Sample records for endothelial cell types

  1. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish

    PubMed Central

    Kanada, Masamitsu; Zhang, Jinyan; Yan, Libo; Sakurai, Takashi

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility. Paradoxically, the anti-angiogenic treatment showed the promotion, rather than the inhibition, of the endothelial covering-type extravasation of cancer cells, with structural changes in the endothelial walls. These findings may be a set of clues to the full understanding of the metastatic process as well as the metastatic acceleration by anti-angiogenic reagents observed in preclinical studies. PMID:25551022

  2. Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish.

    PubMed

    Kanada, Masamitsu; Zhang, Jinyan; Yan, Libo; Sakurai, Takashi; Terakawa, Susumu

    2014-01-01

    The extravasation of cancer cells, a key step for distant metastasis, is thought to be initiated by disruption of the endothelial barrier by malignant cancer cells. An endothelial covering-type extravasation of cancer cells in addition to conventional cancer cell invasion-type extravasation was dynamically visualized in a zebrafish hematogenous metastasis model. The inhibition of VEGF-signaling impaired the invasion-type extravasation via inhibition of cancer cell polarization and motility. Paradoxically, the anti-angiogenic treatment showed the promotion, rather than the inhibition, of the endothelial covering-type extravasation of cancer cells, with structural changes in the endothelial walls. These findings may be a set of clues to the full understanding of the metastatic process as well as the metastatic acceleration by anti-angiogenic reagents observed in preclinical studies.

  3. Endothelial binding of beta toxin to small intestinal mucosal endothelial cells in early stages of experimentally induced Clostridium perfringens type C enteritis in pigs.

    PubMed

    Schumacher, V L; Martel, A; Pasmans, F; Van Immerseel, F; Posthaus, H

    2013-07-01

    Beta toxin (CPB) is known to be an essential virulence factor in the development of lesions of Clostridium perfringens type C enteritis in different animal species. Its target cells and exact mechanism of toxicity have not yet been clearly defined. Here, we evaluate the suitability of a neonatal piglet jejunal loop model to investigate early lesions of C. perfringens type C enteritis. Immunohistochemically, CPB was detected at microvascular endothelial cells in intestinal villi during early and advanced stages of lesions induced by C. perfringens type C. This was first associated with capillary dilatation and subsequently with widespread hemorrhage in affected intestinal segments. CPB was, however, not demonstrated on intestinal epithelial cells. This indicates a tropism of CPB toward endothelial cells and suggests that CPB-induced endothelial damage plays an important role in the early stages of C. perfringens type C enteritis in pigs.

  4. Variable promoter methylation contributes to differential expression of key genes in human placenta-derived venous and arterial endothelial cells.

    PubMed

    Joo, Jihoon E; Hiden, Ursula; Lassance, Luciana; Gordon, Lavinia; Martino, David J; Desoye, Gernot; Saffery, Richard

    2013-07-15

    The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells. Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000 annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial function. An inverse relationship was observed between gene expression and promoter methylation levels for a limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase. Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular disease risk later in life.

  5. Growth factor-induced morphological, physiological and molecular characteristics in cerebral endothelial cells.

    PubMed

    Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C

    2000-09-01

    The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.

  6. Haploinsufficiency of the insulin-like growth factor-1 receptor enhances endothelial repair and favorably modifies angiogenic progenitor cell phenotype.

    PubMed

    Yuldasheva, Nadira Y; Rashid, Sheikh Tawqeer; Haywood, Natalie J; Cordell, Paul; Mughal, Romana; Viswambharan, Hema; Imrie, Helen; Sukumar, Piruthivi; Cubbon, Richard M; Aziz, Amir; Gage, Matthew; Mbonye, Kamatamu Amanda; Smith, Jessica; Galloway, Stacey; Skromna, Anna; Scott, D Julian A; Kearney, Mark T; Wheatcroft, Stephen B

    2014-09-01

    Defective endothelial regeneration predisposes to adverse arterial remodeling and is thought to contribute to cardiovascular disease in type 2 diabetes mellitus. We recently demonstrated that the type 1 insulin-like growth factor receptor (IGF1R) is a negative regulator of insulin sensitivity and nitric oxide bioavailability. In this report, we examined partial deletion of the IGF1R as a potential strategy to enhance endothelial repair. We assessed endothelial regeneration after wire injury in mice and abundance and function of angiogenic progenitor cells in mice with haploinsufficiency of the IGF1R (IGF1R(+/-)). Endothelial regeneration after arterial injury was accelerated in IGF1R(+/-) mice. Although the yield of angiogenic progenitor cells was lower in IGF1R(+/-) mice, these angiogenic progenitor cells displayed enhanced adhesion, increased secretion of insulin-like growth factor-1, and enhanced angiogenic capacity. To examine the relevance of IGF1R manipulation to cell-based therapy, we transfused IGF1R(+/-) bone marrow-derived CD117(+) cells into wild-type mice. IGF1R(+/-) cells accelerated endothelial regeneration after arterial injury compared with wild-type cells and did not alter atherosclerotic lesion formation. Haploinsufficiency of the IGF1R is associated with accelerated endothelial regeneration in vivo and enhanced tube forming and adhesive potential of angiogenic progenitor cells in vitro. Partial deletion of IGF1R in transfused bone marrow-derived CD117(+) cells enhanced their capacity to promote endothelial regeneration without altering atherosclerosis. Our data suggest that manipulation of the IGF1R could be exploited as novel therapeutic approach to enhance repair of the arterial wall after injury. © 2014 American Heart Association, Inc.

  7. Cross talk between primary human renal tubular cells and endothelial cells in cocultures.

    PubMed

    Tasnim, Farah; Zink, Daniele

    2012-04-15

    Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.

  8. Infection of endothelial cells by common human viruses.

    PubMed

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  9. [The role of endothelial cells and endothelial precursor cells in angiogenesis].

    PubMed

    Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz

    2006-01-01

    Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.

  10. Morphology and vasoactive hormone profiles from endothelial cells derived from stem cells of different sources.

    PubMed

    Reed, Daniel M; Foldes, Gabor; Kirkby, Nicholas S; Ahmetaj-Shala, Blerina; Mataragka, Stefania; Mohamed, Nura A; Francis, Catherine; Gara, Edit; Harding, Sian E; Mitchell, Jane A

    2014-12-12

    Endothelial cells form a highly specialised lining of all blood vessels where they provide an anti-thrombotic surface on the luminal side and protect the underlying vascular smooth muscle on the abluminal side. Specialised functions of endothelial cells include their unique ability to release vasoactive hormones and to morphologically adapt to complex shear stress. Stem cell derived-endothelial cells have a growing number of applications and will be critical in any organ regeneration programme. Generally endothelial cells are identified in stem cell studies by well-recognised markers such as CD31. However, the ability of stem cell-derived endothelial cells to release vasoactive hormones and align with shear stress has not been studied extensively. With this in mind, we have compared directly the ability of endothelial cells derived from a range of stem cell sources, including embryonic stem cells (hESC-EC) and adult progenitors in blood (blood out growth endothelial cells, BOEC) with those cultured from mature vessels, to release the vasoconstrictor peptide endothelin (ET)-1, the cardioprotective hormone prostacyclin, and to respond morphologically to conditions of complex shear stress. All endothelial cell types, except hESC-EC, released high and comparable levels of ET-1 and prostacyclin. Under static culture conditions all endothelial cell types, except for hESC-EC, had the typical cobblestone morphology whilst hESC-EC had an elongated phenotype. When cells were grown under shear stress endothelial cells from vessels (human aorta) or BOEC elongated and aligned in the direction of shear. By contrast hESC-EC did not align in the direction of shear stress. These observations show key differences in endothelial cells derived from embryonic stem cells versus those from blood progenitor cells, and that BOEC are more similar than hESC-EC to endothelial cells from vessels. This may be advantageous in some settings particularly where an in vitro test bed is required. However, for other applications, because of low ET-1 release hESC-EC may prove to be protected from vascular inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Establishment of a translational endothelial cell model using directed differentiation of induced pluripotent stem cells from Cynomolgus monkey.

    PubMed

    Thoma, Eva C; Heckel, Tobias; Keller, David; Giroud, Nicolas; Leonard, Brian; Christensen, Klaus; Roth, Adrian; Bertinetti-Lapatki, Cristina; Graf, Martin; Patsch, Christoph

    2016-10-25

    Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here, we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs, we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover, we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions, such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.

  12. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I Interferons*

    PubMed Central

    Denny, Michael F.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Thacker, Seth G.; Anderson, Marc; Sandy, Ashley R.; McCune, W. Joseph; Kaplan, Mariana J.

    2010-01-01

    Neutrophil-specific genes are abundant in PBMC microarrays from lupus patients due to presence of low density granulocytes (LDGs) in mononuclear cell fractions. The functionality and pathogenicity of these LDGs have not been characterized. We developed a technique to purify LDGs from lupus PBMCs and assessed their phenotype, function and potential role in disease pathogenesis. LDGs, their autologous lupus neutrophils and healthy control neutrophils were compared in their microbicidal and phagocytic capacities, generation of reactive oxygen species, activation status, inflammatory cytokine profile and type I IFN expression and signatures. The capacity of LDGs to kill endothelial cells and their antiangiogenic potential were also assessed. LDGs display an activated phenotype, secrete increased levels of type I IFNs, TNF-α and IFN-γ, but show impaired phagocytic potential. LDGs induce significant endothelial cell cytotoxicity and synthesize sufficient levels of type I IFNs to disrupt the capacity of endothelial progenitor cells to differentiate into mature endothelial cells. Further, LDG depletion restores the functional capacity of endothelial progenitor cells. We conclude that lupus LDGs are proinflammatory and display pathogenic features, including the capacity to synthesize type I IFNs. They may play an important dual role in premature cardiovascular disease development in SLE by simultaneously mediating enhanced vascular damage while inhibiting vascular repair. PMID:20164424

  13. Intracellular Survival of Staphylococcus aureus in Endothelial Cells: A Matter of Growth or Persistence

    PubMed Central

    Rollin, Guillaume; Tan, Xin; Tros, Fabiola; Dupuis, Marion; Nassif, Xavier; Charbit, Alain; Coureuil, Mathieu

    2017-01-01

    The Gram-positive human pathogen Staphylococcus aureus is a leading cause of severe bacterial infections. Recent studies have shown that various cell types could readily internalize S. aureus and infected cells have been proposed to serve as vehicle for the systemic dissemination of the pathogen. Here we focused on the intracellular behavior of the Community-Associated Methicillin-Resistant S. aureus strain USA300. Supporting earlier observations, we found that wild-type S. aureus strain USA300 persisted for longer period within endothelial cells than within macrophages and that a mutant displaying the small colony variant phenotype (ΔhemDBL) had increased intracellular persistence. Time-lapse microscopy revealed that initial persistence of wild-type bacteria in endothelial cells corresponded to distinct single cell events, ranging from active intracellular bacterial proliferation, leading to cell lysis, to non-replicating bacterial persistence even 1 week after infection. In sharp contrast, ΔhemDBL mutant bacteria were essentially non-replicating up to 10 days after infection. These findings suggest that internalization of S. aureus in endothelial cells triggers its persistence and support the notion that endothelial cells might constitute an intracellular persistence niche responsible for reported relapse of infection after antibiotic therapy. PMID:28769913

  14. Specific Accumulation of Tumor-Derived Adhesion Factor in Tumor Blood Vessels and in Capillary Tube-Like Structures of Cultured Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru

    1996-08-01

    Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

  15. Vascular endothelial cells express isoforms of protein kinase A inhibitor.

    PubMed

    Lum, Hazel; Hao, Zengping; Gayle, Dave; Kumar, Priyadarsini; Patterson, Carolyn E; Uhler, Michael D

    2002-01-01

    The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.

  16. Endothelial dysfunction is associated with activation of the type I interferon system and platelets in patients with systemic lupus erythematosus

    PubMed Central

    Tydén, Helena; Lood, Christian; Gullstrand, Birgitta; Nielsen, Christoffer Tandrup; Heegaard, Niels H H; Kahn, Robin; Jönsen, Andreas; Bengtsson, Anders A

    2017-01-01

    Objectives Endothelial dysfunction may be connected to cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Type I interferons (IFNs) are central in SLE pathogenesis and are suggested to induce both endothelial dysfunction and platelet activation. In this study, we investigated the interplay between endothelial dysfunction, platelets and type I IFN in SLE. Methods We enrolled 148 patients with SLE and 79 sex-matched and age-matched healthy controls (HCs). Type I IFN activity was assessed with a reporter cell assay and platelet activation by flow cytometry. Endothelial dysfunction was assessed using surrogate markers of endothelial activation, soluble vascular cell adhesion molecule-1 (sVCAM-1) and endothelial microparticles (EMPs), and finger plethysmograph to determine Reactive Hyperaemia Index (RHI). Results In patients with SLE, type I IFN activity was associated with endothelial activation, measured by high sVCAM-1 (OR 1.68, p<0.01) and elevated EMPs (OR 1.40, p=0.03). Patients with SLE with high type I IFN activity had lower RHI than HCs (OR 2.61, p=0.04), indicating endothelial dysfunction. Deposition of complement factors on platelets, a measure of platelet activation, was seen in patients with endothelial dysfunction. High levels of sVCAM-1 were associated with increased deposition of C4d (OR 4.57, p<0.01) and C1q (OR 4.10, p=0.04) on platelets. High levels of EMPs were associated with C4d deposition on platelets (OR 3.64, p=0.03). Conclusions Endothelial dysfunction was associated with activation of platelets and the type I IFN system. We suggest that an interplay between the type I IFN system, injured endothelium and activated platelets may contribute to development of CVD in SLE. PMID:29119007

  17. Endothelium trans differentiated from Wharton's jelly mesenchymal cells promote tissue regeneration: potential role of soluble pro-angiogenic factors.

    PubMed

    Aguilera, Valeria; Briceño, Luis; Contreras, Hector; Lamperti, Liliana; Sepúlveda, Esperanza; Díaz-Perez, Francisca; León, Marcelo; Veas, Carlos; Maura, Rafael; Toledo, Jorge Roberto; Fernández, Paulina; Covarrubias, Ambart; Zuñiga, Felipe Andrés; Radojkovic, Claudia; Escudero, Carlos; Aguayo, Claudio

    2014-01-01

    Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo. Mesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO). hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures. These results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.

  18. Genetics Home Reference: Fuchs endothelial dystrophy

    MedlinePlus

    ... a protein that is part of type VIII collagen. Type VIII collagen is largely found within the cornea, surrounding the endothelial cells. Specifically, type VIII collagen is a major component of a tissue at ...

  19. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    PubMed

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  20. A three-dimensional neural spheroid model for capillary-like network formation.

    PubMed

    Boutin, Molly E; Kramer, Liana L; Livi, Liane L; Brown, Tyler; Moore, Christopher; Hoffman-Kim, Diane

    2018-04-01

    In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    PubMed

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by inflammation triggered by monocyte adhesion and increased endothelial cell proliferation. These events are manifest in inflammatory diseases, such as atherosclerosis. Therefore, our results suggest that DBMSCs could be usefully employed as a therapeutic strategy for atherosclerosis.

  2. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells.

    PubMed

    Kono, Ken; Hiruma, Hitomi; Kobayashi, Shingo; Sato, Yoji; Tanaka, Masaru; Sawada, Rumi; Niimi, Shingo

    2016-01-01

    Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs) can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC) and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials.

  3. Ultrastructural sinusoidal changes in extrahepatic cholestasis. Light and electron microscopic immunohistochemical localization of collagen type III and type IV.

    PubMed

    Gulubova, M V

    1996-07-01

    Extrahepatic cholestasis causes excessive extracellular matrix formation perisinusoidally. Ito cells, transitional and endothelial cells are considered to be a source of extracellular matrix proteins in experimental cholestasis. The localization of collagens type III and type IV in human liver in extrahepatic cholestasis was investigated immunohistochemically in the present study. Immersion fixation was used after modification to be applied to surgical biopsies with commercially available kits. Sinusoidal changes were observed that indicated excessive collagen and matrix formation. Light microscopically, increased immunostaining with the two collagen antibodies was found perisinusoidally and portally. Ultrastructurally, collagen type III positive fibres were found beneath basement membranes of vessels, in collagen bundles and as a fibrillar network in the space of Disse. Collagen type IV immunostaining was located in portal tracts and near hepatocyte microvilli. Intracellular staining with collagen type IV was detected in the rough endoplasmic reticulum of some transitional cells. Immunostaining was located around transitional cells, Ito cells or endothelial cells mainly. Our study indicates that Ito cells, transitional and endothelial cells are the main source of collagens type III and IV in the space of Disse in extrahepatic cholestasis in humans.

  4. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma.

    PubMed

    Nakadate, Hiromichi; Inuzuka, Koji; Akanuma, Suguru; Kakuta, Akira; Aomura, Shigeru

    2014-04-16

    Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (-72 kPa/41 ms, -67 kPa/104 ms, and -91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. The pressure loading device could produce positive pressure pulses with amplitudes of 53-1348 kPa and durations of 9-29.1 ms and negative pressure pulses with amplitudes of -52 - -93 kPa and durations of 42.9-179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure.

  5. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components

    PubMed Central

    Beatty, P. Robert

    2017-01-01

    Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus. Disease ranges from uncomplicated dengue to life-threatening disease, characterized by endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model and human pulmonary endothelial cells, where NS1 disrupts the endothelial glycocalyx-like layer. NS1 also triggers release of inflammatory cytokines from PBMCs via TLR4. Here, we examined the relative contributions of inflammatory mediators and endothelial cell-intrinsic pathways. In vivo, we demonstrated that DENV NS1 but not the closely-related West Nile virus NS1 triggers localized vascular leak in the dorsal dermis of wild-type C57BL/6 mice. In vitro, we showed that human dermal endothelial cells exposed to DENV NS1 do not produce inflammatory cytokines (TNF-α, IL-6, IL-8) and that blocking these cytokines does not affect DENV NS1-induced endothelial hyperpermeability. Further, we demonstrated that DENV NS1 induces vascular leak in TLR4- or TNF-α receptor-deficient mice at similar levels to wild-type animals. Finally, we blocked DENV NS1-induced vascular leak in vivo using inhibitors targeting molecules involved in glycocalyx disruption. Taken together, these data indicate that DENV NS1-induced endothelial cell-intrinsic vascular leak is independent of inflammatory cytokines but dependent on endothelial glycocalyx components. PMID:29121099

  6. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    PubMed

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target.

  7. Acidosis Activation of the Proton-Sensing GPR4 Receptor Stimulates Vascular Endothelial Cell Inflammatory Responses Revealed by Transcriptome Analysis

    PubMed Central

    Dong, Lixue; Li, Zhigang; Leffler, Nancy R.; Asch, Adam S.; Chi, Jen-Tsan; Yang, Li V.

    2013-01-01

    Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value. PMID:23613998

  8. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers

    NASA Astrophysics Data System (ADS)

    Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-03-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.

  9. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    PubMed

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  10. Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension

    PubMed Central

    Wagner, Charlotte; Jobs, Alexander; Schweda, Frank; Kurtz, Lisa; Kurt, Birguel; Sequeira Lopez, Maria L.; Gomez, R. Ariel; van Veen, Toon A.B.; de Wit, Cor; Kurtz, Armin

    2011-01-01

    Renin-producing juxtaglomerular cells are connected to each other and to endothelial cells of afferent arterioles by gap junctions containing Connexin 40 (Cx40), abundantly expressed by these two cell types. Here, we generated mice with cell-specific deletion of Cx40 in endothelial and in renin-producing cells, as its global deletion caused local dissociation of renin-producing cells from endothelial cells, renin hypersecretion, and hypertension. In mice lacking endothelial Cx40, the blood pressure, renin-producing cell distribution, and the control of renin secretion were similar to wild-type mice. In contrast, mice deficient for Cx40 in renin-producing cells were hypertensive and these cells were ectopically localized. Although plasma renin activity and kidney renin mRNA levels of these mice were not different from controls, the negative regulation of renin secretion by pressure was inverted to a positive feedback in kidneys lacking Cx40 in renin-producing cells. Thus, our findings show that endothelial Cx40 is not essential for the control of renin expression and/or release. Cx40 in renin-producing cells is required for their correct positioning in the juxtaglomerular area and the control of renin secretion by pressure. PMID:20686449

  11. Identification and functional analysis of endothelial tip cell-enriched genes.

    PubMed

    del Toro, Raquel; Prahst, Claudia; Mathivet, Thomas; Siegfried, Geraldine; Kaminker, Joshua S; Larrivee, Bruno; Breant, Christiane; Duarte, Antonio; Takakura, Nobuyuki; Fukamizu, Akiyoshi; Penninger, Josef; Eichmann, Anne

    2010-11-11

    Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.

  12. Frequency of Complications During Preparation of Corneal Lamellae Used in Posterior Lamellar Keratoplasty Using the Pneumodissection Technique (Big Bubble).

    PubMed

    Studeny, Pavel; Netukova, Magdalena; Hlozanek, Martin; Bednar, Jan; Jirsova, Katerina; Krizova, Deli

    2018-04-26

    To determine the frequency of formation of various types of bubbles and the potential impact of donor and lamella parameters on this frequency, and to identify possible risk factors of unsuccessful "big-bubble" creation in preparation of pre-Descemet endothelial keratoplasty and Descemet membrane endothelial keratoplasty with peripheral stromal support. Donor age and sex, death to preservation time (DPT), storage time, presence of corneal scars (mainly a condition after cataract surgery), and endothelial cell density of 256 donor corneas were assessed before Descemet membrane endothelial keratoplasty with peripheral stromal support or pre-Descemet endothelial keratoplasty lamella preparation using the big-bubble technique. Mean donor age was 62.3 ± 8.5 years (28.3% women and 71.7% men). Mean endothelial cell density of the donor graft was 2866 ± 255 cells/mm. Mean DPT was 10.12 ± 4.88 hours, and mean storage time of the transplant before surgery was 6.5 ± 4.8 days. Corneal scars were present in 17 donor grafts (6.6%) after cataract surgery. Eleven corneas were devalued because of Descemet membrane rupture during preparation (4.3%). In 182 corneas, standard bubble type I was created (71.7%); in 27 corneas, bubble type II was created; eventually, both types of bubbles formed simultaneously (10.5%); in 47 corneas, no bubble was created (18.4%). We identified higher endothelial cell density, shorter DPT, and the presence of corneal scars after cataract surgery as risk factors threatening successful bubble formation. The only risk factor for creating type II bubbles was higher donor age in our study.

  13. Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets

    PubMed Central

    Pan, Yanfang; Yago, Tadayuki; Fu, Jianxin; Herzog, Brett; McDaniel, J. Michael; Mehta-D’Souza, Padmaja; Cai, Xiaofeng; Ruan, Changgeng; McEver, Rodger P.; West, Christopher; Dai, Kesheng; Chen, Hong

    2014-01-01

    O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan–deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan–deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacking endothelial core 1 O-glycan or cecal ligation and puncture-treated mice. Furthermore, core 1 O-glycan–deficient or desialylated PDPN impaired platelet interaction under physiological flow. These data indicate that sialylated O-glycans of PDPN are essential for platelet adhesion and prevent PDPN from proteolytic degradation primarily mediated by MMPs in the lymph. PMID:25336627

  14. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function

    PubMed Central

    Touat-Hamici, Zahia; Weidmann, Henri; Blum, Yuna; Proust, Carole; Durand, Hervé; Iannacci, Francesca; Codoni, Veronica; Gaignard, Pauline; Thérond, Patrice; Civelek, Mete; Karabina, Sonia A.; Lusis, Aldons J.; Cambien, François; Ninio, Ewa

    2016-01-01

    Aims Lipid phosphate phosphatase 3; type 2 phosphatidic acid phosphatase β (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. Methods and results To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in which LPP3 was silenced or overexpressed using either wild type or mutated cDNA constructs. LPP3 silencing in HAECs enhanced secretion of inflammatory cytokines, leucocyte adhesion, cell survival, and migration and impaired angiogenesis, whereas wild-type LPP3 overexpression reversed these effects and induced apoptosis. We also demonstrated that LPP3 expression was negatively correlated with vascular endothelial growth factor expression. Mutations in either the catalytic or the arginine-glycine-aspartate (RGD) domains impaired endothelial cell function and pharmacological inhibition of S1P or LPA restored it. LPA was not secreted in HAECs under silencing or overexpressing LPP3. However, the intra- and extra-cellular levels of S1P tended to be correlated with LPP3 expression, indicating that S1P is probably degraded by LPP3. Conclusions We demonstrated that LPP3 is a negative regulator of inflammatory cytokines, leucocyte adhesion, cell survival, and migration in HAECs, suggesting a protective role of LPP3 against endothelial dysfunction in humans. Both the catalytic and the RGD functional domains were involved and S1P, but not LPA, might be the endogenous substrate of LPP3. PMID:27694435

  15. Endothelial cells are not required for specification of respiratory progenitors

    PubMed Central

    Havrilak, Jamie A.; Melton, Kristin R.; Shannon, John M.

    2017-01-01

    Crosstalk between mesenchymal and epithelial cells influences organogenesis in multiple tissues, such as lung, pancreas, liver, and the nervous system. Lung mesenchyme comprises multiple cell types, however, and precise identification of the mesenchymal cell type(s) that drives early events in lung development remains unknown. Endothelial cells have been shown to be required for some aspects of lung epithelial patterning, lung stem cell differentiation, and regeneration after injury. Furthermore, endothelial cells are involved in early liver and pancreas development. From these observations we hypothesized that endothelial cells might also be required for early specification of the respiratory field and subsequent lung bud initiation. We first blocked VEGF signaling in E8.5 cultured foreguts with small molecule VEGFR inhibitors and found that lung specification and bud formation were unaltered. However, when we examined E9.5 mouse embryos carrying a mutation in the VEGFR Flk-1, which do not develop endothelial cells, we found that respiratory progenitor specification was impeded. Because the E9.5 embryos were substantially smaller than control littermates, suggesting the possibility of developmental delay, we isolated and cultured foreguts from mutant and control embryos on E8.5, when no size differences were apparent. We found that both specification of the respiratory field and lung bud formation occurred in mutant and control explants. These observations were unaffected by the presence or absence of serum. We also observed that hepatic specification and initiation occurred in the absence of endothelial cells, and that expansion of the liver epithelium in culture did not differ between mutant and control explants. Consistent with previously published results, we also found that pancreatic buds were not maintained in cultured foreguts when endothelial cells were absent. Our observations support the conclusion that endothelial cells are not required for early specification of lung progenitors and bud initiation, and that the diminished lung specification seen in E9.5 Flk−/− embryos is likely due to developmental delay resulting from the insufficient delivery of oxygen, nutrients, and other factors in the absence of a vasculature. PMID:28501476

  16. Endothelial Cell Implantation and Survival within Experimental Gliomas

    NASA Astrophysics Data System (ADS)

    Lal, Bachchu; Indurti, Ravi R.; Couraud, Pierre-Olivier; Goldstein, Gary W.; Laterra, John

    1994-10-01

    The delivery of therapeutic genes to primary brain neoplasms opens new opportunities for treating these frequently fatal tumors. Efficient gene delivery to tissues remains an important obstacle to therapy, and this problem has unique characteristics in brain tumors due to the blood-brain and blood-tumor barriers. The presence of endothelial mitogens and vessel proliferation within solid tumors suggests that genetically modified endothelial cells might efficiently transplant to brain tumors. Rat brain endothelial cells immortalized with the adenovirus E1A gene and further modified to express the β-galactosidase reporter were examined for their ability to survive implantation to experimental rat gliomas. Rats received 9L, F98, or C6 glioma cells in combination with endothelial cells intracranially to caudate/putamen or subcutaneously to flank. Implanted endothelial cells were identified by β-galactosidase histochemistry or by polymerase chain reaction in all tumors up to 35 days postimplantation, the latest time examined. Implanted endothelial cells appeared to cooperate in tumor vessel formation and expressed the brain-specific endothelial glucose transporter type 1 as identified by immunohistochemistry. The proliferation of implanted endothelial cells was supported by their increased number within tumors between postimplantation days 14 and 21 (P = 0.015) and by their expression of the proliferation antigen Ki67. These findings establish that genetically modified endothelial cells can be stably engrafted to growing gliomas and suggest that endothelial cell implantation may provide a means of delivering therapeutic genes to brain neoplasms and other solid tumors. In addition, endothelial implantation to brain may be useful for defining mechanisms of brain-specific endothelial differentiation.

  17. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases

    PubMed Central

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-01-01

    Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target. PMID:19648164

  18. Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.

    PubMed

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M

    2016-03-01

    Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.

  19. Tumor Response to Radiotherapy Regulated by Endothelial Cell Apoptosis

    NASA Astrophysics Data System (ADS)

    Garcia-Barros, Monica; Paris, Francois; Cordon-Cardo, Carlos; Lyden, David; Rafii, Shahin; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2003-05-01

    About 50% of cancer patients receive radiation therapy. Here we investigated the hypothesis that tumor response to radiation is determined not only by tumor cell phenotype but also by microvascular sensitivity. MCA/129 fibrosarcomas and B16F1 melanomas grown in apoptosis-resistant acid sphingomyelinase (asmase)-deficient or Bax-deficient mice displayed markedly reduced baseline microvascular endothelial apoptosis and grew 200 to 400% faster than tumors on wild-type microvasculature. Thus, endothelial apoptosis is a homeostatic factor regulating angiogenesis-dependent tumor growth. Moreover, these tumors exhibited reduced endothelial apoptosis upon irradiation and, unlike tumors in wild-type mice, they were resistant to single-dose radiation up to 20 grays (Gy). These studies indicate that microvascular damage regulates tumor cell response to radiation at the clinically relevant dose range.

  20. Dengue Virus Infection Differentially Regulates Endothelial Barrier Function over Time through Type I Interferon Effects

    PubMed Central

    Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.

    2013-01-01

    Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939

  1. Endothelial actions of atrial and B-type natriuretic peptides.

    PubMed

    Kuhn, Michaela

    2012-05-01

    The cardiac hormone atrial natriuretic peptide (ANP) is critically involved in the maintenance of arterial blood pressure and intravascular volume homeostasis. Its cGMP-producing GC-A receptor is densely expressed in the microvascular endothelium of the lung and systemic circulation, but the functional relevance is controversial. Some studies reported that ANP stimulates endothelial cell permeability, whereas others described that the peptide attenuates endothelial barrier dysfunction provoked by inflammatory agents such as thrombin or histamine. Many studies in vitro addressed the effects of ANP on endothelial proliferation and migration. Again, both pro- and anti-angiogenic properties were described. To unravel the role of the endothelial actions of ANP in vivo, we inactivated the murine GC-A gene selectively in endothelial cells by homologous loxP/Cre-mediated recombination. Our studies in these mice indicate that ANP, via endothelial GC-A, increases endothelial albumin permeability in the microcirculation of the skin and skeletal muscle. This effect is critically involved in the endocrine hypovolaemic, hypotensive actions of the cardiac hormone. On the other hand the homologous GC-A-activating B-type NP (BNP), which is produced by cardiac myocytes and many other cell types in response to stressors such as hypoxia, possibly exerts more paracrine than endocrine actions. For instance, within the ischaemic skeletal muscle BNP released from activated satellite cells can improve the regeneration of neighbouring endothelia. This review will focus on recent advancements in our understanding of endothelial NP/GC-A signalling in the pulmonary versus systemic circulation. It will discuss possible mechanisms accounting for the discrepant observations made for the endothelial actions of this hormone-receptor system and distinguish between (patho)physiological and pharmacological actions. Lastly it will emphasize the potential therapeutical implications derived from the actions of NPs on endothelial permeability and regeneration. © 2012 The Author. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  2. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin

    2015-01-01

    Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.

  3. Stimulation of cell-surface urokinase-type plasminogen activator activity and cell migration in vascular endothelial cells by a novel hexapeptide analogue of neurotensin.

    PubMed

    Ushiro, S; Mizoguchi, K; Yoshida, S; Jimi, S; Fujiwara, T; Yoshida, M; Wei, E T; Kitabgi, P; Amagaya, S; Ono, M; Kuwano, M

    1997-12-01

    To investigate if neurotensin (NT) could induce activation of urokinase-type plasminogen activator (uPA) in vascular endothelial cells, we utilized the acetyl-NT (8-13) analogue, TJN-950, in which the C-terminal leucine is reduced to leucinol. TJN-950 inhibited the binding of 125I-NT to membranes of newborn rat brains and of COS-7 cells transfected with rat NT receptor cDNA, but at 10(4) higher doses than NT (8-13). However, TJN-950 was as effective as NT in inducing the fibrinolytic activity in bovine vascular aortic and human umbilical vein endothelial cells, and enhanced the migration of vascular endothelial cells. Moreover, administration of TJN-950 induced neovascularization in the rat cornea in vivo. TJN-950 had no effect on expression of uPA, plasminogen activator inhibitor-1 or uPA receptor mRNA. The binding of 125I-TJN-950 to cell membranes was blocked by unlabeled uPA and TJN-950, but not the amino-terminal or 12-32 fragment of uPA. TJN-950 may enhance uPA activity in vascular endothelial cells by interacting with the uPA receptor, resulting in induction of angiogenesis.

  4. Effect of amplitude and duration of impulsive pressure on endothelial permeability in in vitro fluid percussion trauma

    PubMed Central

    2014-01-01

    Background Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Methods Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (−72 kPa/41 ms, −67 kPa/104 ms, and −91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. Results The pressure loading device could produce positive pressure pulses with amplitudes of 53–1348 kPa and durations of 9–29.1 ms and negative pressure pulses with amplitudes of −52–−93 kPa and durations of 42.9–179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. Conclusions The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure. PMID:24739360

  5. N-terminal tyrosine phosphorylation of caveolin-2 negates anti-proliferative effect of transforming growth factor beta in endothelial cells

    PubMed Central

    Abel, Britain; Willoughby, Cara; Jang, Sungchan; Cooper, Laura; Xie, Leike; Vo-Ransdell, Chi; Sowa, Grzegorz

    2012-01-01

    Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells. PMID:22819829

  6. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    PubMed

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  7. Resveratrol induces mitochondrial biogenesis in endothelial cells

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T.; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-01-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1α, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases. PMID:19429820

  8. Podoplanin requires sialylated O-glycans for stable expression on lymphatic endothelial cells and for interaction with platelets.

    PubMed

    Pan, Yanfang; Yago, Tadayuki; Fu, Jianxin; Herzog, Brett; McDaniel, J Michael; Mehta-D'Souza, Padmaja; Cai, Xiaofeng; Ruan, Changgeng; McEver, Rodger P; West, Christopher; Dai, Kesheng; Chen, Hong; Xia, Lijun

    2014-12-04

    O-glycosylation of podoplanin (PDPN) on lymphatic endothelial cells is critical for the separation of blood and lymphatic systems by interacting with platelet C-type lectin-like receptor 2 during development. However, how O-glycosylation controls endothelial PDPN function and expression remains unclear. In this study, we report that core 1 O-glycan-deficient or desialylated PDPN was highly susceptible to proteolytic degradation by various proteases, including metalloproteinases (MMP)-2/9. We found that the lymph contained activated MMP-2/9 and incubation of the lymph reduced surface levels of PDPN on core 1 O-glycan-deficient endothelial cells, but not on wild-type ECs. The lymph from mice with sepsis induced by cecal ligation and puncture, which contained bacteria-derived sialidase, reduced PDPN levels on wild-type ECs. The MMP inhibitor, GM6001, rescued these reductions. Additionally, GM6001 treatment rescued the reduction of PDPN level on lymphatic endothelial cells in mice lacking endothelial core 1 O-glycan or cecal ligation and puncture-treated mice. Furthermore, core 1 O-glycan-deficient or desialylated PDPN impaired platelet interaction under physiological flow. These data indicate that sialylated O-glycans of PDPN are essential for platelet adhesion and prevent PDPN from proteolytic degradation primarily mediated by MMPs in the lymph. © 2014 by The American Society of Hematology.

  9. Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria

    PubMed Central

    Basu-Roy, Upal; Ty, Maureen; Alique, Matilde; Fernandez-Arias, Cristina; Movila, Alexandru; Gomes, Pollyanna; Edagha, Innocent; Wassmer, Samuel C.; Walther, Thomas

    2016-01-01

    Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum–infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter–endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin–induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC–induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised. PMID:27643439

  10. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells.

    PubMed

    Nylund, Reetta; Kuster, Niels; Leszczynski, Dariusz

    2010-10-18

    Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined immediately after the end of the exposure and when the false discovery rate correction was applied to analysis. This observation agrees with our earlier study showing that the 1800 MHz GSM radiation exposure had only very limited effect on the proteome of human endothelial cell line EA.hy926, as compared with the effect of 900 MHz GSM radiation.

  11. Characteristics of tumor and host cells in 3-D simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Chopra, V.; Dinh, T.; Wood, T.; Pellis, N.; Hannigan, E.

    Co-cultures of three-dimensional (3-D) constructs of one cell type with dispersed cells of a second cell type in low-shear rotating suspension cultures in simulated microgravity environment have been used to investigate invasive properties of normal and malignant cell types. We have shown that the epithelial and endothelial cells undergo a switch in characteristics when grown in an in vitro 3-D environment, that mimics the in vivo host environment as compared with conventional two-dimensional (2-D) monolayer cultures. Histological preparations and immunohistochemical staining procedures of cocultured harvests demonstrated various markers of interest: like collagen vimentin, mucin, elastin, fibrin, fibrinogen, cytokeratin, adhesion molecules and various angiogenic factors by tumor cells from gynecological cancer patients along with fibroblasts, endothelial cells and patient-derived mononuclear cells (n=8). The growth rate was enhanced 10-15 folds by 3-D cocultures of patient-derived cells as compared with 2-D monolayer cultures and 3-D monocultures. The production of interleukin-2, interleukin-6, interleukin -8, vascular endothelial cell growth factor, basic fibroblast growth factor, and angiogenin was studied by using ELISA and RT- PCR. Human umbilical vein-derived endothelial cell (HUVEC) were used to study the mitogenic response of the conditioned medium collected from 3-D monocultures and cocultures during proliferation and migration assays. The conditioned medium collected from 3-D cocultures of cancer cells also 1) increased the expression of message levels of vascular endothelial growth factor and its receptor flt-1 and KDR was observed by HUVEC, and 2) increased the expression of intracellular and vascular cell adhesion molecules on the surface of HUVEC, when measured by using Live cell ELISA assays and immunofluorescent staining as compared with 3-D monocultures of normal epithelial cells. There was an increase in production of 1) enzymatic activity that could generate bioactive angiostatin from purified human plasminogen, and 2) fibrin (red), mucin (blue), and elastic fiber (black) by cell aggregates of 3-D monocultures of patient-derived cells as compared with 3-D monocultures of normal epithelial cells. This coculture system can be used to study the effectiveness of various antiangiogenic agents on endothelial cell proliferation and migration and also the interaction of multiple cell types in a cost effective fashion, since it provides new insights into the invasive process and its effects on both invading and invaded cells.

  12. Approaches to improve angiogenesis in tissue-engineered skin.

    PubMed

    Sahota, Parbinder S; Burn, J Lance; Brown, Nicola J; MacNeil, Sheila

    2004-01-01

    A problem with tissue-engineered skin is clinical failure due to delays in vascularization. The aim of this study was to explore a number of simple strategies to improve angiogenesis/vascularization using a tissue-engineered model of skin to which small vessel human dermal microvascular endothelial cells were added. For the majority of these studies, a modified Guirguis chamber was used, which allowed the investigation of several variables within the same experiment using the same human dermis; cell type, angiogenic growth factors, the influence of keratinocytes and fibroblasts, mechanical penetration of the human dermis, the site of endothelial cell addition, and the influence of hypoxia were all examined. A qualitative scoring system was used to assess the impact of these factors on the penetration of endothelial cells throughout the dermis. Similar results were achieved using freshly isolated small vessel human dermal microvascular endothelial cells or an endothelial cell line and a minimum cell seeding density was identified. Cell penetration was not influenced by the addition of angiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor); similarly, including epidermal keratinocytes or dermal fibroblasts did not encourage endothelial cell entry, and neither did mechanical introduction of holes throughout the dermis. Two factors were identified that significantly enhanced endothelial cell penetration into the dermis: hypoxia and the site of endothelial cell addition. Endothelial cells added from the papillary surface entered into the dermis much more effectively than when cells were added to the reticular surface of the dermis. We conclude that this model is valuable in improving our understanding of how to enhance vascularization of tissue-engineered grafts.

  13. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.

    PubMed

    Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L

    2010-07-29

    Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.

  14. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation.

    PubMed

    Liao, W; Bisgrove, B W; Sawyer, H; Hug, B; Bell, B; Peters, K; Grunwald, D J; Stainier, D Y

    1997-01-01

    The zebrafish cloche mutation affects both the endothelial and hematopoietic lineages at a very early stage (Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W., Zon, L. I. and Fishman, M. C. (1995). Development 121, 3141-3150). The most striking vascular phenotype is the absence of endocardial cells from the heart. Microscopic examination of mutant embryos reveals the presence of endothelial-like cells in the lower trunk and tail regions while head vessels appear to be missing, indicating a molecular diversification of the endothelial lineage. Cell transplantation experiments show that cloche acts cell-autonomously within the endothelial lineage. To analyze further the role of cloche in regulating endothelial cell differentiation, we have examined the expression of flk-1 and tie, two receptor tyrosine kinase genes expressed early and sequentially in the endothelial lineage. In wild-type fish, flk-1-positive cells are found throughout the embryo and differentiate to form the nascent vasculature. In cloche mutants, flk-1-positive cells are found only in the lower trunk and tail regions, and this expression is delayed as compared to wild-type. Unlike the flk-1-positive cells in wild-type embryos, those in cloche mutants do not go on to express tie, suggesting that their differentiation is halted at an early stage. We also find that the cloche mutation is not linked to flk-1. These data indicate that cloche affects the differentiation of all endothelial cells and that it acts at a very early stage, either by directly regulating flk-1 expression or by controlling the differentiation of cells that normally develop to express flk-1. cloche mutants also have a blood deficit and their hematopoietic tissues show no expression of the hematopoietic transcription factor genes GATA-1 or GATA-2 at early stages. Because the appearance of distinct levels of flk-1 expression is delayed in cloche mutants, we examined GATA-1 expression at late embryonic stages and found some blood cell differentiation that appears to be limited to the region lined by the flk-1-expressing cells. The spatial restriction of blood in the ventroposterior-most region of cloche mutant embryos may be indicative of a ventral source of signal(s) controlling hematopoietic differentiation. In addition, the restricted colocalization of blood and endothelium in cloche mutants suggests that important interactions occur between these two lineages during normal development.

  15. Early detection of endothelial injury and dysfunction in conjunction with correction of hemodynamic maladjustment can effectively restore renal function in type 2 diabetic nephropathy.

    PubMed

    Futrakul, Narisa; Butthep, Punnee; Vongthavarawat, Varaphon; Futrakul, Prasit; Sirisalipoch, Sasitorn; Chaivatanarat, Tawatchai; Suwanwalaikorn, Sompongse

    2006-01-01

    This paper was aimed to investigate (1) the early marker of endothelial injury in type 2 diabetes, (2) the intrarenal hemodynamics and renal function, and (3) the therapeutic strategy aiming to restore renal function. Fifty patients (35 normoalbuminuric and 15 albuminuric type 2 diabetes) were examined. Blood was collected for determination of circulating vascular endothelial cells (CEC) and the serum was prepared for determination of transforming growth factor beta (TGFbeta), ratio of CEC/TGFbeta, and soluble vascular cell adhesion molecule. Intrarenal hemodynamics and renal function were also assessed. The results showed that increased number of circulating EC, elevated TGFbeta and depleted ratio of CEC/TGFbeta were significantly observed. Intrarenal hemodynamic study revealed a hemodynamic maladjustment characterized by preferential constriction of the efferent arteriole, intraglomerular hypertension and reduction in peritubular capillary flow. It was concluded that early marker of endothelial injury is reflected by increasing number of CEC. Such markers correlate with the glomerular endothelial dysfunction associated with hemodynamic maladjustment. Early detection of endothelial injury and appropriate correction of hemodynamic maladjustment by multidrug vasodilators can effectively restore renal function in type 2 diabetic nephropathy.

  16. Tumor-suppressive effects of natural-type interferon-β through CXCL10 in melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Hikaru; Nobeyama, Yoshimasa, E-mail: nobederm@jikei.ac.jp; Nakagawa, Hidemi

    2015-08-21

    Introduction: Type 1 interferon is in widespread use as adjuvant therapy to inhibit melanoma progression. Considering the tumor-suppressive effects of local administration of interferon-β (IFN-β) on lymphatic metastasis, the present study was conducted to identify melanoma-suppressive molecules that are up-regulated by IFN-β treatment of lymphatic endothelial cells. Materials and methods: Lymphatic endothelial cells, fibroblasts, and melanoma cells were treated with natural-type IFN-β, and melanoma cells were treated with CXCL10. Genome-wide oligonucleotide microarray analysis was performed using lymphatic endothelial cells with or without IFN-β treatment. Quantitative real-time reverse transcription-PCR and an enzyme-linked immunosorbent assay were performed to examine CXCL10 expression. Amore » proliferation assay was performed to examine the effects of IFN-β and CXCL10 in melanoma cells. Results: Genome-wide microarray analyses detected CXCL10 as a gene encoding a secretory protein that was up-regulated by IFN-β in lymphatic endothelial cells. IFN-β treatment significantly induced CXCL10 in dermal lymphatic endothelial cells and melanoma cells that are highly sensitive to IFN-β. CXCL10 reduced melanoma cell proliferation in IFN-β-sensitive cells as well as resistant cells. Melanoma cells in which CXCL10 was knocked down were sensitive to IFN-β. CXCR3-B, which encodes the CXCL10 receptor, was up-regulated in melanoma cells with high sensitivity to IFN-β and down-regulated in melanoma cells with medium to low sensitivity. Conclusions: Our data suggest that IFN-β suppresses proliferation and metastasis from the local lymphatic system and melanoma cells via CXCL10. Down-regulation of CXCR3-B by IFN-β may be associated with resistance to IFN-β. - Highlights: • We search melanoma-suppressive molecules induced by IFN-β. • IFN-β induces a high amount of CXCL10 from lymphatic endothelial cells. • CXCL10 induction level in melanoma cells is correlated with the sensitivity to IFN-β. • CXCL10 reduces proliferation in IFN-β-sensitive cells as well as resistant cells. • CXCR3-B is down-regulated by IFN-β exclusively in IFN-β-resistant cells.« less

  17. Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakala, Rajbabu; Watanabe, Takuya; Benedict, Claude R

    2002-06-01

    Introduction: Cell-cell interaction is an essential component of atherosclerotic plaque development. Activated monocytes appear to play a central role in the development of atherosclerosis, not only through foam cell formation but also via the production of various growth factors that induce proliferation of different cell types that are involved in the plaque development. Using serum free co-culture method, we determined the effect of monocytes on endothelial cell proliferation. Methods: Endothelial cell proliferation is determined by the amount of [{sup 3}H]thymidine incorporated in to the DNA. Basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) levels inmore » the conditioned medium were determined by ELISA. Results: Conditioned medium from unactivated monocytes partially inhibited endothelial cell proliferation, whereas conditioned medium from activated monocytes promoted endothelial cell proliferation. The mitogenic effect of conditioned medium derived from activated monocytes is due to the presence of b-FGF, VEGF and IL-8. Neutralizing antibodies against b-FGF, VEGF and IL-8 partially reversed the mitogenic effect of conditioned medium derived from activated monocytes. When b-FGF, VEGF and IL-8 were immunoprecipitated from conditioned medium derived from activated monocytes, it is less mitogenic to endothelial cells. Conclusion: Activated monocytes may play an important role in the development of atherosclerotic plaque by producing endothelial cell growth factors.« less

  18. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice

    PubMed Central

    Tanigaki, Keiji; Chambliss, Ken L.; Yuhanna, Ivan S.; Sacharidou, Anastasia; Ahmed, Mohamed; Atochin, Dmitriy N.; Huang, Paul L.

    2016-01-01

    Modest elevations in C-reactive protein (CRP) are associated with type 2 diabetes. We previously revealed in mice that increased CRP causes insulin resistance and mice globally deficient in the CRP receptor Fcγ receptor IIB (FcγRIIB) were protected from the disorder. FcγRIIB is expressed in numerous cell types including endothelium and B lymphocytes. Here we investigated how endothelial FcγRIIB influences glucose homeostasis, using mice with elevated CRP expressing or lacking endothelial FcγRIIB. Whereas increased CRP caused insulin resistance in mice expressing endothelial FcγRIIB, mice deficient in the endothelial receptor were protected. The insulin resistance with endothelial FcγRIIB activation was due to impaired skeletal muscle glucose uptake caused by attenuated insulin delivery, and it was associated with blunted endothelial nitric oxide synthase (eNOS) activation in skeletal muscle. In culture, CRP suppressed endothelial cell insulin transcytosis via FcγRIIB activation and eNOS antagonism. Furthermore, in knock-in mice harboring constitutively active eNOS, elevated CRP did not invoke insulin resistance. Collectively these findings reveal that by inhibiting eNOS, endothelial FcγRIIB activation by CRP blunts insulin delivery to skeletal muscle to cause insulin resistance. Thus, a series of mechanisms in endothelium that impairs insulin movement has been identified that may contribute to type 2 diabetes pathogenesis. PMID:27207525

  19. Endothelial E-type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking.

    PubMed

    Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos

    2013-02-01

    Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    PubMed

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  1. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study.

    PubMed

    Ahmed, Fahad W; Rider, Rachel; Glanville, Michael; Narayanan, Kilimangalam; Razvi, Salman; Weaver, Jolanta U

    2016-08-26

    Type 1 diabetes is associated with increased cardiovascular disease (CVD). Decreased endothelial progenitor cells (EPCs) number plays a pivotal role in reduced endothelial repair and development of CVD. We aimed to determine if cardioprotective effect of metformin is mediated by increasing circulating endothelial progenitor cells (cEPCs), pro-angiogenic cells (PACs) and decreasing circulating endothelial cells (cECs) count whilst maintaining unchanged glycemic control. This study was an open label and parallel standard treatment study. Twenty-three type 1 diabetes patients without overt CVD were treated with metformin for 8 weeks (treatment group-TG). They were matched with nine type 1 diabetes patients on standard treatment (SG) and 23 age- and sex-matched healthy volunteers (HC). Insulin dose was adjusted to keep unchanged glycaemic control. cEPCs and cECs counts were determined by flow cytometry using surface markers CD45(dim)CD34(+)VEGFR-2(+) and CD45(dim)CD133(-)CD34(+)CD144(+) respectively. Peripheral blood mononuclear cells were cultured to assess changes in PACs number, function and colony forming units (CFU-Hill's colonies). At baseline TG had lower cEPCs, PACs, CFU-Hills' colonies and PACs adhesion versus HC (p < 0.001-all variables) and higher cECs versus HC (p = 0.03). Metformin improved cEPCs, PACs, CFU-Hill's colonies number, cECs and PACs adhesion (p < 0.05-all variables) to levels seen in HC whilst HbA1c (one-way ANOVA p = 0.78) and glucose variability (average glucose, blood glucose standard deviation, mean amplitude of glycaemic excursion, continuous overall net glycaemic action and area under curve) remained unchanged. No changes were seen in any variables in SG. There was an inverse correlation between CFU-Hill's colonies with cECs. Metformin has potential cardio-protective effect through improving cEPCs, CFU-Hill's colonies, cECs, PACs count and function independently of hypoglycaemic effect. This finding needs to be confirmed by long term cardiovascular outcome studies in type 1 diabetes. Trial registration ISRCTN26092132.

  2. Glomerular Endothelial Mitochondrial Dysfunction Is Essential and Characteristic of Diabetic Kidney Disease Susceptibility.

    PubMed

    Qi, Haiying; Casalena, Gabriella; Shi, Shaolin; Yu, Liping; Ebefors, Kerstin; Sun, Yezhou; Zhang, Weijia; D'Agati, Vivette; Schlondorff, Detlef; Haraldsson, Börje; Böttinger, Erwin; Daehn, Ilse

    2017-03-01

    The molecular signaling mechanisms between glomerular cell types during initiation/progression of diabetic kidney disease (DKD) remain poorly understood. We compared the early transcriptome profile between DKD-resistant C57BL/6J and DKD-susceptible DBA/2J (D2) glomeruli and demonstrated a significant downregulation of essential mitochondrial genes in glomeruli from diabetic D2 mice, but not in C57BL/6J, with comparable hyperglycemia. Diabetic D2 mice manifested increased mitochondrial DNA lesions (8-oxoguanine) exclusively localized to glomerular endothelial cells after 3 weeks of diabetes, and these accumulated over time in addition to increased urine secretion of 8-oxo-deoxyguanosine. Detailed assessment of glomerular capillaries from diabetic D2 mice demonstrated early signs of endothelial injury and loss of fenestrae. Glomerular endothelial mitochondrial dysfunction was associated with increased glomerular endothelin-1 receptor type A (Ednra) expression and increased circulating endothelin-1 (Edn1). Selective Ednra blockade or mitochondrial-targeted reactive oxygen species scavenging prevented mitochondrial oxidative stress of endothelial cells and ameliorated diabetes-induced endothelial injury, podocyte loss, albuminuria, and glomerulosclerosis. In human DKD, increased urine 8-oxo-deoxyguanosine was associated with rapid DKD progression, and biopsies from patients with DKD showed increased mitochondrial DNA damage associated with glomerular endothelial EDNRA expression. Our studies show that DKD susceptibility was linked to mitochondrial dysfunction, mediated largely by Edn1-Ednra in glomerular endothelial cells representing an early event in DKD progression, and suggest that cross talk between glomerular endothelial injury and podocytes leads to defects and depletion, albuminuria, and glomerulosclerosis. © 2017 by the American Diabetes Association.

  3. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications

    PubMed Central

    Kumar VR, Santhosh; Darisipudi, Murthy N.; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P.; Mulay, Shrikant R.; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D.; Lindenmeyer, Maja T.; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W.; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido

    2016-01-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia–induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68+ intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage–derived circulating PAR2 agonist and mediator of endothelial dysfunction–related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases. PMID:26567242

  4. Erythropoietin withdrawal alters interactions between young red blood cells, splenic endothelial cells, and macrophages: an in vitro model of neocytolysis

    NASA Technical Reports Server (NTRS)

    Trial, J.; Rice, L.; Alfrey, C. P.

    2001-01-01

    BACKGROUND: We have described the rapid destruction of young red blood cells (neocytolysis) in astronauts adapting to microgravity, in polycythemic high altitude dwellers who descend to sea level, and in patients with kidney disorders. This destruction results from a decrease in erythropoietin (EPO) production. We hypothesized that such EPO withdrawal could trigger physiological changes in cells other than red cell precursors and possibly lead to the uptake and destruction of young red cells by altering endothelial cell-macrophage interactions, most likely occurring in the spleen. METHODS: We identified EPO receptors on human splenic endothelial cells (HSEC) and investigated the responses of these cells to EPO withdrawal. RESULTS: A monolayer of HSEC, unlike human endothelial cells from aorta, glomerulus, or umbilical vein, demonstrated an increase in permeability upon EPO withdrawal that was accompanied by unique morphological changes. When HSEC were cultured with monocyte-derived macrophages (but not when either cell type was cultured alone), EPO withdrawal induced an increased ingestion of young red cells by macrophages when compared with the constant presence or absence of EPO. CONCLUSIONS: HSEC may represent a unique cell type that is able to respond to EPO withdrawal by increasing permeability and interacting with phagocytic macrophages, which leads to neocytolysis.

  5. Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, Yujiro; Zullo, Joseph A.; Renal Research Institute, Department of Physiology, New York Medical College, Valhalla, NY

    Peritubular capillary (PTC) rarefaction along with tissue fibrosis is a hallmark of chronic kidney disease (CKD). However, molecular mechanisms of PTC loss have been poorly understood. Previous studies have demonstrated that functional loss of endothelial sirtuin 1 (SIRT1) impairs angiogenesis during development and tissue damage. Here, we found that endothelial SIRT1 dysfunction causes activation of endothelial Notch1 signaling, which leads to PTC rarefaction and fibrosis following kidney injury. In mice lacking functional SIRT1 in the endothelium (Sirt1 mutant), kidney injury enhanced apoptosis and senescence of PTC endothelial cells with impaired endothelial proliferation and expanded myofibroblast population and collagen deposition. Comparedmore » to wild-type kidneys, Sirt1 mutant kidneys up-regulated expression of Delta-like 4 (DLL4, a potent Notch1 ligand), Hey1 and Hes1 (Notch target genes), and Notch intracellular domain-1 (NICD1, active form of Notch1) in microvascular endothelial cells (MVECs) post-injury. Sirt1 mutant primary kidney MVECs reduced motility and vascular assembly and enhanced senescence compared to wild-type kidney MVECs. This difference in the phenotype was negated with Notch inhibition. Concurrent stimulation of DLL4 and transforming growth factor (TGF)-β1 increased trans-differentiation of primary kidney pericytes into myofibroblast more than TGF-β1 treatment alone. Collectively, these results indicate that endothelial SIRT1 counteracts PTC rarefaction by repression of Notch1 signaling and antagonizes fibrosis via suppression of endothelial DLL4 expression. - Highlights: • SIRT1 represses Notch1 signaling in capillary endothelial cells in the kidney. • Endothelial SIRT1 is depleted in the kidney following injury. • Activation of endothelial Notch impairs angiogenesis in the kidney. • Increased expression of endothelial DLL4 enhances renal fibrosis.« less

  6. Diverse Functional Outcomes of Plasmodium falciparum Ligation of EPCR: Potential Implications for Malarial Pathogenesis

    PubMed Central

    Gillrie, Mark R.; Avril, Marion; Brazier, Andrew J.; Davis, Shevaun P.; Stins, Monique F.; Smith, Joseph D.; Ho, May

    2015-01-01

    Summary P. falciparum-infected erythrocytes (IRBC) expressing the domain cassettes (DC) 8 and 13 of the cytoadherent ligand PfEMP1 adhere to the endothelial protein C receptor (EPCR). By interfering with EPCR anti-coagulant and pro-endothelial barrier functions, IRBC adhesion could promote coagulation and vascular permeability that contribute to the pathogenesis of cerebral malaria. In this study, we examined adhesion of DC8- and DC13-expressing parasite lines to endothelial cells from different microvasculature, and the consequences of EPCR engagement on endothelial cell function. We found that IRBC from IT4var19 (DC8) and IT4var07 (DC13) parasite lines adhered to human brain, lung, and dermal endothelial cells under shear stress. However, the relative contribution of EPCR to parasite cytoadherence on the different types of endothelial cell varied. We also observed divergent functional outcomes for DC8 CIDRα1.1 and DC13 CIDRα1.4 domains. IT4var07 CIDRα1.4 inhibited generation of activated protein C (APC) on lung and dermal endothelial cells and blocked the APC-EPCR binding interaction on brain endothelial cells. IT4var19 CIDRα1.1 inhibited thrombin-induced endothelial barrier dysfunction in lung endothelial cells, while IT4var07 CIDRα1.4- inhibited the protective effect of APC on thrombin-induced permeability. Overall, these findings reveal a much greater complexity of how CIDRα1-expressing parasites may modulate malaria pathogenesis through EPCR adhesion. PMID:26119044

  7. Loss of the Liver X Receptors Disrupts the Balance of Hematopoietic Populations, With Detrimental Effects on Endothelial Progenitor Cells.

    PubMed

    Rasheed, Adil; Tsai, Ricky; Cummins, Carolyn L

    2018-05-08

    The liver X receptors (LXRs; α/β) are nuclear receptors known to regulate cholesterol homeostasis and the production of select hematopoietic populations. The objective of this study was to determine the importance of LXRs and a high-fat high-cholesterol diet on global hematopoiesis, with special emphasis on endothelial progenitor cells (EPCs), a vasoreparative cell type that is derived from bone marrow hematopoietic stem cells. Wild-type and LXR double-knockout ( Lxr αβ -/- ) mice were fed a Western diet (WD) to increase plasma cholesterol levels. In WD-fed Lxr αβ -/- mice, flow cytometry and complete blood cell counts revealed that hematopoietic stem cells, a myeloid progenitor, and mature circulating myeloid cells were increased; EPC numbers were significantly decreased. Hematopoietic stem cells from WD-fed Lxr αβ -/- mice showed increased cholesterol content, along with increased myeloid colony formation compared with chow-fed mice. In contrast, EPCs from WD-fed Lxr αβ -/- mice also demonstrated increased cellular cholesterol content that was associated with greater expression of the endothelial lineage markers Cd144 and Vegfr2 , suggesting accelerated differentiation of the EPCs. Treatment of human umbilical vein endothelial cells with conditioned medium collected from these EPCs increased THP-1 monocyte adhesion. Increased monocyte adhesion to conditioned medium-treated endothelial cells was recapitulated with conditioned medium from Lxr αβ -/- EPCs treated with cholesterol ex vivo, suggesting cholesterol is the main component of the WD inducing EPC dysfunction. LXRs are crucial for maintaining the balance of hematopoietic cells in a hypercholesterolemic environment and for mitigating the negative effects of cholesterol on EPC differentiation/secretome changes that promote monocyte-endothelial adhesion. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  8. Endothelial cell cytotoxicity of cotton bracts tannin and aqueous cotton bracts extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.M.; Hanson, M.N.; Rohrbach, M.S.

    1986-04-01

    Using an in vitro cytotoxicity assay based on the release of /sup 51/Cr from cultured porcine thoracic aortic and pulmonary arterial endothelial cells, we have demonstrated that cotton bracts tannin is a potent endothelial cell cytotoxin. It produces dose-dependent lethal injury to both types of endothelial cells with the aortic cells, being somewhat more sensitive to tannin-mediated injury than the pulmonary arterial cells. Cytotoxic injury to the cells was biphasic. During the first 3 hr of exposure to tannin, no lethal injury was detected. However, during this period, profound changes in morphology were observed suggesting sublethal injury to the cellsmore » preceded the ultimate toxic damage. Comparison of the cytotoxicity dose curves for aqueous bracts extracts with those for tannin demonstrated that tannin was major cytotoxin present in bracts.« less

  9. Isolation, Identification, and Culture of Human Lymphatic Endothelial Cells.

    PubMed

    Lokmic, Zerina

    2016-01-01

    A protocol describing the isolation of foreskin lymphatic endothelial cells (LECs) and lymphatic malformation lymphatic endothelial cells (LM LECs) is presented herein. To isolate LECs and LM LECs, tissues are mechanically disrupted to make a single-cell suspension, which is then enzymatically digested in dispase and collagenase type II. LECs and LM LECs, in the resulting single-cell suspension, are then sequentially labeled with antibodies recognizing fibroblast and endothelial cell surface antigens CD34 and CD31 and separated from the remaining components in the cell suspension by capture with magnetic beads. Viable LECs and LM LECs are then seeded and expanded on fibronectin-coated flasks. LEC and LM LEC purity is determined immunohistochemically using cell surface markers CD31, CD34, podoplanin, VEGFR-3 and nuclear marker PROX-1. Cells whose purity is >98 % are used for experiments between passage 4 and 6.

  10. MIP-2 causes differential activation of RhoA in mouse aortic versus pulmonary artery endothelial cells

    PubMed Central

    Moldobaeva, Aigul; Baek, Amy; Wagner, Elizabeth M.

    2008-01-01

    Previously, we have shown that endothelial cell chemotaxis to the proangiogenic chemokine MIP-2 (macrophage inflammatory protein-2), is much greater in mouse aortic endothelial cells (EC) than pulmonary arterial endothelial cells (PA EC). This was true despite the observation that both cell types display comparable levels of the ligand receptor, CXCR2 (8). Since the systemic arterial circulation is proangiogenic in the adult lung and the pulmonary circulation is relatively resistant to neovascularization, we questioned whether the observed functional heterogeneity is related to inherent differences in cell signaling cascades of the two EC subtypes. Specifically, we measured activation of Rac1 and RhoA, both thought to be involved in EC cell migration. Rac1 showed inconsistent and minimal changes in both cell types after MIP-2 treatment (p>0.05). However, activated RhoA was increased upon exposure to MIP-2 only in aortic EC (61% increase; p<0.05). Decreased RhoA activation after treatment of aortic EC with specific siRNA for RhoA resulted in a functional decrease in EC chemotaxis to MIP-2 (17% increase; p<0.05). Additionally, increased RhoA activation in PA EC with adenoviral infection of RhoA caused an increase in PA EC chemotaxis to MIP-2 (46% increase; p<0.05). Inhibition of RhoA activity with the Rho kinase inhibitor, Y27632 blocked aortic EC chemotaxis and stress fiber formation. Thus, RhoA activation is increased after MIP-2 treatment in mouse aortic endothelial cells but not in pulmonary artery endothelial cells. We conclude that RhoA is part of a signaling pathway essential for aortic cell migration after CXCR2 ligation. This result provides one explanation for the difference in chemotaxis observed in these two endothelial subtypes that express similar levels of CXCR2. PMID:17662312

  11. Eotaxin-Rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response.

    PubMed

    Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc E; Dweik, Raed; Erzurum, Serpil C

    2016-03-01

    Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole-lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge and before airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and a murine model of asthma. Ex vivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wild-type mice transplanted with eotaxin-1/2-deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, whereas adoptive transfer of proangiogenic progenitor cells from wild-type mice in an atopic asthma model into the eotaxin-1/2-deficient mice led to angiogenesis and airway inflammation. The findings indicate that Th2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications

    PubMed Central

    Toda, Noboru; Nakanishi, Sadanobu; Tanabe, Shinichi

    2013-01-01

    Aldosterone, in doses inappropriate to the salt status, plays an important role in the development of cardiovascular injury, including endothelial dysfunction, independent of its hypertensive effects. Acute non-genomic effects of aldosterone acting on mineralocorticoid receptors are inconsistent in healthy humans: vasoconstriction or forearm blood flow decrease via endothelial dysfunction, vasodilatation mediated by increased NO actions, or no effects. However, in studies with experimental animals, aldosterone mostly enhances vasodilatation mediated by endothelium-derived NO. Chronic exposure to aldosterone, which induces genomic responses, results in impairments of endothelial function through decreased NO synthesis and action in healthy individuals, experimental animals and isolated endothelial cells. Chronic aldosterone reduces NO release from isolated human endothelial cells only when extracellular sodium is raised. Oxidative stress is involved in the impairment of endothelial function by promoting NO degradation. Aldosterone liberates endothelin-1 (ET-1) from endothelial cells, which elicits ETA receptor–mediated vasoconstriction by inhibiting endothelial NO synthesis and action and through its own direct vasoconstrictor action. Ca2+ flux through T-type Ca2+ channels activates aldosterone synthesis and thus enhances unwanted effects of aldosterone on the endothelium. Mineralocorticoid receptor inhibitors, ETA receptor antagonists and T-type Ca2+ channel blockers appear to diminish the pathophysiological participation of aldosterone in cardiovascular disease and exert beneficial actions on bioavailability of endothelium-derived NO, particularly in resistant hypertension and aldosteronism. PMID:23190073

  13. High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I.

    PubMed

    Seetharam, Divya; Mineo, Chieko; Gormley, Andrew K; Gibson, Linda L; Vongpatanasin, Wanpen; Chambliss, Ken L; Hahner, Lisa D; Cummings, Melissa L; Kitchens, Richard L; Marcel, Yves L; Rader, Daniel J; Shaul, Philip W

    2006-01-06

    Vascular disease risk is inversely related to circulating levels of high-density lipoprotein (HDL) cholesterol. However, the mechanisms by which HDL provides vascular protection are unclear. The disruption of endothelial monolayer integrity is an important contributing factor in multiple vascular disorders, and vascular lesion severity is tempered by enhanced endothelial repair. Here, we show that HDL stimulates endothelial cell migration in vitro in a nitric oxide-independent manner via scavenger receptor B type I (SR-BI)-mediated activation of Rac GTPase. This process does not require HDL cargo molecules, and it is dependent on the activation of Src kinases, phosphatidylinositol 3-kinase, and p44/42 mitogen-activated protein kinases. Rapid initial stimulation of lamellipodia formation by HDL via SR-BI, Src kinases, and Rac is also demonstrable. Paralleling the in vitro findings, carotid artery reendothelialization after perivascular electric injury is blunted in apolipoprotein A-I(-/-) mice, and reconstitution of apolipoprotein A-I expression rescues normal reendothelialization. Furthermore, reendothelialization is impaired in SR-BI(-/-) mice. Thus, HDL stimulates endothelial cell migration via SR-BI-initiated signaling, and these mechanisms promote endothelial monolayer integrity in vivo.

  14. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.

    PubMed

    Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin

    2017-09-01

    Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the cardiovascular risk factor obesity may have relevant therapeutic implications. © 2017 American Heart Association, Inc.

  15. Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor.

    PubMed

    Marchand, Melanie; Anderson, Erica K; Phadnis, Smruti M; Longaker, Michael T; Cooke, John P; Chen, Bertha; Reijo Pera, Renee A

    2014-01-01

    Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31(+)CD34(+) cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billion fold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations.

  16. Endothelial necrosis at 1h post-burn predicts progression of tissue injury

    PubMed Central

    Hirth, Douglas; McClain, Steve A.; Singer, Adam J.; Clark, Richard A.F.

    2013-01-01

    Burn injury progression has not been well characterized at the cellular level. To define burn injury progression in terms of cell death, histopathologic spatiotemporal relationships of cellular necrosis and apoptosis were investigated in a validated porcine model of vertical burn injury progression. Cell necrosis was identified by High Mobility Group Box 1 protein and apoptosis by Caspase 3a staining of tissue samples taken 1h, 24h and 7 days post-burn. Level of endothelial cell necrosis at 1h was predictive of level of apoptosis at 24h (Pearson's r=0.87) and of level of tissue necrosis at 7 days (Pearson's r=0.87). Furthermore, endothelial cell necrosis was deeper than interstitial cell necrosis at 1h (p<0.001). Endothelial cell necrosis at 1h divided the zone of injury progression (Jackson's zone of stasis) into an upper subzone with necrotic endothelial cells and initially viable adnexal and interstitial cells at 1h that progressed to necrosis by 24h, and a lower zone with initially viable endothelial cells at 1h, but necrosis and apoptosis of all cell types by 24h. Importantly, this spatiotemporal series of events and rapid progression resembles myocardial infarction and stroke, and implicates mechanisms of these injuries, ischemia, ischemia reperfusion, and programmed cell death, in burn progression. PMID:23627744

  17. Impact of diabetic serum on endothelial cells: An in-vitro-analysis of endothelial dysfunction in diabetes mellitus type 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muenzel, Daniela; Lehle, Karla; Haubner, Frank

    2007-10-19

    Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that evenmore » under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)« less

  18. Serial corneal endothelial cell loss with lathe-cut and injection-molded posterior chamber intraocular lenses.

    PubMed

    Kraff, M C; Sanders, D R; Lieberman, H L

    1983-01-01

    We compared endothelial cell loss of patients implanted with lathe-cut posterior chamber lenses and those implanted with injection-molded lenses over a three-year postoperative period. Results were based on more than 2,500 measurements of corneal endothelial density. Although the technique of cataract extraction (anterior chamber phacoemulsification, posterior chamber phacoemulsification, or planned extracapsular extraction) significantly affected cell loss (P less than .01), the type of implant (lathe-cut or injection-molded) did not. Significant continuing endothelial cell loss did not occur during the first three postoperative years with injection-molded lenses. There was, however, a statistically significant 7% to 15% additional cell loss after surgery over the first two to three postoperative years with lathe-cut implants. There have been no cases of corneal endothelial decompensation developing after implantation of injection-molded or lathe-cut lenses. Because a standard field clinical specular microscope was used in this study, cell counting errors cannot be ruled out as a cause of these findings.

  19. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC.

    PubMed

    Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M

    2012-12-01

    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.

  20. Endothelial cells in the eyes of an immunologist.

    PubMed

    Young, M Rita

    2012-10-01

    Endothelial cell activation in the process of tumor angiogenesis and in various aspects of vascular biology has been extensively studied. However, endothelial cells also function in other capacities, including in immune regulation. Compared to the more traditional immune regulatory populations (Th1, Th2, Treg, etc.), endothelial cells have received far less credit as being immune regulators. Their regulatory capacity is multifaceted. They are critical in both limiting and facilitating the trafficking of various immune cell populations, including T cells and dendritic cells, out of the vasculature and into tissue. They also can be induced to stimulate immune reactivity or to be immune inhibitory. In each of these parameters (trafficking, immune stimulation and immune inhibition), their role can be physiological, whereby they have an active role in maintaining health. Alternatively, their role can be pathological, whereby they contribute to disease. In theory, endothelial cells are in an ideal location to recruit cells that can mediate immune reactivity to tumor tissue. Furthermore, they can activate the immune cells as they transmigrate across the endothelium into the tumor. However, what is seen is the absence of these protective effects of endothelial cells and, instead, the endothelial cells succumb to the defense mechanisms of the tumor, resulting in their acquisition of a tumor-protective role. To understand the immune regulatory potential of endothelial cells in protecting the host versus the tumor, it is useful to better understand the other circumstances in which endothelial cells modulate immune reactivities. Which of the multitude of immune regulatory roles that endothelial cells can take on seems to rely on the type of stimulus that they are encountering. It also depends on the extent to which they can be manipulated by potential dangers to succumb and contribute toward attack on the host. This review will explore the physiological and pathological roles of endothelial cells as they regulate immune trafficking, immune stimulation and immune inhibition in a variety of conditions and will then apply this information to their role in the tumor environment. Strategies to harness the immune regulatory potential of endothelial cells are starting to emerge in the non-tumor setting. Results from such efforts are expected to be applicable to being able to skew endothelial cells from having a tumor-protective role to a host-protective role.

  1. Effect of Diabetes Mellitus on Adipocyte-Derived Stem Cells in Rat.

    PubMed

    Jumabay, Medet; Moon, Jeremiah H; Yeerna, Huwate; Boström, Kristina I

    2015-11-01

    Diabetes mellitus affects the adipose tissue and mesenchymal stem cells derived from the adipose stroma and other tissues. Previous reports suggest that bone morphogenetic protein 4 (BMP4) is involved in diabetic complications, at the same time playing an important role in the maintenance of stem cells. In this study, we used rats transgenic for human islet amyloid polypeptide (HIP rats), a model of type 2 diabetes, to study the effect of diabetes on adipocyte-derived stem cells, referred to as dedifferentiated fat (DFAT) cells. Our results show that BMP4 expression in inguinal adipose tissue is significantly increased in HIP rats compared to controls, whereas matrix Gla protein (MGP), an inhibitor of BMP4 is decreased as determined by quantitative PCR, and immunofluorescence. In addition, adipose vascularity and expression of multiple endothelial cell markers was increased in the diabetic tissue, visualized by immunofluorescence for endothelial markers. The endothelial markers co-localized with the enhanced BMP4 expression, suggesting that vascular cells play a role BMP4 induction. The DFAT cells are multipotent stem cells derived from white mature adipocytes that undergo endothelial and adipogenic differentiation. DFAT cells prepared from the inguinal adipose tissue in HIP rats exhibited enhanced proliferative capacity compared to wild type. In addition, their ability to undergo both endothelial cell and adipogenic lineage differentiation was enhanced, as well as their response to BMP4, as assessed by lineage marker expression. We conclude that the DFAT cells are affected by diabetic changes and may contribute to the adipose dysfunction in diabetes. © 2015 Wiley Periodicals, Inc.

  2. Heterozygous Deficiency of PHD2 Restores Tumor Oxygenation and Inhibits Metastasis via Endothelial Normalization

    PubMed Central

    Loges, Sonja; Schmidt, Thomas; Jonckx, Bart; Tian, Ya-Min; Lanahan, Anthony A.; Pollard, Patrick; de Almodovar, Carmen Ruiz; De Smet, Frederik; Vinckier, Stefan; Aragonés, Julián; Debackere, Koen; Luttun, Aernout; Wyns, Sabine; Jordan, Benedicte; Pisacane, Alberto; Gallez, Bernard; Lampugnani, Maria Grazia; Dejana, Elisabetta; Simons, Michael; Ratcliffe, Peter; Maxwell, Patrick; Carmeliet, Peter

    2014-01-01

    SUMMARY A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2+/− mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy. PMID:19217150

  3. Mitochondria and Endothelial Function

    PubMed Central

    Kluge, Matthew A.; Fetterman, Jessica L.; Vita, Joseph A.

    2013-01-01

    In contrast to their role in other cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. This article provides an overview of key aspects of mitochondrial biology in endothelial cells, including subcellular location, biogenesis, dynamics, autophagy, ROS production and signaling, calcium homeostasis, regulated cell death, and heme biosynthesis. In each section, we introduce key concepts and then review studies showing the importance of that mechanism to endothelial control of vasomotor tone, angiogenesis, and inflammatory activation. We particularly highlight the small number of clinical and translational studies that have investigated each mechanism in human subjects. Finally, we review interventions that target different aspects of mitochondrial function and their effects on endothelial function. The ultimate goal of such research is the identification of new approaches for therapy. The reviewed studies make it clear that mitochondria are important in endothelial physiology and pathophysiology. A great deal of work will be needed, however, before mitochondria-directed therapies are available for the prevention and treatment of cardiovascular disease. PMID:23580773

  4. The endothelial sample size analysis in corneal specular microscopy clinical examinations.

    PubMed

    Abib, Fernando C; Holzchuh, Ricardo; Schaefer, Artur; Schaefer, Tania; Godois, Ronialci

    2012-05-01

    To evaluate endothelial cell sample size and statistical error in corneal specular microscopy (CSM) examinations. One hundred twenty examinations were conducted with 4 types of corneal specular microscopes: 30 with each BioOptics, CSO, Konan, and Topcon corneal specular microscopes. All endothelial image data were analyzed by respective instrument software and also by the Cells Analyzer software with a method developed in our lab. A reliability degree (RD) of 95% and a relative error (RE) of 0.05 were used as cut-off values to analyze images of the counted endothelial cells called samples. The sample size mean was the number of cells evaluated on the images obtained with each device. Only examinations with RE < 0.05 were considered statistically correct and suitable for comparisons with future examinations. The Cells Analyzer software was used to calculate the RE and customized sample size for all examinations. Bio-Optics: sample size, 97 ± 22 cells; RE, 6.52 ± 0.86; only 10% of the examinations had sufficient endothelial cell quantity (RE < 0.05); customized sample size, 162 ± 34 cells. CSO: sample size, 110 ± 20 cells; RE, 5.98 ± 0.98; only 16.6% of the examinations had sufficient endothelial cell quantity (RE < 0.05); customized sample size, 157 ± 45 cells. Konan: sample size, 80 ± 27 cells; RE, 10.6 ± 3.67; none of the examinations had sufficient endothelial cell quantity (RE > 0.05); customized sample size, 336 ± 131 cells. Topcon: sample size, 87 ± 17 cells; RE, 10.1 ± 2.52; none of the examinations had sufficient endothelial cell quantity (RE > 0.05); customized sample size, 382 ± 159 cells. A very high number of CSM examinations had sample errors based on Cells Analyzer software. The endothelial sample size (examinations) needs to include more cells to be reliable and reproducible. The Cells Analyzer tutorial routine will be useful for CSM examination reliability and reproducibility.

  5. Porcine circovirus type 2 displays pluripotency in cell targeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Esther; Balmelli, Carole; Herrmann, Brigitte

    Porcine circovirus type 2 (PCV2) is the causative agent of a multifactorial disease associated with immunocompromisation and co-infections. In vivo, viral DNA and antigens are found in monocytic, epithelial and endothelial cells. Of these, PCV2 replication has only been studied in monocytic cells, in which little or no replication was identified. Accordingly, PCV2 infection was studied in the endothelial cell line PEDSV.15, aortic endothelial cells, gut epithelial cells, fibrocytes and dendritic cells (DC). In all cells except DC PCV2 replication was detectable, with an increase in the levels of capsid and replicase protein. Variations in endocytic activity, virus binding andmore » uptake did not relate to the replication efficiency in a particular cell. Furthermore, replication did not correlate to cell proliferation, although a close association of viral proteins with chromatin in dividing cells was observed. No alteration in the division rate of PCV2-infected cultures was measurable, relating to replicase expression in only a small minority of the cells. In conclusion, the broad cell targeting of PCV2 offers an explanation for its widespread tissue distribution.« less

  6. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses

    PubMed Central

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A.; Maines, Taronna R.

    2016-01-01

    ABSTRACT A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. IMPORTANCE Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage are known to be present during severe human infections, the role of pulmonary endothelial cells in the pathogenesis of avian influenza virus infections is largely unknown. By comparing human seasonal influenza strains to avian influenza viruses, we provide greater insight into the interaction of influenza virus with human pulmonary endothelial cells. We show that human influenza virus infection is blocked during the early stages of virus entry, which is likely due to the relatively high expression of the host antiviral factors IFITMs (interferon-induced transmembrane proteins) located in membrane-bound compartments inside cells. Overall, this study provides a mechanism by which human endothelial cells limit replication of human influenza virus strains, whereas avian influenza viruses overcome these restriction factors in this cell type. PMID:27707929

  7. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses.

    PubMed

    Sun, Xiangjie; Zeng, Hui; Kumar, Amrita; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2016-12-15

    A role for pulmonary endothelial cells in the orchestration of cytokine production and leukocyte recruitment during influenza virus infection, leading to severe lung damage, has been recently identified. As the mechanistic pathway for this ability is not fully known, we extended previous studies on influenza virus tropism in cultured human pulmonary endothelial cells. We found that a subset of avian influenza viruses, including potentially pandemic H5N1, H7N9, and H9N2 viruses, could infect human pulmonary endothelial cells (HULEC) with high efficiency compared to human H1N1 or H3N2 viruses. In HULEC, human influenza viruses were capable of binding to host cellular receptors, becoming internalized and initiating hemifusion but failing to uncoat the viral nucleocapsid and to replicate in host nuclei. Unlike numerous cell types, including epithelial cells, we found that pulmonary endothelial cells constitutively express a high level of the restriction protein IFITM3 in endosomal compartments. IFITM3 knockdown by small interfering RNA (siRNA) could partially rescue H1N1 virus infection in HULEC, suggesting IFITM3 proteins were involved in blocking human influenza virus infection in endothelial cells. In contrast, selected avian influenza viruses were able to escape IFITM3 restriction in endothelial cells, possibly by fusing in early endosomes at higher pH or by other, unknown mechanisms. Collectively, our study demonstrates that the human pulmonary endothelium possesses intrinsic immunity to human influenza viruses, in part due to the constitutive expression of IFITM3 proteins. Notably, certain avian influenza viruses have evolved to escape this restriction, possibly contributing to virus-induced pneumonia and severe lung disease in humans. Avian influenza viruses, including H5N1 and H7N9, have been associated with severe respiratory disease and fatal outcomes in humans. Although acute respiratory distress syndrome (ARDS) and progressive pulmonary endothelial damage are known to be present during severe human infections, the role of pulmonary endothelial cells in the pathogenesis of avian influenza virus infections is largely unknown. By comparing human seasonal influenza strains to avian influenza viruses, we provide greater insight into the interaction of influenza virus with human pulmonary endothelial cells. We show that human influenza virus infection is blocked during the early stages of virus entry, which is likely due to the relatively high expression of the host antiviral factors IFITMs (interferon-induced transmembrane proteins) located in membrane-bound compartments inside cells. Overall, this study provides a mechanism by which human endothelial cells limit replication of human influenza virus strains, whereas avian influenza viruses overcome these restriction factors in this cell type. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Angiotensin II type 1 receptor blockers prevent tumor necrosis factor-alpha-mediated endothelial nitric oxide synthase reduction and superoxide production in human umbilical vein endothelial cells.

    PubMed

    Kataoka, Hiroki; Murakami, Ryuichiro; Numaguchi, Yasushi; Okumura, Kenji; Murohara, Toyoaki

    2010-06-25

    Decrease in endothelial nitric oxide synthase (eNOS) expression is one of the adverse outcomes of endothelial dysfunction. Tumor necrosis factor-alpha (TNF-alpha) is known to decrease eNOS expression and is an important mediator of endothelial dysfunction. We hypothesized that an angiotensin II type 1 (AT1) receptor blocker would improve endothelial function via not only inhibition of the angiotensin II signaling but also inhibition of the TNF-alpha-mediated signaling. Therefore we investigated whether an AT1 receptor blocker would restore the TNF-alpha-induced decrease in eNOS expression in cultured human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with an antioxidant (superoxide dismutase, alpha-tocopherol) or AT1 receptor blockers (olmesartan or candesartan) restored the TNF-alpha-dependent reduction of eNOS. The AT1 receptor blocker decreased the TNF-alpha-dependent increase of 8-isoprostane. The superoxide dismutase activities in HUVEC were stable during AT1 receptor blocker treatment, and the AT1 receptor blocker did not scavenge superoxide directly. The AT1 receptor blocker also decreased TNF-alpha-induced phosphorylation of I kappaB alpha and cell death. These results suggest that AT1 receptor blockers are able to ameliorate TNF-alpha-dependent eNOS reduction or cell injury by inhibiting superoxide production or nuclear factor-kappaB activation. (c) 2010 Elsevier B.V. All rights reserved.

  9. In-vivo cell tracking to quantify endothelial cell migration during zebrafish angiogenesis

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Rochon, Elizabeth R.; Roman, Beth L.

    2016-03-01

    The mechanism of endothelial cell migration as individual cells or collectively while remaining an integral component of a functional blood vessel has not been well characterized. In this study, our overarching goal is to define an image processing workflow to facilitate quantification of how endothelial cells within the first aortic arch and are proximal to the zebrafish heart behave in response to the onset of flow (i.e. onset of heart beating). Endothelial cell imaging was conducted at this developmental time-point i.e. ~24-28 hours post fertilization (hpf) when flow first begins, using 3D+time two-photon confocal microscopy of a live, wild-type, transgenic, zebrafish expressing green fluorescent protein (GFP) in endothelial cell nuclei. An image processing pipeline comprised of image signal enhancement, median filtering for speckle noise reduction, automated identification of the nuclei positions, extraction of the relative movement of nuclei between consecutive time instances, and finally tracking of nuclei, was designed for achieving the tracking of endothelial cell nuclei and the identification of their movement towards or away from the heart. Pilot results lead to a hypothesis that upon the onset of heart beat and blood flow, endothelial cells migrate collectively towards the heart (by 21.51+/-10.35 μm) in opposition to blood flow (i.e. subtending 142.170+/-21.170 with the flow direction).

  10. Differential diagnosis of acute rejection and chronic cyclosporine nephropathy after rat renal transplantation by detection of endothelial microparticles (EMP).

    PubMed

    Cui, Jiewei; Yang, Jing; Cao, Weike; Sun, Yi

    2010-12-01

    Endothelial microparticles (EMP) are small vesicles smaller than 1.0μm, released from endothelial cells (EC) during their activation and (or) apoptosis. The assay of the level of elevated EMP is a new approach to evaluate the dysfunction of endothelial cell. EMP can be classified into several types according to their membrane molecular, and the levels of various types of EMP may be different. As the most cost-effective immunodepressant, cyclosporine A (CsA) has been used widely in organ transplantation. But its dose is hard to control, under-medication may cause the acute rejection (AR) and overdose may cause chronic cyclosporine nephropathy (CCN). The cyclosporine A (CsA) caused CCN and the AR caused renal injury after renal transplantation are both vascular diseases related with endothelial dysfunction, and up to now, there is still no effective method to distinguish the two kinds of diseases. Owing to distinct pathogenesis of the two kinds of vascular diseases, the level of each type of EMP originated from vascular endothelial cells may be different. We hypothesize that maybe we can distinguish them by detecting the different levels of some types of EMP which is also related with vascular disease, and we propose to prove our hypothesis through animal experiment. If our hypothesis is proved, it will be more helpful for clinicians to adjust the dose of CsA promptly according to the differential diagnosis of the two kinds of diseases. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Transcellular transport of cobalamin in aortic endothelial cells.

    PubMed

    Hannibal, Luciana; Bolisetty, Keerthana; Axhemi, Armend; DiBello, Patricia M; Quadros, Edward V; Fedosov, Sergey; Jacobsen, Donald W

    2018-05-09

    Cobalamin [Cbl (or B 12 )] deficiency causes megaloblastic anemia and a variety of neuropathies. However, homeostatic mechanisms of cyanocobalamin (CNCbl) and other Cbls by vascular endothelial cells are poorly understood. Herein, we describe our investigation into whether cultured bovine aortic endothelial cells (BAECs) perform transcytosis of B 12 , namely, the complex formed between serum transcobalamin and B 12 , designated as holo-transcobalamin (holo-TC). We show that cultured BAECs endocytose [ 57 Co]-CNCbl-TC (source material) via the CD320 receptor. The bound Cbl is transported across the cell both via exocytosis in its free form, [ 57 Co]-CNCbl, and via transcytosis as [ 57 Co]-CNCbl-TC. Transcellular mobilization of Cbl occurred in a bidirectional manner. A portion of the endocytosed [ 57 Co]-CNCbl was enzymatically processed by methylmalonic aciduria combined with homocystinuria type C (cblC) with subsequent formation of hydroxocobalamin, methylcobalamin, and adenosylcobalamin, which were also transported across the cell in a bidirectional manner. This demonstrates that transport mechanisms for Cbl in vascular endothelial cells do not discriminate between various β-axial ligands of the vitamin. Competition studies with apoprotein- and holo-TC and holo-intrinsic factor showed that only holo-TC was effective at inhibiting transcellular transport of Cbl. Incubation of BAECs with a blocking antibody against the extracellular domain of the CD320 receptor inhibited uptake and transcytosis by ∼40%. This study reveals that endothelial cells recycle uncommitted intracellular Cbl for downstream usage by other cell types and suggests that the endothelium is self-sufficient for the specific acquisition and subsequent distribution of circulating B 12 via the CD320 receptor. We posit that the endothelial lining of the vasculature is an essential component for the maintenance of serum-tissue homeostasis of B 12 .-Hannibal, L., Bolisetty, K., Axhemi, A., DiBello, P. M., Quadros, E. V., Fedosov, S., Jacobsen, D. W. Transcellular transport of cobalamin in aortic endothelial cells.

  12. Endothelial and circulating progenitor cells in hematological diseases and allogeneic hematopoietic stem cell transplantation.

    PubMed

    Ruggeri, Annalisa; Paviglianiti, Annalisa; Volt, Fernanda; Kenzey, Chantal; Rafii, Hanadi; Rocha, Vanderson; Gluckman, Eliane

    2017-10-12

    Circulating endothelial cells (CECs), originated form endothelial progenitors (EPCs) are mature cells which are not associated with vessel walls, and that are detached from the endothelium. Normally, they are present in insignificant amounts in the peripheral blood of healthy individuals. On the other hand, elevated CECs and EPCs levels have been reported in the peripheral blood of patients with different types of cancers and some other diseases. Consequently, CECs and EPCs represent a potential biomarker in several clinical conditions involving endothelial turnover and remodeling, such as hematological diseases. These cells may be involved in disease progression and the neoplastic angiogenesis process. Moreover, CESs and EPCs are probably involved in endothelial damage that is a marker of several complications following allogeneic hematopoietic stem cell transplantation. This review aims to provide an overview on the characterization of CECs and EPCs, describe isolation methods and to identify the potential role of these cells in hematological diseases and hematopoietic stem cell transplantation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. [Circulating endothelial cells: biomarkers for monitoring activity of antiangiogenic therapy].

    PubMed

    Farace, Françoise; Bidart, Jean-Michel

    2007-07-01

    Tumor vessel formation is largely dependent on the recruitment of endothelial cells. Rare in healthy individuals, circulating endothelial cells (CEC) are shed from vessel walls and enter the circulation reflecting endothelial damage or dysfunction. Increased numbers of CEC have been documented in different types of cancer. Recent studies have suggested the role for CEC in tumor angiogenesis, but whose presence could also reflect normal endothelium perturbation in cancer. Originating from the bone marrow rather than from vessel walls, endothelial progenitor cells (EPC) are mobilized following tissue ischemia and may be recruited to complement local angiogenesis supplied by existing endothelium. Recently, studies in mouse models suggest that the circulating fraction of endothelial progenitors (CEP) is involved in tumor angiogenesis but their contribution is less clear in humans. The detection of CEC and CEP is difficult and impeded by the rarity of these cells. They may have important clinical implication as novel biomarkers susceptible to predict more efficiently and rapidly the therapeutic response to anti-angiogenic treatments. However, a methodological consensus would be necessary in order to correctly evaluate the clinical interest of CEC and CEP in patients.

  14. Reduced endothelial activation after exercise is associated with improved HbA1c in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Byrkjeland, Rune; Njerve, Ida U; Arnesen, Harald; Seljeflot, Ingebjørg; Solheim, Svein

    2017-03-01

    We have previously reported insignificant changes in HbA 1c after exercise in patients with both type 2 diabetes and coronary artery disease. In this study, we investigated the effect of exercise on endothelial function and possible associations between changes in endothelial function and HbA 1c . Patients with type 2 diabetes and coronary artery disease ( n = 137) were randomised to 12 months exercise or standard follow-up. Endothelial function was assessed by circulating biomarkers (E-selectin, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, von Willebrand factor, tissue plasminogen activator antigen, asymmetric dimethylarginine and L-arginine/asymmetric dimethylarginine ratio). Differences between the randomised groups were analysed by analysis of covariance and correlations by Spearman's rho or Pearson's correlation. No effect of exercise on endothelial function was demonstrated. The changes in HbA 1c in the exercise group correlated with changes in E-selectin ( r = 0.56, p < 0.001), intercellular adhesion molecule-1 ( r = 0.27, p = 0.052), vascular cell adhesion molecule-1 ( r = 0.32, p = 0.022) and tissue plasminogen activator antigen ( r = 0.35, p =  0.011). HbA 1c decreased significantly more in patients with versus without a concomitant reduction in E-selectin ( p =  0.002), intercellular adhesion molecule-1 ( p =  0.011), vascular cell adhesion molecule-1 ( p =  0.028) and tissue plasminogen activator antigen ( p =  0.009). Exercise did not affect biomarkers of endothelial function in patients with both type 2 diabetes and coronary artery disease. However, changes in biomarkers of endothelial activation correlated with changes in HbA 1c , and reduced endothelial activation was associated with improved HbA 1c after exercise.

  15. Endothelium as a transducing surface.

    PubMed

    Ryan, U S

    1989-02-01

    Endothelial cells responses to a variety of agonists include release of endothelium dependent vasodilators, such as endothelium dependent relaxing factor (EDRF) and prostacyclin (PGI2). These substances act on vascular smooth muscle to cause relaxation and also have potent anti-aggregatory effects on platelets. A study of the mechanisms of signal transduction involved in these processes was undertaken. An investigation of intracellular calcium using FURA-2 and INDO-1 loaded endothelial cells shows transient elevation in response to vasodilator agonists. The calcium content of endothelial cells calculated using 45Ca flux techniques is increased in response to bradykinin and thrombin. Receptor activation leads to increased phosphoinositide turnover in endothelial cells and activates protein kinase C, the latter may be involved in feedback regulation. Patch clamp studies have demonstrated receptor-operated ionic channels in the endothelial cell membrane. Thus, intracellular calcium concentration is elevated in response to receptor activation, both as a result of liberation of calcium from intracellular stores and calcium entry from extracellular sources. Endothelial cells also respond to particulate stimuli. They can selectively bind and phagocytize bacteria. Phagocytosis leads to generation of superoxide aionin, a process which also seems to be controlled by elevation of intracellular calcium and activation of protein kinase C. In addition phagocytosis activates endothelial cells resulting in increased migration, division and further phagocytosis. All in all, the plethora of different endothelial responses to a variety of stimuli suggests a complex and multipotent cell type.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. CD147 Promotes Entry of Pentamer-Expressing Human Cytomegalovirus into Epithelial and Endothelial Cells

    PubMed Central

    Pritchard, Sarah R.; Wisner, Todd W.; Liu, Jing; Jardetzky, Ted S.; Johnson, David C.

    2018-01-01

    ABSTRACT Human cytomegalovirus (HCMV) replicates in many diverse cell types in vivo, and entry into different cells involves distinct entry mechanisms and different envelope glycoproteins. HCMV glycoprotein gB is thought to act as the virus fusogen, apparently after being triggered by different gH/gL proteins that bind distinct cellular receptors or entry mediators. A trimer of gH/gL/gO is required for entry into all cell types, and entry into fibroblasts involves trimer binding to platelet-derived growth factor receptor alpha (PDGFRα). HCMV entry into biologically relevant epithelial and endothelial cells and monocyte-macrophages also requires a pentamer, gH/gL complexed with UL128, UL130, and UL131, and there is evidence that the pentamer binds unidentified receptors. We screened an epithelial cell cDNA library and identified the cell surface protein CD147, which increased entry of pentamer-expressing HCMV into HeLa cells but not entry of HCMV that lacked the pentamer. A panel of CD147-specific monoclonal antibodies inhibited HCMV entry into epithelial and endothelial cells, but not entry into fibroblasts. shRNA silencing of CD147 in endothelial cells inhibited HCMV entry but not entry into fibroblasts. CD147 colocalized with HCMV particles on cell surfaces and in endosomes. CD147 also promoted cell-cell fusion induced by expression of pentamer and gB in epithelial cells. However, soluble CD147 did not block HCMV entry and trimer and pentamer did not bind directly to CD147, supporting the hypothesis that CD147 acts indirectly through other proteins. CD147 represents the first HCMV entry mediator that specifically functions to promote entry of pentamer-expressing HCMV into epithelial and endothelial cells. PMID:29739904

  17. Gata4-Dependent Differentiation of c-Kit+ Derived Endothelial Cells Underlies Artefactual Cardiomyocyte Regeneration in the Heart.

    PubMed

    Maliken, Bryan D; Kanisicak, Onur; Karch, Jason; Khalil, Hadi; Fu, Xing; Boyer, Justin G; Prasad, Vikram; Zheng, Yi; Molkentin, Jeffery D

    2018-04-17

    Background -While c-Kit + adult progenitor cells were initially reported to produce new cardiomyocytes in the heart, recent genetic evidence suggests that such events are exceedingly rare. However, to determine if these rare events represent true de novo cardiomyocyte formation we deleted the necessary cardiogenic transcription factors Gata4 and Gata6 from c-Kit-expressing cardiac progenitor cells (CPCs). Methods - Kit allele-dependent lineage tracing and fusion analysis was performed in mice following simultaneous Gata4 and Gata6 cell-type specific deletion to examine rates of putative de novo cardiomyocyte formation from c-Kit + cells. Bone marrow transplantation experiments were used to define the contribution of Kit allele-derived hematopoietic cells versus Kit lineage-dependent cells endogenous to the heart in contributing to apparent de novo lineage-traced cardiomyocytes. A Tie2 CreERT2 transgene was also used to examine the global impact of Gata4 deletion on the mature cardiac endothelial cell network, which was further evaluated with select angiogenesis assays. Results -Deletion of Gata4 in Kit lineage-derived endothelial cells or in total endothelial cells using the Tie2 CreERT2 transgene, but not from bone morrow cells, resulted in profound endothelial cell expansion, defective endothelial cell differentiation, leukocyte infiltration into the heart and a dramatic increase in Kit allele-dependent lineage-traced cardiomyocytes. However, this increase in labeled cardiomyocytes was an artefact of greater leukocyte-cardiomyocyte cellular fusion due to defective endothelial cell differentiation in the absence of Gata4 Conclusions -Past identification of presumed de novo cardiomyocyte formation in the heart from c-Kit + cells using Kit allele lineage tracing appears to be an artefact of labeled leukocyte fusion with cardiomyocytes. Deletion of Gata4 from c-Kit + endothelial progenitor cells or adult endothelial cells negatively impacted angiogenesis and capillary network integrity.

  18. Accumulation of Multipotent Progenitor Cells on Polymethylpentene Membranes During Extracorporeal Membrane Oxygenation.

    PubMed

    Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof

    2016-06-01

    Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organs and Transplantation (ICAOT).

  19. Ca2+ homeostasis in microvascular endothelial cells from an insulin-dependent diabetic model: role of endosomes/lysosomes

    NASA Astrophysics Data System (ADS)

    Sanka, Shankar C.; Bennett, David C.; Rojas, Jose D.; Tasby, Geraldine B.; Meininger, Cynthia J.; Wu, Guoyao; Wesson, Donald E.; Pfarr, Curtis M.; Martinez-Zaguilan, Raul

    2000-04-01

    Cytosolic Ca2+ ([Ca2+]cyt) regulates several cellular functions, e.g. cell growth, contraction, secretion, etc. In many cell types, ion homeostasis appears to be coupled with glucose metabolism. In certain cell types, a strict coupling between glycolysis and the activity of Sarcoplasmic/Endoplasmic Reticulum Ca2+-ATPases (SERCA) has been suggested. Glucose metabolism is altered in diabetes. We hypothesize that: (1) Ca2+ homeostasis is altered in microvascular endothelial cells from diabetic animals due to the dysfunction of glycolysis coupling the activity of SERCA; (2) endosomal/lysosomal compartments expressing SERCA are involved in the dysfunction associated with diabetes.

  20. A comparison of the pro-angiogenic potential of human induced pluripotent stem cell derived endothelial cells and induced endothelial cells in a murine model of peripheral arterial disease.

    PubMed

    Clayton, Zoe E; Yuen, Gloria S C; Sadeghipour, Sara; Hywood, Jack D; Wong, Jack W T; Huang, Ngan F; Ng, Martin K C; Cooke, John P; Patel, Sanjay

    2017-05-01

    Endothelial cells derived from human induced pluripotent stem cells (iPSC-ECs) promote angiogenesis, and more recently induced endothelial cells (iECs) have been generated via fibroblast trans-differentiation. These cell types have potential as treatments for peripheral arterial disease (PAD). However, it is unknown whether different reprogramming methods produce cells that are equivalent in terms of their pro-angiogenic capabilities. We aimed to directly compare iPSC-ECs and iECs in an animal model of PAD, in order to identify which cell type, if any, displays superior therapeutic potential. IPSC-ECs and iECs were generated from human fibroblasts, and transduced with a reporter construct encoding GFP and firefly luciferase for bioluminescence imaging (BLI). Endothelial phenotype was confirmed using in vitro assays. NOD-SCID mice underwent hindlimb ischaemia surgery and received an intramuscular injection of either 1×10 6 iPSC-ECs, 1×10 6 iECs or control vehicle only. Perfusion recovery was measured by laser Doppler. Hindlimb muscle samples were taken for histological analyses. Perfusion recovery was enhanced in iPSC-EC treated mice on day 14 (Control vs. iPSC-EC; 0.35±0.04 vs. 0.54±0.08, p<0.05) and in iEC treated mice on days 7 (Control vs. iEC; 0.23±0.02 vs. 0.44±0.06, p<0.05), 10 (0.31±0.04 vs. 0.64±0.07, p<0.001) and 14 (0.35±0.04 vs. 0.68±0.07, p<0.001) post-treatment. IEC-treated mice also had greater capillary density in the ischaemic gastrocnemius muscle (Control vs. iEC; 125±10 vs. 179±11 capillaries/image; p<0.05). BLI detected iPSC-EC and iEC presence in vivo for two weeks post-treatment. IPSC-ECs and iECs exhibit similar, but not identical, endothelial functionality and both cell types enhance perfusion recovery after hindlimb ischaemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Azilsartan, an angiotensin II type 1 receptor blocker, attenuates tert-butyl hydroperoxide-induced endothelial cell injury through inhibition of mitochondrial dysfunction and anti-inflammatory activity.

    PubMed

    Liu, Hao; Mao, Ping; Wang, Jia; Wang, Tuo; Xie, Chang-Hou

    2016-03-01

    Angiotensin II type 1 receptor (AT1-R) blockers protect against brain ischemia by mechanisms dependent on and independent of arterial blood pressure. However, the effects of AT1-R blockers on brain endothelial cell injury and detailed mechanisms remain unclear. The goal of this study is to investigate whether azilsartan, an AT1-R blocker, could attenuate oxidative injury in endothelial cells via regulating mitochondrial function and inflammatory responses. We found that treatment with azilsartan suppressed tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in murine brain endothelial cells (mBECs) by increasing cell viability, decreasing lactate dehydrogenase (LDH) release and inhibiting cell apoptosis. Azilsartan significantly inhibited reactive oxygen species (ROS) generation and lipid peroxidation, but had no effect on antioxidant system. We also detected preserved mitochondrial function after azilsartan treatment, as evidenced by increased mitochondrial membrane potential (MMP), reduced cytochrome c release, preserved ATP synthesis and inhibited mitochondrial swelling. In addition, azilsartan differently regulated expression of inflammatory cytokines and increased the activation of endothelial nitric oxide synthase (eNOS). Pretreatment with eNOS inhibitor L-NIO partially prevented the azilsartan-induced regulation of cytokines and protection. Furthermore, azilsartan-induced protection in our in vitro model was shown to be associated with protein stability of peroxisome proliferator-activated receptor-γ (PPAR-γ). Overall, our data suggest that the AT1-R blocker azilsartan may have therapeutic values in treating endothelial dysfunction associated neurological disorders through anti-oxidative and anti-inflammatory properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Expansion and cryopreservation of porcine and human corneal endothelial cells.

    PubMed

    Marquez-Curtis, Leah A; McGann, Locksley E; Elliott, Janet A W

    2017-08-01

    Impairment of the corneal endothelium causes blindness that afflicts millions worldwide and constitutes the most often cited indication for corneal transplants. The scarcity of donor corneas has prompted the alternative use of tissue-engineered grafts which requires the ex vivo expansion and cryopreservation of corneal endothelial cells. The aims of this study are to culture and identify the conditions that will yield viable and functional corneal endothelial cells after cryopreservation. Previously, using human umbilical vein endothelial cells (HUVECs), we employed a systematic approach to optimize the post-thaw recovery of cells with high membrane integrity and functionality. Here, we investigated whether improved protocols for HUVECs translate to the cryopreservation of corneal endothelial cells, despite the differences in function and embryonic origin of these cell types. First, we isolated endothelial cells from pig corneas and then applied an interrupted slow cooling protocol in the presence of dimethyl sulfoxide (Me 2 SO), with or without hydroxyethyl starch (HES). Next, we isolated and expanded endothelial cells from human corneas and applied the best protocol verified using porcine cells. We found that slow cooling at 1 °C/min in the presence of 5% Me 2 SO and 6% HES, followed by rapid thawing after liquid nitrogen storage, yields membrane-intact cells that could form monolayers expressing the tight junction marker ZO-1 and cytoskeleton F-actin, and could form tubes in reconstituted basement membrane matrix. Thus, we show that a cryopreservation protocol optimized for HUVECs can be applied successfully to corneal endothelial cells, and this could provide a means to address the need for off-the-shelf cryopreserved cells for corneal tissue engineering and regenerative medicine. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Functional interplay between endothelial nitric oxide synthase and membrane type 1–matrix metalloproteinase in migrating endothelial cells

    PubMed Central

    Genís, Laura; Gonzalo, Pilar; Tutor, Antonio S.; Gálvez, Beatriz G.; Martínez-Ruiz, Antonio; Zaragoza, Carlos; Lamas, Santiago; Tryggvason, Karl; Apte, Suneel S.

    2007-01-01

    Nitric oxide (NO) is essential for vascular homeostasis and is also a critical modulator of angiogenesis; however, the molecular mechanisms of NO action during angiogenesis remain elusive. We have investigated the potential relationship between NO and membrane type 1–matrix metalloproteinase (MT1-MMP) during endothelial migration and capillary tube formation. Endothelial NO synthase (eNOS) colocalizes with MT1-MMP at motility-associated structures in migratory human endothelial cells (ECs); moreover, NO is produced at these structures and is released into the medium during EC migration. We have therefore addressed 2 questions: (1) the putative regulation of MT1-MMP by NO in migratory ECs; and (2) the requirement for MT1-MMP in NO-induced EC migration and tube formation. NO upregulates MT1-MMP membrane clustering on migratory human ECs, and this is accompanied by increased degradation of type I collagen substrate. MT1-MMP membrane expression and localization are impaired in lung ECs from eNOS-deficient mice, and these cells also show impaired migration and tube formation in vitro. Inhibition of MT1-MMP with a neutralizing antibody impairs NOinduced tube formation by human ECs, and NO-induced endothelial migration and tube formation are impaired in lung ECs from mice deficient in MT1-MMP. MT1-MMP thus appears to be a key molecular effector of NO during the EC migration and angiogenic processes, and is a potential therapeutic target for NO-associated vascular disorders. PMID:17606763

  4. Revisiting Cardiac Cellular Composition

    PubMed Central

    Pinto, Alexander R.; Ilinykh, Alexei; Ivey, Malina J.; Kuwabara, Jill T.; D'Antoni, Michelle L.; Debuque, Ryan; Chandran, Anjana; Wang, Lina; Arora, Komal; Rosenthal, Nadia; Tallquist, Michelle D.

    2015-01-01

    Rationale Accurate knowledge of the cellular composition of the heart is essential to fully understand the changes that occur during pathogenesis and to devise strategies for tissue engineering and regeneration. Objective To examine the relative frequency of cardiac endothelial cells, hematopoietic-derived cells and fibroblasts in the mouse and human heart. Methods and Results Using a combination of genetic tools and cellular markers, we examined the occurrence of the most prominent cell types in the adult mouse heart. Immunohistochemistry revealed that endothelial cells constitute over 60%, hematopoietic-derived cells 5–10%, and fibroblasts under 20% of the non-myocytes in the heart. A refined cell isolation protocol and an improved flow cytometry approach provided an independent means of determining the relative abundance of non-myocytes. High dimensional analysis and unsupervised clustering of cell populations confirmed that endothelial cells are the most abundant cell population. Interestingly, fibroblast numbers are smaller than previously estimated, and two commonly assigned fibroblast markers, Sca-1 and CD90, underrepresent fibroblast numbers. We also describe an alternative fibroblast surface marker that more accurately identifies the resident cardiac fibroblast population. Conclusions This new perspective on the abundance of different cell types in the heart demonstrates that fibroblasts comprise a relatively minor population. By contrast, endothelial cells constitute the majority of non-cardiomyocytes and are likely to play a greater role in physiologic function and response to injury than previously appreciated. PMID:26635390

  5. Carbon Ion Radiation Inhibits Glioma and Endothelial Cell Migration Induced by Secreted VEGF

    PubMed Central

    Liu, Yang; Liu, Yuanyuan; Sun, Chao; Gan, Lu; Zhang, Luwei; Mao, Aihong; Du, Yuting; Zhou, Rong; Zhang, Hong

    2014-01-01

    This study evaluated the effects of carbon ion and X-ray radiation and the tumor microenvironment on the migration of glioma and endothelial cells, a key process in tumorigenesis and angiogenesis during cancer progression. C6 glioma and human microvascular endothelial cells were treated with conditioned medium from cultures of glioma cells irradiated at a range of doses and the migration of both cell types, tube formation by endothelial cells, as well as the expression and secretion of migration-related proteins were evaluated. Exposure to X-ray radiation-conditioned medium induced dose-dependent increases in cell migration and tube formation, which were accompanied by an upregulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2 and -9 expression. However, glioma cells treated with conditioned medium of cells irradiated at a carbon ion dose of 4.0 Gy showed a marked decrease in migratory potential and VEGF secretion relative to non-irradiated cells. The application of recombinant VEGF165 stimulated migration in glioma and endothelial cells, which was associated with increased FAK phosphorylation at Tyr861, suggesting that the suppression of cell migration by carbon ion radiation could be via VEGF-activated FAK signaling. Taken together, these findings indicate that carbon ion may be superior to X-ray radiation for inhibiting tumorigenesis and angiogenesis through modulation of VEGF level in the glioma microenvironment. PMID:24893038

  6. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    PubMed

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  7. Technical Advance: New in vitro method for assaying the migration of primary B cells using an endothelial monolayer as substrate.

    PubMed

    Stewart-Hutchinson, Phillip J; Szasz, Taylor P; Jaeger, Emily R; Onken, Michael D; Cooper, John A; Morley, Sharon Celeste

    2017-09-01

    Migration of B cells supports their development and recruitment into functional niches. Therefore, defining factors that control B cell migration will lead to a better understanding of adaptive immunity. In vitro cell migration assays with B cells have been limited by poor adhesion of cells to glass coated with adhesion molecules. We have developed a technique using monolayers of endothelial cells as the substrate for B cell migration and used this technique to establish a robust in vitro assay for B cell migration. We use TNF-α to up-regulate surface expression of the adhesion molecule VCAM-1 on endothelial cells. The ligand VLA-4 is expressed on B cells, allowing them to interact with the endothelial monolayer and migrate on its surface. We tested our new method by examining the role of L-plastin (LPL), an F-actin-bundling protein, in B cell migration. LPL-deficient (LPL -/- ) B cells displayed decreased speed and increased arrest coefficient compared with wild-type (WT) B cells, following chemokine stimulation. However, the confinement ratios for WT and LPL -/- B cells were similar. Thus, we demonstrate how the use of endothelial monolayers as a substrate will support future interrogation of molecular pathways essential to B cell migration. © Society for Leukocyte Biology.

  8. Overexpression of stearoyl-CoA desaturase 1 in bone marrow mesenchymal stem cells enhance the expression of induced endothelial cells

    PubMed Central

    2014-01-01

    Background Bone marrow mesenchymal stem cells (BM-MSCs) are capable of differentiating into endothelial cells in vitro and acquire major characteristics of mature endothelial-like expression of vWF and CD31. SFAs and lipid oxidation products have been linked with postprandial endothelial dysfunction. Consumption of SFAs impairs arterial endothelial function, while a Mediterranean-type MUFA-diet has a beneficial effect on endothelial function by producing a decrease in levels of vWF, TFPI and PAI-1. Stearoyl-CoA desaturase 1 (SCD1), which converts SFA to MUFA, is involved in the cellular biosynthesis of MUFAs from SFA substrates. High expression of SCD1 is corresponded with low rates of fatty acid oxidation, therefore it might reduce inflammatory responses and be beneficial for the growth of induced endothelial cells. Overexpression of SCD1 in BM-MSCs might increase the growth of induced endothelial cells. The goal of this research is to study the relationship between overexpression of SCD1 and the expression of induced endothelial cells in BM-MSCs in vitro. Methods The gene SCD1 was integrated into a lentiviral vector, and then 293 T cells were transfected by the connected product to produce a packaged virus. BM-MSCs were infected by the packaged virus. Cell culture and endothelial induction were performed. Fluorescent quantitative PCR of CD31, vWF and VE-cad was performed after 1 week and 2 weeks to test the growth of induced endothelial cells. Results The mRNA amount of CD31, vWF and VE-cad of the SCD1 overexpressed group was statistically higher than that of the empty vector (EV) group and that of the normal group after 1 week and 2 weeks, respectively (p < 0.05). Immunocytochemical staining of CD31 or vWF was detected by visualizing red color. Conclusions This study suggested that overexpression of SCD1 in BM-MSCs could increase the expression of induced endothelial cells in vitro. PMID:24650127

  9. The role of shear stress and altered tissue properties on endothelial to mesenchymal transformation and tumor-endothelial cell interaction.

    PubMed

    Mina, Sara G; Huang, Peter; Murray, Bruce T; Mahler, Gretchen J

    2017-07-01

    Tumor development is influenced by stromal cells in aspects including invasion, growth, angiogenesis, and metastasis. Activated fibroblasts are one group of stromal cells involved in cancer metastasis, and one source of activated fibroblasts is endothelial to mesenchymal transformation (EndMT). EndMT begins when the endothelial cells delaminate from the cell monolayer, lose cell-cell contacts, lose endothelial markers such as vascular endothelial-cadherin (VE-cadherin), gain mesenchymal markers like alpha-smooth muscle actin (α-SMA), and acquire mesenchymal cell-like properties. A three-dimensional (3D) culture microfluidic device was developed for investigating the role of steady low shear stress (1 dyne/cm 2 ) and altered extracellular matrix (ECM) composition and stiffness on EndMT. Shear stresses resulting from fluid flow within tumor tissue are relevant to both cancer metastasis and treatment effectiveness. Low and oscillatory shear stress rates have been shown to enhance the invasion of metastatic cancer cells through specific changes in actin and tubulin remodeling. The 3D ECM within the device was composed of type I collagen and glycosaminoglycans (GAGs), hyaluronic acid and chondroitin sulfate. An increase in collagen and GAGs has been observed in the solid tumor microenvironment and has been correlated with poor prognosis in many different cancer types. In this study, it was found that ECM composition and low shear stress upregulated EndMT, including upregulation of mesenchymal-like markers (α-SMA and Snail) and downregulated endothelial marker protein and gene expression (VE-cadherin). Furthermore, this novel model was utilized to investigate the role of EndMT in breast cancer cell proliferation and migration. Cancer cell spheroids were embedded within the 3D ECM of the microfluidic device. The results using this device show for the first time that the breast cancer spheroid size is dependent on shear stress and that the cancer cell migration rate, distance, and proliferation are induced by EndMT-derived activated fibroblasts. This model can be used to explore new therapeutics in a tumor microenvironment.

  10. Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woo Ho; Lee, Sun Hee; Jung, Myung Hwan

    2009-08-01

    The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression ismore » significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.« less

  11. Endothelial and Epithelial Cell Transition to a Mesenchymal Phenotype Was Delineated by Nestin Expression.

    PubMed

    Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino

    2016-07-01

    Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.

  12. Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38.

    PubMed

    Russell-Puleri, Sparkle; Dela Paz, Nathaniel G; Adams, Diana; Chattopadhyay, Mitali; Cancel, Limary; Ebong, Eno; Orr, A Wayne; Frangos, John A; Tarbell, John M

    2017-03-01

    Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I 2 (PGI 2 ) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI 2 have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm 2 for 5 h to examine shear stress-induced induction of COX-2/PGI 2 Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI 2 release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of α 5 β 1 -integrin, upregulation of COX-2, and release of PGI 2 in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of α 5 β 1 -integrin, upregulation of COX-2 gene and protein expression, and release of PGI 2 in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1 -/- mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI 2 levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI 2 release compared with wild-type animals. NEW & NOTEWORTHY In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I 2 (PGI 2 ) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI 2 mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1). Copyright © 2017 the American Physiological Society.

  13. Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38

    PubMed Central

    Russell-Puleri, Sparkle; dela Paz, Nathaniel G.; Adams, Diana; Chattopadhyay, Mitali; Cancel, Limary; Ebong, Eno; Orr, A. Wayne; Frangos, John A.

    2017-01-01

    Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I2 (PGI2) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI2 have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm2 for 5 h to examine shear stress-induced induction of COX-2/PGI2. Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI2 release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of α5β1-integrin, upregulation of COX-2, and release of PGI2 in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of α5β1-integrin, upregulation of COX-2 gene and protein expression, and release of PGI2 in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1−/− mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI2 levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI2 release compared with wild-type animals. NEW & NOTEWORTHY In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I2 (PGI2) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI2 mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1). PMID:28011582

  14. Regulator of Calcineurin 1 in Periodontal Disease

    PubMed Central

    Peters, Ulrike; Solominidou, Eleni; Korkmaz, Yüksel; Rüttermann, Stefan; Klocke, Astrid; Flemmig, Thomas Frank; Beikler, Thomas

    2016-01-01

    Nuclear factor of activated T-cells (NFAT) and NF-kB pathway associated processes are involved in the pathogenesis of various inflammatory disorders, for example, periodontal disease. The activation of these pathways is controlled by the regulator of calcineurin 1 (RCAN1). The aim of this study was to elucidate the role of RCAN1 in periodontal disease. Healthy and inflamed periodontal tissues were analyzed by immunohistochemistry and immunofluorescence using specific rabbit polyclonal anti-RCAN1 antibodies. For expression analysis human umbilical vein endothelial cells (HUVEC) were used. HUVEC were incubated for 2 h with Vascular Endothelial Growth Factor (VEGF) or with wild type and laboratory strains of Porphyromonas gingivalis (P. gingivalis). Expression analysis of rcan1 and cox2 was done by real time PCR using specific primers for rcan1.4 and cox2. The expression of rcan1 was found to be significantly suppressed in endothelial cells of chronically inflamed periodontal tissues compared to healthy controls. Rcan1 and cox2 were significantly induced by VEGF and wild type and laboratory P. gingivalis strains. Interestingly, the magnitude of the rcan1 and cox2 induction was strain dependent. The results of this study indicate that RCAN1 is suppressed in endothelial cells of chronically inflamed periodontal tissues. During an acute infection, however, rcan1 seems to be upregulated in endothelial cells, indicating a modulating role in immune homeostasis of periodontal tissues. PMID:27403036

  15. A Heterogeneous In Vitro Three Dimensional Model of Tumour-Stroma Interactions Regulating Sprouting Angiogenesis

    PubMed Central

    Correa de Sampaio, Pedro; Auslaender, David; Krubasik, Davia; Failla, Antonio Virgilio; Skepper, Jeremy N.; Murphy, Gillian; English, William R.

    2012-01-01

    Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model – a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis. PMID:22363483

  16. Isolated Anxa5{sup +}/Sca-1{sup +} perivascular cells from mouse meningeal vasculature retain their perivascular phenotype in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brachvogel, Bent; Pausch, Friederike; Farlie, Peter

    2007-07-15

    Pericytes are closely associated with endothelial cells, contribute to vascular stability and represent a potential source of mesenchymal progenitor cells. Using the specifically expressed annexin A5-LacZ fusion gene (Anxa5-LacZ), it became possible to isolate perivascular cells (PVC) from mouse tissues. These cells proliferate and can be cultured without undergoing senescence for multiple passages. PVC display phenotypic characteristics of pericytes, as they express pericyte-specific markers (NG2-proteoglycan, desmin, {alpha}SMA, PDGFR-{beta}). They also express stem cell marker Sca-1, whereas endothelial (PECAM), hematopoietic (CD45) or myeloid (F4/80, CD11b) lineage markers are not detectable. These characteristics are in common with the pericyte-like cell line 10T1/2.more » PVC also display a phagocytoic activity higher than 10T1/2 cells. During coculture with endothelial cells both cell types stimulate angiogenic processes indicated by an increased expression of PECAM in endothelial cells and specific deposition of basement membrane proteins. PVC show a significantly increased induction of endothelial specific PECAM expression compared to 10T1/2 cells. Accordingly, in vivo grafts of PVC aggregates onto chorioallantoic membranes of quail embryos recruit endothelial cells, get highly vascularized and deposit basement membrane components. These data demonstrate that isolated Anxa5-LacZ{sup +} PVC from mouse meninges retain their capacity for differentiation to pericyte-like cells and contribute to angiogenic processes.« less

  17. Ephrin-A1/EphA4-mediated adhesion of monocytes to endothelial cells.

    PubMed

    Jellinghaus, Stefanie; Poitz, David M; Ende, Georg; Augstein, Antje; Weinert, Sönke; Stütz, Beryl; Braun-Dullaeus, Rüdiger C; Pasquale, Elena B; Strasser, Ruth H

    2013-10-01

    The Eph receptors represent the largest family of receptor tyrosine kinases. Both Eph receptors and their ephrin ligands are cell-surface proteins, and they typically mediate cell-to-cell communication by interacting at sites of intercellular contact. The major aim of the present study was to investigate the involvement of EphA4-ephrin-A1 interaction in monocyte adhesion to endothelial cells, as this process is a crucial step during the initiation and progression of the atherosclerotic plaque. Immunohistochemical analysis of human atherosclerotic plaques revealed expression of EphA4 receptor and ephrin-A1 ligand in major cell types within the plaque. Short-time stimulation of endothelial cells with the soluble ligand ephrin-A1 leads to a fourfold increase in adhesion of human monocytes to endothelial cells. In addition, ephrin-A1 further increases monocyte adhesion to already inflamed endothelial cells. EphrinA1 mediates its effect on monocyte adhesion via the activated receptor EphA4. This ephrinA1/EphA4 induced process involves the activation of the Rho signaling pathway and does not require active transcription. Rho activation downstream of EphA4 leads to increased polymerization of actin filaments in endothelial cells. This process was shown to be crucial for the proadhesive effect of ephrin-A1. The results of the present study show that ephrin-A1-induced EphA4 forward signaling promotes monocyte adhesion to endothelial cells via activation of RhoA and subsequent stress-fiber formation by a non-transcriptional mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity.

    PubMed

    Demaria, Olivier; De Gassart, Aude; Coso, Sanja; Gestermann, Nicolas; Di Domizio, Jeremy; Flatz, Lukas; Gaide, Olivier; Michielin, Olivier; Hwu, Patrick; Petrova, Tatiana V; Martinon, Fabio; Modlin, Robert L; Speiser, Daniel E; Gilliet, Michel

    2015-12-15

    Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.

  19. Endothelial Cell Autonomous Role of Akt1: Regulation of Vascular Tone and Ischemia-Induced Arteriogenesis.

    PubMed

    Lee, Monica Y; Gamez-Mendez, Ana; Zhang, Jiasheng; Zhuang, Zhenwu; Vinyard, David J; Kraehling, Jan; Velazquez, Heino; Brudvig, Gary W; Kyriakides, Themis R; Simons, Michael; Sessa, William C

    2018-04-01

    The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair. © 2018 American Heart Association, Inc.

  20. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent

    PubMed Central

    Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon

    2014-01-01

    Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736

  1. Requirement of phosphorylatable endothelial nitric oxide synthase at Ser-1177 for vasoinhibin-mediated inhibition of endothelial cell migration and proliferation in vitro.

    PubMed

    García, Celina; Nuñez-Anita, Rosa Elvira; Thebault, Stéphanie; Arredondo Zamarripa, David; Jeziorsky, Michael C; Martínez de la Escalera, Gonzalo; Clapp, Carmen

    2014-03-01

    Endothelial nitric oxide synthase (eNOS)-derived nitric oxide is a major vasorelaxing factor and a mediator of vasopermeability and angiogenesis. Vasoinhibins, a family of antiangiogenic prolactin fragments that include 16 K prolactin, block most eNOS-mediated vascular effects. Vasoinhibins activate protein phosphatase 2A, causing eNOS inactivation through dephosphorylation of eNOS at serine residue 1179 in bovine endothelial cells and thereby blocking vascular permeability. In this study, we examined whether human eNOS phosphorylation at S1177 (analogous to bovine S1179) influences other actions of vasoinhibins. Bovine umbilical vein endothelial cells were stably transfected with human wild-type eNOS (WT) or with phospho-mimetic (S1177D) or non-phosphorylatable (S1177A) eNOS mutants. Vasoinhibins inhibited the increases in eNOS activity, migration, and proliferation following the overexpression of WT eNOS but did not affect these responses in cells expressing S1177D and S1177A eNOS mutants. We conclude that eNOS inhibition by dephosphorylation of S1177 is fundamental for the inhibition of endothelial cell migration and proliferation by vasoinhibins.

  2. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching

    PubMed Central

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-01-01

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using γ-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4+/− retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4+/− retinas, dll4+/− vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a “brake” on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development. PMID:17296941

  3. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching.

    PubMed

    Suchting, Steven; Freitas, Catarina; le Noble, Ferdinand; Benedito, Rui; Bréant, Christiane; Duarte, Antonio; Eichmann, Anne

    2007-02-27

    Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using gamma-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4(+/-) retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4(+/-) retinas, dll4(+/-) vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a "brake" on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.

  4. Generation and characterization of a spontaneously immortalized endothelial cell line from mice microcirculation.

    PubMed

    Loiola, Rodrigo A; Torres, Tathiany C; Aburaya, Carla M; Landgraf, Maristella A; Landgraf, Richardt G; Bosco Pesquero, João; Fernandes, Liliam

    2013-05-01

    Endothelial cells from microvasculature are directly involved in a large number of vascular diseases; however, culture of these cells is problematic, since most methodologies employ proteolytic enzymes or mechanical techniques, leading to cell damage and contamination of endothelial cultures with other cellular types. Besides, primary cultured cells have a short life span in vitro and undergo replicative senescence after 3-4 passages, limiting long-term studies. In the present work we report the generation of a spontaneously immortalized endothelial culture obtained from mice pulmonary capillaries. Firstly, primary (third passage) and immortalized (100th) cultures were established. Further, monoclonal populations were obtained by serial dilutions from immortalized cultures. Cells were analyzed according to: (1) morphological appearance, (2) expression of specific endothelial markers by fluorescent staining [von Willebrand Factor (vWF), endothelial nitric oxide synthase (eNOS), angiotensin converting enzyme (ACE) and Ulex europaeus (UEA-1)] and by flow cytometry (endoglin, VE-cadherin and VCAM-1), and (3) release of nitric oxide (NO), assessed by the specific fluorescent dye DAF-2 DA, and prostacyclin (PGI2), quantified by enzyme immune assay. In both cultures cells grew in monolayers and presented cobblestone appearance at confluence. Positive staining for vWF, eNOS, ACE and UEA-1 was detected in cloned as well as in early-passage cultured cells. Similarly, cultures presented equal expressions of endoglin, VE-cadherin and VCAM-1. Values of NO and PGI2 levels did not differ between cultures. From these results we confirm that the described spontaneously immortalized endothelial cell line is capable of unlimited growth and retains typical morphological and functional properties exhibited by primary cultured cells. Therefore, the endothelial cell line described in the present study can become a suitable tool in the field of endothelium research and can be useful for the investigation of production of endothelial mediators, angiogenesis and inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer.

    PubMed

    Yang, Tianzhi; Fogarty, Brittany; LaForge, Bret; Aziz, Salma; Pham, Thuy; Lai, Leanne; Bai, Shuhua

    2017-03-01

    Although small interfering RNA (siRNA) holds great therapeutic promise, its delivery to the disease site remains a paramount obstacle. In this study, we tested whether brain endothelial cell-derived exosomes could deliver siRNA across the blood-brain barrier (BBB) in zebrafish. Natural exosomes were isolated from brain endothelial bEND.3 cell culture media and vascular endothelial growth factor (VEGF) siRNA was loaded in exosomes with the assistance of a transfection reagent. While fluorescence-activated cell flow cytometry and immunocytochemistry staining studies indicated that wild-type exosomes significantly increased the uptake of fluorescence-labeled siRNA in the autologous brain endothelial cells, decreased fluorescence intensity was observed in the cells treated with the tetraspanin CD63 antibody-blocked exosome-delivered formulation (p < 0.05). In the transport study, exosomes also enhanced the permeability of rhodamine 123 in a co-cultured monolayer of brain endothelial bEND.3 cell and astrocyte. Inhibition at the expression of VEGF RNA and protein levels was observed in glioblastoma-astrocytoma U-87 MG cells treated with exosome-delivered siRNAs. Imaging results showed that exosome delivered more siRNAs across the BBB in Tg(fli1:GFP) zebrafish. In a xenotransplanted brain tumor model, exosome-delivered VEGF siRNAs decreased the fluorescence intensity of labeled cancer cells in the brain of zebrafish. Brain endothelial cell-derived exosomes could be potentially used as a natural carrier for the brain delivery of exogenous siRNA.

  6. Timing of Galectin-1 Exposure Differentially Modulates Nipah Virus Entry and Syncytium Formation in Endothelial Cells

    PubMed Central

    Garner, Omai B.; Yun, Tatyana; Pernet, Olivier; Aguilar, Hector C.; Park, Arnold; Bowden, Thomas A.; Freiberg, Alexander N.

    2014-01-01

    ABSTRACT Nipah virus (NiV) is a deadly emerging enveloped paramyxovirus that primarily targets human endothelial cells. Endothelial cells express the innate immune effector galectin-1 that we have previously shown can bind to specific N-glycans on the NiV envelope fusion glycoprotein (F). NiV-F mediates fusion of infected endothelial cells into syncytia, resulting in endothelial disruption and hemorrhage. Galectin-1 is an endogenous carbohydrate-binding protein that binds to specific glycans on NiV-F to reduce endothelial cell fusion, an effect that may reduce pathophysiologic sequelae of NiV infection. However, galectins play multiple roles in regulating host-pathogen interactions; for example, galectins can promote attachment of HIV to T cells and macrophages and attachment of HSV-1 to keratinocytes but can also inhibit influenza entry into airway epithelial cells. Using live Nipah virus, in the present study, we demonstrate that galectin-1 can enhance NiV attachment to and infection of primary human endothelial cells by bridging glycans on the viral envelope to host cell glycoproteins. In order to exhibit an enhancing effect, galectin-1 must be present during the initial phase of virus attachment; in contrast, addition of galectin-1 postinfection results in reduced production of progeny virus and syncytium formation. Thus, galectin-1 can have dual and opposing effects on NiV infection of human endothelial cells. While various roles for galectin family members in microbial-host interactions have been described, we report opposing effects of the same galectin family member on a specific virus, with the timing of exposure during the viral life cycle determining the outcome. IMPORTANCE Nipah virus is an emerging pathogen that targets endothelial cells lining blood vessels; the high mortality rate (up to 70%) in Nipah virus infections results from destruction of these cells and resulting catastrophic hemorrhage. Host factors that promote or prevent Nipah virus infection are not well understood. Endogenous human lectins, such as galectin-1, can function as pattern recognition receptors to reduce infection and initiate immune responses; however, lectins can also be exploited by microbes to enhance infection of host cells. We found that galectin-1, which is made by inflamed endothelial cells, can both promote Nipah virus infection of endothelial cells by “bridging” the virus to the cell, as well as reduce production of progeny virus and reduce endothelial cell fusion and damage, depending on timing of galectin-1 exposure. This is the first report of spatiotemporal opposing effects of a host lectin for a virus in one type of host cell. PMID:25505064

  7. Cellular tropism of human enterovirus D species serotypes EV-94, EV-70, and EV-68 in vitro: implications for pathogenesis.

    PubMed

    Smura, Teemu; Ylipaasto, Petri; Klemola, Päivi; Kaijalainen, Svetlana; Kyllönen, Lauri; Sordi, Valeria; Piemonti, Lorenzo; Roivainen, Merja

    2010-11-01

    Enterovirus 94 (EV-94) is an enterovirus serotype described recently which, together with EV-68 and EV-70, forms human enterovirus D species. This study investigates the seroprevalences of these three serotypes and their abilities to infect, replicate, and damage cell types considered to be essential for enterovirus-induced diseases. The cell types studied included human leukocyte cell lines, primary endothelial cells, and pancreatic islets. High prevalence of neutralizing antibodies against EV-68 and EV-94 was found in the Finnish population. The virus strains studied had wide leukocyte tropism. EV-94 and EV-68 were able to produce infectious progeny in leukocyte cell lines with monocytic, granulocytic, T-cell, or B-cell characteristics. EV-94 and EV-70 were capable of infecting primary human umbilical vein endothelial cells, whereas EV-68 had only marginal progeny production and did not induce cytopathic effects in these cells. Intriguingly, EV-94 was able to damage pancreatic islet β-cells, to infect, replicate, and cause necrosis in human pancreatic islets, and to induce proinflammatory and chemoattractive cytokine expression in endothelial cells. These results suggest that HEV-D viruses may be more prevalent than has been thought previously, and they provide in vitro evidence that EV-94 may be a potent pathogen and should be considered a potentially diabetogenic enterovirus type. © 2010 Wiley-Liss, Inc.

  8. A Genome-wide Analysis of Human Pluripotent Stem Cell-Derived Endothelial Cells in 2D or 3D Culture.

    PubMed

    Zhang, Jue; Schwartz, Michael P; Hou, Zhonggang; Bai, Yongsheng; Ardalani, Hamisha; Swanson, Scott; Steill, John; Ruotti, Victor; Elwell, Angela; Nguyen, Bao Kim; Bolin, Jennifer; Stewart, Ron; Thomson, James A; Murphy, William L

    2017-04-11

    A defined protocol for efficiently deriving endothelial cells from human pluripotent stem cells was established and vascular morphogenesis was used as a model system to understand how synthetic hydrogels influence global biological function compared with common 2D and 3D culture platforms. RNA sequencing demonstrated that gene expression profiles were similar for endothelial cells and pericytes cocultured in polyethylene glycol (PEG) hydrogels or Matrigel, while monoculture comparisons identified distinct vascular signatures for each cell type. Endothelial cells cultured on tissue-culture polystyrene adopted a proliferative phenotype compared with cells cultured on or encapsulated in PEG hydrogels. The proliferative phenotype correlated to increased FAK-ERK activity, and knockdown or inhibition of ERK signaling reduced proliferation and expression for cell-cycle genes while increasing expression for "3D-like" vasculature development genes. Our results provide insight into the influence of 2D and 3D culture formats on global biological processes that regulate cell function. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Spatiotemporal endothelial cell - pericyte association in tumors as shown by high resolution 4D intravital imaging.

    PubMed

    Seynhaeve, Ann L B; Oostinga, Douwe; van Haperen, Rien; Eilken, Hanna M; Adams, Susanne; Adams, Ralf H; Ten Hagen, Timo L M

    2018-06-25

    Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell - pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.

  10. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis.more » Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.« less

  11. N-Acetylcysteine Increases Corneal Endothelial Cell Survival in a Mouse Model of Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Kim, Eun Chul; Meng, Huan; Jun, Albert S.

    2014-01-01

    The present study evaluated survival effects of N-acetylcysteine (NAC) on cultured corneal endothelial cells exposed to oxidative and endoplasmic reticulum (ER) stress and in a mouse model of early-onset Fuchs endothelial corneal dystrophy (FECD). Cultured bovine corneal endothelial cell viability against oxidative and ER stress was determined by CellTiter-Glo® luminescent reagent. Two-month-old homozygous knock-in Col8a2L450W/L450W mutant (L450W) and C57/Bl6 wild-type (WT) animals were divided into two groups of 15 mice. Group I received 7 mg/mL NAC in drinking water and Group II received control water for 7 months. Endothelial cell density and morphology were evaluated with confocal microscopy. Antioxidant gene (iNos) and ER stress/unfolded protein response gene (Grp78 and Chop) mRNA levels and protein expression were measured in corneal endothelium by real time PCR and Western blotting. Cell viability of H2O2 and thapsigargin exposed cells pre-treated with NAC was significantly increased compared to untreated controls (pitalic>0.01). Corneal endothelial cell density (CD) was higher (p=0.001) and percent polymegathism was lower (p=0.04) in NAC treated L450W mice than in untreated L450W mice. NAC treated L450W endothelium showed significant upregulation of iNos, whereas Grp78 and Chop were downregulated compared to untreated L450W endothelium by real time PCR and Western blotting. NAC increases survival in cultured corneal endothelial cells exposed against ER and oxidative stress. Systemic NAC ingestion increases corneal endothelial cell survival which is associated with increased antioxidant and decreased ER stress markers in a mouse model of early-onset FECD. Our study presents in vivo evidence of a novel potential medical treatment for FECD. PMID:24952277

  12. N-Acetylcysteine increases corneal endothelial cell survival in a mouse model of Fuchs endothelial corneal dystrophy.

    PubMed

    Kim, Eun Chul; Meng, Huan; Jun, Albert S

    2014-10-01

    The present study evaluated survival effects of N-acetylcysteine (NAC) on cultured corneal endothelial cells exposed to oxidative and endoplasmic reticulum (ER) stress and in a mouse model of early-onset Fuchs endothelial corneal dystrophy (FECD). Cultured bovine corneal endothelial cell viability against oxidative and ER stress was determined by CellTiter-Glo(®) luminescent reagent. Two-month-old homozygous knock-in Col8a2(L450W/L450W) mutant (L450W) and C57/Bl6 wild-type (WT) animals were divided into two groups of 15 mice. Group I received 7 mg/mL NAC in drinking water and Group II received control water for 7 months. Endothelial cell density and morphology were evaluated with confocal microscopy. Antioxidant gene (iNos) and ER stress/unfolded protein response gene (Grp78 and Chop) mRNA levels and protein expression were measured in corneal endothelium by real time PCR and Western blotting. Cell viability of H2O2 and thapsigargin exposed cells pre-treated with NAC was significantly increased compared to untreated controls (p < 0.01). Corneal endothelial cell density (CD) was higher (p = 0.001) and percent polymegathism was lower (p = 0.04) in NAC treated L450W mice than in untreated L450W mice. NAC treated L450W endothelium showed significant upregulation of iNos, whereas Grp78 and Chop were downregulated compared to untreated L450W endothelium by real time PCR and Western blotting. NAC increases survival in cultured corneal endothelial cells exposed against ER and oxidative stress. Systemic NAC ingestion increases corneal endothelial cell survival which is associated with increased antioxidant and decreased ER stress markers in a mouse model of early-onset FECD. Our study presents in vivo evidence of a novel potential medical treatment for FECD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. LIGHT/TNFSF14 is increased in patients with type 2 diabetes mellitus and promotes islet cell dysfunction and endothelial cell inflammation in vitro.

    PubMed

    Halvorsen, Bente; Santilli, Francesca; Scholz, Hanne; Sahraoui, Afaf; Gulseth, Hanne L; Wium, Cecilie; Lattanzio, Stefano; Formoso, Gloria; Di Fulvio, Patrizia; Otterdal, Kari; Retterstøl, Kjetil; Holven, Kirsten B; Gregersen, Ida; Stavik, Benedicte; Bjerkeli, Vigdis; Michelsen, Annika E; Ueland, Thor; Liani, Rossella; Davi, Giovanni; Aukrust, Pål

    2016-10-01

    Activation of inflammatory pathways is involved in the pathogenesis of type 2 diabetes mellitus. On the basis of its role in vascular inflammation and in metabolic disorders, we hypothesised that the TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) could be involved in the pathogenesis of type 2 diabetes mellitus. Plasma levels of LIGHT were measured in two cohorts of type 2 diabetes mellitus patients (191 Italian and 40 Norwegian). Human pancreatic islet cells and arterial endothelial cells were used to explore regulation and relevant effects of LIGHT in vitro. Our major findings were: (1) in both diabetic cohorts, plasma levels of LIGHT were significantly raised compared with sex- and age-matched healthy controls (n = 32); (2) enhanced release from activated platelets seems to be an important contributor to the raised LIGHT levels in type 2 diabetes mellitus; (3) in human pancreatic islet cells, inflammatory cytokines increased the release of LIGHT and upregulated mRNA and protein levels of the LIGHT receptors lymphotoxin β receptor (LTβR) and TNF receptor superfamily member 14 (HVEM/TNFRSF14); (4) in these cells, LIGHT attenuated the insulin release in response to high glucose at least partly via pro-apoptotic effects; and (5) in human arterial endothelial cells, glucose boosted inflammatory response to LIGHT, accompanied by an upregulation of mRNA levels of HVEM (also known as TNFRSF14) and LTβR (also known as LTBR). Our findings show that patients with type 2 diabetes mellitus are characterised by increased plasma LIGHT levels. Our in vitro findings suggest that LIGHT may contribute to the progression of type 2 diabetes mellitus by attenuating insulin secretion in pancreatic islet cells and by contributing to vascular inflammation.

  14. Alteration of pancreatic carcinoma and promyeloblastic cell adhesion in liver microvasculature by co-culture of hepatocytes, hepatic stellate cells and endothelial cells in a physiologically-relevant model.

    PubMed

    Danoy, Mathieu; Shinohara, Marie; Rizki-Safitri, Astia; Collard, Dominique; Senez, Vincent; Sakai, Yasuyuki

    2017-04-18

    In vitro models of the liver microvasculature, especially with respect to cancer cell extravasation, should include not only endothelial and cancer cells but also surrounding cells to mimic the physiological situation. To this end, in the present study, we established a physiologically-relevant hierarchical co-culture model by stacking layers of primary rat hepatocytes (Hep), hepatic stellate cells embedded in collagen gel (LX-2) and endothelial cells (HUVECs) on a specially designed oxygen-permeable polydimethylsiloxane PDMS bottom plate. The model was used to investigate the role and contribution of each of the three cell types in pancreatic cancer and promyeloblast cell adhesion. In particular, we showed an increase in albumin production by the primary hepatocytes and in the consumption of the produced vascular endothelial growth factors (VEGFs). Furthermore, in co-culture, the HUVECs exhibited a mature vascular endothelial and non-inflamed phenotype, as evidenced by Stabilin-1, lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), intercellular adhesion molecule (ICAM-1), and vascular adhesion protein-1 (VAP-1) expression. The HUVECs were also successfully activated with an inflammatory cytokine and their ICAM-1 response was found to be higher in monoculture compared to co-culture. Additionally, the adhesion of MiaPaCa-2 pancreatic cancer cells and HL60 promyeloblasts was tested in both cases (i.e.: activation or not by an inflammatory cytokine). It has been found that their adhesion was always reduced in the co-culture model. These results highlight the importance of integrating hepatic stellate cells in the design of biomimetic models of the hepatic endothelial barrier.

  15. Ascorbate protects endothelial barrier function during septic insult: Role of protein phosphatase type 2A.

    PubMed

    Han, Min; Pendem, Suresh; Teh, Suet Ling; Sukumaran, Dinesh K; Wu, Feng; Wilson, John X

    2010-01-01

    Endothelial barrier dysfunction contributes to morbidity in sepsis. We tested the hypothesis that raising the intracellular ascorbate concentration protects the endothelial barrier from septic insult by inhibiting protein phosphatase type 2A. Monolayer cultures of microvascular endothelial cells were incubated with ascorbate, dehydroascorbic acid (DHAA), the NADPH oxidase inhibitors apocynin and diphenyliodonium, or the PP2A inhibitor okadaic acid and then were exposed to septic insult (lipopolysaccharide and interferon-gamma). Under standard culture conditions that depleted intracellular ascorbate, septic insult stimulated oxidant production and PP2A activity, dephosphorylated phosphoserine and phosphothreonine residues in the tight junction-associated protein occludin, decreased the abundance of occludin at cell borders, and increased monolayer permeability to albumin. NADPH oxidase inhibitors prevented PP2A activation and monolayer leak, showing that these changes required reactive oxygen species. Okadaic acid, at a concentration that inhibited PP2A activity and monolayer leak, prevented occludin dephosphorylation and redistribution, implicating PP2A in the response of occludin to septic insult. Incubation with ascorbate or DHAA raised intracellular ascorbate concentrations and mitigated the effects of septic insult. In conclusion, ascorbate acts within microvascular endothelial cells to inhibit septic stimulation of oxidant production by NADPH oxidase and thereby prevents PP2A activation, PP2A-dependent dephosphorylation and redistribution of occludin, and disruption of the endothelial barrier. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Human Dermal Mast Cells Contain and Release Tumor Necrosis Factor α, which Induces Endothelial Leukocyte Adhesion Molecule 1

    NASA Astrophysics Data System (ADS)

    Walsh, Laurence J.; Trinchieri, Giorgio; Waldorf, Heidi A.; Whitaker, Diana; Murphy, George F.

    1991-05-01

    Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that mediates endothelial leukocyte interactions by inducing expression of adhesion molecules. In this report, we demonstrate that human dermal mast cells contain sizeable stores of immunoreactive and biologically active TNF-α within granules, which can be released rapidly into the extracellular space upon degranulation. Among normal human dermal cells, mast cells are the predominant cell type that expresses both TNF-α protein and TNF-α mRNA. Moreover, induction of endothelial leukocyte adhesion molecule 1 expression is a direct consequence of release of mast cell-derived TNF-α. These findings establish a role for human mast cells as "gatekeepers" of the dermal microvasculature and indicate that mast cell products other than vasoactive amines influence endothelium in a proinflammatory fashion.

  17. Horizontal alignment of 5' -> 3' intergene distance segment tropy with respect to the gene as the conserved basis for DNA transcription.

    PubMed

    Sarin, Hemant

    2017-03-01

    To study the conserved basis for gene expression in comparative cell types at opposite ends of the cell pressuromodulation spectrum, the lymphatic endothelial cell and the blood microvascular capillary endothelial cell. The mechanism for gene expression is studied in terms of the 5' -> 3' direction paired point tropy quotients ( prpT Q s) and the final 5' -> 3' direction episodic sub-episode block sums split-integrated weighted average-averaged gene overexpression tropy quotient ( esebssiwaagoT Q ). The final 5' -> 3' esebssiwaagoT Q classifies an lymphatic endothelial cell overexpressed gene as a supra-pressuromodulated gene ( esebssiwaagoT Q ≥ 0.25 < 0.75) every time and classifies a blood microvascular capillary endothelial cell overexpressed gene every time as an infra-pressuromodulated gene ( esebssiwaagoT Q < 0.25) (100% sensitivity; 100% specificity). Horizontal alignment of 5' -> 3' intergene distance segment tropy wrt the gene is the basis for DNA transcription in the pressuromodulated state.

  18. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A.; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N.; Bartke, Andrzej; Ungvari, Zoltan

    2008-01-01

    Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2•− and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2•− and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2•− and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress. PMID:18757483

  20. ALK5 inhibition maintains islet endothelial cell survival but does not enhance islet graft revascularisation or function.

    PubMed

    King, A J F; Clarkin, C E; Austin, A L F; Ajram, L; Dhunna, J K; Jamil, M O; Ditta, S I; Ibrahim, S; Raza, Z; Jones, P M

    2015-01-01

    Islet transplantation is a potential treatment for Type 1 diabetes but long term graft function is suboptimal. The rich supply of intraislet endothelial cells diminishes rapidly after islet isolation and culture, which affects the revascularisation rate of islets after transplantation. The ALK5 pathway inhibits endothelial cell proliferation and thus inhibiting ALK5 is a potential target for improving endothelial cell survival. The aim of the study was to establish whether ALK5 inhibition prevents the loss of intraislet endothelial cells during islet culture and thus improves the functional survival of transplanted islets by enhancing their subsequent revascularisation after implantation. Islets were cultured for 48 h in the absence or presence of 2 different ALK inhibitors: SB-431542 or A-83-01. Their vascular density after culture was analysed using immunohistochemistry. Islets pre-cultured with the ALK5 inhibitors were implanted into streptozotocin-diabetic mice for either 3 or 7 days and blood glucose concentrations were monitored and vascular densities of the grafts were analysed. Islets cultured with ALK5 inhibitors had higher vascular densities than control-cultured islets. Three days after implantation, endothelial cell numbers in islet grafts were minimal, irrespective of treatment during culture. Seven days after implantation, endothelial cells were evident within the islet grafts but there was no difference between control-cultured islets and islets pre-treated with an ALK5 inhibitor. Blood glucose concentrations were no different between the treatment groups. In conclusion, inhibition of ALK5 improved intraislet endothelial cell numbers after islet culture, but this effect was lost in the early post-transplantation period. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Glutathione adducts on sarcoplasmic/endoplasmic reticulum Ca2+ ATPase Cys-674 regulate endothelial cell calcium stores and angiogenic function as well as promote ischemic blood flow recovery.

    PubMed

    Thompson, Melissa D; Mei, Yu; Weisbrod, Robert M; Silver, Marcy; Shukla, Praphulla C; Bolotina, Victoria M; Cohen, Richard A; Tong, Xiaoyong

    2014-07-18

    The sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) is key to Ca(2+) homeostasis and is redox-regulated by reversible glutathione (GSH) adducts on the cysteine (C) 674 thiol that stimulate Ca(2+) uptake activity and endothelial cell angiogenic responses in vitro. We found that mouse hind limb muscle ischemia induced S-glutathione adducts on SERCA in both whole muscle tissue and endothelial cells. To determine the role of S-glutathiolation, we used a SERCA 2 C674S heterozygote knock-in (SKI) mouse lacking half the key thiol. Following hind limb ischemia, SKI animals had decreased SERCA S-glutathione adducts and impaired blood flow recovery. We studied SKI microvascular endothelial cells in which total SERCA 2 expression was unchanged. Cultured SKI microvascular endothelial cells showed impaired migration and network formation compared with wild type (WT). Ca(2+) studies showed decreased nitric oxide (·NO)-induced (45)Ca(2+) uptake into the endoplasmic reticulum (ER) of SKI cells, while Fura-2 studies revealed lower Ca(2+) stores and decreased vascular endothelial growth factor (VEGF)- and ·NO-induced Ca(2+) influx. Adenoviral overexpression of calreticulin, an ER Ca(2+) binding protein, increased ionomycin-releasable stores, VEGF-induced Ca(2+) influx and endothelial cell migration. Taken together, these data indicate that the redox-sensitive Cys-674 thiol on SERCA 2 is required for normal endothelial cell Ca(2+) homeostasis and ischemia-induced angiogenic responses, revealing a novel redox control of angiogenesis via Ca(2+) stores. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. PMab-48 Recognizes Dog Podoplanin of Lymphatic Endothelial Cells.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari

    2018-02-01

    Podoplanin, a type I transmembrane glycoprotein, is a specific marker of lymphatic endothelial cells (LECs). Recently, we developed PMab-38, an anti-dog podoplanin monoclonal antibody that did not stain canine LECs. In this study, we newly developed PMab-48 against dog podoplanin. Immunohistochemical analysis revealed that PMab-48 reacts not only with canine squamous cell carcinoma cells but also with LECs of the normal colon. Therefore, PMab-48 may be useful in investigating the function of dog podoplanin in LECs.

  3. The synergistic effects of saxagliptin and metformin on CD34+ endothelial progenitor cells in early type 2 diabetes patients: a randomized clinical trial.

    PubMed

    Dore, Fiona J; Domingues, Cleyton C; Ahmadi, Neeki; Kundu, Nabanita; Kropotova, Yana; Houston, Sara; Rouphael, Carol; Mammadova, Aytan; Witkin, Linda; Khiyami, Anamil; Amdur, Richard L; Sen, Sabyasachi

    2018-05-03

    Type 2 diabetes is associated with endothelial dysfunction leading to cardiovascular disease. CD34+ endothelial Progenitor Cells (EPCs) are responsible for endothelial repair and neo-angiogenesis and can be used as a cardiovascular disease risk biomarker. This study investigated whether the addition of saxagliptin, a DPP-IV inhibitor, to metformin, may reduce cardiovascular disease risk in addition to improving glycemic control in Type 2 diabetes patients. In 12 week, double-blind, randomized placebo-controlled trial, 42 subjects already taking metformin 1-2 grams/day were randomized to placebo or saxagliptin 5 mg. Subjects aged 40-70 years with diabetes for < 10 years, with no known cardiovascular disease, BMI 25-39.9, HbA1C 6-9% were included. We evaluated EPCs number, function, surface markers and gene expression, in addition to arterial stiffness, blood biochemistries, resting energy expenditure, and body composition parameters. A mixed model regression to examine saxagliptin vs placebo, accounting for within-subject autocorrelation, was done with SAS (p < 0.05). Although there was no significant increase in CD34+ cell number, CD31+ cells percentage increased. Saxagliptin increased migration (in response to SDF1α) with a trend of higher colony formation count. MNCs cytometry showed higher percentage of CXCR4 double positivity for both CD34 and CD31 positive cells, indicating a functional improvement. Gene expression analysis showed an upregulation in CD34+ cells for antioxidant SOD1 (p < 0.05) and a downregulation in CD34- cells for IL-6 (p < 0.01). For arterial stiffness, both augmentation index and systolic blood pressure measures went down in saxagliptin subjects (p < 0.05). Saxagliptin, in combination with metformin, can help improve endothelial dysfunction in early diabetes before macrovascular complications appear. Trial registration Trial is registered under clinicaltrials.gov, NCT02024477.

  4. HMEC-1 adopt the mixed amoeboid-mesenchymal migration type during EndMT.

    PubMed

    Kryczka, Jakub; Przygodzka, Patrycja; Bogusz, Helena; Boncela, Joanna

    2017-06-01

    The contribution of endothelial cells to scar and fibrotic tissue formation is undisputedly connected to their ability to undergo the endothelial-to-mesenchymal transition (EndMT) towards fibroblast phenotype-resembling cells. The migration model of fibroblasts and fibroblast-resembling cells is still not fully understood. It may be either a Rho/ROCK-independent, an integrin- and MMP-correlated ECM degradation-dependent, a mesenchymal model or Rho/ROCK-dependent, integrin adhesion- and MMP activity-independent, an amoeboid model. Here, we hypothesized that microvascular endothelial cells (HMEC-1) undergoing EndMT adopt an intermediate state of drifting migration model between the mesenchymal and amoeboid protrusive types in the early stages of fibrosis. We characterized the response of HMEC-1 to TGF-β2, a well-known mediator of EndMT within the microvasculature. We observed that TGF-β2 induces up to an intermediate mesenchymal phenotype in HMEC-1. In parallel, MMP-2 is upregulated and is responsible for most proteolytic activity. Interestingly, the migration of HMEC-1 undergoing EndMT is dependent on both ECM degradation and invadosome formation associated with MMP-2 proteolytic activity and Rho/ROCK cytoskeleton contraction. In conclusion, the transition from mesenchymal towards amoeboid movement highlights a molecular plasticity mechanism in endothelial cell migration in skin fibrosis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. circHECTD1 promotes the silica-induced pulmonary endothelial-mesenchymal transition via HECTD1.

    PubMed

    Fang, Shencun; Guo, Huifang; Cheng, Yusi; Zhou, Zewei; Zhang, Wei; Han, Bing; Luo, Wei; Wang, Jing; Xie, Weiping; Chao, Jie

    2018-03-14

    Excessive proliferation and migration of fibroblasts contribute to pulmonary fibrosis in silicosis, and both epithelial cells and endothelial cells participate in the accumulation of fibroblasts via the epithelial-mesenchymal transition (EMT) and the endothelial-mesenchymal transition (EndMT), respectively. A mouse endothelial cell line (MML1) was exposed to silicon dioxide (SiO 2 , 50 μg/cm 2 ), and immunofluorescence and western blot analyses were performed to evaluate levels of specific endothelial and mesenchymal markers and to elucidate the mechanisms by which SiO 2 induces the EndMT. Functional changes were evaluated by analyzing cell migration and proliferation. The mRNA and circular RNA (circRNA) levels were measured using qPCR and fluorescent in situ hybridization (FISH). Lung tissue samples from both Tie2-GFP mice exposed to SiO 2 and silicosis patients were applied to confirm the observations from in vitro experiments. Based on the results from the current study, SiO 2 increased the expression of mesenchymal markers (type I collagen (COL1A1), type III collagen (COL3A1) and alpha smooth muscle actin (α-SMA/Acta2)) and decreased the expression of endothelial markers (vascular endothelial cadherin (VE-Cad/Cdh 5) and platelet endothelial cell adhesion molecule-1 (PECAM1)), indicating the occurrence of the EndMT in response to SiO 2 exposure both in vivo and in vitro. SiO 2 concomitantly increased circHECTD1 expression, which, in turn, inhibited HECTD1 protein expression. SiO 2 -induced increases in cell proliferation, migration, and changes in marker levels were restored by either a small interfering RNA (siRNA) targeting circHECTD1 or overexpression of HECTD1 via the CRISPR/Cas9 system, confirming the involvement of the circHECTD1/HECTD1 pathway in the EndMT. Moreover, tissue samples from SiO 2 -exposed mice and silicosis patients confirmed the EndMT and change in HECTD1 expression. Our findings reveal a potentially new function for the circHECTD1/HECTD1 pathway and suggest a possible mechanism of fibrosis in patients with pulmonary silicosis.

  6. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy.

    PubMed

    Sackey-Aboagye, Bridget; Olsen, Abby L; Mukherjee, Sarmistha M; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E; Lee, Gi Yun; Naga, Hani; Wells, Rebecca G

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.

  7. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy

    PubMed Central

    Sackey-Aboagye, Bridget; Olsen, Abby L.; Mukherjee, Sarmistha M.; Ventriglia, Alexander; Yokosaki, Yasuyuki; Greenbaum, Linda E.; Lee, Gi Yun; Naga, Hani

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN. PMID:27741254

  8. Elevated expression of NEU1 sialidase in idiopathic pulmonary fibrosis provokes pulmonary collagen deposition, lymphocytosis, and fibrosis.

    PubMed

    Luzina, Irina G; Lockatell, Virginia; Hyun, Sang W; Kopach, Pavel; Kang, Phillip H; Noor, Zahid; Liu, Anguo; Lillehoj, Erik P; Lee, Chunsik; Miranda-Ribera, Alba; Todd, Nevins W; Goldblum, Simeon E; Atamas, Sergei P

    2016-05-15

    Idiopathic pulmonary fibrosis (IPF) poses challenges to understanding its underlying cellular and molecular mechanisms and the development of better therapies. Previous studies suggest a pathophysiological role for neuraminidase 1 (NEU1), an enzyme that removes terminal sialic acid from glycoproteins. We observed increased NEU1 expression in epithelial and endothelial cells, as well as fibroblasts, in the lungs of patients with IPF compared with healthy control lungs. Recombinant adenovirus-mediated gene delivery of NEU1 to cultured primary human cells elicited profound changes in cellular phenotypes. Small airway epithelial cell migration was impaired in wounding assays, whereas, in pulmonary microvascular endothelial cells, NEU1 overexpression strongly impacted global gene expression, increased T cell adhesion to endothelial monolayers, and disrupted endothelial capillary-like tube formation. NEU1 overexpression in fibroblasts provoked increased levels of collagen types I and III, substantial changes in global gene expression, and accelerated degradation of matrix metalloproteinase-14. Intratracheal instillation of NEU1 encoding, but not control adenovirus, induced lymphocyte accumulation in bronchoalveolar lavage samples and lung tissues and elevations of pulmonary transforming growth factor-β and collagen. The lymphocytes were predominantly T cells, with CD8(+) cells exceeding CD4(+) cells by nearly twofold. These combined data indicate that elevated NEU1 expression alters functional activities of distinct lung cell types in vitro and recapitulates lymphocytic infiltration and collagen accumulation in vivo, consistent with mechanisms implicated in lung fibrosis.

  9. BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS

    PubMed Central

    Johnstone, Scott; Isakson, Brant; Locke, Darren

    2010-01-01

    Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177

  10. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin.

    PubMed

    Zhang, Zhi; Wang, Fang; Wang, Bing-Jian; Chu, Guang; Cao, Qunan; Sun, Bao-Gui; Dai, Qiu-Yan

    2014-10-01

    Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3. © 2014 The authors.

  11. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin

    PubMed Central

    Zhang, Zhi; Wang, Fang; Wang, Bing-jian; Chu, Guang; Cao, Qunan; Sun, Bao-Gui; Dai, Qiu-Yan

    2014-01-01

    Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3. PMID:24982243

  12. The Lack of Utility of Circulating Biomarkers of Inflammation and Endothelial Dysfunction for Type 2 Diabetes Risk Prediction Among Postmenopausal Women

    PubMed Central

    Chao, Chun; Song, Yiqing; Cook, Nancy; Tseng, Chi-Hong; Manson, JoAnn E.; Eaton, Charles; Margolis, Karen L.; Rodriguez, Beatriz; Phillips, Lawrence S.; Tinker, Lesley F.; Liu, Simin

    2011-01-01

    Background Recent studies have linked plasma markers of inflammation and endothelial dysfunction to type 2 diabetes mellitus (DM) development. However, the utility of these novel biomarkers for type 2 DM risk prediction remains uncertain. Methods The Women’s Health Initiative Observational Study (WHIOS), a prospective cohort, and a nested case-control study within the WHIOS of 1584 incident type 2 DM cases and 2198 matched controls were used to evaluate the utility of plasma markers of inflammation and endothelial dysfunction for type 2 DM risk prediction. Between September 1994 and December 1998, 93 676 women aged 50 to 79 years were enrolled in the WHIOS. Fasting plasma levels of glucose, insulin, white blood cells, tumor necrosis factor receptor 2, interleukin 6, high-sensitivity C-reactive protein, E-selectin, soluble intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 were measured using blood samples collected at baseline. A series of prediction models including traditional risk factors and novel plasma markers were evaluated on the basis of global model fit, model discrimination, net reclassification improvement, and positive and negative predictive values. Results Although white blood cell count and levels of interleukin 6, high-sensitivity C-reactive protein, and soluble intercellular adhesion molecule 1 significantly enhanced model fit, none of the inflammatory and endothelial dysfunction markers improved the ability of model discrimination (area under the receiver operating characteristic curve, 0.93 vs 0.93), net reclassification, or predictive values (positive, 0.22 vs 0.24; negative, 0.99 vs 0.99 [using 15% 6-year type 2 DM risk as the cutoff]) compared with traditional risk factors. Similar results were obtained in ethnic-specific analyses. Conclusion Beyond traditional risk factors, measurement of plasma markers of systemic inflammation and endothelial dysfunction contribute relatively little additional value in clinical type 2 DM risk prediction in a multiethnic cohort of postmenopausal women. PMID:20876407

  13. Early Corneal Cellular and Nerve Fiber Pathology in Young Patients With Type 1 Diabetes Mellitus Identified Using Corneal Confocal Microscopy.

    PubMed

    Szalai, Eszter; Deák, Eszter; Módis, László; Németh, Gábor; Berta, András; Nagy, Annamária; Felszeghy, Eniko; Káposzta, Rita; Malik, Rayaz A; Csutak, Adrienne

    2016-03-01

    The aim of this study was to quantify epithelial, stromal, and endothelial cell density, and subbasal nerve morphology in young patients with type 1 diabetes mellitus with and without diabetic retinopathy. A total of 28 young patients (mean age, 22.86 ± 9.05 years) with type 1 diabetes, with (n = 18) and without (n = 10) retinopathy, and 17 age-matched healthy control subjects (mean age, 26.53 ± 2.43 years) underwent corneal confocal microscopy (CCM). We found significantly lower epithelial (P < 0.0001) and endothelial (P = 0.001) cell densities and higher keratocyte cell density (P = 0.024) in patients with type 1 diabetes compared to controls. Significantly lower corneal nerve fiber density (P = 0.004), nerve branch density (P = 0.004), total nerve branch density (P = 0.04), and nerve fiber length (P = 0.001), and greater nerve fiber width (P = 0.04) were observed in patients with type 1 diabetes compared to control subjects. Significantly lower epithelial (P < 0.001) and endothelial (P = 0.02) cell densities, nerve branch density (P = 0.02), and nerve fiber length (P = 0.04), and significantly higher keratocyte cell density (P = 0.02) were found in patients with type 1 diabetes without retinopathy compared to control subjects. Corneal confocal microscopy identifies corneal cellular and small nerve fiber pathology in young patients with type 1 diabetes without retinopathy, which increases in severity in those with retinopathy. Corneal confocal microscopy appears to have considerable use as an imaging biomarker for early subclinical pathology in young patients with type 1 diabetes mellitus.

  14. Nitrosonifedipine Ameliorates the Progression of Type 2 Diabetic Nephropathy by Exerting Antioxidative Effects

    PubMed Central

    Ishizawa, Keisuke; Izawa-Ishizawa, Yuki; Yamano, Noriko; Urushihara, Maki; Sakurada, Takumi; Imanishi, Masaki; Fujii, Shoko; Nuno, Asami; Miyamoto, Licht; Kihira, Yoshitaka; Ikeda, Yasumasa; Kagami, Shoji; Kobori, Hiroyuki; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2014-01-01

    Diabetic nephropathy (DN) is the major cause of end-stage renal failure. Oxidative stress is implicated in the pathogenesis of DN. Nitrosonifedipine (NO-NIF) is a weak calcium channel blocker that is converted from nifedipine under light exposure. Recently, we reported that NO-NIF has potential as a novel antioxidant with radical scavenging abilities and has the capacity to treat vascular dysfunction by exerting an endothelial protective effect. In the present study, we extended these findings by evaluating the efficacy of NO-NIF against DN and by clarifying the mechanisms of its antioxidative effect. In a model of type 2 DN (established in KKAy mice), NO-NIF administration reduced albuminuria and proteinuria as well as glomerular expansion without affecting glucose metabolism or systolic blood pressure. NO-NIF also suppressed renal and systemic oxidative stress and decreased the expression of intercellular adhesion molecule (ICAM)-1, a marker of endothelial cell injury, in the glomeruli of the KKAy mice. Similarly, NO-NIF reduced albuminuria, oxidative stress, and ICAM-1 expression in endothelial nitric oxide synthase (eNOS) knockout mice. Moreover, NO-NIF suppressed urinary angiotensinogen (AGT) excretion and intrarenal AGT protein expression in proximal tubular cells in the KKAy mice. On the other hand, hyperglycemia-induced mitochondrial superoxide production was not attenuated by NO-NIF in cultured endothelial cells. These findings suggest that NO-NIF prevents the progression of type 2 DN associated with endothelial dysfunction through selective antioxidative effects. PMID:24489716

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, Hyung Joon; Seo, Ha-Rim; Jeong, Hyo Eun

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelialmore » cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.« less

  16. Characterization of atrial natriuretic peptide receptors in brain microvessel endothelial cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Huls, M. H.; Sams, Clarence F.

    1989-01-01

    In view of the suggestions by Chabrier et al. (1987) and Steardo and Nathanson (1987) that atrial natriuretic peptide (ANP) may play a role in the fluid homeostasis of the brain, the ANP receptors in primary cultures of bovine brain microvessel endothelian cells were quantitated and characterized. Results of partition binding studies and the effect of cGMP additions indicated the presence of at least two types of ANP receptors, with the majority of the receptors being the nonguanylate cyclase coupled receptors. The presence of at least two ANP receptor types suggests an active role for ANP in regulating brain endothelial cell function.

  17. Polymerisation of fibrin αC-domains promotes endothelial cell migration and proliferation.

    PubMed

    Yakovlev, S; Mikhailenko, I; Tsurupa, G; Belkin, A M; Medved, L

    2014-12-01

    Upon conversion of fibrinogen into fibrin, fibrinogen αC-domains containing the RGD recognition motif form ordered αC polymers. Our previous study revealed that polymerisation of these domains promotes integrin-dependent adhesion and spreading of endothelial cells, as well as integrin-mediated activation of the FAK and ERK1/2 signalling pathways. The major goal of this study was to test the impact of αC-domain polymerisation on endothelial cell migration and proliferation during wound healing, and to clarify the mechanism underlying superior activity of αC polymers toward endothelial cells. In an in vitro wound healing assay, confluent endothelial cell monolayers on tissue culture plates coated with the αC monomer or αC polymers were wounded by scratching and wound closure was monitored by time-lapse videomicroscopy. Although the plates were coated with equal amounts of αC species, as confirmed by ELISA, wound closure by the cells occurred much faster on αC polymers, indicating that αC-domain polymerisation promotes cell migration and proliferation. In agreement, endothelial cell proliferation was also more efficient on αC polymers, as revealed by cell proliferation assay. Wound closure on both types of substrates was equally inhibited by the integrin-blocking GRGDSP peptide and a specific antagonist of the ERK1/2 signalling pathway. In contrast, blocking the FAK signaling pathway by a specific antagonist decreased wound closure only on αC polymers. These results indicate that polymerisation of the αC-domains enhances integrin-dependent endothelial cell migration and proliferation mainly through the FAK signalling pathway. Furthermore, clustering of integrin-binding RGD motifs in αC polymers is the major mechanism triggering these events.

  18. Proteomic analysis of corneal endothelial cell-descemet membrane tissues reveals influence of insulin dependence and disease severity in type 2 diabetes mellitus.

    PubMed

    Skeie, Jessica M; Aldrich, Benjamin T; Goldstein, Andrew S; Schmidt, Gregory A; Reed, Cynthia R; Greiner, Mark A

    2018-01-01

    The objective of this study was to characterize the proteome of the corneal endothelial cell layer and its basement membrane (Descemet membrane) in humans with various severities of type II diabetes mellitus compared to controls, and identify differentially expressed proteins across a range of diabetic disease severities that may influence corneal endothelial cell health. Endothelium-Descemet membrane complex tissues were peeled from transplant suitable donor corneas. Protein fractions were isolated from each sample and subjected to multidimensional liquid chromatography and tandem mass spectrometry. Peptide spectra were matched to the human proteome, assigned gene ontology, and grouped into protein signaling pathways unique to each of the disease states. We identified an average of 12,472 unique proteins in each of the endothelium-Descemet membrane complex tissue samples. There were 2,409 differentially expressed protein isoforms that included previously known risk factors for type II diabetes mellitus related to metabolic processes, oxidative stress, and inflammation. Gene ontology analysis demonstrated that diabetes progression has many protein footprints related to metabolic processes, binding, and catalysis. The most represented pathways involved in diabetes progression included mitochondrial dysfunction, cell-cell junction structure, and protein synthesis regulation. This proteomic dataset identifies novel corneal endothelial cell and Descemet membrane protein expression in various stages of diabetic disease. These findings give insight into the mechanisms involved in diabetes progression relevant to the corneal endothelium and its basement membrane, prioritize new pathways for therapeutic targeting, and provide insight into potential biomarkers for determining the health of this tissue.

  19. Dynamical mechanisms of conducted vasoreactivity: minimalistic modeling study

    NASA Astrophysics Data System (ADS)

    Kuryshova, Ekaterina A.; Rogatina, Kristina V.; Postnov, Dmitry E.

    2018-04-01

    Endothelial cells are cells lining the inner surface of the blood and lymphatic vessels, they separate the bloodstream from the deeper layers of the vascular wall. Earlier endothelium was considered only as a passive barrier between blood and tissues. However, it has now become apparent that endothelial cells, specifically reacting to different molecular signals generated locally and remotely, perform a variety of functions. Simulation of large vascular networks requires the development of specialized models of autoregulation of vascular tone. On the one hand, such models should have a strong support for cellular dynamics, on the other - be as computationally efficient as possible. A model of a two-dimensional cylindrical array of endothelial cells is proposed on the basis of the integral description by means of the whole-cell CVC. The process of propagation of hyperpolarizing and depolarizing pulses is investigated depending on the statistics of cell distribution between the two main types. Endothelial cells are considered as a dynamic system possessing bistability. Based on the articles, the results of the distribution of the resting-potential values were repeated, the propagation of the hyperpolarizing pulse was observed, the endothelial cell chain supported the propagation of the wave switching to a hyperpolarized state, and then the return wave returned to its original state.

  20. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line.

    PubMed

    Yoder, Elizabeth J

    2002-04-15

    Astrocytes extend specialized endfoot processes to perisynaptic and perivascular regions, and thus are positioned to mediate the bidirectional flow of metabolic, ionic, and other transmissive substances between neurons and the blood stream. While mutual structural and functional interactions between neurons and astrocytes have been documented, less is known about the interactions between astrocytes and cerebrovascular cells. For example, although the ability of astrocytes to induce structural and functional changes in endothelial cells is established, the reciprocity of brain endothelial cells to induce changes in astrocytes is undetermined. This issue is addressed in the present study. Changes in primary cultures of neonatal mouse cortical astrocytes were investigated following their coculture with mouse brain capillary endothelial (bEnd3) cells. The presence of bEnd3 cells altered the morphology of astrocytes by transforming them from confluent monolayers into networks of elongated multicellular columns. These columns did not occur when either bEnd3 cells or astrocytes were cocultured with other cell types, suggesting that astrocytes undergo specific morphological consequences when placed in close proximity to brain endothelial cells. In addition to these structural changes, the pharmacological profile of astrocytes was modified by coculture with bEnd3 cells. Astrocytes in the cocultures showed an increased Ca2+ responsiveness to bradykinin and glutamate, but no change in responsiveness to ATP, as compared to controls. Coculturing the astrocytes with a neuronal cell line resulted in increased responsiveness of the glial responses to glutamate but not to bradykinin. These studies indicate that brain endothelial cells induce changes in astrocyte morphology and pharmacology. Copyright 2002 Wiley-Liss, Inc.

  1. Generating induced pluripotent stem cell derived endothelial cells and induced endothelial cells for cardiovascular disease modelling and therapeutic angiogenesis.

    PubMed

    Clayton, Z E; Sadeghipour, S; Patel, S

    2015-10-15

    Standard therapy for atherosclerotic coronary and peripheral arterial disease is insufficient in a significant number of patients because extensive disease often precludes effective revascularization. Stem cell therapy holds promise as a supplementary treatment for these patients, as pre-clinical and clinical research has shown transplanted cells can promote angiogenesis via direct and paracrine mechanisms. Induced pluripotent stem cells (iPSCs) are a novel cell type obtained by reprogramming somatic cells using exogenous transcription factor cocktails, which have been introduced to somatic cells via viral or plasmid constructs, modified mRNA or small molecules. IPSCs are now being used in disease modelling and drug testing and are undergoing their first clinical trial, but despite recent advances, the inefficiency of the reprogramming process remains a major limitation, as does the lack of consensus regarding the optimum transcription factor combination and delivery method and the uncertainty surrounding the genetic and epigenetic stability of iPSCs. IPSCs have been successfully differentiated into vascular endothelial cells (iPSC-ECs) and, more recently, induced endothelial cells (iECs) have also been generated by direct differentiation, which bypasses the pluripotent intermediate. IPSC-ECs and iECs demonstrate endothelial functionality in vitro and have been shown to promote neovessel growth and enhance blood flow recovery in animal models of myocardial infarction and peripheral arterial disease. Challenges remain in optimising the efficiency, safety and fidelity of the reprogramming and endothelial differentiation processes and establishing protocols for large-scale production of clinical-grade, patient-derived cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Effect of high-glucose conditions on human periodontal ligament endothelial cells: in vitro analysis.

    PubMed

    Maruyama, Kosuke; Sato, Soh

    2017-01-01

    Endothelial cells participate in key aspects of vascular biology, such as maintenance of capillary permeability and regulation of inflammation. According to previous reports, endothelial cells have revealed highly specific characteristics depending on the organs and tissues. In particular, periodontal endothelial cells have a higher permeability than vascular endothelial cells of other types of tissue. Periodontal disease is not only a chronic disease in oral, but also affect the entire body. Diabetes and periodontal disease are closely related, with periodontal disease even been referred to as the sixth complication of disease. However, no reports have investigated the pathophysiology of microvascular in periodontal tissue once diabetes has developed. Therefore, the aim of the present study is to investigate changes in the properties of human periodontal endothelial cells (HPDLECs) that were cultured under high-glucose conditions. We isolated HPDLECs from human periodontal ligament cells. HPDLECs were cultured under high-glucose (5.5, 11.0, 22.0 mM) and investigated proliferation, apoptosis, tube formation and the expression of cell adhesion molecules. A 5.5 mM (100 mg/dl) control was used in this study. HPDLECs stimulated with high glucose concentration exhibited suppression of cell proliferation and an increased percentage of apoptosis-positive cells. This results suggested that apoptosis was caused by TNF-α expression. The expression levels cell adhesion molecules increased. These results suggest that when HPDLECs are stimulated with a high glucose concentrations, PKC in the intracellular cell substrate is activated, increasing the expression of intercellular and vascular adhesion molecules. Thus, the results of this study demonstrate that diabetes exacerbates periodontal disease.

  3. An evolving new paradigm: endothelial cells – conditional innate immune cells

    PubMed Central

    2013-01-01

    Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies. PMID:23965413

  4. An evolving new paradigm: endothelial cells--conditional innate immune cells.

    PubMed

    Mai, Jietang; Virtue, Anthony; Shen, Jerry; Wang, Hong; Yang, Xiao-Feng

    2013-08-22

    Endothelial cells (ECs) are a heterogeneous population that fulfills many physiological processes. ECs also actively participate in both innate and adaptive immune responses. ECs are one of the first cell types to detect foreign pathogens and endogenous metabolite-related danger signals in the bloodstream, in which ECs function as danger signal sensors. Treatment with lipopolysaccharide activates ECs, causing the production of pro-inflammatory cytokines and chemokines, which amplify the immune response by recruiting immune cells. Thus, ECs function as immune/inflammation effectors and immune cell mobilizers. ECs also induce cytokine production by immune cells, in which ECs function as immune regulators either by activating or suppressing immune cell function. In addition, under certain conditions, ECs can serve as antigen presenting cells (antigen presenters) by expressing both MHC I and II molecules and presenting endothelial antigens to T cells. These facts along with the new concept of endothelial plasticity suggest that ECs are dynamic cells that respond to extracellular environmental changes and play a meaningful role in immune system function. Based on these novel EC functions, we propose a new paradigm that ECs are conditional innate immune cells. This paradigm provides a novel insight into the functions of ECs in inflammatory/immune pathologies.

  5. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

    PubMed

    Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H

    2015-11-01

    Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes. Copyright © 2015 the American Physiological Society.

  6. RADIOAUTOGRAPHIC DEMONSTRATION OF 5-HYDROXYTRYPTAMINE-3H UPTAKE BY PULMONARY ENDOTHELIAL CELLS

    PubMed Central

    Strum, Judy M.; Junod, Alain F.

    1972-01-01

    The lung is able to rapidly remove 5-hydroxytryptamme (5-HT) from the circulation by a Na+-dependent transport mechanism. In order to identify the sites of uptake, radioautographic studies were done on rat lungs which had been isolated and perfused with 5-HT-3H and 0 5 mM iproniazid, a monoamine oxidase inhibitor. In control experiments 10-4 M imipramine was added to the perfusate to inhibit the membrane transport of 5-HT At the light microscope level, silver grains were seen concentrated near capillaries and in the endothelium of large vessels From electron microscope radioautographs a semiquantitative grain count was made and 90% of the silver grains were observed over capillary endothelial cells. The grains were found over the nucleus and cytoplasm of the cell and shewed no preferential association with any particular cytoplasmic inclusion bodies, organelles, or vesicles Other cell types were unlabeled except for a few mast cells, certain vascular smooth muscle cells, and one nerve ending. This radioautographic demonstration of the cell type responsible for the rapid removal of 5-HT from the lung circulation clearly establishes the existence of a new metabolic role for pulmonary endothelial cells. PMID:5044755

  7. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    PubMed

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  8. Subsets of telocytes: Myocardial telocytes.

    PubMed

    Rusu, M C; Hostiuc, S; Vrapciu, A D; Mogoantă, L; Mănoiu, V S; Grigoriu, F

    2017-01-01

    Telocytes (TCs) are morphologically defined as small-sized cells with long, thin, moniliform processes called telopodes (Tps). Numerous papers imply that TCs are a distinctive cell type, and that transmission electron microscopy (TEM) is the gold standard tool for their identification. We aimed to reproduce previous studies on myocardial TCs to check their validity. For this purpose we performed an immunohistochemical study on human cardiac samples from six autopsied donor cadavers, using antibodies against CD10, CD31, CD34, CD146, Ki67, alpha-smooth muscle actin (α-SMA), Platelet-Derived Growth Factor Receptor-alpha (PDGFRα) and laminin. Additionally we performed a TEM study on cardiac samples from three human autopsied donor cadavers and five adult Sprague-Dawley rats. We found endothelial cells (ECs), cords, and filopodia-projecting endothelial tip cells (ETCs) that expressed CD10, CD31, CD34, CD146, and PDGFR-α. Often, endothelial cells closely neighbored the sarcolemmal basal laminae. Endothelial progenitor cells, as well as nascent capillaries, were CD31+/CD34+. Proliferative endothelial cells expressed Ki67. In larger vessels we found pericytes that expressed CD146 and α-SMA; scarce α-SMA-expressing spindle-shaped cells lining cardiomyocytes were suggestive of a pericytic role in angiogenic sprout guidance. The TEM study showed that endothelial tubes are almost exclusively found in the narrow myocardial interstitia. ECs that built them up appeared identical to the cells that previous TEM studies have suggested to be myocardial telocytes. A subset of stromal cells with TC-like phenotype and telopodes-like processes actually seem to configure blood vessels, and therefore belong to the endothelial lineage. This study shows that data presented in previous studies on myocardial telocytes is not enough to allow the reproducibility of the results. At least a subset of cells considered to be TCs might belong to the endothelial lineage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure.

    PubMed

    Špiranec, Katarina; Chen, Wen; Werner, Franziska; Nikolaev, Viacheslav O; Naruke, Takashi; Koch, Franziska; Werner, Andrea; Eder-Negrin, Petra; Diéguez-Hurtado, Rodrigo; Adams, Ralf H; Baba, Hideo A; Schmidt, Hannes; Schuh, Kai; Skryabin, Boris V; Movahedi, Kiavash; Schweda, Frank; Kuhn, Michaela

    2018-04-06

    Background -Peripheral vascular resistance has a major impact on arterial blood pressure levels. Endothelial C-type natriuretic peptide (CNP) participates in the local regulation of vascular tone but the target cells remain controversial. The cGMP-producing guanylyl cyclase-B (GC-B) receptor for CNP is expressed in vascular smooth muscle cells (VSMC). However, whereas endothelial cell-specific CNP knockout mice are hypertensive, mice with deletion of GC-B in VSMC have unaltered blood pressure. Methods -We analyzed whether the vasodilating response to CNP changes along the vascular tree, i.e. whether the GC-B receptor is expressed in microvascular types of cells. Mice with a floxed GC-B ( Npr2 ) gene were interbred with Tie2-Cre or PDGF-Rβ-Cre ERT2 lines to develop mice lacking GC-B in endothelial cells or in precapillary arteriolar SMC and capillary pericytes. Intravital microscopy, (non)invasive hemodynamics, fluorescence energy transfer studies of pericyte's cAMP levels in situ and renal physiology were combined to dissect whether and how CNP/GC-B/cGMP signaling modulates microcirculatory tone and blood pressure. Results -Intravital microscopy studies revealed that the vasodilatatory effect of CNP increases towards small-diameter arterioles and capillaries. Consistently, CNP did not prevent endothelin-1-induced acute constrictions of proximal arterioles but fully reversed endothelin effects in precapillary arterioles and capillaries. Here, the GC-B receptor is expressed both in endothelial and mural cells, i.e. in pericytes. Notably, the vasodilatatory effects of CNP were preserved in mice with endothelial GC-B deletion but abolished in mice lacking GC-B in microcirculatory SMC and pericytes. CNP, via GC-B/cGMP signaling modulates two signaling cascades in pericytes: it activates cGMP-dependent protein kinase I to phosphorylate downstream targets such as the cytoskeleton-associated vasodilator activated phosphoprotein; and it inhibits phosphodiesterase 3A, thereby enhancing pericyte's cAMP levels. Ultimately these pathways prevent endothelin-induced increases of pericyte calcium levels and pericyte contraction. Mice with deletion of GC-B in microcirculatory SMC and pericytes have elevated peripheral resistance and chronic arterial hypertension without a change in renal function. Conclusions -Our studies indicate that endothelial CNP regulates distal arteriolar and capillary blood flow. CNP-induced GC-B/cGMP signaling in microvascular SMC and pericytes is essential for the maintenance of normal microvascular resistance and blood pressure.

  10. Timing of galectin-1 exposure differentially modulates Nipah virus entry and syncytium formation in endothelial cells.

    PubMed

    Garner, Omai B; Yun, Tatyana; Pernet, Olivier; Aguilar, Hector C; Park, Arnold; Bowden, Thomas A; Freiberg, Alexander N; Lee, Benhur; Baum, Linda G

    2015-03-01

    Nipah virus (NiV) is a deadly emerging enveloped paramyxovirus that primarily targets human endothelial cells. Endothelial cells express the innate immune effector galectin-1 that we have previously shown can bind to specific N-glycans on the NiV envelope fusion glycoprotein (F). NiV-F mediates fusion of infected endothelial cells into syncytia, resulting in endothelial disruption and hemorrhage. Galectin-1 is an endogenous carbohydrate-binding protein that binds to specific glycans on NiV-F to reduce endothelial cell fusion, an effect that may reduce pathophysiologic sequelae of NiV infection. However, galectins play multiple roles in regulating host-pathogen interactions; for example, galectins can promote attachment of HIV to T cells and macrophages and attachment of HSV-1 to keratinocytes but can also inhibit influenza entry into airway epithelial cells. Using live Nipah virus, in the present study, we demonstrate that galectin-1 can enhance NiV attachment to and infection of primary human endothelial cells by bridging glycans on the viral envelope to host cell glycoproteins. In order to exhibit an enhancing effect, galectin-1 must be present during the initial phase of virus attachment; in contrast, addition of galectin-1 postinfection results in reduced production of progeny virus and syncytium formation. Thus, galectin-1 can have dual and opposing effects on NiV infection of human endothelial cells. While various roles for galectin family members in microbial-host interactions have been described, we report opposing effects of the same galectin family member on a specific virus, with the timing of exposure during the viral life cycle determining the outcome. Nipah virus is an emerging pathogen that targets endothelial cells lining blood vessels; the high mortality rate (up to 70%) in Nipah virus infections results from destruction of these cells and resulting catastrophic hemorrhage. Host factors that promote or prevent Nipah virus infection are not well understood. Endogenous human lectins, such as galectin-1, can function as pattern recognition receptors to reduce infection and initiate immune responses; however, lectins can also be exploited by microbes to enhance infection of host cells. We found that galectin-1, which is made by inflamed endothelial cells, can both promote Nipah virus infection of endothelial cells by "bridging" the virus to the cell, as well as reduce production of progeny virus and reduce endothelial cell fusion and damage, depending on timing of galectin-1 exposure. This is the first report of spatiotemporal opposing effects of a host lectin for a virus in one type of host cell. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Fatty acid-binding protein 4 impairs the insulin-dependent nitric oxide pathway in vascular endothelial cells

    PubMed Central

    2012-01-01

    Background Recent studies have shown that fatty acid-binding protein 4 (FABP4) plasma levels are associated with impaired endothelial function in type 2 diabetes (T2D). In this work, we analysed the effect of FABP4 on the insulin-mediated nitric oxide (NO) production by endothelial cells in vitro. Methods In human umbilical vascular endothelial cells (HUVECs), we measured the effects of FABP4 on the insulin-mediated endothelial nitric oxide synthase (eNOS) expression and activation and on NO production. We also explored the impact of exogenous FABP4 on the insulin-signalling pathway (insulin receptor substrate 1 (IRS1) and Akt). Results We found that eNOS expression and activation and NO production are significantly inhibited by exogenous FABP4 in HUVECs. FABP4 induced an alteration of the insulin-mediated eNOS pathway by inhibiting IRS1 and Akt activation. These results suggest that FABP4 induces endothelial dysfunction by inhibiting the activation of the insulin-signalling pathway resulting in decreased eNOS activation and NO production. Conclusion These findings provide a mechanistic linkage between FABP4 and impaired endothelial function in diabetes, which leads to an increased cardiovascular risk. PMID:22709426

  12. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model

    PubMed Central

    Mensah, Solomon; Hirshberg, Carly; Tarbell, John M.

    2016-01-01

    Background and aims Previous experiments suggest that both increased endothelial cell apoptosis and endothelial surface glycocalyx shedding could play a role in the endothelial dysfunction and inflammation of athero-prone regions of the vasculature. We sought to elucidate the possibly synergistic mechanisms by which endothelial cell apoptosis and glycocalyx shedding promote atherogenesis. Methods 4- to 6-week old male C57Bl/6 apolipoprotein E knockout (ApoE−/−) mice were fed a Western diet for 10 weeks and developed plaques in their brachiocephalic arteries. Results Glycocalyx coverage and thickness were significantly reduced over the plaque region compared to the non-plaque region (coverage plaque: 71±23%, non-plaque: 97±3%, p= 0.02; thickness plaque: 0.85±0.15 μm, non-plaque: 1.2±0.21 μm, p= 0.006). Values in the non-plaque region were not different from those found in wild type mice fed a normal diet (coverage WT: 92±3%, p= 0.7 vs. non-plaque ApoE−/−, thickness WT: 1.1±0.06 μm, p= 0.2 vs. non-plaque ApoE−/−). Endothelial cell apoptosis was significantly increased in ApoE−/− mice compared to wild type mice (ApoE−/− :64.3±33.0, WT: 1.1±0.5 TUNEL-pos/cm, p= 2×10−7). The number of apoptotic endothelial cells per unit length was 2 times higher in the plaque region than in the non-plaque region of the same vessel (p= 3×10−5). Increased expression of matrix metalloproteinase 9 co-localized with glycocalyx shedding and plaque buildup. Conclusions Our results suggest that, in concert with endothelial apoptosis that increases lipid permeability, glycocalyx shedding initiated by inflammation facilitates monocyte adhesion and macrophage infiltration that promote lipid retention and the development of atherosclerotic plaques. PMID:27529818

  13. A heterotypic bystander effect for tumor cell killing after adeno-associated virus/phage-mediated, vascular-targeted suicide gene transfer.

    PubMed

    Trepel, Martin; Stoneham, Charlotte A; Eleftherohorinou, Hariklia; Mazarakis, Nicholas D; Pasqualini, Renata; Arap, Wadih; Hajitou, Amin

    2009-08-01

    Suicide gene transfer is the most commonly used cytotoxic approach in cancer gene therapy; however, a successful suicide gene therapy depends on the generation of efficient targeted systemic gene delivery vectors. We recently reported that selective systemic delivery of suicide genes such as herpes simplex virus thymidine kinase (HSVtk) to tumor endothelial cells through a novel targeted adeno-associated virus/phage vector leads to suppression of tumor growth. This marked effect has been postulated to result primarily from the death of cancer cells by hypoxia following the targeted disruption of tumor blood vessels. Here, we investigated whether an additional mechanism of action is involved. We show that there is a heterotypic "bystander" effect between endothelial cells expressing the HSVtk suicide gene and tumor cells. Treatment of cocultures of HSVtk-transduced endothelial cells and non-HSVtk-transduced tumor cells with ganciclovir results in the death of both endothelial and tumor cells. Blocking of this effect by 18alpha-glycyrrhetinic acid indicates that gap junctions between endothelial and tumor cells are largely responsible for this phenomenon. Moreover, the observed bystander killing is mediated by connexins 43 and 26, which are expressed in endothelial and tumor cell types. Finally, this heterotypic bystander effect is accompanied by a suppression of tumor growth in vivo that is independent of primary gene transfer into host-derived tumor vascular endothelium. These findings add an alternative nonmutually exclusive and potentially synergistic cytotoxic mechanism to cancer gene therapy based on targeted adeno-associated virus/phage and further support the promising role of nonmalignant tumor stromal cells as therapeutic targets.

  14. Cardiac Remodeling: Endothelial Cells Have More to Say Than Just NO

    PubMed Central

    Segers, Vincent F. M.; Brutsaert, Dirk L.; De Keulenaer, Gilles W.

    2018-01-01

    The heart is a highly structured organ consisting of different cell types, including myocytes, endothelial cells, fibroblasts, stem cells, and inflammatory cells. This pluricellularity provides the opportunity of intercellular communication within the organ, with subsequent optimization of its function. Intercellular cross-talk is indispensable during cardiac development, but also plays a substantial modulatory role in the normal and failing heart of adults. More specifically, factors secreted by cardiac microvascular endothelial cells modulate cardiac performance and either positively or negatively affect cardiac remodeling. The role of endothelium-derived small molecules and peptides—for instance NO or endothelin-1—has been extensively studied and is relatively well defined. However, endothelial cells also secrete numerous larger proteins. Information on the role of these proteins in the heart is scattered throughout the literature. In this review, we will link specific proteins that modulate cardiac contractility or cardiac remodeling to their expression by cardiac microvascular endothelial cells. The following proteins will be discussed: IL-6, periostin, tenascin-C, thrombospondin, follistatin-like 1, frizzled-related protein 3, IGF-1, CTGF, dickkopf-3, BMP-2 and−4, apelin, IL-1β, placental growth factor, LIF, WISP-1, midkine, and adrenomedullin. In the future, it is likely that some of these proteins can serve as markers of cardiac remodeling and that the concept of endothelial function and dysfunction might have to be redefined as we learn more about other factors secreted by ECs besides NO. PMID:29695980

  15. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films.

    PubMed

    Ranjan, Ashwini; Webster, Thomas J

    2009-07-29

    The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 microm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.

  16. The synergistic necrohemorrhagic action of Clostridium perfringens perfringolysin and alpha toxin in the bovine intestine and against bovine endothelial cells

    PubMed Central

    2013-01-01

    Bovine necrohemorrhagic enteritis is a major cause of mortality in veal calves. Clostridium perfringens is considered as the causative agent, but there has been controversy on the toxins responsible for the disease. Recently, it has been demonstrated that a variety of C. perfringens type A strains can induce necrohemorrhagic lesions in a calf intestinal loop assay. These results put forward alpha toxin and perfringolysin as potential causative toxins, since both are produced by all C. perfringens type A strains. The importance of perfringolysin in the pathogenesis of bovine necrohemorrhagic enteritis has not been studied before. Therefore, the objective of the current study was to evaluate the role of perfringolysin in the development of necrohemorrhagic enteritis lesions in calves and its synergism with alpha toxin. A perfringolysin-deficient mutant, an alpha toxin-deficient mutant and a perfringolysin alpha toxin double mutant were less able to induce necrosis in a calf intestinal loop assay as compared to the wild-type strain. Only complementation with both toxins could restore the activity to that of the wild-type. In addition, perfringolysin and alpha toxin had a synergistic cytotoxic effect on bovine endothelial cells. This endothelial cell damage potentially explains why capillary hemorrhages are an initial step in the development of bovine necrohemorrhagic enteritis. Taken together, our results show that perfringolysin acts synergistically with alpha toxin in the development of necrohemorrhagic enteritis in a calf intestinal loop model and we hypothesize that both toxins act by targeting the endothelial cells. PMID:23782465

  17. Engineering a Microvascular Capillary Bed in a Tissue-Like Collagen Construct

    PubMed Central

    Unger, Ronald E.; Brochhausen, Christoph; Brown, Robert A.; Kirkpatrick, James C.

    2014-01-01

    Previous studies have shown that plastic compression (PC) of collagen gels allows a rapid and controlled fabrication of matrix- and cell-rich constructs in vitro that closely mimic the structure and characteristics of tissues in vivo. Microvascular endothelial cells, the major cell type making up the blood vessels in the body, were added to the PC collagen to determine whether cells attach, survive, grow, and express endothelial cell characteristics when seeded alone or in coculture with other cells. Endothelial cells seeded on the PC collagen containing human foreskin fibroblasts (HFF) or human osteoblasts (HOS) formed vessel-like structures over 3 weeks in culture without the addition of exogenous growth factors in the medium. In contrast, on the PC scaffolds without HFF or HOS, human dermal microvascular endothelial cells (HDMEC) exhibited a typical cobblestone morphology for 21 days under the same conditions. We propose that the coculture of primary endothelial cells with PC collagen constructs, containing a stromal cell population, is a valuable technique for in vitro modeling of proangiogenic responses toward such biomimetic constructs in vivo. A major observation in the cocultures was the absence of gel contraction, even after 3 weeks of fibroblast culture. This collagen form could, for example, be of great value in tissue engineering of the skin, as contractures are both aesthetically and functionally disabling. PMID:24684395

  18. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation.

    PubMed

    Wei, Yu; Ji, Ying; Xiao, Lin-Lin; Lin, Quan-kui; Xu, Jian-ping; Ren, Ke-feng; Ji, Jian

    2013-04-01

    The in vivo endothelialisation of materials provides a promising strategy for the rapid re-endothelialisation of a cardiovascular implantation. Although many studies have focused on improving the rapid endothelialisation through the immobilisation of bioactive molecules, it should be noted that the endothelial cells (ECs) will compete with other cell types in vivo. Thus, the efforts to partially enhance the EC growth without considering the cell competition might be misleading and meaningless in vivo. In this study, we demonstrated that the competitive growth of human umbilical vein endothelial cells (HUVECs) over human aortic smooth muscle cells (HASMCs) could be increased through the synergic action of the nonspecific resistance to phosphorylcholine and the specific recognition of the REDV peptide. Further in vivo data indicate that the competitive ability of ECs over SMCs, instead of the number of ECs, is a significantly more important criterion for the development of a pure endothelial layer in vivo and thus the attainment of a better anti-restenosis effect. Consequently, the surface tailoring of a stent to obtain high endothelial cell selectivity is likely an effective design criterion for in situ endothelialisation and a possible future solution for the problem of in-stent restenosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Tumor necrosis factor alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-R55

    PubMed Central

    1993-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a pleiotropic cytokine triggering cell responses through two distinct membrane receptors. Stimulation of leukocyte adhesion to the endothelium is one of the many TNF-alpha activities and is explained by the upregulation of adhesion molecules on the endothelial cell surface. Human umbilical vein endothelial cells (HUVEC) were isolated, cultured, and demonstrated to express both TNF receptor types, TNF-R55 and TNF-R75. Cell adhesion to HUVEC was studied using the HL60, U937, and MOLT-4 cell lines. HUVEC were activated by either TNF-alpha, binding to both TNF-R55 and TNF- R75, and by receptor type-specific agonists, binding exclusively to TNF- R55 or to TNF-R75. The TNF-alpha-induced cell adhesion to HUVEC was found to be controlled almost exclusively by TNF-R55. This finding correlated with the exclusive activity of TNF-R55 in the TNF-alpha- dependent regulation of the expression of the intercellular adhesion molecule type 1 (ICAM-1), E-selectin, and vascular cell adhesion molecule type 1 (VCAM-1). The CD44 adhesion molecule in HUVEC was also found to be upregulated through TNF-R55. However, both TNF-R55 and TNF- R75 upregulate alpha 2 integrin expression in HUVEC. The predominant role of TNF-R55 in TNF-alpha-induced adhesion in HUVEC may correlate with its specific control of NF-kappa B activation, since kappa B elements are known to be present in ICAM-1, E-selectin, and VCAM-1 gene regulatory sequences. PMID:8386742

  20. The effect of fibrin on cultured vascular endothelial cells.

    PubMed

    Kadish, J L; Butterfield, C E; Folkman, J

    1979-01-01

    The normal cobblestone monolayer architecture of cultured vascular endothelium becomes rapidly disorganized after contact of the cell layer with a fibrin clot. The cells of a confluent endothelial monolayer separate into individual migratory cells in 4--6 hr after contact with fibrin. The effect is reversible in that removal of the fibrin clot results in resumption of the normal morphology within about 2 hr. No other cell type tested exhibits the same change in organization when exposed to fibrin. A similar morphological change in endothelium does occur after the cell layer is overlaid with a collagen fibril gel but a gel of methylcellulose has no effect. It is proposed that the change in behavior of endothelial cells in response to contact with fibrin may represent a cellular component of fibrinolysis. The implications of this finding for the pathophysiology of disease states involving intravascular fibrin deposition are discussed.

  1. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury

    PubMed Central

    Zhang, Yi; Jiang, Ge; Sauler, Maor; Lee, Patty J.

    2013-01-01

    The lung endothelium is a major target for inflammatory and oxidative stress. Heme oxygenase-1 (HO-1) induction is a crucial defense mechanism during oxidant challenges, such as hyperoxia. The role of lung endothelial HO-1during hyperoxia in vivo is not well defined. We engineered lentiviral vectors with microRNA (miRNA) sequences controlled by vascular endothelium cadherin (VE-cad) to study the specific role of lung endothelial HO-1. Wild-type (WT) murine lung endothelial cells (MLECs) or WT mice were treated with lentivirus and exposed to hyperoxia (95% oxygen). We detected HO-1 knockdown (∼55%) specifically in the lung endothelium. MLECs and lungs showed approximately a 2-fold increase in apoptosis and ROS generation after HO-1 silencing. We also demonstrate for the first time that silencing endothelial HO-1 has the same effect on lung injury and survival as silencing HO-1 in multiple lung cell types and that HO-1 regulates caspase 3 activation and autophagy in endothelium during hyperoxia. These studies demonstrate the utility of endothelial-targeted gene silencing in vivo using lentiviral miRNA constructs to assess gene function and that endothelial HO-1 is an important determinant of survival during hyperoxia.—Zhang, Y., Jiang, G., Sauler, M., Lee, P. J. Lung endothelial HO-1 targeting in vivo using lentiviral miRNA regulates apoptosis and autophagy during oxidant injury. PMID:23771928

  2. FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells.

    PubMed

    Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V

    2014-09-26

    Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling. © 2014 American Heart Association, Inc.

  3. Endothelial Heparan Sulfate 6-O-Sulfation Levels Regulate Angiogenic Responses of Endothelial Cells to Fibroblast Growth Factor 2 and Vascular Endothelial Growth Factor*

    PubMed Central

    Ferreras, Cristina; Rushton, Graham; Cole, Claire L.; Babur, Muhammad; Telfer, Brian A.; van Kuppevelt, Toin H.; Gardiner, John M.; Williams, Kaye J.; Jayson, Gordon C.; Avizienyte, Egle

    2012-01-01

    Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents. PMID:22927437

  4. Modified Cross-Linking, Ligation, and Sequencing of Hybrids (qCLASH) Identifies Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Targets in Endothelial Cells.

    PubMed

    Gay, Lauren A; Sethuraman, Sunantha; Thomas, Merin; Turner, Peter C; Renne, Rolf

    2018-04-15

    Kaposi's sarcoma (KS) tumors are derived from endothelial cells and express Kaposi's sarcoma-associated herpesvirus (KSHV) microRNAs (miRNAs). Although miRNA targets have been identified in B cell lymphoma-derived cells and epithelial cells, little has been done to characterize the KSHV miRNA targetome in endothelial cells. A recent innovation in the identification of miRNA targetomes, cross-linking, ligation, and sequencing of hybrids (CLASH), unambiguously identifies miRNAs and their targets by ligating the two species while both species are still bound within the RNA-induced silencing complex (RISC). We developed a streamlined quick CLASH (qCLASH) protocol that requires a lower cell input than the original method and therefore has the potential to be used on patient biopsy samples. Additionally, we developed a fast-growing, KSHV-negative endothelial cell line derived from telomerase-immortalized vein endothelial long-term culture (TIVE-LTC) cells. qCLASH was performed on uninfected cells and cells infected with either wild-type KSHV or a mutant virus lacking miR-K12-11/11*. More than 1,400 cellular targets of KSHV miRNAs were identified. Many of the targets identified by qCLASH lacked a canonical seed sequence match. Additionally, most target regions in mRNAs originated from the coding DNA sequence (CDS) rather than the 3' untranslated region (UTR). This set of genes includes some that were previously identified in B cells and some new genes that warrant further study. Pathway analysis of endothelial cell targets showed enrichment in cell cycle control, apoptosis, and glycolysis pathways, among others. Characterization of these new targets and the functional consequences of their repression will be important in furthering our understanding of the role of KSHV miRNAs in oncogenesis. IMPORTANCE KS lesions consist of endothelial cells latently infected with KSHV. Cells that make up these lesions express KSHV miRNAs. Identification of the targets of KSHV miRNAs will help us understand their role in viral oncogenesis. The cross-linking and sequencing of hybrids (CLASH) protocol is a method for unambiguously identifying miRNA targetomes. We developed a streamlined version of CLASH, called quick CLASH (qCLASH). qCLASH requires a lower initial input of cells than for its parent protocol. Additionally, a new fast-growing KSHV-negative endothelial cell line, named TIVE-EX-LTC cells, was established. qCLASH was performed on TIVE-EX-LTC cells latently infected with wild-type (WT) KSHV or a mutant virus lacking miR-K12-11/11*. A number of novel targets of KSHV miRNAs were identified, including targets of miR-K12-11, the ortholog of the cellular oncogenic miRNA (oncomiR) miR-155. Many of the miRNA targets were involved in processes related to oncogenesis, such as glycolysis, apoptosis, and cell cycle control. Copyright © 2018 American Society for Microbiology.

  5. A SAGE based approach to human glomerular endothelium: defining the transcriptome, finding a novel molecule and highlighting endothelial diversity.

    PubMed

    Sengoelge, Guerkan; Winnicki, Wolfgang; Kupczok, Anne; von Haeseler, Arndt; Schuster, Michael; Pfaller, Walter; Jennings, Paul; Weltermann, Ansgar; Blake, Sophia; Sunder-Plassmann, Gere

    2014-08-27

    Large scale transcript analysis of human glomerular microvascular endothelial cells (HGMEC) has never been accomplished. We designed this study to define the transcriptome of HGMEC and facilitate a better characterization of these endothelial cells with unique features. Serial analysis of gene expression (SAGE) was used for its unbiased approach to quantitative acquisition of transcripts. We generated a HGMEC SAGE library consisting of 68,987 transcript tags. Then taking advantage of large public databases and advanced bioinformatics we compared the HGMEC SAGE library with a SAGE library of non-cultured ex vivo human glomeruli (44,334 tags) which contained endothelial cells. The 823 tags common to both which would have the potential to be expressed in vivo were subsequently checked against 822,008 tags from 16 non-glomerular endothelial SAGE libraries. This resulted in 268 transcript tags differentially overexpressed in HGMEC compared to non-glomerular endothelia. These tags were filtered using a set of criteria: never before shown in kidney or any type of endothelial cell, absent in all nephron regions except the glomerulus, more highly expressed than statistically expected in HGMEC. Neurogranin, a direct target of thyroid hormone action which had been thought to be brain specific and never shown in endothelial cells before, fulfilled these criteria. Its expression in glomerular endothelium in vitro and in vivo was then verified by real-time-PCR, sequencing and immunohistochemistry. Our results represent an extensive molecular characterization of HGMEC beyond a mere database, underline the endothelial heterogeneity, and propose neurogranin as a potential link in the kidney-thyroid axis.

  6. Effect of Saxagliptin on Circulating Endothelial Progenitor Cells and Endothelial Function in Newly Diagnosed Type 2 Diabetic Patients.

    PubMed

    Li, Fang; Chen, Jiachao; Leng, Fei; Lu, Zhiqiang; Ling, Yan

    2017-06-01

    Endothelial dysfunction is associated with the risk of cardiovascular complications in diabetic patients. Endothelial progenitor cells (EPCs) and flow-mediated dilation (FMD) are common markers of endothelial function. In this study, we aim to investigate whether the DPP-4 inhibitor saxagliptin modulate EPCs number and FMD in newly diagnosed, treatment-naive type 2 diabetic patients. This was a controlled, randomized, open-label clinical trial. Saxagliptin group and metformin group consumed either saxagliptin 5 mg per day or metformin 1 500 mg per day respectively for 12 weeks. Changes of FMD and EPCs number after 12-week intervention were the primary endpoints. 31 patients were initially enrolled and randomized to saxagliptin group (n=16) and metformin group (n=15). 27 patients completed the trial (saxagliptin group n=14 and metformin group n=13), and 4 patients dropped out during the study. FMD and EPCs number increased significantly in both saxagliptin group and metformin group, and there was no significant difference between groups. 2-h postprandial plasma glucose, HbA1c and diastolic blood pressure improved significantly in both groups, and there was no significant difference between groups. Saxagliptin and metformin had comparable beneficial effects on endothelial function. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Effects of the PPAR{gamma} agonist troglitazone on endothelial cells in vivo and in vitro: Differences between human and mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakiuchi-Kiyota, Satoko; Vetro, Joseph A.; Suzuki, Shugo

    2009-05-15

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists and PPAR{gamma}/{alpha} dual agonists have been or are being developed for clinical use in the treatment of type 2 diabetes mellitus and hyperlipidemias. A common tumor finding in rodent carcinogenicity studies for these agonists is hemangioma/hemangiosarcoma in mice but not in rats. We hypothesized that increased endothelial cell proliferation may be involved in the mechanism of PPAR agonist-induced vascular tumors in mice, and we investigated the effects on endothelial cells utilizing troglitazone, the first clinically used PPAR{gamma} agonist, in vivo and in vitro. Troglitazone (400 and 800 mg/kg/day) induced hemangiosarcomas in mice in amore » 2-year bioassay. We showed that troglitazone increased endothelial cell proliferation in brown and white adipose tissue and liver in mice at sarcomagenic doses after 4 weeks of treatment. Troglitazone was cytotoxic both to human dermal microvascular endothelial cells (HMEC1) and mouse mammary fat pad microvascular endothelial cells (MFP MVEC) at high concentrations. However, MFP MVEC were more resistant to the cytotoxic effects of troglitazone based on the much lower LC{sub 50} in HMEC1 (17.4 {mu}M) compared to MFP MVEC (92.2 {mu}M). Troglitazone increased the proliferation and survival of MFP MVEC but not HMEC1 in growth factor reduced conditions. Our data demonstrate that troglitazone may induce hemangiosarcomas in mice, at least in part, through enhancement of survival and proliferation of microvascular endothelial cells. Such an effect does not occur with human cells, suggesting that human may react differently to exposure to PPAR agonists compared with mice.« less

  8. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    PubMed Central

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

  9. Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels.

    PubMed

    Hupe, Mike; Li, Minerva Xueting; Kneitz, Susanne; Davydova, Daria; Yokota, Chika; Kele-Olovsson, Julianna; Hot, Belma; Stenman, Jan M; Gessler, Manfred

    2017-07-11

    The blood-brain barrier is a dynamic interface that separates the brain from the circulatory system, and it is formed by highly specialized endothelial cells. To explore the molecular mechanisms defining the unique nature of vascular development and differentiation in the brain, we generated high-resolution gene expression profiles of mouse embryonic brain endothelial cells using translating ribosome affinity purification and single-cell RNA sequencing. We compared the brain vascular translatome with the vascular translatomes of other organs and analyzed the vascular translatomes of the brain at different time points during embryonic development. Because canonical Wnt signaling is implicated in the formation of the blood-brain barrier, we also compared the brain endothelial translatome of wild-type mice with that of mice lacking the transcriptional cofactor β-catenin ( Ctnnb1 ). Our analysis revealed extensive molecular changes during the embryonic development of the brain endothelium. We identified genes encoding brain endothelium-specific transcription factors ( Foxf2 , Foxl2 , Foxq1 , Lef1 , Ppard , Zfp551 , and Zic3 ) that are associated with maturation of the blood-brain barrier and act downstream of the Wnt-β-catenin signaling pathway. Profiling of individual brain endothelial cells revealed substantial heterogeneity in the population. Nevertheless, the high abundance of Foxf2 , Foxq1 , Ppard , or Zic3 transcripts correlated with the increased expression of genes encoding markers of brain endothelial cell differentiation. Expression of Foxf2 and Zic3 in human umbilical vein endothelial cells induced the production of blood-brain barrier differentiation markers. This comprehensive data set may help to improve the engineering of in vitro blood-brain barrier models. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. STATs MEDIATE FIBROBLAST GROWTH FACTOR INDUCED VASCULAR ENDOTHELIAL MORPHOGENESIS

    PubMed Central

    Yang, Xinhai; Qiao, Dianhua; Meyer, Kristy; Friedl, Andreas

    2009-01-01

    The fibroblast growth factors (FGFs) play diverse roles in development, wound healing and angiogenesis. The intracellular signal transduction pathways which mediate these pleiotropic activities remain incompletely understood. We show here that the proangiogenic factors FGF2 and FGF8b can activate signal transducers and activators of transcription (STATs) in mouse microvascular endothelial cells. Both FGF2 and FGF8b activate STAT5 and to a lesser extent STAT1, but not STAT3. The FGF2-dependent activation of endothelial STAT5 was confirmed in vivo with the matrigel plug angiogenesis assay. In tissue samples of human gliomas, a tumor type where FGF-induced angiogenesis is important, STAT5 is detected in tumor vessel endothelial cell nuclei, consistent with STAT5 activation. By forced expression of constitutively active or dominant-negative mutant STAT5A in mouse brain endothelial cells, we further show that STAT5 activation is both necessary and sufficient for FGF-induced cell migration, invasion and tube formation, which are key events in vascular endothelial morphogenesis and angiogenesis. In contrast, STAT5 is not required for brain endothelial cell mitogenesis. The cytoplasmic tyrosine kinases Src and Janus kinase 2 (Jak2) both appear to be involved in the activation of STAT5, as their inhibition reduces FGF2 and FGF8b induced STAT5 phosphorylation and endothelial cell tube formation. Constitutively active STAT5A partially restores tube formation in the presence of Src or Jak2 inhibitors. These observations demonstrate that FGFs utilize distinct signaling pathways to induce angiogenic phenotypes. Together, our findings implicate the FGF-Jak2/Src-STAT5 cascade as a critical angiogenic FGF signaling pathway. PMID:19176400

  11. A novel anti-inflammatory mechanism of high density lipoprotein through up-regulating annexin A1 in vascular endothelial cells.

    PubMed

    Pan, Bing; Kong, Jinge; Jin, Jingru; Kong, Jian; He, Yubin; Dong, Shuying; Ji, Liang; Liu, Donghui; He, Dan; Kong, Liming; Jin, David K; Willard, Belinda; Pennathur, Subramaniam; Zheng, Lemin

    2016-06-01

    High density lipoprotein (HDL) as well as annexin A1 have been reported to be associated with cardiovascular protection. However, the correlation between HDL and annexin A1 was still unknown. In this study, HDL increased endothelial annexin A1 and prevented the decrease of annexin A1 in TNF-α-activated endothelial cells in vitro and in vivo, and above effects were attenuated after knockdown of annexin A1. Annexin A1 modulation affected HDL-mediated inhibition of monocyte adhesion to TNF-α-activated endothelium (45.2±13.7% decrease for annexin A1 RNA interference; 78.7±16.3% decrease for anti-Annexin A1 antibody blocking; 11.2±6.9% increase for Ad-ANXA1 transfection). Additionally, HDL up-regulated annexin A1 through scavenger receptor class B type I, involving ERK, p38MAPK, Akt and PKC signaling pathways, and respective inhibitors of these pathways attenuated HDL-induced annexin A1 expression as well as impaired HDL-mediated inhibition of monocyte-endothelial cell adhesion. Apolipoprotein AI also increased annexin A1 and activated similar signaling pathways. Endothelial annexin A1 from apolipoprotein AI knockout mice was decreased in comparison to that from wild type mice. Finally, HDL-induced annexin A1 inhibited cell surface VCAM-1, ICAM-1 and E-selectin, and secretion of MCP-1, IL-8, VCAM-1 and E-selectin, thereby inhibiting monocyte adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Compound 49b Reduces Inflammatory Markers and Apoptosis after Ocular Blast Injury

    DTIC Science & Technology

    2014-09-01

    drug, Compound 49b, have anti-apoptotic and anti-inflammatory properties in retinal endothelial cells and in a diabetic retinopathy model [7, 10...plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol Vis, 2009; 15: 1418-28. 12...in other retinal damage models, specifically the streptozotocin- induced type 1 diabetic retinopathy model and retinal endothelial cells cultured in

  13. Epitope Mapping of Monoclonal Antibody PMab-48 Against Dog Podoplanin.

    PubMed

    Yamada, Shinji; Kaneko, Mika K; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Ogasawara, Satoshi; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Harada, Hiroyuki; Kato, Yukinari

    2018-04-02

    Podoplanin (PDPN), a type I transmembrane sialoglycoprotein, is expressed on normal renal podocytes, pulmonary type I alveolar cells, and lymphatic endothelial cells. Increased expression of PDPN in cancers is associated with poor prognosis and hematogenous metastasis through interactions with C-type lectin-like receptor 2 (CLEC-2) on platelets. We previously reported a novel PMab-48 antibody, which is an anti-dog PDPN (dPDPN) monoclonal antibody (mAb) recognizing PDPN expressed in lymphatic endothelial cells. However, the binding epitope of PMab-48 is yet to be clarified. In this study, an enzyme-linked immunosorbent assay and flow cytometry were used to investigate epitopes of PMab-48. The results revealed that the critical epitope of PMab-48 comprises Asp29, Asp30, Ile31, Ile32, and Pro33 of dPDPN.

  14. Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling

    PubMed Central

    Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.

    2016-01-01

    Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561

  15. Endothelial Cell Stimulation Overcomes Restriction and Promotes Productive and Latent HIV-1 Infection of Resting CD4+ T Cells

    PubMed Central

    Baker, Jacob J.; Scott, Geoffrey L.; Davis, Yelena P.; Ho, Yen-Yi; Siliciano, Robert F.

    2013-01-01

    Highly active antiretroviral therapy (HAART) is able to suppress human immunodeficiency virus type 1 (HIV-1) to undetectable levels in the majority of patients, but eradication has not been achieved because latent viral reservoirs persist, particularly in resting CD4+ T lymphocytes. It is generally understood that HIV-1 does not efficiently infect resting CD4+ T cells, and latent infection in those cells may arise when infected CD4+ T lymphoblasts return to resting state. In this study, we found that stimulation by endothelial cells can render resting CD4+ T cells permissible for direct HIV infection, including both productive and latent infection. These stimulated T cells remain largely phenotypically unactivated and show a lower death rate than activated T cells, which promotes the survival of infected cells. The stimulation by endothelial cells does not involve interleukin 7 (IL-7), IL-15, CCL19, or CCL21. Endothelial cells line the lymphatic vessels in the lymphoid tissues and have frequent interactions with T cells in vivo. Our study proposes a new mechanism for infection of resting CD4+ T cells in vivo and a new mechanism for latent infection in resting CD4+ T cells. PMID:23824795

  16. Negative effects of a high tumour necrosis factor-α concentration on human gingival mesenchymal stem cell trophism: the use of natural compounds as modulatory agents.

    PubMed

    Giacomelli, Chiara; Natali, Letizia; Nisi, Marco; De Leo, Marinella; Daniele, Simona; Costa, Barbara; Graziani, Filippo; Gabriele, Mario; Braca, Alessandra; Trincavelli, M Letizia; Martini, Claudia

    2018-05-11

    Adult mesenchymal stem cells (MSCs) play a crucial role in the maintenance of tissue homeostasis and in regenerative processes. Among the different MSC types, the gingiva-derived mesenchymal stem cells (GMSCs) have arisen as a promising tool to promote the repair of damaged tissues secreting trophic mediators that affect different types of cells involved in regenerative processes. Tumour necrosis factor (TNF)-α is one of the key mediators of inflammation that could affect tissue regenerative processes and modify the MSC properties in in-vitro applications. To date, no data have been reported on the effects of TNF-α on GMSC trophic activities and how its modulation with anti-inflammatory agents from natural sources could modulate the GMSC properties. GMSCs were isolated and characterized from healthy subjects. The effects of TNF-α were evaluated on GMSCs and on the well-being of endothelial cells. The secretion of cytokines was measured and related to the modification of GMSC-endothelial cell communication using a conditioned-medium method. The ability to modify the inflammatory response was evaluated in the presence of Ribes nigrum bud extract (RBE). TNF-α differently affected GMSC proliferation and the expression of inflammatory-related proteins (interleukin (IL)-6, IL-10, transforming growth factor (TGF)-β, and cyclooxygenase (COX)-2) dependent on its concentration. A high TNF-α concentration decreased the GMSC viability and impaired the positive cross-talk between GMSCs and endothelial cells, probably by enhancing the amount of pro-inflammatory cytokines in the GMSC secretome. RBE restored the beneficial effects of GMSCs on endothelial viability and motility under inflammatory conditions. A high TNF-α concentration decreased the well-being of GMSCs, modifying their trophic activities and decreasing endothelial cell healing. These data highlight the importance of controlling TNF-α concentrations to maintain the trophic activity of GMSCs. Furthermore, the use of natural anti-inflammatory agents restored the regenerative properties of GMSCs on endothelial cells, opening the way to the use and development of natural extracts in wound healing, periodontal regeneration, and tissue-engineering applications that use MSCs.

  17. Unique and shared inflammatory profiles of human brain endothelia and pericytes.

    PubMed

    Smyth, Leon C D; Rustenhoven, Justin; Park, Thomas I-H; Schweder, Patrick; Jansson, Deidre; Heppner, Peter A; O'Carroll, Simon J; Mee, Edward W; Faull, Richard L M; Curtis, Maurice; Dragunow, Mike

    2018-05-11

    Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1β, TNFα, LPS, IFN-γ, TGF-β 1 , IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1β. Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1β. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1β, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.

  18. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier

    PubMed Central

    2013-01-01

    Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery. PMID:23773766

  19. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    PubMed

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.

  20. A Cell Culture Model of Resistance Arteries.

    PubMed

    Biwer, Lauren A; Lechauve, Christophe; Vanhoose, Sheri; Weiss, Mitchell J; Isakson, Brant E

    2017-09-08

    The myoendothelial junction (MEJ), a unique signaling microdomain in small diameter resistance arteries, exhibits localization of specific proteins and signaling processes that can control vascular tone and blood pressure. As it is a projection from either the endothelial or smooth muscle cell, and due to its small size (on average, an area of ~1 µm 2 ), the MEJ is difficult to study in isolation. However, we have developed a cell culture model called the vascular cell co-culture (VCCC) that allows for in vitro MEJ formation, endothelial cell polarization, and dissection of signaling proteins and processes in the vascular wall of resistance arteries. The VCCC has a multitude of applications and can be adapted to suit different cell types. The model consists of two cell types grown on opposite sides of a filter with 0.4 µm pores in which the in vitro MEJs can form. Here we describe how to create the VCCC via plating of cells and isolation of endothelial, MEJ, and smooth muscle fractions, which can then be used for protein isolation or activity assays. The filter with intact cell layers can be fixed, embedded, and sectioned for immunofluorescent analysis. Importantly, many of the discoveries from this model have been confirmed using intact resistance arteries, underscoring its physiological relevance.

  1. Ceramide-1-phosphate regulates migration of multipotent stromal cells (MSCs) and endothelial progenitor cells (EPCs) – implications for tissue regeneration

    PubMed Central

    Kim, ChiHwa; Schneider, Gabriela; Abdel-Latif, Ahmed; Mierzejewska, Kasia; Sunkara, Manjula; Borkowska, Sylwia; Ratajczak, Janina; Morris, Andrew J.; Kucia, Magda; Ratajczak, Mariusz Z.

    2012-01-01

    Ceramide-1-phosphate (C1P) is a bioactive lipid that, in contrast to ceramide, is an anti-apoptotic molecule released from cells that are damaged and “leaky”. As reported recently, C1P promotes migration of hematopoietic cells. In the current paper, we tested the hypothesis that C1P released upon tissue damage may play an underappreciated role in chemoattraction of various types of stem cells and endothelial cells involved in tissue/organ regeneration. We show for a first time that C1P is upregulated in damaged tissues and chemoattracts BM-derived multipotent stroma cells (MSCs), endothelial progenitor cells (EPCs), and very small embryonic-like stem cells (VSELs). Furthermore, compared to other bioactive lipids, C1P more potently chemoattracted human umbilical vein endothelial cells (HUVECs) and stimulated tube formation by these cells. C1P also promoted in vivo vascularization of Matrigel implants and stimulated secretion of stromal derived factor-1 (SDF-1) from BM-derived fibroblasts. Thus, our data demonstrate, for the first time, that C1P is a potent bioactive lipid released from damaged cells that potentially plays an important and novel role in recruitment of stem/progenitor cells to damaged organs and may promote their vascularization. PMID:23193025

  2. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra

    2013-12-15

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumormore » growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV.« less

  3. Vildagliptin Stimulates Endothelial Cell Network Formation and Ischemia-induced Revascularization via an Endothelial Nitric-oxide Synthase-dependent Mechanism*

    PubMed Central

    Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K.; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki

    2014-01-01

    Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. PMID:25100725

  4. Vildagliptin stimulates endothelial cell network formation and ischemia-induced revascularization via an endothelial nitric-oxide synthase-dependent mechanism.

    PubMed

    Ishii, Masakazu; Shibata, Rei; Kondo, Kazuhisa; Kambara, Takahiro; Shimizu, Yuuki; Tanigawa, Tohru; Bando, Yasuko K; Nishimura, Masahiro; Ouchi, Noriyuki; Murohara, Toyoaki

    2014-09-26

    Dipeptidyl peptidase-4 inhibitors are known to lower glucose levels and are also beneficial in the management of cardiovascular disease. Here, we investigated whether a dipeptidyl peptidase-4 inhibitor, vildagliptin, modulates endothelial cell network formation and revascularization processes in vitro and in vivo. Treatment with vildagliptin enhanced blood flow recovery and capillary density in the ischemic limbs of wild-type mice, with accompanying increases in phosphorylation of Akt and endothelial nitric-oxide synthase (eNOS). In contrast to wild-type mice, treatment with vildagliptin did not improve blood flow in ischemic muscles of eNOS-deficient mice. Treatment with vildagliptin increased the levels of glucagon-like peptide-1 (GLP-1) and adiponectin, which have protective effects on the vasculature. Both vildagliptin and GLP-1 increased the differentiation of cultured human umbilical vein endothelial cells (HUVECs) into vascular-like structures, although vildagliptin was less effective than GLP-1. GLP-1 and vildagliptin also stimulated the phosphorylation of Akt and eNOS in HUVECs. Pretreatment with a PI3 kinase or NOS inhibitor blocked the stimulatory effects of both vildagliptin and GLP-1 on HUVEC differentiation. Furthermore, treatment with vildagliptin only partially increased the limb flow of ischemic muscle in adiponectin-deficient mice in vivo. GLP-1, but not vildagliptin, significantly increased adiponectin expression in differentiated 3T3-L1 adipocytes in vitro. These data indicate that vildagliptin promotes endothelial cell function via eNOS signaling, an effect that may be mediated by both GLP-1-dependent and GLP-1-independent mechanisms. The beneficial activity of GLP-1 for revascularization may also be partially mediated by its ability to increase adiponectin production. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Endothelial Depletion of Acvrl1 in Mice Leads to Arteriovenous Malformations Associated with Reduced Endoglin Expression

    PubMed Central

    Allinson, Kathleen R.; Redgrave, Rachael E.; Zhai, Zhenhua; Oh, S. Paul; Fruttiger, Marcus; Arthur, Helen M.

    2014-01-01

    Rare inherited cardiovascular diseases are frequently caused by mutations in genes that are essential for the formation and/or function of the cardiovasculature. Hereditary Haemorrhagic Telangiectasia is a familial disease of this type. The majority of patients carry mutations in either Endoglin (ENG) or ACVRL1 (also known as ALK1) genes, and the disease is characterized by arteriovenous malformations and persistent haemorrhage. ENG and ACVRL1 encode receptors for the TGFβ superfamily of ligands, that are essential for angiogenesis in early development but their roles are not fully understood. Our goal was to examine the role of Acvrl1 in vascular endothelial cells during vascular development and to determine whether loss of endothelial Acvrl1 leads to arteriovenous malformations. Acvrl1 was depleted in endothelial cells either in early postnatal life or in adult mice. Using the neonatal retinal plexus to examine angiogenesis, we observed that loss of endothelial Acvrl1 led to venous enlargement, vascular hyperbranching and arteriovenous malformations. These phenotypes were associated with loss of arterial Jag1 expression, decreased pSmad1/5/8 activity and increased endothelial cell proliferation. We found that Endoglin was markedly down-regulated in Acvrl1-depleted ECs showing endoglin expression to be downstream of Acvrl1 signalling in vivo. Endothelial-specific depletion of Acvrl1 in pups also led to pulmonary haemorrhage, but in adult mice resulted in caecal haemorrhage and fatal anaemia. We conclude that during development, endothelial Acvrl1 plays an essential role to regulate endothelial cell proliferation and arterial identity during angiogenesis, whilst in adult life endothelial Acvrl1 is required to maintain vascular integrity. PMID:24896812

  6. Endothelial AMPK Activation Induces Mitochondrial Biogenesis and Stress Adaptation via eNOS-Dependent mTORC1 Signaling

    PubMed Central

    Li, Chunying; Reif, Michaella M; Craige, Siobhan; Kant, Shashi; Keaney, John F.

    2016-01-01

    Metabolic stress sensors like AMP-activated protein kinase (AMPK) are known to confer stress adaptation and promote longevity in lower organisms. This study demonstrates that activating the metabolic stress sensor AMP-activated protein kinase (AMPK) in endothelial cells helps maintain normal cellular function by promoting mitochondrial biogenesis and stress adaptation. To better define the mechanisms whereby AMPK promotes endothelial stress resistance, we used 5-aminoimidazole-4-carboxamide riboside (AICAR) to chronically activate AMPK and observed stimulation of mitochondrial biogenesis in wild type mouse endothelium, but not in endothelium from endothelial nitric oxide synthase knockout (eNOS-null) mice. Interestingly, AICAR-enhanced mitochondrial biogenesis was blocked by pretreatment with the mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin. Further, AICAR stimulated mTORC1 as determined by phosphorylation of its known downstream effectors in wild type, but not eNOS-null, endothelial cells. Together these data indicate that eNOS is needed to couple AMPK activation to mTORC1 and thus promote mitochondrial biogenesis and stress adaptation in the endothelium. These data suggest a novel mechanism for mTORC1 activation that is significant for investigations in vascular dysfunction. PMID:26989010

  7. Cytostatic inhibition of endothelial cell growth by the angiogenesis inhibitor TNP-470 (AGM-1470).

    PubMed Central

    Kusaka, M.; Sudo, K.; Matsutani, E.; Kozai, Y.; Marui, S.; Fujita, T.; Ingber, D.; Folkman, J.

    1994-01-01

    Recently, we reported the anti-angiogenic action along with anti-tumour activity of TNP-470 (AGM-1470). In this study, the effect of TNP-470 on the growth of human umbilical vein endothelial (HUVE) cells was examined. TNP-470 inhibited the growth of HUVE cells in a biphasic manner. The inhibition was cytostatic in the first phase (complete inhibition at 300 pg ml-1 to 3 micrograms ml-1 with an IC50 of 15 pg ml-1) and cytotoxic in the second phase (> or = 30 micrograms ml-1). The cytostatic inhibition of HUVE cell growth by TNP-470 was durable after washing out TNP-470 in culture. Incorporation of thymidine but not uridine and leucine by HUVE cells was inhibited in the first phase, while that of all three compounds was inhibited in the second phase. Human and rat endothelial cells among various types of cells were the most sensitive to the cytostatic inhibition, while differences in the cytotoxic inhibition were minimal. These results suggest that TNP-470 exerts its specific anti-angiogenic action by inhibiting cytostatically growth of endothelial cells in a relatively specific manner. PMID:8297716

  8. Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration.

    PubMed

    Rahman, Arshad; Fazal, Fabeha

    2009-04-01

    Stable adhesion of leukocytes to endothelium is crucial for transendothelial migration (TEM) of leukocytes evoked during inflammatory responses, immune surveillance, and homing and mobilization of hematopoietic progenitor cells. The basis of stable adhesion involves expression of intercellular adhesion molecule-1 (ICAM-1), an inducible endothelial adhesive protein that serves as a counter-receptor for beta(2)-integrins on leukocytes. Interaction of ICAM-1 with beta(2)-integrins enables leukocytes to adhere firmly to the vascular endothelium and subsequently, to migrate across the endothelial barrier. The emerging paradigm is that ICAM-1, in addition to firmly capturing leukocytes, triggers intracellular signaling events that may contribute to active participation of the endothelium in facilitating the TEM of adherent leukocytes. The nature, duration, and intensity of ICAM-1-dependent signaling events may contribute to the determination of the route (paracellular vs. transcellular) of leukocyte passage; these aspects of ICAM-1 signaling may in turn be influenced by density and distribution of ICAM-1 on the endothelial cell surface, the source of endothelial cells it is present on, and the type of leukocytes with which it is engaged. This review summarizes our current understanding of the "ICAM-1 paradigm" of TEM with an emphasis on the signaling events mediating ICAM-1 expression and activated by ICAM-1 engagement in endothelial cells.

  9. Endothelial insulin receptor restoration rescues vascular function in male insulin receptor haploinsufficient mice.

    PubMed

    Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M

    2018-05-15

    Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.

  10. Endothelial Cell Permeability during Hantavirus Infection Involves Factor XII-Dependent Increased Activation of the Kallikrein-Kinin System

    PubMed Central

    Taylor, Shannon L.; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B.; Schmaljohn, Connie S.

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during hantavirus infection and could have profound implications for treatment of hantavirus infections. PMID:23874198

  11. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Mathur, A. B.; Collinsworth, A. M.; Reichert, W. M.; Kraus, W. E.; Truskey, G. A.

    2001-01-01

    This study evaluated the hypothesis that, due to functional and structural differences, the apparent elastic modulus and viscous behavior of cardiac and skeletal muscle and vascular endothelium would differ. To accurately determine the elastic modulus, the contribution of probe velocity, indentation depth, and the assumed shape of the probe were examined. Hysteresis was observed at high indentation velocities arising from viscous effects. Irreversible deformation was not observed for endothelial cells and hysteresis was negligible below 1 microm/s. For skeletal muscle and cardiac muscle cells, hysteresis was negligible below 0.25 microm/s. Viscous dissipation for endothelial and cardiac muscle cells was higher than for skeletal muscle cells. The calculated elastic modulus was most sensitive to the assumed probe geometry for the first 60 nm of indentation for the three cell types. Modeling the probe as a blunt cone-spherical cap resulted in variation in elastic modulus with indentation depth that was less than that calculated by treating the probe as a conical tip. Substrate contributions were negligible since the elastic modulus reached a steady value for indentations above 60 nm and the probe never indented more than 10% of the cell thickness. Cardiac cells were the stiffest (100.3+/-10.7 kPa), the skeletal muscle cells were intermediate (24.7+/-3.5 kPa), and the endothelial cells were the softest with a range of elastic moduli (1.4+/-0.1 to 6.8+/-0.4 kPa) depending on the location of the cell surface tested. Cardiac and skeletal muscle exhibited nonlinear elastic behavior. These passive mechanical properties are generally consistent with the function of these different cell types.

  12. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    NASA Astrophysics Data System (ADS)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  13. Actin grips: circular actin-rich cytoskeletal structures that mediate the wrapping of polymeric microfibers by endothelial cells.

    PubMed

    Jones, Desiree; Park, DoYoung; Anghelina, Mirela; Pécot, Thierry; Machiraju, Raghu; Xue, Ruipeng; Lannutti, John J; Thomas, Jessica; Cole, Sara L; Moldovan, Leni; Moldovan, Nicanor I

    2015-06-01

    Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-ε-capro-lactone (PCL) fibers with diameters in 5-20 μm range ('scaffold microfibers', SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not associated with either focal adhesions or intermediate filaments. We also demonstrated that plasma membrane boundaries adjacent to these circular cytoskeletal structures were tightly yet dynamically apposed to the SMFs, for which reason we suggest to call them 'actin grips'. In conclusion, we describe a particular form of F-actin assembly with relevance for cytoskeletal organization in response to biomaterials, for endothelial-specific cell behavior in vitro and in vivo, and for tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.

    1988-11-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and anmore » increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous (3H)thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro.« less

  15. Changes of myoid and endothelial cells in the peritubular wall during contraction of the seminiferous tubule.

    PubMed

    Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina

    2016-08-01

    The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis.

  16. Low intensity shear stress increases endothelial ELR+ CXC chemokine production via a focal adhesion kinase-p38{beta} MAPK-NF-{kappa}B pathway.

    PubMed

    Shaik, Sadiq S; Soltau, Thomas D; Chaturvedi, Gaurav; Totapally, Balagangadhar; Hagood, James S; Andrews, William W; Athar, Mohammad; Voitenok, Nikolai N; Killingsworth, Cheryl R; Patel, Rakesh P; Fallon, Michael B; Maheshwari, Akhil

    2009-02-27

    CXC chemokines with a glutamate-leucine-arginine (ELR) tripeptide motif (ELR(+) CXC chemokines) play an important role in leukocyte trafficking into the tissues. For reasons that are not well elucidated, circulating leukocytes are recruited into the tissues mainly in small vessels such as capillaries and venules. Because ELR(+) CXC chemokines are important mediators of endothelial-leukocyte interaction, we compared chemokine expression by microvascular and aortic endothelium to investigate whether differences in chemokine expression by various endothelial types could, at least partially, explain the microvascular localization of endothelial-leukocyte interaction. Both in vitro and in vivo models indicate that ELR(+) CXC chemokine expression is higher in microvascular endothelium than in aortic endothelial cells. These differences can be explained on the basis of the preferential activation of endothelial chemokine production by low intensity shear stress. Low shear activated endothelial ELR(+) CXC chemokine production via cell surface heparan sulfates, beta(3)-integrins, focal adhesion kinase, the mitogen-activated protein kinase p38beta, mitogen- and stress-associated protein kinase-1, and the transcription factor.

  17. Semiquantitative immunohistochemical marker staining and localization in canine thyroid carcinoma and normal thyroid gland.

    PubMed

    Pessina, P; Castillo, V; Sartore, I; Borrego, J; Meikle, A

    2016-09-01

    Immunoreactive proteins in follicular cells, fibroblasts and endothelial cells were assessed in canine thyroid carcinomas and healthy thyroid glands. No differences were detected in thyrotropin receptor and thyroglobulin staining between cancer and normal tissues, but expression was higher in follicular cells than in fibroblasts. Fibroblast growth factor-2 staining was more intense in healthy follicular cells than in those of carcinomas. Follicular cells in carcinomas presented two- to three-fold greater staining intensity of thyroid transcription factor-1 and proliferating cell nuclear antigen, respectively, than healthy cells, and a similar trend was found for the latter antigen in fibroblasts. Vascular endothelial growth factor staining was more intense in the endothelial cells of tumours than in those of normal tissues. In conclusion, greater expression of factors related to proliferation and angiogenesis was demonstrated in several cell types within thyroid carcinomas compared to healthy tissues, which may represent mechanisms of tumour progression in this disease. © 2014 John Wiley & Sons Ltd.

  18. Targeting Microvascular Pericytes in Angiogenic Vessels of Prostate Cancer

    DTIC Science & Technology

    2005-04-01

    endothelial cells (BEC) were identified using a cocktail of rat antibodies against mouse endoglin ( CD 105), PECAM-1 (CD3 1), and VEGF receptor-2 (flk...immunohistochemistry, and imaging angiogenic tufts composed of endothelial cells positive for endoglin ( CD 105), PECAM- I (CD3 1), and VEGF receptor...TYPE AND DATES COVERED (Leave blank) - April 2005 Annual (1 Apr 2004 - 31 Mar 2005) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Targeting Microvascular

  19. CB2 Receptor Activation Inhibits Melanoma Cell Transmigration through the Blood-Brain Barrier

    PubMed Central

    Haskó, János; Fazakas, Csilla; Molnár, Judit; Nyúl-Tóth, Ádám; Herman, Hildegard; Hermenean, Anca; Wilhelm, Imola; Persidsky, Yuri; Krizbai, István A.

    2014-01-01

    During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma. PMID:24815068

  20. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium

    PubMed Central

    Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr

    2008-01-01

    Background The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Methods Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Results Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Conclusion Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis. PMID:18647409

  1. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium.

    PubMed

    Elzarrad, M Khair; Haroon, Abu; Willecke, Klaus; Dobrowolski, Radoslaw; Gillespie, Mark N; Al-Mehdi, Abu-Bakr

    2008-07-22

    The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.

  2. Advanced Method for Isolation of Mouse Hepatocytes, Liver Sinusoidal Endothelial Cells, and Kupffer Cells.

    PubMed

    Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji

    2017-01-01

    Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.

  3. Quantitative fine structure of capillaries in subregions of the rat subfornical organ.

    PubMed

    Shaver, S W; Sposito, N M; Gross, P M

    1990-04-01

    The differentiated cytology across subregions of the rat subfornical organ (SFO) prompted our hypothesis that ultrastructural features of capillary endothelial cells would vary topographically and quantitatively within this small nucleus. We used electron microscopic and computer-based morphometric methods to assess fine structural dimensions of the capillary endothelium in four distinct subregions of the SFO from Long-Evans and homozygous Brattleboro rats. Three types of capillary were present. Type III capillaries (resembling those of endocrine glands) had an average wall thickness of 0.17 microns, 54% thinner than those of Type I and II capillaries. Pericapillary spaces around Type III capillaries measured 56 microns2, 100% larger than for Type I vessels (resembling those of skeletal muscle). Only Type III capillaries contained fenestrations (9 per microns2 of endothelial cell) and were the predominant type of capillary in central and caudal subregions of the SFO. Type I capillaries, prevalent in the transitional subregion between the central and rostral parts of the SFO, had 10 cytoplasmic vesicles per micron2 of endothelial cell area, a number not different from that of Type III capillaries but 3x the frequency found in Type II vessels. Type II capillaries (those typical of "blood-brain barrier" endothelium) had low vesicular density (3 per microns2), no fenestrations, and no pericapillary spaces. Luminal diameters and the densities of mitochondria and intercellular junctions were not different among capillary types or subregions in the SFO. Furthermore, there were no morphometric differences for any capillary dimensions between Long-Evans and Brattleboro rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Heterogeneity of the tumor vasculature.

    PubMed

    Nagy, Janice A; Chang, Sung-Hee; Shih, Shou-Ching; Dvorak, Ann M; Dvorak, Harold F

    2010-04-01

    The blood vessels supplying tumors are strikingly heterogeneous and differ from their normal counterparts with respect to organization, structure, and function. Six distinctly different tumor vessel types have been identified, and much has been learned about the steps and mechanisms by which they form. Four of the six vessel types (mother vessels, capillaries, glomeruloid microvascular proliferations, and vascular malformations) develop from preexisting normal venules and capillaries by angiogenesis. The two remaining vessel types (feeder arteries and draining veins) develop from arterio-venogenesis, a parallel, poorly understood process that involves the remodeling of preexisting arteries and veins. All six of these tumor vessel types can be induced to form sequentially in normal mouse tissues by an adenoviral vector expressing vascular endothelial growth factor (VEGF)-A164. Current antiangiogenic cancer therapies directed at VEGF-A or its receptors have been of only limited benefit to cancer patients, perhaps because they target only the endothelial cells of the tumor blood vessel subset that requires exogenous VEGF-A for maintenance. A goal of future work is to identify therapeutic targets on tumor blood vessel endothelial cells that have lost this requirement. Thieme Medical Publishers.

  5. Heterogeneity of the Tumor Vasculature

    PubMed Central

    Nagy, Janice A.; Chang, Sung-Hee; Shih, Shou-Ching; Dvorak, Ann M.; Dvorak, Harold F.

    2012-01-01

    The blood vessels supplying tumors are strikingly heterogeneous and differ from their normal counterparts with respect to organization, structure, and function. Six distinctly different tumor vessel types have been identified, and much has been learned about the steps and mechanisms by which they form. Four of the six vessel types (mother vessels, capillaries, glomeruloid microvascular proliferations, and vascular malformations) develop from preexisting normal venules and capillaries by angiogenesis. The two remaining vessel types (feeder arteries and draining veins) develop from arterio-venogenesis, a parallel, poorly understood process that involves the remodeling of preexisting arteries and veins. All six of these tumor vessel types can be induced to form sequentially in normal mouse tissues by an adenoviral vector expressing vascular endothelial growth factor (VEGF)-A164. Current antiangiogenic cancer therapies directed at VEGF-A or its receptors have been of only limited benefit to cancer patients, perhaps because they target only the endothelial cells of the tumor blood vessel subset that requires exogenous VEGF-A for maintenance. A goal of future work is to identify therapeutic targets on tumor blood vessel endothelial cells that have lost this requirement. PMID:20490982

  6. Endothelial-regenerating cells: an expanding universe.

    PubMed

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  7. Laminin and collagen modulate expression of the small leucine-rich proteoglycan fibromodulin in rat anterior pituitary gland.

    PubMed

    Syaidah, Rahimi; Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-11-01

    The anterior pituitary is a complex organ consisting of five types of hormone-producing cells, non–hormone-producing cells such as folliculostellate (FS) cells and vascular cells (endothelial cells and pericytes). We have previously shown that FS cells and pericytes produce fibromodulin, a small leucine-rich proteoglycan (SLRP). SLRPs are major proteoglycans of the extracellular matrix (ECM) and are important in regulating cell signaling pathways and ECM assembly. However, the mechanism regulating fibromodulin expression in the anterior pituitary has not been elucidated. Here, we investigate whether fibromodulin expression is modulated by major anterior pituitary ECM components such as laminin and type I collagen. Using transgenic rats expressing green fluorescent protein (GFP) specifically in FS cells, we examine fibromodulin expression in GFP-positive (FS cells) and GFP-negative cells (e.g., pericytes, endocrine cells and endothelial cells). Immunostaining and Western blot analysis were used to assess protein expression in the presence and absence of laminin or type I collagen. We confirmed fibromodulin expression in the pituitary and observed the up-regulation of fibromodulin in FS cells in the presence of ECM components. However, neither laminin nor type I collagen affected expression in GFP-negative cells. This suggests that laminin and type I collagen support the function of FS cells by increasing fibromodulin protein expression in the anterior pituitary.

  8. Design of biomimetic vascular grafts with magnetic endothelial patterning.

    PubMed

    Fayol, Delphine; Le Visage, Catherine; Ino, Julia; Gazeau, Florence; Letourneur, Didier; Wilhelm, Claire

    2013-01-01

    The development of small diameter vascular grafts with a controlled pluricellular organization is still needed for effective vascular tissue engineering. Here, we describe a technological approach combining a tubular scaffold and magnetically labeled cells to create a pluricellular and organized vascular graft, the endothelialization of which could be monitored by MRI prior to transplantation. A novel type of scaffold was developed with a tubular geometry and a porous bulk structure enabling the seeding of cells in the scaffold pores. A homogeneous distribution of human mesenchymal stem cells in the macroporous structure was obtained by seeding the freeze-dried scaffold with the cell suspension. The efficient covering of the luminal surface of the tube was then made possible thanks to the implementation of a magnetic-based patterning technique. Human endothelial cells or endothelial progenitors were magnetically labeled with iron oxide nanoparticles and successfully attracted to the 2-mm lumen where they attached and formed a continuous endothelium. The combination of imaging modalities [fluorescence imaging, histology, and 3D magnetic resonance imaging (MRI)] evidenced the integrity of the vascular construct. In particular, the observation of different cell organizations in a vascular scaffold within the range of resolution of single cells by 4.7 T MRI is reported.

  9. Astrocyte–endothelial interactions and blood–brain barrier permeability*

    PubMed Central

    Abbott, N Joan

    2002-01-01

    The blood–brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFβ, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain endothelial permeability has been shown for a number of small chemical mediators produced by astrocytes and other nearby cell types. It is clear that endothelial cells are involved in both long- and short-term chemical communication with neighbouring cells, with the perivascular end feet of astrocytes being of particular importance. The role of barrier induction and modulation in normal physiology and in pathology is discussed. PMID:12162730

  10. Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival

    PubMed Central

    Sanchez, Erica L.; Carroll, Patrick A.; Thalhofer, Angel B.; Lagunoff, Michael

    2015-01-01

    Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of Kaposi’s Sarcoma (KS). KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA) cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG) and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings expand our understanding of the required metabolic pathways that are activated during latent KSHV infection of endothelial cells, and demonstrate a novel role for the extended Myc-regulatory network, specifically MondoA, during latent KSHV infection. PMID:26197457

  11. Endothelial NOS is required for SDF-1alpha/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells.

    PubMed

    Kaminski, Alexander; Ma, Nan; Donndorf, Peter; Lindenblatt, Nicole; Feldmeier, Gregor; Ong, Lee-Lee; Furlani, Dario; Skrabal, Christian A; Liebold, Andreas; Vollmar, Brigitte; Steinhoff, Gustav

    2008-01-01

    In the era of intravascular approaches for regenerative cell therapy, the underlying mechanisms of stem cell migration to non-marrow tissue have not been clarified. We hypothesized that next to a local inflammatory response implying adhesion molecule expression, endothelial nitric oxide synthase (eNOS)-dependent signaling is required for stromal- cell-derived factor-1 alpha (SDF-1alpha)-induced adhesion of c-kit+ cells to the vascular endothelium. SDF-1alpha/tumor necrosis factor-alpha (TNF-alpha)-induced c-kit+-cell shape change and migration capacity was studied in vitro using immunohistochemistry and Boyden chamber assays. In vivo interaction of c-kit+ cells from bone marrow with the endothelium in response to SDF-1alpha/TNF-alpha stimulation was visualized in the cremaster muscle microcirculation of wild-type (WT) and eNOS (-/-) mice using intravital fluorescence microscopy. In addition, NOS activity was inhibited with N-nitro-L-arginine-methylester-hydrochloride in WT mice. To reveal c-kit+-specific adhesion behavior, endogenous leukocytes (EL) and c-kit+ cells from peripheral blood served as control. Moreover, intercellular adhesion molecule-1 (ICAM-1) and CXCR4 were blocked systemically to determine their role in inflammation-related c-kit+-cell adhesion. In vitro, SDF-1alpha enhanced c-kit+-cell migration. In vivo, SDF-1alpha alone triggered endothelial rolling-not firm adherence-of c-kit+ cells in WT mice. While TNF-alpha alone had little effect on adhesion of c-kit+ cells, it induced maximum endothelial EL adherence. However, after combined treatment with SDF-1alpha+TNF-alpha, endothelial adhesion of c-kit+ cells increased independent of their origin, while EL adhesion was not further incremented. Systemic treatment with anti-ICAM-1 and anti-CXCR4-monoclonal antibody completely abolished endothelial c-kit+-cell adhesion. In N-nitro-L-arginine-methylester-hydrochloride-treated WT mice as well as in eNOS (-/-) mice, firm endothelial adhesion of c-kit+ cells was entirely abrogated, while EL adhesion was significantly increased. The chemokine SDF-1alpha mediates firm adhesion c-kit+ cells only in the presence of TNF-alpha stimulation via an ICAM-1- and CXCR4-dependent mechanism. The presence of eNOS appears to be a crucial and specific factor for firm c-kit+-cell adhesion to the vascular endothelium.

  12. Robust Revascularization in Models of Limb Ischemia Using a Clinically Translatable Human Stem Cell-Derived Endothelial Cell Product.

    PubMed

    MacAskill, Mark G; Saif, Jaimy; Condie, Alison; Jansen, Maurits A; MacGillivray, Thomas J; Tavares, Adriana A S; Fleisinger, Lucija; Spencer, Helen L; Besnier, Marie; Martin, Ernesto; Biglino, Giovanni; Newby, David E; Hadoke, Patrick W F; Mountford, Joanne C; Emanueli, Costanza; Baker, Andrew H

    2018-03-28

    Pluripotent stem cell-derived differentiated endothelial cells offer high potential in regenerative medicine in the cardiovascular system. With the aim of translating the use of a human stem cell-derived endothelial cell product (hESC-ECP) for treatment of critical limb ischemia (CLI) in man, we report a good manufacturing practice (GMP)-compatible protocol and detailed cell tracking and efficacy data in multiple preclinical models. The clinical-grade cell line RC11 was used to generate hESC-ECP, which was identified as mostly endothelial (60% CD31 + /CD144 + ), with the remainder of the subset expressing various pericyte/mesenchymal stem cell markers. Cell tracking using MRI, PET, and qPCR in a murine model of limb ischemia demonstrated that hESC-ECP was detectable up to day 7 following injection. Efficacy in several murine models of limb ischemia (immunocompromised/immunocompetent mice and mice with either type I/II diabetes mellitus) demonstrated significantly increased blood perfusion and capillary density. Overall, we demonstrate a GMP-compatible hESC-ECP that improved ischemic limb perfusion and increased local angiogenesis without engraftment, paving the way for translation of this therapy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. MicroRNA regulation of endothelial homeostasis and commitment-implications for vascular regeneration strategies using stem cell therapies.

    PubMed

    Scott, Elizabeth; Loya, Komal; Mountford, Joanne; Milligan, Graeme; Baker, Andrew H

    2013-09-01

    Human embryonic (hESC) and induced pluripotent (hiPSC) stem cells have broad therapeutic potential in the treatment of a range of diseases, including those of the vascular system. Both hESCs and hiPSCs have the capacity for indefinite self-renewal, in addition to their ability to differentiate into any adult cell type. These cells could provide a potentially unlimited source of cells for transplantation and, therefore, provide novel treatments, e.g. in the production of endothelial cells for vascular regeneration. MicroRNAs are short, noncoding RNAs that act posttranscriptionally to control gene expression and thereby exert influence over a wide range of cellular processes, including maintenance of pluripotency and differentiation. Expression patterns of these small RNAs are tissue specific, and changes in microRNA levels have often been associated with disease states in humans, including vascular pathologies. Here, we review the roles of microRNAs in endothelial cell function and vascular disease, as well as their role in the differentiation of pluripotent stem cells to the vascular endothelial lineage. Furthermore, we discuss the therapeutic potential of stem cells and how knowledge and manipulation of microRNAs in stem cells may enhance their capacity for vascular regeneration. © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes

    PubMed Central

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-01-01

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  15. Mature and progenitor endothelial cells perform angiogenesis also under protease inhibition: the amoeboid angiogenesis.

    PubMed

    Chillà, Anastasia; Margheri, Francesca; Biagioni, Alessio; Del Rosso, Mario; Fibbi, Gabriella; Laurenzana, Anna

    2018-04-03

    Controlling vascular growth is a challenging aim for the inhibition of tumor growth and metastasis. The amoeboid and mesenchymal types of invasiveness are two modes of migration interchangeable in cancer cells: the Rac-dependent mesenchymal migration requires the activity of proteases; the Rho-ROCK-dependent amoeboid motility is protease-independent and has never been described in endothelial cells. A cocktail of physiologic inhibitors (Ph-C) of serine-proteases, metallo-proteases and cysteine-proteases, mimicking the physiological environment that cells encounter during their migration within the angiogenesis sites was used to induce amoeboid style migration of Endothelial colony forming cells (ECFCs) and mature endothelial cells (ECs). To evaluate the mesenchymal-ameboid transition RhoA and Rac1 activation assays were performed along with immunofluorescence analysis of proteins involved in cytoskeleton organization. Cell invasion was studied in Boyden chambers and Matrigel plug assay for the in vivo angiogenesis. In the present study we showed in both ECFCs and ECs, a decrease of activated Rac1 and an increase of activated RhoA upon shifting of cells to the amoeboid conditions. In presence of Ph-C inhibitors both cell lines acquired a round morphology and Matrigel invasion was greatly enhanced with respect to that observed in the absence of protease inhibition. We also observed that the urokinase-plasminogen-activator (uPAR) receptor silencing and uPAR-integrin uncoupling with the M25 peptide abolished both mesenchymal and amoeboid angiogenesis of ECFCs and ECs in vitro and in vivo, indicating a role of the uPAR-integrin-actin axis in the regulation of amoeboid angiogenesis. Furthermore, under amoeboid conditions endothelial cells seem to be indifferent to VEGF stimulation, which induces an amoeboid signaling pattern also in mesenchymal conditions. Here we first provide a data set disclosing that endothelial cells can move and differentiate into vascular structures in vitro and in vivo also in the absence of proteases activity, performing a new type of neovascularization: the "amoeboid angiogenesis". uPAR is indispensable for ECs and ECFCs to perform an efficient amoeboid angiogenesis. Therefore, uPAR silencing or the block of its integrin-interaction, together with standard treatment against VEGF, could be a possible solution for angiogenesis inhibition.

  16. Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography.

    PubMed

    Ding, Yonghui; Yang, Meng; Yang, Zhilu; Luo, Rifang; Lu, Xiong; Huang, Nan; Huang, Pingbo; Leng, Yang

    2015-03-01

    A wide variety of environmental cues provided by the extracellular matrix, including biophysical and biochemical cues, are responsible for vascular cell behavior and function. In particular, substrate topography and surface chemistry have been shown to regulate blood and vascular compatibility individually. The combined impact of chemical and topographic cues on blood and vascular compatibility, and the interplay between these two types of cues, are subjects that are currently being explored. In the present study, a facile polydopamine-mediated approach is introduced for immobilization of heparin on topographically patterned substrates, and the combined effects of these cues on blood compatibility and re-endothelialization are systematically investigated. The results show that immobilized heparin and substrate topography cooperatively modulate anti-coagulation activity, endothelial cell (EC) attachment, proliferation, focal adhesion formation and endothelial marker expression. Meanwhile, the substrate topography is the primary determinant of cell alignment and elongation, driving in vivo-like endothelial organization. Importantly, combining immobilized heparin with substrate topography empowers substantially greater competitive ability of ECs over smooth muscle cells than each cue individually. Moreover, a model is proposed to elucidate the cooperative interplay between immobilized heparin and substrate topography in regulating cell behavior. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells.

    PubMed

    Kogan, Natalya M; Blázquez, Cristina; Alvarez, Luis; Gallily, Ruth; Schlesinger, Michael; Guzmán, Manuel; Mechoulam, Raphael

    2006-07-01

    Recent findings on the inhibition of angiogenesis and vascular endothelial cell proliferation by anthracycline antibiotics, which contain a quinone moiety, make this type of compound a very promising lead in cancer research/therapy. We have reported that a new cannabinoid anticancer quinone, cannabidiol hydroxyquinone (HU-331), is highly effective against tumor xenografts in nude mice. For evaluation of the antiangiogenic action of cannabinoid quinones, collagen-embedded rat aortic ring assay was used. The ability of cannabinoids to cause endothelial cell apoptosis was assayed by TUNEL staining and flow cytometry analysis. To examine the genes and pathways targeted by HU-331 in vascular endothelial cells, human cDNA microarrays and polymerase chain reaction were used. Immunostaining with anti-CD31 of tumors grown in nude mice served to indicate inhibition of tumor angiogenesis. HU-331 was found to be strongly antiangiogenic, significantly inhibiting angiogenesis at concentrations as low as 300 nM. HU-331 inhibited angiogenesis by directly inducing apoptosis of vascular endothelial cells without changing the expression of pro- and antiangiogenic cytokines and their receptors. A significant decrease in the total area occupied by vessels in HU-331-treated tumors was also observed. These data lead us to consider HU-331 to have high potential as a new antiangiogenic and anticancer drug.

  18. The innate defense antimicrobial peptides hBD3 and RNase7 are induced in human umbilical vein endothelial cells by classical inflammatory cytokines but not Th17 cytokines.

    PubMed

    Burgey, Christine; Kern, Winfried V; Römer, Winfried; Sakinc, Türkan; Rieg, Siegbert

    2015-05-01

    Antimicrobial peptides are multifunctional effector molecules of innate immunity. In this study we investigated whether endothelial cells actively contribute to innate defense mechanisms by expression of antimicrobial peptides. We therefore stimulated human umbilical vein endothelial cells (HUVEC) with inflammatory cytokines, Th17 cytokines, heat-inactivated bacteria, bacterial conditioned medium (BCM) of Staphylococcus aureus and Streptococcus sanguinis, and lipoteichoic acid (LTA). Stimulation with single cytokines induced discrete expression of human β-defensin 3 (hBD3) by IFN-γ or IL-1β and of ribonuclease 7 (RNase7) by TNF-α without any effects on LL-37 gene expression. Stronger hBD3 and RNase7 induction was observed after combined stimulation with IL-1β, TNF-α and IFN-γ and was confirmed by high hBD3 and RNase7 peptide levels in cell culture supernatants. In contrast, Th17 cytokines or stimulation with LTA did not result in AMP production. Moreover, only BCM of an invasive S. aureus bacteremia isolate induced hBD3 in HUVEC. We conclude that endothelial cells actively contribute to prevent dissemination of pathogens at the blood-tissue-barrier by production of AMPs that exhibit microbicidal and immunomodulatory functions. Further investigations should focus on tissue-specific AMP induction in different endothelial cell types, on pathogen-specific induction patterns and potentially involved pattern-recognition receptors of endothelial cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury

    PubMed Central

    Castro, Angela M.; Lupu, Traian S.; Weinheimer, Carla; Smith, Craig; Kovacs, Attila

    2016-01-01

    Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice). Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1f/f, Fgfr2f/f DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart. PMID:26747503

  20. Endothelial fibroblast growth factor receptor signaling is required for vascular remodeling following cardiac ischemia-reperfusion injury.

    PubMed

    House, Stacey L; Castro, Angela M; Lupu, Traian S; Weinheimer, Carla; Smith, Craig; Kovacs, Attila; Ornitz, David M

    2016-03-01

    Fibroblast growth factor (FGF) signaling is cardioprotective in various models of myocardial infarction. FGF receptors (FGFRs) are expressed in multiple cell types in the adult heart, but the cell type-specific FGFR signaling that mediates different cardioprotective endpoints is not known. To determine the requirement for FGFR signaling in endothelium in cardiac ischemia-reperfusion injury, we conditionally inactivated the Fgfr1 and Fgfr2 genes in endothelial cells with Tie2-Cre (Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice). Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice had normal baseline cardiac morphometry, function, and vessel density. When subjected to closed-chest, regional cardiac ischemia-reperfusion injury, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed a significantly increased hypokinetic area at 7 days, but not 1 day, after reperfusion. Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice also showed significantly worsened cardiac function compared with controls at 7 days but not 1 day after reperfusion. Pathophysiological analysis showed significantly decreased vessel density, increased endothelial cell apoptosis, and worsened tissue hypoxia in the peri-infarct area at 7 days following reperfusion. Notably, Tie2-Cre, Fgfr1(f/f), Fgfr2(f/f) DCKO mice showed no impairment in the cardiac hypertrophic response. These data demonstrate an essential role for FGFR1 and FGFR2 in endothelial cells for cardiac functional recovery and vascular remodeling following in vivo cardiac ischemia-reperfusion injury, without affecting the cardiac hypertrophic response. This study suggests the potential for therapeutic benefit from activation of endothelial FGFR pathways following ischemic injury to the heart. Copyright © 2016 the American Physiological Society.

  1. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  2. MicroRNAs as Regulators of Endothelial Cell Functions in Cardiometabolic Diseases

    PubMed Central

    Araldi, Elisa; Suárez, Yajaira

    2016-01-01

    Endothelial cells (ECs) provide nutrients and oxygen essential for tissue homeostasis. Metabolic imbalances and other environmental stimuli, like cytokines or low shear stress, trigger endothelial inflammation, increase permeability, compromise vascular tone, promote cell proliferation and ultimately cause cell death. These factors contribute to EC dysfunction, which is crucial in the development of cardiometabolic diseases. microRNAs (miRNAs) are small non-coding RNAs that have important functions in the regulation of ECs. In the present review, we discuss the role of miRNAs in various aspects of EC pathology in cardiometabolic diseases like atherosclerosis, type 2 diabetes, obesity, and the metabolic syndrome, and in complication of those pathologies, like ischemia. We also discuss the potential therapeutic applications of miRNAs in promoting angiogenesis and neovascularization in tissues where the endothelium is damaged in different cardiometabolic diseases. PMID:26825686

  3. Characterization of a 3rd Generation Lentiviral Vector Pseudotyped With Nipah Virus Envelope Proteins For Endothelial Cell Transduction

    PubMed Central

    Witting, Scott R.; Vallanda, Priya; Gamble, Aisha L.

    2013-01-01

    Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, 3rd generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared to VSV pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in 3rd generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells. PMID:23698741

  4. Characterization of a third generation lentiviral vector pseudotyped with Nipah virus envelope proteins for endothelial cell transduction.

    PubMed

    Witting, S R; Vallanda, P; Gamble, A L

    2013-10-01

    Lentiviruses are becoming progressively more popular as gene therapy vectors due to their ability to integrate into quiescent cells and recent clinical trial successes. Directing these vectors to specific cell types and limiting off-target transduction in vivo remains a challenge. Replacing the viral envelope proteins responsible for cellular binding, or pseudotyping, remains a common method to improve lentiviral targeting. Here, we describe the development of a high titer, third generation lentiviral vector pseudotyped with Nipah virus fusion protein (NiV-F) and attachment protein (NiV-G). Critical to high titers was truncation of the cytoplasmic domains of both NiV-F and NiV-G. As known targets of wild-type Nipah virus, primary endothelial cells are shown to be effectively transduced by the Nipah pseudotype. In contrast, human CD34+ hematopoietic progenitors were not significantly transduced. Additionally, the Nipah pseudotype has increased stability in human serum compared with vesicular stomatitis virus pseudotyped lentivirus. These findings suggest that the use of Nipah virus envelope proteins in third generation lentiviral vectors would be a valuable tool for gene delivery targeted to endothelial cells.

  5. Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes.

    PubMed

    Ponec, Maria; El Ghalbzouri, Abdoelwaheb; Dijkman, Remco; Kempenaar, Johanna; van der Pluijm, Gabri; Koolwijk, Pieter

    2004-01-01

    A human skin equivalent from a single skin biopsy harboring keratinocytes and melanocytes in the epidermal compartment, and fibroblasts and microvascular dermal endothelial cells in the dermal compartment was developed. The results of the study revealed that the nature of the extracellular matrix of the dermal compartments plays an important role in establishment of endothelial network in vitro. With rat-tail type I collagen matrices only lateral but not vertical expansion of endothelial networks was observed. In contrast, the presence of extracellular matrix of entirely human origin facilitated proper spatial organization of the endothelial network. Namely, when human dermal fibroblasts and microvascular endothelial cells were seeded on the bottom of an inert filter and subsequently epidermal cells were seeded on top of it, fibroblasts produced extracellular matrix throughout which numerous branched tubes were spreading three-dimensionally. Fibroblasts also facilitated the formation of basement membrane at the epidermal/matrix interface. Under all culture conditions, fully differentiated epidermis was formed with numerous melanocytes present in the basal epidermal cell layer. The results of the competitive RT-PCR revealed that both keratinocytes and fibroblasts expressed VEGF-A, -B, -C, aFGF and bFGF mRNA, whereas fibroblasts also expressed VEGF-D mRNA. At protein level, keratinocytes produced 10 times higher amounts of VEGF-A than fibroblasts did. The generation of multicellular skin equivalent from a single human skin biopsy will stimulate further developments for its application in the treatment of full-thickness skin defects. The potential development of biodegradable, biocompatible material suitable for these purposes is a great challenge for future research.

  6. Cell-derived microparticles and vascular pregnancy complications: a systematic and comprehensive review.

    PubMed

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Llurba, Elisa; Vilardell-Tarres, Miquel

    2013-02-01

    To assess current studies on the relationship between cell-derived microparticles (cMP) and recurrent miscarriages (RM) and pre-eclampsia (PE), and review the relationships between cMP and inflammatory and clot pathways, antiphospholipid antibodies (aPL), cytokines, and pregnancy complications. Systematic and comprehensive review of the literature from January 2000 to January 2012. Vall d'Hebron University Hospital. Women with recurrent miscarriages or PE, healthy nonpregnant women, and healthy pregnant women. None. Comparison of cMP numbers and types among groups. Platelet and endothelial cMP are increased in women with normal pregnancies compared with nonpregnant healthy women. Only five case-control studies regarding cMP and RM and 16 on cMP and PE were found to match our objective. Three of five articles referring to RM showed differences in cMP numbering, and 13 of 16 on cMP and PE showed differences in some type of cMP compared with controls. Cell-derived microparticles were raised in normal pregnancy. Recurrent miscarriage seems to be related to endothelial and platelet cell activation and/or consumption. An increase in almost all cMP types was observed in PE. A relationship between cMP and endothelial activation and proinflammatory status seems to exist. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    PubMed

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  8. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model.

    PubMed

    Cancel, Limary M; Ebong, Eno E; Mensah, Solomon; Hirschberg, Carly; Tarbell, John M

    2016-09-01

    Previous experiments suggest that both increased endothelial cell apoptosis and endothelial surface glycocalyx shedding could play a role in the endothelial dysfunction and inflammation of athero-prone regions of the vasculature. We sought to elucidate the possibly synergistic mechanisms by which endothelial cell apoptosis and glycocalyx shedding promote atherogenesis. 4- to 6-week old male C57Bl/6 apolipoprotein E knockout (ApoE(-/-)) mice were fed a Western diet for 10 weeks and developed plaques in their brachiocephalic arteries. Glycocalyx coverage and thickness were significantly reduced over the plaque region compared to the non-plaque region (coverage plaque: 71 ± 23%, non-plaque: 97 ± 3%, p = 0.02; thickness plaque: 0.85 ± 0.15 μm, non-plaque: 1.2 ± 0.21 μm, p = 0.006). Values in the non-plaque region were not different from those found in wild type mice fed a normal diet (coverage WT: 92 ± 3%, p = 0.7 vs. non-plaque ApoE(-/-), thickness WT: 1.1 ± 0.06 μm, p = 0.2 vs. non-plaque ApoE(-/-)). Endothelial cell apoptosis was significantly increased in ApoE(-/-) mice compared to wild type mice (ApoE(-/-):64.3 ± 33.0, WT: 1.1 ± 0.5 TUNEL-pos/cm, p = 2 × 10(-7)). The number of apoptotic endothelial cells per unit length was 2 times higher in the plaque region than in the non-plaque region of the same vessel (p = 3 × 10(-5)). Increased expression of matrix metalloproteinase 9 co-localized with glycocalyx shedding and plaque buildup. Our results suggest that, in concert with endothelial apoptosis that increases lipid permeability, glycocalyx shedding initiated by inflammation facilitates monocyte adhesion and macrophage infiltration that promote lipid retention and the development of atherosclerotic plaques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Human umbilical vein endothelial cells protect against hypoxic-ischemic damage in neonatal brain via stromal cell-derived factor 1/C-X-C chemokine receptor type 4.

    PubMed

    Wu, Chia-Ching; Chen, Yi-Chi; Chang, Ying-Chao; Wang, Lan-Wan; Lin, Yung-Chieh; Chiang, Yi-Lun; Ho, Chien-Jung; Huang, Chao-Ching

    2013-05-01

    Agents that protect against neurovascular damage provide a powerful neuroprotective strategy. Human umbilical vein endothelial cells (HUVECs) may be used to treat neonates with hypoxic-ischemia (HI) because of its autologous capability. We hypothesized that peripherally injected HUVECs entered the brain after HI, protected against neurovascular damage, and provided protection via stromal cell-derived factor 1/C-X-C chemokine receptor type 4 pathway in neonatal brain. Postpartum day 7 rat pups received intraperitoneal injections of low-passage HUVEC-P4, high-passage HUVEC-P8, or conditioned medium before and immediately after HI. HUVECs were transfected with adenovirus-green fluorescent protein for cell tracing. Oxygen-glucose deprivation was established by coculturing HUVEC-P4 with mouse neuroblastoma neuronal cells (Neuro-2a) and with mouse immortalized cerebral vascular endothelial cells (b.End3). HUVEC-P4-treated group had more blood levels of green fluorescent protein-positive cells than HUVEC-P8-treated group 3 hours postinjection. Intraperitoneally injected HUVEC-P4, but not HUVEC-P8, entered the cortex after HI and positioned closed to the neurons and microvessels. Compared with the condition medium-treated group, the HUVEC-P4-treated but not the HUVEC-P8-treated group showed significantly less neuronal apoptosis and blood-brain barrier damage and more preservation of microvessels in the cortex 24 hours after HI. On postpartum day 14, the HUVEC-P4-treated group showed significant neuroprotection compared with the condition medium-treated group. Stromal cell-derived factor 1 was upregulated in the ipsilateral cortex 3 hours after HI, and inhibiting the stromal cell-derived factor 1/C-X-C chemokine receptor type 4 reduced the protective effect of HUVEC-P4. In vitro transwell coculturing of HUVEC-P4 also significantly protected against oxygen-glucose deprivation cell death in neurons and endothelial cells. Cell therapy using HUVECs may provide a powerful therapeutic strategy in treating neonates with HI.

  10. NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes.

    PubMed

    Ebrahimian, Téni G; Heymes, Christophe; You, Dong; Blanc-Brude, Olivier; Mees, Barend; Waeckel, Ludovic; Duriez, Micheline; Vilar, José; Brandes, Ralph P; Levy, Bernard I; Shah, Ajay M; Silvestre, Jean-Sébastien

    2006-08-01

    We hypothesized that diabetes-induced oxidative stress may affect postischemic neovascularization. The response to unilateral femoral artery ligation was studied in wild-type or gp91(phox)-deficient control or type 1 diabetic mice or in animals treated with the anti-oxidant N-acetyl-l-cysteine (NAC) or with in vivo electrotransfer of a plasmid encoding dominant-negative Rac1 (50 microg) for 21 days. Postischemic neovascularization was reduced in diabetic mice in association with down-regulated vascular endothelial growth factor-A protein levels. In diabetic animals vascular endothelial growth factor levels and postischemic neovascularization were restored to nondiabetic levels by the scavenging of reactive oxygen species (ROS) by NAC administration or the inhibition of ROS generation by gp91(phox) deficiency or by administration of dominant-negative Rac1. Finally, diabetes reduced the ability of adherent bone marrow-derived mononuclear cells (BM-MNCs) to differentiate into endothelial progenitor cells. Treatment with NAC (3 mmol/L), apocynin (200 micromol/L), or the p38MAPK inhibitor LY333351 (10 micromol/L) up-regulated the number of endothelial progenitor cell colonies derived from diabetic BM-MNCs by 1.5-, 1.6-, and 1.5-fold, respectively (P < 0.05). In the ischemic hindlimb model, injection of diabetic BM-MNCs isolated from NAC-treated or gp91(phox)-deficient diabetic mice increased neovascularization by approximately 1.5-fold greater than untreated diabetic BM-MNCs (P < 0.05). Thus, inhibition of NADPH oxidase-derived ROS overproduction improves the angiogenic and vasculogenic processes and restores postischemic neovascularization in type 1 diabetic mice.

  11. Endothelial Nitric Oxide Synthase Overexpression Restores the Efficiency of Bone Marrow Mononuclear Cell-Based Therapy

    PubMed Central

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. PMID:21224043

  12. Angiogenesis and Vascular Architecture in Pheochromocytomas

    PubMed Central

    Favier, Judith; Plouin, Pierre-François; Corvol, Pierre; Gasc, Jean-Marie

    2002-01-01

    Angiogenesis is a critical step in tumor growth and metastatic invasion. We here report the study of the vascular status of 10 benign and 9 malignant pheochromocytomas. We examined the vascular architecture after immunostaining endothelial cells (CD34) and vascular smooth muscle cells (α-actin) and identified a vascular pattern characteristic of malignant lesions. To define a gene expression profile indicative of the invasive phenotype, we studied by in situ hybridization the expression of genes encoding several pro- and anti-angiogenic factors [hypoxia-inducible factor (HIF-1α), EPAS1, vascular endothelial growth factor (VEGF), VEGF receptors, angiopoietins and their receptor Tie2, five genes of the endothelin system, and thrombospondin 1]. A semiquantitative evaluation of the labeling revealed an induction of genes encoding EPAS1, VEGF, VEGFR-1, VEGFR-2, endothelin receptor, type B (ETB) and endothelin receptor, type A (ETA) in malignant pheochromocytomas as compared to benign tumors. These differences were observed in tumor cells, in endothelial cells, or in both. Quantification by real-time reverse-transcriptase polymerase chain reaction showed an increase of EPAS1, VEGF, and ETB transcripts of 4.5-, 3.5-, and 10-fold, respectively, in malignant versus benign tumors. Furthermore, we observed a strong correlation between the expression of EPAS1 and VEGF in tumoral tissue and between EPAS1 and ETB in endothelial cells. Altogether, our observations show that analysis of angiogenesis provides promising new criteria for the diagnosis of malignant pheochromocytomas. PMID:12368197

  13. Inhibition of endothelial cell expression of plasminogen activator inhibitor type-1 by gemfibrozil.

    PubMed

    Fujii, S; Sawa, H; Sobel, B E

    1993-10-18

    Increased concentrations of plasminogen activator inhibitor type-1 (PAI-1) in plasma are associated with impaired fibrinolysis and venous and arterial thrombo-embolic disease. In pilot studies designed to identify pharmacologic approaches capable of diminishing such increases, we found that gemfibrozil attenuated the stimulation of synthesis of PAI-1 in a human, immortal, hepatoma cell line (Hep G2) induced by platelets. The present study was performed to determine whether it exerts analogous effects in non-immortal endothelial cells and whether it may therefore facilitate fibrinolysis locally in vivo. Human umbilical vein endothelial cells were incubated with pharmacologic concentrations of gemfibrozil. Gemfibrozil, 100 microM, suppressed basal PAI-1 production by 15% and attenuated the augmentation of synthesis of PAI-1 induced by lysates from platelets (4 x 10(7)/ml) by 36% over 24 h without inhibiting overall protein synthesis. In addition, the increases in PAI-1 mRNA otherwise induced by platelet lysates over 6 h were suppressed by 49% (Northern blots) without any demonstrable change in the intracellular half-life of PAI-1 mRNA. Pulse-chase experiments demonstrated diminution of PAI-1 protein synthesis in parallel with the changes observed in PAI-1 mRNA. To determine whether these effects of gemfibrozil on endothelial cells in vitro were paralleled by consistent changes in the concentrations of PAI-1 in plasma in vivo, we studied rabbits with induced carotid artery thrombosis and thrombolysis.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Quantification and Patterns of Endothelial Cell Loss Due to Eye Bank Preparation and Injector Method in Descemet Membrane Endothelial Keratoplasty Tissues.

    PubMed

    Schallhorn, Julie M; Holiman, Jeffrey D; Stoeger, Christopher G; Chamberlain, Winston

    2016-03-01

    To evaluate endothelial cell damage after eye bank preparation and passage through 1 of 2 different injectors for Descemet membrane endothelial keratoplasty grafts. Eighteen Descemet membrane endothelial keratoplasty grafts were prepared by Lions VisionGift with the standard partial prepeel technique and placement of an S-stamp for orientation. The grafts were randomly assigned to injection with either a glass-modified Jones tube injector (Gunther Weiss Scientific Glass) or a closed-system intraocular lens injector (Viscoject 2.2; Medicel). After injection, the grafts were stained with the vital fluorescent dye Calcein AM and digitally imaged. The percentage of cell loss was calculated by measuring the area of nonfluorescent pixels and dividing it by the total graft area pixels. Grafts injected using the modified Jones tube injector had an overall cell loss of 27% ± 5% [95% confidence interval, 21%-35%]. Grafts injected using the closed-system intraocular lens injector had a cell loss of 32% ± 8% (95% confidence interval, 21%-45%). This difference was not statistically significant (P = 0.3). Several damage patterns including damage due to S-stamp placement were observed, but they did not correlate with injector type. In this in vitro study, there was no difference in the cell loss associated with the injector method. Grafts in both groups sustained significant cell loss and displayed evidence of graft preparation and S-stamp placement. Improvement in graft preparation and injection methods may improve cell retention.

  15. In Vitro Endothelialization of Biodegradable Vascular Grafts Via Endothelial Progenitor Cell Seeding and Maturation in a Tubular Perfusion System Bioreactor.

    PubMed

    Melchiorri, Anthony J; Bracaglia, Laura G; Kimerer, Lucas K; Hibino, Narutoshi; Fisher, John P

    2016-07-01

    A critical challenge to the success of biodegradable vascular grafts is the establishment of a healthy endothelium. To establish this monolayer of endothelial cells (ECs), a variety of techniques have been developed, including cell seeding. Vascular grafts may be seeded with relevant cell types and allowed to mature before implantation. Due to the low proliferative ability of adult ECs and issues with donor site morbidity, there has been increasing interest in using endothelial progenitor cells (EPCs) for vascular healing procedures. In this work, we combined the proliferative and differentiation capabilities of a commercial cell line of early EPCs with an established bioreactor system to support the maturation of cell-seeded vascular grafts. All components of the vascular graft and bioreactor setup are commercially available and allow for complete customization of the scaffold and culturing system. This bioreactor setup enables the control of flow through the graft, imparting fluid shear stress on EPCs and affecting cellular proliferation and differentiation. Grafts cultured with EPCs in the bioreactor system demonstrated greatly increased cell populations and neotissue formation compared with grafts seeded and cultured in a static system. Increased expression of markers for mature endothelial tissues were also observed in bioreactor-cultured EPC-seeded grafts. These findings suggest the distinct advantages of a customizable bioreactor setup for the proliferation and maturation of EPCs. Such a strategy may be beneficial for utilizing EPCs in vascular tissue engineering applications.

  16. Presence of MUC4 in human milk and at the luminal surfaces of blood vessels.

    PubMed

    Zhang, Jin; Perez, Aymee; Yasin, Mohammad; Soto, Pedro; Rong, Min; Theodoropoulos, George; Carothers Carraway, Coralie A; Carraway, Kermit L

    2005-07-01

    MUC4 is a heterodimeric membrane mucin, composed of a mucin subunit ASGP-1 (MUC4alpha) and a transmembrane subunit ASGP-2 (MUC4beta), which has been implicated in the protection of epithelial cell surfaces. Surprisingly, development and characterization of a new monoclonal antibody (mAb), called 1G8, against ASGP-2 demonstrated by immunohistochemistry the presence of MUC4 at the luminal surfaces of blood vessels of both normal tissues and tumors. Muc4 was detected with 1G8 and other Muc4 antibodies in blood vessels from humans, rats and mice. This expression of MUC4 in endothelial cells was confirmed by immunoblotting with 1G8 in human umbilical vein endothelial cells (HUVECs), human iliac artery endothelial cells (HIAECs), and human microvascular endothelial cells (HMVECs). MUC4 could be observed on HUVECs grown on either plastic or Matrigel. Finally, MUC4 expression in the three types of endothelial cell lines was confirmed by reverse transcription-polymerase chain reaction (RT-PCR). These results provide, to our knowledge, the first demonstration of a member of the MUC gene family and membrane mucin in blood vessels. As a luminal surface component, the MUC4 is situated to contribute to the non-adhesive luminal surface and to act as an intrinsic protection and survival factor. (c) 2004 Wiley-Liss, Inc.

  17. Kruppel-like factor 2 inhibits hypoxia-inducible factor 1alpha expression and function in the endothelium.

    PubMed

    Kawanami, Daiji; Mahabeleshwar, Ganapati H; Lin, Zhiyong; Atkins, G Brandon; Hamik, Anne; Haldar, Saptarsi M; Maemura, Koji; Lamanna, Joseph C; Jain, Mukesh K

    2009-07-31

    Hypoxia-inducible factor 1 (HIF-1) is a central regulator of the hypoxic response in many cell types. In endothelial cells, HIF-1 induces the expression of key proangiogenic factors to promote angiogenesis. Recent studies have identified Kruppel-like factor 2 (KLF2) as a potent inhibitor of angiogenesis. However, the role of KLF2 in regulating HIF-1 expression and function has not been evaluated. KLF2 expression was induced acutely by hypoxia in endothelial cells. Adenoviral overexpression of KLF2 inhibited hypoxia-induced expression of HIF-1alpha and its target genes such as interleukin 8, angiopoietin-2, and vascular endothelial growth factor in endothelial cells. Conversely, knockdown of KLF2 increased expression of HIF-1alpha and its targets. Furthermore, KLF2 inhibited hypoxia-induced endothelial tube formation, whereas endothelial cells from mice with haploinsufficiency of KLF2 showed increased tube formation in response to hypoxia. Consistent with this ex vivo observation, KLF2 heterozygous mice showed increased microvessel density in the brain. Mechanistically, KLF2 promoted HIF-1alpha degradation in a von Hippel-Lindau protein-independent but proteasome-dependent manner. Finally, KLF2 disrupted the interaction between HIF-1alpha and its chaperone Hsp90, suggesting that KLF2 promotes degradation of HIF-1alpha by affecting its folding and maturation. These observations identify KLF2 as a novel inhibitor of HIF-1alpha expression and function. Therefore, KLF2 may be a target for modulating the angiogenic response in disease states.

  18. Endothelial Cell-Derived Microparticles from Patients with Obstructive Sleep Apnea Hypoxia Syndrome and Coronary Artery Disease Increase Aortic Endothelial Cell Dysfunction.

    PubMed

    Jia, Lixin; Fan, Jingyao; Cui, Wei; Liu, Sa; Li, Na; Lau, Wayne Bond; Ma, Xinliang; Du, Jie; Nie, Shaoping; Wei, Yongxiang

    2017-01-01

    Obstructive sleep apnea hypoxia syndrome (OSAHS) is an independent risk factor for coronary artery disease (CAD). Treatment of OSAHS improves clinical outcome in some CAD patients, but the relationship between OSAHS and CAD is complex. Microparticles (MPs) are shed by the plasma membrane by either physiologic or pathologic stimulation. In the current study, we investigated the role of MPs in the context of OSAHS. 54 patients with both suspected coronary artery stenosis and OSAHS were recruited and underwent both coronary arteriography and polysomnography. Circulating MPs were isolated and analyzed by flow cytometry. CAD+OSAHS patients exhibited greater levels of total MPs (Annexin V+), erythrocyte-derived MPs (CD235+ Annexin V+), platelet-derived MPs (CD41+ Annexin V+), and leukocyte-derived MPs (CD45+ Annexin V+) compared to CAD alone patients or control. CAD+OSAHS patients expressed the greatest level of endothelial-derived MPs of all cellular origin types (CD144+ Annexin V +). Treatment of human aortic endothelial cells (HAECs) with MPs isolated from CAD+OSAHS patients markedly increased HAEC permeability (as detected by FITC-dextran), and significantly upregulated mRNA levels of ICAM-1, VCAM-1, and MCP-1. OSAHS+CAD patients harbor increased levels of MPs, particularly the endothelial cell-derived subtype. When administered to HAECs, OSAHS+CAD patients MPs increase endothelial cell permeability and dysfunction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. Neisseria meningitidis colonization of the brain endothelium and cerebrospinal fluid invasion.

    PubMed

    Miller, Florence; Lécuyer, Hervé; Join-Lambert, Olivier; Bourdoulous, Sandrine; Marullo, Stefano; Nassif, Xavier; Coureuil, Mathieu

    2013-04-01

    The brain and meningeal spaces are protected from bacterial invasion by the blood-brain barrier, formed by specialized endothelial cells and tight intercellular junctional complexes. However, once in the bloodstream, Neisseria meningitidis crosses this barrier in about 60% of the cases. This highlights the particular efficacy with which N. meningitidis targets the brain vascular cell wall. The first step of central nervous system invasion is the direct interaction between bacteria and endothelial cells. This step is mediated by the type IV pili, which induce a remodelling of the endothelial monolayer, leading to the opening of the intercellular space. In this review, strategies used by the bacteria to survive in the bloodstream, to colonize the brain vasculature and to cross the blood-brain barrier will be discussed. © 2012 Blackwell Publishing Ltd.

  20. MDA-MB-231 and 8701BC breast cancer lines promote the migration and invasiveness of ECV304 cells on 2D and 3D type-I collagen matrix.

    PubMed

    Saladino, Silvia; Salamone, Monica; Ghersi, Giulio

    2017-09-01

    Tumor angiogenesis is a multiphasic process, having the extracellular matrix remodeling as critical step. Different classes of proteolytic enzymes in matrix digestion/remodeling are involved. The role of lytic enzymes and their activation mode have not been completely elucidated. Herein, the crosstalk between endothelia and tumor cells, by realization of bi- and three-dimensional endothelial and breast cancer cells co-cultures, were studied in vitro. Particularly, the effects of two tumor conditioned media (TCM) were assessed about endothelial proliferation, migration, and invasiveness. An increase in expression of pro-MMP9 was detected when endothelial cells were cultured in the presence of both TCM; such as an up-regulation of MMP1 and MMP14 and a down-regulation of MMP7. Moreover the increased MMP2 gene expression from one of them and the stimulation MMP3 synthesis from the other one were observed; an increases of β3-integrin, VEGFA, and DPP4 molecules were detected when endothelia cells are cultured with both TCM. The selection/characterization of elements present in conditioned media from breast cancer cells differently affect endothelial cells, make them potential effectors useful in breast cancer treatment. © 2017 International Federation for Cell Biology.

  1. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway

    PubMed Central

    Elmasri, Harun; Ghelfi, Elisa; Yu, Chen-wei; Traphagen, Samantha; Cernadas, Manuela; Cao, Haiming; Shi, Guo-Ping; Plutzky, Jorge; Sahin, Mustafa; Hotamisligil, Gokhan; Cataltepe, Sule

    2013-01-01

    Fatty acid binding protein 4 (FABP4) plays an important role in regulation of glucose and lipid homeostasis as well as inflammation through its actions in adipocytes and macrophages. FABP4 is also expressed in a subset of endothelial cells, but its role in this cell type is not known. We found that FABP4-deficient human umbilical vein endothelial cells (HUVECs) demonstrate a markedly increased susceptibility to apoptosis as well as decreased migration and capillary network formation. Aortic rings from FABP4−/− mice demonstrated decreased angiogenic sprouting, which was recovered by reconstitution of FABP4. FABP4 was strongly regulated by mTORC1 and inhibited by Rapamycin. FABP4 modulated activation of several important signaling pathways in HUVECs, including downregulation of P38, eNOS, and stem cell factor (SCF)/c-kit signaling. Of these, the SCF/c-kit pathway was found to have a major role in attenuated angiogenic activity of FABP4-deficient ECs as provision of exogenous SCF resulted in a significant recovery in cell proliferation, survival, morphogenesis, and aortic ring sprouting. These data unravel a novel pro-angiogenic role for endothelial cell-FABP4 and suggest that it could be exploited as a potential target for diseases associated with pathological angiogenesis. PMID:22562362

  2. Collagen VI Ablation Retards Brain Tumor Progression Due to Deficits in Assembly of the Vascular Basal Lamina

    PubMed Central

    You, Weon-Kyoo; Bonaldo, Paolo; Stallcup, William B.

    2012-01-01

    To investigate the importance of the vascular basal lamina in tumor blood vessel morphogenesis and function, we compared vessel development, vessel function, and progression of B16F10 melanoma tumors in the brains of wild-type and collagen VI-null mice. In 7-day tumors in the absence of collagen VI, the width of the vascular basal lamina was reduced twofold. Although the ablation of collagen VI did not alter the abundance of blood vessels, a detailed analysis of the number of either pericytes or endothelial cells (or pericyte coverage of endothelial cells) showed that collagen VI-dependent defects during the assembly of the basal lamina have negative effects on both pericyte maturation and the sprouting and survival of endothelial cells. As a result of these deficits, vessel patency was reduced by 25%, and vessel leakiness was increased threefold, resulting in a 10-fold increase in tumor hypoxia along with a fourfold increase in hypoxia-inducible factor-1α expression. In 12-day collagen VI-null tumors, vascular endothelial growth factor expression was increased throughout the tumor stroma, in contrast to the predominantly vascular pattern of vascular endothelial growth factor expression in wild-type tumors. Vessel size was correspondingly reduced in 12-day collagen VI-null tumors. Overall, these vascular deficits produced a twofold decrease in tumor volume in collagen VI-null mice, confirming that collagen VI-dependent basal lamina assembly is a critical aspect of vessel development. PMID:22200614

  3. Globotriaosylceramide induces lysosomal degradation of endothelial KCa3.1 in fabry disease.

    PubMed

    Choi, Shinkyu; Kim, Ji Aee; Na, Hye-Young; Cho, Sung-Eun; Park, Seonghee; Jung, Sung-Chul; Suh, Suk Hyo

    2014-01-01

    Globotriaosylceramide (Gb3) induces KCa3.1 downregulation in Fabry disease (FD). We investigated whether Gb3 induces KCa3.1 endocytosis and degradation. KCa3.1, especially plasma membrane-localized KCa3.1, was downregulated in both Gb3-treated mouse aortic endothelial cells (MAECs) and human umbilical vein endothelial cells. Gb3-induced KCa3.1 downregulation was prevented by lysosomal inhibitors but not by a proteosomal inhibitor. Endoplasmic reticulum stress-inducing agents did not induce KCa3.1 downregulation. Gb3 upregulated the protein levels of early endosome antigen 1 and lysosomal-associated membrane protein 2 in MAECs. Compared with MAECs from age-matched wild-type mice, those from aged α-galactosidase A (Gla)-knockout mice, an animal model of FD, showed downregulated KCa3.1 expression and upregulated early endosome antigen 1 and lysosomal-associated membrane protein 2 expression. In contrast, no significant difference was found in early endosome antigen 1 and lysosomal-associated membrane protein 2 expression between young Gla-knockout and wild-type MAECs. In aged Gla-knockout MAECs, clathrin was translocated close to the cell border and clathrin knockdown recovered KCa3.1 expression. Rab5, an effector of early endosome antigen 1, was upregulated, and Rab5 knockdown restored KCa3.1 expression, the current, and endothelium-dependent relaxation. -Gb3 accelerates the endocytosis and lysosomal degradation of endothelial KCa3.1 via a clathrin-dependent process, leading to endothelial dysfunction in FD.

  4. Functional differences between sinusoidal endothelial cells and interlobular or central vein endothelium in rat liver.

    PubMed

    Yokota, S

    1985-05-01

    The fine topological relationship between sinus-lining endothelial cells (SLE) and vessel-lining endothelial cells (VLE) at the opening portion of sinusoids into central or interlobular veins of rat liver was studied by a comparison of morphological and functional properties of both types of cells. Three minutes after intravenous injection of formalin-denatured albumin conjugated with horseradish peroxidase (HRP-FDA), liver was perfused with fixative. Chopped sections of the liver (50 micron thick) were incubated in diaminobenzidine-H2O2 medium, followed by processing for electron microscopy. The HRP-FDA was localized in endocytotic vesicles and vacuoles of the SLE and Kupffer cells but not of the VLE lining interlobular or central veins or interlobular arteries. In the opening portion of the sinusoids into these veins, the attenuated cytoplasmic extensions of the SLE containing positive vesicles were in direct contact with squamous process of the VLE having no positive vesicles. The contact was mediated by overlapping junctions. No intermediate cell type between the SLE and VLE in this region or other portions was noted. The results indicate that the habitat of the SLE is exactly isolated from that of the VLE in rat liver and at the transitional portion from sinusoids to veins or arteries they are directly connected with each other by overlapping junctions.

  5. Porcine circovirus 2 (PCV2) increases the expression of endothelial adhesion/junction molecules.

    PubMed

    Marks, Fernanda S; Almeida, Laura L; Driemeier, David; Canal, Cláudio; Barcellos, David E S N; Guimarães, Jorge A; Reck, José

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus disease, a complex multisystem syndrome in domestic pigs. Despite the significant economic losses caused by porcine circovirus disease, the mechanisms of pathogenesis underlying the clinical findings remain largely unclear. As various reports have highlighted the potential key role of vascular lesions in the pathogenesis of porcine circovirus disease, the aim of this work was to investigate effects of PCV2 infection on vascular endothelial cells, focusing on cell viability and expression of adhesion/junction molecules. PCV2 infection reduced endothelial cell viability, while viral infection did not affected the viability of several other classical cell lines. Also, PCV2 infection in endothelial cells displayed a dual/biphasic effect: initially, infection increased ICAM-1 expression, which can favor leukocyte recruitment and emigration to tissues and possibly inducing characteristic porcine circovirus disease inflammatory lesions; then, secondarily, infection caused an increase in zonula occludens 1 tight junction protein (ZO-1) expression, which in turn can result in difficulties for cell traffic across the endothelium and a potential impairment the immune response in peripheral tissues. These virus-induced endothelial changes could directly impact the inflammatory process of porcine circovirus disease and associated vascular/immune system disturbances. Data suggest that, among the wide range of effects induced by PCV2 on the host, endothelial modulation can be a pivotal process which can help to explain PCV2 pathogenesis in some porcine circovirus disease presentations. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca2+]i

    PubMed Central

    Hertz, Leif; Lovatt, Ditte; Goldman, Steven A.; Nedergaard, Maiken

    2010-01-01

    Recent in vivo studies have established astrocytes as a major target for locus coeruleus activation (Bekar et al., Cereb. Cortex 18, 2789–2795), renewing interest in cell culture studies on noradrenergic effects on astrocytes in primary cultures and calling for additional information about the expression of adrenoceptor subtypes on different types of brain cells. In the present communication, mRNA expression of α1-, α2- and β-adrenergic receptors and their subtypes was determined in freshly-isolated, cell marker-defined populations of astrocytes, NG2-positive cells, microglia, endothelial cells, and Thy1-positive neurons (mainly glutamatergic projection neurons) in murine cerebral cortex. Immediately after dissection of frontal, parietal and occipital cortex of 10–12-week-old transgenic mice, which combined each cell-type marker with a specific fluorescent signal, the tissue was digested, triturated and centrifuged, yielding a solution of dissociated cells of all types, which were separated by fluorescence-activated cell sorting (FACS). mRNA expression in each cell fraction was determined by microarray analysis. α1A-Receptors were unequivocally expressed in astrocytes and NG2-positive cells, but absent in other cell types, and α1B-receptors were not expressed in any cell population. Among α2-receptors only α2A-receptors were expressed, unequivocally in astrocytes and NG-positive cells, tentatively in microglia and questionably in Thy1-positive neurons and endothelial cells. β1-Receptors were unequivocally expressed in astrocytes, tentatively in microglia, and questionably in neurons and endothelial cells, whereas β2-adrenergic receptors showed tentative expression in neurons and astrocytes and unequivocal expression in other cell types. This distribution was supported by immunochemical data and its relevance established by previous studies in well-differentiated primary cultures of mouse astrocytes, showing that stimulation of α2-adrenoceptors increases glycogen formation and oxidative metabolism, the latter by a mechanism depending on intramitochondrial Ca2+, whereas α1-adrenoceptor stimulation enhances glutamate uptake, and β-adrenoceptor activation causes glycogenolysis and increased Na+,K+-ATPase activity. The Ca2+- and cAMP-mediated association between energy-consuming and energy-yielding processes is emphasized. PMID:20380860

  7. Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation

    PubMed Central

    Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan

    2016-01-01

    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532

  8. Circulating microparticles from obstructive sleep apnea syndrome patients induce endothelin-mediated angiogenesis.

    PubMed

    Tual-Chalot, Simon; Gagnadoux, Frédéric; Trzepizur, Wojciech; Priou, Pascaline; Andriantsitohaina, Ramaroson; Martinez, M Carmen

    2014-02-01

    Microparticles are deemed true biomarkers and vectors of biological information between cells. Depending on their origin, the composition of microparticles varies and the subsequent message transported by them, such as proteins, mRNA, or miRNA, can differ. In obstructive sleep apnea syndrome (OSAS), circulating microparticles are associated with endothelial dysfunction by reducing endothelial-derived nitric oxide production. Here, we have analyzed the potential role of circulating microparticles from OSAS patients on the regulation of angiogenesis and the involved pathway. VEGF content carried by circulating microparticles from OSAS patients was increased when compared with microparticles from non-OSAS patients. Circulating microparticles from OSAS patients induced an increase of angiogenesis that was abolished in the presence of the antagonist of endothelin-1 receptor type B. In addition, endothelin-1 secretion was increased in human endothelial cells treated by OSAS microparticles. We highlight that circulating microparticles from OSAS patients can modify the secretome of endothelial cells leading to angiogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. [Morphological pathology of classic Kaposi's sarcoma. Ultrastructural studies and reflections on histogenesis].

    PubMed

    Holzhausen, H J; Stiller, D; Sachs, M

    1988-01-01

    Histological and electron-microscopic studies were conducted into biopsy material from cases of what is called the classical type of idiopathic Kaposi's sarcoma without acquired immunodeficiency syndrome. Ultrastructural analysis was conducted, with the view to characterizing a possible progenitor cell from which the angioblastic and fibroblastic elements were likely to originate. The biopsy material had been obtained from two males, aged 86 or 83 years, who had been afflicted with the disease for 18 or 8 years. The nodular lesions were typical of Kaposi's sarcoma and were, histologically, made up of variable mixtures of vascular and spindle cell elements. The angiomatous structures were a capillary meshwork or sinusoidal patterns lined by atypical endothelial cells. The spindle cell areas contained large numbers of slit-like spaces which were without endothelial lining but were stuffed with erythrocytes. Flattened endothelioid cells were recordable from semi-thin-sections of some clefts. Haemosiderin was, typically, deposited in places. Electron microscopically, the endothelial cells of vascular channels exhibited varying amounts of characteristic organelles, such as Weibel-Palade bodies, microfilaments and pinocytotic vesicles as well as basal membranes. Cells with typical endothelial markers, too, were detectable in solid sprouts or in capillary-like differentiations with narrow or small lumina. The spindle cell tumour areas consisted of fibroblastic cells with plenty of rough endoplasmic reticulum and surrounded by material of basal membrane nature. Also visible were solid, sprout-type multilayer cell complexes surrounded by basal membranes which exhibited undifferentiated or primitive cellular forms, endothelioid and pericytic. Transitional forms from these complexes to the above vascular tumours or the spindle-cell formations were detectable. These ultrastructural findings might be interpreted to the effect that an angioblastically determined mesenchymal cell, a so-called endothelioblast, was thinkable and was discussed as the precursor cell of atypical vascular and spindle cell proliferation in Kaposi's sarcoma.

  10. Fibroblast growth factor rescues brain endothelial cells lacking presenilin 1 from apoptotic cell death following serum starvation.

    PubMed

    Gama Sosa, Miguel A; De Gasperi, Rita; Hof, Patrick R; Elder, Gregory A

    2016-07-22

    Presenilin 1 (Psen1) is important for vascular brain development and is known to influence cellular stress responses. To understand the role of Psen1 in endothelial stress responses, we investigated the effects of serum withdrawal on wild type (wt) and Psen1-/- embryonic brain endothelial cells. Serum starvation induced apoptosis in Psen1-/- cells but did not affect wt cells. PI3K/AKT signaling was reduced in serum-starved Psen1-/- cells, and this was associated with elevated levels of phospho-p38 consistent with decreased pro-survival AKT signaling in the absence of Psen1. Fibroblast growth factor (FGF1 and FGF2), but not vascular endothelial growth factor (VEGF) rescued Psen1-/- cells from serum starvation induced apoptosis. Inhibition of FGF signaling induced apoptosis in wt cells under serum withdrawal, while blocking γ-secretase activity had no effect. In the absence of serum, FGF2 immunoreactivity was distributed diffusely in cytoplasmic and nuclear vesicles of wt and Psen1-/- cells, as levels of FGF2 in nuclear and cytosolic fractions were not significantly different. Thus, sensitivity of Psen1-/- cells to serum starvation is not due to lack of FGF synthesis but likely to effects of Psen1 on FGF release onto the cell surface and impaired activation of the PI3K/AKT survival pathway.

  11. Reduced Ang2 expression in aging endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohensinner, P.J., E-mail: philipp.hohensinner@meduniwien.ac.at; Ebenbauer, B.; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. -- Highlights: •Endothelial cells display signs of agingmore » before reaching proliferative senescence. •Aging endothelial cells express more angiopoietin 1 and less angiopoietin 2 than young endothelial cells. •Migratory capacity is reduced in aging endothelial cells.« less

  12. Origins of endothelial and osteogenic cells in the subcutaneous collagen gel implant.

    PubMed

    Bilic-Curcic, I; Kalajzic, Z; Wang, L; Rowe, D W

    2005-11-01

    The interdependent relationship between vascular endothelial cells and osteoblasts during bone formation and fracture healing has been long appreciated. This paper reports a heterotopic implant model using FGF-2-expanded bone marrow stromal cells (BMSC) derived from Tie2eGFP (endothelial marker) and pOBCol3.6GFPcyan or topaz (early osteoblast marker) transgenic mice to appreciate the host/donor relationships of cells participating in the process of heterotopic bone formation. The study included various combinations of Tie2eGFP and pOBCol3.6GFPcyan and topaz transgenics as BMSC or whole bone marrow (WBM) donors and also as recipients. Rat tail collagen was used as a carrier of donor cells and implantation was done in lethally irradiated mice rescued with WBM injection. Development of ossicles in the implants was followed weekly during the 4- to 5-week long post-implantation period. By 4-5 weeks after total body irradiation (TBI) and implantation, a well-formed bone spicule had developed that was invested with bone marrow. Experiments showed absolute dominance of donor-derived cells in the formation of endothelial-lined vessels inside the implants as well as the marrow stromal-derived osteogenic cells. Host-derived fibroblasts and osteogenic cells were confined to the fibrous capsule surrounding the implant. In addition, cells lining the endosteal surface of newly formed marrow space carrying a pOBCol3.6GFP marker were observed that were contributed by WBM donor cells and the host. Thus, FGF-2-expanded BMSC appear to be a source of endothelial and osteogenic progenitor cells capable of eliciting heterotopic bone formation independent of cells from the host. This model should be useful for understanding the interactions between these two cell types that control osteogenic differentiation in vivo.

  13. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study.

    PubMed

    Ritz, Ulrike; Gerke, Rebekka; Götz, Hermann; Stein, Stefan; Rommens, Pol Maria

    2017-11-29

    Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering.

  14. A New Bone Substitute Developed from 3D-Prints of Polylactide (PLA) Loaded with Collagen I: An In Vitro Study

    PubMed Central

    Gerke, Rebekka; Götz, Hermann; Rommens, Pol Maria

    2017-01-01

    Although a lot of research has been performed, large segmental bone defects caused by trauma, infection, bone tumors or revision surgeries still represent big challenges for trauma surgeons. New and innovative bone substitutes are needed. Three-dimensional (3D) printing is a novel procedure to create 3D porous scaffolds that can be used for bone tissue engineering. In the present study, solid discs as well as porous cage-like 3D prints made of polylactide (PLA) are coated or filled with collagen, respectively, and tested for biocompatibility and endotoxin contamination. Microscopic analyses as well as proliferation assays were performed using various cell types on PLA discs. Stromal-derived factor (SDF-1) release from cages filled with collagen was analyzed and the effect on endothelial cells tested. This study confirms the biocompatibility of PLA and demonstrates an endotoxin contamination clearly below the FDA (Food and Drug Administration) limit. Cells of various cell types (osteoblasts, osteoblast-like cells, fibroblasts and endothelial cells) grow, spread and proliferate on PLA-printed discs. PLA cages loaded with SDF-1 collagen display a steady SDF-1 release, support cell growth of endothelial cells and induce neo-vessel formation. These results demonstrate the potential for PLA scaffolds printed with an inexpensive desktop printer in medical applications, for example, in bone tissue engineering. PMID:29186036

  15. Deregulation of tumor angiogenesis and blockade of tumor growth in PPARbeta-deficient mice.

    PubMed

    Müller-Brüsselbach, Sabine; Kömhoff, Martin; Rieck, Markus; Meissner, Wolfgang; Kaddatz, Kerstin; Adamkiewicz, Jürgen; Keil, Boris; Klose, Klaus J; Moll, Roland; Burdick, Andrew D; Peters, Jeffrey M; Müller, Rolf

    2007-08-08

    The peroxisome proliferator-activated receptor-beta (PPARbeta) has been implicated in tumorigenesis, but its precise role remains unclear. Here, we show that the growth of syngeneic Pparb wild-type tumors is impaired in Pparb(-/-) mice, concomitant with a diminished blood flow and an abundance of hyperplastic microvascular structures. Matrigel plugs containing pro-angiogenic growth factors harbor increased numbers of morphologically immature, proliferating endothelial cells in Pparb(-/-) mice, and retroviral transduction of Pparb triggers microvessel maturation. We have identified the Cdkn1c gene encoding the cell cycle inhibitor p57(Kip2) as a PPARbeta target gene and a mediator of the PPARbeta-mediated inhibition of cell proliferation, which provides a possible mechanistic explanation for the observed tumor endothelial hyperplasia and deregulation of tumor angiogenesis in Pparb(-/-) mice. Our data point to an unexpected essential role for PPARbeta in constraining tumor endothelial cell proliferation to allow for the formation of functional tumor microvessels.

  16. Schedule-Dependent Antiangiogenic and Cytotoxic Effects of Chemotherapy on Vascular Endothelial and Retinoblastoma Cells.

    PubMed

    Winter, Ursula; Mena, Hebe A; Negrotto, Soledad; Arana, Eloisa; Pascual-Pasto, Guillem; Laurent, Viviana; Suñol, Mariona; Chantada, Guillermo L; Carcaboso, Angel M; Schaiquevich, Paula

    2016-01-01

    Current treatment of retinoblastoma involves using the maximum dose of chemotherapy that induces tumor control and is tolerated by patients. The impact of dose and schedule on the cytotoxicity of chemotherapy has not been studied. Our aim was to gain insight into the cytotoxic and antiangiogenic effect of the treatment scheme of chemotherapy used in retinoblastoma by means of different in vitro models and to evaluate potential effects on multi-drug resistance proteins. Two commercial and two patient-derived retinoblastoma cell types and two human vascular endothelial cell types were exposed to increasing concentrations of melphalan or topotecan in a conventional (single exposure) or metronomic (7-day continuous exposure) treatment scheme. The concentration of chemotherapy causing a 50% decrease in cell proliferation (IC50) was determined by MTT and induction of apoptosis was evaluated by flow cytometry. Expression of ABCB1, ABCG2 and ABCC1 after conventional or metronomic treatments was assessed by RT-qPCR. We also evaluated the in vivo response to conventional (0.6 mg/kg once a week for 2 weeks) and metronomic (5 days a week for 2 weeks) topotecan in a retinoblastoma xenograft model. Melphalan and topotecan were cytotoxic to both retinoblastoma and endothelial cells after conventional and metronomic treatments. A significant decrease in the IC50 (median, 13-fold; range: 3-23) was observed following metronomic chemotherapy treatment in retinoblastoma and endothelial cell types compared to conventional treatment (p<0.05). Metronomic topotecan or melphalan significantly inhibited in vitro tube formation in HUVEC and EPC compared to vehicle-treated cells (p<0.05). Both treatment schemes induced apoptosis and/or necrosis in all cell models. No significant difference was observed in the expression of ABCB1, ABCC1 or ABCG2 when comparing cells treated with melphalan or topotecan between treatment schedules at the IC50 or with control cells (p>0.05). In mice, continuous topotecan lead to significantly lower tumor volumes compared to conventional treatment after 14 days of treatment (p<0.05). Continuous exposure to melphalan or topotecan increased the chemosensitivity of retinoblastoma and endothelial cells to both chemotherapy agents with lower IC50 values compared to short-term treatment. These findings were validated in an in vivo model. None of the dosing modalities induced multidrug resistance mechanisms while apoptosis was the mechanism of cell death after both treatment schedules. Metronomic chemotherapy may be a valid option for retinoblastoma treatment allowing reductions of the daily dose.

  17. Endothelial cell repopulation after stenting determines in-stent neointima formation: effects of bare-metal vs. drug-eluting stents and genetic endothelial cell modification.

    PubMed

    Douglas, Gillian; Van Kampen, Erik; Hale, Ashley B; McNeill, Eileen; Patel, Jyoti; Crabtree, Mark J; Ali, Ziad; Hoerr, Robert A; Alp, Nicholas J; Channon, Keith M

    2013-11-01

    Understanding endothelial cell repopulation post-stenting and how this modulates in-stent restenosis is critical to improving arterial healing post-stenting. We used a novel murine stent model to investigate endothelial cell repopulation post-stenting, comparing the response of drug-eluting stents with a primary genetic modification to improve endothelial cell function. Endothelial cell repopulation was assessed en face in stented arteries in ApoE(-/-) mice with endothelial-specific LacZ expression. Stent deployment resulted in near-complete denudation of endothelium, but was followed by endothelial cell repopulation, by cells originating from both bone marrow-derived endothelial progenitor cells and from the adjacent vasculature. Paclitaxel-eluting stents reduced neointima formation (0.423 ± 0.065 vs. 0.240 ± 0.040 mm(2), P = 0.038), but decreased endothelial cell repopulation (238 ± 17 vs. 154 ± 22 nuclei/mm(2), P = 0.018), despite complete strut coverage. To test the effects of selectively improving endothelial cell function, we used transgenic mice with endothelial-specific overexpression of GTP-cyclohydrolase 1 (GCH-Tg) as a model of enhanced endothelial cell function and increased NO production. GCH-Tg ApoE(-/-) mice had less neointima formation compared with ApoE(-/-) littermates (0.52 ± 0.08 vs. 0.26 ± 0.09 mm(2), P = 0.039). In contrast to paclitaxel-eluting stents, reduced neointima formation in GCH-Tg mice was accompanied by increased endothelial cell coverage (156 ± 17 vs. 209 ± 23 nuclei/mm(2), P = 0.043). Drug-eluting stents reduce not only neointima formation but also endothelial cell repopulation, independent of strut coverage. In contrast, selective targeting of endothelial cell function is sufficient to improve endothelial cell repopulation and reduce neointima formation. Targeting endothelial cell function is a rational therapeutic strategy to improve vascular healing and decrease neointima formation after stenting.

  18. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.

  19. Loss of Trem2 in microglia leads to widespread disruption of cell coexpression networks in mouse brain.

    PubMed

    Carbajosa, Guillermo; Malki, Karim; Lawless, Nathan; Wang, Hong; Ryder, John W; Wozniak, Eva; Wood, Kristie; Mein, Charles A; Dobson, Richard J B; Collier, David A; O'Neill, Michael J; Hodges, Angela K; Newhouse, Stephen J

    2018-05-17

    Rare heterozygous coding variants in the triggering receptor expressed in myeloid cells 2 (TREM2) gene, conferring increased risk of developing late-onset Alzheimer's disease, have been identified. We examined the transcriptional consequences of the loss of Trem2 in mouse brain to better understand its role in disease using differential expression and coexpression network analysis of Trem2 knockout and wild-type mice. We generated RNA-Seq data from cortex and hippocampus sampled at 4 and 8 months. Using brain cell-type markers and ontology enrichment, we found subnetworks with cell type and/or functional identity. We primarily discovered changes in an endothelial gene-enriched subnetwork at 4 months, including a shift toward a more central role for the amyloid precursor protein gene, coupled with widespread disruption of other cell-type subnetworks, including a subnetwork with neuronal identity. We reveal an unexpected potential role of Trem2 in the homeostasis of endothelial cells that goes beyond its known functions as a microglial receptor and signaling hub, suggesting an underlying link between immune response and vascular disease in dementia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Stem cells for kidney repair: useful tool for acute renal failure?

    PubMed

    Yokoo, Takashi; Kawamura, Tetsuya; Kobayashi, Eiji

    2008-10-01

    Several cell types isolated from adult tissues have been reported to differentiate into mature kidney cells that may participate in renal repair after systemic administration. Chen et al. report that local mesenchymal stem cells derived from adult mouse kidneys are another source of cells with similar properties. Although these cells have the potential to differentiate into endothelial-lineage cell types, their therapeutic benefit to the ischemic kidney is mainly via the production of renoprotective factors.

  1. Influence of elastin-derived peptides on metalloprotease production in endothelial cells.

    PubMed

    Siemianowicz, Krzysztof; Gminski, Jan; Goss, Malgorzata; Francuz, Tomasz; Likus, Wirginia; Jurczak, Teresa; Garczorz, Wojciech

    2010-11-01

    Matrix metalloproteases (MMPs) are a family of zinc-dependent endopeptidases that degrade extracellular matrix proteins. MMP-1 and MMP-2 are produced by endothelial cells and are involved in specific vascular pathologies, including atherosclerosis and aortal aneurysm. One of the most important differences between these two metalloproteases is the possibility of hydrolysis of elastin and collagen type IV by MMP-2, but not by MMP-1. Elastin-derived peptides are generated as a result of the degradation of elastin fibers. The aim of our study was to compare the production of MMP-1 and MMP-2 in cultured human arterial endothelial cells derived from vascular pathologies localized at three different sites, the coronary artery, iliac artery and aorta, measured as their concentration in cell culture medium. The second aim was to evaluate the influence of κ-elastin (at concentrations 0.1, 0.4, 1.0, 2.5 or 5.0 μg/ml) on the production of the evaluated metalloproteases in three endothelial cell lines. The production of MMP-1 was statistically significantly greater in endothelial cells derived from the aorta compared to that in the endothelium obtained from the coronary and iliac arteries. There were no statistically significant differences in the production of MMP-2 among the endothelial cell lines tested. The addition of κ-elastin at all evaluated concentrations did not statistically significantly influence the concentration of MMP-1 in the cultured coronary artery endothelium. Furthermore, no statistically significant differences were observed in the cultured iliac artery endothelium. In the cultured endothelium derived from the aorta, κ-elastin at concentrations of 0.1 and 0.4 μg/ml significantly increased the amount of MMP-1.

  2. Influence of elastin-derived peptides on metalloprotease production in endothelial cells

    PubMed Central

    SIEMIANOWICZ, KRZYSZTOF; GMINSKI, JAN; GOSS, MALGORZATA; FRANCUZ, TOMASZ; LIKUS, WIRGINIA; JURCZAK, TERESA; GARCZORZ, WOJCIECH

    2010-01-01

    Matrix metalloproteases (MMPs) are a family of zinc-dependent endopeptidases that degrade extracellular matrix proteins. MMP-1 and MMP-2 are produced by endothelial cells and are involved in specific vascular pathologies, including atherosclerosis and aortal aneurysm. One of the most important differences between these two metalloproteases is the possibility of hydrolysis of elastin and collagen type IV by MMP-2, but not by MMP-1. Elastin-derived peptides are generated as a result of the degradation of elastin fibers. The aim of our study was to compare the production of MMP-1 and MMP-2 in cultured human arterial endothelial cells derived from vascular pathologies localized at three different sites, the coronary artery, iliac artery and aorta, measured as their concentration in cell culture medium. The second aim was to evaluate the influence of κ-elastin (at concentrations 0.1, 0.4, 1.0, 2.5 or 5.0 μg/ml) on the production of the evaluated metalloproteases in three endothelial cell lines. The production of MMP-1 was statistically significantly greater in endothelial cells derived from the aorta compared to that in the endothelium obtained from the coronary and iliac arteries. There were no statistically significant differences in the production of MMP-2 among the endothelial cell lines tested. The addition of κ-elastin at all evaluated concentrations did not statistically significantly influence the concentration of MMP-1 in the cultured coronary artery endothelium. Furthermore, no statistically significant differences were observed in the cultured iliac artery endothelium. In the cultured endothelium derived from the aorta, κ-elastin at concentrations of 0.1 and 0.4 μg/ml significantly increased the amount of MMP-1. PMID:22993640

  3. Acetylcholine ameliorates endoplasmic reticulum stress in endothelial cells after hypoxia/reoxygenation via M3 AChR-AMPK signaling.

    PubMed

    Bi, Xueyuan; He, Xi; Xu, Man; Zhao, Ming; Yu, Xiaojiang; Lu, Xingzhu; Zang, Weijin

    2015-08-03

    Endoplasmic reticulum (ER) stress is associated with various cardiovascular diseases. However, its pathophysiological relevance and the underlying mechanisms in the context of hypoxia/reoxygenation (H/R) in endothelial cells are not fully understood. Previous findings have suggested that acetylcholine (ACh), the major vagal nerve neurotransmitter, protected against cardiomyocyte injury by activating AMP-activated protein kinase (AMPK). This study investigated the role of ER stress in endothelial cells during H/R and explored the beneficial effects of ACh. Our results showed that H/R triggered ER stress and apoptosis in endothelial cells, evidenced by the elevation of glucose-regulated protein 78, cleaved caspase-12 and C/EBP homologous protein expression. ACh significantly decreased ER stress and terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling positive cells and restored ER ultrastructural changes induced by H/R, possibly via protein kinase-like ER kinase and inositol-requiring kinase 1 pathways. Additionally, 4-diphenylacetoxy-N-methylpiperidine methiodide, a type-3 muscarinic ACh receptor (M3 AChR) inhibitor, abolished ACh-mediated increase in AMPK phosphorylation during H/R. Furthermore, M3 AChR or AMPK siRNA abrogated the ACh-elicited the attenuation of ER stress in endothelial cells, indicating that the salutary effects of ACh were likely mediated by M3 AChR-AMPK signaling. Overall, ACh activated AMPK through M3 AChR, thereby inhibited H/R-induced ER stress and apoptosis in endothelial cells. We have suggested for the first time that AMPK may function as an essential intermediate step between M3 AChR stimulation and inhibition of ER stress-associated apoptotic pathway during H/R, which may help to develop novel therapeutic approaches targeting ER stress to prevent or alleviate ischemia/reperfusion injury.

  4. Protein hydrolysate from canned sardine and brewing by-products improves TNF-α-induced inflammation in an intestinal-endothelial co-culture cell model.

    PubMed

    Vieira, Elsa F; Van Camp, John; Ferreira, Isabel M P L V O; Grootaert, Charlotte

    2017-07-17

    The anti-inflammatory activity of sardine protein hydrolysates (SPH) obtained by hydrolysis with proteases from brewing yeast surplus was ascertained. For this purpose, a digested and desalted SPH fraction with molecular weight lower than 10 kDa was investigated using an endothelial cell line (EA.hy926) as such and in a co-culture model with an intestinal cell line (Caco-2). Effects of SPH <10 kDa on nitric oxide (NO) production, reactive oxygen species (ROS) inhibition and secretion of monocyte chemoattractant protein 1 (MCP-1), vascular endothelial growth factor (VEGF), chemokine IL-8 (IL-8) and intercellular adhesion molecule-1 (ICAM-1) were evaluated in TNF-α-treated and untreated cells. Upon TNF-α treatment, levels of NO, MCP-1, VEGF, IL-8, ICAM-1 and endothelial ROS were significantly increased in both mono- and co-culture models. Treatment with SPH <10 kDa (2.0 mg peptides/mL) significantly decreased all the inflammation markers when compared to TNF-α-treated control. This protective effect was more pronounced in the co-culture model, suggesting that SPH <10 kDa Caco-2 cells metabolites produced in the course of intestinal absorption may provide a more relevant protective effect against endothelial dysfunction. Additionally, indirect cross-talk between two cell types was established, suggesting that SPH <10 kDa may also bind to receptors on the Caco-2 cells, thereby triggering a pathway to secrete the pro-inflammatory compounds. Overall, these in vitro screening results, in which intestinal digestion, absorption and endothelial bioactivity are simulated, show the potential of SPH to be used as a functional food with anti-inflammatory properties.

  5. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration.

    PubMed

    Sackstein, Robert

    2009-07-01

    During evolution of the vertebrate cardiovascular system, the vast endothelial surface area associated with branching vascular networks mandated the development of molecular processes to efficiently and specifically recruit circulating sentinel host defense cells and tissue repair cells at localized sites of inflammation/tissue injury. The forces engendered by high-velocity blood flow commensurately required the evolution of specialized cell surface molecules capable of mediating shear-resistant endothelial adhesive interactions, thus literally capturing relevant cells from the blood stream onto the target endothelial surface and permitting subsequent extravasation. The principal effectors of these shear-resistant binding interactions comprise a family of C-type lectins known as 'selectins' that bind discrete sialofucosylated glycans on their respective ligands. This review explains the 'intelligent design' of requisite reagents to convert native CD44 into the sialofucosylated glycoform known as hematopoietic cell E-/L-selectin ligand (HCELL), the most potent E-selectin counter-receptor expressed on human cells, and will describe how ex vivo glycan engineering of HCELL expression may open the 'avenues' for the efficient vascular delivery of cells for a variety of cell therapies.

  6. Endothelial differentiation of bone marrow mesenchyme stem cells applicable to hypoxia and increased migration through Akt and NFκB signals.

    PubMed

    Liu, Cheng; Tsai, An-Ly; Li, Ping-Chia; Huang, Chia-Wei; Wu, Chia-Ching

    2017-02-07

    Bone marrow mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) are used to repair hypoxic or ischemic tissue. However, the underlining mechanism of resistance in the hypoxic microenvironment and the efficacy of migration to the injured tissue are still unknown. The current study aims to understand the hypoxia resistance and migration ability of MSCs during differentiation toward endothelial lineages by biochemical and mechanical stimuli. MSCs were harvested from the bone marrow of 6-8-week-old Sprague-Dawley rats. The endothelial growth medium (EGM) was added to MSCs for 3 days to initiate endothelial differentiation. Laminar shear stress was used as the fluid mechanical stimulation. Application of EGM facilitated the early endothelial lineage cells (eELCs) to express EPC markers. When treating the hypoxic mimetic desferrioxamine, both MSCs and eELCs showed resistance to hypoxia as compared with the occurrence of apoptosis in rat fibroblasts. The eELCs under hypoxia increased the wound closure and C-X-C chemokine receptor type 4 (CXCR4) gene expression. Although the shear stress promoted eELC maturation and aligned cells parallel to the flow direction, their migration ability was not superior to that of eELCs either under normoxia or hypoxia. The eELCs showed higher protein expressions of CXCR4, phosphorylated Akt (pAkt), and endogenous NFκB and IκBα than MSCs under both normoxia and hypoxia conditions. The potential migratory signals were discovered by inhibiting either Akt or NFκB using specific inhibitors and revealed decreases of wound closure and transmigration ability in eELCs. The Akt and NFκB pathways are important to regulate the early endothelial differentiation and its migratory ability under a hypoxic microenvironment.

  7. Persistent Infection of Human Fetal Endothelial Cells with Rubella Virus

    PubMed Central

    Perelygina, Ludmila; Zheng, Qi; Metcalfe, Maureen; Icenogle, Joseph

    2013-01-01

    Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium. PMID:23940821

  8. Expression and subcellular localization of a novel nuclear acetylcholinesterase protein.

    PubMed

    Santos, Susana Constantino Rosa; Vala, Inês; Miguel, Cláudia; Barata, João T; Garção, Pedro; Agostinho, Paula; Mendes, Marta; Coelho, Ana V; Calado, Angelo; Oliveira, Catarina R; e Silva, João Martins; Saldanha, Carlota

    2007-08-31

    Acetylcholine is found in the nervous system and also in other cell types (endothelium, lymphocytes, and epithelial and blood cells), which are globally termed the non-neuronal cholinergic system. In this study we investigated the expression and subcellular localization of acetylcholinesterase (AChE) in endothelial cells. Our results show the expression of the 70-kDa AChE in both cytoplasmic and nuclear compartments. We also describe, for the first time, a nuclear and cytoskeleton-bound AChE isoform with approximately 55 kDa detected in endothelial cells. This novel isoform is decreased in response to vascular endothelial growth factor via the proteosomes pathway, and it is down-regulated in human leukemic T-cells as compared with normal T-cells, suggesting that the decreased expression of the 55-kDa AChE protein may contribute to an angiogenic response and associate with tumorigenesis. Importantly, we show that its nuclear expression is not endothelial cell-specific but also evidenced in non-neuronal and neuronal cells. Concerning neuronal cells, we can distinguish an exclusively nuclear expression in postnatal neurons in contrast to a cytoplasmic and nuclear expression in embryonic neurons, suggesting that the cell compartmentalization of this new AChE isoform is changed during the development of nervous system. Overall, our studies suggest that the 55-kDa AChE may be involved in different biological processes such as neural development, tumor progression, and angiogenesis.

  9. Substrate effects on endothelial cell adherence rates.

    PubMed

    Scott, W J; Mann, P

    1990-01-01

    Endothelial cell attachment to a synthetic substrate was studied using an in vitro model system. Attachment rate was defined as the number of tritium-labeled endothelial cells attached to a synthetic substrate after 30 minutes. The surface of the synthetic substrate was chemically modified with either laminin or fibronectin. Labeled endothelial cells attached more rapidly to synthetic substrate, chemically modified with biomolecules, as compared with the untreated substrate controls. Unlabeled endothelial cells were grown to confluency on a second set of modified and untreated substrates. The cells were removed with 1% Triton, and the rate of re-endothelialization with tritium-labeled endothelial cells was determined. The rate was 11-13 times that of the same cells on untreated substrate. These data confirm that biomolecules increase the attachment rate of endothelial cells to synthetic substrate, and also suggest that endothelial cells may secrete a Triton-insoluble product (Sigma, St. Louis, MO) into subendothelial matrix that increases re-endothelialization.

  10. Modification of smoke toxicant yields alters the effects of cigarette smoke extracts on endothelial migration: an in vitro study using a cardiovascular disease model.

    PubMed

    Fearon, Ian M; Acheampong, Daniel O; Bishop, Emma

    2012-01-01

    Endothelial damage plays a key role in atherosclerosis and this is impacted upon by numerous risk factors including cigarette smoking. A potential measure to reduce the cardiovascular burden associated with smoking is to reduce smoke toxicant exposure. In an in vitro endothelial damage repair assay, endothelial cell migration was inhibited by cigarette smoke particulate matter (PM) generated from several cigarette types. This inhibition was reduced when cells were exposed to PM from an experimental cigarette with reduced smoke toxicant levels. As a number of toxicants induce oxidative stress and since oxidative stress may link cigarette smoke and endothelial damage, we hypothesized that PM effects were dependent on elevated cellular oxidants. However, although PM-induced cellular oxidant production could be inhibited by ascorbic acid or n-acetylcysteine, both these antioxidants were without effect on migration responses to PM. Furthermore, reactive oxygen species production, as indicated by dihydroethidium fluorescence, was not different in cells exposed to smoke from cigarettes with different toxicant levels. In summary, our data demonstrate that a cardiovascular disease-related biological response may be modified when cells are exposed to smoke containing different levels of toxicants. This appeared independent of the induction of oxidative stress.

  11. Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae

    PubMed Central

    2011-01-01

    Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail. PMID:21489243

  12. Constructing bio-layer of heparin and type IV collagen on titanium surface for improving its endothelialization and blood compatibility.

    PubMed

    Zhang, Kun; Chen, Jun-ying; Qin, Wei; Li, Jing-an; Guan, Fang-xia; Huang, Nan

    2016-04-01

    The modification of cardiovascular stent surface for a better micro-environment has gradually changed to multi-molecule, multi-functional designation. In this study, heparin (Hep) and type IV collagen (IVCol) were used as the functional molecule to construct a bifunctional micro-environment of anticoagulation and promoting endothelialization on titanium (Ti). The surface characterization results (AFM, Alcian Blue 8GX Staining and fluorescence staining of IVCol) indicated that the bio-layer of Hep and IVCol were successfully fabricated on the Ti surface through electrostatic self-assembly. The APTT and platelet adhesion test demonstrated that the bionic layer possessed better blood compatibility compared with Ti surface. The adhesion, proliferation, migration and apoptosis tests of endothelial cells proved that the Hep/IVCol layer was able to enhance the endothelialization of the Ti surface. The in vivo animal implantation results manifested that the bionic surface could encourage new endothelialization. This work provides an important reference for the construction of multifunction micro-environment on the cardiovascular scaffold surface.

  13. Development and characterization of monoclonal antibodies specific for chicken IL-8

    USDA-ARS?s Scientific Manuscript database

    Limited information on chicken cytokines and chemokines hinders progress in understaidng the role of cell-mediated immunity in infections. Interleukin-8/CXCL8 (IL-8) is a CXC-family chemokine produced by fibroblasts and other cell types, including epithelial cells, endothelial cells, neutrophils, a...

  14. Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome

    PubMed Central

    Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.

    2015-01-01

    Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336

  15. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity.

    PubMed

    Dai, Haibin; Yu, Zhanyang; Fan, Xiang; Liu, Ning; Yan, Min; Chen, Zhong; Lo, Eng H; Hajjar, Katherine A; Wang, Xiaoying

    2013-06-01

    Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes.

  16. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity

    PubMed Central

    Dai, Haibin; Yu, Zhanyang; Fan, Xiang; Liu, Ning; Yan, Min; Chen, Zhong; Lo, Eng H.; Hajjar, Katherine A.; Wang, Xiaoying

    2014-01-01

    Summary Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes. PMID:23572070

  17. An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study.

    PubMed

    Lass, Jonathan H; Gal, Robin L; Ruedy, Katrina J; Benetz, Beth Ann; Beck, Roy W; Baratz, Keith H; Holland, Edward J; Kalajian, Andrea; Kollman, Craig; Manning, Francis J; Mannis, Mark J; McCoy, Kristen; Montoya, Monty; Stulting, Doyle; Xing, Dongyuan

    2005-03-01

    The Specular Microscopy Ancillary Study was designed to examine donor corneal endothelial specular image quality, compare the central endothelial cell density determined by eye banks with the endothelial cell density determined by a central specular microscopy reading center, and evaluate donor factors that may have an impact on specular image quality and endothelial cell density accuracy. Nonrandomized comparative trial. Endothelial specular images of donor corneas assigned in the Cornea Donor Study. Certified readers assessed donor image quality (analyzable from fair to excellent vs. unanalyzable) and determined the central endothelial cell density. Independent adjudication was performed if there was a difference in the quality of grading or if the endothelial cell density varied by > or =5.0% between readers. Average reading center-determined endothelial cell density was compared with the endothelial cell density determined by each eye bank. Evaluation of image quality and accuracy of endothelial cell density. Of 688 donor endothelial images submitted by 23 eye banks, 663 (96%) were analyzable (excellent, 40 [6%]; good, 302 [44%]; fair, 321 [47%]), and 25 (4%) were unanalyzable by reading center standards. In situ retrieval and greater epithelial exposure correlated with a higher image quality grading. The eye bank-determined endothelial cell density of 434 of the 663 (65%) analyzable images were within 10% of the endothelial cell density determined by the reading center, whereas 185 (28%) were more than 10% higher and 44 (7%) were more than 10% lower. Greater variation in endothelial cell density between the eye banks and the reading center was observed with shorter time of death to preservation, presence of an epithelial defect, folds in Descemet's membrane, lower image quality, and the use of fixed-frame or center method endothelial cell density analysis. Overall, donor endothelial specular image quality and accuracy of endothelial cell density determination were good. However, the data suggest that factors that may affect image quality and contribute to variation in interpretation of the endothelial cell density should be addressed, because the donor endothelial cell density is an important parameter for assessing long-term corneal graft survival.

  18. Galectin-3 Inhibits Galectin-8/Parkin-Mediated Ubiquitination of Group A Streptococcus.

    PubMed

    Cheng, Yi-Lin; Wu, Yan-Wei; Kuo, Chih-Feng; Lu, Shiou-Ling; Liu, Fu-Tong; Anderson, Robert; Lin, Chiou-Feng; Liu, Yi-Ling; Wang, Wan-Yu; Chen, Ying-Da; Zheng, Po-Xing; Wu, Jiunn-Jong; Lin, Yee-Shin

    2017-07-25

    Group A streptococcus (GAS) is an important human pathogen that causes a wide variety of cutaneous and systemic infections. Although originally thought to be an extracellular bacterium, numerous studies have demonstrated that GAS can trigger internalization into nonimmune cells to escape from immune surveillance or antibiotic-mediated killing. Epithelial cells possess a defense mechanism involving autophagy-mediated targeting and killing of GAS within lysosome-fused autophagosomes. In endothelial cells, in contrast, we previously showed that autophagy is not sufficient for GAS killing. In the present study, we showed higher galectin-3 (Gal-3) expression and lower Gal-8 expression in endothelial cells than in epithelial cells. The recruitment of Gal-3 to GAS is higher and the recruitment of Gal-8 to GAS is lower in endothelial cells than in epithelial cells. We further showed that Gal-3 promotes GAS replication and diminishes the recruitment of Gal-8 and ubiquitin, the latter of which is a critical protein for autophagy sequestration. After knockdown of Gal-3 in endothelial cells, the colocalization of Gal-8, parkin, and ubiquitin-decorated GAS is significantly increased, as is the interaction of Gal-8 and parkin, an E3 ligase. Furthermore, inhibition of Gal-8 in epithelial cells attenuates recruitment of parkin; both Gal-8 and parkin contribute to ubiquitin recruitment and GAS elimination. Animal studies confirmed that Gal-3-knockout mice develop less-severe skin damage and that GAS replication can be detected only in the air pouch and not in organs and endothelial cells. These results demonstrate that Gal-3 inhibits ubiquitin recruitment by blocking Gal-8 and parkin recruitment, resulting in GAS replication in endothelial cells. IMPORTANCE In epithelial cells, GAS can be efficiently killed within the lysosome-fused autophaosome compartment. However, we previously showed that, in spite of LC-3 recruitment, the autophagic machinery is not sufficient for GAS killing in endothelial cells. In this report, we provide the first evidence that Gal-3, highly expressed in endothelial cells, blocks the tagging of ubiquitin to GAS by inhibiting recruitment of Gal-8 and parkin, leading to an enhancement of GAS replication. We also provide the first demonstration that Gal-8 can interact with parkin, the critical E3 ligase, for resistance to intracellular bacteria by facilitating the decoration of bacteria with ubiquitin chains. Our findings reveal that differential levels of Gal-3 and Gal-8 expression and recruitment to GAS between epithelial cells and endothelial cells may contribute to the different outcomes of GAS elimination or survival and growth of GAS in these two types of cells. Copyright © 2017 Cheng et al.

  19. Hypoxic pulmonary vasoconstriction requires connexin 40–mediated endothelial signal conduction

    PubMed Central

    Wang, Liming; Yin, Jun; Nickles, Hannah T.; Ranke, Hannes; Tabuchi, Arata; Hoffmann, Julia; Tabeling, Christoph; Barbosa-Sicard, Eduardo; Chanson, Marc; Kwak, Brenda R.; Shin, Hee-Sup; Wu, Songwei; Isakson, Brant E.; Witzenrath, Martin; de Wit, Cor; Fleming, Ingrid; Kuppe, Hermann; Kuebler, Wolfgang M.

    2012-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is a physiological mechanism by which pulmonary arteries constrict in hypoxic lung areas in order to redirect blood flow to areas with greater oxygen supply. Both oxygen sensing and the contractile response are thought to be intrinsic to pulmonary arterial smooth muscle cells. Here we speculated that the ideal site for oxygen sensing might instead be at the alveolocapillary level, with subsequent retrograde propagation to upstream arterioles via connexin 40 (Cx40) endothelial gap junctions. HPV was largely attenuated by Cx40-specific and nonspecific gap junction uncouplers in the lungs of wild-type mice and in lungs from mice lacking Cx40 (Cx40–/–). In vivo, hypoxemia was more severe in Cx40–/– mice than in wild-type mice. Real-time fluorescence imaging revealed that hypoxia caused endothelial membrane depolarization in alveolar capillaries that propagated to upstream arterioles in wild-type, but not Cx40–/–, mice. Transformation of endothelial depolarization into vasoconstriction involved endothelial voltage-dependent α1G subtype Ca2+ channels, cytosolic phospholipase A2, and epoxyeicosatrienoic acids. Based on these data, we propose that HPV originates at the alveolocapillary level, from which the hypoxic signal is propagated as endothelial membrane depolarization to upstream arterioles in a Cx40-dependent manner. PMID:23093775

  20. Enhanced Re-Endothelialization of Decellularized Rat Lungs

    PubMed Central

    Stabler, Collin T.; Caires, Luiz C.; Mondrinos, Mark J.; Marcinkiewicz, Cezary; Lazarovici, Philip; Wolfson, Marla R.

    2016-01-01

    Decellularized lung tissue has been recognized as a potential platform to engineer whole lung organs suitable for transplantation or for modeling a variety of lung diseases. However, many technical hurdles remain before this potential may be fully realized. Inability to efficiently re-endothelialize the pulmonary vasculature with a functional endothelium appears to be the primary cause of failure of recellularized lung scaffolds in early transplant studies. Here, we present an optimized approach for enhanced re-endothelialization of decellularized rodent lung scaffolds with rat lung microvascular endothelial cells (ECs). This was achieved by adjusting the posture of the lung to a supine position during cell seeding through the pulmonary artery. The supine position allowed for significantly more homogeneous seeding and better cell retention in the apex regions of all lobes than the traditional upright position, especially in the right upper and left lobes. Additionally, the supine position allowed for greater cell retention within large diameter vessels (proximal 100–5000 μm) than the upright position, with little to no difference in the small diameter distal vessels. EC adhesion in the proximal regions of the pulmonary vasculature in the decellularized lung was dependent on the binding of EC integrins, specifically α1β1, α2β1, and α5β1 integrins to, respectively, collagen type-I, type-IV, and fibronectin in the residual extracellular matrix. Following in vitro maturation of the seeded constructs under perfusion culture, the seeded ECs spread along the vascular wall, leading to a partial reestablishment of endothelial barrier function as inferred from a custom-designed leakage assay. Our results suggest that attention to cellular distribution within the whole organ is of paramount importance for restoring proper vascular function. PMID:26935764

  1. Regulation of COX-2–mediated signaling by α3 type IV noncollagenous domain in tumor angiogenesis

    PubMed Central

    Boosani, Chandra Shekhar; Mannam, Arjuna P.; Cosgrove, Dominic; Silva, Rita; Hodivala-Dilke, Kairbaan M.; Keshamouni, Venkateshwar G.

    2007-01-01

    Human α3 chain, a noncollagenous domain of type IV collagen [α3(IV)NC1], inhibits angiogenesis and tumor growth. These biologic functions are partly attributed to the binding of α3(IV)NC1 to αVβ3 and α3β1 integrins. α3(IV)NC1 binds αVβ3 integrin, leading to translation inhibition by inhibiting focal adhesion kinase/phosphatidylinositol 3-kinase/Akt/mTOR/4E-BP1 pathways. In the present study, we evaluated the role of α3β1 and αVβ3 integrins in tube formation and regulation of cyclooxygenase-2 (COX-2) on α3(IV)NC1 stimulation. We found that although both integrins were required for the inhibition of tube formation by α3(IV)NC1 in endothelial cells, only α3β1 integrin was sufficient to regulate COX-2 in hypoxic endothelial cells. We show that binding of α3(IV)NC1 to α3β1 integrin leads to inhibition of COX-2–mediated pro-angiogenic factors, vascular endothelial growth factor, and basic fibroblast growth factor by regulating IκBα/NFκB axis, and is independent of αVβ3 integrin. Furthermore, β3 integrin–null endothelial cells, when treated with α3(IV)NC1, inhibited hypoxia-mediated COX-2 expression, whereas COX-2 inhibition was not observed in α3 integrin–null endothelial cells, indicating that regulation of COX-2 by α3(IV)NC1 is mediated by integrin α3β1. Our in vitro and in vivo findings demonstrate that α3β1 integrin is critical for α3(IV)NC1-mediated inhibition of COX-2–dependent angiogenic signaling and inhibition of tumor progression. PMID:17426256

  2. Functional convergence of Akt protein with VEGFR-1 in human endothelial progenitor cells exposed to sera from patient with type 2 diabetes mellitus.

    PubMed

    Hassanpour, Mehdi; Rezabakhsh, Aysa; Rahbarghazi, Reza; Nourazarian, Alireza; Nouri, Mohammad; Avci, Çığır Biray; Ghaderi, Shahrooz; Alidadyani, Neda; Bagca, Bakiye Goker; Bagheri, Hesam Saghaei

    2017-11-01

    Diabetes mellitus type 2 predisposes patients to various microvascular complications. In the current experiment, the potent role of diabetes mellitus was investigated on the content of VEGFR-1, -2, Tie-1 and -2, and Akt in human endothelial progenitor cells. The gene expression profile of mTOR and Hedgehog signaling pathways were measured by PCR array. The possible crosstalk between RTKs, mTOR and Hedgehog signaling was also studied by bioinformatic analysis. Endothelial progenitor cells were incubated with serum from normal and diabetic for 7days. Compared to non-treated cells, diabetic serum-induced cell apoptosis (~2-fold) and prohibited cell migration toward bFGF (p<0.001). ELISA analysis showed that diabetes exposed cells had increased abundance of Tie-1, -2 and VEGFR-2 and reduced amount of VEGFR-1 (p<0.0001) in diabetic cells. Western blotting showed a marked reduction in the protein level of Akt after cells exposure to serum from diabetic subjects (p<0.0001). PCR array revealed a significant stimulation of both mTOR and Hedgehog signaling pathways in diabetic cells (p<0.05). According to data from bioinformatic datasets, we showed VEGFR-1, -2 and Tie-2, but not Tie-1, are master regulators of angiogenesis. There is a crosstalk between RTKs and mTOR signaling by involving P62, GABARAPL1, and HTT genes. It seems that physical interaction and co-expression of Akt decreased the level of VEGFR-1 in diabetic cells. Regarding data from the present experiment, diabetic serum contributed to uncontrolled induction of both mTOR and Hedgehog signaling in endothelial progenitor cells. Diabetes mellitus induces mTOR pathway by involving receptor tyrosine kinases while Hedgehog stimulation is independent of these receptors. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    PubMed

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  4. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system.

    PubMed

    Ohtani-Kaneko, Rsituko; Sato, Kenjiro; Tsutiya, Atsuhiro; Nakagawa, Yuka; Hashizume, Kazutoshi; Tazawa, Hidekatsu

    2017-10-09

    Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) can contribute to elucidating the pathogenesis of heart and vascular diseases and developing their treatments. Their precise characteristics in fluid flow however remain unclear. Therefore, the aim of the present study is to characterise these features. We cultured three types of ECs in a microfluidic culture system: commercially available human iPS-ECs, human umbilical vein endothelial cells (HUVECs) and human umbilical artery endothelial cells (HUAECs). We then examined the mRNA expression levels of endothelial marker gene cluster of differentiation 31 (CD31), fit-related receptor tyrosine kinase (Flk-1), and the smooth muscle marker gene smooth muscle alpha-actin, and investigated changes in plasminogen activator inhibitor-1 (PAI-1) secretion and intracellular F-actin arrangement following heat stress. We also compared expressions of the arterial and venous marker genes ephrinB2 and EphB4, and the endothelial gap junction genes connexin (Cx) 37, 40, and 43 under fluidic shear stress to determine their arterial or venous characteristics. We found that iPS-ECs had similar endothelial marker gene expressions and exhibited similar increases in PAI-1 secretion under heat stress as HUVECs and HUAECs. In addition, F-actin arrangement in iPSC-ECs also responded to heat stress, as previously reported. However, they had different expression patterns of arterial and venous marker genes and Cx genes under different fluidic shear stress levels, showing that iPSC-ECs exhibit different characteristics from arterial and venous ECs. This microfluidic culture system equipped with variable shear stress control will provide an easy-to-use assay tool to examine characteristics of iPS-ECs generated by different protocols in various laboratories and contribute to basic and applied biomedical researches on iPS-ECs.

  5. Reduction of Mitochondria-Endoplasmic Reticulum Interactions by Acetylcholine Protects Human Umbilical Vein Endothelial Cells From Hypoxia/Reoxygenation Injury.

    PubMed

    He, Xi; Bi, Xue-Yuan; Lu, Xing-Zhu; Zhao, Ming; Yu, Xiao-Jiang; Sun, Lei; Xu, Man; Wier, W Gil; Zang, Wei-Jin

    2015-07-01

    We explored the role of endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine. Acetylcholine treatment during reoxygenation prevented intracellular and mitochondrial Ca(2+) increases and alleviated ER Ca(2+) depletion during H/R in human umbilical vein endothelial cells. Consequently, acetylcholine enhanced mitochondrial membrane potential and inhibited proapoptotic cascades, thereby reducing cell death and preserving endothelial ultrastructure. This effect was likely mediated by the type-3 muscarinic acetylcholine receptor and the phosphatidylinositol 3-kinase/Akt pathway. In addition, interactions among members of the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex were increased after H/R and were associated with mitochondrial Ca(2+) overload and cell death. Inhibition of the partner of the Ca(2+) channeling complex (VDAC1 siRNA) or a reduction in ER-mitochondria tethering (mitofusin 2 siRNA) prevented the increased protein interaction within the complex and reduced mitochondrial Ca(2+) accumulation and subsequent endothelial cell death after H/R. Intriguingly, acetylcholine could modulate ER-mitochondria Ca(2+) cross talk by inhibiting the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 expression. Phosphatidylinositol 3-kinase siRNA diminished acetylcholine-mediated inhibition of mitochondrial Ca(2+) overload and VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex formation induced by H/R. Our data suggest that ER-mitochondria interplay plays an important role in reperfusion injury in the endothelium and may be a novel molecular target for endothelial protection. Acetylcholine attenuates both intracellular and mitochondrial Ca(2+) overload and protects endothelial cells from H/R injury, presumably by disrupting the ER-mitochondria interaction. © 2015 American Heart Association, Inc.

  6. Proteolysis during Tumor Cell Extravasation In Vitro: Metalloproteinase Involvement across Tumor Cell Types

    PubMed Central

    Voura, Evelyn B.; English, Jane L.; Yu, Hoi-Ying E.; Ho, Andrew T.; Subarsky, Patrick; Hill, Richard P.; Hojilla, Carlo V.; Khokha, Rama

    2013-01-01

    To test if proteolysis is involved in tumor cell extravasation, we developed an in vitro model where tumor cells cross an endothelial monolayer cultured on a basement membrane. Using this model we classified the ability of the cells to transmigrate through the endothelial cell barrier onto the underlying matrix, and scored this invasion according to the stage of passage through the endothelium. Metalloproteinase inhibitors reduced tumor cell extravasation by at least 35%. Visualization of protease and cell adhesion molecules by confocal microscopy demonstrated the cell surface localization of MMP-2, MMP-9, MT1-MMP, furin, CD44 and αvβ3, during the process of transendothelial migration. By the addition of inhibitors and bio-modulators we assessed the functional requirement of the aforementioned molecules for efficient migration. Proteolytic digestion occurred at the cell-matrix interface and was most evident during the migratory stage. All of the inhibitors and biomodulators affected the transition of the tumor cells into the migratory stage, highlighting the most prevalent use of proteolysis at this particular step of tumor cell extravasation. These data suggest that a proteolytic interface operates at the tumor cell surface within the tumor-endothelial cell microenvironment. PMID:24194929

  7. Chemokines and skin diseases.

    PubMed

    Sugaya, Makoto

    2015-04-01

    Chemokines are small molecules that induce chemotaxis and activation of certain subsets of leukocytes. The expression patterns of chemokines and chemokine receptors are specific to certain organs and cells. Therefore, chemokines are important to elucidate the mechanism of organ-specific human diseases. CCL17 expressed by Langerhans cells, blood endothelial cells, and fibroblasts plays a key role in attracting Th2 cells and tumor cells of adult T-cell leukemia/lymphoma and mycosis fungoides/Sézary syndrome into the skin, developing various Th2-type inflammatory skin diseases as well as cutaneous lymphoma. CCL11 and CCL26 expressed by skin-resident cells, such as fibroblasts, blood endothelial cells, and keratinocytes, induce infiltration of CCR3-expressing cells such as Th2 cells and eosinophils. CCL11 may also serve as an autocrine as well as a paracrine in anaplastic large cell lymphoma. CX3CL1 expressed on blood endothelial cells leads to infiltration of CX3CR1(+) immune cells, such as mast cells, neutrophils, and macrophages, playing important roles in wound healing, tumor immunity, and vasculitis. Biologics targeting chemokines and their receptors are promising strategies for various skin diseases that are resistant to the current therapy.

  8. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy.

    PubMed

    Veenstra, Alexander A; Tang, Jie; Kern, Timothy S

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  9. Antagonism of CD11b with Neutrophil Inhibitory Factor (NIF) Inhibits Vascular Lesions in Diabetic Retinopathy

    PubMed Central

    Veenstra, Alexander A.; Tang, Jie; Kern, Timothy S.

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response. PMID:24205223

  10. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma.

    PubMed

    Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P

    2016-05-31

    The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.

  11. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma

    PubMed Central

    Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.

    2016-01-01

    The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916

  12. Intracellular pH (pHin) and cytosolic calcium ([Ca2+]cyt) regulation via ATPases: studies in cell populations, single cells, and subcellular compartments

    NASA Astrophysics Data System (ADS)

    Rojas, Jose D.; Sanka, Shankar C.; Gyorke, Sandor; Wesson, Donald E.; Minta, Akwasi; Martinez-Zaguilan, Raul

    1999-07-01

    Changes in pHin and (Ca2+)cyt are important in the signal transduction mechanisms leading to many physiological responses including cell growth, motility, secretion/exocytosis, etc. The concentrations of these ions are regulated via primary and secondary ion transporting mechanisms. In diabetes, specific pH and Ca2+ regulatory mechanism might be altered. To study these ions, we employ fluorescence spectroscopy, and cell imagin spectroscopy/confocal microscopy. pH and Ca2+ indicators are loaded in the cytosol with acetoxymethyl ester forms of dyes, and in endosomal/lysosomal (E/L) compartments by overnight incubation of cells with dextran- conjugated ion fluorescent probes. We focus on specific pH and Ca2+ regulatory systems: plasmalemmal vacuolar- type H+-ATPases (pm V-ATPases) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPases (SERCA). As experimental models, we employ vascular smooth muscle (VSM) and microvascular endothelial cells. We have chosen these cells because they are important in blood flow regulation and in angiogenesis. These processes are altered in diabetes. In many cell types, ion transport processes are dependent on metabolism of glucose for maximal activity. Our main findings are: (a) glycolysis coupling the activity of SERCA is required for cytosolic Ca2+ homeostasis in both VSM and microvascular endothelial cells; (b) E/L compartments are important for pH and Ca2+ regulation via H+-ATPases and SERCA, respectively; and (c) pm-V- ATPases are important for pHin regulation in microvascular endothelial cells.

  13. Combined Effects of Substrate Topography and Stiffness on Endothelial Cytokine and Chemokine Secretion

    PubMed Central

    Lee, Justin H.; Park, Soojin; Mun, Kevin; Boo, Yong Chool; Kim, Deok-Ho

    2016-01-01

    Endothelial physiology is regulated not only by humoral factors but also by mechanical factors such as fluid shear stress and the underlying cellular matrix microenvironment. The purpose of the present study was to examine the effects of matrix topographical cues on the endothelial secretion of cytokines/chemokines in vitro. Human endothelial cells were cultured on nanopatterned polymeric substrates with different ratios of ridge to groove widths (1:1, 1:2, and 1:5) and with different stiffnesses (6.7 MPa and 2.5 GPa) in the presence and absence of 1.0 ng/mL TNF-α. The levels of cytokines/chemokines secreted into the conditioned media were analyzed with a multiplexed bead-based sandwich immunoassay. Of the nano-patterns tested, the 1:1 and 1:2 type-patterns were found to induce the greatest degree of endothelial cell elongation and directional alignment. The 1:2 type nanopatterns lowered the secretion of inflammatory cytokines such as IL-1β, IL-3 and MCP-1, compared to unpatterned substrates. Additionally, of the two polymers tested, it was found that the stiffer substrate resulted in significant decreases in the secretion of IL-3 and MCP-1. These results suggest that substrates with specific extracellular nanotopographical cues or stiffnesses may provide anti-atherogenic effects like those seen with laminar shear stresses by suppressing the endothelial secretion of cytokines and chemokines involved in vascular inflammation and remodeling. PMID:25658848

  14. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/ Rho kinase pathways targeted to lipid rafts.

    PubMed

    Burger, Dylan; Montezano, Augusto C; Nishigaki, Nobuhiro; He, Ying; Carter, Anthony; Touyz, Rhian M

    2011-08-01

    Circulating microparticles are increased in cardiovascular disease and may themselves promote oxidative stress and inflammation. Molecular mechanisms underlying their formation and signaling are unclear. We investigated the role of reactive oxygen species (ROS), Rho kinase, and lipid rafts in microparticle formation and examined their functional significance in endothelial cells (ECs). Microparticle formation from angiotensin II (Ang II)-stimulated ECs and apolipoprotein E(-/-) mice was assessed by annexin V or by CD144 staining and electron microscopy. Ang II promoted microparticle formation and increased EC O(2)(-) generation and Rho kinase activity. Ang II-stimulated effects were inhibited by irbesartan (Ang II receptor type I blocker) and fasudil (Rho kinase inhibitor). Methyl-β-cyclodextrin and nystatin, which disrupt lipid rafts/caveolae, blocked microparticle release. Functional responses, assessed in microparticle-stimulated ECs, revealed increased O(2)(-) production, enhanced vascular cell adhesion molecule/platelet-EC adhesion molecule expression, and augmented macrophage adhesion. Inhibition of epidermal growth factor receptor blocked the prooxidative and proinflammatory effects of microparticles. In vitro observations were confirmed in apolipoprotein E(-/-) mice, which displayed vascular inflammation and high levels of circulating endothelial microparticles, effects that were reduced by apocynin. We demonstrated direct actions of Ang II on endothelial microparticle release, mediated through NADPH oxidase, ROS, and Rho kinase targeted to lipid rafts. Microparticles themselves stimulated endothelial ROS formation and inflammatory responses. Our findings suggest a feedforward system whereby Ang II promotes EC injury through its own endothelial-derived microparticles.

  15. Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9hi, SSEA-1− Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    PubMed Central

    Lian, Qizhou; Yeo, KengSuan; Que, Jianwen; Tan, EileenKhiaWay; Yu, Fenggang; Yin, Yijun; Salto-Tellez, Manuel; Oakley, Reida Menshawe El; Lim, Sai-Kiang

    2006-01-01

    Background Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r2 = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9hi, SSEA-1− while ESCs are CD9lo, SSEA-1+. Isolation of CD9hi, SSEA-1− cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r2 = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs. PMID:17183690

  16. Studies of the endothelial origin of cells in systemic angioendotheliomatosis and other vascular lesions of the brain and meninges using ulex europaeus lectin stains.

    PubMed

    Schelper, R L; Olson, S P; Carroll, T J; Hart, M N; Witters, E

    1986-01-01

    Ulex europaeus agglutinin I (UEA-I) is a plant lectin which binds specifically to alpha-L-fucose moieties on the surface glycoproteins of human endothelial cells. The binding is completely inhibited by preincubation of the lectin with fucose. UEA-I can be conjugated directly to fluorescein or peroxidase and can be used to stain endothelium of paraffin embedded tissues. UEA-I staining was evaluated on normal and infarcted brain, systemic angioendotheliomatosis, metastatic epidural angiosarcoma, hemangioendothelioma, hemangioblastoma, angioblastic meningioma of both the hemangioblastic and hemangiopericytic types, and vascular meningioma. The endothelium, but not neuropil of normal and infarcted brain was positive for UEA-I. The tumor cells of hemangioendothelioma and angiosarcoma also stained. However, no staining was seen in malignant intravascular cells of angioendotheliomatosis, the stromal cells of hemangioblastoma, or pericytes of angioblastic meningioma. It is concluded that the malignant cells in angioendotheliomatosis, the stromal cells of hemangioblastoma and the pericytes of angioblastic meningioma do not produce surface glycoproteins characteristic of endothelial cells.

  17. Fascin 1 is dispensable for developmental and tumour angiogenesis

    PubMed Central

    Ma, Yafeng; Reynolds, Louise E.; Li, Ang; Stevenson, Richard P.; Hodivala-Dilke, Kairbaan M.; Yamashiro, Shigeko; Machesky, Laura M.

    2013-01-01

    Summary The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis. PMID:24244855

  18. Fascin 1 is dispensable for developmental and tumour angiogenesis.

    PubMed

    Ma, Yafeng; Reynolds, Louise E; Li, Ang; Stevenson, Richard P; Hodivala-Dilke, Kairbaan M; Yamashiro, Shigeko; Machesky, Laura M

    2013-01-01

    The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis.

  19. Wild-type measles virus infection upregulates poliovirus receptor-related 4 and causes apoptosis in brain endothelial cells by induction of tumor necrosis factor-related apoptosis-inducing ligand.

    PubMed

    Abdullah, Hani'ah; Brankin, Brenda; Brady, Clare; Cosby, Sara Louise

    2013-07-01

    Small numbers of brain endothelial cells (BECs) are infected in children with neurologic complications of measles virus (MV) infection. This may provide a mechanism for virus entry into the central nervous system, but the mechanisms are unclear. Both in vitro culture systems and animal models are required to elucidate events in the endothelium. We compared the ability of wild-type (WT), vaccine, and rodent-adapted MV strains to infect, replicate, and induce apoptosis in human and murine brain endothelial cells (HBECs and MBECs, respectively). Mice also were infected intracerebrally. All MV stains productively infected HBECs and induced the MV receptor PVRL4. Efficient WT MV production also occurred in MBECs. Extensive monolayer destruction associated with activated caspase 3 staining was observed in HBECs and MBECs, most markedly with WT MV. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not Fas ligand, was induced by MV infection. Treatment of MBECs with supernatants from MV-infected MBEC cultures with an anti-TRAIL antibody blocked caspase 3 expression and monolayer destruction. TRAIL was also expressed in the endothelium and other cell types in infected murine brains. This is the first demonstration that infection of low numbers of BECs with WT MV allows efficient virus production, induction of TRAIL, and subsequent widespread apoptosis.

  20. Thermoresponsive Polymers with Lower Critical Solution Temperature- or Upper Critical Solution Temperature-Type Phase Behaviour Do Not Induce Toxicity to Human Endothelial Cells.

    PubMed

    Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi

    2017-01-01

    Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  1. Isolation and animal serum free expansion of human umbilical cord derived mesenchymal stromal cells (MSCs) and endothelial colony forming progenitor cells (ECFCs).

    PubMed

    Reinisch, Andreas; Strunk, Dirk

    2009-10-08

    The umbilical cord is a rich source for progenitor cells with high proliferative potential including mesenchymal stromal cells (also termed mesenchymal stem cells, MSCs) and endothelial colony forming progenitor cells (ECFCs). Both cell types are key players in maintaining the integrity of tissue and are probably also involved in regenerative processes and tumor formation. To study their biology and function in a comparative manner it is important to have both cells types available from the same donor. It may also be beneficial for regenerative purposes to derive MSCs and ECFCs from the same tissue. Because cellular therapeutics should eventually find their way from bench to bedside we established a new method to isolate and further expand progenitor cells without the use of animal protein. Pooled human platelet lysate (pHPL) replaced fetal bovine serum in all steps of our protocol to completely avoid contact of the cells to xenogeneic proteins. This video demonstrates a methodology for the isolation and expansion of progenitor cells from one umbilical cord. All materials and procedures will be described.

  2. Anti-inflammatory and anti-bacterial properties of tetramethylhexadecenyl succinyl cysteine (TSC): a skin-protecting cosmetic functional ingredient.

    PubMed

    Fernandéz, J R; Rouzard, K; Voronkov, M; Huber, K L; Stock, J B; Stock, M; Gordon, J S; Pérez, E

    2015-02-01

    The skin is the first line of defence against exposure to microbial, physical, environmental and chemical insults. In mobilizing a protective response, several different cell types located in our skin release and respond to pro-inflammatory cytokines ensuring skin homeostasis and health. However, chronic activation of this response eventually causes damage resulting in premature ageing. Diosodium tetramethylhexadecenyl succinyl cysteine (TSC or SIG1273), an isoprenylcysteine small molecule, down modulates these inflammatory signalling pathways in various cell types (keratinocytes, peripheral blood mononuclear cells (PBMCs) and endothelial cells) and possesses anti-bacterial properties. Thus, TSC represents a novel cosmetic functional ingredient that provides a broad spectrum of benefits for the skin. To assess the anti-inflammatory properties of TSC in several cutaneous cell types and further investigate its anti-microbial activity. Cultured normal human epidermal keratinocytes were exposed to chemical irritant phorbol 12-myrisate 13-acetate (TPA) or ultraviolet-B light (UVB) to induce pro-inflammatory cytokine (IL-6, IL-8 and TNF-α) production. T-cell receptor (TCR) activation of PBMCs and nickel (Ni(2+) ) treatments of human dermal microvascular endothelial cells (HDMECs) were performed resulting in IL-4, IL-6, IL-8 and IL-17 production. Streptococcus pyogenes were cultured to determine minimal inhibitory concentration values. In vitro studies demonstrate TSC blocks TPA and UVB-induced cytokine production in cultured keratinocytes. Similarly, TSC inhibits overproduction of IL-4 and IL-17 in T-cell receptor (TCR)-activated PBMCs as well as nickel induction of IL-6 and IL-8 in HDMECs. Lastly, TSC demonstrated anti-microbial properties, inhibiting cell growth of S. pyogenes. Tetramethylhexadecenyl succinyl cysteine represents a novel cosmetic functional ingredient that provides a dual modulating benefit of skin protection to individuals by reducing inflammation in keratinocytes, endothelial and mononuclear cell types and S. pyogenes counts. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Hironao; Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295

    Class 3 semaphorins were discovered as a family of axon guidance molecules, but are now known to be involved in diverse biologic processes. In this study, we investigated the anti-angiogenic potential of SEMA3E and SEMA3F (SEMA3E&F) in infantile hemangioma (IH). IH is a common vascular tumor that involves both vasculogenesis and angiogenesis. Our lab has identified and isolated hemangioma stem cells (HemSC), glucose transporter 1 positive (GLUT1{sup +}) endothelial cells (designated as GLUT1{sup sel} cells) based on anti-GLUT1 magnetic beads selection and GLUT1-negative endothelial cells (named HemEC). We have shown that these types of cells play important roles in hemangiogenesis.more » We report here that SEMA3E inhibited HemEC migration and proliferation while SEMA3F was able to suppress the migration and proliferation in all three types of cells. Confocal microscopy showed that stress fibers in HemEC were reduced by SEMA3E&F and that stress fibers in HemSC were decreased by SEMA3F, which led to cytoskeletal collapse and loss of cell motility in both cell types. Additionally, SEMA3E&F were able to inhibit vascular endothelial growth factor (VEGF)-induced sprouts in all three types of cells. Further, SEMA3E&F reduced the level of p-VEGFR2 and its downstream p-ERK in HemEC. These results demonstrate that SEMA3E&F inhibit IH cell proliferation and suppress the angiogenic activities of migration and sprout formation. SEMA3E&F may have therapeutic potential to treat or prevent growth of highly proliferative IH. - Highlights: • SEMA3E&F reduce actin stress fibers and induce cytoskeletal collapse in HemEC. • SEMA3E&F inhibit angiogenic activities of HemEC. • SEMA3E&F can interrupt the VEGF-A-VEGFR2-ERK signaling pathway in HemEC. • Plexin D1 and NRP2 are induced during HemSC/GLUT1{sup sel}-to-EC differentiation.« less

  4. Endothelial nitric oxide synthase overexpression restores the efficiency of bone marrow mononuclear cell-based therapy.

    PubMed

    Mees, Barend; Récalde, Alice; Loinard, Céline; Tempel, Dennie; Godinho, Marcia; Vilar, José; van Haperen, Rien; Lévy, Bernard; de Crom, Rini; Silvestre, Jean-Sébastien

    2011-01-01

    Bone marrow-derived mononuclear cells (BMMNCs) enhance postischemic neovascularization, and their therapeutic use is currently under clinical investigation. However, cardiovascular risk factors, including diabetes mellitus and hypercholesterolemia, lead to the abrogation of BMMNCs proangiogenic potential. NO has been shown to be critical for the proangiogenic function of BMMNCs, and increased endothelial NO synthase (eNOS) activity promotes vessel growth in ischemic conditions. We therefore hypothesized that eNOS overexpression could restore both the impaired neovascularization response and decreased proangiogenic function of BMMNCs in clinically relevant models of diabetes and hypercholesterolemia. Transgenic eNOS overexpression in diabetic, atherosclerotic, and wild-type mice induced a 1.5- to 2.3-fold increase in postischemic neovascularization compared with control. eNOS overexpression in diabetic or atherosclerotic BMMNCs restored their reduced proangiogenic potential in ischemic hind limb. This effect was associated with an increase in BMMNC ability to differentiate into cells with endothelial phenotype in vitro and in vivo and an increase in BMMNCs paracrine function, including vascular endothelial growth factor A release and NO-dependent vasodilation. Moreover, although wild-type BMMNCs treatment resulted in significant progression of atherosclerotic plaque in ischemic mice, eNOS transgenic atherosclerotic BMMNCs treatment even had antiatherogenic effects. Cell-based eNOS gene therapy has both proangiogenic and antiatherogenic effects and should be further investigated for the development of efficient therapeutic neovascularization designed to treat ischemic cardiovascular disease. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Fabrication of endothelial progenitor cell capture surface via DNA aptamer modifying dopamine/polyethyleneimine copolymer film

    NASA Astrophysics Data System (ADS)

    Li, Xin; Deng, Jinchuan; Yuan, Shuheng; Wang, Juan; Luo, Rifang; Chen, Si; Wang, Jin; Huang, Nan

    2016-11-01

    Endothelial progenitor cells (EPCs) are mainly located in bone marrow and circulate, and play a crucial role in repairmen of injury endothelium. One of the most promising strategies of stents designs were considered to make in-situ endothelialization in vivo via EPC-capture biomolecules on a vascular graft to capture EPCs directly from circulatory blood. In this work, an EPC specific aptamer with a 34 bases single strand DNA sequence was conjugated onto the stent surface via dopamine/polyethyleneimine copolymer film as a platform and linker. The assembled density of DNA aptamer could be regulated by controlling dopamine percentage in this copolymer film. X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) and fluorescence test confirmed the successful immobilization of DNA aptamer. To confirm its biofunctionality and cytocompatibility, the capturing cells ability of the aptamer modified surface and the effects on the growth behavior of human umbilical vein endothelial cells (HUVECs), smooth muscle cells (SMCs) were investigated. The aptamer functionalized sample revealed a good EPC-capture ability, and had a cellular friendly feature for both EPC and EC growth, while not stimulated the hyperplasia of SMCs. And, the co-culture experiment of three types of cells confirmed the specificity capturing of EPCs to aptamer modified surface, rather than ECs and SMCs. These data suggested that this aptamer functionalized surface may have a large potentiality for the application of vascular grafts with targeted endothelialization.

  6. Compartmentalized Culture of Perivascular Stroma and Endothelial Cells in a Microfluidic Model of the Human Endometrium.

    PubMed

    Gnecco, Juan S; Pensabene, Virginia; Li, David J; Ding, Tianbing; Hui, Elliot E; Bruner-Tran, Kaylon L; Osteen, Kevin G

    2017-07-01

    The endometrium is the inner lining of the uterus. Following specific cyclic hormonal stimulation, endometrial stromal fibroblasts (stroma) and vascular endothelial cells exhibit morphological and biochemical changes to support embryo implantation and regulate vascular function, respectively. Herein, we integrated a resin-based porous membrane in a dual chamber microfluidic device in polydimethylsiloxane that allows long term in vitro co-culture of human endometrial stromal and endothelial cells. This transparent, 2-μm porous membrane separates the two chambers, allows for the diffusion of small molecules and enables high resolution bright field and fluorescent imaging. Within our primary human co-culture model of stromal and endothelial cells, we simulated the temporal hormone changes occurring during an idealized 28-day menstrual cycle. We observed the successful differentiation of stroma into functional decidual cells, determined by morphology as well as biochemically as measured by increased production of prolactin. By controlling the microfluidic properties of the device, we additionally found that shear stress forces promoted cytoskeleton alignment and tight junction formation in the endothelial layer. Finally, we demonstrated that the endometrial perivascular stroma model was sustainable for up to 4 weeks, remained sensitive to steroids and is suitable for quantitative biochemical analysis. Future utilization of this device will allow the direct evaluation of paracrine and endocrine crosstalk between these two cell types as well as studies of immunological events associated with normal vs. disease-related endometrial microenvironments.

  7. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering

    PubMed Central

    Nourse, Marilyn B.; Halpin, Daniel E.; Scatena, Marta; Mortisen, Derek J.; Tulloch, Nathaniel L.; Hauch, Kip D.; Torok-Storb, Beverly; Ratner, Buddy D.; Pabon, Lil; Murry, Charles E.

    2010-01-01

    Objective Human embryonic stem cells (hESCs) offer a sustainable source of endothelial cells for therapeutic vascularization and tissue engineering, but current techniques for generating these cells remain inefficient. We endeavored to induce and isolate functional endothelial cells from differentiating hESCs. Methods and Results To enhance endothelial cell differentiation above a baseline of ∼2% in embryoid body (EB) spontaneous differentiation, three alternate culture conditions were compared. Vascular endothelial growth factor (VEGF) treatment of EBs showed the best induction, with markedly increased expression of endothelial cell proteins CD31, VE-Cadherin, and von Willebrand Factor, but not the hematopoietic cell marker CD45. CD31 expression peaked around days 10-14. Continuous VEGF treatment resulted in a four- to five-fold enrichment of CD31+ cells but did not increase endothelial proliferation rates, suggesting a primary effect on differentiation. CD31+ cells purified from differentiating EBs upregulated ICAM-1 and VCAM-1 in response to TNFα, confirming their ability to function as endothelial cells. These cells also expressed multiple endothelial genes and formed lumenized vessels when seeded onto porous poly(2-hydroxyethyl methacrylate) scaffolds and implanted in vivo subcutaneously in athymic rats. Collagen gel constructs containing hESC-derived endothelial cells and implanted into infarcted nude rat hearts formed robust networks of patent vessels filled with host blood cells. Conclusions VEGF induces functional endothelial cells from hESCs independent of endothelial cell proliferation. These enrichment methods increase endothelial cell yield, enabling applications for revascularization as well as basic studies of human endothelial biology. We demonstrate the ability of hESC-derived endothelial cells to facilitate vascularization of tissue-engineered implants. PMID:19875721

  8. Angiogenesis and expression of vascular endothelial growth factor, tumour necrosis factor-α and hypoxia inducible factor-1α in canine renal cell carcinoma.

    PubMed

    Yhee, J Y; Yu, C H; Kim, J H; Im, K S; Kim, N H; Brodersen, B W; Doster, A R; Sur, J-H

    2012-01-01

    The aim of the present study was to determine the distribution and characteristics of microvessels in various histological types of canine renal cell carcinoma (RCC). The study compared microvessel density (MVD) and distribution of blood vessels according to histological type and evaluated the presence of angiogenesis-related proteins. Nine archival samples of canine RCC were studied. MVD was calculated as the mean number of blood vessels per mm(2). The diameter of blood vessels was calculated by determining either the length of the long axis of blood vessels (diameter(max)) or the mean distance from the centre of each blood vessel to the tunica adventia (diameter(mean)). A significant difference in MVD was evident between RCCs and normal kidneys (46.6 ± 28.0 versus 8.4 ± 2.2 microvessels/mm(2)). Diameter(max) in canine RCCs (34.1 ± 14.7 μm) was also significantly different from normal canine kidney (23.2 ± 3.4 μm). Vascular endothelial growth factor (VEGF) was expressed by tumour cells and vascular endothelial cells and tumour necrosis factor (TNF)-α expression was observed in vascular endothelial cells in both neoplastic and normal kidney. Although VEGF is involved in angiogenesis and correlates with tumour stage of development, no correlation was found between VEGF expression and MVD. Tumour-associated macrophages expressing TNF-α and hypoxia inducible factor 1α were identified in peritumoural tissue and may play an important role in angiogenesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    PubMed

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.

  10. Cancer Cells Regulate Biomechanical Properties of Human Microvascular Endothelial Cells*

    PubMed Central

    Mierke, Claudia Tanja

    2011-01-01

    Metastasis is a key event of malignant tumor progression. The capability to metastasize depends on the ability of the cancer cell to migrate into connective tissue, adhere, and possibly transmigrate through the endothelium. Previously we reported that the endothelium does not generally act as barrier for cancer cells to migrate in three-dimensional extracellular matrices (3D-ECMs). Instead, the endothelium acts as an enhancer or a promoter for the invasiveness of certain cancer cells. How invasive cancer cells diminish the endothelial barrier function still remains elusive. Therefore, this study investigates whether invasive cancer cells can decrease the endothelial barrier function through alterations of endothelial biomechanical properties. To address this, MDA-MB-231 breast cancer cells were used that invade deeper and more numerous into 3D-ECMs when co-cultured with microvascular endothelial cells. Using magnetic tweezer measurements, MDA-MB-231 cells were found to alter the mechanical properties of endothelial cells by reducing endothelial cell stiffness. Using spontaneous bead diffusion, actin cytoskeletal remodeling dynamics were shown to be increased in endothelial cells co-cultured with MDA-MB-231 cells compared with mono-cultured endothelial cells. In addition, knockdown of the α5 integrin subunit in highly transmigrating α5β1high cells derived from breast, bladder, and kidney cancer cells abolished the endothelial invasion-enhancing effect comparable with the inhibition of myosin light chain kinase. These results indicate that the endothelial invasion-enhancing effect is α5β1 integrin-dependent. Moreover, inhibition of Rac-1, Rho kinase, MEK kinase, and PI3K reduced the endothelial invasion-enhancing effect, indicating that signaling via small GTPases may play a role in the endothelial facilitated increased invasiveness of cancer cells. In conclusion, decreased stiffness and increased cytoskeletal remodeling dynamics of endothelial cells may account for the breakdown of endothelial barrier function, suggesting that biomechanical alterations are sufficient to facilitate the transmigration and invasion of invasive cancer cells into 3D-ECMs. PMID:21940631

  11. Roles of CD34+ cells and ALK5 signaling in the reconstruction of seminiferous tubule-like structures in 3-D re-aggregate culture of dissociated cells from neonatal mouse testes.

    PubMed

    Abe, Shin-Ichi; Abe, Kazuko; Zhang, Jidong; Harada, Tomoaki; Mizumoto, Go; Oshikawa, Hiroki; Akiyama, Haruhiko; Shimamura, Kenji

    2017-01-01

    Tissue reconstruction in vitro can provide, if successful, a refined and simple system to analyze the underlying mechanisms that drive the morphogenesis and maintain the ordered structure. We have recently succeeded in reconstruction of seminiferous cord-like and tubule-like structures using 3-D re-aggregate culture of dissociated testicular cells. In testis formation, endothelial cells that migrated from mesonephroi to embryonic gonads have been shown to be critical for development of testis cords, but how endothelial cells contribute to testis cord formation remains unknown. To decipher the roles of endothelial and peritubular cells in the reconstruction of cord-like and tubule-like structures, we investigated the behavior of CD34+ endothelial and p75+ cells, and peritubular myoid cells (PTMCs) in 3-D re-aggregate cultures of testicular cells. The results showed that these 3 types of cells had the capacity of re-aggregation on their own and with each other, and of segregation into 3 layers in a re-aggregate, which were very similar to interstitial and peritubular tissues in vivo. Observation of behaviors of fluorescent Sertoli cells and other non-fluorescent types of cells using testes from Sox9-EGFP transgenic mice showed dynamic cell movement and segregation in re-aggregate cultures. Cultures of testicular cells deprived of interstitial and peritubular cells resulted in dysmorphic structures, but re-addition of them restored tubule-like structures. Purified CD34+ cells in culture differentiated into p75+ cells and PTMCs. These results indicate that CD34+ cells differentiate into p75+ cells, which then differentiate into PTMCs. TGFβ signaling inhibitors, SB431542 and ALK5i, disturbed the reconstruction of cord-like and tubule-like structures, and the latter compromised re-construction of interstitial-like and peritubular-like structures, as well as the proliferation of CD34+, p75+, PTMCs, and Sertoli cells, and their movement and differentiation. These results indicate that CD34+ cells and signaling through ALK5 play pivotal roles in the morphogenesis of interstitial-like, peritubular-like and cord-like structures.

  12. Endothelial Progenitor Cells=EPC=Elemental Pernicious Complexity

    PubMed Central

    Ushio-Fukai, Masuko

    2011-01-01

    Abstract Endothelial progenitor cells (EPCs) represent a heterogeneous population of cells with a pro-angiogenic potential that are derived not only from bone marrow but also from other tissues. Depending on the model and cell type used, the pro-angiogenic effect is a consequence of direct vascular integration, the paracrine release of growth factors and cytokines, or complex interactions with other cellular components like monocytes or platelets. The pro-angiogenic potential of EPCs is dependent on the particular type of EPC studied and modulated by the risk and life style factors of the patient as well as by local factors determining the homing to diseased tissue and the EPC proteome. In this Forum on EPCs these aspects will be covered in individual review articles, which are accompanied by two original research studies on the role of NADPH oxidases for EPC mobilization and the impact of organic nitrates on EPCs. Antioxid. Redox Signal. 15, 911–914. PMID:21128729

  13. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed,more » because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.« less

  14. Isolation and Characterization of Rat Pituitary Endothelial Cells

    PubMed Central

    Chaturvedi, Kirti; Sarkar, Dipak K.

    2010-01-01

    Most previous studies that determined the effect of estradiol on angiogenesis used endothelial cells from nonpituitary sources. Because pituitary tumor tissue receives its blood supply via portal and arterial circulation, it is important to use pituitary-derived endothelial cells in studying pituitary angiogenesis. We have developed a magnetic separation technique to isolate endothelial cells from pituitary tissues and have characterized these cells in primary cultures. Endothelial cells of the pituitary showed the existence of endothelial cell marker, CD31, and of von Willebrand factor protein. These cells in cultures also showed immunore-activity of estrogen receptors alpha and beta. The angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, significantly increased proliferation and migration of the pituitary-derived endothelial cells in primary cultures. These results suggest that a magnetic separation technique can be used for enrichment of pituitary-derived endothelial cells for determination of cellular mechanisms governing the vascularization in the pituitary. PMID:17028416

  15. Equine herpesvirus-1 infection disrupts interferon regulatory factor-3 (IRF-3) signaling pathways in equine endothelial cells.

    PubMed

    Sarkar, Sanjay; Balasuriya, Udeni B R; Horohov, David W; Chambers, Thomas M

    2016-05-01

    Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    PubMed Central

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  17. Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis.

    PubMed

    Piqueras, Laura; Reynolds, Andrew R; Hodivala-Dilke, Kairbaan M; Alfranca, Arántzazu; Redondo, Juan M; Hatae, Toshihisa; Tanabe, Tadashi; Warner, Timothy D; Bishop-Bailey, David

    2007-01-01

    The role of the nuclear receptor peroxisome-proliferator activated receptor (PPAR)-beta/delta in endothelial cells remains unclear. Interestingly, the selective PPARbeta/delta ligand GW501516 is in phase II clinical trials for dyslipidemia. Here, using GW501516, we have assessed the involvement of PPARbeta/delta in endothelial cell proliferation and angiogenesis. Western blot analysis indicated PPARbeta/delta was expressed in primary human umbilical and aortic endothelial cells, and in the endothelial cell line, EAHy926. Treatment with GW501516 increased human endothelial cell proliferation and morphogenesis in cultures in vitro, endothelial cell outgrowth from murine aortic vessels in vitro, and angiogenesis in a murine matrigel plug assay in vivo. GW501516 induced vascular endothelial cell growth factor mRNA and peptide release, as well as adipose differentiation-related protein (ADRP), a PPARbeta/delta target gene. GW501516-induced proliferation, morphogenesis, vascular endothelial growth factor (VEGF), and ADRP were absent in endothelial cells transfected with dominant-negative PPARbeta/delta. Furthermore, treatment of cells with cyclo-VEGFI, a VEGF receptor1/2 antagonist, abolished GW501516-induced endothelial cell proliferation and tube formation. PPARbeta/delta is a novel regulator of endothelial cell proliferation and angiogenesis through VEGF. The use of GW501516 to treat dyslipidemia may need to be carefully monitored in patients susceptible to angiogenic disorders.

  18. Connections matter: channeled hydrogels to improve vascularization.

    PubMed

    Muehleder, Severin; Ovsianikov, Aleksandr; Zipperle, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2014-01-01

    The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.

  19. Mesosecrin: a secreted glycoprotein produced in abundance by human mesothelial, endothelial, and kidney epithelial cells in culture

    PubMed Central

    1987-01-01

    Human mesothelial cells, endothelial cells, and type II kidney epithelial cells growing in culture devote approximately 3% of their total protein synthesis to the production of an Mr approximately 46-kD, pI 7.1, secreted glycoprotein (designated Sp46). Fibroblasts make about 1/10th as much Sp46 as these cell types, and their synthesis is dependent upon hydrocortisone. Keratinocytes, urothelial cells, conjunctival epithelial cells, and mammary epithelial cells do not make detectable amounts of Sp46. Mesothelial cells secrete Sp46 onto the substratum, and from there it is subsequently released into the medium. Immunofluorescence analysis using specific antisera discloses that Sp46 is deposited beneath cells as a fine coating on the substratum. In sparse cultures, Sp46 is detected in trails behind motile cells. In contrast, secreted fibronectin coalesces into fibers, most of which remain in contact with and on top of the cells; thus Sp46 does not preferentially bind to fibronectin. About 6 kD of the mass of human Sp46 is N-linked oligosaccharide, which is terminally sialated before secretion. Sp46 has a low glycine content, indicating that it is not a collagenlike protein. Its NH2-terminal sequence over the first 40 amino acids does not resemble any protein for which sequence information is available. Sp46 appears to be a novel extracellular glycoprotein, high- level constitutive expression of which is restricted to mesoderm- derived epithelial and endothelial cells. We therefore propose for it the name "mesosecrin." PMID:3543023

  20. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells.

    PubMed Central

    Ferrara, N; Winer, J; Burton, T; Rowland, A; Siegel, M; Phillips, H S; Terrell, T; Keller, G A; Levinson, A D

    1993-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen with a specificity for endothelial cells in vitro and an angiogenic inducer in vivo. We tested the hypothesis that VEGF may confer on expressing cells a growth advantage in vivo. Dihydrofolatereductase--Chinese hamster ovary cells were transfected with expression vectors which direct the constitutive synthesis of VEGF. Neither the expression nor the exogenous administration of VEGF stimulated anchorage-dependent or anchorage-independent growth of Chinese hamster ovary cells in vitro. However, VEGF-expressing clones, unlike control cells, demonstrated an ability to proliferate in nude mice. Histologic examination revealed that the proliferative lesions were compact, well vascularized, and nonedematous. Ultrastructural analysis revealed that capillaries within the lesions were of the continuous type. These findings indicate that the expression of VEGF may confer on cells the ability to grow in vivo in the absence of transformation by purely paracrine mechanisms. Since VEGF is a widely distributed protein, this property may have relevance for a variety of physiological and pathological proliferative processes. Images PMID:8423215

  1. Lipocalin-type prostaglandin D synthase-derived PGD2 attenuates malignant properties of tumor endothelial cells.

    PubMed

    Omori, Keisuke; Morikawa, Teppei; Kunita, Akiko; Nakamura, Tatsuro; Aritake, Kosuke; Urade, Yoshihiro; Fukayama, Masashi; Murata, Takahisa

    2018-01-01

    Endothelial cells (ECs) are a key component of the tumor microenvironment. They have abnormal characteristics compared to the ECs in normal tissues. Here, we found a marked increase in lipocalin-type prostaglandin D synthase (L-PGDS) mRNA (Ptgds) expression in ECs isolated from mouse melanoma. Immunostaining of mouse melanoma revealed expression of L-PGDS protein in the ECs. In situ hybridization also showed L-PGDS (PTGDS) mRNA expression in the ECs of human melanoma and oral squamous cell carcinoma. In vitro experiments showed that stimulation with tumor cell-derived IL-1 and TNF-α increased L-PGDS mRNA expression and its product prostaglandin D 2 (PGD 2 ) in human normal ECs. We also investigated the contribution of L-PGDS-PGD 2 to tumor growth and vascularization. Systemic or EC-specific deficiency of L-PGDS accelerated the growth of melanoma in mice, whereas treatment with an agonist of the PGD 2 receptor, DP1 (BW245C, 0.1 mg/kg, injected intraperitoneally twice daily), attenuated it. Morphological and in vivo studies showed that endothelial L-PGDS deficiency resulted in functional changes of tumor ECs such as accelerated vascular hyperpermeability, angiogenesis, and endothelial-to-mesenchymal transition (EndMT) in tumors, which in turn reduced tumor cell apoptosis. These observations suggest that tumor cell-derived inflammatory cytokines increase L-PGDS expression and subsequent PGD 2 production in the tumor ECs. This PGD 2 acts as a negative regulator of the tumorigenic changes in tumor ECs. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms

    PubMed Central

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications. PMID:26447102

  3. G-protein-coupled receptor kinase 2 and endothelial dysfunction: molecular insights and pathophysiological mechanisms.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2015-01-01

    Smooth muscle cells (SMC) and endothelial cells are the major cell types in blood vessels. The principal function of vascular SMC in the body is to regulate blood flow and pressure through contraction and relaxation. The endothelium performs a crucial role in maintaining vascular integrity by achieving whole-organ metabolic homeostasis via the production of factors associated with vasoconstriction or vasorelaxation. In this review, we have focused on the production of nitric oxide (NO), a vasorelaxation factor. The extent of NO production represents a key marker in vascular health. A decrease in NO is capable of inducing pathological conditions associated with endothelial dysfunction, such as obesity, diabetes, cardiovascular disease, and atherosclerosis. Recent studies have strongly implicated the involvement of G-protein-coupled receptor kinase 2 (GRK2) in the progression of cardiovascular disease. Vasculature which is affected by insulin resistance and type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction by reducing intracellular NO. GRK2 activation also induces changes in the subcellular localization of GRK2 itself and also of β-arrestin 2, a downstream protein. In this review, we describe the pathophysiological mechanisms of insulin resistance and diabetes, focusing on the signal transduction for NO production via GRK2 and β-arrestin 2, providing novel insights into the potential field of translational investigation in the treatment of diabetic complications.

  4. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    PubMed

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  5. Signaling hierarchy regulating human endothelial cell development.

    PubMed

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  6. BCL2 expression in CD105 positive neoangiogenic cells and tumor progression in angioimmunoblastic T-cell lymphoma.

    PubMed

    Ratajczak, Philippe; Leboeuf, Christophe; Wang, Li; Brière, Josette; Loisel-Ferreira, Irmine; Thiéblemont, Catherine; Zhao, Wei-Li; Janin, Anne

    2012-06-01

    The angiogenic microenvironment has been known to be a component of angioimmunoblastic T-cell lymphoma since its initial characterization. We have shown that angioimmunoblastic T-cell lymphoma endothelial cells produce vascular endothelial growth factor-A (VEGFA), and participate in lymphoma progression. In squamous cell carcinoma, endothelial BCL2 expression induces a crosstalk with tumor cells through VEGFA, a major mediator of tumoral angiogenesis. In the present study, we analyzed BCL2 and VEGFA in 30 angioimmunoblastic T-cell lymphomas, using triple immunofluorescence to identify protein coexpression in well-characterized lymphoma cells and microenvironment neoangiogenic endothelial cells. Using quantitative real-time PCR, we assessed mRNA expression levels in laser-microdissected endothelial and lymphoma cells. In lymphoma cells, as in endothelial cells, BCL2 and VEGFA proteins were coexpressed. BCL2 was expressed only in neoangiogenic CD34(+)CD105(+) endothelial cells. In laser-microdissected cells, mRNA studies showed a significant relationship between BCL2 and VEGFA levels in CD34(+) endothelial cells, but not in CD3(+)CD10(+)lymphoma cells, or in CD34(+) endothelial cells from lymph node hyperplasia. Further study showed that, in AITL, BCL2 mRNA levels in CD34(+)CD105(+) neoangiogenic endothelial cells also correlated with microvessel density, International Prognostic Index, Ann Arbor stage, bone marrow involvement and elevated LDH. BCL2 expression by CD105(+) neoangiogenic endothelial cells is related to tumor progression in angioimmunoblastic T-cell lymphoma.

  7. Human endothelial colony-forming cells expanded with an improved protocol are a useful endothelial cell source for scaffold-based tissue engineering.

    PubMed

    Denecke, Bernd; Horsch, Liska D; Radtke, Stefan; Fischer, Johannes C; Horn, Peter A; Giebel, Bernd

    2015-11-01

    One of the major challenges in tissue engineering is to supply larger three-dimensional (3D) bioengineered tissue transplants with sufficient amounts of nutrients and oxygen and to allow metabolite removal. Consequently, artificial vascularization strategies of such transplants are desired. One strategy focuses on endothelial cells capable of initiating new vessel formation, which are settled on scaffolds commonly used in tissue engineering. A bottleneck in this strategy is to obtain sufficient amounts of endothelial cells, as they can be harvested only in small quantities directly from human tissues. Thus, protocols are required to expand appropriate cells in sufficient amounts without interfering with their capability to settle on scaffold materials and to initiate vessel formation. Here, we analysed whether umbilical cord blood (CB)-derived endothelial colony-forming cells (ECFCs) fulfil these requirements. In a first set of experiments, we showed that marginally expanded ECFCs settle and survive on different scaffold biomaterials. Next, we improved ECFC culture conditions and developed a protocol for ECFC expansion compatible with 'Good Manufacturing Practice' (GMP) standards. We replaced animal sera with human platelet lysates and used a novel type of tissue-culture ware. ECFCs cultured under the new conditions revealed significantly lower apoptosis and increased proliferation rates. Simultaneously, their viability was increased. Since extensively expanded ECFCs could still settle on scaffold biomaterials and were able to form tubular structures in Matrigel assays, we conclude that these ex vivo-expanded ECFCs are a novel, very potent cell source for scaffold-based tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Successful In Vitro Expansion and Differentiation of Cord Blood Derived CD34+ Cells into Early Endothelial Progenitor Cells Reveals Highly Differential Gene Expression

    PubMed Central

    Topcic, Denijal; Haviv, Izhak; Merivirta, Ruusu-Maaria; Agrotis, Alexander; Leitner, Ephraem; Jowett, Jeremy B.; Bode, Christoph; Lappas, Martha; Peter, Karlheinz

    2011-01-01

    Endothelial progenitor cells (EPCs) can be purified from peripheral blood, bone marrow or cord blood and are typically defined by a limited number of cell surface markers and a few functional tests. A detailed in vitro characterization is often restricted by the low cell numbers of circulating EPCs. Therefore in vitro culturing and expansion methods are applied, which allow at least distinguishing two different types of EPCs, early and late EPCs. Herein, we describe an in vitro culture technique with the aim to generate high numbers of phenotypically, functionally and genetically defined early EPCs from human cord blood. Characterization of EPCs was done by flow cytometry, immunofluorescence microscopy, colony forming unit (CFU) assay and endothelial tube formation assay. There was an average 48-fold increase in EPC numbers. EPCs expressed VEGFR-2, CD144, CD18, and CD61, and were positive for acetylated LDL uptake and ulex lectin binding. The cells stimulated endothelial tube formation only in co-cultures with mature endothelial cells and formed CFUs. Microarray analysis revealed highly up-regulated genes, including LL-37 (CAMP), PDK4, and alpha-2-macroglobulin. In addition, genes known to be associated with cardioprotective (GDF15) or pro-angiogenic (galectin-3) properties were also significantly up-regulated after a 72 h differentiation period on fibronectin. We present a novel method that allows to generate high numbers of phenotypically, functionally and genetically characterized early EPCs. Furthermore, we identified several genes newly linked to EPC differentiation, among them LL-37 (CAMP) was the most up-regulated gene. PMID:21858032

  9. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis

    PubMed Central

    Lacroix, Romaric; Plawinski, Laurent; Robert, Stéphane; Doeuvre, Loïc; Sabatier, Florence; Martinez de Lizarrondo, Sara; Mezzapesa, Anna; Anfosso, Francine; Leroyer, Aurelie S.; Poullin, Pascale; Jourde, Noémie; Njock, Makon-Sébastien; Boulanger, Chantal M.; Anglés-Cano, Eduardo; Dignat-George, Françoise

    2012-01-01

    Background We recently assigned a new fibrinolytic function to cell-derived microparticles in vitro. In this study we explored the relevance of this novel property of microparticles to the in vivo situation. Design and Methods Circulating microparticles were isolated from the plasma of patients with thrombotic thrombocytopenic purpura or cardiovascular disease and from healthy subjects. Microparticles were also obtained from purified human blood cell subpopulations. The plasminogen activators on microparticles were identified by flow cytometry and enzyme-linked immunosorbent assays; their capacity to generate plasmin was quantified with a chromogenic assay and their fibrinolytic activity was determined by zymography. Results Circulating microparticles isolated from patients generate a range of plasmin activity at their surface. This property was related to a variable content of urokinase-type plasminogen activator and/or tissue plasminogen activator. Using distinct microparticle subpopulations, we demonstrated that plasmin is generated on endothelial and leukocyte microparticles, but not on microparticles of platelet or erythrocyte origin. Leukocyte-derived microparticles bear urokinase-type plasminogen activator and its receptor whereas endothelial microparticles carry tissue plasminogen activator and tissue plasminogen activator/inhibitor complexes. Conclusions Endothelial and leukocyte microparticles, bearing respectively tissue plasminogen activator or urokinase-type plasminogen activator, support a part of the fibrinolytic activity in the circulation which is modulated in pathological settings. Awareness of this blood-borne fibrinolytic activity conveyed by microparticles provides a more comprehensive view of the role of microparticles in the hemostatic equilibrium. PMID:22733025

  10. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function.

    PubMed

    Jung, Seok Yun; Choi, Jin Hwa; Kwon, Sang-Mo; Masuda, Haruchika; Asahara, Takayuki; Lee, You-Mie

    2012-05-01

    Endothelial progenitor cells (EPCs) contribute to the tumor vasculature during tumor progression. Decursin isolated from the herb Angelica gigas is known to possess potent anti-inflammatory activities. Recently, we reported that decursin is a novel candidate for an angiogenesis inhibitor [Jung et al., 2009]. In this study, we investigated whether decursin regulates EPC differentiation and function to inhibit tumor vasculogenesis. We isolated AC133+ cells from human cord blood and decursin significantly decreased the number of EPC colony forming units of human cord blood-derived AC133+ cells that produce functional EPC progenies. Decursin dose-dependently decreased the cell number of EPC committing cells as demonstrated by EPC expansion studies. Decursin inhibited EPC differentiation from progenitor cells into spindle-shaped EPC colonies. Additionally, decursin inhibited proliferation and migration of early EPCs isolated from mouse bone marrow. Furthermore, decursin suppressed expression of angiopoietin-2, angiopoietin receptor Tie-2, Flk-1 (vascular endothelial growth factor receptor-2), and endothelial nitric oxide synthase in mouse BM derived EPCs in a dose-dependent manner. Decursin suppressed tube formation ability of EPCs in collaboration with HUVEC. Decursin (4 mg/kg) inhibited tumor-induced mobilization of circulating EPCs (CD34 + /VEGFR-2+ cells) from bone marrow and early incorporation of Dil-Ac-LDL-labeled or green fluorescent protein (GFP)+ EPCs into neovessels of xenograft Lewis lung carcinoma tumors in wild-type- or bone-marrow-transplanted mice. Accordingly, decursin attenuated EPC-derived endothelial cells in neovessels of Lewis lung carcinoma tumor masses grown in mice. Together, decursin likely affects EPC differentiation and function, thereby inhibiting tumor vasculogenesis in early tumorigenesis. Copyright © 2012 Wiley Periodicals, Inc.

  11. Rapid isolation of choriocapillary endothelial cells by Lycopersicon esculentum-coated Dynabeads.

    PubMed

    Hoffmann, S; Spee, C; Murata, T; Cui, J Z; Ryan, S J; Hinton, D R

    1998-10-01

    In vitro studies of choroidal endothelial cells may be critical for understanding the pathogenesis of neovascularization in age-related macular degeneration, since endothelial cells from different sites are highly heterogeneous in their morphology and behavior. Isolation of choroidal endothelial cells is complicated and labor intensive because of the small size of the choroid and the difficulty of excluding contaminating cells. We describe a rapid, simplified method for the isolation of bovine choroidal endothelial cells using microdissection followed by the use of superparamagnetic beads (Dynabeads) coated with the endothelial cell-specific lectin Lycopersicon esculentum, which selectively binds to fucose residues on the endothelial cell surface. Cells bound to beads are isolated using a magnetic particle concentrator. Isolated cells grew to confluence in a monolayer with a cobblestone morphology and were shown to be endothelial cells by their greater than 95% immunoreactivity to von Willebrand factor and phagocytosis of dil-acetylated LDL. Isolated cells grew as tubes in three-dimensional cultures. This method markedly reduces the time needed for pure culture of cells and makes the in vitro study of choroidal endothelial cells practical and reproducible.

  12. Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein-Induced Retinal Angiogenesis.

    PubMed

    Lee, Heon-Woo; Chong, Diana C; Ola, Roxana; Dunworth, William P; Meadows, Stryder; Ka, Jun; Kaartinen, Vesa M; Qyang, Yibing; Cleaver, Ondine; Bautch, Victoria L; Eichmann, Anne; Jin, Suk-Won

    2017-04-01

    Increasing evidence suggests that bone morphogenetic protein (BMP) signaling regulates angiogenesis. Here, we aimed to define the function of BMP receptors in regulating early postnatal angiogenesis by analysis of inducible, endothelial-specific deletion of the BMP receptor components Bmpr2 (BMP type 2 receptor), Alk1 (activin receptor-like kinase 1), Alk2 , and Alk3 in mouse retinal vessels. Expression analysis of several BMP ligands showed that proangiogenic BMP ligands are highly expressed in postnatal retinas. Consistently, BMP receptors are also strongly expressed in retina with a distinct pattern. To assess the function of BMP signaling in retinal angiogenesis, we first generated mice carrying an endothelial-specific inducible deletion of Bmpr2 . Postnatal deletion of Bmpr2 in endothelial cells substantially decreased the number of angiogenic sprouts at the vascular front and branch points behind the front, leading to attenuated radial expansion. To identify critical BMPR1s (BMP type 1 receptors) associated with BMPR2 in retinal angiogenesis, we generated endothelial-specific inducible deletion of 3 BMPR1s abundantly expressed in endothelial cells and analyzed the respective phenotypes. Among these, endothelial-specific deletion of either Alk2 / acvr1 or Alk3 / Bmpr1a caused a delay in radial expansion, reminiscent of vascular defects associated with postnatal endothelial-specific deletion of BMPR2, suggesting that ALK2/ACVR1 and ALK3/BMPR1A are likely to be the critical BMPR1s necessary for proangiogenic BMP signaling in retinal vessels. Our data identify BMP signaling mediated by coordination of ALK2/ACVR1, ALK3/BMPR1A, and BMPR2 as an essential proangiogenic cue for retinal vessels. © 2017 The Authors.

  13. Elevated concentrations of nonesterified fatty acids increase monocyte expression of CD11b and adhesion to endothelial cells.

    PubMed

    Zhang, Wei-Yang; Schwartz, Eric; Wang, Yingjie; Attrep, Jeanne; Li, Zhi; Reaven, Peter

    2006-03-01

    Monocyte proinflammatory activity has been demonstrated in obesity, insulin resistance, and type 2 diabetes, metabolic conditions that are frequently associated with elevated levels of nonesterified fatty acids (NEFA). We therefore tested the hypothesis that NEFA may induce monocyte inflammation. Monocytes exposed to NEFA for 2 days demonstrated a dose-related increase in intracellular reactive oxygen species (ROS) formation and adhesion to endothelial cells. All of these effects were inhibited by the coaddition of antioxidants such as glutathione or butylated hydroxytoluene, by inhibition of ROS generation by NADPH oxidase inhibitors, and by inhibition of protein kinase C, a recognized stimulator of NAPDH oxidase. Monocytes exposed to NEFA also demonstrated a significant increase in CD11b message expression. Stimulation of monocyte adhesion to endothelial cells by NEFA was inhibited by addition of neutralizing antibodies to either CD11b or CD18. Finally, surface expression of CD11b increased significantly on monocytes as measured by flow cytometry, after their incubation with NEFA. These studies indicate that elevated concentrations of NEFA may enhance integrin facilitated monocyte adhesion to endothelial cells and these effects appear mediated, in part, through activation of NADPH oxidase and oxidative stress.

  14. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration.

    PubMed

    Nih, Lina R; Deroide, Nicolas; Leré-Déan, Carole; Lerouet, Dominique; Soustrat, Mathieu; Levy, Bernard I; Silvestre, Jean-Sébastien; Merkulova-Rainon, Tatiana; Pocard, Marc; Margaill, Isabelle; Kubis, Nathalie

    2012-04-01

    Pro-angiogenic cell-based therapies constitute an interesting and attractive approach to enhancing post-stroke neurogenesis and decreasing neurological deficit. However, most new stroke-induced neurons die during the first few weeks after ischemia, thus impairing total recovery. Although the neovascularization process involves different cell types and various growth factors, most cell therapy protocols are based on the biological effects of single-cell-type populations or on the administration of heterogeneous populations of progenitors, namely human cord blood-derived CD34(+) cells, with scarce vascular progenitor cells. Tight cooperation between endothelial cells and smooth muscle cells/pericytes is critical for the development of functional neovessels. We hypothesized that neuroblast survival in stroke brain depends on mature vascular network formation. In this study, we injected a combination of endothelial progenitor cells (EPCs) and smooth muscle progenitor cells (SMPCs), isolated from human umbilical cord blood, into a murine model of permanent focal ischemia induced by middle cerebral artery occlusion. The co-administration of SMPCs and EPCs induced enhanced angiogenesis and vascular remodeling in the peri-infarct and infarct areas, where vessels exhibited a more mature phenotype. This activation of vessel growth resulted in the maintenance of neurogenesis and neuroblast migration to the peri-ischemic cortex. Our data suggest that a mature vascular network is essential for neuroblast survival after cerebral ischemia, and that co-administration of EPCs and SMPCs may constitute a novel therapeutic strategy for improving the treatment of stroke. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. [Molecular mechanism involved in adhesion of monocytes to endothelial cells induced by nicotine and Porphyromonas gingivalis-LPS].

    PubMed

    Wang, Yi-xiang; An, Na; Ouyang, Xiang-ying

    2015-10-18

    To investigate molecular mechanism involved in nicotine in combination with Porphyromonas gingivalis (P.g) caused monocyte-endothelial cell adhesion. The effect of nicotine, P.g-lipopolysaccharide (P.g-LPS) and their combination on the proliferation of U937 cells was determined by CCK-8 method. Interleukin-6 (IL-6) expression was investigated by real-time PCR after U937 cells were treated with nicotine, P.g-LPS and their combination. In human umbilical vein endothelial cells (HUVECs), the expressions of monocyte chemoattractant protein CCL-8 and adhesion molecules including vascular cell adhesion molecule 1 (Vcam-1), very late antigen 4 alpha (VLA4α), tumor necrosis factor receptor superfamily member 4 (OX40) and OX40 ligand (OX40L) were detected by real-time PCR or Western blotting assays after HUVEC cells were treated with nicotine, P.g-LPS and their combination. Adhesion of monocytes to endothelial cells was detected after the HUVECs and U937 cells were stimulated with nicotine, P.g-LPS and their combination, respectively. P.g-LPS did not affect the proliferative ability of nicotine in U937 cells. However, the ability of P.g-LPS induced IL-6 expression was inhibited by 100 μmol/L nicotine in U937 cells. In HUVECs, the expressions of CCL-8, Vcam-1, VLA4α, OX40 and OX40L were significantly up-regulated by nicotine and P.g-LPS combination compared with nicotine alone, P.g-LPS alone and the untreated control. Adhesion of monocytes to HUVECs results showed that the two types of cells treated with nicotine in combination with P.g-LPS could markedly increase the adhesion ability of monocytes to HUVECs. P.g-LPS in combination with nicotine could recruit monocytes to endothelial lesion through up-regulation of CCL-8, and promote adhesion of monocytes to endothelial cells through enhancement of Vcam-1/VLA4α and OX40/OX40L interactions, which could be involved in the initiation and development of atherosclerosis.

  16. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis.

    PubMed

    Kerr, Georgina; Sheldon, Helen; Chaikuad, Apirat; Alfano, Ivan; von Delft, Frank; Bullock, Alex N; Harris, Adrian L

    2015-04-01

    Activin receptor-like kinase 1 (ALK1, encoded by the gene ACVRL1) is a type I BMP/TGF-β receptor that mediates signalling in endothelial cells via phosphorylation of SMAD1/5/8. During angiogenesis, sprouting endothelial cells specialise into tip cells and stalk cells. ALK1 synergises with Notch in stalk cells to induce expression of the Notch targets HEY1 and HEY2 and thereby represses tip cell formation and angiogenic sprouting. The ALK1-Fc soluble protein fusion has entered clinic trials as a therapeutic strategy to sequester the high-affinity extracellular ligand BMP9. Here, we determined the crystal structure of the ALK1 intracellular kinase domain and explored the effects of a small molecule kinase inhibitor K02288 on angiogenesis. K02288 inhibited BMP9-induced phosphorylation of SMAD1/5/8 in human umbilical vein endothelial cells to reduce both the SMAD and the Notch-dependent transcriptional responses. In endothelial sprouting assays, K02288 treatment induced a hypersprouting phenotype reminiscent of Notch inhibition. Furthermore, K02288 caused dysfunctional vessel formation in a chick chorioallantoic membrane assay of angiogenesis. Such activity may be advantageous for small molecule inhibitors currently in preclinical development for specific BMP gain of function conditions, including diffuse intrinsic pontine glioma and fibrodysplasia ossificans progressiva, as well as more generally for other applications in tumour biology.

  17. Three-Dimensional Vascular Network Assembly From Diabetic Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Chan, Xin Yi; Black, Rebecca; Dickerman, Kayla; Federico, Joseph; Lévesque, Mathieu; Mumm, Jeff; Gerecht, Sharon

    2015-12-01

    In diabetics, hyperglycemia results in deficient endothelial progenitors and cells, leading to cardiovascular complications. We aim to engineer 3-dimensional (3D) vascular networks in synthetic hydrogels from type 1 diabetes mellitus (T1D) patient-derived human-induced pluripotent stem cells (hiPSCs), to serve as a transformative autologous vascular therapy for diabetic patients. We validated and optimized an adherent, feeder-free differentiation procedure to derive early vascular cells (EVCs) with high portions of vascular endothelial cadherin-positive cells from hiPSCs. We demonstrate similar differentiation efficiency from hiPSCs derived from healthy donor and patients with T1D. T1D-hiPSC-derived vascular endothelial cadherin-positive cells can mature to functional endothelial cells-expressing mature markers: von Willebrand factor and endothelial nitric oxide synthase are capable of lectin binding and acetylated low-density lipoprotein uptake, form cords in Matrigel and respond to tumor necrosis factor-α. When embedded in engineered hyaluronic acid hydrogels, T1D-EVCs undergo morphogenesis and assemble into 3D networks. When encapsulated in a novel hypoxia-inducible hydrogel, T1D-EVCs respond to low oxygen and form 3D networks. As xenografts, T1D-EVCs incorporate into developing zebrafish vasculature. Using our robust protocol, we can direct efficient differentiation of T1D-hiPSC to EVCs. Early endothelial cells derived from T1D-hiPSC are functional when mature. T1D-EVCs self-assembled into 3D networks when embedded in hyaluronic acid and hypoxia-inducible hydrogels. The capability of T1D-EVCs to assemble into 3D networks in engineered matrices and to respond to a hypoxic microenvironment is a significant advancement for autologous vascular therapy in diabetic patients and has broad importance for tissue engineering. © 2015 American Heart Association, Inc.

  18. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase.

    PubMed

    Van Raemdonck, Katrien; Gouwy, Mieke; Lepers, Stefanie Antoinette; Van Damme, Jo; Struyf, Sofie

    2014-07-01

    CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.

  19. Stromal Cells Act as Guardians for Endothelial Progenitors by Reducing Their Immunogenicity After Co-Transplantation.

    PubMed

    Souidi, Naima; Stolk, Meaghan; Rudeck, Juliane; Strunk, Dirk; Schallmoser, Katharina; Volk, Hans-Dieter; Seifert, Martina

    2017-05-01

    Regeneration of injured tissues requires effective therapeutic strategies supporting vasculogenesis. The lack of instantly available autologous cell sources and immunogenicity of allogeneic endothelial (progenitor) cells limits clinical progress. Based on the immunosuppressive potency of mesenchymal stem/progenitor cells (MSCs), we investigated whether crosstalk between endothelial colony-forming progenitor cells (ECFCs) and MSCs during vasculogenesis could lower allogeneic T cell responses against ECFCs allowing long-term engraftment in vivo. Immunodeficient mice received subcutaneous grafts containing human ECFCs alone, or pairs of human ECFCs/MSCs from the same umbilical cord (UC) to study vasculogenesis in the presence of human leukocyte antigen (HLA)-mismatched human peripheral blood mononuclear cells (PBMCs). In vitro, cell surface marker changes due to interferon gamma (IFNγ) stimulation during ECFC/MSC coculture were determined and further effects on allostimulated T cell proliferation and cytotoxic lysis were measured. IFNγ-induced HLA-DR expression on ECFCs and MSCs, but both cell types had significantly less HLA-DR in cocultures. ECFC-induced T cell proliferation was abolished after MSC coculture as a result of HLA-DR downregulation and indolamin-2,3-dioxygenase activation. Additionally, allospecific CD8 + T cell-mediated lysis of ECFCs was reduced in cocultures. ECFC/MSC coapplication in immunodeficient mice not only promoted the generation of improved blood vessel architecture after 6 weeks, but also reduced intragraft immune cell infiltration and endothelial HLA-DR expression following PBMC reconstitution. Crosstalk between UC-derived ECFCs and MSCs after combined transplantation can lower the risk of ECFC rejection, thus enabling their coapplication for therapeutic vasculogenesis. Stem Cells 2017;35:1233-1245. © 2017 AlphaMed Press.

  20. Reduced survival in patients with early-stage non-small-cell lung cancer is associated with high pleural endothelial progenitor cell levels.

    PubMed

    Pirro, Matteo; Cagini, Lucio; Mannarino, Massimo R; Andolfi, Marco; Potenza, Rossella; Paciullo, Francesco; Bianconi, Vanessa; Frangione, Maria Rosaria; Bagaglia, Francesco; Puma, Francesco; Mannarino, Elmo

    2016-12-01

    Endothelial progenitor cells are capable of contributing to neovascularization in tumours. In patients with either malignant or transudative pleural effusion, we tested the presence of pleural endothelial progenitor cells. We also measured the number of endothelial progenitor cells in post-surgery pleural drainage of either patients with early non-small-cell lung cancer or control patients with benign lung disease undergoing pulmonary resection. The prospective influence of post-surgery pleural-drainage endothelial progenitor cells on cancer recurrence/survival was investigated. Pleural endothelial progenitor cell levels were quantified by fluorescence-activated cell sorting analysis in pleural effusion of 15 patients with late-stage non-small-cell lung cancer with pleural involvement and in 15 control patients with congestive heart failure. Also, pleural-drainage endothelial progenitor cells were measured in pleural-drainage fluid 48 h after surgery in 64 patients with early-stage non-small-cell lung cancer and 20 benign lung disease patients undergoing pulmonary resection. Cancer recurrence and survival was evaluated in patients with high pleural-drainage endothelial progenitor cell levels. The number of pleural endothelial progenitor cells was higher in non-small-cell lung cancer pleural effusion than in transudative pleural effusion. Also, pleural-drainage endothelial progenitor cell levels were higher in patients with non-small-cell lung cancer than in patients with benign lung disease undergoing pulmonary resection (P < 0.05). Non-small-cell lung cancer patients with high pleural-drainage endothelial progenitor cell levels had a significantly 4.9 higher rate of cancer recurrence/death than patients with lower pleural-drainage endothelial progenitor cell levels, irrespective of confounders. Endothelial progenitor cells are present in the pleural effusion and are higher in patients with late-stage non-small-cell lung cancer with pleural involvement than in congestive heart failure patients. Endothelial progenitor cell levels are higher in the post-surgery pleural drainage of patients with non-small-cell lung cancer than in non-neoplastic pleural-drainage fluid. High pleural-drainage endothelial progenitor cell levels in patients undergoing pulmonary resection for early non-small-cell lung cancer predict an increased risk of cancer recurrence and death. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    NASA Astrophysics Data System (ADS)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP's efficacy as a matrix-bound angiogenic factor that directs endothelial cell proliferation and migration. These findings suggest that QKCMP can be used to enhance microvasculature formation during wound healing as well as to promote spatially controlled microvasculature for tissue engineering applications.

  2. Heme oxygenase-1 protects INF-gamma primed endothelial cells from Jurkat T-cell adhesion.

    PubMed

    Du, D; Chang, S; Chen, B; Zhou, H; Chen, Z K

    2007-12-01

    The heme oxygenase-1 (HO-1) system is associated with the rate-limiting step of conversion of heme, one of the most critical roles in cytoprotective mechanisms. Our study investigated its potential role in protection of endothelial cells from T cells. The recombinant plasmid pcDNA3-HO-1 was transfected into endothelial cells. Indirect fluorescent staining was used to examine the expression of HO-1 protein. Then endothelial cells primed by INF-gamma were mixed in culture with Jurkat T cells labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). The number of adhesive Jurkat T cells was determined using FACS to evaluate the adhesion effect. After being cultured with endothelial cells, the cell cycle of Jurkat T cells was detected using FACS. Expression of HO-1 on endothelial cells conferred significant protection against Jurkat T-cell-mediated adhesion. The rate of Jurkat T-cell adhesions was reduced to 19.06%, in contrast with 31.42% in the control group (P<.05). After using ZnPP, an inhibitor of HO-1, the rate of Jurkat T-cell adhesion recovered to 29.08%. The binding activities between endothelial cells and Jurkat T cells was blocked by HO-1 expression. The proliferation of Jurkat T cells was inhibited after culture with endothelial cells, which had been transfected with HO-1, which blocked cell cycle entry of T cells. More than 60% of Jurkat T cells remained in G0/G1 compared with 40% among the control group. HO-1 directly protected endothelial cells primed by INF-gamma from Jurkat T cells and down-regulated the expression of HLA-DR on the surface of endothelial cells. These results indicated that transgenic expression of HO-1 may be useful to prevent lymphocytes from responding to endothelial cells.

  3. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects

    PubMed Central

    2012-01-01

    Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients. PMID:22849814

  4. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects.

    PubMed

    Ho, Jennifer Hui-Chun; Hong, Chuang-Ye

    2012-07-31

    Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients.

  5. Change in the immune function of porcine iliac artery endothelial cells infected with porcine circovirus type 2 and its inhibition on monocyte derived dendritic cells maturation

    PubMed Central

    Liu, Shiyu; Zou, Zhanming; Zhu, Linlin; Liu, Xinyu; Zhou, Shuanghai

    2017-01-01

    Porcine circovirus-associated disease is caused by porcine circovirus type 2 (PCV2) infection, which targets iliac artery endothelial cells (PIECs); it leads to severe immunopathologies and is associated with major economic losses in the porcine industry. Here, we report that in vitro PCV2 infection of PIECs causes cell injury, which affects DC function as well as adaptive immunity. Specifically, PCV2 infection downregulated PIEC antigen-presenting molecule expression, upregulated cytokines involved in the immune and inflammatory response causing cell damage and repair, and altered the migratory capacity of PIECs. In addition, PCV2-infected PIECs inhibited DC maturation, enhanced the endocytic ability of DCs, and weakened the stimulatory effect of DCs on T lymphocytes. Together, these findings indicate that profound functional impairment of DCs in the presence of PCV2-infected PIECs may be a potential pathogenic mechanism associated with PCV2-induced porcine disease. PMID:29073194

  6. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    PubMed Central

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine; De Lorenzo, Mariana S; Iwatsubo, Mizuka; Chen, Suzie; Goydos, James S; Ishikawa, Yoshihiro; Whitelock, John M; Iwatsubo, Kousaku

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2-mediated cell–cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS–FGF2-mediated cell–cell communication. PMID:24725364

  7. High Mobility Group Box 1 Promotes Angiogenesis from Bone Marrow-derived Endothelial Progenitor Cells after Myocardial Infarction.

    PubMed

    Nakamura, Yuichi; Suzuki, Satoshi; Shimizu, Takeshi; Miyata, Makiko; Shishido, Tetsuro; Ikeda, Kazuhiko; Saitoh, Shu-Ichi; Kubota, Isao; Takeishi, Yasuchika

    2015-01-01

    High mobility group box 1 (HMGB1) is a DNA-binding protein secreted into the extracellular space from necrotic cells that acts as a cytokine. We examined the role of HMGB1 in angiogenesis from bone marrow-derived cells in the heart using transgenic mice exhibiting the cardiac-specific overexpression of HMGB1 (HMGB1-TG). HMGB1-TG mice and wild-type littermate (WT) mice were lethally irradiated and injected with bone marrow cells from green fluorescent protein mice through the tail vein. After bone marrow transplantation, the left anterior descending artery was ligated to induce myocardial infarction (MI). Flow cytometry revealed that the levels of circulating endothelial progenitor cells (EPCs) mobilized from the bone marrow increased after MI in the HMGB-TG mice versus the WT mice. In addition, the size of MI was smaller in the HMGB1-TG mice than in the WT mice, and immunofluorescence staining demonstrated that the number of engrafted vascular endothelial cells derived from bone marrow in the border zones of the MI areas was increased in the HMGB1-TG mice compared to that observed in the WT mice. Moreover, the levels of cardiac vascular endothelial growth factor after MI were higher in the HMGB1-TG mice than in the WT mice. The present study demonstrated that HMGB1 promotes angiogenesis and reduces the MI size by enhancing the mobilization and differentiation of bone marrow cells to EPCs as well as their migration to the border zones of the MI areas and engraftment as vascular endothelial cells in new capillaries or arterioles in the infarcted heart.

  8. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and prevents apoptosis.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoyer, Friedrich Felix; Paul, Kathrin; Heiermann, Nadine; Becher, Marc Ulrich; Abu Hussein, Nebal; Kebschull, Moritz; Bedorf, Jörg; Franklin, Bernardo S; Latz, Eicke; Nickenig, Georg; Werner, Nikos

    2012-08-01

    Endothelial microparticles (EMP) are released from activated or apoptotic cells, but their effect on target cells and the exact way of incorporation are largely unknown. We sought to determine the uptake mechanism and the biological effect of EMP on endothelial and endothelial-regenerating cells. EMP were generated from starved endothelial cells and isolated by ultracentrifugation. Caspase 3 activity assay and terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that EMP protect target endothelial cells against apoptosis in a dose-dependent manner. Proteomic analysis was performed to identify molecules contained in EMP, which might be involved in EMP uptake. Expression of annexin I in EMP was found and confirmed by Western blot, whereas the corresponding receptor phosphatidylserine receptor was present on endothelial target cells. Silencing either annexin I on EMP or phosphatidylserine receptor on target cells using small interfering RNA showed that the uptake of EMP by human coronary artery endothelial cells is annexin I/phosphatidylserine receptor dependent. Annexin I-downregulated EMP abrogated the EMP-mediated protection against apoptosis of endothelial target cells. p38 activation was found to mediate camptothecin-induced apoptosis. Finally, human coronary artery endothelial cells pretreated with EMP inhibited camptothecin-induced p38 activation. EMP are incorporated by endothelial cells in an annexin I/phosphatidylserine receptor-dependent manner and protect target cells against apoptosis. Inhibition of p38 activity is involved in EMP-mediated protection against apoptosis.

  9. De-adhesion dynamics of melanoma cells from brain endothelial layer.

    PubMed

    Varga, Béla; Domokos, Réka Anita; Fazakas, Csilla; Wilhelm, Imola; Krizbai, István A; Szegletes, Zsolt; Gergely, Csilla; Váró, György; Végh, Attila G

    2018-03-01

    Metastasis formation is a complex and not entirely understood process. The poorest prognosis and the most feared complications are associated to brain metastases. Melanoma derived brain metastases show the highest prevalence. Due to the lack of classical lymphatic drainage, in the process of brain metastases formation the haematogenous route is of primordial importance. The first and crucial step in this multistep process is the establishment of firm adhesion between the blood travelling melanoma cells and the tightly connected layer of the endothelium, which is the fundamental structure of the blood-brain barrier. This study compares the de-adhesion properties and dynamics of three melanoma cells types (WM35, A2058 and A375) to a confluent layer of brain micro-capillary endothelial cells. Cell type dependent adhesion characteristics are presented, pointing towards the existence of metastatic potential related nanomechanical aspects. Apparent mechanical properties such as elasticity, maximal adhesion force, number, size and distance of individual rupture events showed altered values pointing towards cell type dependent aspects. Our results underline the importance of mechanical details in case of intercellular interactions. Nevertheless, it suggests that in adequate circumstances elastic and adhesive characterizations might be used as biomarkers. Copyright © 2017. Published by Elsevier B.V.

  10. Histone Acetylation Regulates the Cell-Specific and Interferon-γ–Inducible Expression of Extracellular Superoxide Dismutase in Human Pulmonary Arteries

    PubMed Central

    Stepp, Marcus W.; Vorst, Alan L.; Folz, Rodney J.

    2011-01-01

    Extracellular superoxide dismutase (EC-SOD) is the major antioxidant enzyme present in the vascular wall, and is responsible for both the protection of vessels from oxidative stress and for the modulation of vascular tone. Concentrations of EC-SOD in human pulmonary arteries are very high relative to other tissues, and the expression of EC-SOD appears highly restricted to smooth muscle. The molecular basis for this smooth muscle–specific expression of EC-SOD is not known. Here we assessed the role of epigenetic factors in regulating the cell-specific and IFN-γ–inducible expression of EC-SOD in human pulmonary artery cells. The analysis of CpG site methylation within the promoter and coding regions of the EC-SOD gene demonstrated higher levels of DNA methylation within the distal promoter region in endothelial cells compared with smooth muscle cells. Exposure of both cell types to DNA demethylation agents reactivated the transcription of EC-SOD in endothelial cells alone. However, exposure to the histone deacetylase inhibitor trichostatin A (TSA) significantly induced EC-SOD gene expression in both endothelial cells and smooth muscle cells. Concentrations of EC-SOD mRNA were also induced up to 45-fold by IFN-γ in smooth muscle cells, but not in endothelial cells. The IFN-γ–dependent expression of EC-SOD was regulated by the Janus tyrosine kinase/signal transducers and activators of transcription proteins signaling pathway. Simultaneous exposure to TSA and IFN-γ produced a synergistic effect on the induction of EC-SOD gene expression, but only in endothelial cells. These findings provide strong evidence that EC-SOD cell-specific and IFN-γ–inducible expression in pulmonary artery cells is regulated, to a major degree, by epigenetic mechanisms that include histone acetylation and DNA methylation. PMID:21493784

  11. Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes

    PubMed Central

    Madhusudhan, Thati; Wang, Hongjie; Straub, Beate K.; Gröne, Elisabeth; Zhou, Qianxing; Shahzad, Khurrum; Müller-Krebs, Sandra; Schwenger, Vedat; Gerlitz, Bruce; Grinnell, Brian W.; Griffin, John H.; Reiser, Jochen; Gröne, Hermann-Josef; Esmon, Charles T.; Nawroth, Peter P.

    2012-01-01

    The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPCinduced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies. PMID:22117049

  12. Progress and challenges in the development of a cell-based therapy for hemophilia A

    PubMed Central

    Fomin, Marina E.; Togarrati, Padma Priya; Muench, Marcus O.

    2015-01-01

    Hemophilia A results from an insufficiency of factor VIII (FVIII). Although replacement therapy with plasma-derived or recombinant FVIII is a life-saving therapy for hemophilia A patients, such therapy is a life-long treatment rather than a cure for the disease. In this review we discuss the possibilities, progress and challenges that remain in the development of a cell-based cure for hemophilia A. The success of cell therapy depends on the type and availability of donor cells, the age of the host and method of transplantation, and the levels of engraftment and production of FVIII by the graft. Early therapy, possibly even prenatal transplantation, may yield the highest levels of engraftment by avoiding immunological rejection of the graft. Potential cell sources of FVIII include a specialized subset of endothelial cells known as liver sinusoidal endothelial cells (LSECs) present in the adult and fetal liver, or patient-specific endothelial cells derived from induced pluripotent stem cells (iPSCs) that have undergone gene editing to produce FVIII. Achieving sufficient engraftment of transplanted LSECs is one of the obstacles to successful cell therapy for hemophilia A. We discuss recent results from transplants performed in animals that show production of functional and clinically relevant levels of FVIII obtained from donor LSECs. Hence, the possibility of treating hemophilia A can be envisioned through persistent production of FVIII from transplanted donor cells derived from a number of potential cell sources or through creation of donor endothelial cells from patient-specific iPSCs. PMID:25297648

  13. Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells.

    PubMed

    Autheman, Delphine; Wyder, Marianne; Popoff, Michel; D'Herde, Katharina; Christen, Stephan; Posthaus, Horst

    2013-01-01

    Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").

  14. Systemic Hypoxia Changes the Organ-Specific Distribution of Vascular Endothelial Growth Factor and Its Receptors

    NASA Astrophysics Data System (ADS)

    Marti, Hugo H.; Risau, Werner

    1998-12-01

    Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

  15. Deregulation of tumor angiogenesis and blockade of tumor growth in PPARβ-deficient mice

    PubMed Central

    Müller-Brüsselbach, Sabine; Kömhoff, Martin; Rieck, Markus; Meissner, Wolfgang; Kaddatz, Kerstin; Adamkiewicz, Jürgen; Keil, Boris; Klose, Klaus J; Moll, Roland; Burdick, Andrew D; Peters, Jeffrey M; Müller, Rolf

    2007-01-01

    The peroxisome proliferator-activated receptor-β (PPARβ) has been implicated in tumorigenesis, but its precise role remains unclear. Here, we show that the growth of syngeneic Pparb wild-type tumors is impaired in Pparb−/− mice, concomitant with a diminished blood flow and an abundance of hyperplastic microvascular structures. Matrigel plugs containing pro-angiogenic growth factors harbor increased numbers of morphologically immature, proliferating endothelial cells in Pparb−/− mice, and retroviral transduction of Pparb triggers microvessel maturation. We have identified the Cdkn1c gene encoding the cell cycle inhibitor p57Kip2 as a PPARβ target gene and a mediator of the PPARβ-mediated inhibition of cell proliferation, which provides a possible mechanistic explanation for the observed tumor endothelial hyperplasia and deregulation of tumor angiogenesis in Pparb−/− mice. Our data point to an unexpected essential role for PPARβ in constraining tumor endothelial cell proliferation to allow for the formation of functional tumor microvessels. PMID:17641685

  16. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture

    PubMed Central

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-01-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method – microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. PMID:28192772

  17. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.

    PubMed

    Zhu, Wei; Qu, Xin; Zhu, Jie; Ma, Xuanyi; Patel, Sherrina; Liu, Justin; Wang, Pengrui; Lai, Cheuk Sun Edwin; Gou, Maling; Xu, Yang; Zhang, Kang; Chen, Shaochen

    2017-04-01

    Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (μCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis.

    PubMed

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra; Rommelaere, Jean; Van Damme, Jo; Dinsart, Christiane

    2013-12-01

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. © 2013 Elsevier Inc. All rights reserved.

  19. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.

    1987-05-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of /sup 51/Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cellsmore » (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of /sup 51/Cr release from radiolabeled monolayers.« less

  20. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1.

    PubMed

    Hawkins, Brian T; Grego, Sonia; Sellgren, Katelyn L

    2015-05-22

    Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of Pleiotrophin on endothelial and inflammatory cells: Pro-angiogenic and anti-inflammatory properties and potential role for vascular bio-prosthesis endothelialization.

    PubMed

    Palmieri, Daniela; Mura, Marzia; Mambrini, Simone; Palombo, Domenico

    2015-09-01

    One of the limitations emerged with both synthetic and degradable vascular grafts is the lack of endothelialization after implantation that is known to be the main reason leading to unfavourable outcomes. It emerges the need to find new strategies to promote a rapid endothelialization of the scaffold. Pleiotrophin is a growth/differentiation cytokine for various cell type. We here evaluated the effect of Pleiotrophin on endothelial cells (EC), monocytes and macrophages that have been shown as key cells promoting neovascularization. EA.hy926 endothelial cells, THP-1 monocytes and PMA-differentiated macrophages were treated with Pleiotrophin (10 and 100ng/ml). VEGF, Flk-1, Nrp-1, COX-2, ICAM-1 and TGFβ expression were detected by Western Blot, IL-10, MCP-1 and TNFα levels by ELISA. Chemotaxis was performed in Boyden chambers. Wound healing was performed by scratch wound assay. Pleiotrophin induces in EC the expression of VEGF and its receptors Flk-1 and Nrp-1 and improves the migratory capacity. In THP-1 monocytes, Pleiotrophin induces the expression of VEGF and its receptor Nrp-1 and decreases the levels of COX-2 and TNFα. In PMA-differentiated macrophages COX-2 expression was significantly reduced by Pleiotrophin, while IL-10 and TGFβ were increased. Pleiotrophin acts as an angiogenesis 'driver' by promoting the creation of a pro-angiogenic environment, a migratory behaviour in EC and a pro-regenerative alternative phenotype in macrophages. Our results suggest that Pleiotrophin might be considered for vascular prosthesis engineering. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  2. Laminar shear stress modulates endothelial luminal surface stiffness in a tissue-specific manner.

    PubMed

    Merna, Nick; Wong, Andrew K; Barahona, Victor; Llanos, Pierre; Kunar, Balvir; Palikuqi, Brisa; Ginsberg, Michael; Rafii, Shahin; Rabbany, Sina Y

    2018-04-17

    Endothelial cells form vascular beds in all organs and are exposed to a range of mechanical forces that regulate cellular phenotype. We sought to determine the role of endothelial luminal surface stiffness in tissue-specific mechanotransduction of laminar shear stress in microvascular mouse cells and the role of arachidonic acid in mediating this response. Microvascular mouse endothelial cells were subjected to laminar shear stress at 4 dynes/cm 2 for 12 hours in parallel plate flow chambers that enabled real-time optical microscopy and atomic force microscopy measurements of cell stiffness. Lung endothelial cells aligned parallel to flow, while cardiac endothelial cells did not. This rapid alignment was accompanied by increased cell stiffness. The addition of arachidonic acid to cardiac endothelial cells increased alignment and stiffness in response to shear stress. Inhibition of arachidonic acid in lung endothelial cells and embryonic stem cell-derived endothelial cells prevented cellular alignment and decreased cell stiffness. Our findings suggest that increased endothelial luminal surface stiffness in microvascular cells may facilitate mechanotransduction and alignment in response to laminar shear stress. Furthermore, the arachidonic acid pathway may mediate this tissue-specific process. An improved understanding of this response will aid in the treatment of organ-specific vascular disease. © 2018 John Wiley & Sons Ltd.

  3. Spatially Assembled Bilayer Cell Sheets of Stem Cells and Endothelial Cells Using Thermosensitive Hydrogels for Therapeutic Angiogenesis.

    PubMed

    Jun, Indong; Ahmad, Taufiq; Bak, Seongwoo; Lee, Joong-Yup; Kim, Eun Mi; Lee, Jinkyu; Lee, Yu Bin; Jeong, Hongsoo; Jeon, Hojeong; Shin, Heungsoo

    2017-05-01

    Although the coculture of multiple cell types has been widely employed in regenerative medicine, in vivo transplantation of cocultured cells while maintaining the hierarchical structure remains challenging. Here, a spatially assembled bilayer cell sheet of human mesenchymal stem cells and human umbilical vein endothelial cells on a thermally expandable hydrogel containing fibronectin is prepared and its effect on in vitro proangiogenic functions and in vivo ischemic injury is investigated. The expansion of hydrogels in response to a temperature change from 37 to 4 °C allows rapid harvest and delivery of the bilayer cell sheet to two different targets (an in vitro model glass surface and in vivo tissue). The in vitro study confirms that the bilayer sheet significantly increases proangiogenic functions such as the release of nitric oxide and expression of vascular endothelial cell genes. In addition, transplantation of the cell sheet from the hydrogels into a hindlimb ischemia mice model demonstrates significant retardation of necrosis particularly in the group transplated with the bilayer sheet. Collectively, the bilayer cell sheet is readily transferrable from the thermally expandable hydrogel and represents an alternative approach for recovery from ischemic injury, potentially via improved cell-cell communication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Are there Race-Dependent Endothelial Cell Responses to Exercise?

    PubMed Central

    Brown, Michael D.; Feairheller, Deborah L.

    2013-01-01

    African Americans have endothelial dysfunction which likely contributes to their high prevalence of hypertension. Endothelial cell responses to stimuli could play a role in the development of endothelial dysfunction and hypertension. High physiological levels of vascular laminar shear stress can profoundly alter endothelial cell phenotype. It is not known whether there are race-dependent endothelial cell responses to laminar shear stress. PMID:23262464

  5. Mathematical Modeling of Cellular Cross-Talk Between Endothelial and Tumor Cells Highlights Counterintuitive Effects of VEGF-Targeted Therapies.

    PubMed

    Jain, Harsh; Jackson, Trachette

    2018-05-01

    Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway-alone or in combination-would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.

  6. Endoglin inhibits ERK-induced c-Myc and cyclin D1 expression to impede endothelial cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Christopher C.; Bloodworth, Jeffrey C.; Mythreye, Karthikeyan

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Endoglin inhibits ERK activation in endothelial cells. Black-Right-Pointing-Pointer Endoglin is a regulator of c-Myc and cyclin D1 expression. Black-Right-Pointing-Pointer {beta}-arrestin2 interaction with endoglin is required for ERK/c-Myc repression. Black-Right-Pointing-Pointer Endoglin impedes cellular proliferation by targeting ERK-induced mitogenic signaling. -- Abstract: Endoglin is an endothelial-specific transforming growth factor beta (TGF-{beta}) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-{beta} signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previouslymore » identified {beta}-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and {beta}-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-{beta}-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/{beta}-arrestin2 interaction is disrupted. Given that TGF-{beta}-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.« less

  7. Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials.

    PubMed

    Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M

    2003-11-01

    Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.

  8. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    PubMed Central

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. Conclusions: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. PMID:29233846

  9. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    PubMed

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. © 2017 The Authors.

  10. Biologic properties of endothelial progenitor cells and their potential for cell therapy.

    PubMed

    Young, Pampee P; Vaughan, Douglas E; Hatzopoulos, Antonis K

    2007-01-01

    Recent studies indicate that portions of ischemic and tumor neovasculature are derived by neovasculogenesis, whereby bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs) home to sites of regenerative or malignant growth and contribute to blood vessel formation. Recent data from animal models suggest that a variety of cell types, including unfractionated BM mononuclear cells and those obtained by ex vivo expansion of human peripheral blood or enriched progenitors, can function as EPCs to promote tissue vasculogenesis, regeneration, and repair when introduced in vivo. The promising preclinical results have led to several human clinical trials using BM as a potential source of EPCs in cardiac repair as well as ongoing basic research on using EPCs in tissue engineering or as cell therapy to target tumor growth.

  11. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix

    PubMed Central

    1989-01-01

    The angiogenic factor, basic fibroblast growth factor (FGF), either stimulates endothelial cell growth or promotes capillary differentiation depending upon the microenvironment in which it acts. Analysis of various in vitro models of spontaneous angiogenesis, in combination with time-lapse cinematography, demonstrated that capillary tube formation was greatly facilitated by promoting multicellular retraction and cell elevation above the surface of the rigid culture dish or by culturing endothelial cells on malleable extracellular matrix (ECM) substrata. These observations suggested to us that mechanical (i.e., tension-dependent) interactions between endothelial cells and ECM may serve to regulate capillary development. To test this hypothesis, FGF-stimulated endothelial cells were grown in chemically defined medium on bacteriological (nonadhesive) dishes that were precoated with different densities of fibronectin. Extensive cell spreading and growth were promoted by fibronectin coating densities that were highly adhesive (greater than 500 ng/cm2), whereas cell rounding, detachment, and loss of viability were observed on dishes coated with low fibronectin concentrations (less than 100 ng/cm2). Intermediate fibronectin coating densities (100-500 ng/cm2) promoted cell extension, but they could not completely resist cell tractional forces. Partial retraction of multicellular aggregates resulted in cell shortening, cessation of growth, and formation of branching tubular networks within 24-48 h. Multicellular retraction and subsequent tube formation also could be elicited on highly adhesive dishes by overcoming the mechanical resistance of the substratum using higher cell plating numbers. Dishes coated with varying concentrations of type IV collagen or gelatin produced similar results. These results suggest that ECM components may act locally to regulate the growth and pattern- regulating actions of soluble FGF based upon their ability to resist cell-generated mechanical loads. Thus, we propose that FGF-stimulated endothelial cells may be "switched" between growth, differentiation, and involution modes during angiogenesis by altering the adhesivity or mechanical integrity of their ECM. PMID:2473081

  12. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair

    PubMed Central

    Johnson, Kelly E.; Wilgus, Traci A.

    2014-01-01

    Significance: Angiogenesis, the growth of new blood vessels from existing vessels, is an important aspect of the repair process. Restoration of blood flow to damaged tissues provides oxygen and nutrients required to support the growth and function of reparative cells. Vascular endothelial growth factor (VEGF) is one of the most potent proangiogenic growth factors in the skin, and the amount of VEGF present in a wound can significantly impact healing. Recent Advances: The activity of VEGF was once considered to be specific for endothelial cells lining the inside of blood vessels, partly because VEGF receptor (VEGFR) expression was believed to be restricted to endothelial cells. It is now known, however, that VEGFRs can be expressed by a variety of other cell types involved in wound repair. For example, keratinocytes and macrophages, which both carry out important functions during wound healing, express VEGFRs and are capable of responding directly to VEGF. Critical Issues: The mechanisms by which VEGF promotes angiogenesis are well established. Recent studies, however, indicate that VEGF can directly affect the activity of several nonendothelial cell types present in the skin. The implications of these extra-angiogenic effects of VEGF on wound repair are not yet known, but they suggest that this growth factor may play a more complex role during wound healing than previously believed. Future Directions: Despite the large number of studies focusing on VEGF and wound healing, it is clear that the current knowledge of how VEGF contributes to the repair of skin wounds is incomplete. Further research is needed to obtain a more comprehensive understanding of VEGF activities during the wound healing process. PMID:25302139

  13. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathieu, Celine; Fouchet, Pierre; Gauthier, Laurent R.

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelialmore » cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.« less

  14. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    PubMed Central

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  15. Impaired Expression of Uncoupling Protein 2 (UCP2) Causes Defective Post-ischemic Angiogenesis in Mice Deficient in AMP-activated Protein Kinase α Subunits

    PubMed Central

    Xu, Ming-Jiang; Song, Ping; Shirwany, Najeeb; Liang, Bin; Xing, Junjie; Viollet, Benoit; Wang, Xian; Zhu, Yi; Zou, Ming-Hui

    2011-01-01

    Objective The aim of the present study was to determine whether mitochondrial uncoupling protein (UCP)-2 is required for AMPK-dependent angiogenesis in ischemia in vivo. Methods and Results Angiogenesis was assayed by monitoring endothelial tube formation (a surrogate for angiogenesis) in human umbilical vein endothelial cells (HUVECs), isolated mouse aortic endothelial cells (MAECs), and pulmomary microvascular endothelial cells (PMECs), or in ischemic thigh adductor muscles from wild-type (WT) mice or mice deficient in either AMPKα1 or AMPKα2. AMPK inhibition with pharmacological inhibitor (compound C) or genetic means (transfection of AMPKα-specific siRNA) significantly lowered the tube formation in HUVECs. Consistently, compared with WT mice, tube formation in MAECs isolated from either AMPKα1−/− or AMPKα2−/− mice, which exhibited oxidative stress and reduced expression of UCP2, were significantly impaired. In addition, adenoviral overexpression of UCP2, but not adenoviruses encoding green florescence protein (GFP), normalized tube formation in MAECs from either AMPKα1−/− or AMPKα2−/− mice. Similarly, supplementation with sodium nitroprusside (SNP), a nitric oxide (NO) donor, restored tube formation. Furthermore, ischemia significantly increased angiogenesis, serine 1177 phosphorylation of endothelial NO synthase (eNOS), and UCP2 in ischemic thigh adductor muscles from WT mice, but not from either AMPKα1−/− or AMPKα2−/− mice. Conclusion We conclude that AMPK-dependent UCP2 expression in endothelial cells promotes angiogenesis in vivo. PMID:21597006

  16. NGP1-01, a multi-targeted polycyclic cage amine, attenuates brain endothelial cell death in iron overload conditions.

    PubMed

    Lockman, J A; Geldenhuys, W J; Jones-Higgins, M R; Patrick, J D; Allen, D D; Van der Schyf, C J

    2012-12-13

    Development and progression of neurodegenerative disorders have, amongst other potential causes, been attributed to a disruption of iron regulatory mechanisms and iron accumulation. Excess extracellular iron may enter cells via nontraditional routes such as voltage-gated calcium channels and N-methyl-d-aspartate (NMDA) receptors leading to intracellular oxidative damage and ultimately mitochondrial failure. Nimodipine, an L-type calcium channel blocker has been shown to reduce iron-induced toxicity in neuronal and brain endothelial cells. Our current study investigates NGP1-01, a multimodal drug acting as an antagonist at both the NMDA receptor and the L-type calcium channel. Our previous studies support NGP1-01 as a promising neuroprotective agent in diseases involving calcium-related excitotoxicity. We demonstrate here that NGP1-01 (1 and 10μM) pretreatment abrogates the effects of iron overload in brain endothelial cells protecting cellular viability. Both concentrations of NGP1-01 were found to attenuate iron-induced reduction in cellular viability to a similar extent, and were statistically significant. To further verify the mechanism, the L-type calcium channel agonist FPL 64176 was administered to promote iron uptake. Addition of NGP1-01 dose-dependently reduced FPL 64176 stimulated uptake of iron. These data support further evaluation of NGP1-01 as a neuroprotective agent, not only in diseases associated with excitotoxicity, but also in those of iron overload. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ascorbic Acid Repletion: A Possible Therapy for Diabetic Macular Edema?

    PubMed Central

    May, James M.

    2016-01-01

    Macular edema poses a significant risk for visual loss in persons with diabetic retinopathy. It occurs when plasma constituents and fluid leak out of damaged retinal microvasculature in the area of the macula, causing loss of central vision. Apoptotic loss of pericytes surrounding capillaries is perhaps the earliest feature of diabetic vascular damage in the macula, which is also associated with dysfunction of the endothelium and loss of the otherwise very tight endothelial permeability barrier. Increased oxidative stress is a key feature of damage to both cell types, mediated by excess superoxide from glucose-induced increases in mitochondrial metabolism, as well as by activation of the receptor for advanced glycation end products (RAGE). The latter in turn activates multiple pathways, some of which lead to increased oxidative stress, such as those involving NF-κB, NADPH oxidase, and endothelial nitric oxide synthase. Such cellular oxidative stress is associated with low cellular and plasma ascorbic acid levels in many subjects with diabetes in poor glycemic control. Whether repletion of low ascorbate in retinal endothelium and pericytes might help to prevent diabetic macular edema is unknown. However, cell culture studies show that the vitamin prevents high-glucose and RAGE-induced apoptosis in both cell types, that it preserves nitric oxide generated by endothelial cells, and that it tightens the leaky endothelial permeability barrier. Although these findings need to be confirmed in pre-clinical animal studies, it is worth considering clinical trials to determine whether adequate ascorbate repletion is possible and whether it might help to delay or even reverse early diabetic macular edema. PMID:26898503

  18. Cell painting with an engineered EPCR to augment the protein C system.

    PubMed

    Bouwens, Eveline A M; Stavenuiter, Fabian; Mosnier, Laurent O

    2015-11-25

    The protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC's effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR's bioavailability via "cell painting." The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400 % of wild-type cells after 2 hours and remained > 200 % for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalised PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signalling. Therefore, EPCR-GPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR- depleted and -deficient cells.

  19. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.

  20. HIF-2α Expression Regulates Sprout Formation into 3D Fibrin Matrices in Prolonged Hypoxia in Human Microvascular Endothelial Cells.

    PubMed

    Nauta, Tessa D; Duyndam, Monique C A; Weijers, Ester M; van Hinsbergh, Victor M W; Koolwijk, Pieter

    2016-01-01

    During short-term hypoxia, Hypoxia Inducible Factors (particular their subunits HIF-1α and HIF-2α) regulate the expression of many genes including the potent angiogenesis stimulator VEGF. However, in some pathological conditions chronic hypoxia occurs and is accompanied by reduced angiogenesis. We investigated the effect of prolonged hypoxia on the proliferation and sprouting ability of human microvascular endothelial cells and the involvement of the HIFs and Dll4/Notch signaling. Human microvascular endothelial cells (hMVECs), cultured at 20% oxygen for 14 days and seeded on top of 3D fibrin matrices, formed sprouts when stimulated with VEGF-A/TNFα. In contrast, hMVECs precultured at 1% oxygen for 14 days were viable and proliferative, but did not form sprouts into fibrin upon VEGF-A/TNFα stimulation at 1% oxygen. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting, whereas HIF-1α or HIF-3α by si-RNA had no effect. No involvement of Dll4/Notch pathway in the inhibitory effect on endothelial sprouting by prolonged hypoxia was found. In addition, hypoxia decreased the production of urokinase-type plasminogen activator (uPA), needed for migration and invasion, without a significant effect on its inhibitor PAI-1. This was independent of HIF-2α, as si-HIF-2α did not counteract uPA reduction. Prolonged culturing of hMVECs at 1% oxygen inhibited endothelial sprouting into fibrin. Two independent mechanisms contribute. Silencing of HIF-2α with si-RNA partially restored the inhibition of endothelial sprouting pointing to a HIF-2α-dependent mechanism. In addition, reduction of uPA contributed to reduced endothelial tube formation in a fibrin matrix during prolonged hypoxia.

  1. Adipokines and the cardiovascular system: mechanisms mediating health and disease.

    PubMed

    Northcott, Josette M; Yeganeh, Azadeh; Taylor, Carla G; Zahradka, Peter; Wigle, Jeffrey T

    2012-08-01

    This review focuses on the role of adipokines in the maintenance of a healthy cardiovascular system, and the mechanisms by which these factors mediate the development of cardiovascular disease in obesity. Adipocytes are the major cell type comprising the adipose tissue. These cells secrete numerous factors, termed adipokines, into the blood, including adiponectin, leptin, resistin, chemerin, omentin, vaspin, and visfatin. Adipose tissue is a highly vascularised endocrine organ, and different adipose depots have distinct adipokine secretion profiles, which are altered with obesity. The ability of many adipokines to stimulate angiogenesis is crucial for adipose tissue expansion; however, excessive blood vessel growth is deleterious. As well, some adipokines induce inflammation, which promotes cardiovascular disease progression. We discuss how these 7 aforementioned adipokines act upon the various cardiovascular cell types (endothelial progenitor cells, endothelial cells, vascular smooth muscle cells, pericytes, cardiomyocytes, and cardiac fibroblasts), the direct effects of these actions, and their overall impact on the cardiovascular system. These were chosen, as these adipokines are secreted predominantly from adipocytes and have known effects on cardiovascular cells.

  2. MicroRNA-34a regulation of endothelial senescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Takashi; Yagi, Shusuke; Yamakuchi, Munekazu, E-mail: munekazu_yamakuchi@urmc.rochester.edu

    2010-08-06

    Research highlights: {yields} MicroRNA-34a (miR-34a) regulates senescence and cell cycle progression in endothelial cells. {yields} MiR-34a expression increases during endothelial cell senescence and in older mice. {yields} SIRT1 is a miR-34a target gene in endothelial cells. {yields} SIRT1 mediates the effects of miR-34a upon cell senescence in endothelial cells. -- Abstract: Endothelial senescence is thought to play a role in cardiovascular diseases such as atherosclerosis. We hypothesized that endothelial microRNAs (miRNAs) regulate endothelial survival and senescence. We found that miR-34a is highly expressed in primary endothelial cells. We observed that miR-34a expression increases in senescent human umbilical cord vein endothelialmore » cells (HUVEC) and in heart and spleen of older mice. MiR-34a over-expression induces endothelial cell senescence and also suppresses cell proliferation by inhibiting cell cycle progression. Searching for how miR-34a affects senescence, we discovered that SIRT1 is a target of miR-34a. Over-expressing miR-34a inhibits SIRT1 protein expression, and knocking down miR-34a enhances SIRT1 expression. MiR-34a triggers endothelial senescence in part through SIRT1, since forced expression of SIRT1 blocks the ability of miR-34a to induce senescence. Our data suggest that miR-34a contributes to endothelial senescence through suppression of SIRT1.« less

  3. Functional characterization of human pluripotent stem cell-derived arterial endothelial cells.

    PubMed

    Zhang, Jue; Chu, Li-Fang; Hou, Zhonggang; Schwartz, Michael P; Hacker, Timothy; Vickerman, Vernella; Swanson, Scott; Leng, Ning; Nguyen, Bao Kim; Elwell, Angela; Bolin, Jennifer; Brown, Matthew E; Stewart, Ron; Burlingham, William J; Murphy, William L; Thomson, James A

    2017-07-25

    Here, we report the derivation of arterial endothelial cells from human pluripotent stem cells that exhibit arterial-specific functions in vitro and in vivo. We combine single-cell RNA sequencing of embryonic mouse endothelial cells with an EFNB2-tdTomato/EPHB4-EGFP dual reporter human embryonic stem cell line to identify factors that regulate arterial endothelial cell specification. The resulting xeno-free protocol produces cells with gene expression profiles, oxygen consumption rates, nitric oxide production levels, shear stress responses, and TNFα-induced leukocyte adhesion rates characteristic of arterial endothelial cells. Arterial endothelial cells were robustly generated from multiple human embryonic and induced pluripotent stem cell lines and have potential applications for both disease modeling and regenerative medicine.

  4. Annexin 1 Modulates Monocyte-Endothelial Cell Interaction In Vitro and Cell Migration In Vivo in the Human SCID Mouse Transplantation Model1

    PubMed Central

    Perretti, Mauro; Ingegnoli, Francesca; Wheller, Samantha K.; Blades, Mark C.; Solito, Egle; Pitzalis, Costantino

    2015-01-01

    The effect of the glucocorticoid inducible protein annexin 1 (ANXA1) on the process of monocytic cell migration was studied using transfected U937 cells expressing variable protein levels. An antisense (AS) (36.4AS; ~50% less ANXA1) and a sense (S) clone (15S; overexpressing the bioactive 24-kDa fragment) together with the empty plasmid CMV clone were obtained and compared with wild-type U937 cells in various models of cell migration in vitro and in vivo. 15S-transfected U937 cells displayed a reduced (50%) degree of trans-endothelial migration in response to stromal cell-derived factor-1α (CXC chemokine ligand 12 (CXCL12)). In addition, the inhibitory role of endogenous ANXA1 on U937 cell migration in vitro was confirmed by the potentiating effect of a neutralizing anti-ANXA1 serum. Importantly, overexpression of ANXA1 in clone 15S inhibited the extent of cell migration into rheumatoid synovial grafts transplanted into SCID mice. ANXA1 inhibitory effects were not due to modifications in adhesion molecule or CXCL12 receptor (CXCR4) expression as shown by the similar amounts of surface molecules found in transfected and wild-type U937 cells. Likewise, an equal chemotactic response to CXCL12 in vitro excluded an intrinsic defect in cell motility in clones 15S and 36.4AS. These data strongly support the notion that ANXA1 critically interferes with a leukocyte endothelial step essential for U937 cell, and possibly monocyte, transmigration both in vitro and in vivo. PMID:12165536

  5. Arrest of B16 Melanoma Cells in the Mouse Pulmonary Microcirculation Induces Endothelial Nitric Oxide Synthase-Dependent Nitric Oxide Release that Is Cytotoxic to the Tumor Cells

    PubMed Central

    Qiu, Hongming; Orr, F.William; Jensen, Derrek; Wang, Hui Helen; McIntosh, Alan R.; Hasinoff, Brian B.; Nance, Dwight M.; Pylypas, Susan; Qi, Ke; Song, Chun; Muschel, Ruth J.; Al-Mehdi, Abu-Bakr

    2003-01-01

    Metastatic cancer cells seed the lung via blood vessels. Because endothelial cells generate nitric oxide (NO) in response to shear stress, we postulated that the arrest of cancer cells in the pulmonary microcirculation causes the release of NO in the lung. After intravenous injection of B16F1 melanoma cells, pulmonary NO increased sevenfold throughout 20 minutes and approached basal levels by 4 hours. NO induction was blocked by NG-nitro-l-arginine methyl ester (L-NAME) and was not observed in endothelial nitric oxide synthase (eNOS)-deficient mice. NO production, visualized ex vivo with the fluorescent NO probe diaminofluorescein diacetate, increased rapidly at the site of tumor cell arrest, and continued to increase throughout 20 minutes. Arrested tumor cells underwent apoptosis with apoptotic counts more than threefold over baseline at 8 and 48 hours. Neither the NO signals nor increased apoptosis were seen in eNOS knockout mice or mice pretreated with L-NAME. At 48 hours, 83% of the arrested cells had cleared from the lungs of wild-type mice but only ∼55% of the cells cleared from eNOS-deficient or L-NAME pretreated mice. eNOS knockout and L-NAME-treated mice had twofold to fivefold more metastases than wild-type mice, measured by the number of surface nodules or by histomorphometry. We conclude that tumor cell arrest in the pulmonary microcirculation induces eNOS-dependent NO release by the endothelium adjacent to the arrested tumor cells and that NO is one factor that causes tumor cell apoptosis, clearance from the lung, and inhibition of metastasis. PMID:12547699

  6. Gene expression analysis of immunostained endothelial cells isolated from formaldehyde-fixated paraffin embedded tumors using laser capture microdissection--a technical report.

    PubMed

    Kaneko, Tomoatsu; Okiji, Takashi; Kaneko, Reika; Suda, Hideaki; Nör, Jacques E

    2009-12-01

    Laser capture microdissection (LCM) allows microscopic procurement of specific cell types from tissue sections that can then be used for gene expression analysis. In conventional LCM, frozen tissues stained with hematoxylin are normally used to the molecular analysis. Recent studies suggested that it is possible to carry out gene expression analysis of formaldehyde-fixated paraffin embedded (FFPE) tissues that were stained with hematoxylin. However, it is still unclear if quantitative gene expression analyses can be performed from LCM cells from FFPE tissues that were subjected to immunostaining to enhance identification of target cells. In this proof-of-principle study, we analyzed by reverse transcription-PCR (RT-PCR) and real time PCR the expression of genes in factor VIII immunostained human endothelial cells that were dissected from FFPE tissues by LCM. We observed that immunostaining should be performed at 4 degrees C to preserve the mRNA from the cells. The expression of Bcl-2 in the endothelial cells was evaluated by RT-PCR and by real time PCR. Glyceraldehyde-3-phosphate dehydrogenase and 18S were used as house keeping genes for RT-PCR and real time PCR, respectively. This report unveils a method for quantitative gene expression analysis in cells that were identified by immunostaining and retrieved by LCM from FFPE tissues. This method is ideally suited for the analysis of relatively rare cell types within a tissue, and should improve on our ability to perform differential diagnosis of pathologies as compared to conventional LCM.

  7. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport.

    PubMed

    Veszelka, Szilvia; Tóth, András; Walter, Fruzsina R; Tóth, Andrea E; Gróf, Ilona; Mészáros, Mária; Bocsik, Alexandra; Hellinger, Éva; Vastag, Monika; Rákhely, Gábor; Deli, Mária A

    2018-01-01

    Cell culture-based blood-brain barrier (BBB) models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC), ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA). As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L), and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1) and influx transporters (GLUT-1, LAT-1) were present in all models at mRNA levels. The transcript of BCRP (ABCG2) was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which are substrates of these transporters. Brain endothelial cell lines GP8, RBE4, D3 and D3L did not form a restrictive paracellular barrier necessary for screening small molecular weight pharmacons. Therefore, among the tested culture models, the primary cell-based EPA model is suitable for the functional analysis of the BBB.

  8. Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels.

    PubMed

    Temming, Kai; Meyer, Damon L; Zabinski, Roger; Dijkers, Eli C F; Poelstra, Klaas; Molema, Grietje; Kok, Robbert J

    2006-01-01

    Induction of apoptosis in endothelial cells is considered an attractive strategy to therapeutically interfere with a solid tumor's blood supply. In the present paper, we constructed cytotoxic conjugates that specifically target angiogenic endothelial cells, thus preventing typical side effects of apoptosis-inducing drugs. For this purpose, we conjugated the potent antimitotic agent monomethyl-auristatin-E (MMAE) via a lysosomal cleavable linker to human serum albumin (HSA) and further equipped this drug-albumin conjugate with cyclic c(RGDfK) peptides for multivalent interaction with alphavbeta3-integrin. The RGD-peptides were conjugated via either an extended poly(ethylene glycol) linker or a short alkyl linker. The resulting drug-targeting conjugates RGDPEG-MMAE-HSA and RGD-MMAE-HSA demonstrated high binding affinity and specificity for alphavbeta3-integrin expressing human umbilical vein endothelial cells (HUVEC). Both types of conjugates were internalized by endothelial cells and killed the target cells at low nM concentrations. Furthermore, we observed RGD-dependent binding of the conjugates to C26 carcinoma. Upon i.v. administration to C26-tumor bearing mice, both drug-targeting conjugates displayed excellent tumor homing properties. Our results demonstrate that RGD-modified albumins are suitable carriers for cell selective intracellular delivery of cytotoxic compounds, and further studies will be conducted to assess the antivascular and tumor inhibitory potential of RGDPEG-MMAE-HSA and RGD-MMAE-HSA.

  9. Influence of glioma cells on a new co-culture in vitro blood-brain barrier model for characterization and validation of permeability.

    PubMed

    Mendes, Bárbara; Marques, Cláudia; Carvalho, Isabel; Costa, Paulo; Martins, Susana; Ferreira, Domingos; Sarmento, Bruno

    2015-07-25

    The blood-brain barrier plays an important role in protecting the brain from injury and diseases, but also restrains the delivery of potential therapeutic drugs for the treatment of brain illnesses, such as tumors. Glioma is most common cancer type of central nervous system in adults and the most lethal in children. The treatment is normally poor and ineffective. To better understand the ability of drug delivery systems to permeate this barrier, a blood-brain barrier model using human brain endothelial cells and a glioma cell line is herein proposed. The consistent trans-endothelial electrical values, immunofluorescence and scanning electronic microscopy showed a confluent endothelial cell monolayer with high restrictiveness. Upon inclusion of glioma cell line, the trans-endothelial electrical resistance decreased, with consequent increase of apparent permeability of fluorescein isothiocyanate dextran used as model drug, revealing a reduction of the barrier robustness. In addition, it was demonstrated a cell shape modification in the co-culture, with loss of tight junctions. The microenvironment of co-cultured model presented significant increase of of CCL2/MCP-1 and IL-6 production, correlating with the modulation of permeation. The results encourage the use of the proposed in vitro model as a screening tool when performing drugs permeability for the treatment of disorders among the central nervous system. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. TRAIL death receptor 4 signaling via lysosome fusion and membrane raft clustering in coronary arterial endothelial cells: evidence from ASM knockout mice.

    PubMed

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms, which may play an important role in DR4-mediated redox signaling in CAECs and consequently endothelial dysfunction.

  11. Expression of human immunodeficiency virus (HIV)-binding lectin DC-SIGNR: Consequences for HIV infection and immunity.

    PubMed

    Soilleux, Elizabeth J; Morris, Lesley S; Rushbrook, Simon; Lee, Benhur; Coleman, Nicholas

    2002-06-01

    DC-SIGNR is a human immunodeficiency virus (HIV)-binding C-type lectin that is expressed on endothelium in the hepatic sinusoids, lymph node sinuses and placenta. Like closely related DC-SIGN, DC-SIGNR can bind both ICAM-3 and HIV and can potentiate HIV infection of T lymphocytes in trans. In the present study we have investigated reasons underlying the restricted distribution of DC-SIGNR and have examined DC-SIGNR expression in relation to HIV entry receptors. We show that DC-SIGNR expression does not depend on endothelial cell specialization or on activation state. DC-SIGNR-positive endothelium continues to express DC-SIGNR in conditions of hyperplasia, whereas the molecule is lost after neoplastic transformation, most likely as a result of changes in the microenvironment of the endothelial cells. We have further shown that CCR5, but not CD4, is coexpressed with DC-SIGNR on hepatic sinusoidal and placental capillary endothelial cells. However, CD4-positive CCR5-positive cells, such as hepatic Kupffer cells, placental Hofbauer cells, and CD4-positive T lymphocytes in lymph nodes, can be found adjacent to DC-SIGNR-positive endothelium. Therefore, DC-SIGNR may be able to mediate HIV infection of these cells in trans. Finally, we demonstrate that DC-SIGN and DC-SIGNR can be coexpressed on lymph node sinus endothelial cells, which may lead to modulation of the function of both molecules. Copyright 2002, Elsevier Science (USA). All rights reserved.

  12. Quantification of Malignant Breast Cancer Cell MDA-MB-231 Transmigration across Brain and Lung Microvascular Endothelium

    PubMed Central

    Fan, Jie; Fu, Bingmei M.

    2015-01-01

    Tumor cell extravasation through the endothelial barrier forming the microvessel wall is a crucial step during tumor metastasis. However, where, how and how fast tumor cells transmigrate through endothelial barriers remain unclear. Using an in vitro transwell model, we performed a transmigration assay of malignant breast tumor cells (MDA-MB-231) through brain and lung microvascular endothelial monolayers under control and pathological conditions. The locations and rates of tumor cell transmigration as well as the changes in the structural components (integrity) of endothelial monolayers were quantified by confocal microscopy. Endothelial monolayer permeability to albumin Palbumin was also quantified under the same conditions. We found that about 98% of transmigration occurred at the joints of endothelial cells instead of cell bodies; tumor cell adhesion and transmigration degraded endothelial surface glycocalyx and disrupted endothelial junction proteins, consequently increased Palbumin; more tumor cells adhered to and transmigrated through the endothelial monolayer with higher Palbumin; Palbumin and tumor transmigration were increased by vascular endothelial growth factor (VEGF), a representative of cytokines, and lipopolysaccharides (LPS), a typical systemic inflammatory factor, but reduced by adenosine 3′, 5′-cyclic monophosphate (cAMP). These results suggest that reinforcing endothelial structural integrity is an effective approach for inhibiting tumor extravasation. PMID:26603751

  13. Nitric oxide synthesis-promoting effects of valsartan in human umbilical vein endothelial cells via the Akt/adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway.

    PubMed

    Zhao, Yingshuai; Wang, Liuyi; He, Shanshan; Wang, Xiaoyan; Shi, Weili

    2017-05-20

    Valsartan (VAL), an antagonist of angiotensin II receptor type 1, has antihypertensive and multiple cardiovascular protective effects. The pleiotropic functions of VAL are related to the increased synthesis and biological activity of intravascular nitric oxide (NO). In this study, the role and mechanisms of VAL in the synthesis of NO were examined in human umbilical vein endothelial cells (HUVECs). Ten µmol/L of VAL was used to treat EA.hy926 cells for 30 minutes, 1, 3, 6, 12, and 24 hours, and three concentrations of VAL (i.e., 10, 1, and 0.1 µmol/L) were used to treat EA.hy926 cells for 24 hours. The cells were divided into five groups: control, VAL, VAL + Compound C (adenosine monophosphate-activated protein kinase [AMPK] inhibitor, 1 µmol/L), VAL + LY294002 (Akt [protein kinase B] inhibitor, 10 µmol/L), and VAL + L-nitro-arginine methyl ester (L-NAME, endothelial NO synthase [eNOS] inhibitor, 500 µmol/L) groups. The NO content in the VAL-treated HUVEC line (EA.hy926) was detected using the nitrate reductase method, and western blot was used to detect the phosphorylation of Akt, AMPK, and eNOS, as well as the changes in total protein levels. VAL increased NO synthesis in EA.hy926 cells in time- and dose-dependent manners (p < 0.05) and the intracellular phosphorylation levels of Akt, AMPK, and eNOS at the corresponding time points. LY294002, Compound C, and L-NAME could inhibit the VAL-promoted NO synthesis. VAL activated Akt, AMPK, and eNOS, thus promoting NO synthesis and playing a protective role in endothelial cells. These results partially explained the mechanisms underlying the cardiovascular protective effects of VAL.

  14. The Interplay of Dental Pulp Stem Cells and Endothelial Cells in an Injectable Peptide Hydrogel on Angiogenesis and Pulp Regeneration In Vivo

    PubMed Central

    Dissanayaka, Waruna Lakmal; Hargreaves, Kenneth M.; Jin, Lijian; Samaranayake, Lakshman P.

    2015-01-01

    Securing an adequate blood supply for the survival of cell transplants is critical for a successful outcome in tissue engineering. Interactions between endothelial and progenitor/stem cells are important for vascularization of regenerating tissue. Recently, self-assembling peptide nanofibers were described as a promising environment for pulp regeneration due to their synthetic nature and controlled physicochemical properties. In this study, the peptide hydrogel PuraMatrix™ was used as a scaffold system to investigate the role of dental pulp stem cells (DPSCs) in triggering angiogenesis and the potential for regenerating vascularized pulp in vivo. Human umbilical vein endothelial cells (HUVECs), DPSCs, or cocultures of both cell types were encapsulated in three-dimensional PuraMatrix. The peptide nanofiber microenvironment supported cell survival, cell migration, and capillary network formation in the absence of exogenous growth factors. DPSCs increased early vascular network formation by facilitating the migration of HUVECs and by increasing vascular endothelial growth factor (VEGF) expression. Both the DPSC-monoculture and coculture groups exhibited vascularized pulp-like tissue with patches of osteodentin after transplantation in mice. The cocultured groups exhibited more extracellular matrix, vascularization, and mineralization than the DPSC-monocultures in vivo. The DPSCs play a critical role in initial angiogenesis, whereas coordinated efforts by the HUVECs and DPSCs are required to achieve a balance between extracellular matrix deposition and mineralization. The findings of this study also highlighted the importance of a microenvironment that supports cell–cell interactions and cell migration, which contribute to successful dental pulp regeneration. PMID:25203774

  15. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent. VEGF stimulated chemotaxis, is critically dependent on Rac activation. Osteopontin was a potent matrix activator of motility, and perhaps one explanation for the absence of a VEGF plus osteopontin effect is that osteopontin stimulated motility was inhibitory to the Rac pathway.

  16. A 3D Human Renal Cell Carcinoma-on-a-Chip for the Study of Tumor Angiogenesis.

    PubMed

    Miller, Chris P; Tsuchida, Connor; Zheng, Ying; Himmelfarb, Jonathan; Akilesh, Shreeram

    2018-06-01

    Tractable human tissue-engineered 3D models of cancer that enable fine control of tumor growth, metabolism, and reciprocal interactions between different cell types in the tumor microenvironment promise to accelerate cancer research and pharmacologic testing. Progress to date mostly reflects the use of immortalized cancer cell lines, and progression to primary patient-derived tumor cells is needed to realize the full potential of these platforms. For the first time, we report endothelial sprouting induced by primary patient tumor cells in a 3D microfluidic system. Specifically, we have combined primary human clear cell renal cell carcinoma (ccRCC) cells from six independent donors with human endothelial cells in a vascularized, flow-directed, 3D culture system ("ccRCC-on-a-chip"). The upregulation of key angiogenic factors in primary human ccRCC cells, which exhibited unique patterns of donor variation, was further enhanced when they were cultured in 3D clusters. When embedded in the matrix surrounding engineered human vessels, these ccRCC tumor clusters drove potent endothelial cell sprouting under continuous flow, thus recapitulating the critical angiogenic signaling axis between human ccRCC cells and endothelial cells. Importantly, this phenotype was driven by a primary tumor cell-derived biochemical gradient of angiogenic growth factor accumulation that was subject to pharmacological blockade. Our novel 3D system represents a vascularized tumor model that is easy to image and quantify and is fully tunable in terms of input cells, perfusate, and matrices. We envision that this ccRCC-on-a-chip will be valuable for mechanistic studies, for studying tumor-vascular cell interactions, and for developing novel and personalized antitumor therapies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells.

    PubMed

    Yang, Yajie; Boss, Isaac W; McIntyre, Lauren M; Renne, Rolf

    2014-08-08

    Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue specific gene expression. Advances in target identification technologies and molecular interaction databases have allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate underlying mechanisms of KSHV pathogenesis. Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types. However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling, bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of putative direct targets to a larger set of genes. This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and influencing signaling pathways, to counter the host anti-viral response and to promote proliferation and survival of infected cells. The targeted GRNs are more reproducible and informative than target gene identification, and our approach can be applied to other regulatory factors of interest.

  18. Molecular expression in transfected corneal endothelial cells

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Miao, Zhuang; Lu, Chengwei; Hao, Jilong

    2017-10-01

    To investigate the capability of human corneal endothelial cells serving as immunological cells. Expression of HLA-DP, -DQ, -DR, CD40, CD80, and CD86 was determined by immunohistochemical methods. Meanwhile, purified peripheral blood mononuclear cells were cocultured with human corneal endothelial cells which were pre-treated with and without -IFN respectively, activation of lymphocytes was determined by FACS analysis. In coculture system, T lymphocyte was activated by corneal endothelial cells, HLA-DP, -DQ, -DR and CD40 expression were increased by - IFN induction. Costimulatory molecular CD80 was shown on the endothelial cells. Human corneal endothelial cells were assumed to be involved in the corneal transplantation rejection process as potential antigen presenting cells.

  19. Partial rescue of glomerular laminin alpha5 mutations by wild-type endothelia produce hybrid glomeruli.

    PubMed

    Abrahamson, Dale R; St John, Patricia L; Isom, Kathryn; Robert, Barry; Miner, Jeffrey H

    2007-08-01

    Both endothelial cells and podocytes are sources for laminin alpha1 at the inception of glomerulogenesis and then for laminin alpha5 during glomerular maturation. Why glomerular basement membranes (GBM) undergo laminin transitions is unknown, but this may dictate glomerular morphogenesis. In mice that genetically lack laminin alpha5, laminin alpha5beta2gamma1 is not assembled, vascularized glomeruli fail to form, and animals die at midgestation with neural tube closure and placental deficits. It was previously shown that renal cortices of newborn mice contain endothelial progenitors (angioblasts) and that when embryonic day 12 kidneys are transplanted into newborn kidney, hybrid glomeruli (host-derived endothelium and donor-derived podocytes) result. Reasoning that host endothelium may correct the glomerular phenotype that is seen in laminin alpha5 mutants, alpha5 null embryonic day 12 metanephroi were grafted into wild-type newborn kidney. Hybrid glomeruli were identified in grafts by expression of a host-specific LacZ lineage marker. Labeling of glomerular hybrid GBM with chain-specific antibodies showed a markedly stratified distribution of laminins: alpha5 was found only on the inner endothelial half of GBM, whereas alpha1 located to outer layers beneath mutant podocytes. For measurement of the contribution of host endothelium to hybrid GBM, immunofluorescent signals for laminin alpha5 were quantified: Hybrid GBM contained approximately 50% the normal alpha5 complement as wild-type GBM. Electron microscopy of glomerular hybrids showed vascularization, but podocyte foot processes were absent. It was concluded that (1) endothelial and podocyte-derived laminins remain tethered to their cellular origin, (2) developing endothelial cells contribute large amounts of GBM laminins, and (3) podocyte foot process differentiation may require direct exposure to laminin alpha5.

  20. Heart-rate reduction by If-channel inhibition with ivabradine restores collateral artery growth in hypercholesterolemic atherosclerosis.

    PubMed

    Schirmer, Stephan H; Degen, Achim; Baumhäkel, Magnus; Custodis, Florian; Schuh, Lisa; Kohlhaas, Michael; Friedrich, Erik; Bahlmann, Ferdinand; Kappl, Reinhard; Maack, Christoph; Böhm, Michael; Laufs, Ulrich

    2012-05-01

    Collateral arteries protect tissue from ischaemia. Heart rate correlates with vascular events in patients with arterial obstructive disease. Here, we tested the effect of heart-rate reduction (HRR) on collateral artery growth. The I(f)-channel inhibitor ivabradine reduced heart rate by 11% in wild-type and 15% in apolipoprotein E (ApoE)(-/-) mice and restored endothelium-dependent relaxation in aortic rings of ApoE(-/-) mice. Microsphere perfusion and angiographies demonstrated that ivabradine did not change hindlimb perfusion in wild-type mice but improved perfusion in ApoE(-/-) mice from 40.5 ± 15.8-60.2 ± 18.5% ligated/unligated hindlimb. Heart rate reduction (13%) with metoprolol failed to improve endothelial function and perfusion. Protein expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS, and eNOS activity were increased in collateral tissue following ivabradine treatment of ApoE(-/-) mice. Co-treatment with nitric oxide-inhibitor N (G)-nitro-L-arginine methyl ester abolished the effects of ivabradine on arteriogenesis. Following ivabradine, classical inflammatory cytokine expression was lowered in ApoE(-/-) circulating mononuclear cells and in plasma, but unaltered in collateral-containing hindlimb tissue, where numbers of perivascular macrophages also remained unchanged. However, ivabradine reduced expression of anti-arteriogenic cytokines CXCL10and CXCL11 and of smooth muscle cell markers smoothelin and desmin in ApoE(-/-) hindlimb tissue. Endothelial nitric oxide synthase and inflammatory cytokine expression were unchanged in wild-type mice. Ivabradine did not affect cytokine production in HUVECs and THP1 mononuclear cells and had no effect on the membrane potential of HUVECs in patch-clamp experiments. Ivabradine-induced HRR stimulates adaptive collateral artery growth. Important contributing mechanisms include improved endothelial function, eNOS activity, and modulation of inflammatory cytokine gene expression.

  1. UL74 of Human Cytomegalovirus Contributes to Virus Release by Promoting Secondary Envelopment of Virions▿ †

    PubMed Central

    Jiang, Xiao Jing; Adler, Barbara; Sampaio, Kerstin Laib; Digel, Margarete; Jahn, Gerhard; Ettischer, Nicole; Stierhof, York-Dieter; Scrivano, Laura; Koszinowski, Ulrich; Mach, Michael; Sinzger, Christian

    2008-01-01

    The glycoprotein (g) complex gH/gL represents an essential part of the herpesvirus fusion machinery mediating entry of cell-free virions and cell-associated viral spread. In some herpesviruses additional proteins are associated with gH/gL contributing to the cell tropism of the respective virus. Human cytomegalovirus (HCMV) gH/gL forms complexes with either gO (UL74) or proteins of the UL128-131A gene locus. While a contribution of UL128-131A to endothelial cell tropism is known, the role of gO is less clear. We studied the role of gH/gL-associated proteins in HCMV replication in human foreskin fibroblasts (HFF) and human umbilical vein endothelial cells (HUVEC). Deletions of UL74 alone or in combination with mutations of the UL128-131A gene region were introduced into bacterial artificial chromosome vectors derived from the endotheliotropic strain TB40/E. Deletion of UL74 caused a profound defect regarding virus release from infected HFF and HUVEC. Large numbers of capsids accumulated in the cytoplasm of infected HFF but failed to acquire an envelope. Clear cell type differences were observed in the cell-associated spread of the UL74-defective virus. In HFF, focal growth was severely impaired, whereas it was normal in HUVEC. Deletion of UL131A abolished focal growth in endothelial cells. UL74/UL128-131A dual mutants showed severely impaired reconstitution efficiency. Our data suggest that gO plays a critical role in secondary envelopment and release of cell-free virions independent of the cell type but affects cell-associated growth specifically in HFF, whereas UL128-131A contributes to cell-associated spread in HFF and HUVEC. PMID:18184717

  2. The molecular mechanism of mediation of adsorbed serum proteins to endothelial cells adhesion and growth on biomaterials.

    PubMed

    Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan

    2013-07-01

    To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Host response to bovine respiratory pathogens.

    PubMed

    Czuprynski, Charles J

    2009-12-01

    Bovine respiratory disease (BRD) involves complex interactions amongst viral and bacterial pathogens that can lead to intense pulmonary inflammation (fibrinous pleuropneumonia). Viral infection greatly increases the susceptibility of cattle to secondary infection of the lung with bacterial pathogens like Mannheimia haemolytica and Histophilus somni. The underlying reason for this viral/bacterial synergism, and the manner in which cattle respond to the virulence strategies of the bacterial pathogens, is incompletely understood. Bovine herpesvirus type 1 (BHV-1) infection of bronchial epithelial cells in vitro enhances the binding of M. haemolytica and triggers release of inflammatory mediators that attract and enhance binding of neutrophils. An exotoxin (leukotoxin) released from M. haemolytica further stimulates release of inflammatory mediators and causes leukocyte death. Cattle infected with H. somni frequently display vasculitis. Exposure of bovine endothelial cells to H. somnii or its lipooligosaccharide (LOS) increases endothelium permeability, and makes the surface of the endothelial cells pro-coagulant. These processes are amplified in the presence of platelets. The above findings demonstrate that bovine respiratory pathogens (BHV-1, M. haemolytica and H. somni) interact with leukocytes and other cells (epithelial and endothelial cells) leading to the inflammation that characterizes BRD.

  4. Endothelial cell regulation of leukocyte infiltration in inflammatory tissues

    PubMed Central

    Mantovani, A.; Introna, M.; Dejana, E.

    1995-01-01

    Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also ‘direct’ leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues. PMID:18475659

  5. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  6. Comparison of apoptosis in human primary pulmonary endothelial cells and a brain microvascular endothelial cell line co-cultured with Plasmodium falciparum field isolates.

    PubMed

    Essone, Jean Claude Biteghe Bi; N'Dilimabaka, Nadine; Ondzaga, Julien; Lekana-Douki, Jean Bernard; Mba, Dieudonné Nkoghe; Deloron, Philippe; Mazier, Dominique; Gay, Frédrérick; Touré Ndouo, Fousseyni S

    2017-06-27

    Plasmodium falciparum infection can progress unpredictably to severe forms including respiratory distress and cerebral malaria. The mechanisms underlying the variable natural course of malaria remain elusive. The cerebral microvascular endothelial cells-D3 and lung endothelial cells both from human were cultured separately and challenged with P. falciparum field isolates taken directly from malaria patients or 3D7 strain (in vitro maintained culture). The capacity of these P. falciparum isolates to induce endothelial cell apoptosis via cytoadherence or not was then assessed. Overall, 27 P. falciparum isolates were collected from patients with uncomplicated malaria (n = 25) or severe malaria (n = 2). About half the isolates (n = 17) were able to bind brain endothelial cells (12 isolates, 44%) or lung endothelial cells (17 isolates, 63%) or both (12 isolates, 44%). Sixteen (59%) of the 27 isolates were apoptogenic for brain and/or lung endothelial cells. The apoptosis stimulus could be cytoadherence, direct cell-cell contact without cytoadherence, or diffusible soluble factors. While some of the apoptogenic isolates used two stimuli (direct contact with or without cytoadherence, plus soluble factors) to induce apoptosis, others used only one. Among the 16 apoptogenic isolates, eight specifically targeted brain endothelial cells, one lung endothelial cells, and seven both. These results indicate that the brain microvascular cell line was more susceptible to apoptosis triggered by P. falciparum than the primary pulmonary endothelial cells and may have relevance to host-parasite interaction.

  7. Efficient Direct Reprogramming of Mature Amniotic Cells into Endothelial Cells by ETS Factors and TGFβ Suppression

    PubMed Central

    Ginsberg, Michael; James, Daylon; Ding, Bi-Sen; Nolan, Daniel; Geng, Fuqiang; Butler, Jason M; Schachterle, William; Pulijaal, Venkat R; Mathew, Susan; Chasen, Stephen T; Xiang, Jenny; Rosenwaks, Zev; Shido, Koji; Elemento, Olivier; Rabbany, Sina Y; Rafii, Shahin

    2012-01-01

    ETS transcription factors ETV2, FLI1 and ERG1 specify pluripotent stem cells into endothelial cells (ECs). However, these ECs are unstable and drift towards non-vascular cell fates. We show that human mid-gestation c-Kit− lineage-committed amniotic cells (ACs) can be readily reprogrammed into induced vascular endothelial cells (iVECs). Transient ETV2 expression in ACs generated proliferative but immature iVECs, while co-expression with FLI1/ERG1 endowed iVECs with a vascular repertoire and morphology matching mature stable ECs. Brief TGFβ-inhibition functionalized VEGFR2 signaling, augmenting specification of ACs to iVECs. Genome-wide transcriptional analyses showed that iVECs are similar to adult ECs in which vascular-specific genes are turned on and non-vascular genes are silenced. Functionally, iVECs form long-lasting patent vasculature in Matrigel plugs and regenerating livers. Thus, short-term ETV2 expression and TGFβ-inhibition along with constitutive ERG1/FLI1 co-expression reprogram mature ACs into durable and functional iVECs with clinical-scale expansion potential. Public banking of HLA-typed iVECs would establish a vascular inventory for treatment of genetically diverse disorders. PMID:23084400

  8. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is amore » key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.« less

  9. Cell-SELEX-Based Identification of a Human and Mouse Cross-Reactive Endothelial Cell-Internalizing Aptamer.

    PubMed

    Dua, Pooja; Kang, Sinae; Shin, Hye-Soo; Kim, Soyoun; Lee, Dong-Ki

    2018-04-02

    Increased interest and insights gained by researchers on the roles of endothelial cells in the pathophysiology of cancer, inflammatory, and cardiovascular diseases have led to the design of pharmacological interventions aimed at the endothelium lining in the diseased sites. Toward this end, we used established brain microvascular endothelial cell lines mouse (bEND3), human (hCMEC/D3), and Toggle Cell-SELEX to identify a species cross-reactive, endothelial cell-internalizing aptamer R11-3. This 2'F-modified RNA aptamer is specific for endothelial cells as no internalization was seen with cells of nonendothelial origin. R11-3 was truncated in size, and its potential in endothelial targeted therapeutics was established using VEGFR2 targeting long interfering RNA (liRNA) aptamer chimera. Due to its specificity for both mouse and human endothelial cells, we believe that this aptamer not only fits for development of endothelial targeted drug development for human diseases but is also suitable for preclinical evaluation in mice.

  10. Visualization of three pathways for macromolecule transport across cultured endothelium and their modification by flow.

    PubMed

    Ghim, Mean; Alpresa, Paola; Yang, Sung-Wook; Braakman, Sietse T; Gray, Stephen G; Sherwin, Spencer J; van Reeuwijk, Maarten; Weinberg, Peter D

    2017-11-01

    Transport of macromolecules across vascular endothelium and its modification by fluid mechanical forces are important for normal tissue function and in the development of atherosclerosis. However, the routes by which macromolecules cross endothelium, the hemodynamic stresses that maintain endothelial physiology or trigger disease, and the dependence of transendothelial transport on hemodynamic stresses are controversial. We visualized pathways for macromolecule transport and determined the effect on these pathways of different types of flow. Endothelial monolayers were cultured under static conditions or on an orbital shaker producing different flow profiles in different parts of the wells. Fluorescent tracers that bound to the substrate after crossing the endothelium were used to identify transport pathways. Maps of tracer distribution were compared with numerical simulations of flow to determine effects of different shear stress metrics on permeability. Albumin-sized tracers dominantly crossed the cultured endothelium via junctions between neighboring cells, high-density lipoprotein-sized tracers crossed at tricellular junctions, and low-density lipoprotein-sized tracers crossed through cells. Cells aligned close to the angle that minimized shear stresses across their long axis. The rate of paracellular transport under flow correlated with the magnitude of these minimized transverse stresses, whereas transport across cells was uniformly reduced by all types of flow. These results contradict the long-standing two-pore theory of solute transport across microvessel walls and the consensus view that endothelial cells align with the mean shear vector. They suggest that endothelial cells minimize transverse shear, supporting its postulated proatherogenic role. Preliminary data show that similar tracer techniques are practicable in vivo. NEW & NOTEWORTHY Solutes of increasing size crossed cultured endothelium through intercellular junctions, through tricellular junctions, or transcellularly. Cells aligned to minimize the shear stress acting across their long axis. Paracellular transport correlated with the level of this minimized shear, but transcellular transport was reduced uniformly by flow regardless of the shear profile. Copyright © 2017 the American Physiological Society.

  11. Surface Modification of Biodegradable Polymers towards Better Biocompatibility and Lower Thrombogenicity

    PubMed Central

    Rudolph, Andreas; Teske, Michael; Illner, Sabine; Kiefel, Volker; Sternberg, Katrin; Grabow, Niels; Wree, Andreas; Hovakimyan, Marina

    2015-01-01

    Purpose Drug-eluting stents (DES) based on permanent polymeric coating matrices have been introduced to overcome the in stent restenosis associated with bare metal stents (BMS). A further step was the development of DES with biodegradable polymeric coatings to address the risk of thrombosis associated with first-generation DES. In this study we evaluate the biocompatibility of biodegradable polymer materials for their potential use as coating matrices for DES or as materials for fully bioabsorbable vascular stents. Materials and Methods Five different polymers, poly(L-lactide) PLLA, poly(D,L-lactide) PDLLA, poly(L-lactide-co-glycolide) P(LLA-co-GA), poly(D,L-lactide-co-glycolide) P(DLLA-co-GA) and poly(L-lactide-co-ε-caprolactone), P(LLA-co-CL) were examined in vitro without and with surface modification. The surface modification of polymers was performed by means of wet-chemical (NaOH and ethylenediamine (EDA)) and plasma-chemical (O2 and NH3) processes. The biocompatibility studies were performed on three different cell types: immortalized mouse fibroblasts (cell line L929), human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC). The biocompatibility was examined quantitatively using in vitro cytotoxicity assay. Cells were investigated immunocytochemically for expression of specific markers, and morphology was visualized using confocal laser scanning (CLSM) and scanning electron (SEM) microscopy. Additionally, polymer surfaces were examined for their thrombogenicity using an established hemocompatibility test. Results Both endothelial cell types exhibited poor viability and adhesion on all five unmodified polymer surfaces. The biocompatibility of the polymers could be influenced positively by surface modifications. In particular, a reproducible effect was observed for NH3-plasma treatment, which enhanced the cell viability, adhesion and morphology on all five polymeric surfaces. Conclusion Surface modification of polymers can provide a useful approach to enhance their biocompatibility. For clinical application, attempts should be made to stabilize the plasma modification and use it for coupling of biomolecules to accelerate the re-endothelialization of stent surfaces in vivo. PMID:26641662

  12. Effects of 5-Fluorouracil on Morphology, Cell Cycle, Proliferation, Apoptosis, Autophagy and ROS Production in Endothelial Cells and Cardiomyocytes

    PubMed Central

    Focaccetti, Chiara; Bruno, Antonino; Magnani, Elena; Bartolini, Desirée; Principi, Elisa; Dallaglio, Katiuscia; Bucci, Eraldo O.; Finzi, Giovanna; Sessa, Fausto; Noonan, Douglas M.; Albini, Adriana

    2015-01-01

    Antimetabolites are a class of effective anticancer drugs interfering in essential biochemical processes. 5-Fluorouracil (5-FU) and its prodrug Capecitabine are widely used in the treatment of several solid tumors (gastro-intestinal, gynecological, head and neck, breast carcinomas). Therapy with fluoropyrimidines is associated with a wide range of adverse effects, including diarrhea, dehydration, abdominal pain, nausea, stomatitis, and hand-foot syndrome. Among the 5-FU side effects, increasing attention is given to cardiovascular toxicities induced at different levels and intensities. Since the mechanisms related to 5-FU-induced cardiotoxicity are still unclear, we examined the effects of 5-FU on primary cell cultures of human cardiomyocytes and endothelial cells, which represent two key components of the cardiovascular system. We analyzed at the cellular and molecular level 5-FU effects on cell proliferation, cell cycle, survival and induction of apoptosis, in an experimental cardioncology approach. We observed autophagic features at the ultrastructural and molecular levels, in particular in 5-FU exposed cardiomyocytes. Reactive oxygen species (ROS) elevation characterized the endothelial response. These responses were prevented by a ROS scavenger. We found induction of a senescent phenotype on both cell types treated with 5-FU. In vivo, in a xenograft model of colon cancer, we showed that 5-FU treatment induced ultrastructural changes in the endothelium of various organs. Taken together, our data suggest that 5-FU can affect, both at the cellular and molecular levels, two key cell types of the cardiovascular system, potentially explaining some manifestations of 5-FU-induced cardiovascular toxicity. PMID:25671635

  13. Development and characterization of mouse monoclonal antibody reactive with chicken IL-8

    USDA-ARS?s Scientific Manuscript database

    Interleukin-8/CXCL8 (IL-8) is a CXC-family chemokine produced by fibroblasts and other cell types including epithelial cells, endothelial cells, neutrophils and macrophages. Since IL-8 has functions to attract lymphocytes to sites of tissue damage, it plays a role in inflammatory responses and wound...

  14. Development and characterization of monoclonal antibodies specific for chicken IL-8

    USDA-ARS?s Scientific Manuscript database

    Interleukin-8/CXCL8 (IL-8) is a CXC-family chemokine produced by fibroblasts and other cell types, including epithelial cells, endothelial cells, neutrophils, and macrophages. Given that IL-8 attracts lymphocytes to the sites of tissue damage, IL-8 plays a role in the inflammatory response and woun...

  15. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  16. Regulation of Endothelial Permeability by Glutathione S-Transferase Pi Against Actin Polymerization.

    PubMed

    Yang, Yang; Yin, Fangyuan; Hang, Qiyun; Dong, Xiaoliang; Chen, Jiao; Li, Ling; Cao, Peng; Yin, Zhimin; Luo, Lan

    2018-01-01

    Inflammation-induced injury of the endothelial barrier occurs in several pathological conditions, including atherosclerosis, ischemia, and sepsis. Endothelial cytoskeleton rearrangement is an important pathological mechanism by which inflammatory stimulation triggers an increase of vascular endothelial permeability. However, the mechanism maintaining endothelial cell barrier function against inflammatory stress is not fully understood. Glutathione S-transferase pi (GSTpi) exists in various types of cells and protects them against different stresses. In our previous study, GSTpi was found to act as a negative regulator of inflammatory responses. We used a Transwell permeability assay to test the influence of GSTpi and its transferase activity on the increase of endothelial permeability induced by tumor necrosis factor alpha (TNF-α). TNF-α-induced actin remodeling and the influence of GSTpi were observed by using laser confocal microscopy. Western blotting was used to test the influence of GSTpi on TNF-α-activated p38 mitogen-activated protein kinase (MAPK)/MK2/heat shock protein 27 (HSP27). GSTpi reduced TNF-α-induced stress fiber formation and endothelial permeability increase by restraining actin cytoskeleton rearrangement, and this reduction was unrelated to its transferase activity. We found that GSTpi inhibited p38MAPK phosphorylation by directly binding p38 and influenced downstream substrate HSP27-induced actin remodeling. GSTpi inhibited TNF-α-induced actin remodeling, stress fiber formation and endothelial permeability increase by inhibiting the p38MAPK/HSP27 signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  17. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    PubMed

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  18. Bauhinia bauhinioides cruzipain inhibitor reduces endothelial proliferation and induces an increase of the intracellular Ca2+ concentration.

    PubMed

    Bilgin, Mehmet; Neuhof, Christiane; Doerr, Oliver; Benscheid, Utz; Andrade, Sheila S; Most, Astrid; Abdallah, Yaser; Parahuleva, Mariana; Guenduez, Dursun; Oliva, Maria L; Erdogan, Ali

    2010-12-01

    Proteinase inhibitors, isolated from different types of Bauhinia, have an effect on apoptosis, angiogenesis and inflammation. The Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a Kunitz-type inhibitor and inactivates the cysteine proteinases cruzipain and cruzain from Trypanosoma cruzi. Cruzipain and tissue kallikrein have similar biochemical properties, e.g. the proteolytic cleavage of the kininogen precursor of lys-bradykinin. Tissue kallikrein stimulation in endothelial cells causes migration and capillary tube formation. The aim of this study was to examine whether the antiproliferative effect of BbCI is dependent on changes of the intracellular calcium concentration and membrane hyperpolarization. Endothelial cells were isolated from human umbilical cord veins (HUVEC). For proliferation experiments, HUVEC were incubated with BbCI (10-100 μmol/L) for 48 h. The proliferation was detected by cell counting with a Neubauer chamber. The effect of BbCI (10-100 μM) on the membrane potential was measured with the fluorescence dye DiBAC4(3) and the effect on [Ca+2]i with the fluorescence probe Fluo-3 AM. The change of the fluorescence intensity was determined with a GENios plate reader (Tecan). The experiments showed that BbCI (10-100 μmol/L) reduces the endothelial cell proliferation significantly in a concentration-dependent manner with a maximum effect at 100 μmol/L (35.1±1.8% as compared to control (p≤0.05; n=45)). As compared to the control, the addition of BbCI (100 μmol/L) caused a significant increase of systolic Ca2+ of 28.4±5.0% after 30 min incubation. HUVEC treatment with BbCI (100 μmol/L) showed a weak but significant decrease of the membrane potential of 9.5±0.9% as compared to control (p≤0.05; n=80). BbCI influenced significantly the endothelial proliferation, the intracellular Ca2+ concentration and the membrane potential.

  19. Modeling the Spatiotemporal Evolution of the Melanoma Tumor Microenvironment

    NASA Astrophysics Data System (ADS)

    Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey

    The tumor microenvironment, which includes tumor cells, tumor-associated macrophages (TAM), cancer-associated fibroblasts, and endothelial cells, drives the formation and progression of melanoma tumors. Using quantitative analysis of in vivo confocal images of melanoma tumors in three spatial dimensions, we examine the physical properties of the melanoma tumor microenvironment, including the numbers of different cells types, cell size, and morphology. We also compute the nearest neighbor statistics and measure intermediate range spatial correlations between different cell types. We also calculate the step size distribution, mean-square displacement, and non-Gaussian parameter from the spatial trajectories of different cell types in the tumor microenvironment.

  20. Connexin43high prostate cancer cells induce endothelial connexin43 up-regulation through the activation of intercellular ERK1/2-dependent signaling axis.

    PubMed

    Piwowarczyk, Katarzyna; Paw, Milena; Ryszawy, Damian; Rutkowska-Zapała, Magdalena; Madeja, Zbigniew; Siedlar, Maciej; Czyż, Jarosław

    2017-06-01

    Connexin(Cx)43 regulates the invasive potential of prostate cancer cells and participates in their extravasation. To address the role of endothelial Cx43 in this process, we analyzed Cx43 regulation in human umbilical vein endothelial cells in the proximity of Cx43 high (DU-145 and MAT-LyLu) and Cx43 low prostate cancer cells (PC-3 and AT-2). Endothelial Cx43 up-regulation was observed during the diapedesis of DU-145 and MAT-LyLu cells. This process was attenuated by transient Cx43 silencing in cancer cells and by chemical inhibition of ERK1/2-dependent signaling in endothelial cells. Cx43 expression in endothelial cells was insensitive to the inhibition of gap junctional intercellular coupling between Cx43 high prostate cancer and endothelial cells by 18α-glycyrrhetinic acid. Instead, endothelial Cx43 up-regulation was correlated with the local contraction of endothelial cells and with their activation in the proximity of Cx43 high DU-145 and MAT-LyLu cells. It was also sensitive to pro-inflammatory factors secreted by peripheral blood monocytes, such as TNFα. In contrast to Cx43 low AT-2 cells, Cx43 low PC-3 cells produced angioactive factors that locally activated the endothelial cells in the absence of endothelial Cx43 up-regulation. Collectively, these data show that Cx43 low and Cx43 high prostate cancer cells can adapt discrete, Cx43-independent and Cx43-dependent strategies of diapedesis. Our observations identify a novel strategy of prostate cancer cell diapedesis, which depends on the activation of intercellular Cx43/ERK1/2/Cx43 signaling axis at the interfaces between Cx43 high prostate cancer and endothelial cells. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor.

    PubMed Central

    Colman, R W; Pixley, R A; Najamunnisa, S; Yan, W; Wang, J; Mazar, A; McCrae, K R

    1997-01-01

    The urokinase receptor (uPAR) binds urokinase-type plasminogen activator (u-PA) through specific interactions with uPAR domain 1, and vitronectin through interactions with a site within uPAR domains 2 and 3. These interactions promote the expression of cell surface plasminogen activator activity and cellular adhesion to vitronectin, respectively. High molecular weight kininogen (HK) also stimulates the expression of cell surface plasminogen activator activity through its ability to serve as an acquired receptor for prekallikrein, which, after its activation, may directly activate prourokinase. Here, we report that binding of the cleaved form of HK (HKa) to human umbilical vein endothelial cells (HUVEC) is mediated through zinc-dependent interactions with uPAR. These occur through a site within uPAR domains 2 and 3, since the binding of 125I-HKa to HUVEC is inhibited by vitronectin, anti-uPAR domain 2 and 3 antibodies and soluble, recombinant uPAR (suPAR), but not by antibody 7E3, which recognizes the beta chain of the endothelial cell vitronectin receptor (integrin alphavbeta3), or fibrinogen, another alphavbeta3 ligand. We also demonstrate the formation of a zinc-dependent complex between suPAR and HKa. Interactions of HKa with endothelial cell uPAR may underlie its ability to promote kallikrein-dependent cell surface plasmin generation, and also explain, in part, its antiadhesive properties. PMID:9294114

  2. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    PubMed

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor

    PubMed Central

    De Meyer, Simon F.; Vanhoorelbeke, Karen; Chuah, Marinee K.; Pareyn, Inge; Gillijns, Veerle; Hebbel, Robert P.; Collen, Désiré; Deckmyn, Hans; VandenDriessche, Thierry

    2006-01-01

    Von Willebrand disease (VWD) is an inherited bleeding disorder, caused by quantitative (type 1 and 3) or qualitative (type 2) defects in von Willebrand factor (VWF). Gene therapy is an appealing strategy for treatment of VWD because it is caused by a single gene defect and because VWF is secreted into the circulation, obviating the need for targeting specific organs or tissues. However, development of gene therapy for VWD has been hampered by the considerable length of the VWF cDNA (8.4 kb [kilobase]) and the inherent complexity of the VWF protein that requires extensive posttranslational processing. In this study, a gene-based approach for VWD was developed using lentiviral transduction of blood-outgrowth endothelial cells (BOECs) to express functional VWF. A lentiviral vector encoding complete human VWF was used to transduce BOECs isolated from type 3 VWD dogs resulting in high-transduction efficiencies (95.6% ± 2.2%). Transduced VWD BOECs efficiently expressed functional vector-encoded VWF (4.6 ± 0.4 U/24 hour per 106 cells), with normal binding to GPIbα and collagen and synthesis of a broad range of multimers resulting in phenotypic correction of these cells. These results indicate for the first time that gene therapy of type 3 VWD is feasible and that BOECs are attractive target cells for this purpose. PMID:16478886

  4. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis

    PubMed Central

    Daehn, Ilse; Casalena, Gabriella; Zhang, Taoran; Shi, Shaolin; Fenninger, Franz; Barasch, Nicholas; Yu, Liping; D’Agati, Vivette; Schlondorff, Detlef; Kriz, Wilhelm; Haraldsson, Borje; Bottinger, Erwin P.

    2014-01-01

    Focal segmental glomerular sclerosis (FSGS) is a primary kidney disease that is commonly associated with proteinuria and progressive loss of glomerular function, leading to development of chronic kidney disease (CKD). FSGS is characterized by podocyte injury and depletion and collapse of glomerular capillary segments. Progression of FSGS is associated with TGF-β activation in podocytes; however, it is not clear how TGF-β signaling promotes disease. Here, we determined that podocyte-specific activation of TGF-β signaling in transgenic mice and BALB/c mice with Adriamycin-induced glomerulosclerosis is associated with endothelin-1 (EDN1) release by podocytes, which mediates mitochondrial oxidative stress and dysfunction in adjacent endothelial cells via paracrine EDN1 receptor type A (EDNRA) activation. Endothelial dysfunction promoted podocyte apoptosis, and inhibition of EDNRA or scavenging of mitochondrial-targeted ROS prevented podocyte loss, albuminuria, glomerulosclerosis, and renal failure. We confirmed reciprocal crosstalk between podocytes and endothelial cells in a coculture system. Biopsies from patients with FSGS exhibited increased mitochondrial DNA damage, consistent with EDNRA-mediated glomerular endothelial mitochondrial oxidative stress. Our studies indicate that segmental glomerulosclerosis develops as a result of podocyte-endothelial crosstalk mediated by EDN1/EDNRA-dependent mitochondrial dysfunction and suggest that targeting the reciprocal interaction between podocytes and endothelia may provide opportunities for therapeutic intervention in FSGS. PMID:24590287

  5. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Thy1+IL-7+ lymphatic endothelial cells in iBALT provide a survival niche for memory T-helper cells in allergic airway inflammation

    PubMed Central

    Shinoda, Kenta; Hirahara, Kiyoshi; Iinuma, Tomohisa; Ichikawa, Tomomi; Suzuki, Akane S.; Sugaya, Kaoru; Tumes, Damon J.; Yamamoto, Heizaburo; Hara, Takahiro; Tani-ichi, Shizue; Ikuta, Koichi; Okamoto, Yoshitaka; Nakayama, Toshinori

    2016-01-01

    Memory CD4+ T helper (Th) cells are central to long-term protection against pathogens, but they can also be pathogenic and drive chronic inflammatory disorders. How these pathogenic memory Th cells are maintained, particularly at sites of local inflammation, remains unclear. We found that ectopic lymphoid-like structures called inducible bronchus-associated lymphoid tissue (iBALT) are formed during chronic allergic inflammation in the lung, and that memory-type pathogenic Th2 (Tpath2) cells capable of driving allergic inflammation are maintained within the iBALT structures. The maintenance of memory Th2 cells within iBALT is supported by Thy1+IL-7–producing lymphatic endothelial cells (LECs). The Thy1+IL-7–producing LECs express IL-33 and T-cell–attracting chemokines CCL21 and CCL19. Moreover, ectopic lymphoid structures consisting of memory CD4+ T cells and IL-7+IL-33+ LECs were found in nasal polyps of patients with eosinophilic chronic rhinosinusitis. Thus, Thy1+IL-7–producing LECs control chronic allergic airway inflammation by providing a survival niche for memory-type Tpath2 cells. PMID:27140620

  7. Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells, Congenital Heart Defects, and Heart Failure.

    PubMed

    Chowdhury, Biswajit; Xiang, Bo; Liu, Michelle; Hemming, Richard; Dolinsky, Vernon W; Triggs-Raine, Barbara

    2017-01-01

    Hyaluronan (HA) is required for endothelial-to-mesenchymal transition and normal heart development in the mouse. Heart abnormalities in hyaluronidase 2 (HYAL2)-deficient ( Hyal2 - /- ) mice and humans suggested removal of HA is also important for normal heart development. We have performed longitudinal studies of heart structure and function in Hyal2 -/- mice to determine when, and how, HYAL2 deficiency leads to these abnormalities. Echocardiography revealed atrial enlargement, atrial tissue masses, and valvular thickening at 4 weeks of age, as well as diastolic dysfunction that progressed with age, in Hyal2 -/- mice. These abnormalities were associated with increased HA, vimentin-positive cells, and fibrosis in Hyal2 -/- compared with control mice. Based on the severity of heart dysfunction, acute and chronic groups of Hyal2 -/- mice that died at an average of 12 and 25 weeks respectively, were defined. Increased HA levels and mesenchymal cells, but not vascular endothelial growth factor in Hyal2 -/- embryonic hearts, suggest that HYAL2 is important to inhibit endothelial-to-mesenchymal transition. Consistent with this, in wild-type embryos, HYAL2 and HA were readily detected, and HA levels decreased with age. These data demonstrate that disruption of normal HA catabolism in Hyal2 -/- mice causes increased HA, which may promote endothelial-to-mesenchymal transition and proliferation of mesenchymal cells. Excess endothelial-to-mesenchymal transition, resulting in increased mesenchymal cells, is the likely cause of morphological heart abnormalities in both humans and mice. In mice, these abnormalities result in progressive and severe diastolic dysfunction, culminating in heart failure. © 2016 The Authors.

  8. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    PubMed

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  9. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies

    PubMed Central

    2013-01-01

    Background Reliable human in vitro blood–brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Methods Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time. Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. Results The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level in hBMEC cells. Highest TEER values and lowest paracellular permeability for Na-F and LY were obtained with mono-cultures of hBMEC cell line when cultivated on 24-well tissue culture inserts from Greiner Bio-one® (transparent PET membrane, 3.0 μm pore size). In co-culture models with SVG-A and HBPCT cells, no increase of TEER could be observed, suggesting that none of the investigated endothelial cell lines responded positively to stimuli from immortalized astrocytic or pericytic cells. Conclusions Under the conditions examined in our experiments, hBMEC proved to be the most suitable human cell line for an in vitro BBB model concerning barrier tightness in a 24-well mono-culture system intended for higher throughput. This BBB model is being validated with several compounds (known to cross or not to cross the BBB), and will potentially be selected for the assessment of BBB permeation of bioactive natural products. PMID:24262108

  10. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies.

    PubMed

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-11-22

    Reliable human in vitro blood-brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time.Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level in hBMEC cells. Highest TEER values and lowest paracellular permeability for Na-F and LY were obtained with mono-cultures of hBMEC cell line when cultivated on 24-well tissue culture inserts from Greiner Bio-one® (transparent PET membrane, 3.0 μm pore size). In co-culture models with SVG-A and HBPCT cells, no increase of TEER could be observed, suggesting that none of the investigated endothelial cell lines responded positively to stimuli from immortalized astrocytic or pericytic cells. Under the conditions examined in our experiments, hBMEC proved to be the most suitable human cell line for an in vitro BBB model concerning barrier tightness in a 24-well mono-culture system intended for higher throughput. This BBB model is being validated with several compounds (known to cross or not to cross the BBB), and will potentially be selected for the assessment of BBB permeation of bioactive natural products.

  11. The Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release

    PubMed Central

    Kim, Mihwa; Ham, Ahrom; Kim, Katelyn Yu-Mi; Brown, Kevin M.; Lee, H. Thomas

    2014-01-01

    Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5′-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed, microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73 inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine generation to protect against endothelial apoptosis and inflammation. PMID:24945528

  12. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    NASA Astrophysics Data System (ADS)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  13. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  14. Essential role of mitochondrial antiviral signaling, IFN regulatory factor (IRF)3, and IRF7 in Chlamydophila pneumoniae-mediated IFN-beta response and control of bacterial replication in human endothelial cells.

    PubMed

    Buss, Claudia; Opitz, Bastian; Hocke, Andreas C; Lippmann, Juliane; van Laak, Vincent; Hippenstiel, Stefan; Krüll, Matthias; Suttorp, Norbert; Eitel, Julia

    2010-03-15

    Chlamydophila pneumoniae infection of the vascular wall as well as activation of the transcription factor IFN regulatory factor (IRF)3 have been linked to development of chronic vascular lesions and atherosclerosis. The innate immune system detects invading pathogens by use of pattern recognition receptors, some of which are able to stimulate IRF3/7 activation and subsequent type I IFN production (e. g., IFN-beta). In this study, we show that infection of human endothelial cells with C. pneumoniae-induced production of IFN-beta, a cytokine that so far has been mainly associated with antiviral immunity. Moreover, C. pneumoniae infection led to IRF3 and IRF7 nuclear translocation in HUVECs and RNA interference experiments showed that IRF3 and IRF7 as well as the mitochondrial antiviral signaling (MAVS) were essential for IFN-beta induction. Finally, C. pneumoniae replication was enhanced in endothelial cells in which IRF3, IRF7, or MAVS expression was inhibited by small interfering RNA and attenuated by IFN-beta treatment. In conclusion, C. pneumoniae infection of endothelial cells activates an MAVS-, IRF3-, and IRF7-dependent signaling, which controls bacterial growth and might modulate development of vascular lesions.

  15. Verocytotoxin-induced apoptosis of human microvascular endothelial cells.

    PubMed

    Pijpers, A H; van Setten, P A; van den Heuvel, L P; Assmann, K J; Dijkman, H B; Pennings, A H; Monnens, L A; van Hinsbergh, V W

    2001-04-01

    The pathogenesis of the epidemic form of hemolytic uremic syndrome is characterized by endothelial cell damage. In this study, the role of apoptosis in verocytotoxin (VT)-mediated endothelial cell death in human glomerular microvascular endothelial cells (GMVEC), human umbilical vein endothelial cells, and foreskin microvascular endothelial cells (FMVEC) was investigated. VT induced apoptosis in GMVEC and human umbilical vein endothelial cells when the cells were prestimulated with the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha). FMVEC displayed strong binding of VT and high susceptibility to VT under basal conditions, which made them suitable for the study of VT-induced apoptosis without TNF-alpha interference. On the basis of functional (flow cytometry and immunofluorescence microscopy using FITC-conjugated annexin V and propidium iodide), morphologic (transmission electron microscopy), and molecular (agarose gel electrophoresis of cellular DNA fragments) criteria, it was documented that VT induced programmed cell death in microvascular endothelial cells in a dose- and time-dependent manner. Furthermore, whereas partial inhibition of protein synthesis by VT was associated with a considerable number of apoptotic cells, comparable inhibition of protein synthesis by cycloheximide was not. This suggests that additional pathways, independent of protein synthesis inhibition, may be involved in VT-mediated apoptosis in microvascular endothelial cells. Specific inhibition of caspases by Ac-Asp-Glu-Val-Asp-CHO, but not by Ac-Tyr-Val-Ala-Asp-CHO, was accompanied by inhibition of VT-induced apoptosis in FMVEC and TNF-alpha-treated GMVEC. These data indicate that VT can induce apoptosis in human microvascular endothelial cells.

  16. Formation of a PKCζ/β-catenin complex in endothelial cells promotes angiopoietin-1–induced collective directional migration and angiogenic sprouting

    PubMed Central

    Oubaha, Malika; Lin, Michelle I.; Margaron, Yoran; Filion, Dominic; Price, Emily N.; Zon, Leonard I.; Côté, Jean-François

    2012-01-01

    Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and β-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and β-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1–induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and β-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis. PMID:22936663

  17. Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells.

    PubMed

    Krasnow, Stephanie M; Knoll, J Gabriel; Verghese, Santhosh Chakkaramakkil; Levasseur, Peter R; Marks, Daniel L

    2017-07-01

    During acute infections and chronic illnesses, the pro-inflammatory cytokine interleukin-1β (IL-1β) acts within the brain to elicit metabolic derangements and sickness behaviors. It is unknown which cells in the brain are the proximal targets for IL-1β with respect to the generation of these illness responses. We performed a series of in vitro experiments to (1) investigate which brain cell populations exhibit inflammatory responses to IL-1β and (2) examine the interactions between different IL-1β-responsive cell types in various co-culture combinations. We treated primary cultures of murine brain microvessel endothelial cells (BMEC), astrocytes, and microglia with PBS or IL-1β, and then performed qPCR to measure inflammatory gene expression or immunocytochemistry to evaluate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. To evaluate whether astrocytes and/or BMEC propagate inflammatory signals to microglia, we exposed microglia to astrocyte-conditioned media and co-cultured endothelial cells and glia in transwells. Treatment groups were compared by Student's t tests or by ANOVA followed by Bonferroni-corrected t tests. IL-1β increased inflammatory gene expression and NF-κB activation in primary murine-mixed glia, enriched astrocyte, and BMEC cultures. Although IL-1β elicited minimal changes in inflammatory gene expression and did not induce the nuclear translocation of NF-κB in isolated microglia, these cells were more robustly activated by IL-1β when co-cultured with astrocytes and/or BMEC. We observed a polarized endothelial response to IL-1β, because the application of IL-1β to the abluminal endothelial surface produced a more complex microglial inflammatory response than that which occurred following luminal IL-1β exposure. Inflammatory signals are detected, amplified, and propagated through the CNS via a sequential and reverberating signaling cascade involving communication between brain endothelial cells and glia. We propose that the brain's innate immune response differs depending upon which side of the blood-brain barrier the inflammatory stimulus arises, thus allowing the brain to respond differently to central vs. peripheral inflammatory insults.

  18. Responses of brain and non-brain endothelial cells to meningitis-causing Escherichia coli K1.

    PubMed

    Paul-Satyaseela, Maneesh; Xie, Yi; Di Cello, Francescopaolo; Kim, Kwang Sik

    2006-03-31

    Bacterial interaction with specific host tissue may contribute to its propensity to cause an infection in a particular site. In this study, we examined whether meningitis-causing Escherichia coli K1 interaction with human brain microvascular endothelial cells, which constitute the blood-brain barrier, differed from its interaction with non-brain endothelial cells derived from skin and umbilical cord. We showed that E. coli K1 association was significantly greater with human brain microvascular endothelial cells than with non-brain endothelial cells. In addition, human brain microvascular endothelial cells maintained their morphology and intercellular junctional resistance in response to E. coli K1. In contrast, non-brain endothelial cells exhibited decreased transendothelial electrical resistance and detachment from the matrix upon exposure to E. coli K1. These different responses of brain and non-brain endothelial cells to E. coli K1 may form the basis of E. coli K1's propensity to cause meningitis.

  19. Brain mesenchymal stem cells: physiology and pathological implications.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Martinez, Salvador

    2016-06-01

    Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine. © 2016 Japanese Society of Developmental Biologists.

  20. The Methods and Mechanisms to Differentiate Endothelial-Like Cells and Smooth Muscle Cells from Mesenchymal Stem Cells for Vascularization in Vaginal Reconstruction.

    PubMed

    Zhang, Hua; Zhang, Jingkun; Huang, Xianghua; Li, Yanan

    2018-06-01

    Endothelial cells and smooth muscle cells (SMCs) are important aspects of vascularization in vaginal reconstruction. Research has confirmed that mesenchymal stem cells could differentiate into endothelial-like cells and SMCs. But the methods were more complicated and the mechanism was unknown. In the current study, we induced the bone mesenchymal stem cells (BMSCs) to differentiate into endothelial-like cells and SMCs in vitro by differentiation medium and investigated the effect of Wnt/β-catenin signaling on the differentiation process of BMSCs. Results showed that the hypoxic environment combined with VEGF and bFGF could induce increased expression of endothelial-like cells markers VEGFR1, VEGFR2, and vWF. The SMCs derived from BMSCs induced by TGF-β1 and PDGF-AB significantly expressed SMC markers SMMHC11 and α-SMA. The data also showed that activation of Wnt/β-catenin signaling could promote the differentiation of BMSCs into endothelial-like cells and SMCs. Thus, we established endothelial-like cells and SMCs in vitro by more simple methods, presented the important role of hypoxic environment on the differentiation of BMSCs into endothelial-like cells, and confirmed that the Wnt/β-catenin signaling pathway has a positive impact on the differentiation of BMSCs into endothelial-like cells and SMCs. This is important for vascular reconstruction.

  1. Endothelial nitric oxide synthase is dynamically expressed during bone marrow stem cell differentiation into endothelial cells.

    PubMed

    Liu, Zhenguo; Jiang, Yuehua; Hao, Hong; Gupta, Kalpna; Xu, Jian; Chu, Ling; McFalls, Edward; Zweier, Jay; Verfaillie, Catherine; Bache, Robert J

    2007-09-01

    This study was designed to investigate the developmental expression of endothelial nitric oxide synthase (eNOS) during stem cell differentiation into endothelial cells and to examine the functional status of the newly differentiated endothelial cells. Mouse adult multipotent progenitor cells (MAPCs) were used as the source of stem cells and were induced to differentiate into endothelial cells with vascular endothelial growth factor (VEGF) in serum-free medium. Expression of eNOS in the cells during differentiation was evaluated with real-time PCR, nitric oxide synthase (NOS) activity, and Western blot analysis. It was found that eNOS, but no other NOS, was present in undifferentiated MAPCs. eNOS expression disappeared in the cells immediately after induction of differentiation. However, eNOS expression reoccurred at day 7 during differentiation. Increasing eNOS mRNA, protein content, and activity were observed in the cells at days 14 and 21 during differentiation. The differentiated endothelial cells formed dense capillary networks on growth factor-reduced Matrigel. VEGF-stimulated phosphorylation of extracellular signal-regulated kinase (ERK)-1 and ERK-2 occurred in these cells, which was inhibited by NOS inhibitor N(G)-nitro-L-arginine methyl ester. In conclusion, these data demonstrate that eNOS is present in MAPCs and is dynamically expressed during the differentiation of MAPCs into endothelial cells in vitro.

  2. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.

  3. Endothelial Glycocalyx as a Shield Against Diabetic Vascular Complications: Involvement of Hyaluronan and Hyaluronidases.

    PubMed

    Dogné, Sophie; Flamion, Bruno; Caron, Nathalie

    2018-07-01

    The endothelial glycocalyx (EG), which covers the apical surface of the endothelial cells and floats into the lumen of the vessels, is a key player in vascular integrity and cardiovascular homeostasis. The EG is composed of PGs (proteoglycans), glycoproteins, glycolipids, and glycosaminoglycans, in particular hyaluronan (HA). HA seems to be implicated in most of the functions described for EG such as creating a space between blood and the endothelium, controlling vessel permeability, restricting leukocyte and platelet adhesion, and allowing an appropriate endothelial response to flow variation through mechanosensing. The amount of HA in the EG may be regulated by HYAL (hyaluronidase) 1, the most active somatic hyaluronidase. HYAL1 seems enriched in endothelial cells through endocytosis from the bloodstream. The role of the other main somatic hyaluronidase, HYAL2, in the EG is uncertain. Damage to the EG, accompanied by shedding of one or more of its components, is an early sign of various pathologies including diabetes mellitus. Shedding increases the blood or plasma concentration of several EG components, such as HA, heparan sulfate, and syndecan. The plasma levels of these molecules can then be used as sensitive markers of EG degradation. This has been shown in type 1 and type 2 diabetic patients. Recent experimental studies suggest that preserving the size and amount of EG HA in the face of diabetic insults could be a useful novel therapeutic strategy to slow diabetic complications. One way to achieve this goal, as suggested by a murine model of HYAL1 deficiency, may be to inhibit the function of HYAL1. The same approach may succeed in other pathological situations involving endothelial dysfunction and EG damage. © 2018 American Heart Association, Inc.

  4. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    NASA Astrophysics Data System (ADS)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V.; Noll, Thomas; Funk, Richard H. W.; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  5. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)-the effect of biomolecular ligands to balance cell adhesion and stimulated detachment.

    PubMed

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly( N -isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na + /K + -ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro . The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  6. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    PubMed Central

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V; Noll, Thomas; Funk, Richard H W; Engelmann, Katrin; Werner, Carsten

    2015-01-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty. PMID:27877823

  7. Protein kinase C-α and arginase I mediate pneumolysin-induced pulmonary endothelial hyperpermeability.

    PubMed

    Lucas, Rudolf; Yang, Guang; Gorshkov, Boris A; Zemskov, Evgeny A; Sridhar, Supriya; Umapathy, Nagavedi S; Jezierska-Drutel, Agnieszka; Alieva, Irina B; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D; Verin, Alexander D; Pittet, Jean-François; Caldwell, Ruth B; Mitchell, Timothy J; Cederbaum, Stephen D; Fulton, David J; Matthay, Michael A; Caldwell, Robert W; Romero, Maritza J; Chakraborty, Trinad

    2012-10-01

    Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)(+/-)/arginase II (AII)(-/-) C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI(+/+)/AII(-/-) counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction.

  8. Protein Kinase C-α and Arginase I Mediate Pneumolysin-Induced Pulmonary Endothelial Hyperpermeability

    PubMed Central

    Yang, Guang; Gorshkov, Boris A.; Zemskov, Evgeny A.; Sridhar, Supriya; Umapathy, Nagavedi S.; Jezierska-Drutel, Agnieszka; Alieva, Irina B.; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D.; Verin, Alexander D.; Pittet, Jean-François; Caldwell, Ruth B.; Mitchell, Timothy J.; Cederbaum, Stephen D.; Fulton, David J.; Matthay, Michael A.; Caldwell, Robert W.; Romero, Maritza J.; Chakraborty, Trinad

    2012-01-01

    Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)+/−/arginase II (AII)−/− C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI+/+/AII−/− counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction. PMID:22582175

  9. Protective actions of progesterone in the cardiovascular system: potential role of membrane progesterone receptors (mPRs) in mediating rapid effects.

    PubMed

    Thomas, Peter; Pang, Yefei

    2013-06-01

    The protective functions of progesterone in the cardiovascular system have received little attention even though evidence has accumulated that progesterone lowers blood pressure, inhibits coronary hyperactivity and has powerful vasodilatory and natriuretic effects. One possible reason why potential beneficial actions of progesterone on cardiovascular functions have not been extensively studied is that divergent effects to those of progesterone have been observed in many clinical trials with synthetic progestins such as medroxyprogesterone acetate which are associated with increased risk of coronary disease. Evidence that progesterone exerts protective effects on cardiovascular functions is briefly reviewed. The finding that progesterone administration decreases blood vessel vasoconstriction in several animal models within a few minutes suggests that rapid, nongenomic progesterone mechanisms are of physiological importance in regulating vascular tone. Rapid activation of second messenger pathways by progesterone has been observed in vascular endothelial and smooth muscle cells, resulting in alterations in endothelial nitric oxide synthase (eNOS) activity and calcium influx, respectively. Both nuclear progesterone receptors (PRs) and novel membrane progesterone receptors (mPRs) are candidates for the intermediaries in these rapid, cell-surface initiated progesterone actions in endothelial and smooth muscle vascular cells. PRs have been detected in both cell types. New data are presented showing mPRα, mPRβ and mPRγ are also present in human endothelial and smooth muscle vascular cells. Preliminary evidence suggests mPRs mediate rapid progestin signaling in these endothelial cells, resulting in down-regulation of cAMP production and increased nitric oxide synthesis. The role of mPRs in progesterone regulation of cardiovascular functions warrants further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface.

    PubMed

    Qi, Pengkai; Yan, Wei; Yang, Ying; Li, Yalong; Fan, Yi; Chen, Junying; Yang, Zhilu; Tu, Qiufen; Huang, Nan

    2015-02-01

    The endothelial progenitor cells (EPCs) capture stent has drawn increasing attentions and become one of the most promising concepts for the next generation vascular stent. In this regard, it is of great significance to immobilize a molecule with the ability to bind EPC for rapid in vivo endothelialization with high specificity. In this work, a facile two-step method aimed at constructing a coating with specific EPC capturing aptamers is reported. The processes involves as the first-step deposition of plasma polymerized allylamine (PPAam) on a substrate to introduce amine groups, followed by the electrostatic adsorption of a 34 bases single strand DNA sequence to the PPAam surface as a second step (PPAam-DNA). Grazing incidence attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the successful immobilization of the aptamers. Quartz crystal microbalance with dissipation (QCM-D) real time monitoring result shows that about 175 ng/cm(2) aptamers were conjugated onto the PPAam surface. The interactions between the modified surfaces and human umbilical vein endothelial cells (ECs), smooth muscle cells (SMCs), and murine induced EPCs derived from mesenchymal stem cells (MSCs) were also investigated. It was demonstrated that PPAam-DNA samples could capture more EPCs, and present a cellular friendly surface for the proliferation of both EPCs and ECs but no effect on the hyperplasia of SMCs. Also, the co-culture results of 3 types of cells confirmed that the aptamer could specifically bond EPCs rather than ECs and SMCs, suggesting the competitive adhesion advantage of EPCs to ECs and SMCs. These data demonstrate that the EPC aptamer has large potential for designing an EPC captured stent and other vascular grafts with targeted in situ endothelialization. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. FOXO3 Modulates Endothelial Gene Expression and Function by Classical and Alternative Mechanisms*

    PubMed Central

    Czymai, Tobias; Viemann, Dorothee; Sticht, Carsten; Molema, Grietje; Goebeler, Matthias; Schmidt, Marc

    2010-01-01

    FOXO transcription factors represent targets of the phosphatidylinositol 3-kinase/protein kinase B survival pathway controlling important biological processes, such as cell cycle progression, apoptosis, vascular remodeling, stress responses, and metabolism. Recent studies suggested the existence of alternative mechanisms of FOXO-dependent gene expression beyond classical binding to a FOXO-responsive DNA-binding element (FRE). Here we analyzed the relative contribution of those mechanisms to vascular function by comparing the transcriptional and cellular responses to conditional activation of FOXO3 and a corresponding FRE-binding mutant in human primary endothelial cells. We demonstrate that FOXO3 controls expression of vascular remodeling genes in an FRE-dependent manner. In contrast, FOXO3-induced cell cycle arrest and apoptosis occurs independently of FRE binding, albeit FRE-dependent gene expression augments the proapoptotic response. These findings are supported by bioinformatical analysis, which revealed a statistical overrepresentation of cell cycle regulators and apoptosis-related genes in the group of co-regulated genes. Molecular analysis of FOXO3-induced endothelial apoptosis excluded modulators of the extrinsic death receptor pathway and demonstrated important roles for the BCL-2 family members BIM and NOXA in this process. Although NOXA essentially contributed to FRE-dependent apoptosis, BIM was effectively induced in the absence of FRE-binding, and small interfering RNA-mediated BIM depletion could rescue apoptosis induced by both FOXO3 mutants. These data suggest BIM as a critical cell type-specific mediator of FOXO3-induced endothelial apoptosis, whereas NOXA functions as an amplifying factor. Our study provides the first comprehensive analysis of alternatively regulated FOXO3 targets in relevant primary cells and underscores the importance of such genes for endothelial function and integrity. PMID:20123982

  12. In situ cannulation, microgrid follow-up and low-density plating provide first passage endothelial cell masscultures for in vitro lining.

    PubMed

    Zilla, P; Fasol, R; Dudeck, U; Siedler, S; Preiss, P; Fischlein, T; Müller-Glauser, W; Baitella, G; Sanan, D; Odell, J

    1990-08-01

    A rapid and reliable harvest and culture technique was developed to provide a sufficient number of autologous endothelial cells for the confluent in vitro lining of cardiovascular prostheses. Enzymatic endothelial cell detachment was achieved by the in situ application of collagenase to short vessel segments. This harvest technique resulted in a complete lack of contaminating smooth muscle cells in all of 124 cultures from nonhuman primates and 13 cultures from human adults. The use of a microgrid technique enabled the daily in situ quantification of available endothelial cells. To assess ideal plating densities after passage the population doubling time was continuously related to the cell density. Surprisingly, a low plating density of 1.5 X 10(3) endothelial cells/cm2 achieved 43% shorter cell cycles than the usual plating density of 1.0 X 10(4) endothelial cells/cm2. Moreover, low density plating enabled mass cultures after one single cell passage, thereby reducing the cell damaging effect of trypsin. When the growth characteristics of endothelial cells from five anatomically different vessel sites were compared, the external jugular vein--which would be easily accessible and dispensable in each patient--proved to be an excellent source for endothelial cell cultures. By applying in situ administration of collagenase, low density plating and microgrid follow-up to adult human saphenous vein endothelial cells, 14,000,000 first passage endothelial cells--sufficient for the in vitro lining of long vascular prostheses--were obtained 26.2 days after harvest. (95% confidence interval:22.3 to 32.2 days).

  13. Low-level laser therapy prevents endothelial cells from TNF-α/cycloheximide-induced apoptosis.

    PubMed

    Chu, Yu-Hsiu; Chen, Shu-Ya; Hsieh, Yueh-Ling; Teng, Yi-Hsien; Cheng, Yu-Jung

    2018-02-01

    Low-level laser therapy (LLLT), widely used in physiotherapy, has been known to enhance wound healing and stimulate cell proliferation, including fibroblast and endothelial cells. Applying LLLT can increase cell proliferation in many kinds of cells including fibroblasts and endothelial cells. However, the protective mechanisms of LLLT on endothelial apoptosis remain unclear. We hypothesized LLLT can protect endothelial cells from inflammation-induced apoptosis. Human endothelial cell line, EA.hy926 cells, and TNF-α/cycloheximide (TNF/CHX) were used to explore the protective effects of LLLT (660 nm) on inflammation-induced endothelial apoptosis. Cell viability, apoptosis, caspase-3/7/8/9 activity, MAPKs signaling, NF-κB activity, and inducible/endothelial nitric oxide synthase (iNOS/eNOS) expression were measured. Our results showed that LLLT increased EA.hy926 cell proliferation, attenuated the TNF/CHX-induced apoptosis, and reduced the TNF/CHX-mediated caspase-3/7/8/9 activation. In addition, LLLT increased ERK MAPK phosphorylation and suppressed the TNF/CHX-increased p38 MAPK, JNK, IKK phosphorylation, NF-κB translocation, and iNOS expression. The caspases-3 cleavage and cell death were not increased in cells treating with ERK inhibitor U0126, which implicated that ERK is not to be responsible for the protective effects of LLLT. After treating with p38 mitogen-activated protein kinase (MAPK) activator, the protection of LLLT in cell apoptosis was no longer existed, showing that LLLT protected the endothelial cells by suppressing p38 MAPK signaling. Our results provide a new insight into the possible molecular mechanisms in which LLLT protects against inflammatory-induced endothelial dysfunction.

  14. Reduced Ang2 expression in aging endothelial cells.

    PubMed

    Hohensinner, P J; Ebenbauer, B; Kaun, C; Maurer, G; Huber, K; Wojta, J

    2016-06-03

    Aging endothelial cells are characterized by increased cell size, reduced telomere length and increased expression of proinflammatory cytokines. In addition, we describe here that aging reduces the migratory distance of endothelial cells. Furthermore, we observe an increase of the quiescence protein Ang1 and a decrease of the endothelial activation protein Ang2 upon aging. Supplementing Ang2 to aged endothelial cells restored their migratory capacity. We conclude that aging shifts the balance of the Ang1/Ang2 network favouring a quiescent state. Activation of endothelial cells in aging might be necessary to enhance wound healing capacities. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. EphrinA1 Inhibits Vascular Endothelial Growth Factor-Induced Intracellular Signaling and Suppresses Retinal Neovascularization and Blood-Retinal Barrier Breakdown

    PubMed Central

    Ojima, Tomonari; Takagi, Hitoshi; Suzuma, Kiyoshi; Oh, Hideyasu; Suzuma, Izumi; Ohashi, Hirokazu; Watanabe, Daisuke; Suganami, Eri; Murakami, Tomoaki; Kurimoto, Masafumi; Honda, Yoshihito; Yoshimura, Nagahisa

    2006-01-01

    The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 ± 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 ± 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy. PMID:16400034

  16. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Wang, Wei; Liu, Dong; Zhang, Haoqiang; Gao, Peng; Geng, Lei; Yuan, Yulin; Lu, Jianxi; Wang, Zhen

    2015-03-01

    The porous architectural characteristics of biomaterials play an important role in scaffold revascularization. However, no consensus exists regarding optimal interconnection sizes for vascularization and its scaffold bioperformance with different interconnection sizes. Therefore, a series of disk-type beta-tricalcium phosphates with the same pore sizes and variable interconnections were produced to evaluate how the interconnection size influenced biomaterial vascularization in vitro and in vivo. We incubated human umbilical vein endothelial cells on scaffolds with interconnections of various sizes. Results showed that scaffolds with a 150 μm interconnection size ameliorated endothelial cell function evidenced by promoting cell adhesion and migration, increasing cell proliferation and enhancing expression of platelet-endothelial cell adhesion molecules and vascular endothelial growth factor. In vivo study was performed on rabbit implanted with scaffolds into the bone defect on femoral condyles. Implantation with scaffolds with 150 μm interconnection size significantly improved neovascularization as shown by micro-CT as compared to scaffolds with 100 and 120 μm interconnection sizes. Moreover, the aforementioned positive effects were abolished by blocking PI3K/Akt/eNOS pathway with LY-294002. Our study explicitly demonstrates that the scaffold with 150 μm interconnection size improves neovascularization via the PI3K/Akt pathway and provides a target for biomaterial inner structure modification to attain improved clinical performance in implant vascularization.

  17. PC12 Cells Differentiate into Chromaffin Cell-Like Phenotype in Coculture with Adrenal Medullary Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Mizrachi, Yaffa; Naranjo, Jose R.; Levi, Ben-Zion; Pollard, Harvey B.; Lelkes, Peter I.

    1990-08-01

    Previously we described specific in vitro interactions between PC12 cells, a cloned, catecholamine-secreting pheochromocytoma cell line derived from the rat adrenal medulla, and bovine adrenal medullary endothelial cells. We now demonstrate that these interactions induce the PC12 cells to acquire physical and biochemical characteristics reminiscent of chromaffin cells. Under coculture conditions involving direct cell-cell contact, the endothelial cells and the PC12 cells reduced their rates of proliferation; upon prolonged coculture PC12 cells clustered into nests of cells similar to the organization of chromaffin cells seen in vivo. Within 3 days in coculture with endothelial cells, but not with unrelated control cells, PC12 cells synthesized increased levels of [Met]enkephalin. In addition, PC12 cells, growing on confluent endothelial monolayers, failed to extend neurites in response to nerve growth factor. Neither medium conditioned by endothelial cells nor fixed endothelial cells could by themselves induce all of these different phenomena in the PC12 cells. These results suggest that under coculture conditions PC12 cells change their state of differentiation toward a chromaffin cell-like phenotype. The rapid, transient increase in the expression of the protooncogene c-fos suggests that the mechanism(s) inducing the change in the state of differentiation in PC12 cells in coculture with the endothelial cells may be distinct from that described for the differentiation of PC12 cells--e.g., by glucocorticoids. We propose that similar interactions between endothelial cells and chromaffin cell precursors may occur during embryonic development and that these interactions might be instrumental for the organ-specific differentiation of the adrenal medulla in vivo.

  18. Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control.

    PubMed

    Work, L M; Ritchie, N; Nicklin, S A; Reynolds, P N; Baker, A H

    2004-08-01

    Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a approximately 1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced alphav integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.

  19. Endothelial-monocyte activating polypeptide II disrupts alveolar epithelial type II to type I cell transdifferentiation

    PubMed Central

    2012-01-01

    Background Distal alveolar morphogenesis is marked by differentiation of alveolar type (AT)-II to AT-I cells that give rise to the primary site of gas exchange, the alveolar/vascular interface. Endothelial-Monocyte Activating Polypeptide (EMAP) II, an endogenous protein with anti-angiogenic properties, profoundly disrupts distal lung neovascularization and alveolar formation during lung morphogenesis, and is robustly expressed in the dysplastic alveolar regions of infants with Bronchopulmonary dysplasia. Determination as to whether EMAP II has a direct or indirect affect on ATII→ATI trans-differentiation has not been explored. Method In a controlled nonvascular environment, an in vitro model of ATII→ATI cell trans-differentiation was utilized to demonstrate the contribution that one vascular mediator has on distal epithelial cell differentiation. Results Here, we show that EMAP II significantly blocked ATII→ATI cell transdifferentiation by increasing cellular apoptosis and inhibiting expression of ATI markers. Moreover, EMAP II-treated ATII cells displayed myofibroblast characteristics, including elevated cellular proliferation, increased actin cytoskeleton stress fibers and Rho-GTPase activity, and increased nuclear:cytoplasmic volume. However, EMAP II-treated cells did not express the myofibroblast markers desmin or αSMA. Conclusion Our findings demonstrate that EMAP II interferes with ATII → ATI transdifferentiation resulting in a proliferating non-myofibroblast cell. These data identify the transdifferentiating alveolar cell as a possible target for EMAP II's induction of alveolar dysplasia. PMID:22214516

  20. Cell painting with an engineered EPCR to augment the protein C system

    PubMed Central

    Bouwens, Eveline A. M.; Stavenuiter, Fabian; Mosnier, Laurent O.

    2016-01-01

    The protein C (PC) system conveys beneficial anticoagulant and cytoprotective effects in numerous in vivo disease models. The endothelial protein C receptor (EPCR) plays a central role in these pathways as cofactor for PC activation and by enhancing activated protein C (APC)-mediated protease-activated receptor (PAR) activation. During inflammatory disease, expression of EPCR on cell membranes is often diminished thereby limiting PC activation and APC’s effects on cells. Here a caveolae-targeting glycosylphosphatidylinositol (GPI)-anchored EPCR (EPCR-GPI) was engineered to restore EPCR’s bioavailability via “cell painting.” The painting efficiency of EPCR-GPI on EPCR-depleted endothelial cells was time- and dose-dependent. The EPCR-GPI bioavailability after painting was long lasting since EPCR surface levels reached 400% of wild-type cells after 2 hours and remained >200% for 24 hours. EPCR-GPI painting conveyed APC binding to EPCR-depleted endothelial cells where EPCR was lost due to shedding or shRNA. EPCR painting normalized PC activation on EPCR-depleted cells indicating that EPCR-GPI is functional active on painted cells. Caveolin-1 lipid rafts were enriched in EPCR after painting due to the GPI-anchor targeting caveolae. Accordingly, EPCR painting supported PAR1 and PAR3 cleavage by APC and augmented PAR1-dependent Akt phosphorylation by APC. Thus, EPCR-GPI painting achieved physiological relevant surface levels on endothelial cells, restored APC binding to EPCR-depleted cells, supported PC activation, and enhanced APC-mediated PAR cleavage and cytoprotective signaling. Therefore, EPCR-GPI provides a novel tool to restore the bioavailability and functionality of EPCR on EPCR-depleted and deficient cells. PMID:26272345

  1. Development of an Aquatic Bioassay using the Medaka (Oryzias latipes) to Assess Human Health Risk: Tumor Immunodiagnosis.

    DTIC Science & Technology

    1995-01-10

    C-8029) (5) Type Exposure group and total number of each tumor type Adenoma II (1), III (1) Cholangioma II (1) Hepatocellular carcinoma I (1), II (2...antitrypsin Common marker for hepatocellular carcinoma Factor VIII/UEA-I Markers for endothelial cell differentiation S-100 protein Marker for nerve sheath...cells *Different cytokeratins can be used to detect different types of epithelium, i.e. to differentiate hepatocellular carcinoma from cholangiocellular

  2. The Role of Platelet-Derived Growth Factor C and Its Splice Variant in Breast Cancer

    DTIC Science & Technology

    2012-02-01

    epithelial-mesenchymal transition leading instead to apoptosis (8). Furthermore, inhibition of PDGFR signaling by the PDGFR inhibitor STI571...PDGFRs are expressed in many different cell types including endothelial, epithelial and neural cells and are necessary for embryological development (as

  3. Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/β-catenin pathway during brain angiogenesis

    PubMed Central

    Vanhollebeke, Benoit; Stone, Oliver A; Bostaille, Naguissa; Cho, Chris; Zhou, Yulian; Maquet, Emilie; Gauquier, Anne; Cabochette, Pauline; Fukuhara, Shigetomo; Mochizuki, Naoki; Nathans, Jeremy; Stainier, Didier YR

    2015-01-01

    Despite the critical role of endothelial Wnt/β-catenin signaling during central nervous system (CNS) vascularization, how endothelial cells sense and respond to specific Wnt ligands and what aspects of the multistep process of intra-cerebral blood vessel morphogenesis are controlled by these angiogenic signals remain poorly understood. We addressed these questions at single-cell resolution in zebrafish embryos. We identify the GPI-anchored MMP inhibitor Reck and the adhesion GPCR Gpr124 as integral components of a Wnt7a/Wnt7b-specific signaling complex required for brain angiogenesis and dorsal root ganglia neurogenesis. We further show that this atypical Wnt/β-catenin signaling pathway selectively controls endothelial tip cell function and hence, that mosaic restoration of single wild-type tip cells in Wnt/β-catenin-deficient perineural vessels is sufficient to initiate the formation of CNS vessels. Our results identify molecular determinants of ligand specificity of Wnt/β-catenin signaling and provide evidence for organ-specific control of vascular invasion through tight modulation of tip cell function. DOI: http://dx.doi.org/10.7554/eLife.06489.001 PMID:26051822

  4. Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension.

    PubMed

    Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A; Xiao, Liang; Chen, Wei; Owens, Gary K; Humphrey, Jay D; Majesky, Mark W; Paik, David T; Hatzopoulos, Antonis K; Madhur, Meena S; Harrison, David G

    2016-02-01

    Various hypertensive stimuli lead to exuberant adventitial collagen deposition in large arteries, exacerbating blood pressure elevation and end-organ damage. Collagen production is generally attributed to resident fibroblasts; however, other cells, including resident and bone marrow-derived stem cell antigen positive (Sca-1(+)) cells and endothelial and vascular smooth muscle cells, can produce collagen and contribute to vascular stiffening. Using flow cytometry and immunofluorescence, we found that adventitial Sca-1(+) progenitor cells begin to produce collagen and acquire a fibroblast-like phenotype in hypertension. We also found that bone marrow-derived cells represent more than half of the matrix-producing cells in hypertension, and that one-third of these are Sca-1(+). Cell sorting and lineage-tracing studies showed that cells of endothelial origin contribute to no more than one fourth of adventitial collagen I(+) cells, whereas those of vascular smooth muscle lineage do not contribute. Our findings indicate that Sca-1(+) progenitor cells and bone marrow-derived infiltrating fibrocytes are major sources of arterial fibrosis in hypertension. Endothelial to mesenchymal transition likely also contributes, albeit to a lesser extent and pre-existing resident fibroblasts represent a minority of aortic collagen-producing cells in hypertension. This study shows that vascular stiffening represents a complex process involving recruitment and transformation of multiple cells types that ultimately elaborate adventitial extracellular matrix. © 2015 American Heart Association, Inc.

  5. An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes)

    PubMed Central

    Weinbaum, Sheldon; Duan, Yi; Thi, Mia M.; You, Lidan

    2013-01-01

    In this review we will examine from a biomechanical and ultrastructural viewpoint how the cytoskeletal specialization of three basic cell types, endothelial cells (ECs), epithelial cells (renal tubule) and dendritic cells (osteocytes), enables the mechano-sensing of fluid flow in both their native in vivo environment and in culture, and the downstream signaling that is initiated at the molecular level in response to fluid flow. These cellular responses will be discussed in terms of basic mysteries and paradoxes encountered by each cell type. In ECs fluid shear stress (FSS) is nearly entirely attenuated by the endothelial glycocalyx that covers their apical membrane and yet FSS is communicated to both intracellular and junctional molecular components in activating a wide variety of signaling pathways. The same is true in proximal tubule (PT) cells where a dense brush border of microvilli covers the apical surface and the flow at the apical membrane is negligible. A four decade old unexplained mystery is the ability of PT epithelia to reliably reabsorb 60% of the flow entering the tubule regardless of the glomerular filtration rate. In the cortical collecting duct (CCD) the flow rates are so low that a special sensing apparatus, a primary cilia is needed to detect very small variations in tubular flow. In bone it has been a century old mystery as to how osteocytes embedded in a stiff mineralized tissue are able to sense miniscule whole tissue strains that are far smaller than the cellular level strains required to activate osteocytes in vitro. PMID:23976901

  6. Angiopoietin-1 protects the endothelial cells against advanced glycation end product injury by strengthening cell junctions and inhibiting cell apoptosis.

    PubMed

    Zhao, Jingling; Chen, Lei; Shu, Bin; Tang, Jinming; Zhang, Lijun; Xie, Julin; Liu, Xusheng; Xu, Yingbin; Qi, Shaohai

    2015-08-01

    Endothelial dysfunction is a major characteristic of diabetic vasculopathy. Protection of the vascular endothelium is an essential aspect of preventing and treating diabetic vascular complications. Although Angiopoietin-1 (Ang-1) is an important endothelial-specific protective factor, whether Ang-1 protects vascular cells undergoing advanced glycation end product (AGE) injury has not been investigated. The aim of the present study was to determine the potential effects of Ang-1 on endothelial cells after exposure to AGE. We show here that Ang-1 prevented AGE-induced vascular leakage by enhancing the adherens junctions between endothelial cells, and this process was mediated by the phosphorylation and membrane localization of VE-cadherin. Furthermore, Ang-1 also protected endothelial cells from AGE-induced death by regulating phosphatidylinositol 3-kinase (PI3K)/Akt-dependent Bad phosphorylation. Our findings suggest that the novel protective mechanisms of Ang-1 on endothelium are achieved by strengthening endothelial cell junctions and reducing endothelial cell death after AGE injury. © 2014 Wiley Periodicals, Inc.

  7. Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells.

    PubMed

    Mariappan, Devi; Winkler, Johannes; Chen, Shuhua; Schulz, Herbert; Hescheler, Jürgen; Sachinidis, Agapios

    2009-02-01

    Identification of genes involved in endothelial differentiation is of great interest for the understanding of the cellular and molecular mechanisms involved in the development of new blood vessels. Mouse embryonic stem (mES) cells serve as a potential source of endothelial cells for transcriptomic analysis. We isolated endothelial cells from 8-days old embryoid bodies by immuno-magnetic separation using platelet endothelial cell adhesion molecule-1 (also known as CD31) expressed on both early and mature endothelial cells. CD31(+) cells exhibit endothelial-like behavior by being able to incorporate DiI-labeled acetylated low-density lipoprotein as well as form tubular structures on matrigel. Quantitative and semi-quantitative PCR analysis further demonstrated the increased expression of endothelial transcripts. To ascertain the specific transcriptomic identity of the CD31(+) cells, large-scale microarray analysis was carried out. Comparative bioinformatic analysis reveals an enrichment of the gene ontology categories angiogenesis, blood vessel morphogenesis, vasculogenesis and blood coagulation in the CD31(+) cell population. Based on the transcriptomic signatures of the CD31(+) cells, we conclude that this ES cell-derived population contains endothelial-like cells expressing a mesodermal marker BMP2 and possess an angiogenic potential. The transcriptomic characterization of CD31(+) cells enables an in vitro functional genomic model to identify genes required for angiogenesis.

  8. ET-1 deletion from endothelial cells protects the kidney during the extension phase of ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arfian, Nur; Emoto, Noriaki, E-mail: emoto@med.kobe-u.ac.jp; Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe

    Highlights: Black-Right-Pointing-Pointer Ischemia/reperfusion injury (IRI) induced increased endothelin-1 (ET-1) expression. Black-Right-Pointing-Pointer IRI was accompanied by tubular injury and remodeling of renal arteries. Black-Right-Pointing-Pointer IRI increased oxidative stress and inflammation. Black-Right-Pointing-Pointer Genetic suppression of ET-1 in endothelial cells attenuates IRI in the kidney. Black-Right-Pointing-Pointer The mechanisms include the inhibition of oxidative stress and inflammation. -- Abstract: Background: The prognosis of patients after acute kidney injury (AKI) is poor and treatment is limited. AKI is mainly caused by renal ischemia/reperfusion injury (IRI). During the extension phase of IRI, endothelial damage may participate in ischemia and inflammation. Endothelin-1 (ET-1) which is mostly secretedmore » by endothelial cells is an important actor of IRI, particularly through its strong vasoconstrictive properties. We aimed to analyze the specific role of ET-1 from the endothelial cells in AKI. Methods: We used mice lacking ET-1 in the vascular endothelial cells (VEETKO). We induced IRI in VEETKO mice and wild type controls by clamping both kidneys for 30 min. Sham operated mice were used as controls. Mice were sacrificed one day after IRI in order to investigate the extension phase of IRI. Kidney function was assessed based on serum creatinine concentration. Levels of expression of ET-1, its receptor ET{sub A}, protein kinase C, eNOS, E-Cadherin and inflammation markers were evaluated by real time PCR or western blot. Tubular injury was scored on periodic acid Schiff stained kidney preparations. Lumen and wall area of small intrarenal arteries were measured on kidney slices stained for alpha smooth muscle cell actin. Oxidative stress, macrophage infiltration and cell proliferation was evaluated on slices stained for 8-hydroxy-2 Prime -deoxyguanosine, F4/80 and PCNA, respectively. Results: IRI induced kidney failure and increased ET-1 and ET{sub A} receptor expression. This was accompanied by tubular injury, wall thickening and reduction of lumen area/wall area ratio of small renal arteries, increased oxidative stress and inflammation. These parameters were attenuated in VEETKO mice. Conclusion: Our results suggest that suppression of ET-1 from the endothelial cells attenuates IRI kidney injury. Blocking ET-1 effects may represent a therapeutic strategy in the management of AKI.« less

  9. Generation of a felinized swine endothelial cell line by expression of feline decay-accelerating factor.

    PubMed

    Izuhara, Luna; Tatsumi, Norifumi; Miyagawa, Shuji; Iwai, Satomi; Watanabe, Masahito; Yamanaka, Shuichiro; Katsuoka, Yuichi; Nagashima, Hiroshi; Okano, Hirotaka J; Yokoo, Takashi

    2015-01-01

    Embryonic stem cell research has facilitated the generation of many cell types for the production of tissues and organs for both humans and companion animals. Because ≥30% of pet cats suffer from chronic kidney disease (CKD), xenotransplantation between pigs and cats has been studied. For a successful pig to cat xenotransplant, the immune reaction must be overcome, especially hyperacute rejection. In this study, we isolated the gene for feline decay-accelerating factor (fDAF), an inhibitor of complement proteins, and transfected a swine endothelial cell line with fDAF to "felinize" the pig cells. These fDAF-expressing cells were resistant to feline serum containing anti-pig antibodies, suggesting that felinized pig cells were resistant to hyperacute rejection. Our results suggest that a "felinized" pig kidney can be generated for the treatment of CKD in cats in the future.

  10. Nutritional improvement of the endothelial control of vascular tone by polyphenols: role of NO and EDHF.

    PubMed

    Schini-Kerth, Valérie B; Auger, Cyril; Kim, Jong-Hun; Etienne-Selloum, Nelly; Chataigneau, Thierry

    2010-05-01

    Numerous studies indicate that regular intake of polyphenol-rich beverages (red wine and tea) and foods (chocolate, fruit, and vegetables) is associated with a protective effect on the cardiovascular system in humans and animals. Beyond the well-known antioxidant properties of polyphenols, several other mechanisms have been shown to contribute to their beneficial cardiovascular effects. Indeed, both experimental and clinical studies indicate that polyphenols improve the ability of endothelial cells to control vascular tone. Experiments with isolated arteries have shown that polyphenols cause nitric oxide (NO)-mediated endothelium-dependent relaxations and increase the endothelial formation of NO. The polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol3-kinase/Akt pathway leading to endothelial NO synthase (eNOS) activation subsequent to its phosphorylation on Ser 1177. Besides the phosphatidylinositol3-kinase/Akt pathway, polyphenols have also been shown to activate eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in endothelial cells. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, polyphenols can increase the expression level of eNOS in endothelial cells leading to an increased formation of NO. Moreover, the polyphenol-induced endothelium-dependent relaxation also involves endothelium-derived hyperpolarizing factor, besides NO, in several types of arteries. Altogether, polyphenols have the capacity to improve the endothelial control of vascular tone not only in several experimental models of cardiovascular diseases such as hypertension but also in healthy and diseased humans. Thus, these experimental and clinical studies highlight the potential of polyphenol-rich sources to provide vascular protection in health and disease.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Li; Xu, Xun; Zhao, Hui

    A synthetic deca-peptide corresponding to the amino acid sequence Arg{sup 54}-Trp{sup 63} of human tissue-type plasminogen activator (t-PA) kringle 2 domain, named TKII-10, is produced and tested for its ability to inhibit endothelial cell proliferation, migration, tube formation in vitro, and angiogenesis in vivo. At the same time, another peptide TKII-10S composed of the same 10 amino acids as TKII-10, but in a different sequence, is also produced and tested. The results show that TKII-10 potently inhibits VEGF-stimulated endothelial cell migration and tube formation in a dose-dependent, as well as sequence-dependent, manner in vitro while it is inactive in inhibitingmore » endothelial cell proliferation. Furthermore, TKII-10 potently inhibits angiogenesis in chick chorioallantoic membrane and mouse cornea. The middle four amino acids DGDA in their sequence play an important role in TKII-10 angiogenesis inhibition{sub .} These results suggest that TKII-10 is a novel angiogenesis inhibitor that may serve as a prototype for antiangiogenic drug development.« less

  12. Analysis of corneal endothelial cell density and morphology after laser in situ keratomileusis using two types of femtosecond lasers

    PubMed Central

    Tomita, Minoru; Waring, George O; Watabe, Miyuki

    2012-01-01

    Purpose To compare two different femtosecond lasers used for flap creation during laser-assisted in situ keratomileusis (LASIK) surgery in terms of their effects on the corneal endothelium. Methods We performed LASIK surgery on 254 eyes of 131 patients using IntraLase FS60 (Abbott Medical Optics, Inc, Irvine, CA; IntraLase group) and 254 eyes of 136 patients using Femto LDV (Ziemer Group AG, Port, Switzerland; LDV group) for corneal flap creation. The mean cell density, coefficient of variation, and hexagonality of the corneal endothelial cells were determined and the results were statistically compared. Results There were no statistically significant differences in the corneal morphology between pre and post LASIK results in each group, nor were there significant differences between the results of both groups at 3 months post LASIK. Conclusions Both IntraLase FS60 and Ziemer Femto LDV are able to create flaps without significant adverse effects on the corneal endothelial morphology through 3 months after LASIK surgery. PMID:23055680

  13. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    PubMed

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p <0.001). A colony of circulating endothelial progenitor cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p <0.001). The culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p <0.001). The circulating endothelial progenitor cell level correlated positively with the number of patient colonies (r = 0.762, p <0.001). Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p <0.001). Earlier emergence of circulating endothelial progenitor cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells

    PubMed Central

    Suschek, Christoph; Kolb, Hubert; Kolb-Bachofen, Victoria

    1997-01-01

    Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants.In each of the different endothelial cells Mg-Dobesilate incubation (0.25–1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor NG-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects.iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT–PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT–PCR. PMID:9421302

  15. Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering.

    PubMed

    Kroustalli, A; Zisimopoulou, A E; Koch, S; Rongen, L; Deligianni, D; Diamantouros, S; Athanassiou, G; Kokozidou, M; Mavrilas, D; Jockenhoevel, S

    2013-12-01

    Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.

  16. Effects of gestational hypertension and pre-eclampsia in mRNA expression of fibrinolysis genes in primary cultured human umbilical vein endothelial cells.

    PubMed

    Poblete-Naredo, Irais; Rodríguez-Yáñez, Yury; Corona-Núñez, Rogelio O; González-Monroy, Stuart; Salinas, Juan E; Albores, Arnulfo

    2018-05-17

    Hypertension disorders (HD) and pre-eclampsia (PRE) are leading causes of maternal deaths worldwide. PRE is associated with vascular endothelial dysfunction and with deregulation of the fibrinolysis pathway genes. Fibrinolysis is the fibrin clot hydrolysis process catalyzed by plasmin, a proteolytic enzyme formed from plasminogen. Plasminogen is cleaved by tissue-type (tPA) and urokinase-type (uPA) activators and inhibited by the plasminogen activator inhibitors type-1 (PAI-1) and type-2 (PAI-2). The whole process maintains blood hemostasis. This study aims to assess PAI-1, PAI-2, tPA and uPA mRNA expression in primary cultured human umbilical vein endothelial cells (HUVEC) isolated and cultured from healthy, HD and PRE women. Results show that PAI-1 and PAI-2 mRNA decreased in HD-HUVEC, whereas PAI-1 and uPA decreased in PRE-HUVEC cultures compared to control ones. Notably, the expression ratio between pro- and anti-fibrinolytic actors remained unchanged among the studied groups. It seems that newborn's hemostasis is maintained balanced probably by a compensatory mechanism that involves changes in the fibrinolysis gene expression profile. The real impact of these changes in mRNA expression is unknown, however, it is suggested that these changes could be associated with an increased predisposition to vascular disease development in the progeny. Copyright © 2018. Published by Elsevier Ltd.

  17. What is going on between defibrotide and endothelial cells? Snapshots reveal the hot spots of their romance

    PubMed Central

    Mir, Enrique; Rovira, Montse; Escolar, Ginés; Carreras, Enric; Diaz-Ricart, Maribel

    2016-01-01

    Defibrotide (DF) has received European Medicines Agency authorization to treat sinusoidal obstruction syndrome, an early complication after hematopoietic cell transplantation. DF has a recognized role as an endothelial protective agent, although its precise mechanism of action remains to be elucidated. The aim of the present study was to investigate the interaction of DF with endothelial cells (ECs). A human hepatic EC line was exposed to different DF concentrations, previously labeled. Using inhibitory assays and flow cytometry techniques along with confocal microscopy, we explored: DF-EC interaction, endocytic pathways, and internalization kinetics. Moreover, we evaluated the potential role of adenosine receptors in DF-EC interaction and if DF effects on endothelium were dependent of its internalization. Confocal microscopy showed interaction of DF with EC membranes followed by internalization, though DF did not reach the cell nucleus even after 24 hours. Flow cytometry revealed concentration, temperature, and time dependent uptake of DF in 2 EC models but not in other cell types. Moreover, inhibitory assays indicated that entrance of DF into ECs occurs primarily through macropinocytosis. Our experimental approach did not show any evidence of the involvement of adenosine receptors in DF-EC interaction. The antiinflammatory and antioxidant properties of DF seem to be caused by the interaction of the drug with the cell membrane. Our findings contribute to a better understanding of the precise mechanisms of action of DF as a therapeutic and potential preventive agent on the endothelial damage underlying different pathologic situations. PMID:26755708

  18. Poly-(amidoamine) dendrimers with a precisely core positioned sulforhodamine B molecule for comparative biological tracing and profiling.

    PubMed

    Wu, Lin-Ping; Ficker, Mario; Mejlsøe, Søren L; Hall, Arnaldur; Paolucci, Valentina; Christensen, Jørn B; Trohopoulos, Panagiotis N; Moghimi, Seyed M

    2017-01-28

    We report on a simple robust procedure for synthesis of generation-4 poly-(amidoamine) (PAMAM) dendrimers with a precisely core positioned single sulforhodamine B molecule. The labelled dendrimers exhibited high fluorescent quantum yields where the absorbance and fluorescence spectrum of the fluorophore was not affected by pH and temperature. Since the stoichiometry of the fluorophore to the dendrimer is 1:1, we were able to directly compare uptake kinetics, the mode of uptake, trafficking and safety of dendrimers of different end-terminal functionality (carboxylated vs. pyrrolidonated) by two phenotypically different human endothelial cell types (the human brain capillary endothelial cell line hCMEC/D3 and human umbilical vein endothelial cells), and without interference of the fluorophore in uptake processes. The results demonstrate comparable uptake kinetics and a predominantly clathrin-mediated endocytotic mechanism, irrespective of dendrimer end-terminal functionality, where the majority of dendrimers are directed to the endo-lysosomal compartments in both cell types. A minor fraction of dendrimers, however, localize to endoplasmic reticulum and the Golgi apparatus, presumably through the recycling endosomes. In contrast to amino-terminated PAMAM dendrimers, we confirm safety of carboxylic acid- and pyrrolidone-terminated PAMAM dendrimers through determination of cell membrane integrity and comprehensive respiratory profiling (measurements of mitochondrial oxidative phosphorylation and determination of its coupling efficiency). Our dendrimer core-labelling approach could provide a new conceptual basis for improved understanding of dendrimer performance within biological settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Type II PI4-kinases control Weibel-Palade body biogenesis and von Willebrand factor structure in human endothelial cells.

    PubMed

    Lopes da Silva, Mafalda; O'Connor, Marie N; Kriston-Vizi, Janos; White, Ian J; Al-Shawi, Raya; Simons, J Paul; Mössinger, Julia; Haucke, Volker; Cutler, Daniel F

    2016-05-15

    Weibel-Palade bodies (WPBs) are endothelial storage organelles that mediate the release of molecules involved in thrombosis, inflammation and angiogenesis, including the pro-thrombotic glycoprotein von Willebrand factor (VWF). Although many protein components required for WPB formation and function have been identified, the role of lipids is almost unknown. We examined two key phosphatidylinositol kinases that control phosphatidylinositol 4-phosphate levels at the trans-Golgi network, the site of WPB biogenesis. RNA interference of the type II phosphatidylinositol 4-kinases PI4KIIα and PI4KIIβ in primary human endothelial cells leads to formation of an increased proportion of short WPB with perturbed packing of VWF, as exemplified by increased exposure of antibody-binding sites. When stimulated with histamine, these cells release normal levels of VWF yet, under flow, form very few platelet-catching VWF strings. In PI4KIIα-deficient mice, immuno-microscopy revealed that VWF packaging is also perturbed and these mice exhibit increased blood loss after tail cut compared to controls. This is the first demonstration that lipid kinases can control the biosynthesis of VWF and the formation of WPBs that are capable of full haemostatic function. © 2016. Published by The Company of Biologists Ltd.

  20. Role of contact inhibition in the regulation of receptor-mediated uptake of low density lipoprotein in cultured vascular endothelial cells.

    PubMed Central

    Vlodavsky, I; Fielding, P E; Fielding, C J; Gospodarowicz, D

    1978-01-01

    Bovine vascular endothelial cells during logarithmic growth bind, internalize, and degrade low density lipoprotein (LDL) via a receptor-mediated pathway. However, contact-inhibited (confluent) monolayers bind but do not internalize LDL. This is in contrast to aortic smooth muscle cells or endothelial cells that have lost the property of contact inhibition. These cells internalize and degrade LDL at both high and low cell densities. The LDL receptors of smooth muscle and sparse endothelial cells down-regulate in response to LDL. In contrast, normal endothelial cells at confluency show little response. When contact inhibition in endothelial monolayers was locally released by wounding, and LDL was present, only cells released from contact inhibition accumulated LDL cholesterol. In smooth muscle cells under the same conditions, the entire culture interiorized lipid. It thus appears that in endothelial cells, unlike smooth muscle cells, contact inhibition is the major factor regulating cellular uptake of LDL cholesteryl ester. Reversal of contact inhibition by wounding provides a mechanism by which the endothelium could be the primary initiator of the atherosclerotic plaque. Images PMID:203937

Top