium channel mediating the ↑[Ca2+]i required for TEM at a step downstream of PECAM homophilic interactions. PMID:26392222

  18. Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion

    PubMed Central

    Kataoka, Noriyuki; Iwaki, Kanso; Hashimoto, Ken; Mochizuki, Seiichi; Ogasawara, Yasuo; Sato, Masaaki; Tsujioka, Katsuhiko; Kajiya, Fumihiko

    2002-01-01

    The interaction between monocytes and endothelial cells is considered to play a major role in the early stage of atherosclerosis, and the involved endothelial cell micromechanics may provide us with important aspects of atherogenesis. In the present study, we evaluated (i) the endothelial cell-to-cell and cell-to-substrate gaps with the electric cell-substrate impedance sensing system, which can detect the nanometer order changes of cell-to-cell and cell-to-substrate distances separately, and (ii) the endothelial cell micromechanical properties with an atomic force microscope after application of monocytes to endothelial cells. Application of monocytic THP-1 cells to IL-1β-stimulated human umbilical vein endothelial cells immediately decreased the electrical resistance of the endothelial cell-to-substrate (increase of the cell-to-substrate gap), whereas the endothelial cell-to-cell resistance (cell-to-cell gap) did not change. The elastic modulus of the endothelial cells decreased after 2-h monocyte application, indicating an increase of endothelial cell deformability. In conclusion, the interaction of the monocytes to the endothelial cells reduced the adhesiveness to the substrate and increased the deformability of endothelial cells. These changes in the adhesiveness and the deformability may facilitate migration of monocytes, a key process of atherogenesis in the later stage. PMID:12434019

  19. Effects of fluoroquinolones on the migration of human phagocytes through Chlamydia pneumoniae-infected and tumor necrosis factor alpha-stimulated endothelial cells.

    PubMed

    Uriarte, Silvia M; Molestina, Robert E; Miller, Richard D; Bernabo, Jorge; Farinati, Alicia; Eiguchi, Kumiko; Ramirez, Julio A; Summersgill, James T

    2004-07-01

    The anti-inflammatory activities of three quinolones, levofloxacin, moxifloxacin, and gatifloxacin, were investigated with an in vitro model of transendothelial migration (TEM). Human umbilical vein endothelial cells (HUVEC) were seeded in Transwell inserts, treated with serial dilutions of antibiotics, infected with Chlamydia pneumoniae, or stimulated with tumor necrosis factor alpha (TNF-alpha). Neutrophils or monocytes were also preincubated with serial dilutions of each antibiotic. TEM was assessed by light microscopic examination of the underside of the polycarbonate membrane, and levels of interleukin-8 (IL-8) and monocyte chemotactic protein 1 (MCP-1) were measured by enzyme-linked immunosorbent assay. In HUVEC infected with C. pneumoniae or stimulated with TNF-alpha, all fluoroquinolones significantly decreased neutrophil and monocyte TEM, compared to antibiotic-free controls. Moxifloxacin and gatifloxacin produced a significant decrease in IL-8 in C. pneumoniae-infected and TNF-alpha-stimulated HUVEC; however, moxifloxacin was the only fluoroquinolone that produced a significant decrease in MCP-1 levels under both conditions. Results from this study indicate similarities in the anti-inflammatory activities of these fluoroquinolones, although no statistically significant decrease in chemokine secretion was observed when levofloxacin was used. Mechanisms of neutrophil and monocyte TEM inhibition by fluoroquinolone antibiotics are unknown but may be partially due to inhibition of IL-8 and MCP-1 production, respectively.

  20. Effects of Fluoroquinolones on the Migration of Human Phagocytes through Chlamydia pneumoniae-Infected and Tumor Necrosis Factor Alpha-Stimulated Endothelial Cells

    PubMed Central

    Uriarte, Silvia M.; Molestina, Robert E.; Miller, Richard D.; Bernabo, Jorge; Farinati, Alicia; Eiguchi, Kumiko; Ramirez, Julio A.; Summersgill, James T.

    2004-01-01

    The anti-inflammatory activities of three quinolones, levofloxacin, moxifloxacin, and gatifloxacin, were investigated with an in vitro model of transendothelial migration (TEM). Human umbilical vein endothelial cells (HUVEC) were seeded in Transwell inserts, treated with serial dilutions of antibiotics, infected with Chlamydia pneumoniae, or stimulated with tumor necrosis factor alpha (TNF-α). Neutrophils or monocytes were also preincubated with serial dilutions of each antibiotic. TEM was assessed by light microscopic examination of the underside of the polycarbonate membrane, and levels of interleukin-8 (IL-8) and monocyte chemotactic protein 1 (MCP-1) were measured by enzyme-linked immunosorbent assay. In HUVEC infected with C. pneumoniae or stimulated with TNF-α, all fluoroquinolones significantly decreased neutrophil and monocyte TEM, compared to antibiotic-free controls. Moxifloxacin and gatifloxacin produced a significant decrease in IL-8 in C. pneumoniae-infected and TNF-α-stimulated HUVEC; however, moxifloxacin was the only fluoroquinolone that produced a significant decrease in MCP-1 levels under both conditions. Results from this study indicate similarities in the anti-inflammatory activities of these fluoroquinolones, although no statistically significant decrease in chemokine secretion was observed when levofloxacin was used. Mechanisms of neutrophil and monocyte TEM inhibition by fluoroquinolone antibiotics are unknown but may be partially due to inhibition of IL-8 and MCP-1 production, respectively. PMID:15215106

  1. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in Rap1b-deficient mice

    PubMed Central

    Kraus, Anna E.; Gale, Daniel; White, Gilbert C.; VanSluys, Jillian

    2008-01-01

    Angiogenesis is the main mechanism of vascular remodeling during late development and, after birth, in wound healing. Perturbations of angiogenesis occur in cancer, diabetes, ischemia, and inflammation. While much progress has been made in identifying factors that control angiogenesis, the understanding of the precise molecular mechanisms involved is incomplete. Here we identify a small GTPase, Rap1b, as a positive regulator of angiogenesis. Rap1b-deficient mice had a decreased level of Matrigel plug and neonatal retinal neovascularization, and aortas isolated from Rap1b-deficient animals had a reduced microvessel sprouting response to 2 major physiological regulators of angiogenesis: vascular endothelial growth factor (VEGF) and basic fibroblasts growth factor (bFGF), indicating an intrinsic defect in endothelial cells. Proliferation of retinal endothelial cells in situ and in vitro migration of lung endothelial cells isolated from Rap1b-deficient mice were inhibited. At the molecular level, activation of 2 MAP kinases, p38 MAPK and p42/44 ERK, important regulators of endothelial migration and proliferation, was decreased in Rap1b-deficient endothelial cells in response to VEGF stimulation. These studies provide evidence that Rap1b is required for normal angiogenesis and reveal a novel role of Rap1 in regulation of proangiogenic signaling in endothelial cells. PMID:17993608

  2. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function.

    PubMed

    Li, Xiaocong; Chen, Chunyuan; Wei, Liming; Li, Qing; Niu, Xin; Xu, Yanjun; Wang, Yang; Zhao, Jungong

    2016-02-01

    Exosomes, a key component of cell paracrine secretion, can exert protective effects in various disease models. However, application of exosomes in vascular repair and regeneration has rarely been reported. In this study, we tested whether endothelial progenitor cell (EPC)-derived exosomes possessed therapeutic effects in rat models of balloon-induced vascular injury by accelerating reendothelialization. Exosomes were obtained from the conditioned media of EPCs isolated from human umbilical cord blood. Induction of the endothelial injury was performed in the rats' carotid artery, and the pro-re-endothelialization capacity of EPC-derived exosomes was measured. The in vitro effects of exosomes on the proliferation and migration of endothelial cells were investigated. We found that the EPC-derived exosomes accelerated the re-endothelialization in the early phase after endothelial damage in the rat carotid artery. We also demonstrated that these exosomes enhanced the proliferation and migration of endothelial cells in vitro. Moreover, endothelial cells stimulated with these exosomes showed increased expression of angiogenesis-related molecules. Taken together, our results indicate that exosomes are an active component of the paracrine secretion of human EPCs and can promote vascular repair in rat models of balloon injury by up-regulating endothelial cells function. Copyright © 2015. Published by Elsevier Inc.

  3. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-09-02

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis.

  4. Collective cell migration during inflammatory response

    NASA Astrophysics Data System (ADS)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  5. Regulation of Endothelial Cell Differentiation and Specification

    PubMed Central

    Marcelo, Kathrina L.; Goldie, Lauren C.; Hirschi, Karen K.

    2013-01-01

    The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all blood and lymphatic vessels, emerge de novo from the mesoderm in a process known as vasculogenesis. The vascular plexus that is initially formed is then remodeled and refined via proliferation, migration and sprouting of endothelial cells to form new vessels from pre-existing ones during angiogenesis. Mural cells are also recruited by endothelial cells to form the surrounding vessel wall. During this vascular remodeling process, primordial endothelial cells are specialized to acquire arterial, venous, and blood-forming hemogenic phenotypes and functions. A subset of venous endothelium is also specialized to become lymphatic endothelium later in development. The specialization of all endothelial cell subtypes requires extrinsic signals and intrinsic regulatory events, which will be discussed in this review. PMID:23620236

  6. Nestin+ cells direct inflammatory cell migration in atherosclerosis

    PubMed Central

    del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin+ cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin+ cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin+ cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin+ cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin+ stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin+ cells—but not in endothelial cells only— increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  7. Differentiation state determines neural effects on microvascular endothelial cells

    SciTech Connect

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-10-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. -- Highlights: Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate microvascular endothelial cell proliferation. Black-Right-Pointing-Pointer Neural progenitor cells, not dorsal root ganglion neurons, regulate microvascular endothelial cell migration. Black-Right-Pointing-Pointer Neural progenitor cells and dorsal root ganglion neurons do not effect microvascular endothelial tube formation. Black-Right-Pointing-Pointer Dorsal root ganglion neurons, not neural progenitor cells, regulate

  8. Angiogenesis in Platelet Endothelial Cell Adhesion Molecule-1-Null Mice

    PubMed Central

    Cao, Gaoyuan; Fehrenbach, Melane L.; Williams, James T.; Finklestein, Jeffrey M.; Zhu, Jing-Xu; DeLisser, Horace M.

    2009-01-01

    Platelet endothelial cell adhesion molecule (PECAM)-1 has been previously implicated in endothelial cell migration; additionally, anti-PECAM-1 antibodies have been shown to inhibit in vivo angiogenesis. Studies were therefore performed with PECAM-1-null mice to further define the involvement of PECAM-1 in blood vessel formation. Vascularization of subcutaneous Matrigel implants as well as tumor angiogenesis were both inhibited in PECAM-1-null mice. Reciprocal bone marrow transplants that involved both wild-type and PECAM-1-deficient mice revealed that the impaired angiogenic response resulted from a loss of endothelial, but not leukocyte, PECAM-1. In vitro wound migration and single-cell motility by PECAM-1-null endothelial cells were also compromised. In addition, filopodia formation, a feature of motile cells, was inhibited in PECAM-1-null endothelial cells as well as in human endothelial cells treated with either anti-PECAM-1 antibody or PECAM-1 siRNA. Furthermore, the expression of PECAM-1 promoted filopodia formation and increased the protein expression levels of Cdc42, a Rho GTPase that is known to promote the formation of filopodia. In the developing retinal vasculature, numerous, long filamentous filopodia, emanating from endothelial cells at the tips of angiogenic sprouts, were observed in wild-type animals, but to a lesser extent in the PECAM-1-null mice. Together, these data further establish the involvement of endothelial PECAM-1 in angiogenesis and suggest that, in vivo, PECAM-1 may stimulate endothelial cell motility by promoting the formation of filopodia. PMID:19574426

  9. Cell migration, freshly squeezed.

    PubMed

    Welch, Matthew D

    2015-02-12

    Migrating cells exhibit distinct motility modes and can switch between modes based on chemical or physical cues. Liu et al. and Ruprecht et al. now describe how confinement and contractility influence motility mode plasticity and instigate a mode termed stable bleb migration in embryonic and tumor cells.

  10. Mechanisms in decorin regulation of vascular endothelial growth factor-induced human trophoblast migration and acquisition of endothelial phenotype.

    PubMed

    Lala, Neena; Girish, Gannareddy V; Cloutier-Bosworth, Alia; Lala, Peeyush K

    2012-09-01

    Extravillous trophoblast (EVT) cells of the human placenta invade the uterine decidua and utero-placental arteries to establish an efficient exchange of key molecules between maternal and fetal blood. Trophoblast invasion is stringently regulated in situ both positively and negatively by a variety of factors at the fetal-maternal interface to maintain a healthy utero-placental homeostasis. One such factor, decorin, a transforming growth factor (TGF)-beta binding, leucine-rich proteoglycan produced by the decidua, negatively regulates EVT proliferation, migration, and invasiveness independent of TGF-beta. We reported that these decorin actions were mediated by its binding to multiple tyrosine kinase receptors, including vascular endothelial growth factor receptor (VEGFR)-2. The present study explores the mechanisms underlying decorin antagonism of VEGF (VEGF-A) stimulation of endovascular differentiation of EVT using our EVT cell line, HTR-8/SVneo. We observe that decorin inhibits VEGF-induced EVT cell migration and endothelial-like tube formation on matrigel. VEGF activates MAPKs (p38 MAPK, MEK3/6, and ERK1/2) in EVT cells, and the activation is blocked in both cases by decorin. Employing selective MAPK inhibitors, we show that both p38 and ERK pathways contribute independently to VEGF-induced EVT migration and capillary-like tube formation. VEGF upregulates the vascular endothelial (VE) markers VE-cadherin and beta-catenin in EVT and endothelial cells, and this upregulation is blocked by decorin and MAPK inhibitors. These results suggest that decorin inhibits VEGF-A stimulation of trophoblast migration and endovascular differentiation by interfering with p38 MAPK and ERK1/2 activation. Thus decorin-mediated dual impediment of endovascular differentiation of the EVT and angiogenesis may have implications for pathogenesis of preeclampsia, a hypoinvasive trophoblast disorder in pregnancy.

  11. Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells.

    PubMed

    Burger, Dylan; Touyz, Rhian M

    2012-01-01

    Endothelial dysfunction, the shift from a healthy endothelium to a damaged pro-coagulative, pro-inflammatory, and pro-vasoconstrictive phenotype, is an early event in many chronic diseases that frequently precedes cardiovascular complications. Functional assessment of the endothelium can identify endothelial damage and predict cardiovascular risk; however, this assessment provides little information as to the mechanisms underlying development of endothelial dysfunction. Changes in plasma asymmetric dimethyl arginine levels, markers of lipid peroxidation, circulating levels of inflammatory mediators, indices of coagulation and cellular surrogates such as microparticles, circulating endothelial cells, and endothelial progenitor cells may reflect alterations in endothelial status and as such have been defined as "biomarkers" of endothelial function. Biomarkers may be chemical or cellular. This review examines some markers of endothelial dysfunction, with a particular focus on cellular biomarkers of endothelial dysfunction and their diagnostic potential. Copyright © 2012 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  12. GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells

    PubMed Central

    Zhang, Yong-Hui; Cheng, Feng; Du, Xue-Ting; Gao, Jin-Lai; Xiao, Xiao-Lin; Li, Na; Li, Shan-Liang; Dong, De-Li

    2016-01-01

    GDF11/BMP11, a member of TGF-β superfamily, was reported to rejuvenate heart, skeletal muscle and blood vessel architecture in aged mice. However, the rejuvenative effects of GDF11 were questioned recently. Here, we investigated the effects of GDF11 on smad and non-smad signals in human umbilical vein endothelial cells (HUVECs) and the effects of GDF11 on proliferation and migration of HUVECs and primary rat aortic endothelial cells (RAECs). GDF11 factor purchased from two different companies (PeproTech and R&D Systems) was comparatively studied. Western blot was used to detect the protein expressions. The cell viability and migration were examined by using MTT and wound healing assays. Results showed that GDF11 activated both smad1/5/8 and smad2/3 signals in HUVECs. GDF11 increased protein expression of NADPH oxidase 4(NOX4) in HUVECs. GDF11 showed no significant effect on the protein level of p38, p-p38, ERK, p-ERK, Akt, p-Akt (Ser473) and p-Akt(Thr308), but increased the protein level of p-JNK and p-AMPK in HUVECs, and these increases were inhibited by antioxidant mitoTEMPO treatment. GDF11 slightly increased cell viability after short-term treatment and slightly decreased cell viability after long-term treatment. GDF11 showed no significant effect on cell proliferation and migration. These data indicated that the notion of GDF11 as a rejuvenation-related factor for endothelial cells needs to be cautious. PMID:26919250

  13. GDF11/BMP11 activates both smad1/5/8 and smad2/3 signals but shows no significant effect on proliferation and migration of human umbilical vein endothelial cells.

    PubMed

    Zhang, Yong-Hui; Cheng, Feng; Du, Xue-Ting; Gao, Jin-Lai; Xiao, Xiao-Lin; Li, Na; Li, Shan-Liang; Dong, De Li

    2016-03-15

    GDF11/BMP11, a member of TGF-β superfamily, was reported to rejuvenate heart, skeletal muscle and blood vessel architecture in aged mice. However, the rejuvenative effects of GDF11 were questioned recently. Here, we investigated the effects of GDF11 on smad and non-smad signals in human umbilical vein endothelial cells (HUVECs) and the effects of GDF11 on proliferation and migration of HUVECs and primary rat aortic endothelial cells (RAECs). GDF11 factor purchased from two different companies (PeproTech and R&D Systems) was comparatively studied. Western blot was used to detect the protein expressions. The cell viability and migration were examined by using MTT and wound healing assays. Results showed that GDF11 activated both smad1/5/8 and smad2/3 signals in HUVECs. GDF11 increased protein expression of NADPH oxidase 4(NOX4) in HUVECs. GDF11 showed no significant effect on the protein level of p38, p-p38, ERK, p-ERK, Akt, p-Akt (Ser473) and p-Akt(Thr308), but increased the protein level of p-JNK and p-AMPK in HUVECs, and these increases were inhibited by antioxidant mitoTEMPO treatment. GDF11 slightly increased cell viability after short-term treatment and slightly decreased cell viability after long-term treatment. GDF11 showed no significant effect on cell proliferation and migration. These data indicated that the notion of GDF11 as a rejuvenation-related factor for endothelial cells needs to be cautious.

  14. Activation of myeloid and endothelial cells by CD40L gene therapy supports T-cell expansion and migration into the tumor microenvironment.

    PubMed

    Eriksson, E; Moreno, R; Milenova, I; Liljenfeldt, L; Dieterich, L C; Christiansson, L; Karlsson, H; Ullenhag, G; Mangsbo, S M; Dimberg, A; Alemany, R; Loskog, A

    2017-02-01

    CD40 is an interesting target in cancer immunotherapy due to its ability to stimulate T-helper 1 immunity via maturation of dendritic cells and to drive M2 to M1 macrophage differentiation. Pancreatic cancer has a high M2 content that has shown responsive to anti-CD40 agonist therapy and CD40 may thus be a suitable target for immune activation in these patients. In this study, a novel oncolytic adenovirus armed with a trimerized membrane-bound extracellular CD40L (TMZ-CD40L) was evaluated as a treatment of pancreatic cancer. Further, the CD40L mechanisms of action were elucidated in cancer models. The results demonstrated that the virus transferring TMZ-CD40L had oncolytic capacity in pancreatic cancer cells and could control tumor progression. TMZ-CD40L was a potent stimulator of human myeloid cells and T-cell responses. Further, CD40L-mediated stimulation increased tumor-infiltrating T cells in vivo, which may be due to a direct activation of endothelial cells to upregulate receptors for lymphocyte attachment and transmigration. In conclusion, CD40L-mediated gene therapy is an interesting concept for the treatment of tumors with high levels of M2 macrophages, such as pancreatic cancer, and an oncolytic virus as carrier of CD40L may further boost tumor killing and immune activation.

  15. Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells

    PubMed Central

    Goligorsky, M.S.; Hirschi, K.

    2016-01-01

    This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review. PMID:27451101

  16. Endothelial cells and the IGF system.

    PubMed

    Bach, Leon A

    2015-02-01

    Endothelial cells line blood vessels and modulate vascular tone, thrombosis, inflammatory responses and new vessel formation. They are implicated in many disease processes including atherosclerosis and cancer. IGFs play a significant role in the physiology of endothelial cells by promoting migration, tube formation and production of the vasodilator nitric oxide. These actions are mediated by the IGF1 and IGF2/mannose 6-phosphate receptors and are modulated by a family of high-affinity IGF binding proteins. IGFs also increase the number and function of endothelial progenitor cells, which may contribute to protection from atherosclerosis. IGFs promote angiogenesis, and dysregulation of the IGF system may contribute to this process in cancer and eye diseases including retinopathy of prematurity and diabetic retinopathy. In some situations, IGF deficiency appears to contribute to endothelial dysfunction, whereas IGF may be deleterious in others. These differences may be due to tissue-specific endothelial cell phenotypes or IGFs having distinct roles in different phases of vascular disease. Further studies are therefore required to delineate the therapeutic potential of IGF system modulation in pathogenic processes.

  17. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    PubMed

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  18. Endothelial cell-T lymphocyte interactions: IP[corrected]-10 stimulates rapid transendothelial migration of human effector but not central memory CD4+ T cells. Requirements for shear stress and adhesion molecules.

    PubMed

    Manes, Thomas D; Pober, Jordan S; Kluger, Martin S

    2006-07-15

    The chemokine interferon (IFN)-gamma-inducible protein of 10 kDa (IP-10; CXCL10) has been implicated in recruitment of T cells into rejecting allografts yet appears ineffective at stimulating human peripheral blood CD4 T cells to transmigrate across tumor necrosis factor (TNF)-treated human endothelial cell (EC) monolayers in vitro. The same cells rapidly (within 15 min) transmigrate across TNF-treated EC monolayers overlaid with stromal cell-derived factor-1 alpha (SDF-1 alpha) and subjected to shear stress. The effector memory subset within the CD4 T cell population, defined as CD45RO, CD62L and CCR7, which constitutes less than 10% of total CD4 T cells, does respond to IP-10 but requires enrichment to be observed in this model. Central memory T cells do not respond to IP-10. Transendothelial migration of effector memory CD4 T cells requires TNF-pretreatment of the EC monolayer and application of venular shear force during the assay. TNF treatment of ECs may be effectively replaced by transduction of vascular cell adhesion molecule-1 or intercellular adhesion molecule-1 but not E-selectin.

  19. Plasma from the second and third weeks after open colorectal resection for cancer stimulates in vitro endothelial cell growth, migration, and invasion.

    PubMed

    Shantha Kumara, H M C; Kirchoff, Daniel; Naffouje, Samer; Grieco, Michael; Herath, Sonali A C; Dujovny, Nadav; Kalady, Matthew F; Hyman, Neil; Njoh, Linda; Whelan, Richard L

    2012-03-01

    Angiogenesis is central to wound healing and tumor growth. Postoperative (postop) plasma from weeks 2 and 3 after minimally invasive colorectal resection (MICR) stimulates endothelial cell (EC) migration (MIG), invasion (INV), and proliferation (all vital to angiogenesis) compared with preoperative (preop) plasma results and may promote postop tumor growth. The purpose of this study was to determine whether plasma from open colorectal resection (OCR) patients has similar proangiogenic EC effects in vitro. OCR cancer patient plasma from institutional review board-approved banks was used; patients with preop and one postop sample from postoperative days (POD) 7-33 were eligible. Samples were bundled into 7- to 13-day periods and considered as single time points. In vitro cultures of human umbilical venous ECs were used for the EC proliferation (BPF, Branch Point Formation), INV, and MIG assays performed with preop, POD 7-13, POD 14-20, and POD 21-33 plasma. Data were analyzed by paired t test and were reported as mean ± standard deviation (significance, P < 0.05). Plasma from 53 cancer patients (25 rectal and 28 colon) was used. Because of limited postop samples, the number for each time point varies: POD 7-13, n = 30; POD 14-20, n = 26; and POD 21-33, n = 17. In vitro EC BPF was significantly greater at the POD 7-13 (P < 0.0001) and POD 14-20 (P < 0.0001) time points versus preop results. Significantly greater EC INV and MIG were noted on POD 7-13 and POD 14-20 versus the preop plasma results (P < 0.0001). In regards to POD 21-33, a significantly greater result was noted only for the INV assay versus preop. Plasma from weeks 2 and 3 after OCR stimulates in vitro EC BPF, INV, and MIG. A significant difference from preop baseline was noted only for the INV assay in week 4. The OCR and previous MICR results were largely similar. Tumor angiogenesis may be stimulated after OCR and MICR for 3 weeks. Further studies are warranted.

  20. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling.

    PubMed

    DiStefano, Peter V; Kuebel, Julia M; Sarelius, Ingrid H; Glading, Angela J

    2014-11-21

    Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1(+/-) mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.

  1. Retinal endothelial cell apoptosis stimulates recruitment of endothelial progenitor cells.

    PubMed

    Bhatwadekar, Ashay D; Glenn, Josephine V; Curtis, Tim M; Grant, Maria B; Stitt, Alan W; Gardiner, Tom A

    2009-10-01

    Bone marrow-derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05-0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-alpha when compared to control medium; SDF-1 remained unchanged. The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment.

  2. Endothelial actin-binding proteins and actin dynamics in leukocyte transendothelial migration.

    PubMed

    Schnoor, Michael

    2015-04-15

    The endothelium is the first barrier that leukocytes have to overcome during recruitment to sites of inflamed tissues. The leukocyte extravasation cascade is a complex multistep process that requires the activation of various adhesion molecules and signaling pathways, as well as actin remodeling, in both leukocytes and endothelial cells. Endothelial adhesion molecules, such as E-selectin or ICAM-1, are connected to the actin cytoskeleton via actin-binding proteins (ABPs). Although the contribution of receptor-ligand interactions to leukocyte extravasation has been studied extensively, the contribution of endothelial ABPs to the regulation of leukocyte adhesion and transendothelial migration remains poorly understood. This review focuses on recently published evidence that endothelial ABPs, such as cortactin, myosin, or α-actinin, regulate leukocyte extravasation by controlling actin dynamics, biomechanical properties of endothelia, and signaling pathways, such as GTPase activation, during inflammation. Thus, ABPs may serve as targets for novel treatment strategies for disorders characterized by excessive leukocyte recruitment.

  3. Analysing immune cell migration.

    PubMed

    Beltman, Joost B; Marée, Athanasius F M; de Boer, Rob J

    2009-11-01

    The visualization of the dynamic behaviour of and interactions between immune cells using time-lapse video microscopy has an important role in modern immunology. To draw robust conclusions, quantification of such cell migration is required. However, imaging experiments are associated with various artefacts that can affect the estimated positions of the immune cells under analysis, which form the basis of any subsequent analysis. Here, we describe potential artefacts that could affect the interpretation of data sets on immune cell migration. We propose how these errors can be recognized and corrected, and suggest ways to prevent the data analysis itself leading to biased results.

  4. Rho GTPases and cancer cell transendothelial migration.

    PubMed

    Reymond, Nicolas; Riou, Philippe; Ridley, Anne J

    2012-01-01

    Small Rho GTPases are major regulators of actin cytoskeleton dynamics and influence cell shape and migration. The expression of several Rho GTPases is often up-regulated in tumors and this frequently correlates with a poor prognosis for patients. Migration of cancer cells through endothelial cells that line the blood vessels, called transendothelial migration or extravasation, is a critical step during the metastasis process. The use of siRNA technology to target specifically each Rho family member coupled with imaging techniques allows the roles of individual Rho GTPases to be investigated. In this chapter we describe methods to assess how Rho GTPases affect the different steps of cancer cell transendothelial cell migration in vitro.

  5. Osteopontin Controls Endothelial Cell Migration In Vitro and in Excised Human Valvular Tissue from Patients with Calcific Aortic Stenosis and Controls

    PubMed Central

    POGGIO, PAOLO; GRAU, JUAN B.; FIELD, BENJAMIN C.; SAINGER, RACHANA; SEEFRIED, WILLIAM F.; RIZZOLIO, FLAVIO; FERRARI, GIOVANNI

    2012-01-01

    Calcific aortic stenosis (CAS) is a pathological condition of the aortic valve characterized by dystrophic calcification of the valve leaflets. Despite the high prevalence and mortality associated with CAS, little is known about its pathogenetic mechanisms. Characterized by progressive dystrophic calcification of the valve leaflets, the early stages of aortic valve degeneration are similar to the active inflammatory process of atherosclerosis including endothelial disruption, inflammatory cell infiltration, lipid deposition, neo-vascularization and calcification. In the vascular system, the endothelium is an important regulator of physiological and pathological conditions; however, the contribution of endothelial dysfunction to valvular degeneration at the cellular and molecular level has received little attention. Endothelial cell (EC) activation and neo-vascularization of the cusps characterizes all stages of aortic valvular degeneration from aortic sclerosis to aortic stenosis. Here we reported the role of osteopontin (OPN) in the regulation of EC activation in vitro and in excised tissue from CAS patients and controls. OPN is an important pro-angiogenic factor in several pathologies. High levels of OPN have been demonstrated in both tissue and plasma of patients with aortic valve sclerosis and stenosis. The characterization of valvular ECs as a cellular target for OPN will help us uncover the pathogenesis of aortic valve degeneration and stenosis, opening new perspectives for the prevention and therapy of this prevalent disease. PMID:21520066

  6. Endothelial cell migration during murine yolk sac vascular remodeling occurs by means of a Rac1 and FAK activation pathway in vivo

    USDA-ARS?s Scientific Manuscript database

    The molecular mechanism(s) controlling cell migration during vascular morphogenesis in vivo remain largely undefined. To address this within a physiological context, we used retinaldehyde dehydrogenase-2 (Raldh2) null mouse embryos and demonstrate that retinoic acid (RA) deficiency results in abnorm...

  7. Endothelial-regenerating cells: an expanding universe.

    PubMed

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  8. Endothelial Src kinase regulates membrane recycling from the lateral border recycling compartment during leukocyte transendothelial migration.

    PubMed

    Dasgupta, Bidisha; Muller, William A

    2008-12-01

    When leukocytes cross endothelial cells during the inflammatory response, membrane from the recently described lateral border recycling compartment (LBRC) is selectively targeted around diapedesing leukocytes. This "targeted recycling" is critical for leukocyte transendothelial migration. Blocking homophilic PECAM interactions between leukocytes and endothelial cells blocks targeted recycling from the LBRC and blocks diapedesis. However, the cellular signaling pathways that trigger targeted recycling are not known. We show that targeted recycling from the LBRC is dependent on Src kinase. The selective Src kinase inhibitor PP2 blocked targeted recycling and blocked diapedesis by over 70%. However, Src kinase inhibition did not affect the structure or normal constitutive recycling of membrane from the LBRC in the absence of leukocytes. PECAM, a Src kinase substrate, traffics between the LBRC and the endothelial surface at the cell border. However, virtually all of the PECAM in the cell that was phosphorylated on tyrosine residues was found in the LBRC. These findings demonstrate that Src kinase activity is critical for the targeted recycling of membrane from the LBRC to the site of transendothelial migration and that the PECAM in the LBRC is qualitatively different from the PECAM on the surface of endothelial cells.

  9. Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF.

    PubMed

    Lamalice, Laurent; Houle, François; Huot, Jacques

    2006-11-10

    VEGFR-2 is the major receptor that regulates the different functions of VEGF in adults. We have previously reported that following VEGF treatment of endothelial cells, VEGFR-2 is phosphorylated on Tyr1214 upstream of the Cdc42-SAPK2/p38-MAPKAP K2 pathway. However, little is known of the earliest molecular events that compose the SAPK2/p38 pathway following VEGFR-2 activation. In this study, we address this question using HA-tagged constructs of either wild-type VEGFR-2 or Y1214F VEGFR-2 mutant in immunoprecipitation assays. We show that the Src family kinase member Fyn, but not c-Src itself, is recruited to VEGFR-2 and is activated in a p-Tyr1214-dependent manner. We also report that the SH2 domain-containing adapter molecule Nck, but not Grb2, is recruited to VEGFR-2 in a p-Tyr1214-dependent manner and that it associates with Fyn. Moreover, PAK-2 is phosphorylated in a Fyn-dependent manner. Using chemical and genetic inhibitors, we show that Fyn activity is required for SAPK2/p38 but not for FAK activation in response to VEGF. In contrast, c-Src permits activation of FAK, but not that of SAPK2/p38. In addition, Fyn is required for stress fiber formation and endothelial cell migration. We propose a model in which Fyn forms a molecular complex with Nck and PAK-2 and suggest that this complex assembles in a p-Tyr1214-dependent manner within VEGFR-2 following VEGF treatment. In turn, this triggers the activation of the SAPK2/p38 MAP kinase module, and promotes stress fiber formation and endothelial cell migration.

  10. Differentiation state determines neural effects on microvascular endothelial cells

    PubMed Central

    Muffley, Lara A.; Pan, Shin-Chen; Smith, Andria N.; Ga, Maricar; Hocking, Anne M.; Gibran, Nicole S.

    2012-01-01

    Growing evidence indicates that nerves and capillaries interact paracrinely in uninjured skin and cutaneous wounds. Although mature neurons are the predominant neural cell in the skin, neural progenitor cells have also been detected in uninjured adult skin. The aim of this study was to characterize differential paracrine effects of neural progenitor cells and mature sensory neurons on dermal microvascular endothelial cells. Our results suggest that neural progenitor cells and mature sensory neurons have unique secretory profiles and distinct effects on dermal microvascular endothelial cell proliferation, migration, and nitric oxide production. Neural progenitor cells and dorsal root ganglion neurons secrete different proteins related to angiogenesis. Specific to neural progenitor cells were dipeptidyl peptidase-4, IGFBP-2, pentraxin-3, serpin f1, TIMP-1, TIMP-4 and VEGF. In contrast, endostatin, FGF-1, MCP-1 and thrombospondin-2 were specific to dorsal root ganglion neurons. Microvascular endothelial cell proliferation was inhibited by dorsal root ganglion neurons but unaffected by neural progenitor cells. In contrast, microvascular endothelial cell migration in a scratch wound assay was inhibited by neural progenitor cells and unaffected by dorsal root ganglion neurons. In addition, nitric oxide production by microvascular endothelial cells was increased by dorsal root ganglion neurons but unaffected by neural progenitor cells. PMID:22683922

  11. Method for in vitro differentiation of bone marrow mesenchymal stem cells into endothelial progenitor cells and vascular endothelial cells

    PubMed Central

    Wang, Qihong; Zhang, Weifeng; He, Guifen; Sha, Huifang; Quan, Zhe

    2016-01-01

    Vascular development is a regulated process and is dependent on the participation and differentiation of many cell types including the proliferation and migration of vascular endothelial cells and differentiation of endothelial progenitor cells (EPCs) to mesodermal precursor cells. Thus, reconstitution of this process in vitro necessitates providing ambient conditions for generating and culturing EPCs in vitro and differentiating them to vascular endothelial cells. In the present study, we developed methods to differentiate bone marrow mesenchymal stem cells (MSC) into EPCs and to vascular endothelial cells. Bone marrow MSC from canines and human sources were differentiated in vitro in to EPCs. These EPCs were able to express a variety of endothelial markers following 7 days in culture. Further culturing led to the appearance of an increased number and proportion of endothelial cells. These cells were stable even after 30 generations in culture. There was a gradual loss of CD31 and increased expression of factor VIII, VEGFR and CD133. VEGF being highly angiogenic, helps in the vascular development. These results provide the basis for the possible development of vasculature in vitro conditions for biomedical applications and in vivo for organ/tissue reconstruction therapies. PMID:27878275

  12. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  13. Origins of circulating endothelial cells and endothelial outgrowth from blood

    PubMed Central

    Lin, Yi; Weisdorf, Daniel J.; Solovey, Anna; Hebbel, Robert P.

    2000-01-01

    Normal adults have a small number of circulating endothelial cells (CEC) in peripheral blood, and endothelial outgrowth has been observed from cultures of blood. In this study we seek insight into the origins of CEC and endothelial outgrowth from cultures of blood. Fluorescence in situ hybridization analysis of blood samples from bone marrow transplant recipients who had received gender-mismatched transplants 5–20 months earlier showed that most CEC in fresh blood had recipient genotype. Endothelial outgrowth from the same blood samples after 9 days in culture (5-fold expansion) was still predominantly of the recipient genotype. In contrast, endothelial outgrowth after ∼1 month (102-fold expansion) was mostly of donor genotype. Thus, recipient-genotype endothelial cells expanded only ∼20-fold over this period, whereas donor-genotype endothelial cells expanded ∼1000-fold. These data suggest that most CEC in fresh blood originate from vessel walls and have limited growth capability. Conversely, the data indicate that outgrowth of endothelial cells from cultures of blood is mostly derived from transplantable marrow-derived cells. Because these cells have more delayed outgrowth but a greater proliferative rate, our data suggest that they are derived from circulating angioblasts. PMID:10619863

  14. Tipping off endothelial tubes: nitric oxide drives tip cells.

    PubMed

    Priya, Mani Krishna; Sahu, Giriraj; Soto-Pantoja, David R; Goldy, Naga; Sundaresan, Abaya Meenakshi; Jadhav, Vivek; Barathkumar, T R; Saran, Uttara; Jaffar Ali, B M; Roberts, David D; Bera, Amal Kanti; Chatterjee, Suvro

    2015-04-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, is a complex process that warrants cell migration, proliferation, tip cell formation, ring formation, and finally tube formation. Angiogenesis is initiated by a single leader endothelial cell called "tip cell," followed by vessel elongation by "stalk cells." Tip cells are characterized by their long filopodial extensions and expression of vascular endothelial growth factor receptor-2 and endocan. Although nitric oxide (NO) is an important modulator of angiogenesis, its role in angiogenic sprouting and specifically in tip cell formation is poorly understood. The present study tested the role of endothelial nitric oxide synthase (eNOS)/NO/cyclic GMP (cGMP) signaling in tip cell formation. In primary endothelial cell culture, about 40% of the tip cells showed characteristic sub-cellular localization of eNOS toward the anterior progressive end of the tip cells, and eNOS became phosphorylated at serine 1177. Loss of eNOS suppressed tip cell formation. Live cell NO imaging demonstrated approximately 35% more NO in tip cells compared with stalk cells. Tip cells showed increased level of cGMP relative to stalk cells. Further, the dissection of NO downstream signaling using pharmacological inhibitors and inducers indicates that NO uses the sGC/cGMP pathway in tip cells to lead angiogenesis. Taken together, the present study confirms that eNOS/NO/cGMP signaling defines the direction of tip cell migration and thereby initiates new blood vessel formation.

  15. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells

    PubMed Central

    Yang, Guanghua; Kramer, M. Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P.; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-01-01

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties. PMID:26612671

  16. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells.

    PubMed

    Yang, Guanghua; Kramer, M Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-11-27

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.

  17. Examination of the role of galectins and galectin inhibitors in endothelial cell biology.

    PubMed

    Schulkens, Iris A E; Kleibeuker, Esther A; Castricum, Kitty C M; Griffioen, Arjan W; Thijssen, Victor L J L

    2015-01-01

    The growth of new blood vessels is a key event in many (patho)physiological processes, including embryogenesis, wound healing, inflammatory diseases, and cancer. Neovascularization requires different, well-coordinated actions of endothelial cells, i.e., the cells lining the luminal side of all blood vessels. Galectins are involved in several of these activities. In this chapter we describe methods to study galectins and galectin inhibition in three key functions of endothelial cells during angiogenesis, i.e., endothelial cell migration, endothelial cell sprouting, and endothelial cell network formation.

  18. Effects of diabetic HDL on endothelial cell function.

    PubMed

    He, Dan; Pan, Bing; Ren, Hui; Zheng, Lemin

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is accompanied by dysfunctional high-density lipoprotein (HDL) and this is characterized by alterations in its composition and structure compared with HDL from normal subjects (N-HDL). HDL from diabetic subjects (D-HDL) has a diminished endothelial protective capacity including reducted ability to exert antioxidative activity, stimulate endothelial cell (EC) production of nitric oxide (NO) and endothelium-dependent vasomotion, promote endothelial progenitor cell (EPC)-mediated endothelial repair. In addition, D-HDL promotes EC proliferation, migration and adhesion to the matrix. The present review provides an overview of these effects of diabetic HDL on EC function, as well as the possible changes of D-HDL structure and composition which may be responsible for the diminished endothelial protective capacity of D-HDL.

  19. Endothelial progenitor cells in atherosclerosis

    PubMed Central

    Du, Fuyong; Zhou, Jun; Gong, Ren; Huang, Xiao; Pansuria, Meghana; Virtue, Anthony; Li, Xinyuan; Wang, Hong; Yang, Xiao-Feng

    2012-01-01

    Endothelial progenitor cells (EPCs) are involved in the maintenance of endothelial homoeostasis and in the process of new vessel formation. Experimental and clinical studies have shown that atherosclerosis is associated with reduced numbers and dysfunction of EPCs; and that medications alone are able to partially reverse the impairment of EPCs in patients with atherosclerosis. Therefore, novel EPC-based therapies may provide enhancement in restoring EPCs’ population and improvement of vascular function. Here, for a better understanding of the molecular mechanisms underlying EPC impairment in atherosclerosis, we provide a comprehensive overview on EPC characteristics, phenotypes, and the signaling pathways underlying EPC impairment in atherosclerosis. PMID:22652782

  20. Dynamic Endothelial Cell Rearrangements Drive Developmental Vessel Regression

    PubMed Central

    Franco, Claudio A.; Jones, Martin L.; Bernabeu, Miguel O.; Geudens, Ilse; Mathivet, Thomas; Rosa, Andre; Lopes, Felicia M.; Lima, Aida P.; Ragab, Anan; Collins, Russell T.; Phng, Li-Kun; Coveney, Peter V.; Gerhardt, Holger

    2015-01-01

    Patterning of functional blood vessel networks is achieved by pruning of superfluous connections. The cellular and molecular principles of vessel regression are poorly understood. Here we show that regression is mediated by dynamic and polarized migration of endothelial cells, representing anastomosis in reverse. Establishing and analyzing the first axial polarity map of all endothelial cells in a remodeling vascular network, we propose that balanced movement of cells maintains the primitive plexus under low shear conditions in a metastable dynamic state. We predict that flow-induced polarized migration of endothelial cells breaks symmetry and leads to stabilization of high flow/shear segments and regression of adjacent low flow/shear segments. PMID:25884288

  1. [The oxLDL/β2GPI/β2GPI-Ab complex promotes the migration and the expression of inflammatory cytokines in human umbilical vein endothelial cells].

    PubMed

    Cai, Qianqian; Zhou, Hong; Zhang, Guiting; He, Chao; Zhu, Xiaojie; Wang, Xiaoyan; Ouyang, Hang

    2017-07-01

    Objective To study the effects of the complex of oxidized low density lipoprotein/β2-glycoprotein I/β2-glycoprotein I antibodies (oxLDL/β2GPI/β2GPI-Ab) on the migration of human umbilical vein endothelial cells (HUVECs) and the expression of inflammatory cytokines, and their underlying Toll-like receptor (TLR4) pathway. Methods HUVECs were treated with oxLDL, oxLDL/β2GPI complex, oxLDL/β2GPI-Ab complex, oxLDL/β2GPI/β2GPI-Ab complex, or lipopolysaccharide (LPS) for a period of time in their corresponding groups. The migration of HUVECs was observed by the wound-healing assay. The mRNA and protein levels of TLR4 in HUVECs were detected by real-time quantitative PCR (qRT-PCR) and Western blotting, respectively. The cells were pretreated with or without TAK-242 (the inhibitor of TLR4) 2 hours before stimulated by corresponding stimulus as described above. Then, the contents of monocyte chemotactic protein-1 (MCP-1), interleukin 1β (IL-1β) and IL-6 in cell culture supernatant were determined by ELISA, and their mRNAs were detected by qRT-PCR. Results The oxLDL/β2GPI/β2GPI-Ab complex promoted the migration of HUVECs effectively, and increased the expression of TLR4. The oxLDL/β2GPI/β2GPI-Ab complex increased the expressions of MCP-1, IL-1β, and IL-6. TAK-242 could reduce the effects of oxLDL/β2GPI/β2GPI-Ab complex. Conclusion The oxLDL/β2GPI/anti-β2GPI-Ab complex can promote the migration of HUVECs and the expression of related inflammatory cytokines, and TLR4 may be involved in this process.

  2. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis.

    PubMed

    Strilic, Boris; Yang, Lida; Albarrán-Juárez, Julián; Wachsmuth, Laurens; Han, Kang; Müller, Ulrike C; Pasparakis, Manolis; Offermanns, Stefan

    2016-08-11

    Metastasis is the leading cause of cancer-related death in humans. It is a complex multistep process during which individual tumour cells spread primarily through the circulatory system to colonize distant organs. Once in the circulation, tumour cells remain vulnerable, and their metastatic potential largely depends on a rapid and efficient way to escape from the blood stream by passing the endothelial barrier. Evidence has been provided that tumour cell extravasation resembles leukocyte transendothelial migration. However, it remains unclear how tumour cells interact with endothelial cells during extravasation and how these processes are regulated on a molecular level. Here we show that human and murine tumour cells induce programmed necrosis (necroptosis) of endothelial cells, which promotes tumour cell extravasation and metastasis. Treatment of mice with the receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-inhibitor necrostatin-1 or endothelial-cell-specific deletion of RIPK3 reduced tumour-cell-induced endothelial necroptosis, tumour cell extravasation and metastasis. In contrast, pharmacological caspase inhibition or endothelial-cell-specific loss of caspase-8 promoted these processes. We furthermore show in vitro and in vivo that tumour-cell-induced endothelial necroptosis leading to extravasation and metastasis requires amyloid precursor protein expressed by tumour cells and its receptor, death receptor 6 (DR6), on endothelial cells as the primary mediators of these effects. Our data identify a new mechanism underlying tumour cell extravasation and metastasis, and suggest endothelial DR6-mediated necroptotic signalling pathways as targets for anti-metastatic therapies.

  3. Evolving functions of endothelial cells in inflammation.

    PubMed

    Pober, Jordan S; Sessa, William C

    2007-10-01

    Inflammation is usually analysed from the perspective of tissue-infiltrating leukocytes. Microvascular endothelial cells at a site of inflammation are both active participants in and regulators of inflammatory processes. The properties of endothelial cells change during the transition from acute to chronic inflammation and during the transition from innate to adaptive immunity. Mediators that act on endothelial cells also act on leukocytes and vice versa. Consequently, many anti-inflammatory therapies influence the behaviour of endothelial cells and vascular therapeutics influence inflammation. This Review describes the functions performed by endothelial cells at each stage of the inflammatory process, emphasizing the principal mediators and signalling pathways involved and the therapeutic implications.

  4. Co-self-assembly of cationic microparticles to deliver pEGFP-ZNF580 for promoting the transfection and migration of endothelial cells

    PubMed Central

    Feng, Yakai; Guo, Mengyang; Liu, Wen; Hao, Xuefang; Lu, Wei; Ren, Xiangkui; Shi, Changcan; Zhang, Wencheng

    2017-01-01

    The gene transfection efficiency of polyethylenimine (PEI) varies with its molecular weight. Usually, high molecular weight of PEI means high gene transfection, as well as high cytotoxicity in gene delivery in vivo. In order to enhance the transfection efficiency and reduce the cytotoxicity of PEI-based gene carriers, a novel cationic gene carrier was developed by co-self-assembly of cationic copolymers. First, a star-shaped copolymer poly(3(S)-methyl-morpholine-2,5-dione-co-lactide) (P(MMD-co-LA)) was synthesized using D-sorbitol as an initiator, and the cationic copolymer (P(MMD-co-LA)-g-PEI) was obtained after grafting low-molecular weight PEI. Then, by co-self-assembly of this cationic copolymer and a diblock copolymer methoxy-poly(ethylene glycol) (mPEG)-b-P(MMD-co-LA), microparticles (MPs) were formed. The core of MPs consisted of a biodegradable block of P(MMD-co-LA), and the shell was formed by mPEG and PEI blocks. Finally, after condensation of pEGFP-ZNF580 by these MPs, the plasmids were protected from enzymatic hydrolysis effectively. The result indicated that pEGFP-ZNF580-loaded MP complexes were suitable for cellular uptake and gene transfection. When the mass ratio of mPEG-b-P(MMD-co-LA) to P(MMD-co-LA)-g-PEI reached 3/1, the cytotoxicity of the complexes was very low at low concentration (20 μg mL−1). Additionally, pEGFP-ZNF580 could be transported into endothelial cells (ECs) effectively via the complexes of MPs/pEGFP-ZNF580. Wound-healing assay showed that the transfected ECs recovered in 24 h. Cationic MPs designed in the present study could be used as an applicable gene carrier for the endothelialization of artificial blood vessels. PMID:28053529

  5. Co-self-assembly of cationic microparticles to deliver pEGFP-ZNF580 for promoting the transfection and migration of endothelial cells.

    PubMed

    Feng, Yakai; Guo, Mengyang; Liu, Wen; Hao, Xuefang; Lu, Wei; Ren, Xiangkui; Shi, Changcan; Zhang, Wencheng

    The gene transfection efficiency of polyethylenimine (PEI) varies with its molecular weight. Usually, high molecular weight of PEI means high gene transfection, as well as high cytotoxicity in gene delivery in vivo. In order to enhance the transfection efficiency and reduce the cytotoxicity of PEI-based gene carriers, a novel cationic gene carrier was developed by co-self-assembly of cationic copolymers. First, a star-shaped copolymer poly(3(S)-methyl-morpholine-2,5-dione-co-lactide) (P(MMD-co-LA)) was synthesized using D-sorbitol as an initiator, and the cationic copolymer (P(MMD-co-LA)-g-PEI) was obtained after grafting low-molecular weight PEI. Then, by co-self-assembly of this cationic copolymer and a diblock copolymer methoxy-poly(ethylene glycol) (mPEG)-b-P(MMD-co-LA), microparticles (MPs) were formed. The core of MPs consisted of a biodegradable block of P(MMD-co-LA), and the shell was formed by mPEG and PEI blocks. Finally, after condensation of pEGFP-ZNF580 by these MPs, the plasmids were protected from enzymatic hydrolysis effectively. The result indicated that pEGFP-ZNF580-loaded MP complexes were suitable for cellular uptake and gene transfection. When the mass ratio of mPEG-b-P(MMD-co-LA) to P(MMD-co-LA)-g-PEI reached 3/1, the cytotoxicity of the complexes was very low at low concentration (20 μg mL(-1)). Additionally, pEGFP-ZNF580 could be transported into endothelial cells (ECs) effectively via the complexes of MPs/pEGFP-ZNF580. Wound-healing assay showed that the transfected ECs recovered in 24 h. Cationic MPs designed in the present study could be used as an applicable gene carrier for the endothelialization of artificial blood vessels.

  6. Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.

    PubMed

    Shamloo, Amir

    2014-09-01

    This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.

  7. Autocrine VEGF Isoforms Differentially Regulate Endothelial Cell Behavior

    PubMed Central

    Yamamoto, Hideki; Rundqvist, Helene; Branco, Cristina; Johnson, Randall S.

    2016-01-01

    Vascular endothelial growth factor A (VEGF) is involved in all the essential biology of endothelial cells, from proliferation to vessel function, by mediating intercellular interactions and monolayer integrity. It is expressed as three major alternative spliced variants. In mice, these are VEGF120, VEGF164, and VEGF188, each with different affinities for extracellular matrices and cell surfaces, depending on the inclusion of heparin-binding sites, encoded by exons 6 and 7. To determine the role of each VEGF isoform in endothelial homeostasis, we compared phenotypes of primary endothelial cells isolated from lungs of mice expressing single VEGF isoforms in normoxic and hypoxic conditions. The differential expression and distribution of VEGF isoforms affect endothelial cell functions, such as proliferation, adhesion, migration, and integrity, which are dependent on the stability of and affinity to VEGF receptor 2 (VEGFR2). We found a correlation between autocrine VEGF164 and VEGFR2 stability, which is also associated with increased expression of proteins involved in cell adhesion. Endothelial cells expressing only VEGF188, which localizes to extracellular matrices or cell surfaces, presented a mesenchymal morphology and weakened monolayer integrity. Cells expressing only VEGF120 lacked stable VEGFR2 and dysfunctional downstream processes, rendering the cells unviable. Endothelial cells expressing these different isoforms in isolation also had differing rates of apoptosis, proliferation, and signaling via nitric oxide (NO) synthesis. These data indicate that autocrine signaling of each VEGF isoform has unique functions on endothelial homeostasis and response to hypoxia, due to both distinct VEGF distribution and VEGFR2 stability, which appears to be, at least partly, affected by differential NO production. This study demonstrates that each autocrine VEGF isoform has a distinct effect on downstream functions, namely VEGFR2-regulated endothelial cell homeostasis in

  8. Uveal melanoma cells utilize a novel route for transendothelial migration.

    PubMed

    Onken, Michael D; Li, Jinmei; Cooper, John A

    2014-01-01

    Uveal melanoma arises in the eye, and it spreads to distant organs in almost half of patients, leading to a fatal outcome. To metastasize, uveal melanoma cells must transmigrate into and out of the microvasculature, crossing the monolayer of endothelial cells that separates the vessel lumen from surrounding tissues. We investigated how human uveal melanoma cells cross the endothelial cell monolayer, using a cultured cell system with primary human endothelial cell monolayers on hydrogel substrates. We found that uveal melanoma cells transmigrate by a novel and unexpected mechanism. Uveal melanoma cells intercalate into the endothelial cell monolayer and flatten out, assuming a shape and geometry similar to those of endothelial cells in the monolayer. After an extended period of time in the intercalated state, the uveal melanoma cells round up and migrate underneath the monolayer. VCAM is present on endothelial cells, and anti-VCAM antibodies slowed the process of intercalation. Depletion of BAP1, a known suppressor of metastasis in patients, increased the amount of transmigration of uveal melanoma cells in transwell assays; but BAP1 depletion did not affect the rate of intercalation, based on movies of living cells. Our results reveal a novel route of transendothelial migration for uveal melanoma cells, and they provide insight into the mechanism by which loss of BAP1 promotes metastasis.

  9. Putting the brakes on cancer cell migration: JAM-A restrains integrin activation.

    PubMed

    Naik, Ulhas P; Naik, Meghna U

    2008-01-01

    Junctional Adhesion Molecule A (JAM-A) is a member of the Ig superfamily of membrane proteins expressed in platelets, leukocytes, endothelial cells and epithelial cells. We have previously shown that in endothelial cells, JAM-A regulates basic fibroblast growth factor, (FGF-2)-induced angiogenesis via augmenting endothelial cell migration. Recently, we have revealed that in breast cancer cells, downregulation of JAM-A enhances cancer cell migration and invasion. Further, ectopic expression of JAM-A in highly metastatic MDA-MB-231 cells attenuates cell migration, and downregulation of JAM-A in low-metastatic T47D cells enhance migration. Interestingly, JAM-A expression is greatly diminished as breast cancer disease progresses. The molecular mechanism of this function of JAM-A is beyond its well-characterized barrier function at the tight junction. Our results point out that JAM-A differentially regulates migration of endothelial and cancer cells.

  10. Endothelial Cell Dynamics during Anastomosis in vitro

    PubMed Central

    Diaz-Santana, Anthony; Shan, Mengrou; Stroock, Abraham D.

    2015-01-01

    Vascular anastomosis –the fusion of vessels from two distinct branches of the vascular system – represents a critical step in vascular growth under both healthy and pathological conditions, in vivo, and presents an important target for engineering of vascularized tissues, in vitro. Recent works in animal models have advanced our understanding of the molecular and cellular players in vascular anastomosis, but questions remain related to cellular dynamics and control of this process, in vitro. In this study, we exploited a three-dimensional (3-D) culture platform to examine the dynamics of endothelial cell (EC) during and after vascular anastomosis by allowing angiogenesis and vasculogenesis to proceed in parallel. We show that anastomosis occurs between sprouts formed by angiogenesis from an endothelium and tubes formed by vasculogenesis in the bulk of a 3-D matrix. This fusion leads to highly connected vessels that span from the surface of the matrix into the bulk in a manner that depends on cell density and identity. Further, we observe and analyze intermixing of endothelial cells of distinct origin (surface versus bulk) within the vessels structures that are formed; we provide evidence that the cells migrate along pre-existing vessels segments as part of this intermixing process. We conclude that anastomosis can occur between vessels emerging by angiogenesis and vasculogenesis and that this process may play an important role in contexts such as wound healing. PMID:25790315

  11. Androgens Modulate Endothelial Function and Endothelial Progenitor Cells in Erectile Physiology

    PubMed Central

    Galoosian, Artin

    2013-01-01

    The incidence of erectile dysfunction (ED) increases with age and cardiovascular disease risk factors, such as hypertension, hyperlipidemia, insulin resistance, obesity, and diabetes. These risk factors are thought to contribute to endothelial dysfunction and atherosclerosis, thus contributing to the pathophysiology of ED. The role of the endothelium in regulating erectile physiology is well established. However, the role of androgens in modulating endothelial function and endothelial repair mechanisms subsequent to vascular injury in erectile tissue remains a subject of intensive research. The clinical and preclinical evidence discussed in this review suggests that androgens regulate endothelial function and also play an important role in the development and maturation of endothelial progenitor cells (EPCs), which are thought to play a critical role in repair of endothelial injury in vascular beds. In this review, we discuss the data available on the effects of androgens on endothelial function and EPCs in the repair of vascular injury. Indeed, more research is needed to fully understand the molecular and cellular basis of androgen action in regulating the development, differentiation, maturation, migration, and homing of EPCs to the site of injury. A better understanding of these processes will be critical to the development of new therapeutic approaches to the treatment of vascular ED. PMID:24255752

  12. Collective cell migration in development

    PubMed Central

    Scarpa, Elena

    2016-01-01

    During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective. PMID:26783298

  13. INTACT AND INJURED ENDOTHELIAL CELLS DIFFERENTIALLY MODULATE POSTNATAL MURINE FOREBRAIN NEURAL STEM CELLS

    PubMed Central

    Plane, Jennifer M.; Andjelkovic, Anuska V.; Keep, Richard F.; Parent, Jack M.

    2010-01-01

    Neural stem cells (NSCs) persist in the forebrain subventricular zone (SVZ) within a niche containing endothelial cells. Evidence suggests that endothelial cells stimulate NSC expansion and neurogenesis. Experimental stroke increases neurogenesis and angiogenesis, but how endothelial cells influence stroke-induced neurogenesis is unknown. We hypothesized intact or oxygen-glucose deprived (OGD) endothelial cells secrete factors that enhance neurogenesis. We co-cultured mouse SVZ neurospheres (NS) with endothelial cells, or differentiated NS in endothelial cell-conditioned medium (ECCM). NS also were expanded in ECCM from OGD-exposed (OGD-ECCM) endothelial cells to assess injury effects. ECCM significantly increased NS production. NS co-cultured with endothelial cells or ECCM generated more immature-appearing neurons and oligodendrocytes, and astrocytes with radial glial-like/reactive morphology than controls. OGD-ECCM stimulated neuroblast migration and yielded neurons with longer processes and more branching. These data indicate that intact and injured endothelial cells exert differing effects on NSCs, and suggest targets for stimulating regeneration after brain insults. PMID:19837162

  14. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  15. [Transplantation of corneal endothelial cells].

    PubMed

    Amano, Shiro

    2002-12-01

    Though conventional corneal transplantation has achieved great success, it still has several drawbacks including limited availability of donor corneas, recurrent allograft rejection, and subsequent graft failure in certain cases. Reconstructing clinically usable corneas by applying the technology of regenerative medicine can offer a solution to these problems, as well as making corneal transplantation a non-emergency surgery and enabling the usage of banked corneal cells. In the present study, we focused on corneal endothelium that is critical for corneal transparency and investigated the reconstruction of cornea utilizing cultured human corneal endothelial cells (HCECs). We succeeded in steadily culturing HCECs by using culture dishes pre-coated with extracellular matrix produced by calf corneal endothelial cells and culture media that contained basic fibroblast growth factor and fetal bovine serum. We performed the following analysis utilizing these cultured HCECs. The older the donor was, the more frequently large senescent cells appeared in the passaged HCECs. The telomeres of HCECs were measured as terminal restriction fragments (TRF) by Southern blotting. HCECs, in vivo from donors in their seventies had a long TRFs of over 12 kilobases. Passaging shortened the TRFs but there was no difference in TRFs among donors of various ages. These results indicated that shortening of telomere length is not related to senescence of HCECs. We investigated the role of advanced glycation end products (AGEs) in the senescence of in vivo HCECs. The results indicated that AGE-protein in the aqueous humor is endocytosed into HCECs via AGE receptors expressed on the surface of HCECs and damages HCECs by producing reactive oxygen species and inducing apoptosis, suggesting that AGEs, at least partly, cause the senescence of HECEs. HCECs were cultured using adult human serum instead of bovine serum to get rid of bovine material that can be infected with prions. Primary and passage

  16. Substrate curvature regulates cell migration

    NASA Astrophysics Data System (ADS)

    He, Xiuxiu; Jiang, Yi

    2017-06-01

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  17. Substrate curvature regulates cell migration.

    PubMed

    He, Xiuxiu; Jiang, Yi

    2017-05-23

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  18. Circulating Endothelial Cells and Endothelial Progenitor Cells in Pediatric Sepsis.

    PubMed

    Zahran, Asmaa Mohamad; Elsayh, Khalid Ibrahim; Mohamad, Ismail Lotfy; Hassan, Gamal Mohamad; Abdou, Madleen Adel A

    2016-03-01

    The aim of the study was to measure the number of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs) in pediatric patients with sepsis and correlating it with the severity of the disease and its outcome. The study included 19 children with sepsis, 26 with complicated sepsis, and 30 healthy controls. The patients were investigated within 48 hours of pediatric intensive care unit admission together with flow cytometric detection of CECs and CEPs. The levels of both CECs and CEPs were significantly higher in patient with sepsis and complicated sepsis than the controls. The levels of CECs were higher in patients with complicated sepsis, whereas the levels of CEPs were lower in patients with complicated sepsis. Comparing the survival and nonsurvival septic patients, the levels of CEPs were significantly higher in the survival than in nonsurvival patients, whereas the levels of CECs were significantly lower in the survival than in nonsurvival patients. Serum albumin was higher in survival than in nonsurvival patients. Estimation of CECs and CEPs and their correlation with other parameters such as serum albumen could add important information regarding prognosis in septic pediatric patients.

  19. Arterial versus venous endothelial cells.

    PubMed

    dela Paz, Nathaniel G; D'Amore, Patricia A

    2009-01-01

    Vascular endothelial cells (ECs) form the inner lining of all blood vessels from the largest artery and veins, viz., the aorta and venae cavae, respectively, to the capillaries that connect the arterial and venous systems. Because these two major conducting systems of the cardiovasculature differ functionally, it is not surprising that the physical makeup of arteries and veins, including the ECs that line their lumina, are also distinct. Although few would argue that the local environment contributes to the differences between arteries and veins, recent evidence has shown that the specification of arterial and venous identity is largely genetically determined.

  20. Endothelial monolayers and transendothelial migration depend on mechanical properties of the substrate.

    PubMed

    Onken, Michael D; Mooren, Olivia L; Mukherjee, Suranjana; Shahan, Stefanie T; Li, Jinmei; Cooper, John A

    2014-12-01

    Endothelial cells (ECs) line the microvasculature and constitute a barrier between the vessel lumen and surrounding tissues. ECs inform circulating immune cells of the health and integrity of surrounding tissues, recruiting them in response to pathogens and tissue damage. ECs play an active role in the transmigration of immune cells across the vessel wall. We have discovered important differences in the properties of ECs on soft hydrogel substrates of varying stiffness, in comparison to glass. Primary ECs from several human sources were tested; all formed monolayers normally on soft substrates. EC monolayers formed more mature cell-cell junctions on soft substrates, relative to glass, based on increased recruitment of vinculin and F-actin. EC monolayers supported transendothelial migration (TEM) on soft substrates. Immune cells, including peripheral blood lymphocytes (PBLs) and natural killer cells, showed decreasing numbers of paracellular (between-cell) transmigration events with decreasing substrate stiffness, while the number of transcellular (through-cell) events increased for PBLs. Melanoma cancer cells showed increased transmigration with decreased stiffness. Our findings demonstrate that endothelial monolayers respond to the mechanical properties of their surroundings, which can regulate the integrity and function of the monolayer independently from inflammatory signals. Soft hydrogel substrates are a more appropriate and physiological model for tissue environments than hard substrates, with important implications for the experimental analysis of TEM.

  1. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction.

    PubMed

    Giannotti, Giovanna; Doerries, Carola; Mocharla, Pavani S; Mueller, Maja F; Bahlmann, Ferdinand H; Horvàth, Tibor; Jiang, Hong; Sorrentino, Sajoscha A; Steenken, Nora; Manes, Costantina; Marzilli, Mario; Rudolph, K Lenhard; Lüscher, Thomas F; Drexler, Helmut; Landmesser, Ulf

    2010-06-01

    Prehypertension is a highly frequent condition associated with an increased cardiovascular risk. Endothelial dysfunction is thought to promote the development of hypertension and vascular disease; however, underlying mechanisms remain to be further determined. The present study characterizes for the first time the in vivo endothelial repair capacity of early endothelial progenitor cells (EPCs) in patients with prehypertension/hypertension and examines its relation with endothelial function. Early EPCs were isolated from healthy subjects and newly diagnosed prehypertensive and hypertensive patients (n=52). In vivo endothelial repair capacity of EPCs was examined by transplantation into a nude mouse carotid injury model. EPC senescence was determined (RT-PCR of telomere length). NO and superoxide production of EPCs were measured using electron spin resonance spectroscopy analysis. CD34(+)/KDR(+) mononuclear cells and circulating endothelial microparticles were examined by fluorescence-activated cell sorter analysis. Endothelium-dependent and -independent vasodilations were determined by high-resolution ultrasound. In vivo endothelial repair capacity of EPCs was substantially impaired in prehypertensive/hypertensive patients as compared with healthy subjects (re-endothelialized area: 15+/-3%/13+/-2% versus 28+/-3%; P<0.05 versus healthy subjects). Senescence of EPCs in prehypertension/hypertension was substantially increased, and NO production was markedly reduced. Moreover, reduced endothelial repair capacity of early EPCs was significantly related to an accelerated senescence of early EPCs and impaired endothelial function. The present study demonstrates for the first time that in vivo endothelial repair capacity of early EPCs is reduced in patients with prehypertension and hypertension, is related to EPC senescence and impaired endothelial function, and likely represents an early event in the development of hypertension.

  2. PPAR Gamma and Angiogenesis: Endothelial Cells Perspective

    PubMed Central

    2016-01-01

    We summarize the current knowledge concerning PPARγ function in angiogenesis. We discuss the mechanisms of action for PPARγ and its role in vasculature development and homeostasis, focusing on endothelial cells, endothelial progenitor cells, and bone marrow-derived proangiogenic cells. PMID:28053991

  3. Enhanced progenitor cell recruitment and endothelial repair after selective endothelial injury of the mouse kidney.

    PubMed

    Hohenstein, Bernd; Kuo, Mei-Chuan; Addabbo, Francesco; Yasuda, Kaoru; Ratliff, Brian; Schwarzenberger, Claudia; Eckardt, Kai-Uwe; Hugo, Christian P M; Goligorsky, Michael S

    2010-06-01

    Primary and/or secondary injury of the renal microvascular endothelium is a common finding in various renal diseases. Besides well-known endothelial repair mechanisms, including endothelial cell (EC) proliferation and migration, homing of extrinsic cells such as endothelial progenitor cells (EPC) and hematopoietic stem cells (HSC) has been shown in various organs and may contribute to microvascular repair. However, these mechanisms have so far not been studied after selective microvascular injury in the kidney. The present study investigated the time course of EPC and HSC stimulation and homing following induction of selective EC injury in the mouse kidney along with various angiogenic factors potentially involved in EC repair and progenitor cell stimulation. Erythropoietin was used to stimulate progenitor cells in a therapeutic approach. We found that selective EC injury leads to a marked stimulation of EPCs, HSCs, and various angiogenic factors to orchestrate microvascular repair. Angiogenic factors started to increase as early as 30 min after disease induction. Progenitor cells could be first detected in the circulation and the spleen before they selectively homed to the diseased kidney. Injection of a high dose of erythropoietin 2 h after disease induction markedly attenuated vascular injury through nonhemodynamic mechanisms, possibly involving vascular endothelial growth factor release.

  4. Arteries are formed by vein-derived endothelial tip cells.

    PubMed

    Xu, Cong; Hasan, Sana S; Schmidt, Inga; Rocha, Susana F; Pitulescu, Mara E; Bussmann, Jeroen; Meyen, Dana; Raz, Erez; Adams, Ralf H; Siekmann, Arndt F

    2014-12-15

    Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor cxcr4a function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that cxcr4a mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation.

  5. Arteries are formed by vein-derived endothelial tip cells

    PubMed Central

    Xu, Cong; Hasan, Sana S.; Schmidt, Inga; Rocha, Susana F.; Pitulescu, Mara E.; Bussmann, Jeroen; Meyen, Dana; Raz, Erez; Adams, Ralf H.; Siekmann, Arndt F.

    2014-01-01

    Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor cxcr4a function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that cxcr4a mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation. PMID:25502622

  6. Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species.

    PubMed

    Zhuo, Wei; Song, Xiaomin; Zhou, Hao; Luo, Yongzhang

    2011-10-01

    ADI (arginine deiminase), an enzyme that hydrolyses arginine, has been reported as an anti-angiogenesis agent. However, its molecular mechanism is unclear. We have demonstrated for the first time that ADI modulates the angiogenic activity of endothelial tip cells. By arginine depletion, ADI disturbs actin filament in endothelial tip cells, causing disordered migratory direction and decreased migration ability. Furthermore, ADI induces excessive synthesis of ROS (reactive oxygen species), and activates caspase 8-, but not caspase 9-, dependent apoptosis in endothelial cells. These findings provide a novel mechanism by which ADI inhibits tumour angiogenesis through modulating endothelial tip cells.

  7. Ischemia-induced endothelial cell dysfunction.

    PubMed

    Keep, R F; Andjelkovic, A V; Stamatovic, S M; Shakui, P; Ennis, S R

    2005-01-01

    Hemorrhagic transformation upon reperfusion therapy has focused attention on ischemia-induced endothelial dysfunction. This study examined whether hyperglycemia may induce hemorrhagic transformation by enhancing endothelial mitochondrial damage during ischemia and whether preconditioning (PC) stimuli may limit ischemia-induced endothelial damage. In vivo, rats received 2.8 M D-glucose or arabinose (1 ml/100 g; i.p.) prior to undergoing two hours of middle cerebral artery occlusion and transcardiac fixation for electron microscopy. In vitro, brain endothelial cells were exposed to a PC impulse (short-term oxygen glucose deprivation; OGD) prior to an injurious event (5 hours OGD). Endothelial injury was assessed by measuring lactate dehydrogenase release. Hyperglycemia during cerebral ischemia resulted in marked changes in endothelial morphology and mitochondrial swelling. Thus, in the ischemic hemisphere, there was no evidence of endothelial mitochondrial swelling in normoglycemic rats (mean profile width 0.22 +/- 0.04 vs. 0.17 +/- 0.01 microm in contralateral hemisphere) but there was marked swelling in hyperglycemic rats (0.44 +/- 0.02 microm). In vitro, cells preconditioned with one hour of OGD one day prior to 5 hours of OGD, showed reduced lactate dehydrogenase release (p < 0.05). In conclusion, hyperglycemia may have specific adverse effects on endothelial cell mitochondria during ischemia. Preventing those effects may help to ameliorate blood-brain barrier disruption on reperfusion. Insights into how to prevent endothelial injury may come from determining the mechanisms involved in endothelial preconditioning.

  8. Embryogenesis of the First Circulating Endothelial Cells

    PubMed Central

    Cui, Cheng; Filla, Michael B.; Jones, Elizabeth A. V.; Lansford, Rusty; Cheuvront, Tracey; Al-Roubaie, Sarah; Rongish, Brenda J.; Little, Charles D.

    2013-01-01

    Prior to this study, the earliest appearance of circulating endothelial cells in warm-blooded animals was unknown. Time-lapse imaging of germ-line transformed Tie1-YFP reporter quail embryos combined with the endothelial marker antibody QH1 provides definitive evidence for the existence of circulating endothelial cells – from the very beginning of blood flow. Blood-smear counts of circulating cells from Tie1-YFP embryos showed that up to 30% of blood-borne cells are Tie1 positive; though cells expressing low levels of YFP were also positive for benzidine, a hemoglobin stain, suggesting that these cells were differentiating into erythroblasts. Electroporation-based time-lapse experiments, exclusively targeting the intra-embryonic mesoderm were combined with QH1 immunostaining. The latter antibody marks quail endothelial cells. Together the optical data provide conclusive evidence that endothelial cells can enter blood flow from vessels of the embryo proper, as well as from extra-embryonic areas. When Tie1-YFP positive cells and tissues are transplanted to wild type host embryos, fluorescent cells emigrate from such transplants and join host vessels; subsequently a few YFP cells are shed into circulation. These data establish that entering circulation is a commonplace activity of embryonic vascular endothelial cells. We conclude that in the class of vertebrates most closely related to mammals a normal component of primary vasculogenesis is production of endothelial cells that enter circulation from all vessels, both intra- and extra-embryonic. PMID:23737938

  9. Biomechanical changes in endothelial cells result from an inflammatory response

    NASA Astrophysics Data System (ADS)

    Vaitkus, Janina; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    During periods of infection and disease, the immune system induces the release of TNF-α, an inflammatory cytokine, from a variety of cell types, such as macrophages. TNF-α, while circulating in the vasculature, binds to the apical surface of endothelial cells and causes a wide range of biological and mechanical changes to the endothelium. While the biological changes have been widely studied, the biomechanical aspects have been largely unexplored. Here, we investigated the biomechanical changes of the endothelium as a function of TNF-α treatment. First, we studied the traction forces applied by the endothelium, an effect that is much less studied than others. Through the use of traction force microscopy, we found that TNF-α causes an increase in traction forces applied by the endothelial cells as compared to non-treated cells. Then, we investigated cell morphology, cell mechanics, migration, and cytoskeletal dynamics. We found that in addition to increasing applied traction forces, TNF-α causes an increase in cell area and aspect ratio on average, as well as a shift in the organization of F-actin filaments within the cell. Combining these findings together, our results show that an inflammatory response heavily impacts the morphology, cell mechanics, migration, cytoskeletal dynamics, and applied traction forces of endothelial cells.

  10. Chemosensitizing AML cells by targeting bone marrow endothelial cells.

    PubMed

    Bosse, Raphael C; Wasserstrom, Briana; Meacham, Amy; Wise, Elizabeth; Drusbosky, Leylah; Walter, Glenn A; Chaplin, David J; Siemann, Dietmar W; Purich, Daniel L; Cogle, Christopher R

    2016-05-01

    Refractory disease is the greatest challenge in treating patients with acute myeloid leukemia (AML). Blood vessels may serve as sanctuary sites for AML. When AML cells were co-cultured with bone marrow endothelial cells (BMECs), a greater proportion of leukemia cells were in G0/G1. This led us to a strategy of targeting BMECs with tubulin-binding combretastatins, causing BMECs to lose their flat phenotype, degrade their cytoskeleton, cease growth, and impair migration despite unchanged BMEC viability and metabolism. Combretastatins also caused downregulation of BMEC adhesion molecules known to tether AML cells, including vascular cell adhesion molecule (VCAM)-1 and vascular endothelial (VE)-cadherin. When AML-BMEC co-cultures were treated with combretastatins, a significantly greater proportion of AML cells dislodged from BMECs and entered the G2/M cell cycle, suggesting enhanced susceptibility to cell cycle agents. Indeed, the combination of combretastatins and cytotoxic chemotherapy enhanced additive AML cell death. In vivo mice xenograft studies confirmed this finding by revealing complete AML regression after treatment with combretastatins and cytotoxic chemotherapy. Beyond highlighting the pathologic role of BMECs in the leukemia microenvironment as a protective reservoir of disease, these results support a new strategy for using vascular-targeting combretastatins in combination with cytotoxic chemotherapy to treat AML.

  11. Signaling hierarchy regulating human endothelial cell development

    USDA-ARS?s Scientific Manuscript database

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  12. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  13. Cell migration in the forebrain.

    PubMed

    Marín, Oscar; Rubenstein, John L R

    2003-01-01

    The forebrain comprises an intricate set of structures that are required for some of the most complex and evolved functions of the mammalian brain. As a reflection of its complexity, cell migration in the forebrain is extremely elaborated, with widespread dispersion of cells across multiple functionally distinct areas. Two general modes of migration are distinguished in the forebrain: radial migration, which establishes the general cytoarchitectonical framework of the different forebrain subdivisions; and tangential migration, which increases the cellular complexity of forebrain circuits by allowing the dispersion of multiple neuronal types. Here, we review the cellular and molecular mechanisms underlying each of these types of migrations and discuss how emerging concepts in neuronal migration are reshaping our understanding of forebrain development in normal and pathological situations.

  14. Circulating Endothelial Cells and Arterial Endothelial Mitosis in Anaphylactic Shock

    PubMed Central

    Wright, H. Payling; Giacometti, N. J.

    1972-01-01

    Sensitized guinea-pigs received a shocking dose of ovalbumin. Within 8 min endothelial cells ranging in numbers between 24·0 and 13·88/1000 leukocytes were recovered from the peripheral blood. Control animals had counts between 0·00 and 4·40. Subsequent injection of T-3H and autoradiographic study of Hautchen preparations of aortic endothelium showed a 3-fold increase in mitosis in the shocked animals when compared with controls. The increase in mitosis represents the repair process following endothelial distruction caused by anaphylactic shock. ImagesFigs. 1-2 PMID:5014238

  15. Endothelial Differentiation of Mesenchymal Stromal Cells

    PubMed Central

    Janeczek Portalska, Karolina; Leferink, Anne; Groen, Nathalie; Fernandes, Hugo; Moroni, Lorenzo; van Blitterswijk, Clemens; de Boer, Jan

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are increasingly used in regenerative medicine for restoring worn-out or damaged tissue. Newly engineered tissues need to be properly vascularized and current candidates for in vitro tissue pre-vascularization are endothelial cells and endothelial progenitor cells. However, their use in therapy is hampered by their limited expansion capacity and lack of autologous sources. Our approach to engineering large grafts is to use hMSCs both as a source of cells for regeneration of targeted tissue and at the same time as the source of endothelial cells. Here we investigate how different stimuli influence endothelial differentiation of hMSCs. Although growth supplements together with shear force were not sufficient to differentiate hMSCs with respect to expression of endothelial markers such as CD31 and KDR, these conditions did prime the cells to differentiate into cells with an endothelial gene expression profile and morphology when seeded on Matrigel. In addition, we show that endothelial-like hMSCs are able to create a capillary network in 3D culture both in vitro and in vivo conditions. The expansion phase in the presence of growth supplements was crucial for the stability of the capillaries formed in vitro. To conclude, we established a robust protocol for endothelial differentiation of hMSCs, including an immortalized MSC line (iMSCs) which allows for reproducible in vitro analysis in further studies. PMID:23056481

  16. Activation of AMP-Activated Protein Kinase Inhibits the Proliferation of Human Endothelial Cells

    PubMed Central

    Peyton, Kelly J.; Liu, Xiao-ming; Yu, Yajie; Yates, Benjamin

    2012-01-01

    AMP-activated protein kinase (AMPK) is an evolutionary conserved energy-sensing enzyme that regulates cell metabolism. Emerging evidence indicates that AMPK also plays an important role in modulating endothelial cell function. In the present study, we investigated whether AMPK modulates endothelial cell growth. Treatment of cultured human umbilical vein endothelial cells with the AMPK activators 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), 6,7-dihydro-4-hydroxy-3-(2′-hydroxy[1,1′-biphenyl]-4-yl)-6-oxo-thieno[2,3-b]pyridine-5-carbonitrile (A-769662), or metformin inhibited cell proliferation and DNA synthesis. The antiproliferative action of AICAR was largely prevented by the adenosine kinase inhibitor 5′-iodotubercidin and mimicked by infecting endothelial cells with an adenovirus expressing constitutively active AMPK. In contrast, pharmacological blockade of endothelial nitric oxide synthase or heme oxygenase-1 activity failed to reverse the inhibition of endothelial cell growth by AICAR. Flow cytometry experiments revealed that pharmacological activation of AMPK arrested endothelial cells in the G0/G1 phase of the cell cycle, and this was associated with increases in p53 phosphorylation and p53, p21, and p27 protein expression and decreases in cyclin A protein expression and retinoblastoma protein phosphorylation. In addition, silencing p21 and p27 expression partially restored the mitogenic response of AMPK-activated cells. Finally, activation of AMPK by AICAR blocked the migration of endothelial cells after scrape injury and stimulated tube formation by endothelial cells plated onto Matrigel-coated plates. In conclusion, these studies demonstrate that AMPK activation inhibits endothelial cell proliferation by elevating p21 and p27 expression. In addition, they show that AMPK regulates endothelial cell migration and differentiation and identify AMPK as an attractive therapeutic target in treating diseases associated with aberrant

  17. Recovery of Corneal Endothelial Cells from Periphery after Injury

    PubMed Central

    Choi, Sang Ouk; Jeon, Hyun Sun; Hyon, Joon Young; Oh, Yun-Jung; Wee, Won Ryang; Chung, Tae-young; Shin, Young Joo; Kim, Jeong Won

    2015-01-01

    Background Wound healing of the endothelium occurs through cell enlargement and migration. However, the peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium in endothelial injury. Aim To investigate the recovery process of corneal endothelial cells (CECs) from corneal endothelial injury. Methods Three patients with unilateral chemical eye injuries, and 15 rabbit eyes with corneal endothelial chemical injuries were studied. Slit lamp examination, specular microscopy, and ultrasound pachymetry were performed immediately after chemical injury and 1, 3, 6, and 9 months later. The anterior chambers of eyes from New Zealand white rabbits were injected with 0.1 mL of 0.05 N NaOH for 10 min (NaOH group). Corneal edema was evaluated at day 1, 7, and 14. Vital staining was performed using alizarin red and trypan blue. Results Specular microscopy did not reveal any corneal endothelial cells immediately after injury. Corneal edema subsided from the periphery to the center, CEC density increased, and central corneal thickness decreased over time. In the animal study, corneal edema was greater in the NaOH group compared to the control at both day 1 and day 7. At day 1, no CECs were detected at the center and periphery of the corneas in the NaOH group. Two weeks after injury, small, hexagonal CECs were detected in peripheral cornea, while CECs in mid-periphery were large and non-hexagonal. Conclusions CECs migrated from the periphery to the center of the cornea after endothelial injury. The peripheral corneal endothelium may act as a cell resource for the recovery of corneal endothelium. PMID:26378928

  18. Endothelial cells regulate neural crest and second heart field morphogenesis

    PubMed Central

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-01-01

    ABSTRACT Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio–craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio–craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio–craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1. PMID:24996922

  19. Endothelial cells regulate neural crest and second heart field morphogenesis.

    PubMed

    Milgrom-Hoffman, Michal; Michailovici, Inbal; Ferrara, Napoleone; Zelzer, Elazar; Tzahor, Eldad

    2014-07-04

    Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio-craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio-craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio-craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

  20. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    SciTech Connect

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-05-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of /sup 51/Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of /sup 51/Cr release from radiolabeled monolayers.

  1. Growth factor- and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization

    PubMed Central

    Peplow, Philip V.

    2014-01-01

    Endothelial progenitor cells are resident in the bone marrow blood sinusoids and circulate in the peripheral circulation. They mobilize from the bone marrow after vascular injury and home to the site of injury where they differentiate into endothelial cells. Activation and mobilization of endothelial progenitor cells from the bone marrow is induced via the production and release of endothelial progenitor cell-activating factors and includes specific growth factors and cytokines in response to peripheral tissue hypoxia such as after acute ischemic stroke or trauma. Endothelial progenitor cells migrate and home to specific sites following ischemic stroke via growth factor/cytokine gradients. Some growth factors are less stable under acidic conditions of tissue ischemia, and synthetic analogues that are stable at low pH may provide a more effective therapeutic approach for inducing endothelial progenitor cell mobilization and promoting cerebral neovascularization following ischemic stroke. PMID:25317152

  2. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes.

    PubMed

    Wils, Julien; Favre, Julie; Bellien, Jérémy

    2017-02-01

    Diabetes induces a decrease in the number and function of different pro-angiogenic cell types generically designated as putative endothelial progenitor cells (EPC), which encompasses cells from myeloid origin that act in a paracrine fashion to promote angiogenesis and putative "true" EPC that contribute to endothelial replacement. This not only compromises neovasculogenesis in ischemic tissues but also impairs, at an early stage, the reendotheliziation process at sites of injury, contributing to the development of endothelial dysfunction and cardiovascular complications. Hyperglycemia, insulin resistance and dyslipidemia promote putative EPC dysregulation by affecting the SDF-1/CXCR-4 and NO pathways and the p53/SIRT1/p66Shc axis that contribute to their mobilization, migration, homing and vasculogenic properties. To optimize the clinical management of patients with hypoglycemic agents, statins and renin-angiotensin system inhibitors, which display pleiotropic effects on putative EPC, is a first step to improve their number and angiogenic potential but specific strategies are needed. Among them, mobilizing therapies based on G-CSF, erythropoietin or CXCR-4 antagonism have been developed to increase putative EPC number to treat ischemic diseases with or without prior cell isolation and transplantation. Growth factors, genetic and pharmacological strategies are also evaluated to improve ex vivo cultured EPC function before transplantation. Moreover, pharmacological agents increasing in vivo the bioavailability of NO and other endothelial factors demonstrated beneficial effects on neovascularization in diabetic ischemic models but their effects on endothelial dysfunction remain poorly evaluated. More experiments are warranted to develop orally available drugs and specific agents targeting p66Shc to reverse putative EPC dysfunction in the expected goal of preventing endothelial dysfunction and diabetic cardiovascular complications. Copyright © 2016. Published by

  3. Paxillin: a crossroad in pathological cell migration.

    PubMed

    López-Colomé, Ana María; Lee-Rivera, Irene; Benavides-Hidalgo, Regina; López, Edith

    2017-02-18

    Paxilllin is a multifunctional and multidomain focal adhesion adapter protein which serves an important scaffolding role at focal adhesions by recruiting structural and signaling molecules involved in cell movement and migration, when phosphorylated on specific Tyr and Ser residues. Upon integrin engagement with extracellular matrix, paxillin is phosphorylated at Tyr31, Tyr118, Ser188, and Ser190, activating numerous signaling cascades which promote cell migration, indicating that the regulation of adhesion dynamics is under the control of a complex display of signaling mechanisms. Among them, paxillin disassembly from focal adhesions induced by extracellular regulated kinase (ERK)-mediated phosphorylation of serines 106, 231, and 290 as well as the binding of the phosphatase PEST to paxillin have been shown to play a key role in cell migration. Paxillin also coordinates the spatiotemporal activation of signaling molecules, including Cdc42, Rac1, and RhoA GTPases, by recruiting GEFs, GAPs, and GITs to focal adhesions. As a major participant in the regulation of cell movement, paxillin plays distinct roles in specific tissues and developmental stages and is involved in immune response, epithelial morphogenesis, and embryonic development. Importantly, paxillin is also an essential player in pathological conditions including oxidative stress, inflammation, endothelial cell barrier dysfunction, and cancer development and metastasis.

  4. Apicobasal polarity of brain endothelial cells

    PubMed Central

    Worzfeld, Thomas

    2015-01-01

    Normal brain homeostasis depends on the integrity of the blood–brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood–brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases. PMID:26661193

  5. Integrin engagement mediates tyrosine dephosphorylation on platelet-endothelial cell adhesion molecule 1.

    PubMed Central

    Lu, T T; Yan, L G; Madri, J A

    1996-01-01

    Platelet-endothelial cell adhesion molecule 1 (PECAM-1, CD31) is a 130-kDa member of the immunoglobulin gene superfamily expressed on endothelial cells, platelets, neutrophils, and monocytes and plays a role during endothelial cell migration. Phosphoamino acid analysis and Western blot analysis with anti-phosphotyrosine antibody show that endothelial PECAM-1 is tyrosine-phosphorylated. Phosphorylation is decreased with endothelial cell migration on fibronectin and collagen and with cell spreading on fibronectin but not on plastic. Cell adhesion on anti-integrin antibodies is also able to specifically induce PECAM-1 dephosphorylation while concurrently inducing pp125 focal adhesion kinase phosphorylation. Inhibition of dephosphorylation with sodium orthovanadate suggests that this effect is at least partially mediated by phosphatase activity. Tyr-663 and Tyr-686 are identified as potential phosphorylation sites and mutated to phenylalanine. When expressed, both mutants show reduced PECAM-1 phosphorylation but Phe-686 mutants also show significant reversal of PECAM-1-mediated inhibition of cell migration and do not localize PECAM-1 to cell borders. Our results suggest that beta 1-integrin engagement can signal to dephosphorylate PECAM-1 and that this signaling pathway may play a role during endothelial cell migration. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8876219

  6. Asymmetric division coordinates collective cell migration in angiogenesis.

    PubMed

    Costa, Guilherme; Harrington, Kyle I; Lovegrove, Holly E; Page, Donna J; Chakravartula, Shilpa; Bentley, Katie; Herbert, Shane P

    2016-12-01

    The asymmetric division of stem or progenitor cells generates daughters with distinct fates and regulates cell diversity during tissue morphogenesis. However, roles for asymmetric division in other more dynamic morphogenetic processes, such as cell migration, have not previously been described. Here we combine zebrafish in vivo experimental and computational approaches to reveal that heterogeneity introduced by asymmetric division generates multicellular polarity that drives coordinated collective cell migration in angiogenesis. We find that asymmetric positioning of the mitotic spindle during endothelial tip cell division generates daughters of distinct size with discrete 'tip' or 'stalk' thresholds of pro-migratory Vegfr signalling. Consequently, post-mitotic Vegfr asymmetry drives Dll4/Notch-independent self-organization of daughters into leading tip or trailing stalk cells, and disruption of asymmetry randomizes daughter tip/stalk selection. Thus, asymmetric division seamlessly integrates cell proliferation with collective migration, and, as such, may facilitate growth of other collectively migrating tissues during development, regeneration and cancer invasion.

  7. Can mesenchymal cells undergo collective cell migration?

    PubMed Central

    Theveneau, Eric

    2011-01-01

    Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step toward malignancy. Migratory cells are often categorized into two groups: (1) mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and (2) epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on neural crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so. PMID:22274714

  8. Cyclosporine triggers endoplasmic reticulum stress in endothelial cells: a role for endothelial phenotypic changes and death.

    PubMed

    Bouvier, Nicolas; Flinois, Jean Pierre; Gilleron, Jerome; Sauvage, François-Ludovic; Legendre, Christophe; Beaune, Philippe; Thervet, Eric; Anglicheau, Dany; Pallet, Nicolas

    2009-01-01

    Calcineurin inhibitors cyclosporine and tacrolimus are effective immunosuppressants, but both substances have the same intrinsic nephrotoxic potential that adversely affects allograft survival in renal transplant patients and causes end-stage renal disease in other solid organ or bone marrow transplant recipients. Endothelial cells are the first biological interface between drugs and the kidney, and calcineurin inhibitors may influence endothelial function and viability in a number of ways. Notably, endothelial cells have recently been shown to contribute to the accumulation of interstitial fibroblasts in nonrenal models, through endothelial-to-mesenchymal transition. Here we demonstrate that cyclosporine, but not tacrolimus or its metabolites, induces morphological and phenotypic endothelial changes suggestive of a partial endothelial-to-mesenchymal transition in human umbilical arterial endothelial cells. We identify for the first time a contingent of interstitial myofibroblasts that coexpress endothelial markers in rat kidneys treated with cyclosporine, suggesting that endothelial-to-mesenchymal transition could occur in vivo. Finally, our findings suggest that endoplasmic reticulum stress triggered by cyclosporine induces endothelial cells to undergo endothelial phenotypic changes suggestive of a partial endothelial-to-mesenchymal transition, whereas salubrinal partially preserves the endothelial phenotype. Inversely, tacrolimus does not induce endothelial-to-mesenchymal transition or endoplasmic reticulum stress. In conclusion, this study demonstrates for the first time that cyclosporine, and not tacrolimus, induces endoplasmic reticulum stress in endothelial cells. Our findings also suggest that endoplasmic reticulum stress contributes to endothelial cell death and phenotypic changes similar to a partial endothelial-to-mesenchymal transition.

  9. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells

    PubMed Central

    Hakami, Nora Y.; Ranjan, Amaresh K.; Hardikar, Anandwardhan A.; Dusting, Greg J.; Peshavariya, Hitesh M.

    2017-01-01

    Introduction: Endothelial progenitor cells (EPCs) display a unique ability to promote angiogenesis and restore endothelial function in injured blood vessels. NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) serves as a signaling molecule and promotes endothelial cell proliferation and migration as well as protecting against cell death. However, the role of NOX4 in EPC function is not completely understood. Methods: EPCs were isolated from human saphenous vein and mammary artery discarded during bypass surgery. NOX4 gene and protein expression in EPCs were measured by real time-PCR and Western blot analysis respectively. NOX4 gene expression was inhibited using an adenoviral vector expressing human NOX4 shRNA (Ad-NOX4i). H2O2 production was measured by Amplex red assay. EPC migration was evaluated using a transwell migration assay. EPC proliferation and viability were measured using trypan blue counts. Results: Inhibition of NOX4 using Ad-NOX4i reduced Nox4 gene and protein expression as well as H2O2 formation in EPCs. Inhibition of NOX4-derived H2O2 decreased both proliferation and migration of EPCs. Interestingly, pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) decreased NOX4 expression and reduced survival of EPCs. However, the survival of EPCs was further diminished by TNF-α in NOX4-knockdown cells, suggesting that NOX4 has a protective role in EPCs. Conclusion: These findings suggest that NOX4-type NADPH oxidase is important for proliferation and migration functions of EPCs and protects against pro-inflammatory cytokine induced EPC death. These properties of NOX4 may facilitate the efficient function of EPCs which is vital for successful neovascularization. PMID:28386230

  10. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  11. Blood cells and endothelial barrier function

    PubMed Central

    Rodrigues, Stephen F; Granger, D Neil

    2015-01-01

    Abstract The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction. PMID:25838983

  12. Role of endothelial cell-selective adhesion molecule in hematogeneous metastasis

    PubMed Central

    Cangara, Husni M.; Ishida, Tatsuro; Hara, Tetsuya; Sun, Li; Toh, Ryuji; Rikitake, Yoshiyuki; Kundu, Ramendra K.; Quertermous, Thomas; Hirata, Ken-ichi; Hayashi, Yoshitake

    2016-01-01

    The spread of malignant cells from a localized tumor is thought to be directly related to the number of microvessels in the tumor. The endothelial cell-selective adhesion molecule (ESAM) is a member of the immunoglobulin superfamily that mediates homophilic interactions between endothelial cells. Previous studies have indicated that ESAM regulates angiogenesis in the primary tumor growth and endothelial permeability. In this study, we aimed to further elucidate the role of ESAM in tumor metastasis through angiogenic processes. ESAM expression was higher in hypervascular metastatic tumor tissues than in normal tissues in human lungs. Cell culture studies found that conditioned medium from B16F10 melanoma cells increased ESAM expression in endothelial cells and promoted endothelial migration and tube formation. The B16F10 medium-induced endothelial migration and tube formation were significantly attenuated when ESAM was downregulated by siRNA transfection. Intravenous injection of B16F10 cells into ESAM+/+ and ESAM−/− mice for comparison of metastatic potential resulted in the number of metastatic lung nodules in ESAM−/− mice being 83% lower than of those in ESAM+/+ mice. The microvascular density in the tumor was also lower in ESAM−/− than in ESAM+/+ mice. These findings indicate that ESAM regulates tumor metastasis through endothelial cell migration and tube formation in metastatic nodules. Inhibition of ESAM may therefore inhibit tumor metastasis by inhibiting the angiogenic processes. PMID:20153339

  13. HUMAN VASCULAR ENDOTHELIAL CELLS IN CULTURE

    PubMed Central

    Gimbrone, Michael A.; Cotran, Ramzi S.; Folkman, Judah

    1974-01-01

    Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [3H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [3H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [3H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration. PMID:4363161

  14. Endothelial progenitor cells in cardiovascular diseases

    PubMed Central

    Lee, Poay Sian Sabrina; Poh, Kian Keong

    2014-01-01

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome. PMID:25126384

  15. The effects of substrate elasticity on endothelial cell network formation and traction force generation.

    PubMed

    Califano, Joseph P; Reinhart-King, Cynthia A

    2009-01-01

    While the growth factors and cytokines known to influence angiogenesis and vasculogenesis have garnered widespread attention, less is known about how the mechanical environment affects blood vessel formation and cell assembly. In this study, we investigate the relationship between substrate elasticity, endothelial cell-cell connectivity and traction force generation. We find that on more compliant substrates, endothelial cells self-assemble into network-like structures independently of additional exogenous growth factors or cytokines. These networks form from the assembly of sub-confluent endothelial cells on compliant (E = 200-1000Pa) substrates, and results from both the proliferation and migration of endothelial cells. Interestingly, stabilization of these cell-cell connections and networks requires fibronectin polymerization. Traction Force Microscopy measurements indicate that individual endothelial cells on compliant substrates exert forces which create substrate stains that propagate from the cell edge. We speculate that these strains draw the cells together and initiate self-assembly. Notably, endothelial cell network formation on compliant substrates is dynamic and transient; as cell number and substrate strains increase, the networks fill in through collective cell movements from the network edges. Our results indicate that network formation is mediated in part by substrate mechanics and that cellular traction force may promote cell-cell assembly by directing cell migration.

  16. Filamin B Plays a Key Role in Vascular Endothelial Growth Factor-induced Endothelial Cell Motility through Its Interaction with Rac-1 and Vav-2*

    PubMed Central

    del Valle-Pérez, Beatriz; Martínez, Vanesa Gabriela; Lacasa-Salavert, Cristina; Figueras, Agnès; Shapiro, Sandor S.; Takafuta, Toshiro; Casanovas, Oriol; Capellà, Gabriel; Ventura, Francesc; Viñals, Francesc

    2010-01-01

    Actin-binding proteins filamin A (FLNA) and B (FLNB) are expressed in endothelial cells and play an essential role during vascular development. In order to investigate their role in adult endothelial cell function, we initially confirmed their expression pattern in different adult mouse tissues and cultured cell lines and found that FLNB expression is concentrated mainly in endothelial cells, whereas FLNA is more ubiquitously expressed. Functionally, small interfering RNA knockdown of endogenous FLNB in human umbilical vein endothelial cells inhibited vascular endothelial growth factor (VEGF)-induced in vitro angiogenesis by decreasing endothelial cell migration capacity, whereas FLNA ablation did not alter these parameters. Moreover, FLNB-depleted cells increased their substrate adhesion with more focal adhesions. The molecular mechanism underlying this effect implicates modulation of small GTP-binding protein Rac-1 localization and activity, with altered activation of its downstream effectors p21 protein Cdc42/Rac-activated kinase (PAK)-4/5/6 and its activating guanine nucleotide exchange factor Vav-2. Moreover, our results suggest the existence of a signaling complex, including FLNB, Rac-1, and Vav-2, under basal conditions that would further interact with VEGFR2 and integrin αvβ5 after VEGF stimulation. In conclusion, our results reveal a crucial role for FLNB in endothelial cell migration and in the angiogenic process in adult endothelial cells. PMID:20110358

  17. ENDOTHELIAL PROGENITOR CELLS: FROM SENESCENCE TO REJUVENATION

    PubMed Central

    Goligorsky, Michael S

    2014-01-01

    Discovered more than 15 years ago, endothelial progenitor cells attract both basic and translational researchers. It has become clear that they represent a heterogeneous population of endothelial colony forming cells, early or late outgrowth endothelial cells, or blood outgrowth endothelial cells, each characterized by differing proliferative and regenerative capacity. Scattered within the vascular wall, these cells participate in angiogenesis and vasculogenesis and support regeneration of epithelial cells. There is growing evidence that this cell population is impaired during the course of chronic cardiovascular and kidney disease when it undergoes premature senescence and loss of specialized functions. Senescence-associated secretory products released by such cells can affect the neighboring cells and further exacerbate their regenerative capacity. For those reasons adoptive transfer of endothelial progenitor cells is being used in more than 150 on-going clinical trials in diverse cardiovascular diseases. There is emergence of attempts to rejuvenate this cell population either ex vivo or in situ. The progress in this field is paramount to regenerate the injured kidney. PMID:25217265

  18. Endothelial progenitor cells: from senescence to rejuvenation.

    PubMed

    Goligorsky, Michael S

    2014-07-01

    Discovered more than 15 years ago, endothelial progenitor cells attract both basic and translational researchers. It has become clear that they represent a heterogeneous population of endothelial colony-forming cells, early or late outgrowth endothelial cells, or blood outgrowth endothelial cells, each characterized by differing proliferative and regenerative capacity. Scattered within the vascular wall, these cells participate in angiogenesis and vasculogenesis and support regeneration of epithelial cells. There is growing evidence that this cell population is impaired during the course of chronic cardiovascular and kidney disease when it undergoes premature senescence and loss of specialized functions. Senescence-associated secretory products released by such cells can affect the neighboring cells and further exacerbate their regenerative capacity. For these reasons, adoptive transfer of endothelial progenitor cells is being used in more than 150 ongoing clinical trials of diverse cardiovascular diseases. Attempts to rejuvenate this cell population either ex vivo or in situ are emerging. The progress in this field is paramount to regenerate the injured kidney. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Syndecan-2 downregulation impairs angiogenesis in human microvascular endothelial cells

    SciTech Connect

    Noguer, Oriol Villena, Joan; Lorita, Jordi; Vilaro, Senen; Reina, Manuel

    2009-03-10

    The formation of new blood vessels, or angiogenesis, is a necessary process during development but also for tumour growth and other pathologies. It is promoted by different growth factors that stimulate endothelial cells to proliferate, migrate, and generate new tubular structures. Syndecans, transmembrane heparan sulphate proteoglycans, bind such growth factors through their glycosaminoglycan chains and could transduce the signal to the cytoskeleton, thus regulating cell behaviour. We demonstrated that syndecan-2, the major syndecan expressed by human microvascular endothelial cells, is regulated by growth factors and extracellular matrix proteins, in both bidimensional and tridimensional culture conditions. The role of syndecan-2 in 'in vitro' tumour angiogenesis was also examined by inhibiting its core protein expression with antisense phosphorothioate oligonucleotides. Downregulation of syndecan-2 reduces spreading and adhesion of endothelial cells, enhances their migration, but also impairs the formation of capillary-like structures. These results suggest that syndecan-2 has an important function in some of the necessary steps that make up the angiogenic process. We therefore propose a pivotal role of this heparan sulphate proteoglycan in the formation of new blood vessels.

  20. XIAP reverses various functional activities of FRNK in endothelial cells

    SciTech Connect

    Ahn, Sunyoung; Kim, Hyun Jeong; Chi, Sung-Gil; Park, Heonyong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer FRNK domain is recruited into focal adhesion (FA), controlling endothelial cell adhesion. Black-Right-Pointing-Pointer XIAP binds the FRNK domain of FAK. Black-Right-Pointing-Pointer XIAP inhibits recruitment of FRNK into Fas and FRNK-promoted cell adhesion. Black-Right-Pointing-Pointer XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK. -- Abstract: In endothelial cells, focal adhesion kinase (FAK) regulates cell proliferation, migration, adhesion, and shear-stimulated activation of MAPK. We recently found that FAK is recruited into focal adhesion (FA) sites through interactions with XIAP (X-chromosome linked inhibitor of apoptosis protein) and activated by Src kinase in response to shear stress. In this study, we examined which domain(s) of FAK is(are) important for various vascular functions such as FA recruiting, XIAP-binding and shear stress-stimulated ERK activation. Through a series of experiments, we determined that the FRNK domain is recruited into FA sites and promotes endothelial cell adhesion. Interestingly, XIAP knockdown was shown to reduce FA recruitment of FRNK and the cell adhesive effect of FRNK. In addition, we found that XIAP interacts with FRNK, suggesting cross-talk between XIAP and FRNK. We also demonstrated that FRNK inhibits endothelial cell migration and shear-stimulated ERK activation. These inhibitory effects of FRNK were reversed by XIAP knockdown. Taken together, we can conclude that XIAP plays a key role in vascular functions of FRNK or FRNK domain-mediated vascular functions of FAK.

  1. Effects of Blood Products on Inflammatory Response in Endothelial Cells In Vitro

    PubMed Central

    Buddeberg, Felix; Schuppli, Caroline; Roth Z'graggen, Birgit; Hasler, Melanie; Schanz, Urs; Mehr, Manuela; Spahn, Donat R.; Beck Schimmer, Beatrice

    2012-01-01

    Background Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. Methods The inflammatory response from pre-activated (endotoxin-stimulated) and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC), platelet concentrates (PC) and fresh frozen plasma (FFP) was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. Results Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. Conclusion Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells. PMID:22438924

  2. Cell migration in confined environments.

    PubMed

    Irimia, Daniel

    2014-01-01

    We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration.

  3. Suprabasin as a novel tumor endothelial cell marker

    PubMed Central

    Alam, Mohammad T; Nagao-Kitamoto, Hiroko; Ohga, Noritaka; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2014-01-01

    Recent studies have reported that stromal cells contribute to tumor progression. We previously demonstrated that tumor endothelial cells (TEC) characteristics were different from those of normal endothelial cells (NEC). Furthermore, we performed gene profile analysis in TEC and NEC, revealing that suprabasin (SBSN) was upregulated in TEC compared with NEC. However, its role in TEC is still unknown. Here we showed that SBSN expression was higher in isolated human and mouse TEC than in NEC. SBSN knockdown inhibited the migration and tube formation ability of TEC. We also showed that the AKT pathway was a downstream factor of SBSN. These findings suggest that SBSN is involved in the angiogenic potential of TEC and may be a novel TEC marker. PMID:25283635

  4. PROLIFERATIVE CAPACITY OF CORNEAL ENDOTHELIAL CELLS

    PubMed Central

    Joyce, Nancy C.

    2011-01-01

    The corneal endothelial monolayer helps maintain corneal transparency through its barrier and ionic “pump” functions. This transparency function can become compromised, resulting in a critical loss in endothelial cell density (ECD), corneal edema, bullous keratopathy, and loss of visual acuity. Although penetrating keratoplasty and various forms of endothelial keratoplasty are capable of restoring corneal clarity, they can also have complications requiring re-grafting or other treatments. With the increasing worldwide shortage of donor corneas to be used for keratoplasty, there is a greater need to find new therapies to restore corneal clarity that is lost due to endothelial dysfunction. As a result, researchers have been exploring alternative approaches that could result in the in vivo induction of transient corneal endothelial cell division or the in vitro expansion of healthy endothelial cells for corneal bioengineering as treatments to increase ECD and restore visual acuity. This review presents current information regarding the ability of human corneal endothelial cells (HCEC) to divide as a basis for the development of new therapies. Information will be presented on the positive and negative regulation of the cell cycle as background for the studies to be discussed. Results of studies exploring the proliferative capacity of HCEC will be presented and specific conditions that affect the ability of HCEC to divide will be discussed. Methods that have been tested to induce transient proliferation of HCEC will also be presented. This review will discuss the effect of donor age and endothelial topography on relative proliferative capacity of HCEC, as well as explore the role of nuclear oxidative DNA damage in decreasing the relative proliferative capacity of HCEC. Finally, potential new research directions will be discussed that could take advantage of and/or improve the proliferative capacity of these physiologically important cells in order to develop new

  5. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration

    PubMed Central

    Watson, Richard L.; Buck, Jochen; Levin, Lonny R.; Winger, Ryan C.; Wang, Jing; Arase, Hisashi

    2015-01-01

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM. PMID:26101266

  6. Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration.

    PubMed

    Watson, Richard L; Buck, Jochen; Levin, Lonny R; Winger, Ryan C; Wang, Jing; Arase, Hisashi; Muller, William A

    2015-06-29

    CD99 is a critical regulator of leukocyte transendothelial migration (TEM). How CD99 signals during this process remains unknown. We show that during TEM, endothelial cell (EC) CD99 activates protein kinase A (PKA) via a signaling complex formed with the lysine-rich juxtamembrane cytoplasmic tail of CD99, the A-kinase anchoring protein ezrin, and soluble adenylyl cyclase (sAC). PKA then stimulates membrane trafficking from the lateral border recycling compartment to sites of TEM, facilitating the passage of leukocytes across the endothelium. Pharmacologic or genetic inhibition of EC sAC or PKA, like CD99 blockade, arrests neutrophils and monocytes partway through EC junctions, in vitro and in vivo, without affecting leukocyte adhesion or the expression of relevant cellular adhesion molecules. This is the first description of the CD99 signaling pathway in TEM as well as the first demonstration of a role for sAC in leukocyte TEM.

  7. Endothelial cell polarization and chemotaxis in a microfluidic device.

    PubMed

    Shamloo, Amir; Ma, Ning; Poo, Mu-Ming; Sohn, Lydia L; Heilshorn, Sarah C

    2008-08-01

    The directed migration of endothelial cells is an early and critical step in angiogenesis, or new blood vessel formation. In this study, the polarization and chemotaxis of human umbilical vein endothelial cells (HUVEC) in response to quantified gradients of vascular endothelial growth factor (VEGF) were examined. To accomplish this, a microfluidic device was designed and fabricated to generate stable concentration gradients of biomolecules in a cell culture chamber while minimizing the fluid shear stress experienced by the cells. Finite element simulation of the device geometry produced excellent agreement with the observed VEGF concentration distribution, which was found to be stable across multiple hours. This device is expected to have wide applicability in the study of shear-sensitive cells such as HUVEC and non-adherent cell types as well as in the study of migration through three-dimensional matrices. HUVEC were observed to chemotax towards higher VEGF concentrations across the entire range of concentrations studied (18-32 ng mL(-1)) when the concentration gradient was 14 ng mL(-1) mm(-1). In contrast, shallow gradients (2 ng mL(-1) mm(-1)) across the same concentration range were unable to induce HUVEC chemotaxis. Furthermore, while all HUVEC exposed to elevated VEGF levels (both in steep and shallow gradients) displayed an increased number of filopodia, only chemotaxing HUVEC displayed an asymmetric distribution of filopodia, with enhanced numbers of protrusions present along the leading edge. These results suggest a two-part requirement to induce VEGF chemotaxis: the VEGF absolute concentration enhances the total number of filopodia extended while the VEGF gradient steepness induces filopodia localization, cell polarization, and subsequent directed migration.

  8. Connexin 43 expressed in endothelial cells modulates monocyte‑endothelial adhesion by regulating cell adhesion proteins.

    PubMed

    Yuan, Dongdong; Sun, Guoliang; Zhang, Rui; Luo, Chenfang; Ge, Mian; Luo, Gangjian; Hei, Ziqing

    2015-11-01

    Adhesion between circulating monocytes and vascular endothelial cells is a key initiator of atherosclerosis. In our previous studies, it was demonstrated that the expression of connexin (Cx)43 in monocytes modulates cell adhesion, however, the effects of the expression of Cx43 in endothelial cells remains to be elucidated. Therefore, the present study investigated the role of the expression of Cx43 in endothelial cells in the process of cell adhesion. A total of four different methods with distinct mechanisms were used to change the function and expression of Cx43 channels in human umbilical vein endothelial cells: Cx43 channel inhibitor (oleamide), enhancer (retinoic acid), overexpression of Cx43 by transfection with pcDNA‑Cx43 and knock‑down of the expression of Cx43 by small interfering RNA against Cx43. The results indicated that the upregulation of the expression of Cx43 enhanced monocyte‑endothelial adhesion and this was markedly decreased by downregulation of Cx43. This mechanism was associated with Cx43‑induced expression of vascular cell adhesion molecule‑1 and intercellular cell adhesion molecule‑1. The effects of Cx43 in endothelial cells was independent of Cx37 or Cx40. These experiments suggested that local regulation of endothelial Cx43 expression within the vasculature regulates monocyte‑endothelial adhesion, a critical event in the development of atherosclerosis and other inflammatory pathologies, with baseline adhesion set by the expression of Cx43. This balance may be crucial in controlling leukocyte involvement in inflammatory cascades.

  9. T Cell Migration in Rheumatoid Arthritis.

    PubMed

    Mellado, Mario; Martínez-Muñoz, Laura; Cascio, Graciela; Lucas, Pilar; Pablos, José L; Rodríguez-Frade, José Miguel

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies.

  10. T Cell Migration in Rheumatoid Arthritis

    PubMed Central

    Mellado, Mario; Martínez-Muñoz, Laura; Cascio, Graciela; Lucas, Pilar; Pablos, José L.; Rodríguez-Frade, José Miguel

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies. PMID:26284069

  11. Disintegrin Metalloprotease (ADAM) 10 Regulates Endothelial Permeability and T Cell Transmigration by Proteolysis of Vascular Endothelial Cadherin

    PubMed Central

    Schulz, Beate; Pruessmeyer, Jessica; Maretzky, Thorsten; Ludwig, Andreas; Blobel, Carl P.; Saftig, Paul; Reiss, Karina

    2009-01-01

    Vascular endothelial (VE)-cadherin is the major adhesion molecule of endothelial adherens junctions. It plays an essential role in controlling endothelial permeability, vascular integrity, leukocyte transmigration, and angiogenesis. Elevated levels of soluble VE-cadherin are associated with diseases like coronary atherosclerosis. Previous data showed that the extracellular domain of VE-cadherin is released by an unknown metalloprotease activity during apoptosis. In this study, we used gain of function analyses, inhibitor studies and RNA interference experiments to analyze the proteolytic release of VE-cadherin in human umbilical vein endothelial cells (HUVECs). We found that VE-cadherin is specifically cleaved by the disintegrin and metalloprotease ADAM10 in its ectodomain releasing a soluble fragment and generating a carboxyterminal membrane bound stub, which is a substrate for a subsequent γ-secretase cleavage. This ADAM10-mediated proteolysis could be induced by Ca2+-influx and staurosporine treatment, indicating that ADAM10-mediated VE-cadherin cleavage contributes to the dissolution of adherens junctions during endothelial cell activation and apoptosis, respectively. In contrast, protein kinase C activation or inhibition did not modulate VE-cadherin processing. Increased ADAM10 expression was functionally associated with an increase in endothelial permeability. Remarkably, our data indicate that ADAM10 activity also contributes to the thrombin-induced decrease of endothelial cell-cell adhesion. Moreover, knockdown of ADAM10 in HUVECs as well as in T cells by small interfering RNA impaired T cell transmigration. Taken together our data identify ADAM10 as a novel regulator of vascular permeability and demonstrate a hitherto unknown function of ADAM10 in the regulation of VE-cadherin-dependent endothelial cell functions and leukocyte transendothelial migration. PMID:18420943

  12. A Discrete Cell Migration Model

    SciTech Connect

    Nutaro, James J; Kruse, Kara L; Ward, Richard C; O'Quinn, Elizabeth; Woerner, Matthew M; Beckerman, Barbara G

    2007-01-01

    Migration of vascular smooth muscle cells is a fundamental process in the development of intimal hyperplasia, a precursor to development of cardiovascular disease and a potential response to injury of an arterial wall. Boyden chamber experiments are used to quantify the motion of cell populations in response to a chemoattractant gradient (i.e., cell chemotaxis). We are developing a mathematical model of cell migration within the Boyden chamber, while simultaneously conducting experiments to obtain parameter values for the migration process. In the future, the model and parameters will be used as building blocks for a detailed model of the process that causes intimal hyperplasia. The cell migration model presented in this paper is based on the notion of a cell as a moving sensor that responds to an evolving chemoattractant gradient. We compare the results of our three-dimensional hybrid model with results from a one-dimensional continuum model. Some preliminary experimental data that is being used to refine the model is also presented.

  13. Endothelin-2 signaling in the neural retina promotes the endothelial tip cell state and inhibits angiogenesis

    PubMed Central

    Rattner, Amir; Yu, Huimin; Williams, John; Smallwood, Philip M.; Nathans, Jeremy

    2013-01-01

    Endothelin signaling is required for neural crest migration and homeostatic regulation of blood pressure. Here, we report that constitutive overexpression of Endothelin-2 (Edn2) in the mouse retina perturbs vascular development by inhibiting endothelial cell migration across the retinal surface and subsequent endothelial cell invasion into the retina. Developing endothelial cells exist in one of two states: tip cells at the growing front and stalk cells in the vascular plexus behind the front. This division of endothelial cell states is one of the central organizing principles of angiogenesis. In the developing retina, Edn2 overexpression leads to overproduction of endothelial tip cells by both morphologic and molecular criteria. Spatially localized overexpression of Edn2 produces a correspondingly localized endothelial response. Edn2 overexpression in the early embryo inhibits vascular development at midgestation, but Edn2 overexpression in developing skin and brain has no discernible effect on vascular structure. Inhibition of retinal angiogenesis by Edn2 requires expression of Endothelin receptor A but not Endothelin receptor B in the neural retina. Taken together, these observations imply that the neural retina responds to Edn2 by synthesizing one or more factors that promote the endothelial tip cell state and inhibit angiogenesis. The response to Edn2 is sufficiently potent that it overrides the activities of other homeostatic regulators of angiogenesis, such as Vegf. PMID:24043815

  14. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk.

    PubMed

    Bussmann, Jeroen; Bos, Frank L; Urasaki, Akihiro; Kawakami, Koichi; Duckers, Henricus J; Schulte-Merker, Stefan

    2010-08-01

    The endothelial cells of the vertebrate lymphatic system assemble into complex networks, but local cues that guide the migration of this distinct set of cells are currently unknown. As a model for lymphatic patterning, we have studied the simple vascular network of the zebrafish trunk consisting of three types of lymphatic vessels that develop in close connection with the blood vasculature. We have generated transgenic lines that allow us to distinguish between arterial, venous and lymphatic endothelial cells (LECs) within a single zebrafish embryo. We found that LECs migrate exclusively along arteries in a manner that suggests that arterial endothelial cells serve as the LEC migratory substrate. In the absence of intersegmental arteries, LEC migration in the trunk is blocked. Our data therefore demonstrate a crucial role for arteries in LEC guidance.

  15. Glassy Dynamics, Cell Mechanics and Endothelial Permeability

    PubMed Central

    Hardin, Corey; Rajendran, Kavitha; Manomohan, Greeshma; Tambe, Dhananjay T.; Butler, James P.; Fredberg, Jeffrey J.; Martinelli, Roberta; Carman, Christopher V.; Krishnan, Ramaswamy

    2013-01-01

    A key feature of all inflammatory processes is disruption of the vascular endothelial barrier. Such disruption is initiated in part through active contraction of the cytoskeleton of the endothelial cell (EC). Because contractile forces are propagated from cell to cell across a great many cell-cell junctions, this contractile process is strongly cooperative and highly nonlocal. We show here that the characteristic length scale of propagation is modulated by agonists and antagonists that impact permeability of the endothelial barrier. In the presence of agonists including thrombin, histamine, and H202, force correlation length increases, whereas in the presence of antagonists including sphingosine-1-phosphate, hepatocyte growth factor, and the rho kinase inhibitor, Y27632, force correlation length decreases. Intercellular force chains and force clusters are also evident, both of which are reminiscent of soft glassy materials approaching a glass transition. PMID:23638866

  16. Endothelial cell dynamics in vascular remodelling.

    PubMed

    Barbacena, Pedro; Carvalho, Joana R; Franco, Claudio A

    2016-01-01

    In this ESCHM 2016 conference talk report, we summarise two recently published original articles Franco et al. PLoS Biology 2015 and Franco et al. eLIFE 2016. The vascular network undergoes extensive vessel remodelling to become fully functional. Is it well established that blood flow is a main driver for vascular remodelling. It has also been proposed that vessel pruning is a central process within physiological vessel remodelling. However, despite its central function, the cellular and molecular mechanisms regulating vessel regression, and their interaction with blood flow patterns, remain largely unexplained. We investigated the cellular process governing developmental vascular remodelling in mouse and zebrafish. We established that polarised reorganization of endothelial cells is at the core of vessel regression, representing vessel anastomosis in reverse. Moreover, we established for the first time an axial polarity map for all endothelial cells together with an in silico method for the computation of the haemodynamic forces in the murine retinal vasculature. Using network-level analysis and microfluidics, we showed that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/11 renders endothelial cells more sensitive to shear, resulting in axial polarisation at lower shear stress levels. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  17. Trans-cellular migration: cell–cell contacts get intimate

    PubMed Central

    Carman, Christopher V; Springer, Timothy A

    2009-01-01

    Trans-cellular migration, the movement of one cell directly through another, seems an unlikely, counterintuitive, and even bizarre process. Trans-cellular migration has been reported for nearly half a century in leukocyte transendothelial migration in vivo, but is not well enough accepted to widely feature in textbook accounts of diapedesis. Recently, the first in vitro and additional in vivo observations of trans-cellular diapedesis have been reported. Mechanisms by which this occurs are just beginning to be elucidated and point to podosome-like protrusive activities in leukocytes and specific fusogenic functions in endothelial cells. Emerging evidence for a quantitatively significant contribution of trans-cellular migration to leukocyte trafficking in increasingly diverse settings suggests that this phenomenon represents an important and physiologic cell biological process. PMID:18595683

  18. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  19. Reduced Ang2 expression in aging endothelial cells

    SciTech Connect

    Hohensinner, P.J.; Ebenbauer, B.; Kaun, C.; Maurer, G.; Huber, K.; Wojta, J.

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of aging before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.

  20. Dynamics of Caveolae in Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Mengistu, Meron

    2005-03-01

    The blood flow subjects endothelial cells to various shear stress conditions, regulating the formation and localization of caveolae for macromolecular transport and potentially mechanosensing. We simulate this condition by exposing cultured bovine endothelial cells to various flow conditions in flow chambers. Using GFP-constructs of caveolar markers such as caveolin-1, dynamin II, and intersectin, we targeted caveolae with optical tweezers laser as probes to measure changes in viscoelastic properties that the cell undergoes in the different flow conditions. We also tracked the transport of fluorescently labeled Bovine serum albumin (BSA) through caveolae using confocal microscopy. This technique allows us to study the transport dynamics of caveolae once they are internalized in endothelial cells. Integrating optical tweezers and confocal fluorescence microscopy will allow us to measure the micro-mechanical properties of caveolae and give us insights into its function as a mechanosensor as well as its role in transcytosis.

  1. Microvesicles Derived from Indoxyl Sulfate Treated Endothelial Cells Induce Endothelial Progenitor Cells Dysfunction.

    PubMed

    Carmona, Andres; Guerrero, Fatima; Buendia, Paula; Obrero, Teresa; Aljama, Pedro; Carracedo, Julia

    2017-01-01

    Cardiovascular disease is a major cause of mortality in chronic kidney disease patients. Indoxyl sulfate (IS) is a typical protein-bound uremic toxin that cannot be effectively cleared by conventional dialysis. Increased IS is associated with the progression of chronic kidney disease and development of cardiovascular disease. After endothelial activation by IS, cells release endothelial microvesicles (EMV) that can induce endothelial dysfunction. We developed an in vitro model of endothelial damage mediated by IS to evaluate the functional effect of EMV on the endothelial repair process developed by endothelial progenitor cells (EPCs). EMV derived from IS-treated endothelial cells were isolated by ultracentrifugation and characterized for miRNAs content. The effects of EMV on healthy EPCs in culture were studied. We observed that IS activates endothelial cells and the generated microvesicles (IsEMV) can modulate the classic endothelial roles of progenitor cells as colony forming units and form new vessels in vitro. Moreover, 23 miRNAs were contained in IsEMV including four (miR-181a-5p, miR-4454, miR-150-5p, and hsa-let-7i-5p) that were upregulated in IsEMV compared with control endothelial microvesicles. Other authors have found that miR-181a-5p, miR-4454, and miR-150-5p are involved in promoting inflammation, apoptosis, and cellular senescence. Interestingly, we observed an increase in NFκB and p53, and a decrease in IκBα in EPCs treated with IsEMV. Our data suggest that IS is capable of inducing endothelial vesiculation with different membrane characteristics, miRNAs and other molecules, which makes maintaining of vascular homeostasis of EPCs not fully functional. These specific characteristics of EMV could be used as novel biomarkers for diagnosis and prognosis of vascular disease.

  2. Digital imaging of diabetic endothelial cells

    NASA Astrophysics Data System (ADS)

    Paltauf-Doburzynska, Jolanta; Kohlwein, Sepp D.; Graier, Wolfgang F.

    2001-05-01

    Endothelial cells release factors that regulate dilatation and contraction of the vessels. They play an important role in modulating both the inflammatory response and vasomotor abnormalities that occur in coronary artery diseases. This endothelial function is associated with changes of intracellular Ca2+ concentration. For this study we used spatially and temporally resolved measurements of local Ca2+ concentration in human endothelial cells cultured in high glucose containing medium. Deconvolution techniques procedure allowed determination of intracellular Ca2+ concentration and its distribution into cellular compartments. We also used a confocal microscope for visualization of intracellular compartments (endoplasmatic reticulum, mitochondria) under normal and pathological conditions. We showed that the interrupted connection between superficial compartments and membrane channels is already the beginning of the cell damage in diabetes.

  3. Methylene blue modulates transendothelial migration of peripheral blood cells.

    PubMed

    Werner, Isabella; Guo, Fengwei; Bogert, Nicolai V; Stock, Ulrich A; Meybohm, Patrick; Moritz, Anton; Beiras-Fernandez, Andres

    2013-01-01

    Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose

  4. Methylene Blue Modulates Transendothelial Migration of Peripheral Blood Cells

    PubMed Central

    Werner, Isabella; Guo, Fengwei; Bogert, Nicolai V.; Stock, Ulrich A.; Meybohm, Patrick; Moritz, Anton; Beiras-Fernandez, Andres

    2013-01-01

    Vasoplegia is a severe complication after cardiac surgery. Within the last years the administration of nitric oxide synthase inhibitor methylene blue (MB) became a new therapeutic strategy. Our aim was to investigate the role of MB on transendothelial migration of circulating blood cells, the potential role of cyclic cGMP, eNOS and iNOS in this process, and the influence of MB on endothelial cell apoptosis. Human vascular endothelial cells (HuMEC-1) were treated for 30 minutes or 2 hours with different concentrations of MB. Inflammation was mimicked by LPS stimulation prior and after MB. Transmigration of PBMCs and T-Lymphocytes through the treated endothelial cells was investigated. The influence of MB upon the different subsets of PBMCs (Granulocytes, T- and B-Lymphocytes, and Monocytes) was assessed after transmigration by means of flow-cytometry. The effect of MB on cell apoptosis was evaluated using Annexin-V and Propidium Iodide stainings. Analyses of the expression of cyclic cGMP, eNOS and iNOS were performed by means of RT-PCR and Western Blot. Results were analyzed using unpaired Students T-test. Analysis of endothelial cell apoptosis by MB indicated a dose-dependent increase of apoptotic cells. We observed time- and dose-dependent effects of MB on transendothelial migration of PBMCs. The prophylactic administration of MB led to an increase of transendothelial migration of PBMCs but not Jurkat cells. Furthermore, HuMEC-1 secretion of cGMP correlated with iNOS expression after MB administration but not with eNOS expression. Expression of these molecules was reduced after MB administration at protein level. This study clearly reveals that endothelial response to MB is dose- and especially time-dependent. MB shows different effects on circulating blood cell-subtypes, and modifies the release patterns of eNOS, iNOS, and cGMP. The transendothelial migration is modulated after treatment with MB. Furthermore, MB provokes apoptosis of endothelial cells in a dose

  5. [Endothelial cell apoptosis in erectile dysfunction].

    PubMed

    Jiang, Rui

    2012-10-01

    Erectile dysfunction (ED) is one of the most common male diseases, which seriously affects the patient's quality of life. The risk factors of ED include aging, diabetes, hypertension, hyperlipidemia, and unhealthy lifestyle, and its exact mechanism remains unclear. The apoptosis of endothelial cells in the corpus cavernosum penis may reduce NOS activity, block NO synthesis, and affect penile erection, and the mechanisms of their apoptosis vary with different causes of ED. This article updates the relationship between the apoptosis of endothelial cells and the development of ED.

  6. Islet Endothelial Cells Derived From Mouse Embryonic Stem Cells.

    PubMed

    Jain, Neha; Lee, Eun Jung

    2016-01-01

    The islet endothelium comprises a specialized population of islet endothelial cells (IECs) expressing unique markers such as nephrin and α-1 antitrypsin (AAT) that are not found in endothelial cells in surrounding tissues. However, due to difficulties in isolating and maintaining a pure population of these cells, the information on these islet-specific cells is currently very limited. Interestingly, we have identified a large subpopulation of endothelial cells exhibiting IEC phenotype, while deriving insulin-producing cells from mouse embryonic stem cells (mESCs). These cells were identified by the uptake of low-density lipoprotein (LDL) and were successfully isolated and subsequently expanded in endothelial cell culture medium. Further analysis demonstrated that the mouse embryonic stem cell-derived endothelial cells (mESC-ECs) not only express classical endothelial markers, such as platelet endothelial cell adhesion molecule (PECAM1), thrombomodulin, intercellular adhesion molecule-1 (ICAM-1), and endothelial nitric oxide synthase (eNOS) but also IEC-specific markers such as nephrin and AAT. Moreover, mESC-ECs secrete basement membrane proteins such as collagen type IV, laminin, and fibronectin in culture and form tubular networks on a layer of Matrigel, demonstrating angiogenic activity. Further, mESC-ECs not only express eNOS, but also its eNOS expression is glucose dependent, which is another characteristic phenotype of IECs. With the ability to obtain highly purified IECs derived from pluripotent stem cells, it is possible to closely examine the function of these cells and their interaction with pancreatic β-cells during development and maturation in vitro. Further characterization of tissue-specific endothelial cell properties may enhance our ability to formulate new therapeutic angiogenic approaches for diabetes.

  7. Effects of Olmesartan on Endothelial Progenitor Cell Mobilization and Function in Carotid Atherosclerosis

    PubMed Central

    Gong, Xin; Shao, Li; Fu, Yi-Min; Zou, Yong

    2015-01-01

    Background Olmesartan is a type of angiotensin II receptor inhibitor that can reduce the incidence of cardiovascular events. However, its role in the function of endothelial progenitor cells in atherosclerosis patients is still unclear. Our study aimed to explore the effects and mechanism of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis. Material/Methods Forty carotid atherosclerosis patients were enrolled. Patients were administrated olmesartan 20 mg/day for 3 months. Flow cytometry was used for counting circulating endothelial progenitor cells; colorimetric method was used to measure the serum levels of endothelial nitric oxide synthase and nitric oxide. Cell migration, adhesion, and proliferation capacity, and related signaling pathway were also analyzed. Spearman rank correlation analysis was used to investigate the influence of olmesartan on endothelial progenitor cells and clinical characteristics (e.g., sex, age, blood pressure). Results Compared with the control group, the number of circulating endothelial progenitor cells was significantly decreased. Olmesartan can increase circulating endothelial progenitor cells number and the serum levels of eNOS and NO. Furthermore, it can improve cell migration, adhesion, and proliferation capacities. Spearman rank correlation analysis showed there is no relationship between olmesartan promotion effects on endothelial progenitor cell mobilization and the clinical characteristics (P>0.05). P-eNOS and P-Akt expression can be unregulated by RNH-6270 treatment and blocked by LY294002. Conclusions Olmesartan can effectively promote the endothelial progenitor cells mobilization and improve their function in patients with carotid atherosclerosis, independent of basic characteristics. This process relies on the PI3K/Akt/eNOS signaling pathway. PMID:25913171

  8. Effects of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis.

    PubMed

    Gong, Xin; Shao, Li; Fu, Yi-Min; Zou, Yong

    2015-04-26

    Olmesartan is a type of angiotensin II receptor inhibitor that can reduce the incidence of cardiovascular events. However, its role in the function of endothelial progenitor cells in atherosclerosis patients is still unclear. Our study aimed to explore the effects and mechanism of olmesartan on endothelial progenitor cell mobilization and function in carotid atherosclerosis. Forty carotid atherosclerosis patients were enrolled. Patients were administrated olmesartan 20 mg/day for 3 months. Flow cytometry was used for counting circulating endothelial progenitor cells; colorimetric method was used to measure the serum levels of endothelial nitric oxide synthase and nitric oxide. Cell migration, adhesion, and proliferation capacity, and related signaling pathway were also analyzed. Spearman rank correlation analysis was used to investigate the influence of olmesartan on endothelial progenitor cells and clinical characteristics (e.g., sex, age, blood pressure). Compared with the control group, the number of circulating endothelial progenitor cells was significantly decreased. Olmesartan can increase circulating endothelial progenitor cells number and the serum levels of eNOS and NO. Furthermore, it can improve cell migration, adhesion, and proliferation capacities. Spearman rank correlation analysis showed there is no relationship between olmesartan promotion effects on endothelial progenitor cell mobilization and the clinical characteristics (P>0.05). P-eNOS and P-Akt expression can be unregulated by RNH-6270 treatment and blocked by LY294002. Olmesartan can effectively promote the endothelial progenitor cells mobilization and improve their function in patients with carotid atherosclerosis, independent of basic characteristics. This process relies on the PI3K/Akt/eNOS signaling pathway.

  9. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  10. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema.

    PubMed

    Doyle, Margaret F; Tracy, Russell P; Parikh, Megha A; Hoffman, Eric A; Shimbo, Daichi; Austin, John H M; Smith, Benjamin M; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50-79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.

  11. Signal transduction in endothelial cells by the angiogenesis inhibitor histidine-rich glycoprotein targets focal adhesions

    SciTech Connect

    Lee, Chunsik; Dixelius, Johan; Thulin, Asa; Kawamura, Harukiyo; Claesson-Welsh, Lena; Olsson, Anna-Karin . E-mail: Anna-Karin.Olsson@genpat.uu.se

    2006-08-01

    Histidine-rich glycoprotein (HRGP) is an abundant heparin-binding plasma protein. We have shown that a fragment released from the central histidine/proline-rich (His/Pro-rich) domain of HRGP blocks endothelial cell migration in vitro and vascularization and growth of murine fibrosarcoma in vivo. The minimal active HRGP domain exerting the anti-angiogenic effect was recently narrowed down to a 35 amino acid peptide, HRGP330, derived from the His/Pro-rich domain of HRGP. By use of a signal transduction antibody array representing 400 different signal transduction molecules, we now show that HRGP and the synthetic peptide HRGP330 specifically induce tyrosine phosphorylation of focal adhesion kinase and its downstream substrate paxillin in endothelial cells. HRGP/HRGP330 treatment of endothelial cells induced disruption of actin stress fibers, a process reversed by treatment of cells with the FAK inhibitor geldanamycin. In addition, VEGF-mediated endothelial cell tubular morphogenesis in a three-dimensional collagen matrix was inhibited by HRGP and HRGP330. In contrast, VEGF-induced proliferation was not affected by HRGP or HRGP330, demonstrating the central role of cell migration during tube formation. In conclusion, our data show that HRGP targets focal adhesions in endothelial cells, thereby disrupting the cytoskeletal organization and the ability of endothelial cells to assemble into vessel structures.

  12. Initial steps of metastasis: cell invasion and endothelial transmigration.

    PubMed

    van Zijl, Franziska; Krupitza, Georg; Mikulits, Wolfgang

    2011-01-01

    Metastasis is the leading cause of cancer mortality. The metastatic cascade represents a multi-step process which includes local tumor cell invasion, entry into the vasculature followed by the exit of carcinoma cells from the circulation and colonization at the distal sites. At the earliest stage of successful cancer cell dissemination, the primary cancer adapts the secondary site of tumor colonization involving the tumor-stroma crosstalk. The migration and plasticity of cancer cells as well as the surrounding environment such as stromal and endothelial cells are mandatory. Consequently, the mechanisms of cell movement are of utmost relevance for targeted intervention of which three different types have been reported. Tumor cells can migrate either collectively, in a mesenchymal or in an amoeboid type of movement and intravasate the blood or lymph vasculature. Intravasation by the interaction of tumor cells with the vascular endothelium is mechanistically poorly understood. Changes in the epithelial plasticity enable carcinoma cells to switch between these types of motility. The types of migration may change depending on the intervention thereby increasing the velocity and aggressiveness of invading cancer cells. Interference with collective or mesenchymal cell invasion by targeting integrin expression or metalloproteinase activity, respectively, resulted in an amoeboid cell phenotype as the ultimate exit strategy of cancer cells. There are little mechanistic details reported in vivo showing that the amoeboid behavior can be either reversed or efficiently inhibited. Future concepts of metastasis intervention must simultaneously address the collective, mesenchymal and amoeboid mechanisms of cell invasion in order to advance in anti-metastatic strategies as these different types of movement can coexist and cooperate. Beyond the targeting of cell movements, the adhesion of cancer cells to the stroma in heterotypic circulating tumor cell emboli is of paramount

  13. Pharmacologically active microcarriers for endothelial progenitor cell support and survival.

    PubMed

    Musilli, Claudia; Karam, Jean-Pierre; Paccosi, Sara; Muscari, Claudio; Mugelli, Alessandro; Montero-Menei, Claudia N; Parenti, Astrid

    2012-08-01

    The regenerative potential of endothelial progenitor cell (EPC)-based therapies is limited due to poor cell viability and minimal retention following application. Neovascularization can be improved by means of scaffolds supporting EPCs. The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured on pharmacologically active microcarriers (PAMs), made with poly(d,l-lactic-coglycolic acid) and coated with adhesion/extracellular matrix molecules. They may serve as a support for stem cells and may be used as cell carriers providing a controlled delivery of active protein such as the angiogenic factor, vascular endothelial growth factor-A (VEGF-A). eEPC adhesion to fibronectin-coated PAMs (FN-PAMs) was assessed by means of microscopic evaluation and by means of Alamar blue assay. Phospho ERK(1/2) and PARP-1 expression was measured by means of Western blot to assess the survival effects of FN-PAMs releasing VEGF-A (FN-VEGF-PAMs). The Alamar blue assay or a modified Boyden chamber assay was employed to assess proliferative or migratory capacity, respectively. Our data indicate that eEPCs were able to adhere to empty FN-PAMs within a few hours. FN-VEGF-PAMs increased the ability of eEPCs to adhere to them and strongly supported endothelial-like phenotype and cell survival. Moreover, the release of VEGF-A by FN-PAMs stimulated in vitro HUVEC migration and proliferation. These data strongly support the use of PAMs for supporting eEPC growth and survival and for stimulating resident mature human endothelial cells.

  14. Curcumin Attenuates Rapamycin-induced Cell Injury of Vascular Endothelial Cells.

    PubMed

    Guo, Ning; Chen, Fangyuan; Zhou, Juan; Fang, Yuan; Li, Hongbing; Luo, Yongbai; Zhang, Yong

    2015-10-01

    Although drug-eluting stents (DES) effectively improve the clinical efficacy of percutaneous coronary intervention, a high risk of late stent thrombosis and in-stent restenosis also exists after DES implantation. Anti-smooth muscle proliferation drugs, such as rapamycin, coating stents, not only inhibit the growth of vascular smooth muscle cells but also inhibit vascular endothelial cells and delay the reendothelialization. Therefore, the development of an ideal agent that protects vascular endothelial cells from rapamycin-eluting stents is of great importance for the next generation of DES. In this study, we demonstrated that rapamycin significantly inhibited the growth of rat aortic endothelial cells in both dose- and time-dependent manner in vitro. Cell apoptosis was increased and migration was decreased by rapamycin treatments in rat aortic endothelial cells in vitro. Surprisingly, treatment with curcumin, an active ingredient of turmeric, significantly reversed these detrimental effects of rapamycin. Moreover, curcumin increased the expression of vascular nitric oxide synthases (eNOS), which was decreased by rapamycin. Furthermore, caveolin-1, the inhibitor of eNOS, was decreased by curcumin. Knockdown of eNOS by small interfering RNA significantly abrogated the protective effects of curcumin. Taken together, our results suggest that curcumin antagonizes the detrimental effect of rapamycin on aortic endothelial cells in vitro through upregulating eNOS. Therefore, curcumin is a promising combined agent for the rescue of DES-induced reendothelialization delay.

  15. Loss of endothelial programmed cell death 10 activates glioblastoma cells and promotes tumor growth

    PubMed Central

    Zhu, Yuan; Zhao, Kai; Prinz, Anja; Keyvani, Kathy; Lambertz, Nicole; Kreitschmann-Andermahr, Ilonka; Lei, Ting; Sure, Ulrich

    2016-01-01

    Background Neo-angiogenesis is a hallmark of glioblastoma (GBM) and is sustained by autocrine and paracrine interactions between neoplastic and nonneoplastic cells. Programmed cell death 10 (PDCD10) is ubiquitously expressed in nearly all tissues and plays crucial roles in regulating angiogenesis and apoptosis. We recently discovered the absence of PDCD10 expression in the tumor vessels of GBM patients. This raised the hypothesis that loss of endothelial PDCD10 affected GBM cell phenotyping and tumor progression. Methods Endothelial PDCD10 was silenced by siRNA and lentiviral shRNA. The tumor cell phenotype was studied in direct and indirect co-culture of endothelial cells (ECs) with U87 or LN229. Angiogenic protein array was performed in the media of PDCD10-silenced ECs. Tumor angiogenesis and tumor growth were investigated in a human GBM xenograft mouse model. Results Endothelial silence of PDCD10 significantly stimulated tumor cell proliferation, migration, adhesion, and invasion and inhibited apoptosis in co-cultures. Stable knockdown of endothelial PDCD10 increased microvessel density and the formation of a functional vascular network, leading to a 4-fold larger tumor mass in mice. Intriguingly, endothelial deletion of PDCD10 increased (≥2-fold) the release of 20 of 55 tested proangiogenic factors including VEGF, which in turn activated Erk1/2 and Akt in GBM cells. Conclusions For the first time, we provide evidence that loss of endothelial PDCD10 activates GBM cells and promotes tumor growth, most likely via a paracrine mechanism. PDCD10 shows a tumor-suppressor-like function in the cross talk between ECs and tumor cells and is potentially implicated in GBM progression. PMID:26254477

  16. Early responses of vascular endothelial cells to topographic cues.

    PubMed

    Dreier, Britta; Gasiorowski, Joshua Z; Morgan, Joshua T; Nealey, Paul F; Russell, Paul; Murphy, Christopher J

    2013-08-01

    Vascular endothelial cells in vivo are exposed to multiple biophysical cues provided by the basement membrane, a specialized extracellular matrix through which vascular endothelial cells are attached to the underlying stroma. The importance of biophysical cues has been widely reported, but the signaling pathways that mediate cellular recognition and response to these cues remain poorly understood. Anisotropic topographically patterned substrates with nano- through microscale feature dimensions were fabricated to investigate cellular responses to topographic cues. The present study focuses on early events following exposure of human umbilical vein endothelial cells (HUVECs) to these patterned substrates. In serum-free medium and on substrates without protein coating, HUVECs oriented parallel to the long axis of underlying ridges in as little as 30 min. Immunocytochemistry showed clear differences in the localization of the focal adhesion proteins Src, p130Cas, and focal adhesion kinase (FAK) in HUVECs cultured on topographically patterned surfaces and on planar surfaces, suggesting involvement of these proteins in mediating the response to topographic features. Knockdown experiments demonstrated that FAK was not necessary for HUVEC alignment in response to topographic cues, although FAK knockdown did modulate HUVEC migration. These data identify key events early in the cellular response to biophysical stimuli.

  17. Regulation of endothelial cell differentiation and specification

    USDA-ARS?s Scientific Manuscript database

    The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all bl...

  18. Cell migration and invasion assays.

    PubMed

    Moutasim, Karwan A; Nystrom, Maria L; Thomas, Gareth J

    2011-01-01

    A number of in vitro assays have been developed to study tumor cell motility. Historically, assays have been mainly monocellular, where carcinoma cells are studied in isolation. Scratch assays can be used to study the collective and directional movement of populations of cells, whereas two chamber assays lend themselves to the analysis of chemotactic/haptotactic migration and cell invasion. However, an inherent disadvantage of these assays is that they grossly oversimplify the complex process of invasion, lacking the tumor structural architecture and stromal components. Organotypic assays, where tumor cells are grown at an air/liquid interface on gels populated with stromal cells, are a more physiologically relevant method for studying 3-dimensional tumor invasion.

  19. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells

    PubMed Central

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H.

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  20. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow.

    PubMed

    Tura, Olga; Skinner, Elizabeth M; Barclay, G Robin; Samuel, Kay; Gallagher, Ronald C J; Brittan, Mairi; Hadoke, Patrick W F; Newby, David E; Turner, Marc L; Mills, Nicholas L

    2013-02-01

    A decade of research has sought to identify circulating endothelial progenitor cells (EPC) in order to harness their potential for cardiovascular regeneration. Endothelial outgrowth cells (EOC) most closely fulfil the criteria for an EPC, but their origin remains obscure. Our aim was to identify the source and precursor of EOC and to assess their regenerative potential compared to mature endothelial cells. EOC are readily isolated from umbilical cord blood (6/6 donors) and peripheral blood mononuclear cells (4/6 donors) but not from bone marrow (0/6) or peripheral blood following mobilization with granulocyte-colony stimulating factor (0/6 donors). Enrichment and depletion of blood mononuclear cells demonstrated that EOC are confined to the CD34(+)CD133(-)CD146(+) cell fraction. EOC derived from blood mononuclear cells are indistinguishable from mature human umbilical vein endothelial cells (HUVEC) by morphology, surface antigen expression, immunohistochemistry, real-time polymerase chain reaction, proliferation, and functional assessments. In a subcutaneous sponge model of angiogenesis, both EOC and HUVEC contribute to de novo blood vessel formation giving rise to a similar number of vessels (7.0 ± 2.7 vs. 6.6 ± 3.7 vessels, respectively, n = 9). Bone marrow-derived outgrowth cells isolated under the same conditions expressed mesenchymal markers rather than endothelial cell markers and did not contribute to blood vessels in vivo. In this article, we confirm that EOC arise from CD34(+)CD133(-)CD146(+) mononuclear cells and are similar, if not identical, to mature endothelial cells. Our findings suggest that EOC do not arise from bone marrow and challenge the concept of a bone marrow-derived circulating precursor for endothelial cells. Copyright © 2012 AlphaMed Press.

  1. The Rac activator Tiam1 controls efficient T-cell trafficking and route of transendothelial migration.

    PubMed

    Gérard, Audrey; van der Kammen, Rob A; Janssen, Hans; Ellenbroek, Saskia I; Collard, John G

    2009-06-11

    Migration toward chemoattractants is a hallmark of T-cell trafficking and is essential to produce an efficient immune response. Here, we have analyzed the function of the Rac activator Tiam1 in the control of T-cell trafficking and transendothelial migration. We found that Tiam1 is required for chemokine- and S1P-induced Rac activation and subsequent cell migration. As a result, Tiam1-deficient T cells show reduced chemotaxis in vitro, and impaired homing, egress, and contact hypersensitivity in vivo. Analysis of the T-cell transendothelial migration cascade revealed that PKCzeta/Tiam1/Rac signaling is dispensable for T-cell arrest but is essential for the stabilization of polarization and efficient crawling of T cells on endothelial cells. T cells that lack Tiam1 predominantly transmigrate through individual endothelial cells (transcellular migration) rather than at endothelial junctions (paracellular migration), suggesting that T cells are able to change their route of transendothelial migration according to their polarization status and crawling capacity.

  2. Endothelial lineage cell as a vehicle for systemic delivery of cancer gene therapy.

    PubMed

    Dudek, Arkadiusz Z

    2010-09-01

    A major limitation of cancer gene therapy is the difficulty of delivering a therapeutic gene to distant sites of metastatic disease. A promising strategy to address this difficulty is to use expanded ex vivo cells to produce a therapeutic protein. As with other approaches to gene therapy, this strategy is attractive when the therapeutic protein is unstable ex vivo or has a short circulating half life in vivo. The initial step to develop a cancer gene therapy using autologous cell delivery is the identification of a cell type that migrates to the tumor site, is readily available for harvesting, and is manipulated easily ex vivo. Recent evidence suggests that endothelial progenitor, precursor, and blood outgrowth endothelial cells are attracted to the tumor vasculature by its angiogenic drive. Here, we review recent advances in the study of circulating endothelial cell-mediated tumor vasculogenesis and discuss the advantages and challenges of bringing endothelial lineage-based cancer gene therapy closer to clinical application.

  3. Endothelial cells synthesize and process apolipoprotein B.

    PubMed

    Sivaram, P; Vanni-Reyes, T; Goldberg, I J

    1996-06-21

    We reported previously that a 116-kDa lipoprotein lipase (LPL)-binding protein from endothelial cells has sequence homology to the amino-terminal region of apolipoprotein (apo) B. We now tested whether endothelial cells synthesize apoB mRNA and protein. Primers were designed to the human apoB cDNA sequence and reverse transcription polymerase chain reaction was performed using total RNA isolated from bovine and human endothelial cells. With primers to the 5' region of the apoB mRNA (amino-terminal region of apoB protein) expected size PCR products were generated from both bovine and human endothelial cells as well as from mouse liver RNA, which was used as a control. Primers designed to the 3' region of apoB mRNA generated PCR products from human endothelial cells and HepG2 cells but not from bovine or mouse cells. These data suggest that endothelial cells contain full-length apoB mRNA and that the 5' or the amino-terminal region of apoB is highly conserved from mouse to human. This was confirmed by direct sequencing of the mouse and bovine PCR products. To test whether apoB protein was produced, bovine endothelial cell proteins were metabolically labeled with [35S]methionine/cysteine or [3H]leucine and immunoprecipitated with anti-human apoB antibodies. Using extracts from cells labeled for 1 h, monoclonal antibody 47, directed to the low density lipoprotein receptor binding region of apoB, precipitated a protein of approximate molecular mass 550,000, the size of full-length apoB. Immunoprecipitation of the 550-kDa protein was abolished in the presence of added unlabeled low density lipoprotein. From cells labeled for 16 h, a 116-kDa protein was immunoprecipitated by polyclonal anti-apoB antibodies. This protein was partly released from cells by heparin treatment. Pulse-chase analysis showed that the 116-kDa fragment appeared at the same time as the full-length apoB began disappearing. The immunoprecipitated 116-kDa fragment also bound labeled LPL on ligand blot

  4. Effect of selected flavones on cancer and endothelial cells.

    PubMed

    Pilátová, Martina; Stupáková, Viktória; Varinská, Lenka; Sarisský, Marek; Mirossay, Ladislav; Mirossay, Andrej; Gál, Peter; Kraus, Vladimír; Dianisková, Katarína; Mojzis, Ján

    2010-06-01

    In our study we used quercetin (3,3 ,4 ,5,7-pentahydroxyflavone) as the reference standard to compare antiproliferative and antiangiogenic effects of chrysin (5,7-dihydroxyflavone) and 3-hydroxyflavone. Our data indicates that chrysin and 3-hydroxyflavone showed significantly higher cytotoxic effect than reference standard quercetin. These tested agents significantly decreased cell survival with the efficacy of 65-85% at the concentration 100 micromol/l for HUVEC, lung carcinoma and leukemic cells being the most sensitive. Cell cycle analysis indicates that quercetin and 3-hydroxyflavone might affect the cell cycle of Jurkat cells by a similar or the same mechanism of action which lead to G2/M arrest as well as to an increase in sub-G0/G1 fraction. Treatment of Jurkat cells with chrysin resulted only increase in the fraction of cells with sub-G0/G1 DNA content, which is considered to be a marker of apoptotic cell death. Apoptosis was confirmed by DNA fragmentation and by staining with annexin V. All three tested flavones inhibited endothelial cell migration after 24 h of incubation at a concentration 100 micromol/l. At a lower concentration (10 micromol/l) only quercetin significantly inhibited migration of endothelial cells. Furthermore, in our experiments decreased secretion of matrix metalloproteinases (MMP-2 and MMP-9) was observed after a 72 h treatment with quercetin. No decrease in secretion of MMP-2 and MMP-9 was seen after chrysin and 3-hydroxyflavone treatment. On the other hand, our results showed that none of three flavonoids blocked microcapillary tube formation. Further studies are necessary to investigate the mechanism of action and to find out the relationship between the structure, character and position of substituents of natural substances and their biological activities.

  5. Aminothiol WR-1065 protects endothelial cell morphology against alterations induced by lipopolysaccharide.

    PubMed

    Podolski, J L; Mooteri, S N; Drab-Weiss, E A; Onoda, J M; Saclarides, T J; Rubin, D B

    1998-12-01

    In septic patients, lipopolysaccharide (LPS) damages the vascular endothelium, which manifests as tissue edema and impaired healing. This pathology occurs when LPS distorts endothelial cell morphology partly by generating free radicals. A radioprotector that scavenges free radicals, the aminothiol WR-1065 ([N-2-mercaptoethyl]-1-3-diaminopropane) was found in a prior study to normalize the morphology of irradiated endothelial cells (Mooteri SN, Podolski JL, Drab EA, et al: Radiat Res 145:217-224, 1996). The aim of this study was to determine whether WR-1065 also normalized endothelial cell morphology following exposure to LPS. For this aim, portions of bovine aortic endothelial cell cultures were denuded and exposed to LPS at 1 ng/mL. After 30 min, the apical membrane expressed increased integrin receptor to fibronectin, alpha5beta1. After 5 h, the morphology of the cells at the leading edge was distorted, and cell-cell contact was lessened. Also, filamentous actin-containing stress fibers were dissipated; however, filamentous actin content per cell was unchanged. Treatment with 2 mM WR-1065 for 2 h prior to LPS exposure attenuated the increased expression of alpha5beta1 and promoted cell-cell contact in the migrating endothelial cells. WR-1065 also promoted the retention of stress fibers and actin cytoskeletal shape in cells treated with LPS. Thus, LPS distorted endothelial cell morphology after increasing apical membrane expression of alpha5beta1 and dissipating stress fibers, effects prevented by WR-1065.

  6. Endothelial cell promotion of early liver and pancreas development.

    PubMed

    Freedman, Deborah A; Kashima, Yasushige; Zaret, Kenneth S

    2007-01-01

    Different steps of embryonic pancreas and liver development require inductive signals from endothelial cells. During liver development, interactions between newly specified hepatic endoderm cells and nascent endothelial cells are crucial for the endoderm's subsequent growth and morphogenesis into a liver bud. Reconstitution of endothelial cell stimulation of hepatic cell growth with embryonic tissue explants demonstrated that endothelial signalling occurs independent of the blood supply. During pancreas development, midgut endoderm interactions with aortic endothelial cells induce Ptf1a, a crucial pancreatic determinant. Endothelial cells also have a later effect on pancreas development, by promoting survival of the dorsal mesenchyme, which in turn produces factors supporting pancreatic endoderm. A major goal of our laboratory is to determine the endothelial-derived molecules involved in these inductive events. Our data show that cultured endothelial cells induce Ptf1a in dorsal endoderm explants lacking an endogenous vasculature. We are purifying endothelial cell line product(s) responsible for this effect. We are also identifying endothelial-responsive regulatory elements in genes such as Ptf1a by genetic mapping and chromatin-based assays. These latter approaches will allow us to track endothelial-responsive signal pathways from DNA targets within progenitor cells. The diversity of organogenic steps dependent upon endothelial cell signalling suggests that cross-regulation of tissue development with its vasculature is a general phenomenon.

  7. Suppression of endothelial nitric oxide synthase expression and endothelial cell proliferation by an intronic 27-ntmiRNA and it's a novel link to AP-1.

    PubMed

    Li, Yumei; Yan, Limei; Zhang, Wenyu; Hu, Nan; Chen, Wei; Wang, Hui; Kang, Min; Ou, Hesheng

    2015-01-01

    This study aims to investigate the role of activator protein 1 (AP-1) in the effects of 27nt-miRNA on expression of endothelial nitric oxide synthase (eNOS) gene and proliferation of endothelial cells. Cell proliferation was analyzed by cell number counting, colony formation assay and MTT assay. Cell migration and invasion was detected by transwell assay and invasion assay. Expression of eNOS and AP-1 was measured by real-time RT-PCR (mRNA level) and Western blotting (protein level). Luciferase reporter assay was performed to detect the binding of 27nt-miRNA to AP-1. Overexpression of 27nt-miRNA significantly inhibited endothelial cells proliferation, invasion and migration in vitro. And, eNOS and AP-1 expression at mRNA and protein levels were down-regulated by overexpression of 27nt-miRNA. Interestingly, overexpression of AP-1 protein partially restored eNOS expression and endothelial cell proliferation. Furthermore, the luciferase reporter assay demonstrated that AP-1 was a direct target of 27nt-miRNA. These data demonstrate that overexpression of 27nt-miRNA inhibits endothelial cell proliferation, invasion, migration, eNOS expression and AP-1 expression. Moreover, AP-1, a direct target of 27nt-miRNA, reverses the inhibitory effects of 27nt-miRNA. Thus, the effects of 27nt-miRNA might be acted through targeting AP-1.

  8. Force transmission in migrating cells

    PubMed Central

    Sauser, Roger; Ambrosi, Davide; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2010-01-01

    During cell migration, forces generated by the actin cytoskeleton are transmitted through adhesion complexes to the substrate. To investigate the mechanism of force generation and transmission, we analyzed the relationship between actin network velocity and traction forces at the substrate in a model system of persistently migrating fish epidermal keratocytes. Front and lateral sides of the cell exhibited much stronger coupling between actin motion and traction forces than the trailing cell body. Further analysis of the traction–velocity relationship suggested that the force transmission mechanisms were different in different cell regions: at the front, traction was generated by a gripping of the actin network to the substrate, whereas at the sides and back, it was produced by the network’s slipping over the substrate. Treatment with inhibitors of the actin–myosin system demonstrated that the cell body translocation could be powered by either of the two different processes, actomyosin contraction or actin assembly, with the former associated with significantly larger traction forces than the latter. PMID:20100912

  9. Endothelial progenitor cell biology in ankylosing spondylitis.

    PubMed

    Verma, Inderjeet; Syngle, Ashit; Krishan, Pawan

    2015-03-01

    Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). EPCs were depleted in AS patients as compared to healthy controls (CD34(+) /CD133(+) : 0.027 ± 0.010% vs. 0.044 ± 0.011%, P < 0.001). EPC depletions were significantly associated with disease duration (r = -0.52, P = 0.01), BASDAI (r = -0.45, P = 0.04) and C-reactive protein (r = -0.5, P = 0.01). This is the first study to demonstrate endothelial progenitor cell depletion in AS patients. EPC depletions inversely correlate with disease duration, disease activity and inflammation, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. Characterization of Collective Cell Migration Dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Yue, Haicen; Rappel, Wouter-Jan; Losert, Wolfgang

    2015-03-01

    During cancer progression, tumor cells invade the surrounding tissue and migrate throughout the body, forming clinically dangerous secondary tumors. This metastatic process begins when cells leave the primary tumor, either as individual cells or collectively migrating groups. Here we present data on the migration dynamics of epithelial sheets composed of many cells. Using quantitative image analysis techniques, we are able to extract motion information from time-lapse images of cell lines with varying malignancy. Adapting metrics originally used to study fluid flows we are able to characterize the migration dynamics of these cell lines. By describing the migration dynamics in great detail, we are able to make a clear comparison of our results to a simulation of collective cell migration. Specifically, we explore whether leader cells are required to describe our expanding sheets of cells and whether the answer depends on individual cell activity.

  11. Endothelial cells mediate the regeneration of hematopoietic stem cells

    PubMed Central

    Li, Bei; Bailey, Alexis S.; Jiang, Shuguang; Liu, Bin; Goldman, Devorah C.; Fleming, William H.

    2010-01-01

    Recent studies suggest that endothelial cells are a critical component of the normal hematopoietic microenvironment. Therefore, we sought to determine whether primary endothelial cells have the capacity to repair damaged hematopoietic stem cells. Highly purified populations of primary CD31+ microvascular endothelial cells isolated from the brain or lung did not express the pan hematopoietic marker CD45, hematopoietic lineage markers, or the progenitor marker c-kit and did not give rise hematopoietic cells in vitro or in vivo. Remarkably, the transplantation of small numbers of these microvascular endothelial cells consistently restored hematopoiesis following bone marrow lethal doses of irradiation. Analysis of the peripheral blood of rescued recipients demonstrated that both short term and long term multilineage hematopoietic reconstitution was exclusively of host origin. Secondary transplantation studies revealed that microvascular endothelial cell-mediated hematopoietic regeneration also occurs at the level of the hematopoietic stem cell. These findings suggest a potential therapeutic role for microvascular endothelial cells in the self-renewal and repair of adult hematopoietic stem cells. PMID:19720572

  12. Endothelial cell regulation of leukocyte infiltration in inflammatory tissues

    PubMed Central

    Mantovani, A.; Introna, M.; Dejana, E.

    1995-01-01

    Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also ‘direct’ leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues. PMID:18475659

  13. Migration in action: profiling border cells.

    PubMed

    Jasper, Heinrich

    2006-04-01

    Acquiring the ability to migrate is essential for cells taking part in many developmental and disease processes. Two studies in this issue of Developmental Cell use gene expression profiling of purified border cells from the Drosophila ovary to characterize the molecular changes required in cells to initiate migration in vivo. Their results offer interesting new insights into a moving cell's physiology.

  14. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.

    PubMed

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy; Tan, Wei

    2014-09-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.

  15. Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies.

    PubMed

    Chevalier, Fabien; Lavergne, Mélanie; Negroni, Elisa; Ferratge, Ségolène; Carpentier, Gilles; Gilbert-Sirieix, Marie; Siñeriz, Fernando; Uzan, Georges; Albanese, Patricia

    2014-05-01

    Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR(4131)] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR(4131)] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC.

  16. Reduced Ang2 expression in aging endothelial cells.

    PubMed

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Rho GTPases in collective cell migration.

    PubMed

    Zegers, Mirjam M; Friedl, Peter

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.

  18. Rho GTPases in collective cell migration

    PubMed Central

    Zegers, Mirjam M; Friedl, Peter

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling. PMID:25054920

  19. Androgen receptor in human endothelial cells

    PubMed Central

    Torres-Estay, Verónica; Carreño, Daniela V; San Francisco, Ignacio F; Sotomayor, Paula; Godoy, Alejandro S; Smith, Gary J

    2015-01-01

    Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality. PMID:25563353

  20. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    PubMed

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  1. Mycobacteria entry and trafficking into endothelial cells.

    PubMed

    Baltierra-Uribe, Shantal Lizbeth; García-Vásquez, Manuel de Jesús; Castrejón-Jiménez, Nayeli Shantal; Estrella-Piñón, Mayra Patricia; Luna-Herrera, Julieta; García-Pérez, Blanca Estela

    2014-09-01

    Endothelial cells are susceptible to infection by mycobacteria, but the endocytic mechanisms that mycobacteria exploit to enter host cells and their mechanisms of intracellular transport are completely unknown. Using pharmacological inhibitors, we determined that the internalization of Mycobacterium tuberculosis (MTB), Mycobacterium smegmatis (MSM), and Mycobacterium abscessus (MAB) is dependent on the cytoskeleton and is differentially inhibited by cytochalasin D, nocodazole, cycloheximide, wortmannin, and amiloride. Using confocal microscopy, we investigated their endosomal trafficking by analyzing Rab5, Rab7, LAMP-1, and cathepsin D. Our results suggest that MSM exploits macropinocytosis to enter endothelial cells and that the vacuoles containing these bacteria fuse with lysosomes. Conversely, the entry of MTB seems to depend on more than one endocytic route, and the observation that only a subset of the intracellular bacilli was associated with phagolysosomes suggests that these bacteria are able to inhibit endosomal maturation to persist intracellularly. The route of entry for MAB depends mainly on microtubules, which suggests that MAB uses a different trafficking pathway. However, MAB is also able to inhibit endosomal maturation and can replicate intracellularly. Together, these findings provide the first evidence that mycobacteria modulate proteins of host endothelial cells to enter and persist within these cells.

  2. The Role of Lymphatic Endothelial Cells in Liver Injury and Tumor Development

    PubMed Central

    Lukacs-Kornek, Veronika

    2016-01-01

    Lymphatics and lymphatic endothelial cells (LECs) possess multiple immunological functions besides affecting immune cell migration, such as inhibiting T cell proliferation and antigen presentation by dendritic cells. Moreover, they control the trans-endothelial transport of multiple molecules and antigens. Emerging evidence suggest their active involvements in immunregulation, tumor, and metastases formation. In the liver, increased lymphangiogenesis, specifically at the portal area has been associated with multiple liver diseases in particular primary biliary cirrhosis, idiopathic portal hypertension, and liver malignancies. Nevertheless, the exact role and contribution of LECs to liver diseases are poorly understood. The review summarizes the current understanding of LECs in liver diseases. PMID:27965673

  3. Fate of cerium dioxide nanoparticles in endothelial cells: exocytosis

    NASA Astrophysics Data System (ADS)

    Strobel, Claudia; Oehring, Hartmut; Herrmann, Rudolf; Förster, Martin; Reller, Armin; Hilger, Ingrid

    2015-05-01

    Although cytotoxicity and endocytosis of nanoparticles have been the subject of numerous studies, investigations regarding exocytosis as an important mechanism to reduce intracellular nanoparticle accumulation are rather rare and there is a distinct lack of knowledge. The current study investigated the behavior of human microvascular endothelial cells to exocytose cerium dioxide (CeO2) nanoparticles (18.8 nm) by utilization of specific inhibitors [brefeldin A; nocodazole; methyl-β-cyclodextrin (MβcD)] and different analytical methods (flow cytometry, transmission electron microscopy, inductively coupled plasma mass spectrometry). Overall, it was found that endothelial cells were able to release CeO2 nanoparticles via exocytosis after the migration of nanoparticle containing endosomes toward the plasma membrane. The exocytosis process occurred mainly by fusion of vesicular membranes with plasma membrane resulting in the discharge of vesicular content to extracellular environment. Nevertheless, it seems to be likely that nanoparticles present in the cytosol could leave the cells in a direct manner. MβcD treatment led to the strongest inhibition of the nanoparticle exocytosis indicating a significant role of the plasma membrane cholesterol content in the exocytosis process. Brefeldin A (inhibitor of Golgi-to-cell-surface-transport) caused a higher inhibitory effect on exocytosis than nocodazole (inhibitor of microtubules). Thus, the transfer from distal Golgi compartments to the cell surface influenced the exocytosis process of the CeO2 nanoparticles more than the microtubule-associated transport. In conclusion, endothelial cells, which came in contact with nanoparticles, e.g., after intravenously applied nano-based drugs, can regulate their intracellular nanoparticle amount, which is necessary to avoid adverse nanoparticle effects on cells.

  4. Focal Adhesion-Independent Cell Migration.

    PubMed

    Paluch, Ewa K; Aspalter, Irene M; Sixt, Michael

    2016-10-06

    Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.

  5. In Vitro Imaging of Angiogenesis Using Embryonic Stem Cell-Derived Endothelial Cells

    PubMed Central

    Stuhlmann, Heidi

    2012-01-01

    Angiogenesis is an important event during developmental processes, and it plays a key role in neovascularization. The development of an in vitro model that can be used for live imaging of vessel growth will facilitate the study of molecular and cellular mechanisms for the growth of blood vessels. Embryonic stem cells (ESCs) are considered to be a novel renewable source for the derivation of genetically manipulable endothelial cells (ECs). To derive green fluorescence protein (GFP)-expressing ECs, we used a transgenic ESC line in which a GFP reporter was driven by the endothelial-specific promoter fetal liver kinase 1. ESC-ECs were isolated from 11-day embryoid bodies by fluorescence-activated cell sorting. Embedding the aggregated ESC-ECs in a 3-dimensional collagen gel matrix resulted in ESC-EC migration out of the aggregates and coalescence into a capillary network. Time-lapse microscopy revealed EC migration, proliferation, lumen formation, and anastomosis to other capillary vessels during this process, which were reminiscent of angiogenic processes. Vascular endothelial growth factor plays major roles in the induction of ESC-EC angiogenesis in vitro. Blockage of the β1 integrin subunit severely impaired ESC-EC survival and migration. We demonstrate that our in vitro ESC-EC angiogenesis model represents a high-resolution dynamic video-image system for observing the cellular events underlying angiogenic cascades. We also consider this model as an image screening tool for the identification of pro-angiogenic and anti-angiogenic molecules. PMID:21385073

  6. Arecoline is cytotoxic for human endothelial cells.

    PubMed

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Boadle, Ross; Zoellner, Hans

    2014-11-01

    Oral submucous fibrosis is a pre-malignant fibrotic condition caused by areca nut use and involves reduced mucosal vascularity. Arecoline is the principal areca nut alkaloid and is cytotoxic for epithelium and fibroblasts. Endothelial cell cycle arrest is reported on exposure to arecoline, as is cytotoxicity for endothelial-lung carcinoma hybrid cells. We here describe cytotoxicity for primary human endothelial cultures from seven separate donors. Human umbilical vein endothelial cells were exposed to increasing concentrations of arecoline and examined by: phase-contrast microscopy, haemocytometer counts, transmission electron microscopy, lactate dehydrogenase release and the methyl-thiazol-tetrazolium assay. Vacuolation and detachment of endothelium were observed at and above arecoline concentrations of 333 μg/ml or more. Ultrastructural features of cellular stress were seen after 24-h treatment with 111 μg/ml arecoline and included reduced ribosomal studding of endoplasmic reticulum, increased autophagolysosomal structures, increased vacuolation and reduced mitochondrial cristae with slight swelling. Similar changes were seen at 4 h with arecoline at 333 μg/ml or above, but with more severe mitochondrial changes including increased electron density of mitochondrial matrix and greater cristal swelling, while by 24 h, these cells were frankly necrotic. Haemocytometer counts were paralleled by both lactate dehydrogenase release and the methyl-thiazol-tetrazolium assays. Arecoline is cytotoxic via necrosis for endothelium, while biochemical assays indicate no appreciable cellular leakage before death and detachment, as well as no clear effect on mitochondrial function in viable cells. Arecoline toxicity may thus contribute to reduced vascularity in oral submucous fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Random versus directionally persistent cell migration

    PubMed Central

    Petrie, Ryan J.; Doyle, Andrew D.; Yamada, Kenneth M.

    2009-01-01

    Directional migration is an important component of cell motility. Although the basic mechanisms of random cell movement are well characterized, no single model explains the complex regulation of directional migration. Multiple factors operate at each step of cell migration to stabilize lamellipodia and maintain directional migration. Factors such as topography of the extracellular matrix, the cellular polarity machinery, receptor signalling, integrin trafficking and co-receptors, and actin–myosin contraction converge on regulation of the Rho family of GTPases and control of lamellipodial protrusions to promote directional migration. PMID:19603038

  8. Transplantation stimulates interstitial cell migration in hydra

    SciTech Connect

    Fujisawa, T.; David, C.N.; Bosch, T.C. )

    1990-04-01

    Migration of interstitial cells and nerve cell precursors was analyzed in Hydra magnipapillata and Hydra vulgaris (formerly Hydra attenuata). Axial grafts were made between ({sup 3}H)thymidine-labeled donor and unlabeled host tissue. Migration of labeled cells into the unlabeled half was followed for 4 days. The results indicate that the rate of migration was initially high and then slowed on Days 2-4. Regrafting fresh donor tissue on Days 2-4 maintained high levels of migration. Thus, migration appears to be stimulated by the grafting procedure itself.

  9. Human endothelial progenitor cells isolated from COPD patients are dysfunctional.

    PubMed

    Liu, Xiaoran; Xie, Canmao

    2012-04-01

    Cardiovascular disease is the leading cause of morbidity and mortality in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD). More than 44% of these patients present with generalized atherosclerosis at autopsy. It is accepted that endothelial progenitor cells (EPCs) participate in the repair of dysfunctional endothelium and thus protects against atherosclerosis. However, whether COPD affects the repairing capacity of EPCs is unknown. Therefore, the objective of this study was to determine whether and how EPCs are involved in the vascular repair process in patients with COPD. In our study, EPCs from 25 COPD and 16 control patients were isolated by Ficoll density-gradient centrifugation and identified using fluorescence activated cell sorting. Transwell Migratory Assay was performed to determine the number of EPC colony-forming units and the adherent capacity late-EPCs to human umbilical vein endothelial cells. Following arterial damage in NOD/SCID mice, the number of EPCs incorporated at the injured vascular site was determined using a fluorescence microscope. We found that the number of EPC clusters and cell migration, as well as the expression of CXCR4, was significantly decreased in patients with COPD. Additionally, the number of late-EPCs adherent to HUVEC tubules was significantly reduced, and fewer VEGFR2(+)-staining cells were incorporated into the injured site in COPD patients. Our study demonstrates that EPC capacity of repair was affected in COPD patients, which may contribute to altered vascular endothelium in this patient population.

  10. Endothelial cell lesion in preeclampsia. Morphofunctional study using umbilical endothelial cells.

    PubMed

    Gilabert, R; Bellart, J; Jové, M; Miralles, R M; Piera, V

    1999-01-01

    Morphofunctional study of umbilical cords from pregnancies complicated by preeclampsia shows both activation and lesion of endothelium. The cellular findings in umbilical cords from pregnancies complicated by preeclampsia can be summarized as: (i) higher number of cells with secretion bladders and increase in the number and size of both secretion bladders and microvilli-like protrusions; (ii) increase in collagen, fibrin, fibronectin and lipidic vesicles in the vessel wall; (iii) vacuolization of endothelial cells; (iv) presence of lipidic vacuoles and lipophages in the vessel wall; (v) erosion and disorganisation of the endothelium that exposes extracellular proteins to the blood flow. Endothelial cell cultures from preeclamptic pregnancies show kinetic disorders and cell detachment. The results confirm that an endothelial cell lesion occurs in preeclampsia and this cellular disorder can be reproduced in vitro.

  11. Propranolol inhibits endothelial progenitor cell homing: a possible treatment mechanism of infantile hemangioma.

    PubMed

    Zou, Hai-Xiao; Jia, Jun; Zhang, Wen-Feng; Sun, Zhi-Jun; Zhao, Yi-Fang

    2013-01-01

    Propranolol effectively treats infantile hemangioma, but its mechanisms of action remain poorly understood. Although the antiangiogenesis role of propranolol has been previously demonstrated, several lines of evidence suggest that this therapeutic agent may affect the neovascular formation in infantile hemangioma by targeting vasculogenesis. In addition, the homing of endothelial progenitor cells to the lesion of infantile hemangioma plays an important role during the process of vasculogenesis. The purpose of this study was to investigate whether propranolol inhibits the vasculogenesis in infantile hemangioma by targeting endothelial progenitor cells recruitment. Endothelial progenitor cells were treated with different concentrations (0, 1, 5, 10, 20, 40, 60, 80, 100 μM) of propranolol for indicated times (24, 48, 72 h). Cell proliferation and viability were assessed by MTT assay and trypan blue staining. Cell migration was determined by wound healing assay and Boyden chamber assay. The expression levels of extracellular signal regulated kinase, phospho-extracellular signal regulated kinase, Akt, and phospho-Akt were measured by Western blot analysis to explore the molecular mechanism of propranolol on endothelial progenitor cells. In addition, the expression of CXCR4 was measured by Western blot and reverse transcriptase polymerase chain reaction. Propranolol did not significantly affect the proliferation of endothelial progenitor cells. It inhibited stromal-cell-derived factor 1α-induced migration of endothelial progenitor cells through the Akt and MAPK pathways and the expression of CXCR4 in a dose- and time-dependent manner. In addition, the expression of CXCR4 was suppressed by propranolol most likely through the Akt and MAPK pathways. Propranolol inhibits stromal-cell-derived factor 1α-induced endothelial progenitor cell homing by suppressing the expression of CXCR4 most likely through the Akt and MAPK pathways. Copyright © 2013 Elsevier Inc. All rights

  12. Collective cell motion in endothelial monolayers

    PubMed Central

    Szabó, A.; Ünnep, R.; Méhes, E.; Twal, W. O.; Argraves, S. W.; Cao, Y.; Czirók, A.

    2011-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations, and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups, and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior. PMID:21076204

  13. Adhesion of endothelial cells and endothelial progenitor cells on peptide-linked polymers in shear flow.

    PubMed

    Wang, Xin; Cooper, Stuart

    2013-05-01

    The initial adhesion of human umbilical vein endothelial cells (HUVECs), cord blood endothelial colony-forming cells (ECFCs), and human blood outgrowth endothelial cells (HBOECs) was studied under radial flow conditions. The surface of a variable shear-rate device was either coated with polymer films or covered by synthetic fibers. Spin-coating was applied to produce smooth polymer films, while fibrous scaffolds were generated by electrospinning. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate (PEGMA), and CGRGDS peptide. The peptide was incorporated into the polymer system by coupling to an acrylate-PEG-N-hydroxysuccinimide comonomer. A shear-rate-dependent increase of the attached cells with time was observed with all cell types. The adhesion of ECs increased on RGD-linked polymer surfaces compared to polymers without adhesive peptides. The number of attached ECFCs and HBOECs are significantly higher than that of HUVECs within the entire shear-rate range and surfaces examined, especially on RGD-linked polymers at low shear rates. Their superior adhesion ability of endothelial progenitor cells under flow conditions suggests they are a promising source for in vivo seeding of vascular grafts and shows the potential to be used for self-endothelialized implants.

  14. Resveratrol at High Doses Acts as an Apoptotic Inducer in Endothelial Cells

    PubMed Central

    In, Kyungmin; Park, Jongbong

    2006-01-01

    Purposes Resveratrol is a phenolic compound found in grapes and other food products. In order to assess the availability of resveratrol as an angio-inhibiting drug, we examined whether resveratrol plays an important role in bovine aortic endothelial cells (BAECs) for cell apoptosis and cell migration. Methods and Materials Endothelial cell apoptosis was observed as detected by the Hoechst staining and the caspase-3 activity. Additionally, Western blotting was performed for monitoring the activities of various cell signaling molecules. Results Resveratrol was shown to act as a pro-apoptotic agent. The pro-apoptotic effect of resveratrol was as great as that of etoposide, a well-known anti-cancer drug. In addition, resveratrol had an inhibitory effect on endothelial cell migration. The demonstrated efficacy of resveratrol suggests that resveratrol may be utilized as an anti-angiogenic drug. To determine the underlying mechanisms, we further investigated which signaling molecules are activated by resveratrol. Extracellular signal-regulated kinase (ERK) was activated by the treatment with resveratrol in BAECs, whereas endothelial nitric oxide synthetase (eNOS), Akt, and Jun N-terminal kinase (JNK) were inhibited. The pretreatment with PD compound, an ERK inhibitor, had no effect on the pro-apoptosis induced by resveratrol. Conclusion Resveratrol plays an important role in endothelial cell apoptosis, indicating that resveratrol can be utilized as a potent anti-angiogenic drug. PMID:19771259

  15. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Kuriwada, Satoko; Miyazawa, Taiki; Kimura, Fumiko; Miyazawa, Teruo

    2011-01-01

    It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.

  16. Glioblastoma microvesicles promote endothelial cell proliferation through Akt/beta-catenin pathway.

    PubMed

    Liu, Shihai; Sun, Junfeng; Lan, Qing

    2014-01-01

    Glioblastoma tumor cells release microvesicles, which contain mRNA, miRNA and angiogenic proteins. These tumor-derived microvesicles transfer genetic information and proteins to normal cells. Previous reports demonstrated that the increased microvesicles in cerebrospinal fluid (CSF) of patients with glioblastoma up-regulate procoagulant activity. The concentration of microvesicles was closely related to thromboembolism incidence and clinical therapeutic effects of glioblastoma patients. However, it is still not clear how CSF microvesicles and what factors affect glioblastoma development. In this study, we collected the plasma and CSF from glioblastoma patients and healthy volunteers. Microvesicles acquired from serum or CSF were added to cultured endothelial cells. And the effects of these microvesicles on endothelial cells were examined. Our results showed that microvesicles from CSF of patients, but not from circulating blood, promoted endothelial cells migration and proliferation in vitro. In addition, the degree of endothelial cell proliferation triggered by microvesicles from CSF was reduced when treated with siRNA targeting Akt/beta-catenin, suggesting that the Akt/beta-catenin pathway is involved in the microvesicle-initiated endothelial cell proliferation. In conclusion, glioblastoma mainly affects microvesicles within CSF without showing significant impact on microvesicles in circulating blood. Microvesicles from the CSF of glioblastoma patients may initiate endothelial cell growth and thus promote cell invasion. This effect may be directly exerted by activated Akt/beta-catenin pathway.

  17. Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms

    PubMed Central

    Malashicheva, Anna; Kostina, Daria; Kostina, Aleksandra; Irtyuga, Olga; Voronkina, Irina; Smagina, Larisa; Ignatieva, Elena; Gavriliuk, Natalia; Uspensky, Vladimir; Moiseeva, Olga; Vaage, Jarle; Kostareva, Anna

    2016-01-01

    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis. PMID:26904289

  18. Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms.

    PubMed

    Malashicheva, Anna; Kostina, Daria; Kostina, Aleksandra; Irtyuga, Olga; Voronkina, Irina; Smagina, Larisa; Ignatieva, Elena; Gavriliuk, Natalia; Uspensky, Vladimir; Moiseeva, Olga; Vaage, Jarle; Kostareva, Anna

    2016-01-01

    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis.

  19. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism

    PubMed Central

    2014-01-01

    The stromal vasculature in tumors is a vital conduit of nutrients and oxygen for cancer cells. To date, the vast majority of studies have focused on unraveling the genetic basis of vessel sprouting (also termed angiogenesis). In contrast to the widely studied changes in cancer cell metabolism, insight in the metabolic regulation of angiogenesis is only just emerging. These studies show that metabolic pathways