Kovac, Jason R.; Gomez, Lissette; Smith, Ryan P.; Coward, Robert M.; Gonzales, Marshall A.; Khera, Mohit; Lamb, Dolores J.; Lipshultz, Larry I.
2014-01-01
Introduction Endothelial cell dysfunction is associated with cardiovascular disease and vasculogenic erectile dysfunction (ED). Measured via Peripheral Artery Tonometry (PAT), endothelial dysfunction in the penis is an independent predictor of future cardiovascular events. Aim Determine whether measurement of endothelial dysfunction differentiates men with vasculogenic ED identified by duplex ultrasound from those without. Methods A total of 142 men were retrospectively assessed using patient history, penile duplex ultrasonography (US) and PAT (EndoPAT 2000). ED was self reported and identified on history. Vasculogenic ED was identified in men who exhibited a peak systolic velocity (PSV) of ≤25 cm/s obtained 15 minutes following vasodilator injection. The reactive hyperemia index (RHI), a measurement of endothelial dysfunction in medium/small arteries and the Augmentation Index (AI), a measurement of arterial stiffness, were recorded via PAT. Results Penile duplex US separated men into those with ED (n=111) and without (n=31). The cohort with ED had a PSV of 21±1 cm/s (left cavernous artery) and 22±1 cm/s (Right). The control group without ED had values of 39±2 cm/s (Left) and 39±2 (Right). Given the potential for altered endothelial function in diabetes mellitus, we confirmed that hemoglobin A1c, urinary microalbumin, and vibration pulse threshold were not different in men with vasculogenic ED and those without. RHI in patients with ED (1.85±0.06) was significantly decreased compared to controls (2.15±0.2) (p<0.05). The AI was unchanged when examined in isolation, and when standardized to heart rate. Conclusions Measurement of endothelial function with EndoPAT differentiates men with vasculogenic ED from those without. RHI could be used as a non-invasive surrogate in the assessment of vasculogenic ED and to identify those patients with higher cardiovascular risk. PMID:24784889
Physical activity on endothelial and erectile dysfunction: a literature review.
Leoni, Luís Antônio B; Fukushima, André R; Rocha, Leandro Y; Maifrino, Laura B M M; Rodrigues, Bruno
2014-09-01
Physical inactivity, diabetes, hypertension, dyslipidemia, smoking and obesity were associated with imbalance in oxidative stress, leading to endothelial dysfunction. Such dysfunction is present in both cardiovascular disease (CVD) and erectile dysfunction (ED). ED is the persistent inability to achieve or sustain an erection sufficient for satisfactory sexual performance and is one of the first manifestations of endothelial damage in men with CVD risk factors. The purpose of this article is to review the results of studies involving physical activity, CVD, endothelial dysfunction and ED in order to verify its applicability for improving the health and quality of life of men with such disorders. There is consistent evidence that endothelial damage is intimately linked to ED, and this manifestation seems to be associated with the appearance CVDs. On the other hand, physical activity has been pointed out as an important clinical strategy in the prevention and treatment of CVDs and ED mainly associated with improvement of endothelial function. However, further experimental and clinical prospective investigations are needed to test the role of physical exercises in the modulation of endothelial function and their implications on erectile function and the appearance of CVDs.
[Endothelial dysfunction in diabetes mellitus and possible ways of pharmacological correction].
Chernov, Iu N; Krasiukova, V A; Batishcheva, G A; Mubarakshina, O A
2010-02-01
Insulinoresistance (IR) and endothelial dysfunction (ED) take part in forming cardiovascular complications. Hyperglycemia, dyslipidemia, and compensatory hyperinsulinemia are triggering factors in the development of ED in diabetes mellitus. Hyperactivation of the renin--angiotensin--aldosterone system and increasing influence of the sympathoadrenal system play an important role in the appearance of ED, which is characterized by a decrease in the synthesis of nitric oxide and an increase in the production of vasoconstrictors. At present, drugs used for ED correction only indirectly influence the functioning of endothelial cells. Eight pharmacological groups including more than 30 drugs are reviewed, which are capable of improving the endothelial function. Progress in the pharmacotherapy of ED stimulates the development of approaches to the individual choice of drugs and the directed correction of the functional state of vascular endothelium.
Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes
Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia
2015-01-01
Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717
Endothelial dysfunction: the early predictor of atherosclerosis.
Mudau, Mashudu; Genis, Amanda; Lochner, Amanda; Strijdom, Hans
2012-05-01
Since the discovery in the 1980s that nitric oxide (NO) is in fact the elusive endothelium-derived relaxing factor, it has become evident that NO is not only a major cardiovascular signalling molecule, but that changes in its bioavailability are crucial in determining whether atherosclerosis will develop or not. Sustained high levels of harmful circulating stimuli associated with cardiovascular risk factors such as diabetes mellitus elicit responses in endothelial cells that appear sequentially, namely endothelial cell activation and endothelial dysfunction (ED). ED, characterised by reduced NO bioavailability, is now recognised by many as an early, reversible precursor of atherosclerosis. The pathogenesis of ED is multifactorial; however, oxidative stress appears to be the common underlying cellular mechanism in the ensuing loss of vaso-active, inflammatory, haemostatic and redox homeostasis in the body's vascular system. The role of ED as a pathophysiological link between early endothelial cell changes associated with cardiovascular risk factors and the development of ischaemic heart disease is of importance to basic scientists and clinicians alike.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Nannan; Liu, Bing; Song, Jiaguang
Endothelial dysfunction (ED) is a well-recognized instigator of cardiovascular diseases and develops in chronic kidney disease (CKD) with high rate. Recent studies have implicated that leptin is associated with endothelial dysfunction. We investigated the relationship between leptin and markers of ED in CKD patients and how leptin contributed to endothelial damage. 140 CKD patients and 140 healthy subjects were studied. Serum leptin levels were significantly higher in CKD than in controls and displayed significantly positive association with the increase levels of sICAM-1 and sVCAM-1 but negative correlation with flow-mediated dilatation (FMD) reduction in patients. Our in vitro study demonstrated that leptinmore » induced overexpression of ICAM-1 and VCAM-1, led to f-actin reorganization and vinculin assembly, increased endothelial monolayer permeability for FITC-dextran, and accelerated endothelial cell migration; these changes were markedly reversed when the cells were transfected with AKT or β-catenin shRNA vectors. Notably, high leptin resulted in hyper-phosphorylation of AKT and GSK3β, along with nuclear accumulation of β-catenin. In conclusion, serum leptin was elevated in CKD patients and it might contribute to endothelial dysfunction by disarrangement of f-actin cytoskeleton via a mechanism involving the AKT/GSK3β and β-catenin pathway. - Highlights: • Serum leptin was elevated in CKD patients and it was associated with endothelial dysfunction. • Leptin induced endothelial dysfunction by remodeling cytoskeleton in HUVECs. • Leptin promoted endothelial dysfunction via a mechanism involving the AKT/GSK3β and β-catenin signals.« less
Totoson, Perle; Maguin-Gaté, Katy; Nappey, Maude; Wendling, Daniel; Demougeot, Céline
2016-01-01
To determine mechanisms involved in endothelial dysfunction (ED) during the course of arthritis and to investigate the link between cytokines, chemokines and osteoprotegerin. Experiments were conducted on aortic rings at day 4 (preclinical), day 11 (onset of disease), day 33 (acute disease) and day 90 (chronic disease) after adjuvant-induced arthritis (AIA) in Lewis rats. At day 4, the unique vascular abnormality was a reduced norepinephrine-induced constriction. At day 11, endothelial function assessed by the relaxation to acetylcholine was normal despite increased cyclo-oxygenase-2 activity (COX-2) and overproduction of superoxide anions that was compensated by increased nitric oxide synthase (NOS) activity. At day 33, ED apparition coincides with the normalization of NOS activity. At day 90, ED was only observed in rats with a persisting imbalance between endothelial NOS and COX-2 pathways and higher plasma levels of IL-1β and TNFα. Plasma levels of IL-1β, TNFα and MIP-1α negatively correlated with Ach-induced relaxation throughout the course of AIA. Our data identified increased endothelial NOS activity as an important compensatory response that opposes the ED in the early arthritis. Thereafter, a cross-talk between endothelial COX-2/NOS pathways appears as an important element for the occurrence of ED. Our results encourage determining the clinical value of IL-1β, TNFα and MIP-1α as biomarkers of ED in RA.
Musicki, Biljana; Hannan, Johanna L.; Lagoda, Gwen; Bivalacqua, Trinity J.; Burnett, Arthur L.
2016-01-01
Men with type 2 diabetes mellitus (T2DM) and erectile dysfunction (ED) have greater risk of cardiovascular events than T2DM men without ED, suggesting ED as a predictor of cardiovascular events in diabetic men. However, molecular mechanisms underlying endothelial dysfunction in the diabetic penis explaining these clinical observations are not known. We evaluated whether the temporal relationship between ED and endothelial dysfunction in the systemic vasculature in T2DM involves earlier redox imbalance and endothelial nitric oxidase synthase (eNOS) dysfunction in the penis than in the systemic vasculature, such as the carotid artery. Rats were rendered T2DM by high-fat diet for 2 weeks, followed by an injection with low-dose streptozotocin. After 3 weeks, erectile function (intracavernosal pressure) was measured and penes and carotid arteries were collected for molecular analyses of eNOS uncoupling, protein S-glutathionylation, oxidative stress (4-hydroxy-2-nonenal, 4-HNE), protein expression of NADPH oxidase subunit gp91phox, endothelium-dependent vasodilation in the carotid artery, and non-andrenergic, non-cholinergic (NANC) mediated cavernosal relaxation. Erectile response to electrical stimulation of the cavernous nerve and NANC mediated cavernosal relaxation were decreased (p<0.05), while relaxation of the carotid artery to acetylcholine was not impaired in T2DM rats. eNOS monomerization, protein expressions of 4-HNE and gp91phox, and protein S-glutathionylation, were increased (p<0.05) in the penis, but not in the carotid artery, of T2DM compared to nondiabetic rats. In conclusion, redox imbalance, increased oxidative stress by NADPH oxidase, and eNOS uncoupling, occur early in T2DM in the penis, but not in the carotid artery. These molecular changes contribute to T2DM ED, while vascular function in the systemic vasculature remains preserved. PMID:27153512
Dube, Rajani
2016-01-01
To study and critically analyze the published evidence on correlation of hormonal abnormalities and endothelial dysfunction (ED) in polycystic ovary syndrome (PCOS) through a systematic review. The databases including MEDLINE, PubMed, Up-To-Date, and Science Direct were searched using Medical subject handling terms and free text term keywords such as endocrine abnormalities in PCOS, ED assessment in PCOS, ED in combination with insulin resistance (IR), hyperandrogenism (HA), increased free testosterone, free androgen index (FAI), gonadotrophin levels, luteinizing hormone (LH), prolactin, estrogen, adipocytokines to search trials, and observational studies published from January 1987 to September 2015. Authors of original studies were contacted for additional data when necessary. PCOS increases the risk of cardiovascular disease in women. ED, which is a reliable indicator of cardiovascular risk in general population, is seen in most (but not all) women with PCOS. IR, seen in 70% patients with PCOS, is associated with ED in these women, but patients can have normal endothelial function even in the presence of IR. Free testosterone and FAI are consistently associated with ED, but endothelial function can be normal despite HA. Estradiol (not estrone) appears to be protective against ED though estrone is the predominant estrogen produced in PCOS. Increased levels of adipocytokines (visfatin) are promising in predicting ED and cardiovascular risk. However, more studies are required focusing on direct correlation of levels of prolactin, LH, estrone, and visfatin with ED in PCOS. PMID:27843797
Post-Translational Modification of Constitutive Nitric Oxide Synthase in the Penis
Musicki, Biljana; Ross, Ashley E.; Champion, Hunter C.; Burnett, Arthur L.; Bivalacqua, Trinity J.
2009-01-01
Erectile dysfunction (ED) is a common men's health problem characterized by the consistent inability to sustain an erection sufficient for sexual intercourse. Basic science research on erectile physiology has been devoted to investigating the pathogenesis of ED and has led to the conclusion that ED is predominately a disease of vascular origin and/or neurogenic dysfunction. The constitutive forms of nitric oxide synthase [NOS; endothelial NOS (eNOS) and neuronal NOS (nNOS)] are important enzymes involved in the production of nitric oxide (NO) and thus regulate penile vascular homeostasis. Given the impact of endothelial- and neuronal-derived NO in penile vascular biology, a great deal of research over the past decade has focused on the role of NO synthesis from the endothelium and nitrergic nerve terminal in normal erectile physiology as well as in disease states. Loss of the functional integrity of the endothelium and subsequent endothelial dysfunction plays an integral role in the occurrence of ED. Therefore, molecular mechanisms involved in dysregulation of these NOS isoforms in the development of ED are essential to discovering the pathogenesis of ED in various disease states. This communication reviews the role of eNOS and nNOS in erectile physiology and discusses the alterations in eNOS and nNOS via post-translation modification in various vascular diseases of the penis. PMID:19342700
Bosevski, Marijan; Georgievska-Ismail, Ljubica
2010-01-01
The purpose of the study was to assess the endothelial dysfunction (ED) in type 2 diabetic patients ultrasonographicaly and estimate the correlation of ED with glycemia and other cardio-metabolic risk factors. 171 patient (age 60,0 + 8,5 years) with diagnosed type 2 diabetes and coronary artery disease (CAD) were randomly included in a cross sectional study. B-mode ultrasound system with a linear transducer of 7.5 MHz was used for evaluation of flow-mediated vasodilation in brachial artery (FMV). FMV was presented as a change of brachial artery diameter at rest and after limb ischemia, previously provoked by cuff inflation. Peripheral ED was found in 77,2% (132 patients). Multivariate logistic regression model defined: age (OR 1,071, 95% CI 1,003 1,143) and plasma cholesterol (OR 4,083 95%CI 1,080 17,017) as determinants for ED. Linear multivariate analysis presented duration of diabetes (Beta 0,173, Sig 0,024), and glycemia (Beta 0,132, Sig 0,044) to be associated independently with FMV value. Estimated factors influencing FMV might be potential therapeutic targets for presented endothelial dysfunction in type 2 diabetic patients with coronary artery disease. PMID:20507285
Angulo, Javier; Cuevas, Pedro; Fernández, Argentina; Gabancho, Sonia; Allona, Antonio; Martín-Morales, Antonio; Moncada, Ignacio; Videla, Sebastián; Sáenz de Tejada, Iñigo
2003-12-26
Standard treatments for erectile dysfunction (ED) (i.e., PDE5 inhibitors) are less effective in diabetic patients for unknown reasons. Endothelium-dependent relaxation (EDR) of human corpus cavernosum (HCC) depends on nitric oxide (NO), while in human penile resistance arteries (HPRA) endothelium-derived hyperpolarizing factor (EDHF) and NO participate. Here we show that diabetes significantly reduced EDR induced by acetylcholine (ACh) in HCC and HPRA. Relaxation attributed to EDHF was also impaired in HPRA from diabetic patients. The PDE5 inhibitor, sildenafil (10nM), reversed diabetes-induced endothelial dysfunction in HCC, but not in HPRA. Calcium dobesilate (DOBE; 10 microM) fully reversed diabetes-induced endothelial dysfunction in HPRA by specifically potentiating the EDHF-mediated component of EDR. Impairment by diabetes of NO and EDHF-dependent responses precluded the complete recovery of endothelial function in HPRA by sildenafil. This could explain the poor clinical response to PDE5 inhibitors of diabetic men with ED and suggests that a pharmacological approach that combines enhancement of NO/cGMP and EDHF pathways could be necessary to treat ED in many diabetic men.
Levels of uric acid in erectile dysfunction of different aetiology.
Barassi, Alessandra; Corsi Romanelli, Massimiliano Marco; Pezzilli, Raffaele; Dozio, Elena; Damele, Clara Anna Linda; Vaccalluzzo, Liborio; Di Dario, Marco; Goi, Giancarlo; Papini, Nadia; Massaccesi, Luca; Colpi, Giovanni Maria; Melzi d'Eril, Gian Vico
2018-01-12
Erectile dysfunction is a common disease characterized by endothelial dysfunction. The aetiology of ED is often multifactorial but evidence is being accumulated in favor of the proper function of the vascular endothelium that is essential to achieving and maintaining penile erection. Uric acid itself causes endothelial dysfunction via decreased nitric oxide production. This study aims to evaluate the serum uric acid (SUA) levels in 180 ED patients, diagnosed with the International Index of Erectile Function-5 (IIEF-5) and 30 non-ED control. Serum uric acid was analyzed with a commercially available kit using ModularEVO (Roche, Monza, Italy). Within-assay and between-assay variations were 3.0% and 6.0%, respectively. Out of the ED patients, 85 were classified as arteriogenic (A-ED) and 95 as non-arteriogenic (NA-ED) with penile-echo-color-Doppler. Uric acid levels (median and range in mg/dL) in A-ED patients (5.8, 4.3-7.5) were significantly higher (p < .001) than in NA-ED patients (4.4, 2.6-5.9) and in control group (4.6, 3.1-7.2). There was a significant difference (p < .001) between uric acid levels in patients with mild A-ED (IIEF-5 16-20) and severe/complete A-ED (IIEF-5 ≤ 10) that were 5.4 (range 4.3-6.5) mg/dL and 6.8 (range 6.4-7.2) mg/dL, respectively. There was no difference between the levels of uric acid in patients with different degree of NA-ED. Our findings reveal that SUA is a marker of ED but only of ED of arteriogenic aetiology.
Musicki, Biljana; Liu, Tongyun; Lagoda, Gwen A.; Strong, Travis D.; Sezen, Sena F.; Johnson, Justin M.; Burnett, Arthur L.
2010-01-01
INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)–null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67phox, p47phox, and gp91phox), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES Molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared to WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67phox, p47phox and gp91phox, eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P < 0.05) the abnormalities in protein expressions of gp67phox and gp47phox, 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters. Protein expressions of P-eNOS-Ser-1177 and total eNOS were unaffected by hypercholesterolemia. CONCLUSION Activated NAD(P)H oxidase in the penis is an initial source of oxidative stress resulting in eNOS uncoupling, thus providing a mechanism of eNOS uncoupling and endothelial dysfunction in hypercholesterolemia-induced ED. PMID:20626609
Uric acid level and erectile dysfunction in patients with coronary artery disease.
Solak, Yalcin; Akilli, Hakan; Kayrak, Mehmet; Aribas, Alpay; Gaipov, Abduzhappar; Turk, Suleyman; Perez-Pozo, Santos E; Covic, Adrian; McFann, Kim; Johnson, Richard J; Kanbay, Mehmet
2014-01-01
Erectile dysfunction (ED) is a frequent complaint of elderly subjects and is closely associated with endothelial dysfunction and cardiovascular disease (CVD). Uric acid is also associated with endothelial dysfunction, oxidative stress, and CVD, raising the hypothesis that an increased serum uric acid might predict ED in patients who are at risk for coronary artery disease (CAD). This study aims to evaluate the association of serum uric acid levels with presence and severity of ED in patients presenting with chest pain of presumed cardiac origin. This is a cross-sectional study of 312 adult male patients with suspected CAD who underwent exercise stress test (EST) for workup of chest pain and completed a sexual health inventory for men survey form to determine the presence and severity of ED. Routine serum biochemistry (and uric acid levels) were measured. Logistic regression analysis was used to assess risk factors for ED. The short version of the International Index of Erectile Function questionnaire diagnosed ED (cutoff score ≤ 21). Serum uric acid levels were determined. Patients with chest pain of suspected cardiac origin underwent an EST. One hundred forty-nine of 312 (47.7%) male subjects had ED by survey criteria. Patients with ED were older and had more frequent CAD, hypertension, diabetes and impaired renal function, and also had significantly higher levels of uric acid, fibrinogen, glucose, C-reactive protein, triglycerides compared with patients without ED. Uric acid levels were associated with ED by univariate analysis (odds ratio = 1.36, P = 0.002); however, this association was not observed in multivariate analysis adjusted for estimated glomerular filtration rate. Subjects presenting with chest pain of presumed cardiac origin are more likely to have ED if they have elevated uric acid levels. © 2013 International Society for Sexual Medicine.
La Favor, Justin D.; Anderson, Ethan J.; Hickner, Robert C.; Wingard, Christopher J.
2016-01-01
Introduction It is suggested that erectile dysfunction (ED) may be an early risk factor for cardiovascular disease. Aim The goal of this study was to determine whether development of ED precedes the onset of coronary artery endothelial dysfunction in response to a Western diet (WD), thereby establishing whether the WD differentially impacts the endothelium in a time-dependent manner. Additionally, a goal was to determine if diet-induced ED is reversible with intracavernosal sepiapterin treatment. Methods Male Sprague-Dawley rats were fed a WD for 4, 8, or 12 weeks, or a control diet for 8 weeks. Erectile function was evaluated by measuring the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to electrical field stimulation of the cavernosal nerve near the major pelvic ganglion, in the absence and presence of sepiapterin. Coronary artery endothelial function was evaluated ex vivo with cumulative doses of acetylcholine (ACh) applied to segments of the left anterior descending coronary artery preconstricted with serotonin. Main Outcome Measures Erectile function was assessed as the ICP response to electrical field stimulation (EFS), normalized to MAP. Coronary artery endothelial function was assessed as the effective concentration producing 50% of a maximal response (EC50) of the ACh response. Results The ICP/MAP response to EFS was significantly attenuated following both 8 and 12 weeks of the WD compared with the control diet (P < 0.05). Sepiapterin treatment augmented the ICP/MAP response in all WD groups (P < 0.05). The coronary artery EC50 of the ACh response was not different from control following 4 or 8 weeks but was significantly elevated following 12 weeks of the WD (P < 0.01). Conclusions These data suggest that erectile function is reduced prior to coronary artery endothelial function in response to the WD. Improvement of erectile function with sepiapterin in WD rats indicates that nitric oxide synthase uncoupling is a key mechanism in diet-induced ED. PMID:23170997
Scherbakov, Nadja; Sandek, Anja; Ebner, Nicole; Valentova, Miroslava; Nave, Alexander Heinrich; Jankowska, Ewa A; Schefold, Jörg C; von Haehling, Stephan; Anker, Stefan D; Fietze, Ingo; Fiebach, Jochen B; Haeusler, Karl Georg; Doehner, Wolfram
2017-09-11
Sleep-disordered breathing (SDB) after acute ischemic stroke is frequent and may be linked to stroke-induced autonomic imbalance. In the present study, the interaction between SDB and peripheral endothelial dysfunction (ED) was investigated in patients with acute ischemic stroke and at 1-year follow-up. SDB was assessed by transthoracic impedance records in 101 patients with acute ischemic stroke (mean age, 69 years; 61% men; median National Institutes of Health Stroke Scale, 4) while being on the stroke unit. SDB was defined by apnea-hypopnea index ≥5 episodes per hour. Peripheral endothelial function was assessed using peripheral arterial tonometry (EndoPAT-2000). ED was defined by reactive hyperemia index ≤1.8. Forty-one stroke patients underwent 1-year follow-up (390±24 days) after stroke. SDB was observed in 57% patients with acute ischemic stroke. Compared with patients without SDB, ED was more prevalent in patients with SDB (32% versus 64%; P <0.01). After adjustment for multiple confounders, presence of SDB remained independently associated with ED (odds ratio, 3.1; [95% confidence interval, 1.2-7.9]; P <0.05). After 1 year, the prevalence of SDB decreased from 59% to 15% ( P <0.001). Interestingly, peripheral endothelial function improved in stroke patients with normalized SDB, compared with patients with persisting SDB ( P <0.05). SDB was present in more than half of all patients with acute ischemic stroke and was independently associated with peripheral ED. Normalized ED in patients with normalized breathing pattern 1 year after stroke suggests a mechanistic link between SDB and ED. URL: https://drks-neu.uniklinik-freiburg.de. Unique identifier: DRKS00000514. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
de Souza, Iara L. L.; Barros, Bárbara C.; de Oliveira, Giuliana A.; Queiroga, Fernando R.; Toscano, Lydiane T.; Silva, Alexandre S.; Silva, Patrícia M.; Interaminense, Leylliane F. L.; Cavalcante, Fabiana de Andrade; da Silva, Bagnólia A.
2017-01-01
Obesity is characterized by an excessive increase in body mass, leading to endothelial damage that may favor the development of erectile dysfunction (ED). ED is defined as the inability to achieve or maintain a penile erection long enough to have a sexual intercourse. In this context, different ED models were developed, however the high price of special animals or the long period to establish the disease has limited studies in this field. Therefore, this study proposed to establish and characterize a novel model of ED in rats associated to a hypercaloric diet consumption. Animals were randomly divided into control group (CG), which received a standard diet, and obese group (OG), fed with a hypercaloric diet during 8 weeks. Rat's erectile function was evaluated in vivo and in vitro. Food and caloric intake of OG were reduced compared to CG, due to an increased diet energy efficiency. However, OG presented an increased body mass, inguinal, retroperitoneal and epididymal adipose tissues, as well as body adiposity index at the end of experimental protocol. In erectile function analysis, there was a decrease in the number and the latency of penile erections in OG. Additionally, the contractile reactivity of corpus cavernosum was increased in OG, favoring penile detumescence and related to a reduced nitric oxide bioavailability and an increased in contractile prostaglandins levels as a consequence of endothelial damage. Moreover, the endothelium-relaxation reactivity of corpus cavernosum was attenuated in OG associated to the oxidative stress. Thus, it was provided a model for advances in sexual dysfunction field and drug discovery for ED treatment. PMID:29085300
eNOS-uncoupling in age-related erectile dysfunction
Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B
2011-01-01
Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638
Low-Intensity Shock Wave Therapy and Its Application to Erectile Dysfunction
Lei, Hongen; Liu, Jing; Li, Huixi; Wang, Lin; Xu, Yongde; Tian, Wenjie; Lin, Guiting
2013-01-01
Although phosphodiesterase type 5 inhibitors (PDE5Is) are a revolution in the treatment of erectile dysfunction (ED) and have been marketed since 1998, they cannot restore pathological changes in the penis. Low-energy shock wave therapy (LESWT) has been developed for treating ED, and clinical studies have shown that LESWT has the potential to affect PDE5I non-responders with ED with few adverse effects. Animal studies have shown that LESWT significantly improves penile hemodynamics and restores pathological changes in the penis of diabetic ED animal models. Although the mechanisms remain to be investigated, recent studies have reported that LESWT could partially restore corpus cavernosum fibromuscular pathological changes, endothelial dysfunction, and peripheral neuropathy. LESWT could be a novel modality for treating ED, and particularly PDE5I non-responders with organic ED, in the near future. However, further extensive evidence-based basic and clinical studies are needed. This review intends to summarize the scientific background underlying the effect of LESWT on ED. PMID:24459653
Low-intensity shock wave therapy and its application to erectile dysfunction.
Lei, Hongen; Liu, Jing; Li, Huixi; Wang, Lin; Xu, Yongde; Tian, Wenjie; Lin, Guiting; Xin, Zhongcheng
2013-12-01
Although phosphodiesterase type 5 inhibitors (PDE5Is) are a revolution in the treatment of erectile dysfunction (ED) and have been marketed since 1998, they cannot restore pathological changes in the penis. Low-energy shock wave therapy (LESWT) has been developed for treating ED, and clinical studies have shown that LESWT has the potential to affect PDE5I non-responders with ED with few adverse effects. Animal studies have shown that LESWT significantly improves penile hemodynamics and restores pathological changes in the penis of diabetic ED animal models. Although the mechanisms remain to be investigated, recent studies have reported that LESWT could partially restore corpus cavernosum fibromuscular pathological changes, endothelial dysfunction, and peripheral neuropathy. LESWT could be a novel modality for treating ED, and particularly PDE5I non-responders with organic ED, in the near future. However, further extensive evidence-based basic and clinical studies are needed. This review intends to summarize the scientific background underlying the effect of LESWT on ED.
Sexual dysfunction in 2013: Advances in epidemiology, diagnosis and treatment.
Lee, King Chien Joe; Fahmy, Nader; Brock, Gerald B
2013-09-01
To provide a contemporary review of the epidemiology, diagnosis and treatment of premature ejaculation (PE) and erectile dysfunction (ED). We searched for English-language articles published in the past 12 months using the PubMed database. Relevant articles on the subjects of sexual dysfunction, ED and PE were selected for review. Recent studies on male sexual dysfunction have provided new therapeutic possibilities. Tramadol, a well-used analgesic, has a new role in the treatment of PE. Super-selective targeting of dorsal penile nerves by surgery or cryoablative technologies might become a viable treatment option for refractory PE in the future. The role of ED as a harbinger of important comorbidities allows for the early detection and intervention of these conditions, which can optimise therapeutic outcomes. The long-term effect of chronic phosphodiesterase-5 inhibitors on endothelial dysfunction, the angiogenic potential of low-intensity extracorporeal shock wave therapy, and further advances in drug-eluting endovascular stents might in future allow clinicians to treat ED more definitively.
Zadik, Yehuda; Bechor, Ron; Galor, Shay; Justo, Dan; Heruti, Rafi J
2009-04-01
Both chronic periodontal disease (CPD) and erectile dysfunction (ED) are associated with cardiovascular disease and its risk factors, including smoking and diabetes mellitus. However, the association between ED and CPD has never been studied. To study the association between ED and CPD. MAIN OUTCOME MEASURES. Prevalence of ED, prevalence of CPD, ED severity. The study population consisted of 305 men who filled the Sexual Health Inventory for Men (SHIM) questionnaire in order to detect ED and assess its severity, and underwent a pair of standardized posterior dental bitewing radiographs in order to detect CPD. SHIM questionnaire scores 21 or less represented ED. Alveolar bone loss of >or=6 mm represented CPD. The mean age of included men was 39.5 +/- 6.7 years. Overall, 70 (22.9%) men had ED and 13 (4.3%) had CPD. CPD was significantly more prevalent among men with mild ED (P = 0.004) and moderate to severe ED (P = 0.007) in comparison to men without ED. ED might be associated with CPD. These preliminary findings are consistent with theories that associate these conditions with systemic inflammation, endothelial dysfunction, and atherosclerosis.
Oral Health and Erectile Dysfunction.
Singh, Vijendra P; Nettemu, Sunil K; Nettem, Sowmya; Hosadurga, Rajesh; Nayak, Sangeeta U
2017-01-01
Ample evidence strongly supports the fact that periodontal disease is a major risk factor for various systemic diseases namely cardio-vascular disease, diabetes mellitus, etc. Recently, investigators focussed on exploring the link between chronic periodontitis (CP) and erectile dysfunction (ED) by contributing to the endothelial dysfunction. Both the diseases share common risk factors. Various studies conducted in different parts of the world in recent years reported the evidence linking this relationship as well as improvement in ED with periodontal treatment. Systemic exposure to the periodontal pathogen and periodontal infection-induced systemic inflammation was thought to associate with these conditions. The objective of this review was to highlight the evidence of the link between CP and ED and the importance of oral health in preventing the systemic conditions.
Oral Health and Erectile Dysfunction
Singh, Vijendra P.; Nettemu, Sunil K.; Nettem, Sowmya; Hosadurga, Rajesh; Nayak, Sangeeta U.
2017-01-01
Ample evidence strongly supports the fact that periodontal disease is a major risk factor for various systemic diseases namely cardio-vascular disease, diabetes mellitus, etc. Recently, investigators focussed on exploring the link between chronic periodontitis (CP) and erectile dysfunction (ED) by contributing to the endothelial dysfunction. Both the diseases share common risk factors. Various studies conducted in different parts of the world in recent years reported the evidence linking this relationship as well as improvement in ED with periodontal treatment. Systemic exposure to the periodontal pathogen and periodontal infection-induced systemic inflammation was thought to associate with these conditions. The objective of this review was to highlight the evidence of the link between CP and ED and the importance of oral health in preventing the systemic conditions. PMID:29142443
Lifestyle modifications and erectile dysfunction: what can be expected?
Maiorino, Maria Ida; Bellastella, Giuseppe; Esposito, Katherine
2015-01-01
Erectile dysfunction (ED) is a common medical disorder whose prevalence is increasing worldwide. Modifiable risk factors for ED include smoking, lack of physical activity, wrong diets, overweight or obesity, metabolic syndrome, and excessive alcohol consumption. Quite interestingly, all these metabolic conditions are strongly associated with a pro-inflammatory state that results in endothelial dysfunction by decreasing the availability of nitric oxide (NO), which is the driving force of the blood genital flow. Lifestyle and nutrition have been recognized as central factors influencing both vascular NO production, testosterone levels, and erectile function. Moreover, it has also been suggested that lifestyle habits that decrease low-grade clinical inflammation may have a role in the improvement of erectile function. In clinical trials, lifestyle modifications were effective in ameliorating ED or restoring absent ED in people with obesity or metabolic syndrome. Therefore, promotion of healthful lifestyles would yield great benefits in reducing the burden of sexual dysfunction. Efforts, in order to implement educative strategies for healthy lifestyle, should be addressed. PMID:25248655
Karlsson, William K; Sørensen, Caspar G; Kruuse, Christina
2017-01-01
Endothelial dysfunction (ED), in particular cerebral ED, may be an essential biomarker for ischaemic cerebrovascular disease. However, there is no consensus on methods to best estimate cerebral ED. In this systematic review, we evaluate the use of l-arginine and N G -monomethyl-l-arginine (l-NMMA) for assessment of cerebral ED. A systematic search of PubMed, EMBASE and the Cochrane Library was done. We included studies investigating cerebrovascular response to l-arginine or l-NMMA in human subjects with vascular risk factors or ischaemic cerebrovascular disease. Seven studies (315 subjects) were eligible according to inclusion and exclusion criteria. Studies investigated the effect of age (n=2), type 2 diabetes mellitus (DM) (n=1), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) (n=1), leukoaraiosis (n=1), and prior ischaemic stroke or transient ischaemic attack (TIA) (n=2) on cerebral ED. Most studies applied transcranial Doppler to quantify cerebral ED. Endothelium-dependent vasodilatation (EDV) induced by l-arginine was impaired in elderly and subjects with leukoaraiosis, but enhanced in CADASIL patients. Studies including subjects with prior ischaemic stroke or TIA reported both enhanced and impaired EDV to l-arginine. Responses to l-NMMA deviated between subjects with type 2 DM and the elderly. We found only few studies investigating cerebral endothelial responses to l-arginine and l-NMMA in subjects with vascular risk factors or ischaemic cerebrovascular disease. Inconsistencies in results were most likely due to variations in methods and included subject populations. In order to use cerebral ED as a prognostic marker, further studies are required to evaluate the association to cerebrovascular disease. © 2016 John Wiley & Sons Australia, Ltd.
Hemanth Kumar, Boyina; Arun Reddy, Ravula; Mahesh Kumar, Jerald; Dinesh Kumar, B; Diwan, Prakash V
2017-01-01
This study was designed to investigate the effects of fisetin (FST) on hyperhomocysteinemia (HHcy)-induced experimental endothelial dysfunction (ED) and vascular dementia (VaD) in rats. Wistar rats were randomly divided into 8 groups: control, vehicle control, l-methionine, FST (5, 10, and 25 mg/kg, p.o.), FST-per se (25 mg/kg, p.o.), and donepezil (0.1 mg/kg, p.o.). l-Methionine administration (1.7 g/kg, p.o.) for 32 days induced HHcy. ED and VaD induced by HHcy were determined by vascular reactivity measurements, behavioral analysis using Morris water maze and Y-maze, along with a biochemical and histological evaluation of thoracic aorta and brain tissues. Administration of l-methionine developed behavioral deficits; triggered brain lipid peroxidation (LPO); compromised brain acetylcholinesterase activity (AChE); and reduced the levels of brain superoxide dismutase (SOD), brain catalase (CAT), brain reduced glutathione (GSH), and serum nitrite; and increased serum homocysteine and cholesterol levels. These effects were accompanied by decreased vascular NO bioavailability, marked intimal thickening of the aorta, and multiple necrotic foci in brain cortex. HHcy-induced alterations in the activities of SOD, CAT, GSH, AChE, LPO, behavioral deficits, ED, and histological aberrations were significantly attenuated by treatment with fisetin in a dose-dependent manner. Collectively, our results indicate that fisetin exerts endothelial and neuroprotective effects against HHcy-induced ED and VaD.
2013-01-01
Background Neurofibromatosis type 1 (NF1) is a multi-systemic disease caused by neurofibromin deficiency. The reduced life expectancy of patients with NF1 has been attributed to NF1-associated malignant neoplasms. However, an analysis of death certificates in the USA suggests that vascular disease could be an important cause of early death among these patients. Endothelial dysfunction (ED) is related to vasculopathy and is an early marker of subclinical atherosclerosis. Since neurofibromin has already been demonstrated to affect endothelial cell function, ED may be associated with NF1. The purpose of this study was to assess endothelial function in patients with NF1 using a non-invasive method. Methods NF1 patients and healthy control subjects, aged 18 to 35 years, were included. Subjects were excluded if they had any risk factor for vascular disease or any other condition known to affect endothelial function. Endothelial function was assessed using reactive hyperemia-peripheral arterial tone (RH-PAT) technology. ED was defined as a reactive hyperemia index (RHI) lower than 1.35. Results Four of the 29 (13.8%) NF1 patients and 1 of the 30 (3.3%) healthy volunteers had ED (p = 0.153). RHI medians and interquartile intervals were 1.8 (1.58-2.43) for the NF1 group and 2.02 (1.74 – 2.49) for the control group (p = 0.361). Conclusion The prevalence of ED was similar in NF1 patients and healthy controls. PMID:23497412
Aversa, Antonio; Letizia, Claudio; Francomano, Davide; Bruzziches, Roberto; Natali, Marco; Lenzi, Andrea
2012-10-18
It is known that the incidence of endothelial dysfunction in patients with vascular erectile dysfunction (ED) is increased. The effects of daily vardenafil on endothelial function and arterial stiffness in patients with erectile dysfunction (ED) have never been investigated. 20 men complaining vascular ED (mean IIEF5=12 ± 6 and peak systolic velocity-PSV=24 ± 2 cm/s) were enrolled in a 4-week, randomized, double-blind, double-dummy, crossover study (mean age 59 ± 11) and received either vardenafil 10mg daily or 20mg on-demand with a two-week washout interval. Primary endpoints were variation from baseline of reactive hyperemia (RH) and augmentation index (AI) calculated by fingertip peripheral arterial tonometry (PAT) device. Secondary endpoints were variations of IIEF-5 and SEP3 scores from baseline and plasma surrogate markers of endothelial function, i.e. endothelin-1 (ET-1) and adrenomedullin (ADM). Patients who took daily vardenafil (vs. on-demand) reported significant (P<0.01) improvements in arterial stiffness as evaluated by AI and reduction of plasma ADM levels (p<0.05) but no improvement in average RH. When corrected for heart rate, ADM showed a strong direct relationship with AI (r(2)=0.22; p<0.005). The proportion of patients with an IIEF5 score of ≥ 22 or in SEP3 percentage of success rates were similar. Each treatment resulted in significantly greater IIEF5 scores (p<0.001) and better SEP3 response rates (p<0.0001) compared with baseline. We demonstrated that daily vardenafil improves arterial stiffness and erectile function measurements in men with severe vasculogenic ED. This effect may be mediated, at least in part, by a reduction in ADM circulating levels. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Carotid artery intima-media thickness and erectile dysfunction in patients with metabolic syndrome.
Unal, Mustafa; Aksoy, Duygu Yazgan; Aydın, Yusuf; Tanriover, Mine Durusu; Berker, Dilek; Karakaya, Jale; Guler, Serdar
2014-05-29
Metabolic syndrome (MS) has become a pandemic in Turkey, as is the case globally. Increase in carotid artery intima-media thickness (CIMT) and erectile dysfunction (ED) may be evident before the clinical signs of cardiovascular disease appear. We aimed to investigate the prevalence of increased CIMT and ED as markers of atherosclerotic disease in patients with MS. Thirty-two patients with MS and 29 healthy controls were included. Anthropometric and biochemical parameters, along with total testosterone (TT), high sensitive C-reactive protein (hs-CRP), were recorded. Carotid artery intima-media thickness was measured. Erectile dysfunction was assessed with International Index of Erectile Function. Patients with MS had higher BMI, fasting plasma glucose, post-prandial plasma glucose, insulin, HOMA-IR, total cholesterol, triglycerides, hs-CRP, and CIMT, whereas TT levels were lower (p<0.0001). The prevalence and severity of erectile dysfunction were higher in patients with MS (p<0.0001). Erectile dysfunction scores correlated inversely with CIMT. MS patients with ED were older and had higher CIMT compared to those without ED. Increase in age and HOMA and decrease in TT increased the risk of ED. When KIMT exceeding the 95th percentile of healthy controls was accepted as a risk factor for CVD, presence of ED was the only determinant for this increase. Erectile dysfunction was more prevalent and severe in patients with MS and correlated with subclinical endothelial dysfunction. Total testosterone deficiency was prominent among MS patients. Presence of ED points to an increased risk of cardiovascular disease when MS is present.
Does vitamin D deficiency contribute to erectile dysfunction?
Sorenson, Marc; Grant, William B.
2012-01-01
Erectile dysfunction (ED) is a multifactorial disease, and its causes can be neurogenic, psychogenic, hormonal and vascular. ED is often an important indicator of cardiovascular disease (CVD) and a powerful early marker for asymptomatic CVD. Erection is a vascular event, and ED is often a vascular disease caused by endothelial damage and subsequent inhibition of vasodilation. We show here that risk factors associated with a higher CVD risk also associate with a higher ED risk. Such factors include diabetes mellitus, hypertension, arterial calcification and Inflammation in the vascular endothelium. Vitamin D deficiency is one of several dynamics that associates with increased CVD risk, but to our knowledge, it has not been studied as a possible contributor to ED. Here we examine research linking ED and CVD and discuss how vitamin D influences CVD and its classic risk factors—factors that also associate to increased ED risk. We also summarize research indicating that vitamin D associates with reduced risk of several nonvascular contributing factors for ED. We conclude that VDD contributes to ED. This hypothesis should be tested through observational and intervention studies. PMID:22928068
Škerk, Vedrana; Markotić, Alemka; Brkljačić, Diana Delić; Manola, Šime; Krčmar, Tomislav; Gabrić, Ivo Darko; Štajminger, Gordana; Pintarić, Hrvoje
2013-01-01
Background Ventricular tachycardia (VT) is frequently seen in ischemic settings like acute myocardial infarction with ST segment elevation (STEMI). Endothelial dysfunction (ED) represents inflammation and the loss of all protective features of the endothelium. We aimed to examine the association between VT and ED in patients with STEMI. Material/Methods The study included 90 subjects (30 with VT and acute STEMI, 30 with STEMI without VT, and 30 controls). Sera of all subjects were tested on ED markers by enzyme immunoassay: sICAM-1 (intracellular adhesive molecule-1), sVCAM-1 (vascular adhesive molecule-1), P- and E-selectins, and VEGF (vascular endothelial growth factor). In addition, CRP (C-reactive protein) was detected. Results Significantly increased values of low-density lipoprotein, triglycerides, leukocytes, creatinine, and the number of cigarettes smoked were observed among patients with VT+STEMI in comparison to controls. The levels of E-selectin were significantly lower in the VT+STEMI group than in the other groups, while the levels of VCAM-1 were significantly higher in the groups with STEMI and VT+STEMI compared to the controls. Lower levels of VEGF were recorded in STEMI and VT+STEMI groups compared to the control group. A significant correlation between CRP and VCAM-1 in patients with VT +STEMI was demonstrated. Conclusions We showed that ED may have a role in the immunopathogenesis of VT in patients with STEMI. The role of sE-selectin and correlation of sVCAM-1 with CRP as possible ED predictive markers in patients with VT+STEMI should be further investigated in a large cohort of patients. PMID:24253420
Lin, Guiting; Qiu, Xuefeng; Fandel, Thomas M; Albersen, Maarten; Wang, Zhong; Lue, Tom F; Lin, Ching-Shwun
2011-10-01
To investigate whether fluorochrome-conjugated phalloidin can delineate cavernous smooth muscle (CSM) cells and whether it can be combined with immunofluorescence (IF) staining to quantify erectile dysfunction (ED)-associated changes. ED was induced by cavernous nerve crush in rats. Penile tissues of control and ED rats were stained with Alexa-488-conjugated phalloidin and/or with antibodies against rat endothelial cell antigen (RECA), CD31, neuronal nitric oxide synthase (nNOS), and collagen-IV (Col-IV). Phalloidin was able to delineate CSM as composed of a circular and a longitudinal compartment. When combined with IF stain for CD31 or RECA, it helped the identification of the helicine arteries as covered by endothelial cells on both sides of the smooth muscle layer. When combined with IF stain for nNOS, it helped the identification that nNOS-positive nerves were primarily localized within the dorsal nerves and in the adventitia of dorsal arteries. When combined with IF stain for Col-IV, it helped identify that Col-IV was localized around smooth muscles and beneath the endothelium. Phalloidin also facilitated the quantitative analysis of ED-related changes in the penis. In rats with cavernous nerve injury, RECA or Col-IV expression did not change significantly, but CSM and nNOS nerve contents decreased significantly. Phalloidin stain improved penile histology, enabling the visualization of the circular and longitudinal compartments in the CSM. It also worked synergistically with IF stain, permitting the visualization of the dual endothelial covering in helicine arteries, and facilitating the quantification of ED-related histologic changes. Copyright © 2011 Elsevier Inc. All rights reserved.
Leite, Letícia N; do Vale, Gabriel T; Simplicio, Janaina A; De Martinis, Bruno S; Carneiro, Fernando S; Tirapelli, Carlos R
2017-06-05
Ethanol consumption is associated with an increased risk of erectile dysfunction (ED), but the molecular mechanisms through which ethanol causes ED remain elusive. Reactive oxygen species are described as mediators of ethanol-induced cell toxicity/damage in distinctive tissues. The enzyme NADPH oxidase is the main source of reactive oxygen species in the endothelium and vascular smooth muscle cells and ethanol is described to increase NADPH oxidase activation and reactive oxygen species generation. This study evaluated the contribution of NADPH oxidase-derived reactive oxygen species to ethanol-induced ED, endothelial dysfunction and production of pro-inflammatory and redox-sensitive proteins in the rat cavernosal smooth muscle (CSM). Male Wistar rats were treated with ethanol (20% v/v) or ethanol plus apocynin (30mg/kg/day; p.o. gavage) for six weeks. Apocynin prevented both the decreased in acetylcholine-induced relaxation and intracavernosal pressure induced by ethanol. Ethanol increased superoxide anion (O 2 - ) generation and catalase activity in CSM, and treatment with apocynin prevented these responses. Similarly, apocynin prevented the ethanol-induced decreased of nitrate/nitrite (NOx), hydrogen peroxide (H 2 O 2 ) and SOD activity. Treatment with ethanol increased p47phox translocation to the membrane as well as the expression of Nox2, COX-1, catalase, iNOS, ICAM-1 and p65. Apocynin prevented the effects of ethanol on protein expression and p47phox translocation. Finally, treatment with ethanol increased both TNF-α production and neutrophil migration in CSM. The major new finding of this study is that NADPH oxidase-derived reactive oxygen species play a role on chronic ethanol consumption-induced ED and endothelial dysfunction in the rat CSM. Copyright © 2017 Elsevier B.V. All rights reserved.
Peller, Michał; Balsam, Paweł; Główczyńska, Renata; Ossoliński, Krzysztof; Gilarowska, Anna; Kołtowski, Łukasz; Grabowski, Marcin; Filipiak, Krzysztof J; Opolski, Grzegorz
Endothelial dysfunction (ED) may indirectly influence the outcome of patients with coronary artery disease. To assess the influence of cardiac rehabilitation (CR) on endothelial function in patients after ST-segment elevation myocardial infarction (STEMI). Twenty-nine patients scheduled for CR were included in the study. CR began at least four weeks after STEMI and consisted of 12 or 24 training sessions. Endothelial function assessment was performed before and after CR, using reactive hyperaemia peripheral arterial tonometry. Before the CR, ED was diagnosed in 16 of 29 (55.2%) patients. A total of 25 patients had two assessments of endothelial function: before and after CR. In univariate analysis the factors of negative response of endothelial function to CR were: higher baseline hyperaemia index (lnRHI) (odds ratio [OR] for positive response to CR 0.01; 95% confidence interval [CI] 0.00-0.33; p = 0.01) and higher peak serum troponin I level during index hospitalisation (OR 0.97; 95% CI 0.94-1.00; p = 0.04). The independent, negative predictor of response to CR was lnRHI (OR 0.01; 95% CI 0.01-0.16; p = 0.03). Patients training for 24 sessions (n = 16) had similar lnRHI changes to those of patients training for 12 sessions (n = 9); [0.16 (-0.06)-0.30 vs. 0.10 (0.05-0.15); p = 0.44, respectively]. ED is a frequent abnormality in STEMI survivors. Despite the lack of statistically significant improvement of endothelial function after CR in the analysed group of patients, some factors can influence the efficacy of this type of physical activity. The best effect of CR on endothelial function was observed in patients with baseline ED.
Kwon, Mi-Hye; Tuvshintur, Buyankhuu; Kim, Woo Jean; Jin, Hai-Rong; Yin, Guo Nan; Song, Kang-Moon; Choi, Min Ji; Kwon, Ki-Dong; Batbold, Dulguun; Ryu, Ji-Kan; Suh, Jun-Kyu
2013-12-01
Much attention has recently been focused on therapeutic angiogenesis as a treatment for erectile dysfunction (ED). The apelin and apelin receptor (APJ) system is known to cause endothelium-dependent vasodilatation and to be involved in angiogenesis. To examine the differential expression of apelin and APJ in animal models of vasculogenic ED and to determine whether and how enhancement of apelin-APJ signaling restores erectile function in hypercholesterolemic mice. Acute cavernous ischemia was induced in C57BL/6J mice by bilateral occlusion of internal iliac arteries, and chronic vasculogenic ED was induced by feeding a high-cholesterol diet or by intraperitoneal injection of streptozotocin. Messenger RNA (mRNA) levels of apelin and APJ were determined in cavernous tissue of each vasculogenic ED model by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). We evaluated erectile function by electrical stimulation of the cavernous nerve in hypercholesterolemic mice 1, 3, 7, and 14 days after a single intracavernous injection of apelin protein (5 μg/20 μL). The penis was harvested for histologic examinations and Western blot analysis. The cavernous mRNA expression of apelin and APJ was up-regulated in acute ischemia model and down-regulated in chronic vasculogenic ED models. A significant restoration of erectile function was noted 1 day after injection of apelin protein into the penis of hypercholesterolemic mice; however, erectile function returned to baseline values thereafter. The beneficial effects of apelin on erectile function resulted mainly from an activation of endothelial nitric oxide synthase and increase in nitric oxide bioavailability through reduction in reactive oxygen species-mediated endothelial apoptosis rather than through direct endothelial cell proliferation. These findings suggest that apelin-APJ signaling is a potential therapeutic target in the treatment of vasculogenic ED. Further studies are needed to develop a potent agonist for APJ and to determine the role of repeated dosing of apelin on long-term recovery of erectile function. © 2013 International Society for Sexual Medicine.
Gas what: NO is not the only answer to sexual function
Yetik-Anacak, G; Sorrentino, R; Linder, A E; Murat, N
2015-01-01
The ability to get and keep an erection is important to men for several reasons and the inability is known as erectile dysfunction (ED). ED has started to be accepted as an early indicator of systemic endothelial dysfunction and subsequently of cardiovascular diseases. The role of NO in endothelial relaxation and erectile function is well accepted. The discovery of NO as a small signalling gasotransmitter led to the investigation of the role of other endogenously derived gases, carbon monoxide (CO) and hydrogen sulphide (H2S) in physiological and pathophysiological conditions. The role of NO and CO in sexual function and dysfunction has been investigated more extensively and, recently, the involvement of H2S in erectile function has also been confirmed. In this review, we focus on the role of these three sister gasotransmitters in the physiology, pharmacology and pathophysiology of sexual function in man, specifically erectile function. We have also reviewed the role of soluble guanylyl cyclase/cGMP pathway as a common target of these gasotransmitters. Several studies have proposed alternative therapies targeting different mechanisms in addition to PDE-5 inhibition for ED treatment, since some patients do not respond to these drugs. This review highlights complementary and possible coordinated roles for these mediators and treatments targeting these gasotransmitters in erectile function/ED. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24661203
Vicari, Enzo; La Vignera, Sandro; Condorelli, Rosita; Calogero, Aldo Eugenio
2010-03-01
The lack of phosphodiesterase type 5 inhibitor effects in patients with erectile dysfunction (ED) of arterial origin may be caused by an endothelial dysfunction that causes a series of biochemical alterations leading to a reduced nitric oxide (NO) bioavailability and increased oxidative stress. The aim of this study was to evaluate the effects of the treatment with endothelial antioxidant compounds (EAC) on the erectile response to sildenafil in patients with arterial ED already treated with sildenafil (100 mg twice a week for 8 weeks). A patient was considered responsive when the 5-item International Index of Erectile Function questionnaire score increased by >5 points. Fifty-three patients with arterial ED, hypertension, and diabetes mellitus were randomly given, for 8 weeks, EAC (1 dose/day) and, after a wash out of 8 weeks, sildenafil (100 mg) plus EAC. The patients were divided into the following four groups: A (N = 12): patients with ED alone; B (N = 14): patients with ED plus atheromasic plaques and/or increased intima-media thickness of common carotid arteries; C (N = 14): patients with ED plus lower limb artery abnormalities; and D (N = 13): patients with ED plus carotid and lower limb artery abnormalities. The administration of EAC plus sildenafil resulted in a significantly higher number of responsive patients (N = 36, 68%) compared with sildenafil alone (N = 24, 45%) or EAC alone (N = 17, 32%). The percentage of patients who successfully responded to the combined treatment increased in the various groups. It was 83%, 64%, 71%, and 54%, respectively, for groups A, B, C, and D. Furthermore, patients treated with EAC and sildenafil reached a successful response in a shorter length of time (3 weeks) compared with patients responsive to sildenafil (5.2 weeks) or EAC (5.7 weeks) alone. EAC administration to patients with arterial ED improved the success rate to sildenafil. These data suggest that, in such patients, a combined treatment may be considered to increase bioavailable NO and to neutralize radical oxygen species, which in turn inactive NO.
Endothelial dysfunction assessment by flow-mediated dilation in a high-altitude population.
Calderón-Gerstein, Walter S; López-Peña, Antonio; Macha-Ramírez, Raúl; Bruno-Huamán, Astrid; Espejo-Ramos, Roxana; Vílchez-Bravo, Stephany; Ramírez-Breña, María; Damián-Mucha, Milagros; Matos-Mucha, Adriana
2017-01-01
Endothelial function at high altitude has been measured only in populations that are genetically adapted to chronic hypoxia. The objective of this study was to evaluate endothelial dysfunction (ED) in a nongenetically adapted high-altitude population of the Andes mountains, in Huancayo, Peru (3,250 meters above sea level). Participants included 61 patients: 28 cases and 33 controls. The cases were subjects with hypertension, diabetes mellitus, obesity, or a history of stroke or coronary artery disease. Flow-mediated vasodilation (FMD) of the brachial artery was measured in the supine position, at noon, after 5 minutes of resting. The brachial artery was identified above the elbow. Its basal diameter was measured during diastole, and FMD was tested after 5 minutes of forearm ischemia. Intima-media complex in the right carotid artery was also determined. An increase in the artery's baseline diameter <10% indicated a positive test. Endothelium-independent vasodilation was evaluated with sublingual nitrate administration. The intima-media complex in the right carotid artery was also measured. 100% of diabetics had ED; ED was also found in 68.8% of obese individuals, 55% of hypertensive patients, and 46.5% of controls. Age, height, body mass index, and waist diameter were higher in the cases as compared with the controls. A total of 57.9% (n=11) of the cases and 45.2% (n=19) of the controls presented ED. Patients without ED had a mean increase in brachial artery diameter of 23.16%, while in those with ED it was only 3.84%. Individuals with diabetes or hypertension had a greater thickness of the carotid artery intima media layer (1.092 versus 0.664 cm) ( p =0.037). A positive test for ED was associated with a greater basal diameter of the brachial artery (4.66±0.62 versus 4.23±0.59 cm) ( p =0.02). A total of 7 patients presented paradoxical response, developing posthyperemia vasoconstriction. The proportion of ED was high among controls and among patients with risk factors. Controls showed better FMD profiles than subjects studied in Tibet and the Himalayas.
Can thromboembolic risk be associated with erectile dysfunction in atrial fibrillation patients?
Szymański, Filip M; Filipiak, Krzysztof J; Płatek, Anna E; Kotkowski, Marcin; Opolski, Grzegorz
2015-01-01
Erectile dysfunction (ED) is highly prevalent in patients with diseases of cardiovascular system, including patients with atrial fibrillation (AF). Reasons for this high co-prevalence include endothelial dysfunction, inflammation, oxidative and emotional stress associated with AF. Association of AF-induced prothrombotic state and possible microthrombi in penile arteries with ED remains unclear. The present study aims to assess if probability of AF-associated risk of peripheral thromboembolism may be associated with ED in AF patients. Probability of thromboembolic complications was assessed with two commonly used risk scores CHADS₂ and CHA2DS₂-VASc in a group of continuous AF patients. All patients were also asked to fill an IIEF-5 questionnaire designed for screening for ED. Mean CHADS₂ score in the whole study group was 1.1 ± 1.0 points and CHA₂DS₂- -VASc was 1.5 ± 1.4 points. ED was present in 57.4% of the 129-person study population. In patients with ED, both CHADS₂ (0.9 ± 1.0 vs. 1.3 ± 1.1; p = 0.03) and CHA₂DS₂-VASc (1.2 ± 1.1 vs. 1.8 ± 1.5; p = 0.03) scores were significantly higher than in the group without dysfunction. After dividing the patients according to age into groups younger than 65 years vs. ≥ 65 years, observed correlation was no longer significant in the younger group (p > 0.05). In patients ≥ 65 years, in whom the risk scores are routinely used, dysfunction both CHADS₂ (1.1 ± 0.9 vs. 2.0 ± 0.9; p = 0.02) and CHA₂DS₂-VASc (2.3 ± 1.1 vs. 3.4 ± 1.3; p = 0.04) scores were higher in the group with ED. Erectile dysfunctions in AF patients are associated with elevated cardioembolic risk. We postulate that the diagnosis of ED should be considered an additional marker of prothrombotic state, and may be useful in clinical decision-making, especially in patients ≥ 65 years old.
Effect of N-acetylcysteine on endothelial dysfunction in dialysis patients.
Sahin, Garip; Yalcin, Ahmet Ugur; Akcar, Nevbahar
2007-01-01
Patients with K/DOQI stage 5 chronic kidney disease (CKD) have higher incidence of cardiovascular events due to the oxidative stress and endothelial dysfunction (ED). The aim of this study is to evaluate the effects of N-acetylcysteine (NAC), which might prevent cardiovascular events by improving oxidative stress on endothelial cells in patients with CKD. Thirty uremic patients (age 40 +/- 12 years, 6 males) on hemodialysis (HD) were evaluated for ED by using high-resolution Doppler ultrasound of brachial artery before and after 6 weeks of oral NAC (2 x 600 mg) medication. Also, 13 healthy controls (35 +/- 9 years, 5 males) were included in the study. Reactive hyperemia following 5 min forearm ischemia was accepted as endothelium-dependent vasodilatation (flow-mediated dilatation; FMD) and compared to endothelium-independent vasodilatation in response to sublingual glyceril trinitrate (GTN). Patients on HD had lower DeltaFMD (0.28 +/- 0.17 vs. 0.41 +/- 0.11, p < 0.05) and FMD% (7.5 +/- 5.05 vs. 11.33 +/- 2.95, p < 0.05) than the controls. Baseline DeltaGTN and GTN% were similar in two groups. NAC treatment significantly increased the DeltaFMD (0.41 +/- 0.11, p < 0.001 vs. baseline) and FMD% (10.59 +/- 3.22, p < 0.01 vs. baseline) of patients on HD, while it had no effect on DeltaGTN and GTN%. These results suggest that NAC treatment could improve the ED by preventing the reduction of FMD in patients on HD. Copyright 2007 S. Karger AG, Basel.
Aversa, Antonio; Bruzziches, Roberto; Francomano, Davide; Natali, Marco; Lenzi, Andrea
2009-01-01
Normal vascular endothelium is essential for the synthesis and release of substances affecting vascular tone (e.g. nitric oxide; NO), cell adhesion (e.g. endothelins, interleukins), and the homeostasis of clotting and fibrinolysis (e.g. plasminogen inhibitors, von Willebrand factor). The degeneration of endothelial integrity promotes adverse events (AEs) leading to increased atherogenesis and to the development of vascular systemic and penile end-organ disease. Testosterone (T) is an important player in the regulation of vascular tone through non-genomic actions exerted via blockade of extracellular-calcium entry or activation of potassium channels; also, adequate T concentrations are paramount for the regulation of phosphodiesterase type-5 (PDE5) expression and finally, for the actions exerted by hydrogen sulphide, a gas involved in the alternative pathway controlling vasodilator responses in penile tissue. It is known that an age-related decline of serum T is reported in approximately 20 to 30% of men whereas T deficiency is reported in up to 50% of men with metabolic syndrome or diabetes. A number of laboratory and human studies have shown the combination of T and other treatments for erectile dysfunction (ED), such as PDE5 inhibitors, to be more beneficial in patients with ED and hypogonadism, who fail monotherapy for sexual disturbances. The aim of this review is to show evidence on the role of T and PDE5 inhibitors, alone or in combination, as potential boosters of endothelial function in internal medicine diseases associated with reduced T or NO bioavailability, i.e. metabolic syndrome, obesity, diabetes, coronary artery disease, hyperhomocysteinemia, that share common risk factors with ED. Furthermore, the possibility of such a strategy to prevent endothelial dysfunction in men at increased cardiovascular risk is discussed. PMID:21789066
Pan, Feng; Qiu, Xue-Feng; Yu, Wen; Zhang, Qi-Peng; Chen, Qun; Zhang, Chen-Yu; Chen, Yun; Pan, Lian-Jun; Zhang, Ai-Xia; Dai, Yu-Tian
2016-01-01
MiR-200a was shown to be upregulated in the corpus cavernosum (CC) of rats with aging-related erectile dysfunction (A-ED) in our previous study. Among its target genes, SIRT1 was also reported as a protective factor in erectile function by our groups previously. Thus, miR-200a might attenuate the erectile function in A-ED via SIRT1 inhibition. In the present study, three animal groups were included: aged rats with ED (group AE, n = 8), aged rats with normal erectile function (group AN, n = 8), and young rats as normal controls (group YN, n = 8). CCs from each group were collected for histological and molecular measurements to validate the dysregulation of miR-200a and SIRT1. After that, the cavernous endothelial cells (CECs) from CC of aged rats with normal erectile function were transfected with miR-200a in vitro. Then the expression of SIRT1 and molecules within the eNOS/NO/PKG pathway were measured to investigate whether the transfection could imitate the attenuated process of erectile function in the aged. As a result, miR-200a was upregulated while the SIRT1, the levels of eNOS and cGMP were all downregulated in the CCs from AE group. After transfection in vitro, the miR-200a was upregulated while the SIRT1 and levels of eNOS and cGMP were obviously downregulated. Finally, based on the results of our previous study, we further verify that up-regulation of miR-200a could participate in the mechanisms of A-ED via SIRT1 inhibition, and mainly attenuate endothelial function via influencing the eNOS/NO/PKGpathway. PMID:25966629
Costa, Carla; Soares, Raquel; Castela, Angela; Adães, Sara; Hastert, Véronique; Vendeira, Pedro; Virag, Ronald
2009-03-01
Erectile dysfunction (ED) is a common complication of diabetes. Endothelial cell (EC) dysfunction is one of the main mechanisms of diabetic ED. However, loss of EC integrity has never been assessed in human diabetic corpus cavernosum. To identify and quantify apoptotic cells in human diabetic and normal erectile tissue and to compare these results with each patient's clinical data and erection status. Eighteen cavernosal samples were collected, 13 from diabetics with ED and 5 from nondiabetic individuals. Cavernosal structure and cell proliferation status were evaluated by immunohistochemistry. Tissue integrity was assessed by terminal transferase dUTP nick end labeling assay, an index of apoptotic cell density (ACD) established and compared with each patient age, type of diabetes, arterial risk factors number, arterial/veno-occlusive disease, response to intracavernous vasoactive injections (ICI), and penile nitric oxide release test (PNORT). Establish an index of ACD and correlate those results with patient clinical data. Nondiabetic samples presented few scattered cells in apoptosis and an ACD of 7.15 +/- 0.44 (mean apoptotic cells/tissue area mm(2) +/- standard error). The diabetic group showed an increased ACD of 23.82 +/- 1.53, and apoptotic cells were located specifically at vascular sites. Rehabilitation of these endothelial lesions seemed impaired, as no evidence of EC proliferation was observed. Furthermore, higher ACD in diabetic individuals correlated to poor response to PNORT and to ICI. We provided evidence for the first time that loss of cavernosal EC integrity is a crucial event involved in diabetic ED. Furthermore, we were able to establish a threshold between ACD values and cavernosal tissue functionality, as assessed by PNORT and vasoactive ICI.
Vasculogenesis and Diabetic Erectile Dysfunction: How Relevant Is Glycemic Control?
Castela, Angela; Gomes, Pedro; Silvestre, Ricardo; Guardão, Luísa; Leite, Liliana; Chilro, Rui; Rodrigues, Ilda; Vendeira, Pedro; Virag, Ronald; Costa, Carla
2017-01-01
Erectile dysfunction (ED) is a complication of diabetes, condition responsible for causing endothelial dysfunction (EDys) and hampering repair mechanisms. However, scarce information is available linking vasculogenesis mediated by Endothelial Progenitor Cells (EPCs) and diabetes-associated ED. Furthermore, it remains to be elucidated if glycemic control plays a role on EPCs functions, EPCs modulators, and penile vascular health. We evaluated the effects of diabetes and insulin therapy on bone marrow (BM) and circulating EPCs, testosterone, and systemic/penile Stromal Derived Factor-1 alpha (SDF-1α) expression. Male Wistar rats were divided into groups: age-matched controls, 8-weeks streptozotocin-induced type 1 diabetics, and insulin-treated 8-weeks diabetics. EPCs were identified by flow cytometry for CD34/CD133/VEGFR2/CXCR4 antigens. Systemic SDF-1α and testosterone levels were evaluated by ELISA. Penile SDF-1α protein expression was assessed, in experimental and human diabetic cavernosal samples, by immunohistochemical techniques. Diabetic animals presented a reduction of BM-derived EPCs and an increase in putative circulating endothelial cells (CECs) sloughed from vessels wall. These alterations were rescued by insulin therapy. In addition, glycemic control promoted an increase in systemic testosterone and SDF-1α levels, which were significantly decreased in animals with diabetes. SDF-1α protein expression was reduced in experimental and human cavernosal diabetic samples, an effect prevented by insulin in treated animals. Insulin administration rescued the effects of diabetes on BM function, CECs levels, testosterone, and plasmatic/penile SDF-1α protein expression. This emphasizes the importance of glycemic control in the prevention of diabetes-induced systemic and penile EDys, by the amelioration of endothelial damage, and increase in protective pathways. J. Cell. Biochem. 118: 82-91, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hypogonadism as a possible link between metabolic diseases and erectile dysfunction in aging men.
Corona, Giovanni; Bianchini, Silvia; Sforza, Alessandra; Vignozzi, Linda; Maggi, Mario
2015-01-01
There is evidence demonstrating that sexual complaints represent the most specific symptoms associated with late onset hypogonadism, while central obesity is the most specific sign. In obese men, hypogonadism can further worsen the metabolic profile and increase abdominal fat. In addition, although hypogonadism can exacerbate obesity-associated erectile dysfunction (ED), recent data suggest that a direct contribution of fat-derived factors could be hypothesized. In particular, an animal model recently documented that fat accumulation induces several hepatic pro-inflammatory genes closely linked to corpora cavernosa endothelial dysfunction. Lifestyle modifications and weight loss are the first steps in the treatment of ED patients with obesity or metabolic diseases. In symptomatic hypogonadal men with metabolic impairment and obesity, combining the effect of testosterone substitution with lifestyle modifications could result in better outcomes.
Huang, Yan-Ping; Chen, Bin; Yao, Feng-Juan; Chen, Sheng-Fu; Ouyang, Bin; Deng, Chun-Hua; Huang, Yi-Ran
2014-06-01
Although increasing evidences emphasize the importance of early cardiovascular evaluation in men with erectile dysfunction (ED) of unexplained aetiology, impaired masturbation-induced erections in young men are usually overlooked and habitually presumed to be psychological origin. To evaluate the young men presenting weaker masturbatory erection with no sexual intercourse (WME-NS) and verify if this cohort have early cardiovascular risks associated with ED. Male subjects aged 18-40 years with WME-NS were screened by analyzing detailed sexual intercourse and masturbatory history. The age-matched ED and non-ED population were identified by using International Index of Erectile Function-5 (IIEF-5). All subjects with acute and/or chronic diseases (including diagnosed hypertension and diabetes) and long-term pharmacotherapy were excluded. Nocturnal penile tumescence and rigidity (NPTR), systemic vascular parameters and biochemical indicators related to metabolism were assessed. Comparison analysis and logistic regression analysis were conducted among WME-NS, ED and non-ED population. In total, 78 WME-NS cases (mean 28.99 ± 5.92 years), 179 ED cases (mean 30.69 ± 5.21 years) and 43 non-ED cases (mean 28.65 ± 4.30 years) were screened for analysis. Compared with non-ED group, WME-NS group had higher prevalence of early ED risk factors including endothelial dysfunction, insulin resistance, high level of glycosylated serum protein and abnormal NPTR. Multivariable-adjusted logistic regression analysis showed endothelia dysfunction (odds ratio: 8.83 vs. 17.11, both P < 0.001) was the independent risk factor for both WME-NS and ED. Weaker masturbatory erection may be a sign of early cardiovascular risk associated with ED in young men without sexual intercourse. More studies are warranted to elucidate the clinical benefits by targeting these formulated strategies. © 2014 International Society for Sexual Medicine.
Ryu, Ji-Kan; Kim, Woo Jean; Koh, Young Jun; Piao, Shuguang; Jin, Hai-Rong; Lee, Sae-Won; Choi, Min Ji; Shin, Hwa-Yean; Kwon, Mi-Hye; Jung, Keehoon; Koh, Gou Young; Suh, Jun-Kyu
2015-01-01
Despite the advent of oral phosphodiesterase-5 inhibitors, curative treatment for erectile dysfunction (ED) remains unavailable. Recently, the link between ED and cardiovascular disease was unveiled and the main etiology of ED was found to be vasculogenic. Therefore, neovascularization is a promising strategy for curing ED. Angiopoietin-1 (Ang1) is an angiogenic growth factor that promotes the generation of stable and functional vasculature. Here, we demonstrate that local delivery of the soluble, stable, and potent Ang1 variant, COMP-Ang1 gene or protein, into the penises of hypercholesterolemic mice increases cavernous angiogenesis, eNOS phosphorylation, and cGMP expression, resulting in full recovery of erectile function and cavernous blood flow up to 8 weeks after treatment. COMP-Ang1-induced promotion of cavernous angiogenesis and erectile function was abolished in Nos3-/- mice and in the presence of the NOS inhibitor, L-NAME. COMP-Ang1 also restored the integrity of endothelial cell-cell junction by down-regulating the expression of histone deacetylase 2 in the penis of hypercholesterolemic mice and in primary cultured mouse cavernous endothelial cells. These findings constitute a new paradigm toward curative treatment of both cavernous angiopathy and ED. PMID:25783805
Exercise induced von Willebrand Factor release -- new model for routine endothelial testing.
Balen, Sanja; Ruzić, Alen; Mirat, Jure; Persić, Viktor
2007-01-01
Endothelial dysfunction (ED) is actively involved in the mechanism of occurrence, development and progression of all the degrees of atherosclerosis. The established impact of ED on the progress and outcome of cardiovascular diseases, together with convincing indications of a possible successful therapeutic modification, necessitate the changeover of ED assessment from experimental to a routine practice. As there is no appropriate method for a clinical practice, scientists anticipate significant research efforts in the further development. Among numerous methods already available, von Willebrand Factor (vWF) stands out significantly. In accordance with the accepted leading diagnostic role of vWF baseline levels in the group of peripheral endothelial markers, and earlier scientific observations on the absence of its expected reactivation during physical exercise, we hypothesised this promising theory. We believe that a constant stronger release of vWF in endothelial cell injury leads to the exhaustion of its stores in Weibel-Palade bodies with the consequent absence of the expected rise of concentration during the exercise. Therefore, we hypothesised that ED could be exhaustible vWF endothelopathy and the exercise induced release of vWF a new, simple, safe and reliable test for the detection of ED and monitoring of the expected therapeutic effect. In order to have a final clinical usability of the proposed diagnostic model, it is necessary to test its reliability in different pathological and risk states, and establish susceptibility in therapeutic procedures. The correlation with invasive functional angiographic tests and the flow mediated dilatation test of peripheral arteries also needs to be validated. We expect the proposed test of vWF inducibility to find its place in clinical practice, i.e. in prevention, prediction and therapy of cardiovascular diseases.
Is there a relationship between chronic periodontitis and erectile dysfunction?
Oğuz, Fatih; Eltas, Abubekir; Beytur, Ali; Akdemir, Ender; Uslu, Mustafa Özay; Güneş, Ali
2013-03-01
Chronic periodontitis (CP) is characterized with inflammation of the gingival tissues, which causes endothelial dysfunction in different organs. In this study, we investigated the association of CP with the erectile dysfunction (ED). The study group included 80 male patients with ED and 82 male patients without ED (control), aged between 30 and 40 years. The International Index of Erectile Function (IIEF) questionnaire was used to assess male sexual function, particularly the presence or absence of ED. The patients in the study and control groups were statistically compared according to their plaque index (PI), bleeding on probing (BoP), probing depth (PD), and clinical attachment level (CAL). In the non-ED and the ED groups, the mean age was 35.7 ± 4.8 and 34.9 ± 4.9 years, respectively. Patients' characteristics including body mass index, household income, and education status were similar in both groups (P > 0.05). Nineteen patients (23%) had severe CP in the non-ED group; 42 patients (53%) had severe CP in the ED group. Logistic regression analysis showed a significantly high association between ED and the severity of CP (odds ratio: 3.29, 95% confidence interval: 1.36-9.55, P < 0.01). The mean values of PI, BoP, and the percentages of sites with PD >4 mm and sites with CAL >4 mm were significantly higher in the ED group than in the control group (P < 0.05). The mean values of PD and CAL were not significantly different in the two groups (P > 0.05). The decayed, missing, filled teeth scores were also significantly higher in the ED group than in the non-ED group (P < 0.05). Our results have suggested that CP had a high association with ED in young adults at 30-40 years. We think that it will be of benefit to consider periodontal disease as a causative clinical condition of ED in such patients. © 2012 International Society for Sexual Medicine.
Diagnosing erectile dysfunction: the penile dynamic colour duplex ultrasound revisited.
Aversa, A; Bruzziches, R; Spera, G
2005-12-01
A number of disease processes of the penis including Peyronie's disease, priapism, penile fractures and tumors are clearly visualized with ultrasound. Diagnostic evaluation of erectile dysfunction (ED) by penile dynamic colour-duplex Doppler ultrasonography (D-CDDU) is actually considered a second level approach to ED patients because of the fact that intracavernous injections test IV with prostaglandin-E(1) may provide important information about the patients' erectile capacity. However, no direct vascular imaging and a high percentage of false negative diagnoses of vasculogenic ED are its major pitfalls and subsequent treatment decisions remain quite limited. The occurrence of ED and its sentinel relationship to cardiovascular disease has prompted more accurate vascular screening in all patients even in the absence of cardiovascular risk factors. The sonographic evaluation of the intima-media thickness of the carotid arteries may sometimes represent an early manifestation of diffuse atherosclerotic disease and endothelial damage. This latter finding is often the cause of failure to oral agents, i.e. phosphodiesterase inhibitors, because of inability of the dysfunctional endothelium to release nitric oxide. D-CDDU represents an accurate tool to investigate cavernous artery inflow and venous leakage when compared with more invasive diagnostic techniques i.e. selective arteriography and dynamic infusion cavernosometry along with cavernosography.
Melehan, Kerri L; Hoyos, Camilla M; Hamilton, Garun S; Wong, Keith K; Yee, Brendon J; McLachlan, Rob I; O'Meagher, Shamus; Celermajer, David; Ng, Martin K; Grunstein, Ronald R; Liu, Peter Y
2018-02-01
Erectile function is important for life satisfaction and is often impaired in men with obstructive sleep apnea (OSA). Uncontrolled studies show that treating OSA with continuous positive airway pressure (CPAP) improves erectile function. Phosphodiesterase type 5 inhibitors (e.g. vardenafil) are the first-line therapy for erectile dysfunction (ED), but may worsen OSA. To assess the effects of CPAP and vardenafil on ED. Sixty one men with moderate-to-severe OSA and ED were randomised to 12 weeks of CPAP or sham CPAP, and 10mg daily vardenafil or placebo, in a 2x2 factorial design. International Index of Erectile Function (primary endpoint), treatment and relationship satisfaction, sleep related erections, sexual function, endothelial function, arterial stiffness, quality of life, and sleep-disordered breathing. CPAP increased the frequency of sleep-related-erections, overall sexual satisfaction, and arterial stiffness but did not change erectile function or treatment satisfaction or relationship satisfaction. Vardenafil did not alter erectile function, endothelial function, arterial stiffness or sleep disordered breathing, but did improve overall self-esteem and relationship satisfaction, other aspects of sexual function and treatment satisfaction. Adherent CPAP improved erectile function, sexual desire, overall sexual, self-esteem and relationship, and treatment satisfaction, as well as sleepiness, and quality of life. Adherent vardenafil use did not consistently change nocturnal erection quality. CPAP improves overall sexual satisfaction, sleep related erections, and arterial stiffness. Low dose daily vardenafil improves certain aspects of sexual function, and did not worsen OSA. Adherent CPAP or vardenafil use further improves ED and quality of life. Copyright © 2018 Endocrine Society
Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus.
Shan, Kun; Liu, Chang; Liu, Bai-Hui; Chen, Xue; Dong, Rui; Liu, Xin; Zhang, Yang-Yang; Liu, Ban; Zhang, Shu-Jie; Wang, Jia-Jian; Zhang, Sheng-Hai; Wu, Ji-Hong; Zhao, Chen; Yan, Biao
2017-10-24
The vascular complications of diabetes mellitus are the major causes of morbidity and mortality among people with diabetes. Circular RNAs are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. In this study, we investigated the role of circular RNA in retinal vascular dysfunction induced by diabetes mellitus. Quantitative polymerase chain reactions, Sanger sequencing, and Northern blots were conducted to detect circular HIPK3 (circHIPK3) expression pattern on diabetes mellitus-related stresses. MTT (3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assays, EdU (5-ethynyl-2'-deoxyuridine) incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of circHIPK3 in retinal endothelial cell function in vitro. Retinal trypsin digestion, vascular permeability assays, and ELISA assays were conducted to detect the role of circHIPK3 in retinal vascular dysfunction in vivo. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were conducted to reveal the mechanism of circHIPK3-mediated retinal vascular dysfunction. circHIPK3 expression was significantly upregulated in diabetic retinas and retinal endothelial cells following stressors related to diabetes mellitus. circHIPK3 silencing or overexpressing circHIPK3 changed retinal endothelial cell viability, proliferation, migration, and tube formation in vitro. circHIPK3 silencing in vivo alleviated retinal vascular dysfunction, as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. circHIPK3 acted as an endogenous miR-30a-3p sponge to sequester and inhibit miR-30a-3p activity, which led to increased vascular endothelial growth factor-C, FZD4, and WNT2 expression. Ectopic expression of miR-30a-3p mimicked the effect of circHIPK3 silencing on vascular endothelial phenotypes in vivo and in vitro. The circular RNA circHIPK3 plays a role in diabetic retinopathy by blocking miR-30a function, leading to increased endothelial proliferation and vascular dysfunction. These data suggest that circular RNA is a potential target to control diabetic proliferative retinopathy. © 2017 American Heart Association, Inc.
Tsao, C-W; Liu, C-Y; Cha, T-L; Wu, S-T; Chen, S-C; Hsu, C-Y
2015-06-01
Several cross-sectional studies have indicated an association between chronic periodontal disease (CPD) and cardiovascular disease and metabolic syndrome. Erectile dysfunction (ED) also shares pathological mechanisms with these diseases. Using a nationwide population-based data set, we examined the association between ED and CPD and assessed the effect of dental extraction (DE) on ED prevalence in different aged CPD populations in Taiwan. We identified 5105 patients with ED and randomly selected 10 210 patients as controls. Of these patients, 2617 (17.09%) were diagnosed with CPD according to the index data: 1196 (23.43%) in the ED group and 1421 (13.92%) in the control group. After adjusting for comorbid factors, patients with ED were more likely to have been diagnosed with prior CPD than controls (OR = 1.79, 95% CI = 1.64-1.96, P < 0.001). Moreover, the association was much stronger in the populations aged less than 30 years (OR = 2.13, 95% CI = 1.23-3.70, P < 0.001) and more than 59 years (OR = 2.27, 95% CI = 1.99-2.59, P < 0.001). Dental extraction seems to attenuate damage to the penile endothelial beds caused by CPD-related inflammation and overcame the process of ED in the middle-aged and older populations. © 2014 Blackwell Verlag GmbH.
Association of ED with chronic periodontal disease.
Matsumoto, S; Matsuda, M; Takekawa, M; Okada, M; Hashizume, K; Wada, N; Hori, J; Tamaki, G; Kita, M; Iwata, T; Kakizaki, H
2014-01-01
To examine the relationship between chronic periodontal disease (CPD) and ED, the interview sheet including the CPD self-checklist (CPD score) and the five-item version of the International Index of Erectile Function (IIEF-5) was distributed to 300 adult men who received a comprehensive dental examination. Statistical analyses were performed by the Spearman's rank correlation coefficient and other methods. Statistical significance was accepted at the level of P<0.05. The interview sheets were collected from 88 men (response rate 29.3%, 50.9±16.6 years old). There was a statistically significant correlation between the CPD score and the presence of ED (P=0.0415). The results in the present study suggest that ED is related to the damage caused by endothelial dysfunction and the systematic inflammatory changes associated with CPD. The present study also suggests that dental health is important as a preventive medicine for ED.
Cavernous neurotomy in the rat is associated with the onset of an overt condition of hypogonadism.
Vignozzi, Linda; Filippi, Sandra; Morelli, Annamaria; Marini, Mirca; Chavalmane, Aravinda; Fibbi, Benedetta; Silvestrini, Enrico; Mancina, Rosa; Carini, Marco; Vannelli, G Barbara; Forti, Gianni; Maggi, Mario
2009-05-01
Most men following radical retropubic prostatectomy (RRP) are afflicted by erectile dysfunction (ED). RRP-related ED occurs as a result of surgically elicited neuropraxia, leading to histological changes in the penis, including collagenization of smooth muscle and endothelial damage. To verify whether hypogonadism could contribute to the pathogenesis of RRP-ED. Effects of testosterone (T), alone or in association with long-term tadalafil (Tad) treatment in a rat model of bilateral cavernous neurotomy (BCN). Penile tissues from rats were harvested for vasoreactivity studies 3 months post-BCN. Penile oxygenation was evaluated by hypoxyprobe immunostaining. Phosphodiesterase type 5 (PDE5), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) mRNA expression were quantified by Real Time quantitative reverse transcription polymerase chain reaction (qRT-PCR). In BCN rats, we observed the onset of an overt condition of hypogonadism, characterized by reduced T plasma level, reduced ventral prostate weight, reduced testis function (including testis weight and number of Leydig cells), with an inadequate compensatory increase of luteinizing hormone. BCN induced massive penile hypoxia, decreased muscle/fiber ratio, nNOS, eNOS, PDE5 expression, increased sensitivity to the nitric oxide donor, sodium nitroprusside (SNP), and reduced the relaxant response to acetylcholine (Ach), as well as unresponsiveness to acute Tad dosing. In BCN rats, chronic Tad-administration normalizes penile oxygenation, smooth muscle loss, PDE5 expression, SNP sensitivity, and the responsiveness to the acute Tad administration. Chronic Tad treatment was ineffective in counteracting the reduction of nNOS and eNOS expression, along with Ach responsiveness. T supplementation, in combination with Tad, reverted some of the aforementioned alterations, restoring smooth muscle content, eNOS expression, as well as the relaxant response of penile strips to Ach, but not nNOS expression. BCN was associated with hypogonadism, probably of central origin. T supplementation in hypogonadal BCN rats ameliorates some aspects of BCN-induced ED, including collagenization of penile smooth muscle and endothelial dysfunction, except surgically induced altered nNOS expression.
Musicki, Biljana; Burnett, Arthur L.
2016-01-01
Erectile dysfunction (ED) associated with type 2 diabetes mellitus (T2DM) involves dysfunctional nitric oxide (NO) signaling and increased oxidative stress in the penis. However, the mechanisms of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) dysregulation, and the sources of oxidative stress, are not well defined, particularly at the human level. The objective of this study was to define whether uncoupled eNOS and nNOS, and NADPH oxidase upregulation, contribute to the pathogenesis of ED in T2DM men. Penile erectile tissue was obtained from 9 T2DM patients with ED who underwent penile prosthesis surgery for ED, and from 6 control patients without T2DM or ED who underwent penectomy for penile cancer. The dimer-to-monomer protein expression ratio, an indicator of uncoupling for both eNOS and nNOS, total protein expressions of eNOS and nNOS, as well as protein expressions of NADPH oxidase catalytic subunit gp91phox (an enzymatic source of oxidative stress) and 4-hydroxy-2-nonenal [4-HNE] and nitrotyrosine (markers of oxidative stress) were measured by Western blot in this tissue. In the erectile tissue of T2DM men, eNOS and nNOS uncoupling and protein expressions of NADPH oxidase subunit gp91phox, 4-HNE- and nitrotyrosine-modified proteins were significantly (p<0.05) increased compared to control values. Total eNOS and nNOS protein expressions were not significantly different between the groups. In conclusion, mechanisms of T2DM-associated ED in the human penis may involve uncoupled eNOS and nNOS and NADPH oxidase upregulation. Our description of molecular factors contributing to the pathogenesis of T2DM-associated ED at the human level is relevant for advancing clinically therapeutic approaches to restore erectile function in T2DM patients. PMID:28076881
Fischer, Tamás
2015-03-01
The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.
Jin, Yang; Xu, Lina; Zhao, Yong; Wang, Muwen; Jin, Xunbo; Zhang, Haiyang
2017-04-01
Defocused low-energy shock wave (DLSW) has been shown effects on activating mesenchymal stromal cells (MSCs) in vitro. In this study, recruitment of endogenous stem cells was firstly examined as an important pathway during the healing process of diabetic bladder dysfunction (DBD) treated by DLSW in vivo. Neonatal rats received intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) and then DBD rat model was created by injecting streptozotocin. Four weeks later, DLSW treatment was performed. Afterward, their tissues were examined by histology. Meanwhile, adipose tissue-derived stem cells (ADSCs) were treated by DLSW in vitro. Results showed DLSW ameliorated voiding function of diabetic rats by recruiting EdU + Stro-1 + CD34 - endogenous stem cells to release abundant nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). Some EdU + cells overlapped with staining of smooth muscle actin. After DLSW treatment, ADSCs showed higher migration ability, higher expression level of stromal cell-derived factor-1 and secreted more NGF and VEGF. In conclusion, DLSW could ameliorate DBD by recruiting endogenous stem cells. Beneficial effects were mediated by secreting NGF and VEGF, resulting into improved innervation and vascularization in bladder.
Penile Low-Intensity Shock Wave Therapy: A Promising Novel Modality for Erectile Dysfunction
Kitrey, Noam D.; Gruenwald, Ilan; Appel, Boaz; Vardi, Yoram
2014-01-01
Penile extracorporeal low-intensity shock wave therapy (LIST) to the penis has recently emerged as a novel and promising modality in the treatment of erectile dysfunction (ED). LIST has angiogenic properties and stimulates neovascularization. If applied to the corpora cavernosa, LIST can improve penile blood flow and endothelial function. In a series of clinical trials, including randomized double-blind sham-controlled studies, LIST has been shown to have a substantial effect on penile hemodynamics and erectile function in patients with vasculogenic ED. LIST is effective in patients who are responsive to phosphodiesterase 5 inhibitors (PDE5i) and can also convert PDE5i nonresponders to responders. The response to LIST wanes gradually over time, and after 2 years, about half of the patients maintain their function. Extensive research is needed to understand the effect of LIST on erectile tissue, to modify the treatment protocol to maximize its outcomes, and to identify the patients who will benefit the most from this treatment. PMID:24868332
Penile low-intensity shock wave therapy: a promising novel modality for erectile dysfunction.
Abu-Ghanem, Yasmin; Kitrey, Noam D; Gruenwald, Ilan; Appel, Boaz; Vardi, Yoram
2014-05-01
Penile extracorporeal low-intensity shock wave therapy (LIST) to the penis has recently emerged as a novel and promising modality in the treatment of erectile dysfunction (ED). LIST has angiogenic properties and stimulates neovascularization. If applied to the corpora cavernosa, LIST can improve penile blood flow and endothelial function. In a series of clinical trials, including randomized double-blind sham-controlled studies, LIST has been shown to have a substantial effect on penile hemodynamics and erectile function in patients with vasculogenic ED. LIST is effective in patients who are responsive to phosphodiesterase 5 inhibitors (PDE5i) and can also convert PDE5i nonresponders to responders. The response to LIST wanes gradually over time, and after 2 years, about half of the patients maintain their function. Extensive research is needed to understand the effect of LIST on erectile tissue, to modify the treatment protocol to maximize its outcomes, and to identify the patients who will benefit the most from this treatment.
Endothelial dysfunction in hemodialysis patients with failed renal transplants.
Gorgulu, Numan; Yelken, Berna; Caliskan, Yasar; Elitok, Ali; Cimen, Arif Oguzhan; Yazici, Halil; Oflaz, Huseyin; Golcuk, Ebru; Ekmekci, Ahmet; Turkmen, Aydin; Yildiz, Alaattin; Sever, Mehmet Sukru
2010-01-01
Endothelial dysfunction (ED) is a common precursor and denominator of cardiovascular events including development of atherosclerosis. In this cross-sectional study, we aimed to investigate ED, measured by coronary flow reserve (CFR) in hemodialysis (nHD) patients who were never transplanted and patients with failed renal transplants restarting hemodialysis (fTx-HD). Forty nHD (24 males, mean age 39 ± 9 yr) and 43 fTx-HD patients (27 males, mean age 36 ± 9 yr) were included in the study. Clinical and biochemical parameters, including high-sensitive C-reactive protein (hs-CRP) levels were determined. Also, CFR measurements were used to evaluate ED. There were no significant differences regarding age, gender, smoking status, systolic and diastolic blood pressure levels, mean duration of HD treatment as well as Kt/V((urea)) values between the two groups. Time spent on dialysis in the nHD group and dialysis duration following failure of renal allograft in the fTx-HD group were similar. Serum creatinine, hemoglobin, hematocrit, calcium and phosphorus levels were similar between the two groups as well. When compared to nHD group, serum total cholesterol (139 ± 3 vs. 154 ± 3 mg/dL, p = 0.045), serum albumin (3.8 ± 0.3 g/dL vs. 4.1 ± 0.2 g/dL, p < 0.0001) and CFR (1.60 ± 0.2 vs. 1.75 ± 0.3, p = 0.028) levels were significantly lower, while serum hs-CRP levels (11 ± 15 mg/L vs. 3 ± 4 mg/L, p = 0.001) were significantly higher in the fTx-HD group. Serum hs-CRP negatively correlated (r = -0254, p = 0.021), while serum albumin positively correlated (r = 0402, p = 0.001) with CFR values. ED is more prominent in fTx-HD than the nHD patients. Inflammation, caused by failed renal allograft can be responsible for this abnormality. © 2009 John Wiley & Sons A/S.
TNF-alpha infusion impairs corpora cavernosa reactivity.
Carneiro, Fernando S; Zemse, Saiprazad; Giachini, Fernanda R C; Carneiro, Zidonia N; Lima, Victor V; Webb, R Clinton; Tostes, Rita C
2009-03-01
Erectile dysfunction (ED), as well as cardiovascular diseases (CVDs), is associated with endothelial dysfunction and increased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha). We hypothesized that increased TNF-alpha levels impair cavernosal function. In vitro organ bath studies were used to measure cavernosal reactivity in mice infused with vehicle or TNF-alpha (220 ng/kg/min) for 14 days. Gene expression of nitric oxide synthase isoforms was evaluated by real-time polymerase chain reaction. Corpora cavernosa from TNF-alpha-infused mice exhibited decreased nitric oxide (NO)-dependent relaxation, which was associated with decreased endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) cavernosal expression. Cavernosal strips from the TNF-alpha-infused mice displayed decreased nonadrenergic-noncholinergic (NANC)-induced relaxation (59.4 +/- 6.2 vs. control: 76.2 +/- 4.7; 16 Hz) compared with the control animals. These responses were associated with decreased gene expression of eNOS and nNOS (P < 0.05). Sympathetic-mediated, as well as phenylephrine (PE)-induced, contractile responses (PE-induced contraction; 1.32 +/- 0.06 vs. control: 0.9 +/- 0.09, mN) were increased in cavernosal strips from TNF-alpha-infused mice. Additionally, infusion of TNF-alpha increased cavernosal responses to endothelin-1 and endothelin receptor A subtype (ET(A)) receptor expression (P < 0.05) and slightly decreased tumor necrosis factor-alpha receptor 1 (TNFR1) expression (P = 0.063). Corpora cavernosa from TNF-alpha-infused mice display increased contractile responses and decreased NANC nerve-mediated relaxation associated with decreased eNOS and nNOS gene expression. These changes may trigger ED and indicate that TNF-alpha plays a detrimental role in erectile function. Blockade of TNF-alpha actions may represent an alternative therapeutic approach for ED, especially in pathologic conditions associated with increased levels of this cytokine.
Arpaci, Dilek; Karakece, Engin; Tocoglu, Aysel Gurkan; Ergenc, Hasan; Gurol, Gonul; Ciftci, Ihsan Hakki; Tamer, Ali
2016-12-01
Although the relationship between atherosclerosis and overt hypothyroidism has been confirmed, it remains controversial in cases of subclinical hypothyroidism. Higher TSH and similar T4 suggest differences in set-points or differences due to diagnostic limitations regarding subclinical hypothyroidism. Endothelial dysfunction (ED) is a marker rather than a precursor of cardiovascular disease. Asymmetric dimethylarginine (ADMA) and endocan are known as novel markers of ED in various diseases. Transforming growth factor-beta (TGF-β) has a protective role against autoimmune diseases such as thyroiditis. This study aimed to determine the relationships between serum ADMA, endocan, TGF-β, and the high-sensitivity C-reactive protein (hs-CRP) levels, a proven indicator of ED, in patients with SH. Thirty-five patients with SH and 21 age- and sex-matched euthyroid subjects were included in the study. The levels of TSH, FT4, lipid parameters, endocan, ADMA, TGF-β, and hs-CRP were measured. No significant differences in age or sex were found between the patient and control groups (p=0.294 and 0.881, respectively). Mean TSH level was higher in the patient group (p=0.005), whereas mean fT4 level was similar in two groups (p=0.455). The average hs-CRP, endocan, TGF-β l level in the patient group was higher than control group (p=0.001; P=0.012; P=0.025; P<0.01 respectively). A positive correlation was found between the endocan and ADMA levels (r=0.760, p=0.000). ADMA levels also were positively correlated with hs-CRP. Both the TSH and low-density lipoprotein cholesterol (LDL-C) levels were positively correlated with the hs-CRP level. Subclinical hypothyroidism is associated with increased levels of serum endocan, ADMA, and TGF-β, which are new markers for ED. In particular, ADMA was correlated with both endocan and hs-CRP levels. These findings are suggestive for increased risk of ED and subsequent development of atherosclerosis in patients with SH. © 2016 by the Association of Clinical Scientists, Inc.
Vera-Lastra, O; Méndez-Flores, S; Cruz-Dominguez, M P; Medina, G; Calderón-Aranda, E; Jara, L J
2016-06-01
Patients with systemic lupus erythematosus (SLE) have a higher risk for cardiovascular disease (CVD), not fully explained by the conventional risk factors. These patients have endothelial dysfunction (ED) as an early process of atherosclerosis, which can be reversed with therapy. To determine the effect of ezetimibe plus pravastatin on endothelial function in patients with SLE after 12 months of treatment. An open study, before and after, which assessed the effect of ezetimibe plus pravastatin treatment, was performed. Twenty two patients (21 women and one man) with diagnosis of SLE were studied, with a mean age 40 ± 5 years. Endothelial dysfunction was evaluated using vascular ultrasound of the brachial artery in order to measure the flow-mediated vasodilation (FMV) basal and after 12 months of treatment with pravastatin 40 mg/day plus ezetimibe 10 mg/day. In addition, a lipid profile: total cholesterol (TC), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), and serum C-reactive protein (CRP), was done. We found a basal FMV of 7.58% and 18.22% after 12 months of treatment, with an improvement of 10.64 points 95% CI (7.58-13.58), p < 0.001. TC decreased from 201.3 ± 58.9 mg/dL to 158.06 ± 50.13 mg/dL (p < 0.01); LDL-C from 125.78 ± 44.4 mg/dL to 78.8 ± 32.9 mg/dL (p < 0.001); HDL-C increased from 49.0 ± 16.8 mg/dL to 52.2 ± 13.8 mg/dL (p = 0.077). The basal and final concentrations of CRP were 4.49 and 2.8, respectively, with a mean decrease of 2.11 mg/dL, 95% CI (0.908-3.32), p < 0.002. Both drugs were well tolerated. Ezetimibe plus pravastatin significantly improved FMV in patients with SLE, decreasing ED and the lipid profile. This treatment ameliorated an early process of atherosclerosis and a risk factor for CVD. © The Author(s) 2016.
Energy Drinks and Myocardial Ischemia: A Review of Case Reports.
Lippi, Giuseppe; Cervellin, Gianfranco; Sanchis-Gomar, Fabian
2016-07-01
The use and abuse of energy drinks (EDs) is constantly increasing worldwide. We performed a systematic search in Medline, Scopus and Web of Science to identify evidence about the potential link between these beverages and myocardial ischemia. Overall, 8 case reports could be detected, all of which described a realistic association between large intake of EDs and episodes of myocardial ischemia. Interestingly, no additional triggers of myocardial ischemia other than energy drinks could be identified in the vast majority of cases. Some plausible explanations can be brought in support of this association. Most of the biological effects of EDs are seemingly mediated by a positive inotropic effect on cardiac function, which entails increase in heart rate, cardiac output and contractility, stroke volume and arterial blood pressure. Additional biological abnormalities reported after EDs intake include increased platelet aggregation, endothelial dysfunction, hyperglycemia as well as an increase in total cholesterol, triglycerides and low-density lipoprotein cholesterol. Although a causal relationship between large consumption of EDs and myocardial ischemia cannot be definitely established so far, concerns about the cardiovascular risk of excessive consumption of these beverages are seemingly justified.
Endothelial dysfunction in metabolic and vascular disorders.
Polovina, Marija M; Potpara, Tatjana S
2014-03-01
Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.
Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao
2015-01-01
Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.
Koon, Chong Siew; Sidi, Hatta; Kumar, Jaya; Das, Srijit; Xi, Ong Wan; Hatta, Muhammad Hizri; Alfonso, Cesar
2017-02-15
Erectile function (EF) is a prerequisite for satisfactory sexual intercourse (SI) and central to male sexual functioning. Satisfactory SI eventually leads to orgasm - a biopsychophysiological state of euphoria - leading to a sense of bliss, enjoyment and positive mental well being. For a psychiatrist, treating ED is self-propelled to harmonize these pleasurable experiences alongside with encouragement of physical wellness and sensuality. Hence, the role of PDE-5i is pivotal in the context of treating ED constitutes a therapeutic challenge. PDE-5i work via the dopaminergic-oxytocin-nitric oxide pathway by increasing the availability of endothelial's guanosine monophosphate (GMP), immediately causing relaxation of the penile smooth muscle and an erection. The PDE-5i, like sildenafil, vardenafil and tadalafil, are effective in the treatment of ED with some benefits and disadvantages compared to other treatment modalities. Prescribed PDE-5i exclusively improve EF, fostering male's self-confidence and self-esteem. Treatment failures are associated with factors such as absent (or insufficient) sexual stimulation, psychosexual conflicts and the co-existence of medical disorders. Managing ED requires dealing with underlying medical diseases, addressing other co-morbid sexual dysfunctions like premature ejaculation (PE), and educating the patient on healthy life-styles beside being cautious with the potential side-effects and drug-drug interactions. Furthermore, by dealing with interpersonal dynamics within the couple and embracing adequate lifestyles (managing stress and revising one's sexual scripts), PDE-5i treatment benefits may be enhanced. In this review, we propose a holistic conceptual framework approach for psychiatric management of patients with ED. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A novel experimental model of erectile dysfunction in rats with heart failure using volume overload
Silva, Fábio Henrique; Veiga, Frederico José Reis; Mora, Aline Gonçalves; Heck, Rodrigo Sader; De Oliveira, Caroline Candida; Gambero, Alessandra; Franco-Penteado, Carla Fernanda; Antunes, Edson; Gardner, Jason D.; Priviero, Fernanda Bruschi Marinho
2017-01-01
Background Patients with heart failure (HF) display erectile dysfunction (ED). However, the pathophysiology of ED during HF remains poorly investigated. Objective This study aimed to characterize the aortocaval fistula (ACF) rat model associated with HF as a novel experimental model of ED. We have undertaken molecular and functional studies to evaluate the alterations of the nitric oxide (NO) pathway, autonomic nervous system and oxidative stress in the penis. Methods Male rats were submitted to ACF for HF induction. Intracavernosal pressure in anesthetized rats was evaluated. Concentration-response curves to contractile (phenylephrine) and relaxant agents (sodium nitroprusside; SNP), as well as to electrical field stimulation (EFS), were obtained in the cavernosal smooth muscle (CSM) strips from sham and HF rats. Protein expression of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) and phosphodiestarese-5 in CSM were evaluated, as well as NOX2 (gp91phox) and superoxide dismutase (SOD) mRNA expression. SOD activity and thiobarbituric acid reactive substances (TBARs) were also performed in plasma. Results HF rats display erectile dysfunction represented by decreased ICP responses compared to sham rats. The neurogenic contractile responses elicited by EFS were greater in CSM from the HF group. Likewise, phenylephrine-induced contractions were greater in CSM from HF rats. Nitrergic response induced by EFS were decreased in the cavernosal tissue, along with lower eNOS, nNOS and phosphodiestarese-5 protein expressions. An increase of NOX2 and SOD mRNA expression in CSM and plasma TBARs of HF group were detected. Plasma SOD activity was decreased in HF rats. Conclusion ED in HF rats is associated with decreased NO bioavailability in erectile tissue due to eNOS/nNOS dowregulation and NOX2 upregulation, as well as hypercontractility of the penis. This rat model of ACF could be a useful tool to evaluate the molecular alterations of ED associated with HF. PMID:29095897
A novel experimental model of erectile dysfunction in rats with heart failure using volume overload.
Silva, Fábio Henrique; Veiga, Frederico José Reis; Mora, Aline Gonçalves; Heck, Rodrigo Sader; De Oliveira, Caroline Candida; Gambero, Alessandra; Franco-Penteado, Carla Fernanda; Antunes, Edson; Gardner, Jason D; Priviero, Fernanda Bruschi Marinho; Claudino, Mário Angelo
2017-01-01
Patients with heart failure (HF) display erectile dysfunction (ED). However, the pathophysiology of ED during HF remains poorly investigated. This study aimed to characterize the aortocaval fistula (ACF) rat model associated with HF as a novel experimental model of ED. We have undertaken molecular and functional studies to evaluate the alterations of the nitric oxide (NO) pathway, autonomic nervous system and oxidative stress in the penis. Male rats were submitted to ACF for HF induction. Intracavernosal pressure in anesthetized rats was evaluated. Concentration-response curves to contractile (phenylephrine) and relaxant agents (sodium nitroprusside; SNP), as well as to electrical field stimulation (EFS), were obtained in the cavernosal smooth muscle (CSM) strips from sham and HF rats. Protein expression of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) and phosphodiestarese-5 in CSM were evaluated, as well as NOX2 (gp91phox) and superoxide dismutase (SOD) mRNA expression. SOD activity and thiobarbituric acid reactive substances (TBARs) were also performed in plasma. HF rats display erectile dysfunction represented by decreased ICP responses compared to sham rats. The neurogenic contractile responses elicited by EFS were greater in CSM from the HF group. Likewise, phenylephrine-induced contractions were greater in CSM from HF rats. Nitrergic response induced by EFS were decreased in the cavernosal tissue, along with lower eNOS, nNOS and phosphodiestarese-5 protein expressions. An increase of NOX2 and SOD mRNA expression in CSM and plasma TBARs of HF group were detected. Plasma SOD activity was decreased in HF rats. ED in HF rats is associated with decreased NO bioavailability in erectile tissue due to eNOS/nNOS dowregulation and NOX2 upregulation, as well as hypercontractility of the penis. This rat model of ACF could be a useful tool to evaluate the molecular alterations of ED associated with HF.
Penile involvement in Systemic Sclerosis: New Diagnostic and Therapeutic Aspects
Aversa, Antonio; Bruzziches, Roberto; Francomano, Davide; Rosato, Edoardo; Salsano, Felice; Spera, Giovanni
2010-01-01
Systemic Sclerosis (SSc) is a connective tissue disorder featuring vascular alterations and an immunological activation leading to a progressive and widespread fibrosis of several organs such as the skin, lung, gastrointestinal tract, heart, and kidney. Men with SSc are at increased risk of developing erectile dysfunction (ED) because of the evolution of early microvascular tissutal damage into corporeal fibrosis. The entity of penile vascular damage in SSc patients has been demonstrated by using Duplex ultrasonography and functional infra-red imaging and it is now clear that this is a true clinical entity invariably occurring irrespective of age and disease duration and constituting the ‘‘sclerodermic penis”. Once-daily phosphodiesterase type-5 (PDE5) inhibitors improve both sexual function and vascular measures of cavernous arteries by improving surrogate markers of endothelial dysfunction, that is, plasma endothelin-1 and adrenomedullin levels, which may play a potential role in preventing progression of penile fibrosis and ED. Also, the beneficial effect of long-term PDE5i add-on therapy to SSc therapy in the treatment of Raynaud's phenomenon is described. PMID:20981315
Fratta Pasini, Anna; Albiero, Anna; Stranieri, Chiara; Cominacini, Mattia; Pasini, Andrea; Mozzini, Chiara; Vallerio, Paola; Cominacini, Luciano; Garbin, Ulisse
2012-01-01
Background Although oxidative stress plays a major role in endothelial dysfunction (ED), the role of glutathione (GSH), of nuclear erythroid-related factor 2 (Nrf2) and of related antioxidant genes (ARE) are yet unknown. In this study we combined an in vivo with an in vitro model to assess whether cigarette smoking affects flow-mediated vasodilation (FMD), GSH concentrations and the Nrf2/ARE pathway in human umbilical vein endothelial cells (HUVECs). Methods and Results 52 healthy subjects (26 non-smokers and 26 heavy smokers) were enrolled in this study. In smokers we demonstrated increased oxidative stress, i.e., reduced concentrations of GSH and increased concentrations of oxidation products of the phospholipid 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC) in serum and in peripheral blood mononuclear cells (PBMC), used as in vivo surrogates of endothelial cells. Moreover we showed impairment of FMD in smokers and a positive correlation with the concentration of GSH in PBMC of all subjects. In HUVECs exposed to smokers' serum but not to non-smokers' serum we found that oxidative stress increased, whereas nitric oxide and GSH concentrations decreased; interestingly the expression of Nrf2, of heme oxygenase-1 (HO-1) and of glutamate-cysteine ligase catalytic (GCLC) subunit, the rate-limiting step of synthesis of GSH, was decreased. To test the hypothesis that the increased oxidative stress in smokers may have a causal role in the repression of Nrf2/ARE pathway, we exposed HUVECs to increasing concentrations of oxPAPC and found that at the highest concentration (similar to that found in smokers' serum) the expression of Nrf2/ARE pathway was reduced. The knockdown of Nrf2 was associated to a significant reduction of HO-1 and GCLC expression induced by oxPAPC in ECs. Conclusions In young smokers with ED a novel further consequence of increased oxidative stress is a repression of Nrf2/ARE pathway leading to GSH depletion. PMID:22272327
Koizumi, Noriko; Okumura, Naoki; Ueno, Morio; Kinoshita, Shigeru
2014-11-01
Corneal endothelial dysfunction accompanied by visual disturbance is a primary indication for corneal endothelial transplantation. However, despite the value and potential of endothelial graft surgery, a strictly pharmacological approach for treating corneal endothelial dysfunction remains an attractive proposition. Previously, we reported that the selective Rho-associated kinase (ROCK) inhibitor Y-27632 promotes cell adhesion and proliferation, and inhibits the apoptosis of primate corneal endothelial cells in culture. These findings have led us to develop a novel medical treatment for the early phase of corneal endothelial disease using ROCK inhibitor eye drops. In rabbit and monkey models of partial endothelial dysfunction, we showed that corneal endothelial wound healing was accelerated via the topical application of ROCK inhibitor to the ocular surface, resulting in the regeneration of a corneal endothelial monolayer with a high endothelial cell density. Based on these animal studies, we are now attempting to advance the clinical application of ROCK inhibitor eye drops for patients with corneal endothelial dysfunction. A pilot clinical study was performed at the Kyoto Prefectural University of Medicine, and the effects of Y-27632 eye drops after transcorneal freezing were evaluated in 8 patients with corneal endothelial dysfunction. We observed a positive effect of ROCK inhibitor eye drops in treating patients with central edema caused by Fuchs corneal endothelial dystrophy. We believe that our new findings will contribute to the establishment of a new approach for the treatment of corneal endothelial dysfunction.
Hotta, Yuji; Hattori, Mayuko; Kataoka, Tomoya; Ohno, Risa; Mikumo, Mayumi; Maeda, Yasuhiro; Kimura, Kazunori
2011-03-01
Chronic phosphodiesterase type 5 inhibitor treatment may be useful in reversing erectile dysfunction (ED). However, the mechanisms of this improvement remain unknown. The aim of this article was to determine the mechanisms of the improvement by chronic vardenafil treatment for acute arteriogenic ED in rats. Eight-week-old male Wistar-ST rats were divided into four groups: sham-operated rats (Control group) and rats with acute arteriogenic ED induced by ligating bilateral internal iliac arteries (Ligation group), subsequently treated with low-dose (0.4 mg/kg/day; VL group) or high-dose (4.0 mg/kg/day; VH group) vardenafil for 20 days from 1 week after ligature. Erectile function was assessed based on changes of intracavernous pressure (ICP) followed by electrostimulation of the cavernous nerves and was evaluated by the area under the curve of ICP/area under the curve of mean arterial pressure (area of ICP/MAP). Transforming growth factor (TGF)-β(1), vascular endothelial growth factor-A, endothelial nitric oxide synthase (eNOS), inducible NOS, and neuronal NOS mRNA expression levels in penile corpus cavernosum were determined by real-time PCR. Western blotting for TGF-β(1) protein levels and Masson trichrome staining of penile tissues were performed in each at group 4 weeks after surgery. In the VH group, area of ICP/MAP was significantly improved when compared with the Ligation group (P < 0.01). The smooth muscle (SM)/collagen ratio in the VH group was significantly higher than in the Ligation group (P < 0.05), and was comparable with that in the Control group. TGF-β(1) mRNA and protein levels in the VH group were significantly lower when compared with the Ligation group (P < 0.05). Chronic vardenafil administration ameliorates impairment of penile hemodynamics and maintains normal SM to collagen ratio in cavernous tissues after acute arterial injury in rats. © 2010 International Society for Sexual Medicine.
Tydén, Helena; Lood, Christian; Gullstrand, Birgitta; Nielsen, Christoffer Tandrup; Heegaard, Niels H H; Kahn, Robin; Jönsen, Andreas; Bengtsson, Anders A
2017-01-01
Objectives Endothelial dysfunction may be connected to cardiovascular disease (CVD) in systemic lupus erythematosus (SLE). Type I interferons (IFNs) are central in SLE pathogenesis and are suggested to induce both endothelial dysfunction and platelet activation. In this study, we investigated the interplay between endothelial dysfunction, platelets and type I IFN in SLE. Methods We enrolled 148 patients with SLE and 79 sex-matched and age-matched healthy controls (HCs). Type I IFN activity was assessed with a reporter cell assay and platelet activation by flow cytometry. Endothelial dysfunction was assessed using surrogate markers of endothelial activation, soluble vascular cell adhesion molecule-1 (sVCAM-1) and endothelial microparticles (EMPs), and finger plethysmograph to determine Reactive Hyperaemia Index (RHI). Results In patients with SLE, type I IFN activity was associated with endothelial activation, measured by high sVCAM-1 (OR 1.68, p<0.01) and elevated EMPs (OR 1.40, p=0.03). Patients with SLE with high type I IFN activity had lower RHI than HCs (OR 2.61, p=0.04), indicating endothelial dysfunction. Deposition of complement factors on platelets, a measure of platelet activation, was seen in patients with endothelial dysfunction. High levels of sVCAM-1 were associated with increased deposition of C4d (OR 4.57, p<0.01) and C1q (OR 4.10, p=0.04) on platelets. High levels of EMPs were associated with C4d deposition on platelets (OR 3.64, p=0.03). Conclusions Endothelial dysfunction was associated with activation of platelets and the type I IFN system. We suggest that an interplay between the type I IFN system, injured endothelium and activated platelets may contribute to development of CVD in SLE. PMID:29119007
Qin, Weiwei; Ren, Bei; Wang, Shanshan; Liang, Shujun; He, Baiqiu; Shi, Xiaoji; Wang, Liying; Liang, Jingyu; Wu, Feihua
2016-10-01
Endothelial dysfunction is a key event in the progression of atherosclerosis with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction. Apigenin and naringenin are two kinds of widely used flavones. In the present study, we investigated whether and how apigenin and naringenin reduced endothelial dysfunction induced by high glucose in endothelial cells. We showed that apigenin and naringenin protected against endothelial dysfunction via inhibiting phosphorylation of protein kinase C βII (PKCβII) expression and downstream reactive oxygen species (ROS) production in endothelial cells exposed to high glucose. Furthermore, we demonstrated that apigenin and naringenin reduced high glucose-increased apoptosis, Bax expression, caspase-3 activity and phosphorylation of NF-κB in endothelial cells. Moreover, apigenin and naringenin effectively restored high glucose-reduced Bcl-2 expression and Akt phosphorylation. Importantly, apigenin and naringenin significantly increased NO production in endothelial cells subjected to high glucose challenge. Consistently, high glucose stimulation impaired acetylcholine (ACh)-mediated vasodilation in the rat aorta, apigenin and naringenin treatment restored the impaired endothelium-dependent vasodilation via dramatically increasing eNOS activity and nitric oxide (NO) level. Taken together, our results manifest that apigenin and naringenin can ameliorate endothelial dysfunction via regulating ROS/caspase-3 and NO pathway. Copyright © 2016 Elsevier Inc. All rights reserved.
Strategies to reverse endothelial progenitor cell dysfunction in diabetes.
Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo
2012-01-01
Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.
Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction
USDA-ARS?s Scientific Manuscript database
Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...
van Dooren, Fleur E P; Schram, Miranda T; Schalkwijk, Casper G; Stehouwer, Coen D A; Henry, Ronald M A; Dagnelie, Pieter C; Schaper, Nicolaas C; van der Kallen, Carla J H; Koster, Annemarie; Sep, Simone J S; Denollet, Johan; Verhey, Frans R J; Pouwer, Frans
2016-08-01
The pathogenesis of depression may involve low-grade inflammation and endothelial dysfunction. We aimed to evaluate the independent associations of inflammation and endothelial dysfunction with depressive symptoms and depressive disorder, and the role of lifestyle factors in this association. In The Maastricht Study, a population-based cohort study (n=852, 55% men, m=59.8±8.5years), depressive symptoms were assessed with the Patient Health Questionnaire-9 and (major and minor) depressive disorder with the Mini-International Neuropsychiatric Interview. Plasma biomarkers of inflammation (hsCRP, SAA, sICAM-1, IL-6, IL-8, TNF-α) and endothelial dysfunction (sVCAM-1, sICAM-1, sE-selectin, vWF) were measured with sandwich immunoassays and combined into two standardized sum scores. Biomarkers of inflammation (hsCRP, TNF-α, SAA, sICAM-1) and endothelial dysfunction (sICAM-1, sE-Selectin) were univariately associated with depressive symptoms and depressive disorder. The sum scores of inflammation and endothelial dysfunction were associated with depressive disorder after adjustment for age, sex, type 2 diabetes, kidney function and prior cardiovascular disease (OR 1.54, p=0.001 and 1.40, p=0.006). Both sum scores remained significantly associated with depressive disorder after additional adjustment for lifestyle factors smoking, alcohol consumption and body mass index. The sum score of inflammation was also independently associated with depressive symptoms, while the sum score of endothelial dysfunction was not. Inflammation and endothelial dysfunction are both associated with depressive disorder, independent of lifestyle factors. Our results might suggest that inflammation and endothelial dysfunction are involved in depression. Copyright © 2016. Published by Elsevier Inc.
Barajas-Espinosa, Alma; Basye, Ariel; Jesse, Erin; Yan, Haixu; Quan, David; Chen, Chun-An
2014-09-01
Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd(2+) contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd(2+)-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd(2+). DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd(2+)-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd(2+)-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design. Copyright © 2014 Elsevier Inc. All rights reserved.
Ma, Ming-Ming; Gao, Min; Guo, Kai-Min; Wang, Mi; Li, Xiang-Yu; Zeng, Xue-Lin; Sun, Lu; Lv, Xiao-Fei; Du, Yan-Hua; Wang, Guan-Lei; Zhou, Jia-Guo; Guan, Yong-Yuan
2017-05-01
Ca 2+ -activated Cl - channels play a crucial role in various physiological processes. However, the role of TMEM16A in vascular endothelial dysfunction during hypertension is unclear. In this study, we investigated the specific involvement of TMEM16A in regulating endothelial function and blood pressure and the underlying mechanism. Reverse transcription-polymerase chain reaction, Western blotting, coimmunoprecipitation, confocal imaging, patch-clamp recordings, and TMEM16A endothelial-specific transgenic and knockout mice were used. We found that TMEM16A was expressed abundantly and functioned as a Ca 2+ -activated Cl - channel in endothelial cells. Angiotensin II induced endothelial dysfunction with an increase in TMEM16A expression. The knockout of endothelial-specific TMEM16A significantly lowered the blood pressure and ameliorated endothelial dysfunction in angiotensin II-induced hypertension, whereas the overexpression of endothelial-specific TMEM16A resulted in the opposite effects. These results were related to the increased reactive oxygen species production, Nox2-containing NADPH oxidase activation, and Nox2 and p22phox protein expression that were facilitated by TMEM16A on angiotensin II-induced hypertensive challenge. Moreover, TMEM16A directly bound with Nox2 and reduced the degradation of Nox2 through the proteasome-dependent degradation pathway. Therefore, TMEM16A is a positive regulator of endothelial reactive oxygen species generation via Nox2-containing NADPH oxidase, which induces endothelial dysfunction and hypertension. Modification of TMEM16A may be a novel therapeutic strategy for endothelial dysfunction-associated diseases. © 2017 American Heart Association, Inc.
Ruilope, Luis Miguel; Redón, Josep; Schmieder, Roland
2007-01-01
Endothelial dysfunction is the initial pathophysiological step in a progression of vascular damage that leads to overt cardiovascular and chronic kidney disease. Angiotensin II, the primary agent of the renin–angiotensin system (RAS), has a central role in endothelial dysfunction. Therefore, RAS blockade with an angiotensin receptor blocker (ARB) and/or angiotensin-converting enzyme (ACE) inhibitor provides a rational approach to reverse endothelial dysfunction, reduce microalbuminuria, and, thus, improves cardiovascular and renal prognosis. ARBs and ACE inhibitors act at different points in the RAS pathway and recent evidence suggests that there are differences regarding their effects on endothelial dysfunction. In addition to blood pressure lowering, studies have shown that ARBs reduce target-organ damage, including improvements in endothelial dysfunction, arterial stiffness, the progression of renal dysfunction in patients with type 2 diabetes, proteinuria, and left ventricular hypertrophy. The ONgoing Telmisartan Alone in combination with Ramipril Global Endpoint Trial (ONTARGET) Programme is expected to provide the ultimate evidence of whether improved endothelial function translates into reduced cardiovascular and renal events in high-risk patients, and to assess possible differential outcomes with telmisartan, the ACE inhibitor ramipril, or a combination of both (dual RAS blockade). Completion of ONTARGET is expected in 2008. PMID:17583170
Sexual function in hypertensive patients receiving treatment.
Reffelmann, Thorsten; Kloner, Robert A
2006-01-01
In many forms of erectile dysfunction (ED), cardiovascular risk factors, in particular arterial hypertension, seem to be extremely common. While causes for ED are related to a broad spectrum of diseases, a generalized vascular process seems to be the underlying mechanism in many patients, which in a large portion of clinical cases involves endothelial dysfunction, ie, inadequate vasodilation in response to endothelium-dependent stimuli, both in the systemic vasculature and the penile arteries. Due to this close association of cardiovascular disease and ED, patients with ED should be evaluated as to whether they may suffer from cardiovascular risk factors including hypertension, cardiovascular disease or silent myocardial ischemia. On the other hand, cardiovascular patients, seeking treatment of ED, must be evaluated in order to decide whether treatment of ED or sexual activity can be recommended without significantly increased cardiac risk. The guideline from the first and second Princeton Consensus Conference may be applied in this context. While consequent treatment of cardiovascular risk factors should be accomplished in these patients, many antihypertensive drugs may worsen sexual function as a drug specific side-effect. Importantly, effective treatment for arterial hypertension should not be discontinued as hypertension itself may contribute to altered sexual functioning; to the contrary, alternative antihypertensive regimes should be administered with individually tailored drug regimes with minimal side-effects on sexual function. When phosphodiesterase-5 inhibitors, such as sildenafil, tadalafil and vardenafil, are prescribed to hypertensive patients on antihypertensive drugs, these combinations of antihypertensive drugs and phosphodiesterase 5 are usually well tolerated, provided there is a baseline blood pressure of at least 90/60 mmHg. However, there are two exceptions: nitric oxide donors and alpha-adrenoceptor blockers. Any drug serving as a nitric oxide donor (nitrates) is absolutely contraindicated in combination with phosphodiesterase 5 inhibitors, due to significant, potentially life threatening hypotension. Also, a-adrenoceptor blockers, such as doxazosin, terazosin and tamsulosin, should only be combined with phosphodiesterase 5 inhibitors with special caution and close monitoring of blood pressure.
Devaraj, Sridevi; Kumaresan, Pappanaicken R; Jialal, Ishwarlal
2011-12-01
Inflammation is pivotal in atherosclerosis. A key early event in atherosclerosis is endothelial dysfunction. C-reactive protein (CRP), the prototypic marker of inflammation in humans, is a risk marker for cardiovascular disease, and there is mounting evidence to support its role in atherothrombosis. CRP has been shown to promote endothelial dysfunction both in vitro and in vivo. Emerging biomarkers of endothelial dysfunction include circulating endothelial cells (CECs) and endothelial microparticles (EMPs). However, there is a paucity of data examining the effect of CRP on CEC and EMP production in vitro and in vivo. In this report, we treated human aortic endothelial cells (HAECs) with increasing concentrations of CRP (0-50 μg/mL) or boiled CRP. We counted CECs and EMPs by flow cytometry. Although CRP treatment resulted in a significant increase in release of both CECs and EMPs, boiled CRP failed to have an effect. Pretreatment of HAECs with sepiapterin or diethylenetriamine NONOate, both of which preserve nitric oxide (NO), resulted in attenuation of CRP's effects on CECs and EMPs. CD32 and CD64 blocking antibodies but not CD16 antibody or lectin-like oxidized LDL receptor 1 small interfering RNA (LOX-1 siRNA) prevented CRP-induced production of CECs and EMPs. Furthermore, delivery of human CRP to Wistar rats compared with human serum albumin resulted in significantly increased CECs and EMPs, corroborating the in vitro findings. We provide novel data that CRP, via NO deficiency, promotes endothelial dysfunction by inducing release of CECs and EMPs, which are biomarkers of endothelial dysfunction.
Onda, Kenji; Tong, Stephen; Beard, Sally; Binder, Natalie; Muto, Masanaga; Senadheera, Sevvandi N; Parry, Laura; Dilworth, Mark; Renshall, Lewis; Brownfoot, Fiona; Hastie, Roxanne; Tuohey, Laura; Palmer, Kirsten; Hirano, Toshihiko; Ikawa, Masahito; Kaitu'u-Lino, Tu'uhevaha; Hannan, Natalie J
2017-03-01
Preeclampsia is a severe complication of pregnancy. Antiangiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin are secreted in excess from the placenta, causing hypertension, endothelial dysfunction, and multiorgan injury. Oxidative stress and vascular inflammation exacerbate the endothelial injury. A drug that can block these pathophysiological steps would be an attractive treatment option. Proton pump inhibitors (PPIs) are safe in pregnancy where they are prescribed for gastric reflux. We performed functional studies on primary human tissues and animal models to examine the effects of PPIs on sFlt-1 and soluble endoglin secretion, vessel dilatation, blood pressure, and endothelial dysfunction. PPIs decreased sFlt-1 and soluble endoglin secretion from trophoblast, placental explants from preeclamptic pregnancies, and endothelial cells. They also mitigated tumor necrosis factor-α-induced endothelial dysfunction: PPIs blocked endothelial vascular cell adhesion molecule-1 expression, leukocyte adhesion to endothelium, and disruption of endothelial tube formation. PPIs decreased endothelin-1 secretion and enhanced endothelial cell migration. Interestingly, the PPI esomeprazole vasodilated maternal blood vessels from normal pregnancies and cases of preterm preeclampsia, but its vasodilatory effects were lost when the vessels were denuded of their endothelium. Esomeprazole decreased blood pressure in a transgenic mouse model where human sFlt-1 was overexpressed in placenta. PPIs upregulated endogenous antioxidant defenses and decreased cytokine secretion from placental tissue and endothelial cells. We have found that PPIs decrease sFlt-1 and soluble endoglin secretion and endothelial dysfunction, dilate blood vessels, decrease blood pressure, and have antioxidant and anti-inflammatory properties. They have therapeutic potential for preeclampsia and other diseases where endothelial dysfunction is involved. © 2017 American Heart Association, Inc.
Rosano, Giuseppe M C; Aversa, Antonio; Vitale, Cristiana; Fabbri, Andrea; Fini, Massimo; Spera, Giovanni
2005-02-01
Erectile dysfunction (ED) is often associated with a cluster of risk factors for coronary artery disease and reduced endothelial function. Acute and chronic administration of oral sildenafil, a phosphodiesterase type 5 (PDE5) inhibitor, improves endothelial function in patients with ED. Tadalafil (TAD) is a new PDE5 inhibitor with a long half life that allows alternate day administration. Aim of the study was to evaluate whether chronic therapy (4 weeks) with TAD improves endothelial function in patients with increased cardiovascular risk and whether this effect is sustained after discontinuation of therapy. We randomized 32 patients with increased cardiovascular risk to receive either TAD 20 mg on alternate days or matching placebo (PLB) for 4 weeks. Patients underwent evaluation of brachial artery flow-mediated dilation (FMD), nitrite/nitrate and endothelin-1 plasma levels at baseline, at the end of treatment period and after two-weeks follow-up. At 4 weeks, FMD was significantly improved by TAD (from 4.2+/-3.2 to 9.3+/-3.7%, p<0.01 vs. baseline), but was not modified by PLB (from 4.1+/-2.8 to 4.0+/-3.4%, p=NS). At 6 weeks the benefit in FMD was sustained in patients that received TAD (9.1+/-3.9% vs. 4.2+/-3.2%, p=0.01 vs. baseline; 9.1+/-3.9% vs. 9.3+/-3.7%, vs. 4 weeks, p=NS) while no changes in FMD were observed in patients randomized to PLB. Also, compared to baseline, a net increase in nitrite/nitrate levels (38.2+/-12.3 vs. 52.6+/-11.7 and 51.1+/-3.1, p<0.05) and a decrease in endothelin-1 levels (3.3+/-0.9 vs. 2.9.+/-0.7 and 2.9+/-0.9, p<0.05) was found both at four and six-weeks after TAD; these changes were inversely correlated as shown by regression analysis (adjusted R2=0.81, p<0.0001). Chronic therapy with TAD improves endothelial function in patients with increased cardiovascular risk regardless their degree of ED. The benefit of this therapy is sustained for at least two weeks after the discontinuation of therapy. Larger studies are needed in order to assess the possible clinical implications of chronic therapy with TAD.
Are there Race-Dependent Endothelial Cell Responses to Exercise?
Brown, Michael D.; Feairheller, Deborah L.
2013-01-01
African Americans have endothelial dysfunction which likely contributes to their high prevalence of hypertension. Endothelial cell responses to stimuli could play a role in the development of endothelial dysfunction and hypertension. High physiological levels of vascular laminar shear stress can profoundly alter endothelial cell phenotype. It is not known whether there are race-dependent endothelial cell responses to laminar shear stress. PMID:23262464
Scioli, Maria Giovanna; Lo Giudice, Pietro; Bielli, Alessandra; Tarallo, Valeria; De Rosa, Alfonso; De Falco, Sandro; Orlandi, Augusto
2015-01-01
Background Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery. Methods and Results We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction. Conclusion PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers. PMID:26473356
Lemmens, Katrien; Vrints, Christiaan J.
2017-01-01
Although the burden of heart failure with preserved ejection fraction (HFpEF) is increasing, there is no therapy available that improves prognosis. Clinical trials using beta blockers and angiotensin converting enzyme inhibitors, cardiac-targeting drugs that reduce mortality in heart failure with reduced ejection fraction (HFrEF), have had disappointing results in HFpEF patients. A new “whole-systems” approach has been proposed for designing future HFpEF therapies, moving focus from the cardiomyocyte to the endothelium. Indeed, dysfunction of endothelial cells throughout the entire cardiovascular system is suggested as a central mechanism in HFpEF pathophysiology. The objective of this review is to provide an overview of current knowledge regarding endothelial dysfunction in HFpEF. We discuss the molecular and cellular mechanisms leading to endothelial dysfunction and the extent, presence, and prognostic importance of clinical endothelial dysfunction in different vascular beds. We also consider implications towards exercise training, a promising therapy targeting system-wide endothelial dysfunction in HFpEF. PMID:28706575
Jing, Tong; Ya-Shu, Kuang; Xue-Jun, Wang; Han-Jing, Hou; Yan, Lai; Yi-An, Yao; Fei, Chen; Xue-Bo, Liu
2017-01-01
Background Endothelial microparticles (EMPs) are small vesicles released by endothelial cells (ECs); they are considered biomarkers for endothelial dysfunction and therapeutic targets in diabetes-related vascular disease. Sirtuins have also been shown to play important roles in diabetes by regulating endothelial dysfunction. However, the effect of sirtuin-incorporated EMPs on their parental ECs remains unknown. Aim The present study aims to investigate the diagnostic value of EMPs in diabetes and detect the protective effects of sirtuin 6 (Sirt6) mRNA -incorporated EMPs on endothelial dysfunction. Methods EMPs were prepared from cultured HUVECs and venous blood from patients with diabetes (n=10) and from healthy volunteers (n=6) after sequential centrifugation. Adv-Sirt6 or Sirt6 siRNA was used to alter Sirt6 expression. EC angiogenesis, inflammatory phenotypes, nitric oxide (NO) formation and eNOS phosphorylation were used to evaluate endothelial dysfunction. Results The levels of EMPs in diabetic patients and high glucose-cultured HUVECs are high, whereas Sirt6 expression in plasma and EMPs is low. EMPs generated from diabetic patients or high glucose-cultured HUVECs increase inflammatory chemokine release and blunt EC angiogenesis. Furthermore, EMPs enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and impedes inflammatory chemokine release. Inhibition of Sirt6 mRNA expression in EMPs by siRNA hinders angiogenesis and eNOS phosphorylation but increases cellular inflammation. Conclusion The Sirt6 mRNA-carrying EMPs may ameliorate endothelial dysfunction in diabetic patients. PMID:29371988
Jing, Tong; Ya-Shu, Kuang; Xue-Jun, Wang; Han-Jing, Hou; Yan, Lai; Yi-An, Yao; Fei, Chen; Xue-Bo, Liu
2017-12-26
Endothelial microparticles (EMPs) are small vesicles released by endothelial cells (ECs); they are considered biomarkers for endothelial dysfunction and therapeutic targets in diabetes-related vascular disease. Sirtuins have also been shown to play important roles in diabetes by regulating endothelial dysfunction. However, the effect of sirtuin-incorporated EMPs on their parental ECs remains unknown. The present study aims to investigate the diagnostic value of EMPs in diabetes and detect the protective effects of sirtuin 6 ( Sirt6 ) mRNA -incorporated EMPs on endothelial dysfunction. EMPs were prepared from cultured HUVECs and venous blood from patients with diabetes (n=10) and from healthy volunteers (n=6) after sequential centrifugation. Adv- Sirt6 or Sirt6 siRNA was used to alter Sirt6 expression. EC angiogenesis, inflammatory phenotypes, nitric oxide (NO) formation and eNOS phosphorylation were used to evaluate endothelial dysfunction. The levels of EMPs in diabetic patients and high glucose-cultured HUVECs are high, whereas Sirt6 expression in plasma and EMPs is low. EMPs generated from diabetic patients or high glucose-cultured HUVECs increase inflammatory chemokine release and blunt EC angiogenesis. Furthermore, EMPs enriched with Sirt6 mRNA induces EC angiogenesis, increases eNOS phosphorylation and impedes inflammatory chemokine release. Inhibition of Sirt6 mRNA expression in EMPs by siRNA hinders angiogenesis and eNOS phosphorylation but increases cellular inflammation. The Sirt6 mRNA -carrying EMPs may ameliorate endothelial dysfunction in diabetic patients.
Gruenwald, Ilan; Appel, Boaz; Vardi, Yoram
2012-01-01
Low-intensity shock wave therapy (LI-ESWT) has been reported as an effective treatment in men with mild and moderate erectile dysfunction (ED). The aim of this study is to determine the efficacy of LI-ESWT in severe ED patients who were poor responders to phosphodiesterase type 5 inhibitor (PDE5i) therapy. This was an open-label single-arm prospective study on ED patients with an erection hardness score (EHS) ≤ 2 at baseline. The protocol comprised two treatment sessions per week for 3 weeks, which were repeated after a 3-week no-treatment interval. Patients were followed at 1 month (FU1), and only then an active PDE5i medication was provided for an additional month until final follow-up visit (FU2). At each treatment session, LI-ESWT was applied on the penile shaft and crus at five different anatomical sites (300 shocks, 0.09 mJ/mm(2) intensity at 120 shocks/min). Each subject underwent a full baseline assessment of erectile function using validated questionnaires and objective penile hemodynamic testing before and after LI-ESWT. Outcome measures used are changes in the International Index of Erectile Function-erectile function domain (IIEF-ED) scores, the EHS measurement, and the three parameters of penile hemodynamics and endothelial function. Twenty-nine men (mean age of 61.3) completed the study. Their mean IIEF-ED scores increased from 8.8 ± 1 (baseline) to 12.3 ± 1 at FU1 (P = 0.035). At FU2 (on active PDE5i treatment), their IIEF-ED further increased to 18.8 ± 1 (P < 0.0001), and 72.4% (P < 0.0001) reached an EHS of ≥ 3 (allowing full sexual intercourse). A significant improvement (P = 0.0001) in penile hemodynamics was detected after treatment and this improvement significantly correlated with increases in the IIEF-ED (P < 0.05). No noteworthy adverse events were reported. Penile LI-ESWT is a new modality that has the potential to treat a subgroup of severe ED patients. These preliminary data need to be reconfirmed by multicenter sham control studies in a larger group of ED patients. © 2011 International Society for Sexual Medicine.
microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction
Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira
2013-01-01
Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154
Arginase Inhibitor in the Pharmacological Correction of Endothelial Dysfunction
Pokrovskiy, Mihail V.; Korokin, Mihail V.; Tsepeleva, Svetlana A.; Pokrovskaya, Tatyana G.; Gureev, Vladimir V.; Konovalova, Elena A.; Gudyrev, Oleg S.; Kochkarov, Vladimir I.; Korokina, Liliya V.; Dudina, Eleonora N.; Babko, Anna V.; Terehova, Elena G.
2011-01-01
This paper is about a way of correction of endothelial dysfunction with the inhibitor of arginase: L-norvaline. There is an imbalance between vasoconstriction and vasodilatation factors of endothelium on the basis of endothelial dysfunction. Among vasodilatation agents, nitrogen oxide plays the basic role. Amino acid L-arginine serves as a source of molecules of nitrogen oxide in an organism. Because of the high activity of arginase enzyme which catalyzes the hydrolysis of L-arginine into ornithine and urea, the bioavailability of nitrogen oxide decreases. The inhibitors of arginase suppress the activity of the given enzyme, raising and production of nitrogen oxide, preventing the development of endothelial dysfunction. PMID:21747978
Age-related changes in endothelial function and blood flow regulation.
Toda, Noboru
2012-02-01
Vascular endothelial dysfunction is regarded as a primary phenotypic expression of normal human aging. This senescence-induced disorder is the likely culprit underlying the increased cardiovascular and metabolic disease risks associated with aging. The rate of this age-dependent deterioration is largely influenced by the poor-quality lifestyle choice, such as smoking, sedentary daily life, chronic alcohol ingestion, high salt intake, unbalanced diet, and mental stress; and it is accelerated by cardiovascular and metabolic diseases. Although minimizing these detrimental factors is the best course of action, nonetheless chronological age steadily impairs endothelial function through reduced endothelial nitric oxide synthase (eNOS) expression/action, accelerated nitric oxide (NO) degradation, increased phosphodiesterase activity, inhibition of NOS activity by endogenous NOS inhibitors, increased production of reactive oxygen species, inflammatory reactions, decreased endothelial progenitor cell number and function, and impaired telomerase activity or telomere shortening. Endothelial dysfunction in regional vasculatures results in cerebral hypoperfusion triggering cognitive dysfunction and Alzheimer's disease, coronary artery insufficiency, penile erectile dysfunction, and circulatory failures in other organs and tissues. Possible prophylactic measures to minimize age-related endothelial dysfunction are also summarized in this review. Copyright © 2011 Elsevier Inc. All rights reserved.
Hu, Y; Niu, X; Wang, G; Huang, J; Liu, M; Peng, B
2016-11-01
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is an independent risk factor for the development of erectile dysfunction (ED). But the molecular mechanisms underlying the relationship between CP/CPPS and ED are still unclear. The aim of this study was to investigate the effect of CP/CPPS on erectile function in a rat model and the possible mechanisms. A rat model of experimental autoimmune prostatitis (EAP) was established to mimic human CP⁄CPPS. Then twenty 2-month-old male Sprague-Dawley rats were divided into EAP group and control group. Intracavernosal pressure (ICP) and mean arterial pressure (MAP) were measured during cavernous nerve electrostimulation, the ratio of max ICP/MAP was calculated. Blood was collected to measure the levels of serum C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and testosterone, respectively. The expression of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) levels, superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in corpus cavernosum were detected. We also evaluated the smooth muscle/collagen ratio and apoptotic index (AI). The ratio of max ICP/MAP in EAP group were significantly lower than that in control group. The levels of serum CRP, TNF-α, IL-1β, and IL-6 in EAP group were all significantly higher than these in control group. The expression of eNOS and cGMP levels in corpus cavernosum of EAP rats were significantly downregulated. Furthermore, decreased SOD activity and smooth muscle/collagen ratio, increased MDA levels and AI were found in corpus cavernosum of EAP rats. In conclusion, CP/CPPS impaired penile erectile function in a rat model. The declines of eNOS expression and cGMP levels in corpus cavernosum may be an important mechanism of CP/CPPS-induced ED. CP/CPPS also increased oxidative stress, cell apoptosis and decreased smooth muscle/collagen ratio in corpus cavernosum of rats, which were all important for erectile function. © 2016 American Society of Andrology and European Academy of Andrology.
Flavanol-rich cocoa ameliorates lipemia-induced endothelial dysfunction.
Westphal, Sabine; Luley, Claus
2011-09-01
Consumption of flavanols improves chronic endothelial dysfunction. We investigated whether it can also improve acute lipemia-induced endothelial dysfunction. In this randomized, placebo-controlled, double-blind, crossover trial, 18 healthy subjects received a fatty meal with cocoa either rich in flavanols (918 mg) or flavanol-poor. Flow-mediated dilation (FMD), triglycerides, and free fatty acids were then determined over 6 h. After the flavanol-poor fat loading, the FMD deteriorated over 4 h. The consumption of flavanol-rich cocoa, in contrast, improved this deterioration in hours 2, 3, and 4 without abolishing it completely. Flavanols did not have any influence on triglycerides or on free fatty acids. Flavanol-rich cocoa can alleviate the lipemia-induced endothelial dysfunction, probably through an improvement in endothelial NO synthase.
Toda, Noboru; Tanabe, Shinichi; Nakanishi, Sadanobu
2011-01-01
Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is impaired by several pathogenic factors including smoking, chronic alcohol intake, hypercholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying endothelial dysfunction include reduced NO synthase (NOS) expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction. Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in humans. Penile erectile dysfunction, associated with impaired bioavailability of NO produced by eNOS and neuronal NOS, is also considered to be highly predictive of ischemic heart disease. There is evidence suggesting an important role of nitrergic innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be quite important in preventing the genesis and development of CAD. PMID:22942627
Wang, X-J; Xia, L-L; Xu, T-Y; Zhang, X-H; Zhu, Z-W; Zhang, M-G; Liu, Y; Xu, C; Zhong, S; Shen, Z-J
2016-04-01
There is a growing recognition of the association between chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and erectile dysfunction (ED); however, most of the reports are based on questionnaires which cannot distinguish between organic and functional ED. The purpose of this study was to determine the exact relationship between CP/CPPS and ED, and to investigate the changes in erectile organ structure and function in a rat model of CP/CPPS. We established a rat model of experimental autoimmune prostatitis (EAP), which is a valid model for CP/CPPS. Erectile function in EAP and normal rats was comparable after cavernous nerve electrostimulation. The serum testosterone and oestradiol levels, ultrastructure of the corpus cavernosum and expression of endothelial nitric oxide synthase and neuronal nitric oxide synthase in the two groups were similar; however, there was a decrease in smooth muscle-to-collagen ratio and alpha-smooth muscle actin expression and an increase in transforming growth factor-beta 1 expression was observed in EAP rats. Thus, organic ED may not exist in EAP rats. We speculate that ED complained by patients with CP/CPPS may be psychological, which could be caused by impairment in the quality of life; however, further studies are needed to fully understand the potential mechanisms underlying the penile fibrosis in EAP rats. © 2015 Blackwell Verlag GmbH.
Zhaorigetu, Siqin; Bair, Henry; Lu, Jonathan; Jin, Di; Olson, Scott D; Harting, Matthew T
2018-01-01
Although it is well known that nitrofen induces congenital diaphragmatic hernia (CDH), including CDH-associated lung hypoplasia and pulmonary hypertension (PH) in rodents, the mechanism of pathogenesis remains largely unclear. It has been reported that pulmonary artery (PA) endothelial cell (EC) dysfunction contributes to the development of PH in CDH. Thus, we hypothesized that there is significant alteration of endothelial dysfunction-associated proteins in nitrofen-induced CDH PAs. Pregnant SD rats received either nitrofen or olive oil on gestational day 9.5. The newborn rats were sacrificed and divided into a CDH (n = 81) and a control (n = 23) group. After PA isolation, the expression of PA endothelial dysfunction-associated proteins was assessed on Western blot and immunostaining. We demonstrate that the expression of C-reactive protein and endothelin-1 and its receptors, ETA and ETB, were significantly increased in the CDH PAs. Levels of phosphorylated myosin light chain were significantly elevated, but those of phosphorylated endothelial nitric oxide synthase, caveolin-1, and mechanistic target of rapamycin were significantly decreased in the CDH PAs. In this work, we elucidate alterations in the expression of endothelial dysfunction-associated proteins specific to nitrofen-induced CDH rodent PAs, thereby advancing our understanding of the critical role of endothelial dysfunction-associated pathways in the pathogenesis of nitrofen-induced CDH. © 2017 S. Karger AG, Basel.
Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J; Miranda, Melroy X; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F; Verrey, François; Matter, Christian M
2013-12-01
Aldosterone plays a crucial role in cardiovascular disease. 'Systemic' inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the 'endothelial' MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high 'endogenous' aldosterone) and in 'exogenous' aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Obesity-induced endothelial dysfunction depends on the 'endothelial' MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications.
Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross
2017-08-01
Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.
PGC-1α dictates endothelial function through regulation of eNOS expression
Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.
2016-01-01
Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955
Villalba, Nuria; Sackheim, Adrian M; Nunez, Ivette A; Hill-Eubanks, David C; Nelson, Mark T; Wellman, George C; Freeman, Kalev
2017-01-01
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial NO synthase (eNOS) for the common substrate l-arginine, were also significantly increased in arteries, suggesting that arginase-mediated depletion of l-arginine underlies diminished NO production. Consistent with this, substrate restoration by exogenous application of l-arginine or inhibition of arginase recovered endothelial function. Moreover, evidence for increased reactive oxygen species production, a consequence of l-arginine starvation-dependent eNOS uncoupling, was detected in endothelium and plasma. Collectively, our findings demonstrate endothelial dysfunction in a remote vascular bed after TBI, manifesting as impaired endothelial-dependent vasodilation, with increased arginase activity, decreased generation of NO, and increased O 2 - production. We conclude that blood vessels have a "molecular memory" of neurotrauma, 24 h after injury, because of functional changes in vascular endothelial cells; these effects are pertinent to understanding the systemic inflammatory response that occurs after TBI even in the absence of polytrauma.
Lucero, Diego; López, Graciela I; Gorzalczany, Susana; Duarte, Mariano; González Ballerga, Esteban; Sordá, Juan; Schreier, Laura; Zago, Valeria
2016-08-01
Our aim was to analyze the effect of circulating triglyceride rich lipoprotein (TRL) on endothelial function in metabolic syndrome (MetS). We studied 40 patients with MetS (ATPIII), divided into those presenting normal endothelial function (n=19) and those with endothelial dysfunction (n=21) by means of the evaluation of pulse wave velocity, before and after brachial artery ischemia. In fasting serum we measured lipid and lipoprotein profile, insulin and glucose (HOMA-IR). Moreover, isolated TRL (d<1006g/l) were chemically characterized. In parallel, using randomly selected TRL from MetS patients with endothelial dysfunction (n=6) and MetS patients with normal endothelial function (n=6), the ability of TRL to inhibit ACh-induced vasorelaxation (10(-9)-10(-5)mM) on aortic rings previously pre-contracted by noradrenaline (10(-8)mM) was evaluated. Interestingly, TRL isolated from MetS patients presenting endothelial dysfunction showed triglyceride over-enrichment (59.1±4.8 vs. 54.1±4.7%; p=0.04), even after adjusting by potential confounders (p=0.05). In addition, while TRL resulting from both MetS groups significantly inhibited endothelium dependent vasorelaxation (p<0.001), TRL from MetS patients with endothelial dysfunction showed a strong tendency to a greater inhibition of vasorelaxation (p=0.06). Moreover, TRL-triglyceride (%) showed a strong tendency to correlate with the grade of vasorelaxation inhibition exerted by TRL (r=0.60; p=0.05). These results, taken together, would allow inferring for the first time that the predominance of triglyceride over-enriched TRL in circulation in MetS would induce endothelial dysfunction, contributing to the inherent cardiovascular risk of MetS. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Jiang, Ling-Yu; Jiang, Yue-Hua; Qi, Ying-Zi; Shao, Lin-Lin; Yang, Chuan-Hua
2018-06-01
Long noncoding RNAs (lncRNAs) play a key role in the development of endothelial dysfunction. However, few lncRNAs associated with endothelial dysfunction after atorvastatin administration have been reported. In the present study, differentially expressed (DE) genes in ox-LDL versus control and ox-LDL + atorvastatin versus control were detected. Bioinformatics analysis and integrated analysis of mRNAs and lncRNAs were conducted to study the mechanisms of endothelial dysfunction after atorvastatin administration and to explore the regulation functions of lncRNAs. Here, 532 DE mRNAs and 532 DE lncRNAs were identified (among them, 195 mRNAs and 298 lncRNAs were upregulated, 337 mRNAs and 234 lncRNAs were downregulated) after ox-LDL treatment for 24 hours (fold change ≥2.0, P < .05). After ox-LDL treatment following atorvastatin administration, 750 DE mRNAs and 502 DE lncRNAs were identified (among them, 149 mRNAs and 218 lncRNAs were upregulated and 601 mRNAs and 284 lncRNAs were downregulated). After atorvastatin administration, 167 lncRNAs and 262 mRNAs were still DE. Q-PCR validated the results of microarrays. Chronic inflammatory response, nitric oxide biosynthetic process, microtubule cytoskeleton, cell proliferation and cell migration are regulated by lncRNAs, which also participated in the mainly molecular function and biological processes underlying endothelial dysfunction. Atorvastatin partly improved endothelial dysfunction, but the aspects beyond recovery were mainly concentrated in cell cycle, mitosis, and metabolism. Further exploration is required to explicit the mechanism by which lncRNAs participate in endothelial dysfunction.
Xiao, Guohua; Wang, Zongbao; Zeng, Huaicai; Yu, Jian; Yin, Weidong; Zhang, Sujun; Wang, Yueting; Zhang, Yali
2011-10-01
Endothelial dysfunction is a key event in the onset and progression of atherosclerosis associated with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction and contribute to vascular complications. Therefore, we aimed to elucidate the possible role and mechanism of ibrolipim in preventing endothelial dysfunction induced by high glucose. Human umbilical vein endothelial cells (HUVECs) were cultured respectively under normal glucose level (5.5mM), high glucose level (33mM), and high glucose level with ibrolipim treatment. Endothelial dysfunction was identified by the expression of ET-1 and vWF through reverse transcription PCR (RT-PCR). HUVECs apoptosis was assessed by fluorescent staining with Hoechst 33258. Akt activity was analyzed by western blot. High glucose condition significantly increased the rate of apoptotic cells, weakened cell viability, and decreased the expression of ET-1 and vWF. Ibrolipim treatment significantly attenuated these alterations of endothelial dysfunction. The lower concentrations (2, 4, 8 microM) of ibrolipim inhibited apoptosis of cultured HUVECs, improved cell viability, down-regulated the mRNA levels of ET-1, vWF, and attenuated the cytotoxicity; however, higher concentration (16, 32 microM) of ibrolipim aggravated the damage of HUVECs cultured under high glucose level. Meanwhile, high glucose induced a decrease of Akt activity which led to apoptosis, and ibrolipim prevented the decrease and attenuated apoptotic effect induced by high glucose. Furthermore, the PI3K inhibitor LY294002 significantly abolished the anti-apoptotic effect of ibrolipim, and decreased Akt phosphorylation. Although, the expression of Akt mRNA and total protein were not altered in cultured HUVECs. Ibrolipim at lower concentrations can inhibit high glucose-induced apoptosis in cultured HUVECs, which might be related to the alternation of Akt activity. Ibrolipim has the potential to attenuate endothelial dysfunction and lower the risk of diabetes-associated vascular diseases. And it might be a therapeutic agent for diabetic vascular complications.
McCarthy, E M; Wilkinson, F L; Parker, B; Alexander, M Y
2016-11-01
Autoimmune rheumatic diseases are characterised by systemic inflammation and complex immunopathology, with an increased risk of cardiovascular disease, initiated by endothelial dysfunction in a chronic inflammatory environment. Endothelial microparticles (EMPs) are released into the circulation from activated endothelial cells and may therefore, reflect disease severity, vascular and endothelial dysfunction, that could influence disease pathogenesis via autocrine/paracrine signalling. The exact function of EMPs in rheumatic disease remains unknown, and this has initiated research to elucidate EMP composition and function, which may be determined by the mode of endothelial activation and the micro environment. To date, EMPs are thought to play a role in angiogenesis, thrombosis and inflammation by transferring specific proteins and microRNAs (miRs) to target cells. Here, we review the mechanisms underlying the generation and composition of EMPs and the clinical and experimental studies describing the involvement of EMPs in rheumatic diseases, since we have previously shown endothelial dysfunction and an elevated risk of cardiovascular disease are characteristics in systemic lupus erythematosus. We will also discuss the potential of EMPs as future biomarkers of cardiovascular risk in these diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Fisher, William A; Rosen, Raymond C; Eardley, Ian; Niederberger, Craig; Nadel, Andrea; Kaufman, Joel; Sand, Michael
2004-09-01
The aim of Phase II of the Men's Attitudes to Life Events and Sexuality (MALES) Study is to explore PDE5 inhibitor treatment seeking among men with erectile dysfunction (ED). Phase II of the MALES study involved 2,912 men, aged 20-75 years, from 8 countries (U.S., U.K., Germany, France, Italy, Spain, Mexico, and Brazil), who reported ED. Participants were recruited from the MALES Phase I sample [1] and via booster methods (e.g., physician referral, street interception), and completed self-report questionnaires concerning the characteristics of their ED, their efforts to seek PDE5 inhibitor treatment for their sexual dysfunction, and attitudinal and referent influences that potentially affect treatment-seeking. Statistical analyses focus on identification of correlates of PDE5 inhibitor treatment seeking. PDE5 inhibitor utilization is strongly associated with ED sufferers' assessment of the severity of their sexual dysfunction, with their belief that medication for ED is dangerous, and with their perceptions of whether physicians, other professionals, and spouses or family members are supportive of their seeking treatment. ED sufferers who evaluate their sexual dysfunction as severe, who believe that medication for ED is not dangerous, and who perceive support for treatment seeking from referent others, are more likely to utilize PDE5 inhibitor treatment. Findings indicate that perceived ED severity, beliefs about ED medication, and referent influences are strongly correlated with utilization of PDE5 inhibitor therapy. These findings aid our understanding of factors that may incline men with ED to seek-or to avoid-PDE5 inhibitor therapy for their sexual dysfunction, and provide a basis for clinical and educational interventions to assist men with ED to seek appropriate treatment.
Context: Exposure to ambient particulate matter (PM) induces endothelial dysfunction, a risk factor for clinical cardiovascular events and progression of atherosclerosis. Dietary supplements such as olive oil and fish oil have beneficial effects on endothelial function, and ther...
Rao, Rashmi; Sen, Suvajit; Han, Bing; Ramadoss, Sivakumar; Chaudhuri, Gautam
2014-01-01
Gestational diabetes, pre-eclampsia as well as intra-uterine infection during pregnancy affects the function of the endothelium both in the mother and the fetus leading to endothelial dysfunction. Gestational diabetes is also associated with an increased incidence of pre-eclampsia and it is likely that both the hyperglycemia as well as the release of cytokines especially TNFα during hyperglycemia may play an important role in the pathogenesis of endothelial dysfunction leading to preeclampsia. Similarly, some but not all studies have suggested that infection of the mother under certain circumstances can also lead to preeclampsia as women with either a bacterial or viral infection were at a higher risk of developing preeclampsia, compared to women without infection and infection also leads to a release in TNFα. Endothelial cells exposed to either high glucose or TNFα leads to an increase in the production of H2O2 and to a decrease in endothelial cell proliferation. The cellular and molecular mechanisms involved in this phenomenon are discussed.Gestational diabetes, pre-eclampsia as well as intra-uterine infection during pregnancy has profound effects on the fetus and long term effects on the neonate. All three conditions affect the function of the endothelium both in the mother and the fetus leading to endothelial dysfunction. Gestational diabetes is also associated with an increased incidence of pre-eclampsia and it is likely that both the hyperglycemia as well as the release of cytokines especially TNFα during hyperglycemia may play an important role in the pathogenesis of endothelial dysfunction leading to preeclampsia. It has also been suggested although not universally accepted that under certain circumstances maternal infection may also predispose to pre-eclampsia. Pre-eclampsia is also associated with the release of TNFα and endothelial dysfunction. However, the cellular and molecular mechanism(s) leading to the endothelial dysfunction by either hyperglycemia or by the cytokine TNFα appear to be different. In this chapter, we explore some of the similarities and differences leading to endothelial dysfunction by both hyperglycemia and by the inflammatory cytokine TNFα and the cellular and molecular mechanism(s) involved.
Radiation-induced erectile dysfunction using prostate-confined modern radiotherapy in a rat model.
Kimura, Masaki; Yan, Hui; Rabbani, Zahid; Satoh, Takefumi; Baba, Shiro; Yin, Fang-fang; Polascik, Thomas J; Donatucci, Craig F; Vujaskovic, Zeljko; Koontz, Bridget F
2011-08-01
The mechanisms of radiation-induced erectile dysfunction (ED) are unclear, as clinical studies are limited, and previous animal models were based on wide-field irradiation, which does not model current radiotherapy (RT) techniques. To perform functional and morphological analyses of erectile function (EF) utilizing image-guided stereotactic prostate-confined RT in a rat model. Sixty young adult male rats aged 10-12 weeks old were divided into age-matched sham and RT groups. A single 20-Gy fraction to the prostate was delivered to RT animals. Penile bulb, shaft, and testes were excluded from treatment fields. Bioassay and intracavernous pressure (ICP) measurements were conducted at 2, 4, and 9 weeks following RT. Perfusion analysis of the corpora cavernosa (CC) was conducted using Hoechst injected prior to sacrifice. Penile shaft and cavernous nerve (CN) were evaluated by immunohistochemistry. Plasma testosterone level was analyzed using a testosterone enzyme-linked immunosorbent assay (ELISA) assay kit. Irradiated animals demonstrated statistically significant time-dependent functional impairment of EF by bioassay and ICP measurement from 4 weeks. Neuronal nitric oxide synthase (NOS) expression was decreased in CN by 4 weeks. In CC, expression levels of anti-alpha smooth muscle actin and endothelial NOS were significantly decreased at 9 weeks. In penile dorsal vessels, smooth muscle/collagen ratio was significantly decreased at 4 and 9 weeks. Additionally, Hoechst perfusion showed time-dependent decrease in CC of RT animals, whereas CD31 expression was not affected. No toxicities were noted; testosterone levels were similar in both groups. We demonstrated time-dependent ED following image-guided stereotactic RT. Our results imply that reduction of neuronal NOS expression in cavernous nerve could trigger consecutive reduction of smooth muscle content as well as blood perfusion in CC that resulted in corporal veno-occlusive dysfunction. Present study could be a cornerstone to future research that may bring comprehensive scientific understanding of radiation-induced ED. © 2011 International Society for Sexual Medicine.
Schäfer, Nicola; Lohmann, Christine; Winnik, Stephan; van Tits, Lambertus J.; Miranda, Melroy X.; Vergopoulos, Athanasios; Ruschitzka, Frank; Nussberger, Jürg; Berger, Stefan; Lüscher, Thomas F.; Verrey, François; Matter, Christian M.
2013-01-01
Received 22 July 2012; revised 29 January 2013; accepted 4 March 2013 Aims Aldosterone plays a crucial role in cardiovascular disease. ‘Systemic’ inhibition of its mineralocorticoid receptor (MR) decreases atherosclerosis by reducing inflammation and oxidative stress. Obesity, an important cardiovascular risk factor, is an inflammatory disease associated with increased plasma aldosterone levels. We have investigated the role of the ‘endothelial’ MR in obesity-induced endothelial dysfunction, the earliest stage in atherogenesis. Methods and results C57BL/6 mice were exposed to a normal chow diet (ND) or a high-fat diet (HFD) alone or in combination with the MR antagonist eplerenone (200 mg/kg/day) for 14 weeks. Diet-induced obesity impaired endothelium-dependent relaxation in response to acetylcholine, whereas eplerenone treatment of obese mice prevented this. Expression analyses in aortic endothelial cells isolated from these mice revealed that eplerenone attenuated expression of pro-oxidative NADPH oxidase (subunits p22phox, p40phox) and increased expression of antioxidative genes (glutathione peroxidase-1, superoxide dismutase-1 and -3) in obesity. Eplerenone did not affect obesity-induced upregulation of cyclooxygenase (COX)-1 or prostacyclin synthase. Endothelial-specific MR deletion prevented endothelial dysfunction in obese (exhibiting high ‘endogenous’ aldosterone) and in ‘exogenous’ aldosterone-infused lean mice. Pre-incubation of aortic rings from aldosterone-treated animals with the COX-inhibitor indomethacin restored endothelial function. Exogenous aldosterone administration induced endothelial expression of p22phox in the presence, but not in the absence of the endothelial MR. Conclusion Obesity-induced endothelial dysfunction depends on the ‘endothelial’ MR and is mediated by an imbalance of oxidative stress-modulating mechanisms. Therefore, MR antagonists may represent an attractive therapeutic strategy in the increasing population of obese patients to decrease vascular dysfunction and subsequent atherosclerotic complications. PMID:23594590
Erectile dysfunction. A guide to diagnosis and management.
Arduca, Paul
2003-06-01
Erectile dysfunction (ED) is a common age related problem best managed in general practice. The incidence of ED will thus increase as men live longer. It is only in the past decade that the pathophysiology of ED has been well understood. This article discusses the mechanisms of normal erectile function and dysfunction and the assessment and management of ED. The success of currently available and newly emerging oral agents has revolutionised the management of ED. However, the majority of men with ED remain undiagnosed and untreated and patients are often unable to distinguish between a problem of ED, desire or libido. It is particularly important for general practitioners to enquire about ED in middle aged and older men, diabetics and patients with vascular disease. Appropriate management goes beyond management of the actual condition, and involves addressing lifestyle and psychosocial issues.
Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham
2012-01-01
The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450
La Mura, Vincenzo; Pasarín, Marcos; Meireles, Cintia Z; Miquel, Rosa; Rodríguez-Vilarrupla, Aina; Hide, Diana; Gracia-Sancho, Jorge; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G
2013-03-01
Endothelial dysfunction drives vascular derangement and organ failure associated with sepsis. However, the consequences of sepsis on liver sinusoidal endothelial function are largely unknown. Statins might improve microvascular dysfunction in sepsis. The present study explores liver vascular abnormalities and the effects of statins in a rat model of endotoxemia. For this purpose, lipopolysaccharide (LPS) or saline was given to: (1) rats treated with placebo; (2) rats treated with simvastatin (25 mg/kg, orally), given at 3 and 23 hours after LPS/saline challenge; (3) rats treated with simvastatin (25 mg/kg/24 h, orally) from 3 days before LPS/saline injection. Livers were isolated and perfused and sinusoidal endothelial function was explored by testing the vasodilation of the liver circulation to increasing concentrations of acetylcholine. The phosphorylated endothelial nitric oxide synthase (PeNOS)/endothelial nitric oxide synthase (eNOS) ratio was measured as a marker of eNOS activation. LPS administration induced an increase in baseline portal perfusion pressure and a decrease in vasodilation to acetylcholine (sinusoidal endothelial dysfunction). This was associated with reduced eNOS phosphorylation and liver inflammation. Simvastatin after LPS challenge did not prevent the increase in baseline portal perfusion pressure, but attenuated the development of sinusoidal endothelial dysfunction. Treatment with simvastatin from 3 days before LPS prevented the increase in baseline perfusion pressure and totally normalized the vasodilating response of the liver vasculature to acetylcholine and reduced liver inflammation. Both protocols of treatment restored a physiologic PeNOS/eNOS ratio. LPS administration induces intrahepatic endothelial dysfunction that might be prevented by simvastatin, suggesting that statins might have potential for liver protection during endotoxemia. Copyright © 2012 American Association for the Study of Liver Diseases.
Febuxostat attenuates paroxysmal atrial fibrillation-induced regional endothelial dysfunction.
Li, YanGuang; Chen, FuKun; Deng, Long; Lin, Kun; Shi, Xiangmin; Zhaoliang, Shan; Wang, YuTang
2017-01-01
Paroxysmal atrial fibrillation (PAF) can increase thrombogenesis risk, especially in the left atrium (LA). The exact mechanism is still unclear. We assessed the effects of PAF on endothelial function, and investigated if febuxostat (FX) can attenuate endothelial dysfunction by inhibition of xanthine oxidase (XO). Eighteen male New Zealand white rabbits were divided randomly into sham-operated (S), PAF (P) or FX+pacing (FP) groups. Group P and group FP received rapid atrial pacing (RAP). Group FP was administered febuxostat (FX) for 7days before RAP. Post-procedure, blood samples were collected from the LA, right atrium (RA) and peripheral circulation. Tissues from the LA and RA were obtained. Endothelial dysfunction (thrombomodulin [TM], von Willebrand factor [VWF], asymmetric dimethylarginine [ADMA]), and indirect thrombin generation (thrombin-antithrombin complex [TAT], prothrombin fragment 1+2 [F1.2]) and oxidative stress in atrial tissue (xanthine oxidase [XO], superoxide dismutase [SOD], malondialdehyde [MDA]) were measured using an Enzyme-linked immunosorbent assay. Atrial endothelial expression of TM and VWF was measured by histology/western blotting. Endothelial dysfunction (TM, VWF, ADMA), TAT generation and oxidative stress (XO, SOD, MDA) in group P were more significant compared with that in group S (p<0.05, respectively). In group P, all of these changes occurred to a greater extent in the LA compared with those in the RA or peripheral circulation. In group FP, FX attenuated endothelial dysfunction and reduced TAT levels by inhibition of XO-mediated oxidative stress. PAF can lead to endothelial dysfunction and TAT generation by XO-mediated oxidative stress. The LA is more susceptible to these effects. FX can attenuate these changes by inhibition XO and XO-mediated oxidative stress. Copyright © 2016. Published by Elsevier Ltd.
Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.
2014-01-01
Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329
Endothelial dysfunction in the regulation of portal hypertension
Iwakiri, Yasuko
2013-01-01
Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318
Batumalaie, Kalaivani; Amin, Muhammad Arif; Murugan, Dharmani Devi; Sattar, Munavvar Zubaid Abdul; Abdullah, Nor Azizan
2016-01-01
Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings. PMID:27250532
Endothelial Dysfunction in Human Diabetes Is Mediated by Wnt5a-JNK Signaling.
Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G; Fetterman, Jessica L; Linder, Erika A; Berk, Brittany D; Masaki, Nobuyuki; Weisbrod, Robert M; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J; Walsh, Kenneth; Hamburg, Naomi M
2016-03-01
Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus. © 2016 American Heart Association, Inc.
Differential Effects of Leptin and Adiponectin in Endothelial Angiogenesis
Adya, Raghu; Tan, Bee K.; Randeva, Harpal S.
2015-01-01
Obesity is a major health burden with an increased risk of cardiovascular morbidity and mortality. Endothelial dysfunction is pivotal to the development of cardiovascular disease (CVD). In relation to this, adipose tissue secreted factors termed “adipokines” have been reported to modulate endothelial dysfunction. In this review, we focus on two of the most abundant circulating adipokines, that is, leptin and adiponectin, in the development of endothelial dysfunction. Leptin has been documented to influence a multitude of organ systems, that is, central nervous system (appetite regulation, satiety factor) and cardiovascular system (endothelial dysfunction leading to atherosclerosis). Adiponectin, circulating at a much higher concentration, exists in different molecular weight forms, essentially made up of the collagenous fraction and a globular domain, the latter being investigated minimally for its involvement in proinflammatory processes including activation of NF-κβ and endothelial adhesion molecules. The opposing actions of the two forms of adiponectin in endothelial cells have been recently demonstrated. Additionally, a local and systemic change to multimeric forms of adiponectin has gained importance. Thus detailed investigations on the potential interplay between these adipokines would likely result in better understanding of the missing links connecting CVD, adipokines, and obesity. PMID:25650072
Association Between the Female Athlete Triad and Endothelial Dysfunction in Dancers
Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Schimke, Jane E.; Gutterman, David D.
2013-01-01
Objective To determine the prevalence of the 3 components of the female athlete triad [disordered eating, menstrual dysfunction, low bone mineral density (BMD)] and their relationships with brachial artery flow-mediated dilation in professional dancers. Design Prospective study. Setting Academic institution in the Midwest. Participants Twenty-two professional ballet dancers volunteered for this study. Interventions The prevalence of the female athlete triad and its relationship to endothelial dysfunction. Main Outcome Measures Subjects completed questionnaires to assess disordered eating and menstrual status/history. They also completed a 3-day food record and wore an accelerometer for 3 days to determine energy availability. Serum baseline thyrotropin, prolactin, and hormonal concentrations were obtained. Bone mineral density and body composition were measured with a GE Lunar Prodigy dual-energy X-ray absorptiometry. Endothelial function was determined as flow-mediated vasodilation measured by high-frequency ultrasound in the brachial artery. An increase in brachial diameter <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Results Seventeen dancers (77%) had evidence of low/negative energy availability. Thirty-two percent had disordered eating (EDE-Q score). Thirty-six percent had menstrual dysfunction and 14% were currently using hormone contraception. Twenty-three percent had evidence of low bone density (Z-score < −1.0). Sixty-four percent had abnormal brachial artery flow-mediated dilation (<5%). Flow-mediated dilation values were significantly correlated with serum estrogen and whole-body and lumbar BMD. All the 3 components of the triad plus endothelial dysfunction were present in 14% of the subjects. Conclusions Endothelial dysfunction was correlated with reduced BMD, menstrual dysfunction, and low serum estrogen. These findings may have profound implications for cardiovascular and bone health in professional women dancers. PMID:21358502
Loss of the Endothelial Glycocalyx Links Albuminuria and Vascular Dysfunction
Ferguson, Joanne K.; Burford, James L.; Gevorgyan, Haykanush; Nakano, Daisuke; Harper, Steven J.; Bates, David O.; Peti-Peterdi, Janos
2012-01-01
Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease. PMID:22797190
Endothelial dysfunction and amyloid-β-induced neurovascular alterations
Koizumi, Kenzo; Wang, Gang; Park, Laibaik
2015-01-01
Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the nonselective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca2+ overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781
Banarjee, Reema; Sharma, Akshay; Bai, Shakuntala; Deshmukh, Arati; Kulkarni, Mahesh
2018-06-20
Endothelial dysfunction is one of the primary steps in the development of diabetes associated cardiovascular diseases. Hyperglycemic condition in diabetes promotes accumulation of advanced glycation end products (AGEs) in the plasma, that interact with the receptor for AGEs (RAGE) present on the endothelial cells and negatively affect their function. Using Human umbilical vascular endothelial cells (HUVECs) in culture, the effect of glycated human serum albumin on global proteomic changes was studied by SWATH-MS, a label free quantitative proteomic approach. Out of the 1860 proteins identified, 161 showed higher abundance while 123 showed lesser abundance in cells treated with glycated HSA. Bioinformatic analysis revealed that the differentially regulated proteins were involved in various processes such as apoptosis, oxidative stress etc. that are associated with endothelial dysfunction. Furthermore, the iRegulon analysis and immunofuorescence studies indicated that several of the differentially regulated proteins were transcriptionally regulated by NF-κB, that is downstream to AGE-RAGE axis. Some of the important differentially regulated proteins include ICAM1, vWF, PAI-1that affect important endothelial functions like cell adhesion and blood coagulation. qPCR analysis showed an increase in expression of the AGE receptor RAGE along with other genes involved in endothelial function. AGE treatment to HUVEC cells led to increased oxidative stress and apoptosis. This is the first proteomics study that provides insight into proteomic changes downstream to AGE-RAGE axis leading to endothelial dysfunction and predisposing to cardiovascular complications. Cardiovascular disease (CVD) is a major pathological outcome in diabetic patients and it is important to address ways that target its development before the onset. Elevated plasma AGEs in diabetes can affect endothelial function and can continue to show their effects even after blood glucose levels are back to normal. Since endothelial dysfunction acts as one of the initiating factors for the development of CVD, understanding how AGEs affect the endothelial cell proteome to cause dysfunction will provide insight into the mechanisms involved and aid designing new therapeutic approaches. Copyright © 2018. Published by Elsevier B.V.
[Epithelial dysfunction associated with pyo-inflammatory diseases of the ENT organs].
Petukhova, N A
The modern concept of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome associated with pyo-inflammatory ENT diseases is presented. It has provided a basis for the analysis of the initial stages of etiopathogenesis of acute and chronic inflammation in the ENT system including the mucous and associated lymphoid tissues as well as the Pirogov-Waldeyer limphopharyngeal ring making up the first protective barrier. The leading role of dysbiosis of synanthropic microflora and endotoxins of the Gram-negative bacteria in the mechanisms of regional responsiveness of the organism to the infection and chronic endotoxic aggression is demonstrated. The regional and synthetic mechanisms underlying the interaction between the external and internal media of the organism are subjected to the analysis with special reference to those operating in epithelium. The possible variants of the outcome of these processes are considered including both the recovery and the development of chronic inflammation. It has been proved that the exhaustion of the internal reserves for the stabilization of the epithelium-associated lymphoid tissue system including the Pirogov-Waldeyer limphopharyngeal ring leads to the formation of epithelial dysfunction as the initial stage of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome. It is concluded that the modern concept of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome is a fundamental interdisciplinary phenomenon.
Kondrashova, V G; Kolpakov, I E; Vdovenko, V Yu; Leonovych, O S; Lytvynets, O M; Stepanova, E I
2014-09-01
Objective. The study examined the features of functional state of the autonomic nervous system in children having endothelial dysfunction and permanently residing in contaminated areas. Materials and methods. Clinical and instrumental examination of 101 children aged 7-18 years that were born and are domiciled in contaminated territories, including 37 persons with signs of endothelial dysfunction (subgroup IA) and 64 ones with no signs of endothelial dysfunction (IB subgroup) was conducted. The control group being comparable to the subgroups IA and IB by age, gender and clinical examination results included 37 children neither been domiciled in contaminated areas nor were belonging to the contingent of Chornobyl accident survivors. There were 20 apparently healthy children also examined. Results. Due to peculiarities of physiological pathways providing adaptive responses the children having signs of endothelial dysfunction are characterized by a more pronounced dysregulation of autonomous nervous system both in a resting state and under a functional load simulation, and also by a high strain of adaptation pathways. The lack of autonomous support of cardiovascular system is caused by inadequate adaptive responses of both central regulatory bodies (hypothalamus, vasomotor center) and peripheral receptors. Mainly the failure of segmental autonomous (parasympathetic) structures was revealed. The mode of their response to stress in this case corresponds to that in healthy individuals but at a lower functional level. There is a reduced aerobic capacity of the organism by the Robinson index, contributing to low adaptive range to non-specific stress in children being domiciled on contaminated territories including children having the endothelial dysfunction. Conclusions. Endothelial dysfunction was associated with more pronounced manifestations of autonomic dysregulation and reduced aerobic capacity of the organism being the risk factors of development of a range of somatic diseases requiring the development of prevention measures in children permanently residing in contaminated areas. autonomous nervous system balance, endothelial dysfunction, children, Chornobyl accident. V. G. Kondrashova, I. E. Kolpakov, V. Yu. Vdovenko, O. S. Leonovych, O. M. Lytvynets, E. I. Stepanova.
Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta.
Sturza, Adrian; Leisegang, Matthias S; Babelova, Andrea; Schröder, Katrin; Benkhoff, Sebastian; Loot, Annemarieke E; Fleming, Ingrid; Schulz, Rainer; Muntean, Danina M; Brandes, Ralf P
2013-07-01
Monoamine oxidases (MAOs) generate H(2)O(2) as a by-product of their catalytic cycle. Whether MAOs are mediators of endothelial dysfunction is unknown and was determined here in the angiotensin II and lipopolysaccharide-models of vascular dysfunction in mice. Quantitative real-time polymerase chain reaction revealed that mouse aortas contain enzymes involved in catecholamine generation and MAO-A and MAO-B mRNA. MAO-A and -B proteins could be detected by Western blot not only in mouse aortas but also in human umbilical vein endothelial cells. Ex vivo incubation of mouse aorta with recombinant MAO-A increased H(2)O(2) formation and induced endothelial dysfunction that was attenuated by polyethylene glycol-catalase and MAO inhibitors. In vivo lipopolysaccharide (8 mg/kg IP overnight) or angiotensin II (1 mg/kg per day, 2 weeks, minipump) treatment induced vascular MAO-A and -B expressions and resulted in attenuated endothelium-dependent relaxation of the aorta in response to acetylcholine. MAO inhibitors reduced the lipopolysaccharide- and angiotensin II-induced aortic reactive oxygen species formation by 50% (ferrous oxidation xylenol orange assay) and partially normalized endothelium-dependent relaxation. MAO-A and MAO-B inhibitors had an additive effect; combined application completely restored endothelium-dependent relaxation. To determine how MAO-dependent H(2)O(2) formation induces endothelial dysfunction, cyclic GMP was measured. Histamine stimulation of human umbilical vein endothelial cells to activate endothelial NO synthase resulted in an increase in cyclic GMP, which was almost abrogated by MAO-A exposure. MAO inhibition prevented this effect, suggesting that MAO-induced H(2)O(2) formation is sufficient to attenuate endothelial NO release. Thus, MAO-A and MAO-B are both expressed in the mouse aorta, induced by in vivo lipopolysaccharide and angiotensin II treatment and contribute via the generation of H(2)O(2) to endothelial dysfunction in vascular disease models.
Fetterman, Jessica L.; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A.; Berk, Brittany D.; Duess, Mai-Ann; Farb, Melissa G.; Gokce, Noyan; Shirihai, Orian S.; Hamburg, Naomi M.; Vita, Joseph A.
2016-01-01
Background Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. Methods and Results We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n=45) and non-diabetic controls (n=41). p62 levels were higher in cells from diabetics (34.2±3.6 vs. 20.0±1.6, P=0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (−21±5% vs. 64±22%, P=0.003) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P=0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P=0.01) in cells from diabetics to a lesser extent than in cells from controls (P=0.04), suggesting ongoing, but inadequate autophagic clearance. Conclusion Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. PMID:26926601
Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A
2016-04-01
Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Li, Xiaofei; Nong, Qingjiao; Mao, Baoyu; Pan, Xue
2017-01-01
This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure. PMID:28872622
Endothelial Dysfunction in Human Diabetes is mediated by Wnt5a-JNK Signaling
Bretón-Romero, Rosa; Feng, Bihua; Holbrook, Monika; Farb, Melissa G.; Fetterman, Jessica L.; Linder, Erika A.; Berk, Brittany D.; Masaki, Nobuyuki; Weisbrod, Robert M.; Inagaki, Elica; Gokce, Noyan; Fuster, Jose J.; Walsh, Kenneth; Hamburg, Naomi M.
2016-01-01
Objectives Endothelial dysfunction is linked to insulin resistance, inflammatory activation and increased cardiovascular risk in diabetes mellitus; however the mechanisms remain incompletely understood. Recent studies have identified pro-inflammatory signaling of Wnt5a through JNK as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. Approach We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in from 85 subjects with Type 2 diabetes mellitus (n=42) and age- and sex-matched non-diabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Results Endothelial cells from patients with diabetes displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes. In endothelial cells from non-diabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In HAECs, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. Conclusions Our findings demonstrate that non-canonical Wnt5a signaling and JNK activity contributes to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes. PMID:26800561
Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia
Possomato-Vieira, José S.; Khalil, Raouf A.
2016-01-01
Preeclampsia is a pregnancy-related disorder characterized by hypertension, and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the anti-angiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the pro-angiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia. PMID:27451103
Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Gui-Zhen; Tian, Wei; Fu, Hai-Tao
Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainlymore » mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.« less
Fischer, Tamás
2006-12-24
The beneficial effect achieved by the treatment of endothelial dysfunction in chronic cardiovascular diseases is already an evidence belonging to the basic treatment of the disease. Given the fact that the vascular system is uniform and consubstantial both physiologically, pathophysiologically and in terms of therapy, and that it plays a key role in age-related macular degeneration (AMD) - a disease leading to tragic loss of vision with its etiology and therapy being unknown -, endothelial dysfunction should be treated. The pleiotropic effects of ACE-inhibitors, AR-blockers and statins help to restitute the balance between vasodilators and vasoconstrictors in endothelial dysfunction caused by oxidative stress, the balance of growth factors and their inhibitors, pro- and anti-inflammatory substances and prothrombotic and fibrinolytic factors, inhibit the formation of oxidative stress and its harmful effects; while aspirin with its pleiotropic effects acting as an antiaggregation substance on platelets helps to set the endothelial layer back to its normal balance regarding its vasodilating, antithrombotic, anti-adhesive and anti-inflammatory functions. For the above reasons it is suggested that, as a part of long term primary and/or secondary prevention, the following groups of patients with AMD receive - taking into consideration all possible side effects - ACE-inhibitor and/or AR-blocker and statin and aspirin treatment: 1) those without maculopathy but being over the age of 50 and having risk factors inducing endothelial dysfunction; 2) those, who already developed AMD in one eye as a prevention in the second, unaffected eye; and 3) those patients who developed AMD in both eyes in order to ameliorate or merely slow the progression of the disease. Besides, it is advisory to inhibit AMD risk factors inducing oxidative stress with consecutive endothelial dysfunction.
Wang, Xiaoyu; Han, Xuejie; Li, Minghui; Han, Yu; Zhang, Yun; Zhao, Shiqi; Li, Yue
2018-05-16
Ticagrelor has been reported to decrease cardiovascular mortality compared with clopidogrel. This benefit cannot be fully explained by the more efficient platelet inhibition. Many studies demonstrated that ticagrelor improved endothelial function, leaving the mechanism elusive though. The present study aims to investigate whether ticagrelor protects against endothelial dysfunction induced by angiotensinII (AngII) through alleviating endoplasmic reticulum (ER) stress. Male Sprague Dawley rats were infused with AngII or vehicle and administrated with ticagrelor or vehicle for 14 days. Reactive oxygen species (ROS) was detected. Aortas from normal mice were incubated with endoplasmic reticulum stress inducer tunicamycin with or without ticagrelor. Vasorecactivity was measured on wire myography. Rat aortic endothelial cells (RAECs) were pretreated with ticagrelor followed by AngII or tunicamycin. Endothelial nitric oxide synthase (eNOS) phosphorylation and ER stress markers were determined by western blotting. Impaired endothelial function, induction of ER stress, reduced eNOS phosphorylation and elevated ROS generation was restored by ticagrelor treatment in vivo. In addition, tunicamycin induced endothelial dysfunction was improved by ticagrelor. In vitro, the induction of ER stress and inhibited eNOS phosphorylation in REACs exposed to AngII as well as tunicamycin was reversed by co-culturing with ticagrelor. In conclusion, ticagrelor protects against AngII-induced endothelial dysfunction via alleviating ER stress. Copyright © 2017. Published by Elsevier Inc.
Targeting vascular (endothelial) dysfunction
Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago
2016-01-01
Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006
Adawi, Mohamad; Pastuck, Nina; Saaida, Golan; Sirchan, Rizak; Watad, Abdalla; Blum, Arnon
2018-05-16
Rheumatoid arthritis (RA) patients may suffer cardiovascular (CV) events much more than the general population, and CV disease is the leading cause of death in patients with RA. Our hypothesis was that impaired function of endothelial progenitor cells may contribute to endothelial dysfunction and the clinical CV events of patients with RA. 27 RA patients (9 males and 18 females) with an active disease and 13 healthy subjects who served as the control group (9 males and 4 females) were enrolled to this prospective study. The ability to grow in culture colony-forming units of endothelial progenitor cells (CFU-EPCs) was measured, as well as their endothelial function using high-resolution ultrasonography of the brachial artery, and levels of C reactive protein (CRP) in the serum. For statistical analysis we used the students T-test test. As a group, patients with RA were older (p < 0.0001), had severe endothelial dysfunction (<0.0001), with impaired ability to grow CFU-EPCs (<0.0001), and a higher inflammatory state (p = 0001). No difference was observed in BMI. All RA patients had an active disease (DAS28 3.9±0.9) for 9.2±6.5 years. The same differences were observed in both genders. Patients with RA had an impaired ability to grow endothelial progenitor cells and severe endothelial dysfunction. Inability to grow colonies of endothelial progenitor cells reflects the impaired regenerative capacity of patients with RA, and may explain the endothelial dysfunction and the high CV event rate among patients with RA.
Masha, A; Martina, V
2014-01-01
Several metabolic diseases present a high cardiovascular mortality due to endothelial dysfunction consequences. In the last years of the past century, it has come to light that the endothelial cells, previously considered as inert in what regards an eventual secretion activity, play a pivotal role in regulating different aspects of the vascular function (endothelial function). It was clearly demonstrated that the endothelium acts as a real active organ, owning endocrine, paracrine and autocrine modulation activities by means of which it is able to regulate the vascular homeostasis. The present review will investigate the relationship between some metabolic diseases and the endothelial dysfunction and in particular the mechanisms underlying the effects of metabolic pathologies on the endothelium. Furthermore, it will consider the possible therapeutic employment of the N-acetilcysteine in such conditions.
Peripheral vascular dysfunction in migraine: a review
2013-01-01
Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826
Memon, Lidija; Spasojevic-Kalimanovska, Vesna; Bogavac-Stanojevic, Natasa; Kotur-Stevuljevic, Jelena; Simic-Ogrizovic, Sanja; Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana; Spasic, Slavica
2013-01-01
The study was designed to evaluate associations between symmetric dimethylarginine (SDMA), inflammation, and superoxide anion (O2∙-) with endothelial function and to determine their potential for screening of endothelial dysfunction in patients with chronic kidney disease (CKD) and renal transplant (RT) recipients. We included 64 CKD and 52 RT patients. Patients were stratified according to brachial artery flow-mediated dilation (FMD). Logistic regression analysis showed that high SDMA and high sensitive C-reactive protein (hs-CRP) were associated with impaired FMD in CKD and RT patients, after adjustment for glomerular filtration rate. The ability of inflammation, SDMA, and O2∙- to detect impaired FMD was investigated by receiving operative characteristic analysis. Hs-CRP (area under the curves (AUC) = 0.754, P < 0.001), IL-6 (AUC = 0.699, P = 0.002), and SDMA (AUC = 0.689, P = 0.007) had the highest ability to detect impaired FMD. SDMA in combination with inflammatory parameters and/or O2∙- had better screening performance than SDMA alone. Our results indicate a strong predictable association between hs-CRP, SDMA, and endothelial dysfunction in CKD patients and RT recipients. The individual marker that showed the strongest discriminative ability for endothelial dysfunction is hs-CRP, but its usefulness as a discriminatory marker for efficient diagnosis of endothelial dysfunction should be examined in prospective studies.
A twin study of erectile dysfunction.
Fischer, Mary E; Vitek, Mary Ellen; Hedeker, Don; Henderson, William G; Jacobsen, Steven J; Goldberg, Jack
2004-01-26
The extent of genetic influence on erectile dysfunction (ED) is unknown. This study determines the contribution of heredity to ED in a sample of middle-aged men. A classical twin study was conducted in the Vietnam Era Twin Registry, a national sample of male-male pairs (mean birth year, 1949) who served on active duty during the Vietnam era (1965-1975). A 1999 male health survey was completed by 890 monozygotic (MZ) and 619 dizygotic (DZ) pairs. The prevalence and heritability of 2 self-report indicators of ED, difficulty in having an erection and in maintaining an erection, are estimated. The prevalence of difficulty in having an erection is 23.3% and in maintaining an erection is 26.7%. Twin correlations for dysfunction in having an erection are 0.35 (95% confidence interval [CI], 0.28-0.41) in MZ and 0.17 (95% CI, 0.09-0.27) in DZ pairs. For dysfunction in maintaining an erection, the twin correlations in MZ and DZ pairs are 0.39 (95% CI, 0.32-0.45) and 0.18 (95% CI, 0.09-0.27), respectively. The estimated heritability of liability for dysfunction in having an erection is 35% and in maintaining an erection is 42%. The heritable influence on ED remained significant after adjustment for ED risk factors. The present study demonstrates an ED-specific genetic component that is independent of genetic influences from numerous ED risk factors. The results suggest that future molecular genetic studies to identify ED-related polymorphisms are warranted.
Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena
2017-11-14
Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-06-15
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-01-01
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093
Hong, Quan; Qi, Ka; Feng, Zhe; Huang, Zhiyong; Cui, Shaoyuan; Wang, Liyuan; Fu, Bo; Ding, Rui; Yang, Jurong; Chen, Xiangmei; Wu, Di
2012-05-01
Uric acid (UA) has proven to be a causal agent in endothelial dysfunction in which ROS production plays an important role. Calcium overload in mitochondria can promote the mitochondrial production of ROS. We hypothesize that calcium transduction in mitochondria contributes to UA-induced endothelial dysfunction. We first demonstrated that high concentrations of UA cause endothelial dysfunction, marked by a reduction in eNOS protein expression and NO release in vitro. We further found that a high concentration of UA increased levels of [Ca2+]mito, total intracellular ROS, H2O2, and mitochondrial O2·-, and Δψmito but not the [Ca2+]cyt level. When the mitochondrial calcium channels NCXmito and MCU were blocked by CGP-37157 and Ru360, respectively, the UA-induced increases in the levels of [Ca2+]mito and total intracellular ROS were significantly reduced. Mitochondrial levels of O2·- and Δψmito were reduced by inhibition of NCXmito but not of MCU. Moreover, inhibition of NCXmito, but not of MCU, blocked the UA-induced reductions in eNOS protein expression and NO release. The increased generation of mitochondrial O2·- induced by a high concentration of UA is triggered by mitochondrial calcium overload and ultimately leads to endothelial dysfunction. In this process, the activation of NCXmito is the major cause of the influx of calcium into mitochondria. Our results provide a new pathophysiological mechanism for UA-induced endothelial dysfunction and may offer a new therapeutic target for clinicians. Copyright © 2012 Elsevier Ltd. All rights reserved.
Takase, Susumu; Matoba, Tetsuya; Nakashiro, Soichi; Mukai, Yasushi; Inoue, Shujiro; Oi, Keiji; Higo, Taiki; Katsuki, Shunsuke; Takemoto, Masao; Suematsu, Nobuhiro; Eshima, Kenichi; Miyata, Kenji; Yamamoto, Mitsutaka; Usui, Makoto; Sadamatsu, Kenji; Satoh, Shinji; Kadokami, Toshiaki; Hironaga, Kiyoshi; Ichi, Ikuyo; Todaka, Koji; Kishimoto, Junji; Egashira, Kensuke; Sunagawa, Kenji
2017-02-01
We sought to investigate whether treatment with ezetimibe in combination with statins improves coronary endothelial function in target vessels in coronary artery disease patients after coronary stenting. We conducted a multicenter, prospective, randomized, open-label, blinded-end point trial among 11 cardiovascular treatment centers. From 2011 to 2013, 260 coronary artery disease patients who underwent coronary stenting were randomly allocated to 2 arms (statin monotherapy, S versus ezetimibe [10 mg/d]+statin combinational therapy, E+S). We defined target vessel dysfunction as the primary composite outcome, which comprised target vessel failure during treatment and at the 6- to 8-month follow-up coronary angiography and coronary endothelial dysfunction determined via intracoronary acetylcholine testing performed in cases without target vessel failure at the follow-up coronary angiography. Coadministration of ezetimibe with statins further lowered low-density lipoprotein cholesterol levels (83±23 mg/dL in S versus 67±23 mg/dL in E+S; P<0.0001), with significant decreases in oxidized low-density lipoprotein and oxysterol levels. Among patients without target vessel failure, 46 out of 89 patients (52%) in the S arm and 34 out of 96 patients (35%) in the E+S arm were found to have coronary endothelial dysfunction (P=0.0256), and the incidence of target vessel dysfunction at follow-up was significantly decreased in the E+S arm (69/112 (62%) in S versus 47/109 (43%) in E+S; P=0.0059). A post hoc analysis of post-treatment low-density lipoprotein cholesterol-matched subgroups revealed that the incidence of both target vessel dysfunction and coronary endothelial dysfunction significantly decreased in the E+S arm, with significant reductions in oxysterol levels. The CuVIC trial (Effect of Cholesterol Absorption Inhibitor Usage on Target Vessel Dysfunction after Coronary Stenting) has shown that ezetimibe with statins, compared with statin monotherapy, improves functional prognoses, ameliorating endothelial dysfunction in stented coronary arteries, and was associated with larger decreases in oxysterol levels. © 2016 American Heart Association, Inc.
Moltedo, Ornella; Faraonio, Raffaella
2018-01-01
In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a new therapeutic target for the clinical management of endothelial dysfunction. PMID:29725497
Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao
2017-03-11
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Endothelial dysfunction in patients with obstructive sleep apnoea independent of metabolic syndrome.
Amra, Babak; Karbasi, Elaheh; Hashemi, Mohammad; Hoffmann-Castendiek, Birgit; Golshan, Mohammad
2009-05-01
Obstructive sleep apnoea syndrome (OSAS), characterised by intermittent hypoxia/re-oxygenation, has been identified as an independent risk factor for cardiovascular diseases and endothelial dysfunction. Our aim was to investigate flow-mediated dilatation (FMD) in patients with obstructive sleep apnoea with and without metabolic syndrome. Fifty-two subjects with OSAS diagnosed by polysomnography were classified into 2 groups according to the presence and absence of the metabolic syndrome and also according to the severity: mild to moderate OSAS group and severe OSAS group. Endothelial function of the brachial artery was evaluated by using high-resolution vascular ultrasound. Endothelial-dependent dilatation (EDD) was assessed by establishing reactive hyperaemia and endothelial-independent dilatation (EID) was determined by using sublingual isosorbide dinitrate. Spearman correlation and regression analysis were performed. EDD was not significantly different in patients with OSAS and metabolic syndrome as compared with OSAS without metabolic syndrome (4.62 +/- 0.69 versus 4.49 +/- 0.93, P >0.05). Endothelial dysfunction in OSA may be independent of metabolic syndrome.
Effects of Flavonoid-Containing Beverages and EGCG on Endothelial Function
Shenouda, Sherene M.; Vita, Joseph A.
2009-01-01
Abnormalities of the vascular endothelium contribute to all stages of atherosclerosis from lesion development to clinical cardiovascular disease events. Recognized risk factors, including diabetes mellitus, hypertension, dyslipidemia, cigarette smoking, and sedentary lifestyle are associated with endothelial dysfunction. A variety of pharmacological and behavioral interventions have been shown to reverse endothelial dysfunction in patients with cardiovascular disease. A large number of epidemiological studies suggest that dietary factors, including increased intake of flavonoid-containing foods and beverages, reduce cardiovascular risk, and recent studies have shown that such beverages have favorable effects on endothelial function. These studies have engendered interest in the development of dietary supplements or drugs that would allow for more convenient and higher dose administration of flavonoids and might prove useful for prevention or treatment of cardiovascular disease. In this paper, we will review the contribution of endothelial dysfunction to the pathogenesis and clinical expression of atherosclerosis and recent data linking flavonoid and EGCG consumption to improved endothelial function and reduced cardiovascular risk. PMID:17906190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Liyi; Departments of Cardiology, The 451st Hospital of People's Liberation Army; Hu, Xiaojing
Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNAmore » was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (AngII) expression. • CTRP6 alleviates AngII-induced hypertension and vascular endothelial dysfunction.« less
Bruyndonckx, Luc; Hoymans, Vicky Y; Lemmens, Katrien; Ramet, José; Vrints, Christiaan J
2016-06-01
Childhood obesity jeopardizes a healthy future for our society's children as it is associated with increased cardiovascular morbidity and mortality later on in life. Endothelial dysfunction, the first step in the development of atherosclerosis, is already present in obese children and may well represent a targetable risk factor. Technological advancements in recent years have facilitated noninvasive measurements of endothelial homeostasis in children. Thereby this topic ultimately starts to get the attention it deserves. In this paper, we aim to summarize the latest insights on endothelial dysfunction in childhood obesity. We discuss methodological advancements in peripheral endothelial function measurement and newly identified diagnostic markers of vascular homeostasis. Finally, future challenges and perspectives are set forth on how to efficiently tackle the catastrophic rise in cardiovascular morbidity and mortality that will be inflicted on obese children if they are not treated optimally.
Balon, Richard
2017-01-02
Similar to the burden of other diseases, the burden of sexual dysfunction has not been systematically studied. However, there is growing evidence of various burdens (e.g., economic, symptomatic, humanistic) among patients suffering from sexual dysfunctions. The burden of sexual dysfunction has been studied a bit more often in men, namely the burden of erectile dysfunction (ED), premature ejaculation (PE) and testosterone deficiency syndrome (TDS). Erectile dysfunction is frequently associated with chronic conditions such as cardiovascular disease, diabetes, and depression. These conditions could go undiagnosed, and ED could be a marker of those diseases. The only available report from the United Kingdom estimated the total economic burden of ED at £53 million annually in terms of direct costs and lost productivity. The burden of PE includes significant psychological distress: anxiety, depression, lack of sexual confidence, poor self-esteem, impaired quality of life, and interpersonal difficulties. Some suggest that increase in female sexual dysfunction is associated with partner's PE, in addition to significant interpersonal difficulties. The burden of TDS includes depression, sexual dysfunction, mild cognitive impairment, and osteoporosis. One UK estimate of the economic burden of female sexual dysfunctions demonstrated that the average cost per patient was higher than the per annum cost of ED. There are no data on burden of paraphilic disorders. The burden of sexual dysfunctions is underappreciated and not well studied, yet it is significant for both the patients and the society.
Bioactivation of organic nitrates and the mechanism of nitrate tolerance.
Klemenska, Emila; Beresewicz, Andrzej
2009-01-01
Organic nitrates, such as nitroglycerin, are commonly used in the therapy of cardiovascular disease. Long-term therapy with these drugs, however, results in the rapid development of nitrate tolerance, limiting their hemodynamic and anti-ischemic efficacy. In addition, nitrate tolerance is associated with the expression of potentially deleterious modifications such as increased oxidative stress, endothelial dysfunction, and sympathetic activation. In this review we discuss current concepts regarding the mechanisms of organic nitrate bioactivation, nitrate tolerance, and nitrate-mediated oxidative stress and endothelial dysfunction. We also examine how hydralazine may prevent nitrate tolerance and related endothelial dysfunction.
Sinusoidal Endothelial Dysfunction Precedes Inflammation and Fibrosis in a Model of NAFLD
Pasarín, Marcos; La Mura, Vincenzo; Gracia-Sancho, Jorge; García-Calderó, Héctor; Rodríguez-Vilarrupla, Aina; García-Pagán, Juan Carlos; Bosch, Jaime; Abraldes, Juan G.
2012-01-01
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Most morbidity associated with the metabolic syndrome is related to vascular complications, in which endothelial dysfunction is a major pathogenic factor. However, whether NAFLD is associated with endothelial dysfunction within the hepatic vasculature is unknown. The aims of this study were to explore, in a model of diet-induced overweight that expresses most features of the metabolic syndrome, whether early NAFLD is associated with liver endothelial dysfunction. Wistar Kyoto rats were fed a cafeteria diet (CafD; 65% of fat, mostly saturated) or a control diet (CD) for 1 month. CafD rats developed features of the metabolic syndrome (overweight, arterial hypertension, hypertryglyceridemia, hyperglucemia and insulin resistance) and liver steatosis without inflammation or fibrosis. CafD rats had a significantly higher in vivo hepatic vascular resistance than CD. In liver perfusion livers from CafD rats had an increased portal perfusion pressure and decreased endothelium-dependent vasodilation. This was associated with a decreased Akt-dependent eNOS phosphorylation and NOS activity. In summary, we demonstrate in a rat model of the metabolic syndrome that shows features of NAFLD, that liver endothelial dysfunction occurs before the development of fibrosis or inflammation. PMID:22509248
Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming
2016-02-01
Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Rui; Bao, Chunrong; Jiang, Lianyong
Pulmonary artery endothelial dysfunction is associated with pulmonary arterial hypertension (PAH). Based on recent studies showing that microRNA (miR)-27b is aberrantly expressed in PAH, we hypothesized that miR-27b may contribute to pulmonary endothelial dysfunction and vascular remodeling in PAH. The effect of miR-27b on pulmonary endothelial dysfunction and the underlying mechanism were investigated in human pulmonary artery endothelial cells (HPAECs) in vitro and in a monocrotaline (MCT)-induced model of PAH in vivo. miR-27b expression was upregulated in MCT-induced PAH and inversely correlated with the levels of peroxisome proliferator-activated receptor (PPAR)-γ, and miR-27b inhibition attenuated MCT-induced endothelial dysfunction and remodeling and prevented PAHmore » associated right ventricular hypertrophy and systolic pressure in rats. PPARγ was confirmed as a direct target of miR-27b in HPAECs and shown to mediate the effect of miR-27b on the disruption of endothelial nitric oxide synthase (eNOS) coupling to Hsp90 and the suppression of NO production associated with the PAH phenotype. We showed that miR-27b plays a role endothelial function and NO release and elucidated a potential mechanism by which miR-27b regulates Hsp90-eNOS and NO signaling by modulating PPARγ expression, providing potential therapeutic targets for the treatment of PAH. - Highlights: • miR-27b plays a role in endothelial function and NO release. • miR-27b inhibition ameliorates MCT-induced endothelial dysfunction and PAH. • miR-27b targets PPARγ in HPAECs. • miR-27b regulates PPARγ dependent Hsp90-eNOS and NO signaling.« less
Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong
2010-10-01
To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor.
Carbachol inhibits TNF-α-induced endothelial barrier dysfunction through alpha 7 nicotinic receptors
Li, Yu-zhen; Liu, Xiu-hua; Rong, Fei; Hu, Sen; Sheng, Zhi-yong
2010-01-01
Aim: To test whether carbachol can influence endothelial barrier dysfunction induced by tumor necrosis factor (TNF)-α and whether the alpha 7 nicotinic receptor can mediate this process. Methods: Rat cardiac microvascular endothelial cells were exposed to carbachol followed by TNF-α treatment in the presence or the absence of α-bungarotoxin (an antagonist of the alpha 7 nicotinic receptor). Permeability of endothelial cells cultured on Transwell filters was assayed using FITC-albumin. F-actin was stained with FITC- phalloidin. Expression of vascular endothelial cadherin, intercellular adhesion molecule 1 (ICAM-1), phosphor-ERK1/2 and phosphor-JNK was detected using Western blot. Results: Carbachol (2 μmol/L-2 mmol/L) prevented increase in endothelial cell permeability induced by TNF-α (500 ng/mL) in a dose-dependent manner. Further, it attenuated the down-regulation of vascular endothelial cadherin and the up-regulation of ICAM-1 induced by TNF-α. In addition, treatment of endothelial cells with carbachol decreased phosphor-ERK1/2 and phosphor-JNK. These effects of carbachol were blocked by α-bungarotoxin 3 μg/mL. Conclusion: These data suggest that the inhibitory effect of carbachol on TNF-α-induced endothelial barrier dysfunction mediated by the alpha 7 nicotinic receptor. PMID:20871620
Walsh, Lauren K.; Restaino, Robert M.; Neuringer, Martha; Manrique, Camila; Padilla, Jaume
2017-01-01
Postprandial hyperglycemia leads to a transient impairment in endothelial function; however, the mechanisms remain largely unknown. Previous work in cell culture models demonstrate that high glucose results in endoplasmic reticulum (ER) stress and, in animal studies, ER stress has been implicated as a cause of endothelial dysfunction. Herein we tested the hypothesis that acute oral administration of tauroursodeoxycholic acid (TUDCA, 1500mg), a chemical chaperone known to alleviate ER stress, would prevent hyperglycemia-induced endothelial dysfunction. In 12 young healthy subjects (seven men, five women), brachial artery flow-mediated dilation (FMD) was assessed at baseline, 1 hour, and 2 hours post an oral glucose challenge. Subjects were tested on two separate visits in a single-blind randomized crossover design: after oral ingestion of TUDCA or placebo capsules. FMD was reduced from baseline during hyperglycemia under the placebo condition (−32% at 1 hr and −28% at 2 hr post oral glucose load; p<0.05 from baseline) but not under the TUDCA condition (−4% at 1 hr and +0.3% at 2 hr post oral glucose load; p>0.05 from baseline). Postprandial plasma glucose and insulin were not altered by TUDCA ingestion. Plasma oxidative stress markers 3-nitrotyrosine and TBARs remained unaltered throughout the oral glucose challenge in both conditions. These results suggest that hyperglycemia-induced endothelial dysfunction can be mitigated by oral administration of TUDCA, thus supporting the hypothesis that ER stress may contribute to endothelial dysfunction during postprandial hyperglycemia. PMID:27503949
Giga, Vojislav; Dopsaj, Violeta; Jelic-Ivanovic, Zorana
2013-01-01
Objectives. The study was designed to evaluate associations between symmetric dimethylarginine (SDMA), inflammation, and superoxide anion (O2∙−) with endothelial function and to determine their potential for screening of endothelial dysfunction in patients with chronic kidney disease (CKD) and renal transplant (RT) recipients. Materials and Methods. We included 64 CKD and 52 RT patients. Patients were stratified according to brachial artery flow-mediated dilation (FMD). Results. Logistic regression analysis showed that high SDMA and high sensitive C-reactive protein (hs-CRP) were associated with impaired FMD in CKD and RT patients, after adjustment for glomerular filtration rate. The ability of inflammation, SDMA, and O2∙− to detect impaired FMD was investigated by receiving operative characteristic analysis. Hs-CRP (area under the curves (AUC) = 0.754, P < 0.001), IL-6 (AUC = 0.699, P = 0.002), and SDMA (AUC = 0.689, P = 0.007) had the highest ability to detect impaired FMD. SDMA in combination with inflammatory parameters and/or O2∙− had better screening performance than SDMA alone. Conclusions. Our results indicate a strong predictable association between hs-CRP, SDMA, and endothelial dysfunction in CKD patients and RT recipients. The individual marker that showed the strongest discriminative ability for endothelial dysfunction is hs-CRP, but its usefulness as a discriminatory marker for efficient diagnosis of endothelial dysfunction should be examined in prospective studies. PMID:24167363
Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability.
Salmon, Andrew H J; Satchell, Simon C
2012-03-01
Appreciation of the glomerular microcirculation as a specialized microcirculatory bed, rather than as an entirely separate entity, affords important insights into both glomerular and systemic microvascular pathophysiology. In this review we compare regulation of permeability in systemic and glomerular microcirculations, focusing particularly on the role of the endothelial glycocalyx, and consider the implications for disease processes. The luminal surface of vascular endothelium throughout the body is covered with endothelial glycocalyx, comprising surface-anchored proteoglycans, supplemented with adsorbed soluble proteoglycans, glycosaminoglycans and plasma constituents. In both continuous and fenestrated microvessels, this endothelial glycocalyx provides resistance to the transcapillary escape of water and macromolecules, acting as an integral component of the multilayered barrier provided by the walls of these microvessels (ie acting in concert with clefts or fenestrae across endothelial cell layers, basement membranes and pericytes). Dysfunction of any of these capillary wall components, including the endothelial glycocalyx, can disrupt normal microvascular permeability. Because of its ubiquitous nature, damage to the endothelial glycocalyx alters the permeability of multiple capillary beds: in the glomerulus this is clinically apparent as albuminuria. Generalized damage to the endothelial glycocalyx can therefore manifest as both albuminuria and increased systemic microvascular permeability. This triad of altered endothelial glycocalyx, albuminuria and increased systemic microvascular permeability occurs in a number of important diseases, such as diabetes, with accumulating evidence for a similar phenomenon in ischaemia-reperfusion injury and infectious disease. The detection of albuminuria therefore has implications for the function of the microcirculation as a whole. The importance of the endothelial glycocalyx for other aspects of vascular function/dysfunction, such as mechanotransduction, leukocyte-endothelial interactions and the development of atherosclerosis, indicate that alterations in the endothelial glycocalyx may also be playing a role in the dysfunction of other organs observed in these disease states. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Is there a link between soft drinks and erectile dysfunction?
Adamowicz, Jan; Drewa, Tomasz
2011-01-01
This review focuses on the potential role of soft drinks, particularly the sugar component, in the pathogenesis of erectile dysfunction (ED). We analyzed the hypothetical link between metabolic disorders, induced by sweetened soft drinks overconsumption, and ED. High caloric intake, high refined-carbohydrates, and high fructose corn syrup (HFCS) content and less satiety are main factors responsible for metabolic disorders contributing to ED development. Regular diet mistakes among human males, such as soft drink consumption, may lead to slow and asymptomatic progression of ED, finally resulting in full claimed manifestation of ED.
Kane, Modou O; Etienne-Selloum, Nelly; Madeira, Soccoro V F; Sarr, Mamadou; Walter, Allison; Dal-Ros, Stéphanie; Schott, Christa; Chataigneau, Thierry; Schini-Kerth, Valérie B
2010-04-01
Angiotensin II (Ang II)-induced hypertension is associated with vascular oxidative stress and an endothelial dysfunction. This study examined the role of reactive oxygen species (ROS) and endothelium-derived contracting factors in Ang II-induced endothelial dysfunction and whether these effects are prevented by red wine polyphenols (RWPs), a rich source of natural antioxidants. Rats were infused with Ang II for 14 days. RWPs were administered in the drinking water 1 week before and during the Ang II infusion. Arterial pressure was measured in conscious rats. Vascular reactivity was assessed in organ chambers and cyclooxygenase-1 (COX-1) and COX-2 expression by Western blot and immunofluorescence analyses. Ang II-induced hypertension was associated with blunted endothelium-dependent relaxations and induction of endothelium-dependent contractions in the presence of nitro-L-arginine in response to acetylcholine (Ach). These effects were not affected by the combination of membrane permeant analogs of superoxide dismutase and catalase but were abolished by the thromboxane A(2) (TP) receptor antagonist GR32191B and the COX-2 inhibitor NS-398. The COX-1 inhibitor SC-560 also prevented contractile responses to Ach. Ang II increased the expression of COX-1 and COX-2 in the aortic wall. RWPs prevented Ang II-induced hypertension, endothelial dysfunction, and upregulation of COX-1 and COX-2. Thus, Ang II-induced endothelial dysfunction cannot be explained by an acute formation of ROS reducing the bioavailability of nitric oxide but rather by COX-dependent formation of contracting factors acting on TP receptors. RWPs are able to prevent the Ang II-induced endothelial dysfunction mostly due to their antioxidant properties.
Chang, Fumin; Flavahan, Sheila; Flavahan, Nicholas A
2017-08-01
Ageing-induced endothelial dysfunction contributes to organ dysfunction and progression of cardiovascular disease. VE-cadherin clustering at adherens junctions promotes protective endothelial functions, including endothelium-dependent dilatation. Ageing increased internalization and degradation of VE-cadherin, resulting in impaired activity of adherens junctions. Inhibition of VE-cadherin clustering at adherens junctions (function-blocking antibody; FBA) reduced endothelial dilatation in young arteries but did not affect the already impaired dilatation in old arteries. After junctional disruption with the FBA, dilatation was similar in young and old arteries. Src tyrosine kinase activity and tyrosine phosphorylation of VE-cadherin were increased in old arteries. Src inhibition increased VE-cadherin at adherens junctions and increased endothelial dilatation in old, but not young, arteries. Src inhibition did not increase dilatation in old arteries treated with the VE-cadherin FBA. Ageing impairs the activity of adherens junctions, which contributes to endothelial dilator dysfunction. Restoring the activity of adherens junctions could be of therapeutic benefit in vascular ageing. Endothelial dilator dysfunction contributes to pathological vascular ageing. Experiments assessed whether altered activity of endothelial adherens junctions (AJs) might contribute to this dysfunction. Aortas and tail arteries were isolated from young (3-4 months) and old (22-24 months) F344 rats. VE-cadherin immunofluorescent staining at endothelial AJs and AJ width were reduced in old compared to young arteries. A 140 kDa VE-cadherin species was present on the cell surface and in TTX-insoluble fractions, consistent with junctional localization. Levels of the 140 kDa VE-cadherin were decreased, whereas levels of a TTX-soluble 115 kDa VE-cadherin species were increased in old compared to young arteries. Acetylcholine caused endothelium-dependent dilatation that was decreased in old compared to young arteries. Disruption of VE-cadherin clustering at AJs (function-blocking antibody, FBA) inhibited dilatation to acetylcholine in young, but not old, arteries. After the FBA, there was no longer any difference in dilatation between old and young arteries. Src activity and tyrosine phosphorylation of VE-cadherin were increased in old compared to young arteries. In old arteries, Src inhibition (saracatinib) increased: (i) 140 kDa VE-cadherin in the TTX-insoluble fraction, (ii) VE-cadherin intensity at AJs, (iii) AJ width, and (iv) acetylcholine dilatation. In old arteries treated with the FBA, saracatinib no longer increased acetylcholine dilatation. Saracatinib did not affect dilatation in young arteries. Therefore, ageing impairs AJ activity, which appears to reflect Src-induced phosphorylation, internalization and degradation of VE-cadherin. Moreover, impaired AJ activity can account for the endothelial dilator dysfunction in old arteries. Restoring endothelial AJ activity may be a novel therapeutic approach to vascular ageing. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Zhou, Feng; Hui, Yu; Xin, Hua; Xu, Yong-De; Lei, Hong-En; Yang, Bi-Cheng; Guan, Rui-Li; Li, Meng; Hou, Jian-Quan; Xin, Zhong-Cheng
2017-01-01
This study aimed to explore the therapeutic effects of adipose-derived stem cells (ADSCs)-based microtissues (MTs) on erectile dysfunction (ED) in streptozotocin (STZ)-induced diabetic rats. Fifty-six 8-week-old Sprague-Dawley rats received intraperitoneal injection of STZ (60 mg kg−1), and 8 weeks later, the determined diabetic rats randomly received intracavernous (IC) injection of phosphate buffer solution (PBS), ADSCs, or MTs. Another eight normal rats equally got IC injection of PBS. MTs were generated with a hanging drop method, and the injected cells were tracked in ADSC- and MT-injected rats. Four weeks after the treatments, intracavernous pressure (ICP), histopathological changes in corpus cavernosum (CC), and functional proteins were measured. Rat cytokine antibody array was used to detect ADSCs or MTs lysate. The results showed that MTs expressed vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and tumor necrosis factor-stimulated gene-6 (TSG-6). MTs injection had a higher retention than ADSCs injection and MTs treatment improved ICP, neuronal nitric oxide synthase (nNOS) expression, smooth muscle, and endothelial contents in diabetic rats, ameliorated local inflammation in CC better. Thus, our findings demonstrate that IC injection of MTs improves erectile function and histopathological changes in STZ-induced diabetic rats and appears to be more promising than traditional ADSCs. The underlying mechanisms involve increased cell retention accompanied with neuroprotection and anti-inflammatory behaviors of the paracrine factors. PMID:27345005
Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong
2017-10-14
Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA induces endothelial dysfunction and other cardiovascular disease in patients with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.
Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru
2013-01-01
Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884
The future is today: emerging drugs for the treatment of erectile dysfunction
Albersen, Maarten; Shindel, Alan; Mwamukonda, Kuwong; Lue, Tom
2011-01-01
Erectile Dysfunction (ED) is the most common male sexual dysfunction presented for treatment, and the most thoroughly studied sexual dysfunction in men. In the late 20th century, important discoveries were made regarding both the physiologic processes of penile erection and the pathophysiology of ED. These discoveries led to the commercial introduction of the phosphodiesterase type 5 inhibitors (PDE5I), a class of medications which now accounts for the largest segment of the ED market. While these drugs are highly efficacious for many men, a relatively large subset of ED patients who do not respond to PDE5I has been identified. Recognition of this subset of the ED population and the ageing of the population has driven researchers to investigate novel treatment targets for ED. Increased research efforts have resulted in the development of several orally available compounds that combine high efficacy with low rates of adverse events. In this review we report on various compounds that regulate penile erection both centrally (Clavulanic acid, Dopamine and Melanocortin receptor agonists) and peripherally (novel PDE5I, soluble and particulate Guanylil Cyclase activators, Rho-kinase inhibitors and Maxi-K channel openers), and discuss the preclinical and clinical evidence supporting the development of these emerging drugs for ED. PMID:20415601
Beneficial impact of exercise and obesity interventions on erectile function and its risk factors.
Hannan, Johanna L; Maio, M Tina; Komolova, Marina; Adams, Michael A
2009-03-01
Erectile dysfunction (ED) is a multifaceted disease involving cardiovascular, metabolic, and hormonal factors and affects over 100 million men worldwide. ED has been shown to be a harbinger of underlying cardiovascular diseases (CVD), as there are common risk factors (aging, hypertension, obesity) and mechanistic basis. To provide an update on clinical and experimental evidence regarding the impact of lifestyle modifications, such as exercise and diet, with respect to changes in erectile function. Published evidence regarding the impact of aging, hypertension, and obesity on ED and CVD, as well as new experimental data linking obesity and diminished erectile responses. We reviewed the literature regarding common risk factors of ED and CVD, particularly involving obesity, as well as performed new analysis on the findings of other experimental studies involving diet and exercise interventions. Physical inactivity negatively impacts on erectile function, and experimental and clinical exercise interventions have been shown to improve sexual responses and overall cardiovascular health. Mediterranean-style diets and a reduction in caloric intake have been found to improve erectile function in men with the aspects of the metabolic syndrome. In addition, both clinical and experimental studies have confirmed that combining the two interventions provides additional benefit to erectile function, likely via reduced metabolic disturbances (e.g., inflammatory markers, insulin resistance), decreased visceral adipose tissue, and improvement in vascular function (e.g., increased endothelial function). Lifestyle modifications provide significant benefits to vascular health and erectile function in a population that is increasingly aged and more obese.
Sun, Heather Y; Stauffer, Katie Jo; Nourse, Susan E; Vu, Chau; Selamet Tierney, Elif Seda
2017-06-01
Coronary artery re-implantation during arterial switch operation in patients with D-looped transposition of the great arteries (D-TGA) can alter coronary arterial flow and increase shear stress, leading to local endothelial dysfunction, although prior studies have conflicting results. Endothelial pulse amplitude testing can predict coronary endothelial dysfunction by peripheral arterial testing. This study tested if, compared to healthy controls, patients with D-TGA after arterial switch operation had peripheral endothelial dysfunction. Patient inclusion criteria were (1) D-TGA after neonatal arterial switch operation; (2) age 9-29 years; (3) absence of known cardiovascular risk factors such as hypertension, diabetes, hypercholesterolemia, vascular disease, recurrent vasovagal syncope, and coronary artery disease; and (4) ability to comply with overnight fasting. Exclusion criteria included (1) body mass index ≥85th percentile, (2) use of medications affecting vascular tone, or (3) acute illness. We assessed endothelial function by endothelial pulse amplitude testing and compared the results to our previously published data in healthy controls (n = 57). We tested 20 D-TGA patients (16.4 ± 4.8 years old) who have undergone arterial switch operation at a median age of 5 days (0-61 days). Endothelial pulse amplitude testing indices were similar between patients with D-TGA and controls (1.78 ± 0.61 vs. 1.73 ± 0.54, p = 0.73).In our study population of children and young adults, there was no evidence of peripheral endothelial dysfunction in patients with D-TGA who have undergone arterial switch operation. Our results support the theory that coronary arterial wall thickening and abnormal vasodilation reported in these patients is a localized phenomenon and not reflective of overall atherosclerotic burden.
Chowdhury, Kaustav Dutta; Sen, Gargi; Sarkar, Avik; Biswas, Tuli
2011-07-01
Evidence in the literature suggests that down-regulation of nitric oxide (NO) is associated with the pathophysiological conditions during visceral leishmaniasis (VL). Here we have investigated the mechanism that leads to the down regulation of systemic NO in the infected condition. Moreover, we have determined whether down regulation of NO is associated with increased generation of reactive oxygen species (ROS) during this disease. Therapeutic strategy targeting signaling molecules of these events was evaluated. Plasma protein-nitrotyrosine was examined by ELISA kit. Generation of superoxides and peroxynitrites was investigated by flow cytometry. NO bioavailability in endothelial cells was evaluated using DAF-2DA fluorescence. Ceramide contents were evaluated using FACS analysis, HPTLC and HPLC. L. donovani infected reticulo-endothelial cells regulated the activity of eNOS and NAD(P)H oxidase in the endothelial cells through the generation of intercellular messenger, ceramide. Activation of SMases played an important role in the generation of ceramide in animals during chronic infection. These events led to generation of ROS within endothelial cells. Modulation of redox status of plasma and accumulation of ROS in endothelial cells were critically involved in the regulation of NO bioavailability in plasma of the infected animal. Endothelial dysfunction and decline of NO were resulted from an increased production of superoxide where upregulation of eNOS expression appeared as an ineffective compensatory event. Inhibition of ceramide generation increased NO bioavailability, prevented endothelial dysfunction and concomitant oxidative stress. Decreased NO bioavailability and endothelial dysfunction were the downstream of ceramide signaling cascade. ROS accumulation promoted peroxynitrite generation and reduced NO bioavailability. Inhibition of ceramide generation may be a potential therapeutic option in preventing the co-morbidity associated with VL. 2011 Elsevier B.V. All rights reserved.
Vallejo, Susana; Palacios, Erika; Romacho, Tania; Villalobos, Laura; Peiró, Concepción; Sánchez-Ferrer, Carlos F
2014-12-18
Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1β (IL-1β), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall. In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1β and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1β (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1β and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment. In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of vascular NADPH oxidase and NF-κB, as well as to vascular inflammation. Moreover, endothelial dysfunction, vascular oxidative stress and inflammation were reduced after anakinra treatment. Whether this mechanism can be extrapolated to a chronic situation or whether it may apply to diabetic patients remain to be established. However, it may provide new insights to further investigate the therapeutic use of IL-1 receptor antagonists to obtain vascular benefits in patients with diabetes mellitus and/or atherosclerosis.
Maliutina, N N; Nevzorova, M S
2015-01-01
The article considers mechanisms of development and progression of osteoarthrosis as an occupationally conditioned disease in women of manual work. Women working in physical overstrain conditions are under occupational risk with dysfunction of many body systems. The authors set a hypothesis on association of endothelial dysfunction markers dysbalance and structural remodelling of cartilage matrix as a proof of degenerative changes.
Gohar, Aisha; de Kleijn, Dominique P V; Hoes, Arno W; Rutten, Frans H; Hilfiker-Kleiner, Denise; Ferdinandy, Péter; Sluijter, Joost P G; den Ruijter, Hester M
2018-05-25
Left ventricular diastolic dysfunction, the main feature of heart failure with preserved ejection fraction (HFpEF), is thought to be primarily caused by comorbidities affecting the endothelial function of the coronary microvasculature. Circulating extracellular vesicles, released by the endothelium have been postulated to reflect endothelial damage. Therefore, we reviewed the role of extracellular vesicles, in particularly endothelium microparticles, in these comorbidities, including obesity and hypertension, to identify if they may be potential markers of the endothelial dysfunction underlying left ventricular diastolic dysfunction and HFpEF. Copyright © 2017. Published by Elsevier Inc.
Fluid Mechanical Forces and Endothelial Mitochondria: A Bioengineering Perspective.
Scheitlin, Christopher G; Nair, Devi M; Crestanello, Juan A; Zweier, Jay L; Alevriadou, B Rita
2014-12-01
Endothelial cell dysfunction is the hallmark of every cardiovascular disease/condition, including atherosclerosis and ischemia/reperfusion injury. Fluid shear stress acting on the vascular endothelium is known to regulate cell homeostasis. Altered hemodynamics is thought to play a causative role in endothelial dysfunction. The dysfunction is associated with/preceded by mitochondrial oxidative stress. Studies by our group and others have shown that the form and/or function of the mitochondrial network are affected when endothelial cells are exposed to shear stress in the absence or presence of additional physicochemical stimuli. The present review will summarize the current knowledge on the interconnections among intracellular Ca 2+ - nitric oxide - mitochondrial reactive oxygen species, mitochondrial fusion/fission, autophagy/mitophagy, and cell apoptosis vs. survival. More specifically, it will list the evidence on potential regulation of the above intracellular species and processes by the fluid shear stress acting on the endothelium under either physiological flow conditions or during reperfusion (following a period of ischemia). Understanding how the local hemodynamics affects mitochondrial physiology and the cell redox state may lead to development of novel therapeutic strategies for prevention or treatment of the endothelial dysfunction and, hence, of cardiovascular disease.
Ueda-Consolvo, Tomoko; Hayashi, Atsushi; Ozaki, Mayumi; Nakamura, Tomoko; Yagou, Takaaki; Abe, Shinya
2017-07-01
To assess the correlation between endothelial dysfunction and frequency of antivascular endothelial growth factor (anti-VEGF) treatment for neovascular age-related macular degeneration (nAMD). We examined 64 consecutive patients with nAMD who were evaluated for endothelial function by use of peripheral arterial tonometry (EndoPAT 2000; Itamar Medical, Caesarea, Israel) at Toyama University Hospital from January 2015. We tallied the number of anti-VEGF treatments between January 2014 and December 2015 and determined the correlation between the number of anti-VEGF injections and endothelial function expressed as the reactive hyperemia index (RHI). Multiple regression analysis was also performed to identify the independent predictors of a larger number of injections. The mean number of anti-VEGF injections was 8.2 ± 3.3. The mean lnRHI was 0.47 ± 0.17. The lnRHI correlated with the number of anti-VEGF injections (r = -0.56; P = 0.030). The multiple regression analysis revealed that endothelial function, neovascular subtypes, and treatment regimens were associated with the number of injections. Endothelial dysfunction may affect the efficacy of anti-VEGF therapy. Neovascular subtypes may also predict a larger number of injections.
Nishimatsu, Hiroaki; Suzuki, Etsu; Nomiya, Akira; Niimi, Aya; Suzuki, Motofumi; Fujimura, Tetsuya; Fukuhara, Hiroshi; Homma, Yukio
2013-07-01
Erectile dysfunction (ED) is a major health problem. We have shown that adrenomedullin (AM) restores erectile function in diabetic rats. The aim of this study is to explore a better treatment for ED, we examined whether combination of AM and angiopoietin-1 (Ang-1) was more effective to treat ED than treatment with AM alone or Ang-1 alone. We also compared the effect of the combination therapy with that of treatment with vascular endothelial growth factor-A (VEGF-A). Male Wistar rats were injected with streptozotocin (STZ) to induce diabetes. Adenoviruses expressing AM (AdAM), Ang-1 (AdAng-1), and VEGF-A (AdVEGF-A) were injected into the penis 6 weeks after STZ administration. Erectile function, penile histology, and protein expression were analyzed 4 weeks after the injection of the adenoviruses. Intracavernous pressure and mean arterial pressure were measured to evaluate erectile function. The morphology of the penis was analyzed by Elastica van Gieson stain and immunohistochemistry. The expression of α-smooth muscle actin (SMA), VE-cadherin and type I collagen was assessed by Western blot analysis. Infection with AdAM plus AdAng-1 more effectively restored erectile function than infection with AdAM alone or AdAng-1 alone. This combination therapy restored erectile function to a level similar to that observed in the age-matched Wistar rats. Expression of SMA and VE-cadherin increased more significantly in the AdAM plus AdAng-1-treated group than in the AdAM- or AdAng-1-treated group. Although AdVEGF-A infection restored erectile function significantly, it also caused enlargement of the trabeculae of the cavernous body, aberrant angiogenesis, and overproduction of type I collagen. These results suggested that combination therapy with AM and Ang-1 potently restored erectile function and normal morphology of the cavernous body compared with VEGF-A administration. This combination therapy will be useful to treat ED patients with a severely damaged cavernous body. © 2013 International Society for Sexual Medicine.
Salden, Bouke N; Troost, Freddy J; de Groot, Eric; Stevens, Yala R; Garcés-Rimón, Marta; Possemiers, Sam; Winkens, Bjorn; Masclee, Ad A
2016-12-01
Endothelial dysfunction (ED) is involved in the development of atherosclerosis. Hesperidin, a citrus flavonoid with antioxidant and other biological properties, potentially exerts beneficial effects on endothelial function (EF). We investigated the effect of hesperidin 2S supplementation on EF in overweight individuals. This was a randomized, double-blind, placebo-controlled study in which 68 individuals were randomly assigned to receive hesperidin 2S (450 mg/d) or a placebo for 6 wk. At baseline and after 6 wk of intervention, flow-mediated dilation (FMD), soluble vascular adhesion molecule-1 (sVCAM-1), soluble intracellular adhesion molecule-1 (sICAM-1), soluble P-selectin (sP-selectin), systolic blood pressure (SBP), and diastolic blood pressure (DBP) were assessed. Acute, reversible ED was induced by intake of a high-fat meal (HFM). A second FMD scan was performed 2 h postprandially, and adhesion molecules were assessed 2 and 4 h postprandially. An additional exploratory analysis was performed in subjects with baseline FMD ≥3%. No significant change in fasting or postprandial FMD was observed after 6 wk of hesperidin intake compared with placebo intake. However, there was a trend for a reduction of sVCAM-1, sICAM-1, sP-selectin, SBP, and DBP after 6 wk of hesperidin treatment. In the FMD ≥3% group, hesperidin protected individuals from postprandial ED (P = 0.050) and significantly downregulated sVCAM-1 and sICAM-1 (all P ≤ 0.030). The results reported in the current article were not adjusted for multiplicity. Six weeks of consumption of hesperidin 2S did not improve basal or postprandial FMD in our total study population. There was a tendency toward a reduction of adhesion molecules and a decrease in SBP and DBP. Further exploratory analyses revealed that, in subjects with baseline FMD ≥3%, hesperidin 2S improved ED after an HFM and reduced adhesion molecules. These results indicate the cardiovascular health benefits of hesperidin 2S in overweight and obese individuals with a relatively healthy endothelium. This trial was registered at clinicaltrials.gov as NCT02228291. © 2016 American Society for Nutrition.
Although circulating inflammatory mediators are strongly associated with adverse cardiovascular outcomes triggered by inhaled air pollution, direct cause-effect linkage has not been established. Given that endothelial toxicity often precedes and precipitates cardiac dysfunction, ...
Dimitroulas, Theodoros; Sandoo, Aamer; Kitas, George D.
2012-01-01
The last few decades have witnessed an increased life expectancy of patients suffering with systemic rheumatic diseases, mainly due to improved management, advanced therapies and preventative measures. However, autoimmune disorders are associated with significantly enhanced cardiovascular morbidity and mortality not fully explained by traditional cardiovascular disease (CVD) risk factors. It has been suggested that interactions between high-grade systemic inflammation and the vasculature lead to endothelial dysfunction and atherosclerosis, which may account for the excess risk for CVD events in this population. Diminished nitric oxide synthesis—due to down regulation of endothelial nitric oxide synthase—appears to play a prominent role in the imbalance between vasoactive factors, the consequent impairment of the endothelial hemostasis and the early development of atherosclerosis. Asymmetric dimethylarginine (ADMA) is one of the most potent endogenous inhibitors of the three isoforms of nitric oxide synthase and it is a newly discovered risk factor in the setting of diseases associated with endothelial dysfunction and adverse cardiovascular events. In the context of systemic inflammatory disorders there is increasing evidence that ADMA contributes to the vascular changes and to endothelial cell abnormalities, as several studies have revealed derangement of nitric oxide/ADMA pathway in different disease subsets. In this article we discuss the role of endothelial dysfunction in patients with rheumatic diseases, with a specific focus on the nitric oxide/ADMA system and we provide an overview on the literature pertaining to ADMA as a surrogate marker of subclinical vascular disease. PMID:23202900
Hoel, Hedda; Hove-Skovsgaard, Malene; Hov, Johannes R; Gaardbo, Julie Christine; Holm, Kristian; Kummen, Martin; Rudi, Knut; Nwosu, Felix; Valeur, Jørgen; Gelpi, Marco; Seljeflot, Ingebjørg; Ueland, Per Magne; Gerstoft, Jan; Ullum, Henrik; Aukrust, Pål; Nielsen, Susanne Dam; Trøseid, Marius
2018-04-30
HIV infection and type 2 diabetes are associated with altered gut microbiota, chronic inflammation, and increased cardiovascular risk. We aimed to investigate the combined effect of these diseases on gut microbiota composition and related metabolites, and a potential relation to endothelial dysfunction in individuals with HIV-infection only (n = 23), diabetes only (n = 16) or both conditions (n = 21), as well as controls (n = 24). Fecal microbiota was analyzed by Illumina sequencing of the 16 S rRNA gene. Markers of endothelial dysfunction (asymmetric dimethylarginine [ADMA]), tryptophan catabolism (kynurenine/tryptophan [KT]-ratio), and inflammation (neopterin) were measured by liquid chromatography-tandem mass spectrometry. The combination of HIV and type 2 diabetes was associated with reduced gut microbiota diversity, increased plasma KT-ratio and neopterin. Microbial genes related to tryptophan metabolism correlated with KT-ratio and low alpha diversity, in particular in HIV-infected with T2D. In multivariate analyses, KT-ratio associated with ADMA (β = 4.58 [95% CI 2.53-6.63], p < 0.001), whereas microbiota composition per se was not associated with endothelial dysfunction. Our results indicate that tryptophan catabolism may be related to endothelial dysfunction, with a potentially detrimental interaction between HIV and diabetes. The potential contribution of gut microbiota and the impact for cardiovascular risk should be further explored in prospective studies powered for clinical end points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Bhupesh, E-mail: drbhupeshresearch@gmail.com; Sharma, P.M.
Arsenic toxicity has been reported to damage all the major organs including the brain and vasculature. Dementia including Alzheimer's disease (AD) and vascular dementia (VaD) are posing greater risk to the world population as it is now increasing at a faster rate. We have investigated the role of sodium butyrate, a selective histone deacetylase (HDAC) inhibitor and aminoguanidine, a selective inducible nitric oxide synthase (iNOS) inhibitor in pharmacological interdiction of arsenic toxicity induced vascular endothelial dysfunction and dementia in rats. Arsenic toxicity was done by administering arsenic drinking water to rats. Morris water-maze (MWM) test was used for assessment ofmore » learning and memory. Endothelial function was assessed using student physiograph. Oxidative stress (aortic superoxide anion, serum and brain thiobarbituric acid reactive species, brain glutathione) and nitric oxide levels (serum nitrite/nitrate) were also measured. Arsenic treated rats have shown impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate and brain GSH levels along with increase in serum and brain TBARS. Sodium butyrate as well as aminoguanidine significantly convalesce arsenic induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that arsenic induces endothelial dysfunction and dementia, whereas, sodium butyrate, a HDAC inhibitor as well as aminoguanidine, a selective iNOS inhibitor may be considered as potential agents for the management of arsenic induced endothelial dysfunction and dementia. - Highlights: • As has induced endothelial dysfunction (Edf) and vascular dementia (VaD). • As has increased oxidative stress, AChE activity and decreased serum NO. • Inhibitors of HDAC and iNOS have attenuated As induced Edf and VaD. • Both the inhibitors have attenuated As induced biochemical changes. • Inhibitor of HDAC and iNOS has shown good potential in As induced VaD.« less
Erectile Dysfunction in the Older Adult Male.
Mola, Joanna R
2015-01-01
Erectile dysfunction (ED) in the older adult male is a significant problem affecting more than 75% of men over 70 years of age in the United States. Older men have an increased likelihood of developing ED due to chronic disease, comorbid conditions, and age-related changes. Research has demonstrated that while the prevalence and severity of ED increases with age, sexual desire often remains unchanged. This article discusses the clinical picture of ED, including relevant pathophysiology, clinical presentation, and evaluation and treatment options.
Chen, Zhen; Wen, Liang; Martin, Marcy; Hsu, Chien-Yi; Fang, Longhou; Lin, Feng-Mao; Lin, Ting-Yang; Geary, McKenna J; Geary, Greg G; Zhao, Yongli; Johnson, David A; Chen, Jaw-Wen; Lin, Shing-Jong; Chien, Shu; Huang, Hsien-Da; Miller, Yury I; Huang, Po-Hsun; Shyy, John Y-J
2015-03-03
Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β. Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction. © 2014 American Heart Association, Inc.
Fischer, Tamás
2015-07-12
It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.
2012-11-01
Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a highmore » VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black-Right-Pointing-Pointer Endothelial VEGFR levels are modulated during this response. Black-Right-Pointing-Pointer The cell regulates VEGF-A bioavailability and cell survival. Black-Right-Pointing-Pointer This may partly underlie endothelial dysfunction seen in many pathologies.« less
... Talking to Your Kids About VirginityTalking to Your Kids About Sex Home Diseases and Conditions Erectile Dysfunction (ED) Condition ... Well-Being Mental Health Sex and Birth Control Sex and Sexuality Birth Control ... and Toddlers Kids and Teens Pregnancy and Childbirth Women Men Seniors ...
Lu, Naihao; Sui, Yinhua; Tian, Rong; Peng, Yi-Yuan
2018-05-16
Myeloperoxidase (MPO) from activated neutrophils plays important roles in multiple human inflammatory diseases by catalyzing the formation of powerful oxidant hypochlorous acid (HOCl). As a major flavonoid in the human diet, quercetin has been suggested to act as antioxidant and anti-inflammatory agent in vitro and in vivo. In this study, we showed that quercetin inhibited MPO-mediated HOCl formation (75.0 ± 6.2% for 10 μM quercetin versus 100 ± 5.2% for control group, P < 0.01) and cytotoxicity to endothelial cells in vitro, while this flavonoid was nontoxic to endothelial cell cultures ( P > 0.05, all cases). Moreover, quercetin inhibited HOCl generation by stimulated neutrophils (a rich source of MPO) and protected endothelial cells from neutrophils-induced injury. Furthermore, quercetin could inhibit HOCl-induced endothelial dysfunction such as loss of cell viability, and decrease of nitric oxide formation in endothelial cells ( P < 0.05, all cases). Consistent with these in vitro data, quercetin attenuated lipopolysaccharide-induced endothelial dysfunction and increase of MPO activity in mouse aortas, while this flavonoid could protect against HOCl-mediated endothelial dysfunction in isolated aortas ( P < 0.05). Therefore, it was proposed that quercetin attenuated endothelial injury in inflammatory vasculature via inhibition of vascular-bound MPO-mediated HOCl formation or scavenging of HOCl. These data indicate that quercetin is a nontoxic inhibitor of MPO activity and MPO/neutrophils-induced cytotoxicity in endothelial cells and may be useful for targeting MPO-dependent vascular disease and inflammation.
Zou, Zi-Jun; Liang, Jia-Yu; Liu, Zhi-Hong; Gao, Rui; Lu, Yi-Ping
2018-02-01
Low-intensity extracorporeal shock wave therapy (LI-ESWT) is a novel treatment for erectile dysfunction (ED). Its ability to improve erectile function has been shown in patients with vasculogenic ED by many randomized-controlled trials against sham procedures. However, the role of LI-ESWT in ED caused by radical prostatectomy (RP) is still questionable because this type of ED was excluded from nearly all clinical studies; it has been investigated in only a few small single-arm trials. This review summarizes preclinical studies on mechanisms of action of LI-ESWT for ED and neurological diseases to explore the potential of this treatment for nerve-impaired ED after RP.
... dysfunction. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, eds. Campbell-Walsh Urology. 11th ed. Philadelphia, ... children. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, eds. Campbell-Walsh Urology. 11th ed. Philadelphia, ...
HSP27 phosphorylation protects against endothelial barrier dysfunction under burn serum challenge.
Sun, Huan-bo; Ren, Xi; Liu, Jie; Guo, Xiao-wei; Jiang, Xu-pin; Zhang, Dong-xia; Huang, Yue-sheng; Zhang, Jia-ping
2015-07-31
F-actin rearrangement is an early event in burn-induced endothelial barrier dysfunction. HSP27, a target of p38 MAPK/MK2 pathway, plays an important role in actin dynamics through phosphorylation. The question of whether HSP27 participates in burn-related endothelial barrier dysfunction has not been identified yet. Here, we showed that burn serum induced a temporal appearance of central F-actin stress fibers followed by a formation of irregular dense peripheral F-actin in pulmonary endothelial monolayer, concomitant with a transient increase of HSP27 phosphorylation that conflicted with the persistent activation of p38 MAPK/MK2 unexpectedly. The appearance of F-actin stress fibers and transient increase of HSP27 phosphorylation occurred prior to the burn serum-induced endothelial hyperpermeability. Overexpressing phospho-mimicking HSP27 (HSP27(Asp)) reversed the burn serum-induced peripheral F-actin rearrangement with the augmentation of central F-actin stress fibers, and more importantly, attenuated the burn serum-induced endothelial hyperpermeability; such effects were not observed by HSP27(Ala), a non-phosphorylated mutant of HSP27. HSP27(Asp) overexpression also rendered the monolayer more resistant to barrier disruption caused by Cytochalasin D, a chemical reagent that depolymerizes F-actin specifically. Further study showed that phosphatases and sumoylation-inhibited MK2 activity contributed to the blunting of HSP27 phosphorylation during the burn serum-induced endothelial hyperpermeability. Our study identifies HSP27 phosphorylation as a protective response against burn serum-induced endothelial barrier dysfunction, and suggests that targeting HSP27 wound be a promising therapeutic strategy in ameliorating burn-induced lung edema and shock development. Copyright © 2015 Elsevier Inc. All rights reserved.
Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases
Surapisitchat, James
2014-01-01
The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641
Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.
Surapisitchat, James; Beavo, Joseph A
2011-01-01
The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.
Kövamees, Oskar; Shemyakin, Alexey; Checa, Antonio; Wheelock, Craig E; Lundberg, Jon O; Östenson, Claes-Göran; Pernow, John
2016-11-01
The development of microvascular complications in diabetes is a complex process in which endothelial dysfunction is important. Emerging evidence suggests that arginase is a key mediator of endothelial dysfunction in type 2 diabetes mellitus by reciprocally regulating nitric oxide bioavailability. The aim of this prospective intervention study was to test the hypothesis that arginase activity is increased and that arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Microvascular endothelium-dependent and -independent dilatation was determined in patients with type 2 diabetes (n = 12) and healthy age-matched control subjects (n = 12) with laser Doppler flowmetry during iontophoretic application of acetylcholine and sodium nitroprusside, respectively, before and after administration of the arginase inhibitor N ω -hydroxy-nor-L-arginine (120 min). Plasma ratios of amino acids involved in arginase and nitric oxide synthase activities were determined. The laser Doppler flowmetry data were the primary outcome variable. Microvascular endothelium-dependent dilatation was impaired in subjects with type 2 diabetes (P < .05). After administration of N ω -hydroxy-nor-L-arginine, microvascular endothelial function improved significantly in patients with type 2 diabetes to the level observed in healthy controls. Endothelium-independent vasodilatation did not change significantly. Subjects with type 2 diabetes had higher levels of ornithine and higher ratios of ornithine/citrulline and ornithine/arginine (P < .05), suggesting increased arginase activity. Arginase inhibition improves microvascular endothelial function in patients with type 2 diabetes and microvascular dysfunction. Arginase inhibition may represent a novel therapeutic strategy to improve microvascular endothelial function in patients with type 2 diabetes.
Vascular endothelium summary statement II: Cardiovascular disease prevention and control.
Mensah, George A; Ryan, Una S; Hooper, W Craig; Engelgau, Michael M; Callow, Allan D; Kapuku, Gaston K; Mantovani, Alberto
2007-05-01
The prevention and control of cardiovascular disease (CVD), principally ischemic heart disease and stroke, are a major clinical and public health challenge. Worldwide, CVD accounts for substantial morbidity and mortality. The major modifiable CVD risk factors are known and all of them cause endothelial activation and dysfunction. Preventing and controlling the established risk factors are associated with preserved endothelial function and reduced risk of CVD. Research advances that improve our understanding of strategies to preserve endothelial function or make the endothelial cells resilient to environmental insults may help improve our preventive interventions. This summary statement addresses the current state of the science with respect to endothelial dysfunction and CVD pathogenesis, diagnostic evaluation, and suggested strategies for public health practice and research.
Tsuneyoshi, Tadamitsu; Kanamori, Yuta; Matsutomo, Toshiaki; Morihara, Naoaki
2015-09-25
Several clinical studies have shown that the intake of aged garlic extract improves endothelial dysfunction. Lignan compounds, (+)-(2S,3R)-dehydrodiconiferyl alcohol (DDC) and (-)-(2R,3S)-dihydrodehydrodiconiferyl alcohol (DDDC), have been isolated as antioxidants in aged garlic extract. There is evidence showing the importance of oxidative stress in endothelial dysfunction. In the present study, we examined whether DDC and DDDC enhance endothelial cell function in vitro. Cell adhesion assay was performed using THP-1 monocyte and human umbilical vein endothelial cells (HUVECs) which were activated by lipopolysaccharide (LPS) or advanced glycation end products (AGEs)-BSA. Cellular ELISA method was used for the evaluation of vascular cell adhesion molecule 1 (VCAM-1) expression on HUVECs. DDC and DDDC suppressed the adhesion of THP-1 to HUVECs which was activated by LPS or AGEs-BSA. DDC and DDDC also inhibited VCAM-1 expression induced by LPS or AGEs-BSA, but DDDC was less effective than DDC. In addition, the inhibitory effect of DDC on VCAM-1 expression involved suppressing JNK/c-Jun pathway rather than NF-κB pathway. DDC has an inhibitory effect on VCAM-1 expression via JNK pathway in endothelial cells and therefore may serve as a novel pharmacological agent to improve endothelial dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.
Endothelial dysfunction and negative emotions in adolescent girls.
Pajer, Kathleen; Hoffman, Robert; Gardner, William; Chang, Chien-Ni; Boley, David; Wang, Wei
2016-05-01
Endothelial dysfunction predicts adult cardiovascular disorder and may be associated with negative emotions in adolescents. This study was conducted to determine if hopelessness, hostility, and depressive, anxiety, or conduct disorders were associated with compromised endothelial function and whether those associations were mediated by health risk behaviors. Endothelial function, assessed through brachial artery reactive hyperemia, was measured in a psychopathology enriched sample of 60 15-18-year-old girls. The correlations between hopelessness, hostility, and depressive, anxiety, or conduct disorders and the percent change in forearm vascular resistance (PCFVR) were measured. Possible mediation effects of health risk behaviors were tested. Hopelessness was negatively associated with PCFVR, controlling for race and body mass index. Conduct disorder without any anxiety disorder was associated with better endothelial function. The other negative emotions were not associated with PCFVR. Risky health behaviors were associated with conduct disorder and hopelessness, but not with PCFVR, so there was no evidence of mediation. The main finding was that hopelessness in adolescent girls was associated with endothelial dysfunction. This may indicate that when present, hopelessness places a girl at risk for later cardiovascular disease, whether she has a psychiatric disorder or not. Possible mechanisms for this finding are examined and the surprising finding that conduct disorder is associated with better endothelial function is also discussed. Suggestions for future research are presented.
Recent advances in the treatment of erectile dysfunction.
Mobley, David F; Khera, Mohit; Baum, Neil
2017-11-01
Erectile dysfunction (ED) is one of the most common conditions affecting middle-aged and older men. Nearly every primary care physician, internist and geriatrician will be called upon to manage this condition or to make referrals to urologists, endocrinologists and cardiologists who will assist in the treatment of ED. This article will briefly discuss the diagnosis and management of ED. In addition, emerging concepts in ED management will be discussed, such as the use of testosterone to treat ED, the role of the endothelium in men with ED and treating the partner of the man with ED. Finally, future potential therapies for ED will be discussed. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Tsuruta, Yuki; Kikuchi, Kan; Tsuruta, Yukio; Sasaki, Yuko; Moriyama, Takahito; Itabashi, Mitsuyo; Takei, Takashi; Uchida, Keiko; Akiba, Takashi; Tsuchiya, Ken; Nitta, Kosaku
2015-10-01
Endothelial dysfunction is often found in both hyperuricemia and hemodialysis patients. Recent studies have shown that treating hyperuricemia with allopurinol improves endothelial dysfunction. This study is performed to assess the effect of febuxostat on endothelial dysfunction in hemodialysis patients with hyperuricemia. We randomly assigned 53 hemodialysis patients with hyperuricemia to a febuxostat (10 mg daily) group and a control group and measured flow-mediated dilation, serum uric acid (UA) levels, systolic and diastolic blood pressure, malondialdehyde-modified low-density lipoprotein (MDA-LDL), and highly sensitive C-reactive protein (hsCRP) at baseline and at the end of a 4-week study period. Flow-mediated dilation increased from 5.3% ± 2.4% to 8.9% ± 3.6% in the febuxostat group but did not change significantly in the control group. Treatment with febuxostat resulted in a significant decrease in serum UA level and a significant decrease in MDA-LDL compared with baseline, but no significant difference was observed in hsCRP level or blood pressure. No significant differences were observed in the control group. Febuxostat improved endothelial dysfunction and reduced serum UA levels and oxidative stress in hemodialysis patients with hyperuricemia. © 2015 International Society for Hemodialysis.
Allopurinol improves endothelial dysfunction in chronic heart failure.
Farquharson, Colin A J; Butler, Robert; Hill, Alexander; Belch, Jill J F; Struthers, Allan D
2002-07-09
Increased oxidative stress in chronic heart failure is thought to contribute to endothelial dysfunction. Xanthine oxidase produces oxidative stress and therefore we examined whether allopurinol improved endothelial dysfunction in chronic heart failure. We performed a randomized, placebo-controlled, double-blind crossover study on 11 patients with New York Heart Association class II-III chronic heart failure, comparing 300 mg allopurinol daily (1 month) versus placebo. Endothelial function was assessed by standard forearm venous occlusion plethysmography with acetylcholine, nitroprusside, and verapamil. Plasma malondialdehyde levels were also compared to assess significant changes in oxidative stress. Allopurinol significantly increased the forearm blood flow response to acetylcholine (percentage change in forearm blood flow [mean+/-SEM]: 181+/-19% versus 120+/-22% allopurinol versus placebo; P=0.003). There were no significant differences in the forearm blood flow changes between the placebo and allopurinol treatment arms with regard to sodium nitroprusside or verapamil. Plasma malondialdehyde was significantly reduced with allopurinol treatment (346+/-128 nmol/L versus 461+/-101 nmol/L, allopurinol versus placebo; P=0.03), consistent with reduced oxidative stress with allopurinol therapy. We have shown that allopurinol improves endothelial dysfunction in chronic heart failure. This raises the distinct possibility that allopurinol might reduce cardiovascular events and even improve exercise capacity in chronic heart failure.
Castellano, Immacolata; Di Tomo, Pamela; Di Pietro, Natalia; Mandatori, Domitilla; Pipino, Caterina; Formoso, Gloria; Napolitano, Alessandra; Palumbo, Anna; Pandolfi, Assunta
2018-01-01
Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor- α -stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.
Mikołajczyk, T P; Osmenda, G; Batko, B; Wilk, G; Krezelok, M; Skiba, D; Sliwa, T; Pryjma, J R; Guzik, T J
2016-01-01
Systemic lupus erythematosus (SLE) is characterized by increased cardiovascular morbidity and mortality. SLE patients have increased prevalence of subclinical atherosclerosis, although the mechanisms of this observation remain unclear. Considering the emerging role of monocytes in atherosclerosis, we aimed to investigate the relationship between subclinical atherosclerosis, endothelial dysfunction and the phenotype of peripheral blood monocytes in SLE patients. We characterized the phenotype of monocyte subsets defined by the expression of CD14 and CD16 in 42 patients with SLE and 42 non-SLE controls. Using ultrasonography, intima-media thickness (IMT) of carotid arteries and brachial artery flow-mediated dilation (FMD) as well as nitroglycerin-induced dilation (NMD) were assessed. Patients with SLE had significantly, but only modestly, increased IMT when compared with non-SLE controls (median (25th/75th percentile) 0.65 (0.60/0.71) mm vs 0.60 (0.56/0.68) mm; p < 0.05). Importantly, in spite of early atherosclerotic complications in the studied SLE group, marked endothelial dysfunction was observed. CD14dimCD16+proinflammatory cell subpopulation was positively correlated with IMT in SLE patients. This phenomenon was not observed in control individuals. Interestingly, endothelial dysfunction assessed by FMD was not correlated with any of the studied monocyte subsets. Our observations suggest that CD14dimCD16+monocytes are associated with subclinical atherosclerosis in SLE, although the mechanism appears to be independent of endothelial dysfunction. © The Author(s) 2015.
Duffy, S J; Keaney , J F; Holbrook, M; Gokce, N; Swerdloff, P L; Frei, B; Vita, J A
2001-07-10
Epidemiological studies suggest that tea consumption decreases cardiovascular risk, but the mechanisms of benefit remain undefined. Endothelial dysfunction has been associated with coronary artery disease and increased oxidative stress. Some antioxidants have been shown to reverse endothelial dysfunction, and tea contains antioxidant flavonoids. Methods and Results-- To test the hypothesis that tea consumption will reverse endothelial dysfunction, we randomized 66 patients with proven coronary artery disease to consume black tea and water in a crossover design. Short-term effects were examined 2 hours after consumption of 450 mL tea or water. Long-term effects were examined after consumption of 900 mL tea or water daily for 4 weeks. Vasomotor function of the brachial artery was examined at baseline and after each intervention with vascular ultrasound. Fifty patients completed the protocol and had technically suitable ultrasound measurements. Both short- and long-term tea consumption improved endothelium- dependent flow-mediated dilation of the brachial artery, whereas consumption of water had no effect (P<0.001 by repeated-measures ANOVA). Tea consumption had no effect on endothelium-independent nitroglycerin-induced dilation. An equivalent oral dose of caffeine (200 mg) had no short-term effect on flow-mediated dilation. Plasma flavonoids increased after short- and long-term tea consumption. Short- and long-term black tea consumption reverses endothelial vasomotor dysfunction in patients with coronary artery disease. This finding may partly explain the association between tea intake and decreased cardiovascular disease events.
Cameron, Ann; Rosen, Raymond C; Swindle, Ralph W
2005-01-01
Sexual and relationship characteristics of men in the general population, particularly those with erectile dysfunction (ED), are not well established. This Internet-based survey (N = 700) examined demographic, sexual, and relationship characteristics of two groups of men aged 40-70: those with no ED (n = 589) and those with probable ED (n = 111). Compared to men without ED, men in the ED sample were significantly older, had more medical conditions, and had significantly worse sexual, psychological, and relationship function. Sexual function and relationship and psychological characteristics were significant predictors of overall sexual satisfaction and relationship satisfaction.
Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L
2015-09-15
In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.
Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis
2017-04-01
In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.
Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie
2016-11-01
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.
[The Role of GRK2 and Its Potential as a New Therapeutic Target in Diabetic Vascular Complications].
Taguchi, Kumiko
2015-01-01
A decrease in nitric oxide (NO) production may induce pathological conditions associated with endothelial dysfunction and diabetes. Although a decrease in NO production caused by impaired Akt/endothelial nitric oxide synthesis (eNOS) signaling has been demonstrated at the aorta in the presence of diabetic vascular complications, little is known regarding the details of the mechanism. We identified G-protein-coupled receptor kinase 2 (GRK2) as a critical factor in diabetic endothelial dysfunction. GRK2 plays a role in many physiological functions including regulation of G-protein-coupled receptors (GPCRs). We found that the vasculature affected by type 2 diabetes expresses high levels of GRK2, which may induce endothelial dysfunction caused by impaired Akt/eNOS signaling. GRK2 activation also induces changes in the subcellular localization of GRK2 and β-arrestin 2, a downstream protein, from the cytosol to membrane. In mouse aorta GRK2 may be, on translocation, a key negative regulator and an important regulator of β-arrestin 2/Akt/eNOS signaling, which has been implicated in diabetic endothelial dysfunction. Furthermore, in the aortic membrane of type 2 diabetic model mice under insulin stimulation, the impaired Akt/eNOS signaling was improved by a selective GRK2 inhibitor. These results suggest that in diabetes the GRK2 inhibitor ameliorates vascular endothelial dysfunction via Akt/eNOS signaling by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation to the membrane under GPCR or non-GPCR stimulation, thereby contributing to blood pressure- and blood glucose-lowering effects. We propose that the GRK2 inhibitor may be a promising therapeutic target for cardiovascular complications in type 2 diabetes.
Vira, Divya; Fernandes, Merle; Mittal, Ruchi
2016-07-01
Xeroderma pigmentosum (XP) mainly affects the ocular surface; however, endothelial damage may also occur. We would like to report changes in the endothelial-Descemet layer and review the literature on similar findings in patients with XP, including the role of Descemet stripping automated endothelial keratoplasty (DSAEK) in the management of a 21-year-old man who presented with nonresolving corneal edema in the right eye after excision biopsy for conjunctival intraepithelial neoplasia. His best-corrected visual acuity (BCVA) was 20/200 in the right eye and 20/20 in the left eye. On general examination, there was patchy hyperpigmentation of the exposed areas of skin suggestive of XP. On examination of the right eye, there was stromal edema involving the exposed half of cornea. The left eye appeared normal. Pachymetry readings were 860 and 600 μm in the right and left eye, respectively. Descemet stripping automated endothelial keratoplasty was performed for endothelial dysfunction and the stripped endothelium, and Descemet membrane (DM) was sent for histopathologic evaluation. Postoperatively, the donor lenticule was well apposed and the overlying stromal edema resolved. The patient achieved a BCVA of 20/30 in the right eye without progression of corneal scarring at 1-year follow-up. In the meanwhile, however, the left eye developed corneal edema. Histopathology revealed gross attenuation of endothelial cells with uniform thickness of the DM. Corneal endothelial dysfunction in XP is amenable to treatment with DSAEK.
Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng
2013-01-01
To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment. PMID:23698784
Liu, Jing; Zhou, Feng; Li, Guang-Yong; Wang, Lin; Li, Hui-Xi; Bai, Guang-Yi; Guan, Rui-Li; Xu, Yong-De; Gao, Ze-Zhu; Tian, Wen-Jie; Xin, Zhong-Cheng
2013-05-21
To investigate the therapeutic effect of different doses of low energy shock wave therapy (LESWT) on the erectile dysfunction (ED) in streptozotocin (STZ) induced diabetic rats. SD rats (n = 75) were randomly divided into 5 groups (normal control, diabetic control, 3 different dose LESWT treated diabetic groups). Diabetic rats were induced by intra-peritoneal injection of STZ (60 mg/kg) and rats with fasting blood glucose ≥ 300 mg/dL were selected as diabetic models. Twelve weeks later, different doses of LESWT (100, 200 and 300 shocks each time) treatment on penises were used to treat ED (7.33 MPa, 2 shocks/s) three times a week for two weeks. The erectile function was evaluated by intracavernous pressure (ICP) after 1 week washout period. Then the penises were harvested for histological study. The results showed LESWT could significantly improve the erectile function of diabetic rats, increase smooth muscle and endothelial contents, up-regulate the expression of α-SMA, vWF, nNOS and VEGF, and down- regulate the expression of RAGE in corpus cavernosum. The therapeutic effect might relate to treatment dose positively, and the maximal therapeutic effect was noted in the LESWT300 group. Consequently, 300 shocks each time might be the ideal LESWT dose for diabetic ED treatment.
Kataoka, Tomoya; Hotta, Yuji; Maeda, Yasuhiro; Kimura, Kazunori
2017-12-01
Testosterone is believed to mediate the penile erectile response by producing adequate nitric oxide; therefore, testosterone deficiency results in erectile dysfunction through decreased nitric oxide bioavailability. However, the mechanisms underlying endothelial dysfunction in testosterone deficiency remain unclear. To investigate the mechanism of endothelial dysfunction in a rat model of testosterone deficiency. Rats were distributed into 3 groups: castrated (Cast), castrated and supplemented with testosterone (Cast + T), and sham (Sham). In the Cast + T group, castrated rats were treated daily with subcutaneous testosterone (3 mg/kg daily) for 4 weeks; Sham and Cast rats received only the vehicle. Erectile function using intracavernosal pressure and mean arterial pressure measurements after electrical stimulation of the cavernous nerve, endothelial function using isometric tension, asymmetric dimethylarginine (ADMA) levels using ultra-performance liquid chromatography and tandem mass spectrometry, and inflammatory biomarker expression were performed 4 weeks after the operation. In the Cast group, the ratio of intracavernosal pressure to mean arterial pressure significantly decreased, acetylcholine-induced relaxation was lower, and serum ADMA, oxidative stress, and inflammation biomarker levels were significantly increased (P < .01). Testosterone injection significantly improved each of these parameters (P < .01). The present results provide scientific evidence of the effect of testosterone deficiency on erectile function and the effect of testosterone replacement therapy. This study provides evidence of the influence of testosterone deficiency on endothelial function by investigating ADMA and oxidative stress. A major limitation of this study is the lack of a direct link of increased ADMA by oxidative stress to inflammation. Testosterone deficiency increased not only ADMA levels but also oxidative stress and inflammation in castrated rats, which can cause damage to the corpus cavernosum, resulting in erectile dysfunction. Kataoka T, Hotta Y, Maeda Y, Kimura K. Testosterone Deficiency Causes Endothelial Dysfunction via Elevation of Asymmetric Dimethylarginine and Oxidative Stress in Castrated Rats. J Sex Med 2017;14:1540-1548. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
[Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].
Fischer, Tamás
2015-11-15
It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors for the disease and are older than 50 years; (2) who have been diagnosed with unilateral age-related macular degeneration in order to prevent damage of the contralateral eye; (3) who have bilateral age-related macular degeneration in order to avert deterioration and in the hope of a potential improvement. However, randomised prospective clinical trials are still needed to elucidate the potential role of these drug treatments in the prevention and treatment of age-related macular degeneration.
Cho, Jin-Gun; Witting, Paul K.; Verma, Manisha; Wu, Ben J.; Shanu, Anu; Kairaitis, Kristina; Amis, Terence C.; Wheatley, John R.
2011-01-01
Study Objectives: We have previously identified heavy snoring as an independent risk factor for carotid atherosclerosis. In order to explore the hypothesis that snoring-associated vibration of the carotid artery induces endothelial dysfunction (an established atherogenic precursor), we utilized an animal model to examine direct effects of peri-carotid tissue vibration on carotid artery endothelial function and structure. Design: In supine anesthetized, ventilated rabbits, the right carotid artery (RCA) was directly exposed to vibrations for 6 h (peak frequency 60 Hz, energy matched to that of induced snoring in rabbits). Similarly instrumented unvibrated rabbits served as controls. Features of OSA such as hypoxemia, large intra-pleural swings and blood pressure volatility were prevented. Carotid endothelial function was then examined: (1) biochemically by measurement of tissue cyclic guanosine monophosphate (cGMP) to acetylcholine (ACh) and sodium nitroprusside (SNP); and (2) functionally by monitoring vessel relaxation with acetylcholine in a myobath. Measurement and Results: Vessel cGMP after stimulation with ACh was reduced in vibrated RCA compared with unvibrated (control) arteries in a vibration energy dose-dependent manner. Vibrated RCA also showed decreased vasorelaxation to ACh compared with control arteries. Notably, after addition of SNP (nitric oxide donor), cGMP levels did not differ between vibrated and control arteries, thereby isolating vibration-induced dysfunction to the endothelium alone. This dysfunction occurred in the presence of a morphologically intact endothelium without increased apoptosis. Conclusions: Carotid arteries subjected to 6 h of continuous peri-carotid tissue vibration displayed endothelial dysfunction, suggesting a direct plausible mechanism linking heavy snoring to the development of carotid atherosclerosis. Citation: Cho JG; Witting PK; Verma M; Wu BJ; Shanu A; Kairaitis K; Amis TC; Wheatley JR. Tissue vibration induces carotid artery endothelial dysfunction: a mechanism linking snoring and carotid atherosclerosis?. SLEEP 2011;34(6):751-757. PMID:21629363
van Bussel, B C T; Henry, R M A; Schalkwijk, C G; Dekker, J M; Nijpels, G; Feskens, E J M; Stehouwer, C D A
2018-06-01
Endothelial dysfunction and low-grade inflammation are key phenomena in the pathobiology of cardiovascular disease (CVD). Their dietary modification might explain the observed reduction in CVD that has been associated with a healthy diet rich in fruit, vegetables and fish, low in dairy products and with moderate alcohol and red wine consumption. We investigated the associations between the above food groups and endothelial dysfunction and low-grade inflammation in a population-based cohort of Dutch elderly individuals. Diet was measured by food frequency questionnaire (n = 801; women = 399; age 68.5 ± 7.2 years). Endothelial dysfunction was determined (1) by combining von Willebrand factor, and soluble intercellular adhesion molecule 1 (sICAM-1), vascular cell adhesion molecule 1, endothelial selectin and thrombomodulin, using Z-scores, into a biomarker score and (2) by flow-mediated vasodilation (FMD), and low-grade inflammation by combining C-reactive protein, serum amyloid A, interleukin 6, interleukin 8, tumour necrosis factor α and sICAM-1 into a biomarker score, with smaller FMD and higher scores representing more dysfunction and inflammation, respectively. We used linear regression analyses to adjust associations for sex, age, energy, glucose metabolism, body mass index, smoking, prior CVD, educational level, physical activity and each of the other food groups. Moderate [β (95% CI) -0.13 (-0.33; 0.07)] and high [-0.22 (-0.45; -0.003)] alcohol consumption, and red wine [-0.16 (-0.30; -0.01)] consumption, but none of the other food groups, were associated with a lower endothelial dysfunction biomarker score and a greater FMD. The associations for FMD were, however, not statistically significant. Only red wine consumption was associated with a lower low-grade inflammation biomarker score [-0.18 (-0.33; -0.04)]. Alcohol and red wine consumption may favourably influence processes involved in atherothrombosis.
Protective effects of dark chocolate on endothelial function and diabetes.
Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio
2013-11-01
Relationship between cocoa consumption and cardiovascular disease, particularly focusing on clinical implications resulting from the beneficial effects of cocoa consumption on endothelial function and insulin resistance. This could be of clinical relevance and may suggest the mechanistic explanation for the reduced risk of cardiovascular events reported in the different studies after cocoa intake. Increasing evidence supports a protective effect of cocoa consumption against cardiovascular disease. Cocoa and flavonoids from cocoa have been described to improve endothelial function and insulin resistance. A proposed mechanism could be considered in the improvement of the endothelium-derived vasodilator nitric oxide by enhancing nitric oxide synthesis or by decreasing nitric oxide breakdown. The endothelium plays a pivotal role in the arterial homeostasis, and insulin resistance is the most important pathophysiological feature in various prediabetic and diabetic states. Reduced nitric oxide bioavailability with endothelial dysfunction is considered the earliest step in the pathogenesis of atherosclerosis. Further, insulin resistance could account, at least in part, for the endothelial dysfunction. Endothelial dysfunction has been considered an important and independent predictor of future development of cardiovascular risk and events. Cocoa and flavonoids from cocoa might positively modulate these mechanisms with a putative role in cardiovascular protection.
Trejo-Moreno, Celeste; Castro-Martínez, Gabriela; Méndez-Martínez, Marisol; Jiménez-Ferrer, Jesús Enrique; Pedraza-Chaverri, José; Arrellín, Gerardo; Zamilpa, Alejandro; Medina-Campos, Omar Noel; Lombardo-Earl, Galia; Barrita-Cruz, Gerardo Joel; Hernández, Beatriz; Ramírez, Christian Carlos; Santana, María Angélica; Fragoso, Gladis; Rosas, Gabriela
2018-06-28
A recent ethnomedical survey on medicinal plants grown in Mexico revealed that Sechium edule (Jacq.) Sw. (Cucurbitaceae) is one of the most valued plant species to treat cardiovascular diseases, including hypertension. Fruits, young leaves, buds, stems, and tuberous roots of the plant are edible. Considering that endothelial dysfunction induced by Angiotensin II plays an important role in the pathogenesis of hypertension and is accompanied by a prooxidative condition, which in turn induces an inflammatory state, vascular remodeling, and tissue damage, and that S. edule has been reported to possess antioxidant, anti-inflammatory and antihypertensive activity, its capability to control endothelial dysfunction was also assessed. To assess in vivo the anti-endothelial dysfunction activity of the acetone fraction (rSe-ACE) of the hydroalcoholic extract from S. edule roots. Endothelial dysfunction was induced in female C57BL/6 J mice by a daily intraperitoneal injection of angiotensin II for 10 weeks. Either rSe-ACE or losartan (as a control) were co-administered with angiotensin II for the same period. Blood pressure was measured at weeks 0, 5, and 10. Kidney extracts were prepared to determine IL1β, IL4, IL6, IL10, IL17, IFNγ, TNFα, and TGFβ levels by ELISA, along with the prooxidative status as assessed by the activity of antioxidant enzymes. The expression of ICAM-1 was evaluated by immunohistochemistry in kidney histological sections. Kidney and hepatic damage, as well as vascular tissue remodeling, were studied. The rSe-ACE fraction administered at a dose of 10 mg/kg was able to control hypertension, as well as the prooxidative and proinflammatory status in kidney as efficiently as losartan, returning mice to normotensive levels. Additionally, the fraction was more efficient than losartan to prevent liver and kidney damage. Phytochemical characterization identified cinnamic acid as a major compound, and linoleic, palmitic, and myristic acids as the most abundant non-polar components in the mixture, previously reported to aid in the control of hypertension, inflammation, and oxidative stress, three important components of endothelial dysfunction. this study demonstrated that rSe-ACE has anti-endothelial dysfunction activity in an experimental model and highlights the role of cinnamic acid and fatty acids in the observed effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Prior exercise and standing as strategies to circumvent sitting-induced leg endothelial dysfunction.
Morishima, Takuma; Restaino, Robert M; Walsh, Lauren K; Kanaley, Jill A; Padilla, Jaume
2017-06-01
We have previously shown that local heating or leg fidgeting can prevent prolonged sitting-induced leg endothelial dysfunction. However, whether physical activity prevents subsequent sitting-induced leg endothelial dysfunction remains unknown. Herein, we tested the hypothesis that sitting-induced leg endothelial dysfunction would be prevented by prior exercise. We also examined if, in the absence of exercise, standing is an effective alternative strategy to sitting for conserving leg endothelial function. Fifteen young healthy subjects completed three randomized experimental trials: (1) sitting without prior exercise; (2) sitting with prior exercise; and (3) standing without prior exercise. Following baseline popliteal artery flow-mediated dilation (FMD) measurements, subjects maintained a supine position for 45 min in the sitting and standing trials, without prior exercise, or performed 45 min of leg cycling before sitting (i.e. sitting with prior exercise trial). Thereafter, subjects were positioned into a seated or standing position, according to the trial, for 3 h. Popliteal artery FMD measures were then repeated. Three hours of sitting without prior exercise caused a significant impairment in popliteal artery FMD (baseline: 3.8±0.5%, post-sitting: 1.5±0.5%, P <0.05), which was prevented when sitting was preceded by a bout of cycling exercise (baseline: 3.8±0.5%, post-sitting: 3.6±0.7%, P >0.05). Three hours of standing did not significantly alter popliteal artery FMD (baseline: 4.1±0.4%, post-standing: 4.3±0.4%, P >0.05). In conclusion, prolonged sitting-induced leg endothelial dysfunction can be prevented by prior aerobic exercise. In addition, in the absence of exercise, standing represents an effective substitute to sitting for preserving leg conduit artery endothelial function. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Capettini, LSA; Cortes, SF; Silva, JF; Alvarez-Leite, JI; Lemos, VS
2011-01-01
BACKGROUND AND PURPOSE Reduced NO availability has been described as a key mechanism responsible for endothelial dysfunction in atherosclerosis. We previously reported that neuronal NOS (nNOS)-derived H2O2 is an important endothelium-derived relaxant factor in the mouse aorta. The role of H2O2 and nNOS in endothelial dysfunction in atherosclerosis remains undetermined. We hypothesized that a decrease in nNOS-derived H2O2 contributes to the impaired vasodilatation in apolipoprotein E-deficient mice (ApoE−/−). EXPERIMENTAL APPROACH Changes in isometric tension were recorded on a myograph; simultaneously, NO and H2O2 were measured using carbon microsensors. Antisense oligodeoxynucleotides were used to knockdown eNOS and nNOS in vivo. Western blot and confocal microscopy were used to analyse the expression and localization of NOS isoforms. KEY RESULTS Aortas from ApoE−/− mice showed impaired vasodilatation paralleled by decreased NO and H2O2 production. Inhibition of nNOS with L-ArgNO2-L-Dbu, knockdown of nNOS and catalase, which decomposes H2O2 into oxygen and water, decreased ACh-induced relaxation by half, produced a small diminution of NO production and abolished H2O2 in wild-type animals, but had no effect in ApoE−/− mice. Confocal microscopy showed increased nNOS immunostaining in endothelial cells of ApoE−/− mice. However, ACh stimulation of vessels resulted in less phosphorylation on Ser852 in ApoE−/− mice. CONCLUSIONS AND IMPLICATIONS Our data show that endothelial nNOS-derived H2O2 production is impaired and contributes to endothelial dysfunction in ApoE−/− aorta. The present study provides a new mechanism for endothelial dysfunction in atherosclerosis and may represent a novel target to elaborate the therapeutic strategy for vascular atherosclerosis. PMID:21615722
Shirakura, Takashi; Nomura, Johji; Matsui, Chieko; Kobayashi, Tsunefumi; Tamura, Mizuho; Masuzaki, Hiroaki
2016-08-01
Xanthine oxidase (XO) is an enzyme responsible for the production of uric acid. XO produces considerable amount of oxidative stress throughout the body. To date, however, its pathophysiologic role in hypertension and endothelial dysfunction still remains controversial. To explore the possible involvement of XO-derived oxidative stress in the pathophysiology of vascular dysfunction, by use of a selective XO inhibitor, febuxostat, we investigated the impact of pharmacological inhibition of XO on hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats (SHRs). Sixteen-week-old SHR and normotensive Wistar-Kyoto (WKY) rats were treated with tap water (control) or water containing febuxostat (3 mg/kg/day) for 6 weeks. Systolic blood pressure (SBP) in febuxostat-treated SHR (220 ± 3 mmHg) was significantly (P < 0.05) decreased compared with the control SHR (236 ± 4 mmHg) while SBP in febuxostat-treated WKY was constant. Acetylcholine-induced endothelium-dependent relaxation in aortas from febuxostat-treated SHR was significantly (P < 0.05) improved compared with the control SHR, whereas relaxation in response to sodium nitroprusside was not changed. Vascular XO activity and tissue nitrotyrosine level, a representative indicator of local oxidative stress, were considerably elevated in the control SHR compared with the control WKY, and this increment was abolished by febuxostat. Our results suggest that exaggerated XO activity and resultant increase in oxidative stress in this experimental model contribute to the hypertension and endothelial dysfunction, thereby supporting a notion that pharmacological inhibition of XO is valuable not only for hyperuricemia but also for treating hypertension and related endothelial dysfunction in human clinics.
Catry, Emilie; Bindels, Laure B; Tailleux, Anne; Lestavel, Sophie; Neyrinck, Audrey M; Goossens, Jean-François; Lobysheva, Irina; Plovier, Hubert; Essaghir, Ahmed; Demoulin, Jean-Baptiste; Bouzin, Caroline; Pachikian, Barbara D; Cani, Patrice D; Staels, Bart; Dessy, Chantal; Delzenne, Nathalie M
2018-02-01
To investigate the beneficial role of prebiotics on endothelial dysfunction, an early key marker of cardiovascular diseases, in an original mouse model linking steatosis and endothelial dysfunction. We examined the contribution of the gut microbiota to vascular dysfunction observed in apolipoprotein E knockout (Apoe -/- ) mice fed an n-3 polyunsaturated fatty acid (PUFA)-depleted diet for 12 weeks with or without inulin-type fructans (ITFs) supplementation for the last 15 days. Mesenteric and carotid arteries were isolated to evaluate endothelium-dependent relaxation ex vivo. Caecal microbiota composition (Illumina Sequencing of the 16S rRNA gene) and key pathways/mediators involved in the control of vascular function, including bile acid (BA) profiling, gut and liver key gene expression, nitric oxide and gut hormones production were also assessed. ITF supplementation totally reverses endothelial dysfunction in mesenteric and carotid arteries of n-3 PUFA-depleted Apoe -/- mice via activation of the nitric oxide (NO) synthase/NO pathway. Gut microbiota changes induced by prebiotic treatment consist in increased NO-producing bacteria, replenishment of abundance in Akkermansia and decreased abundance in bacterial taxa involved in secondary BA synthesis. Changes in gut and liver gene expression also occur upon ITFs suggesting increased glucagon-like peptide 1 production and BA turnover as drivers of endothelium function preservation. We demonstrate for the first time that ITF improve endothelial dysfunction, implicating a short-term adaptation of both gut microbiota and key gut peptides. If confirmed in humans, prebiotics could be proposed as a novel approach in the prevention of metabolic disorders-related cardiovascular diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Kałka, Dariusz; Gebala, Jana; Smoliński, Ryszard; Rusiecki, Lesław; Pilecki, Witold; Zdrojowy, Romuald
2017-11-01
Patients with cardiovascular disease (CVD) are prone to developing erectile dysfunction (ED) owing to the common risk factors and pathogenesis underlying ED and CVD. As a result, ED affects nearly 80% of male patients with CVD. The efficacy of phosphodiesterase type 5 inhibitors, vacuum erection devices, or intracavernosal injection of vasodilating agents is well established in the treatment of ED; however, their use is limited. Low-energy shock wave therapy is a novel modality that may become a causative treatment for ED. This review aims to assess the efficacy and safety of low-energy shock wave therapy in the treatment of ED in men with CVD. Copyright © 2017 Elsevier Inc. All rights reserved.
Hu, Weining; Zhang, Yang; Wang, Li; Lau, Chi Wai; Xu, Jian; Luo, Jiang-Yun; Gou, Lingshan; Yao, Xiaoqiang; Chen, Zhen-Yu; Ma, Ronald Ching Wan; Tian, Xiao Yu; Huang, Yu
2016-03-01
Bone morphogenic protein 4 (BMP4) is an important mediator of endothelial dysfunction in cardio-metabolic diseases, whereas platelet-derived growth factors (PDGFs) are major angiogenic and proinflammatory mediator, although the functional link between these 2 factors is unknown. The present study investigated whether PDGF mediates BMP4-induced endothelial dysfunction in diabetes mellitus. We generated Ad-Bmp4 to overexpress Bmp4 and Ad-Pdgfa-shRNA to knockdown Pdgfa in mice through tail intravenous injection. SMAD4-shRNA lentivirus, SMAD1-shRNA, and SMAD5 shRNA adenovirus were used for knockdown in human and mouse endothelial cells. We found that PDGF-AA impaired endothelium-dependent vasodilation in aortas and mesenteric resistance arteries. BMP4 upregulated PDGF-AA in human and mouse endothelial cells, which was abolished by BMP4 antagonist noggin or knockdown of SMAD1/5 or SMAD4. BMP4-impared relaxation in mouse aorta was also ameliorated by PDGF-AA neutralizing antibody. Tail injection of Ad-Pdgfa-shRNA ameliorates endothelial dysfunction induced by Bmp4 overexpression (Ad-Bmp4) in vivo. Serum PDGF-AA was elevated in both diabetic patients and diabetic db/db mice compared with nondiabetic controls. Pdgfa-shRNA or Bmp4-shRNA adenovirus reduced serum PDGF-AA concentration in db/db mice. PDGF-AA neutralizing antibody or tail injection with Pdgfa-shRNA adenovirus improved endothelial function in aortas and mesenteric resistance arteries from db/db mice. The effect of PDGF-AA on endothelial function in mouse aorta was also inhibited by Ad-Pdgfra-shRNA to inhibit PDGFRα. The present study provides novel evidences to show that PDGF-AA impairs endothelium-dependent vasodilation and PDGF-AA mediates BMP4-induced adverse effect on endothelial cell function through SMAD1/5- and SMAD4-dependent mechanisms. Inhibition of PGDF-AA ameliorates vascular dysfunction in diabetic mice. © 2016 American Heart Association, Inc.
Erectile dysfunction in the elderly male
Gökçe, Mehmet İlker; Yaman, Önder
2017-01-01
Erectile dysfunction (ED) is a health problem which mainly effects elderly men and this problem has become a more important health problem with the increased life expectancy. The basic risk factors of ED are hypertension, dyslipidemia, diabetes mellitus, and atherosclerotic heart disease which also have a higher incidence in the elderly men. The aim of this review article is to highlight the age-related changes in ED together with recommendations for patient evaluation and treatment PMID:28861293
Lifestyle and metabolic approaches to maximizing erectile and vascular health.
Meldrum, D R; Gambone, J C; Morris, M A; Esposito, K; Giugliano, D; Ignarro, L J
2012-01-01
Oxidative stress and inflammation, which disrupt nitric oxide (NO) production directly or by causing resistance to insulin, are central determinants of vascular diseases including ED. Decreased vascular NO has been linked to abdominal obesity, smoking and high intakes of fat and sugar, which all cause oxidative stress. Men with ED have decreased vascular NO and circulating and cellular antioxidants. Oxidative stress and inflammatory markers are increased in men with ED, and all increase with age. Exercise increases vascular NO, and more frequent erections are correlated with decreased ED, both in part due to stimulation of endothelial NO production by shear stress. Exercise and weight loss increase insulin sensitivity and endothelial NO production. Potent antioxidants or high doses of weaker antioxidants increase vascular NO and improve vascular and erectile function. Antioxidants may be particularly important in men with ED who smoke, are obese or have diabetes. Omega-3 fatty acids reduce inflammatory markers, decrease cardiac death and increase endothelial NO production, and are therefore critical for men with ED who are under age 60 years, and/or have diabetes, hypertension or coronary artery disease, who are at increased risk of serious or even fatal cardiac events. Phosphodiesterase inhibitors have recently been shown to improve antioxidant status and NO production and allow more frequent and sustained penile exercise. Some angiotensin II receptor blockers decrease oxidative stress and improve vascular and erectile function and are therefore preferred choices for lowering blood pressure in men with ED. Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient satisfaction, as well as improved vascular health and longevity.
Kolesnikova, E; Potapenko, A
2017-09-01
The article presents the analysis of the relationship between thyroid function abnormality -subclinical hypothyroidism (SH) and non-alcoholic fatty liver disease (NAFLD), depending on age peculiarities (>50 years and <50 years), and the risk of cardiovascular complications in this category of patients. Research of early predictors of cardiovascular complications: dyslipidemia, insulin resistance, inflammatory marker- C-reactive protein, marker of vascular aging-telomerase activity and marker of endothelial dysfunction (ED) - CDECs and VEGF-A that have been analyzed are on the front burner. In this regard, the effect of the given values on the formation of cardiac risk in patients with NAFLD combined with SH was studied. 74 patients (29 men (39.2%) and 45 women (60.8%)), with verified NAFLD and SH have been examined. Patients were divided into two clinical groups: group 1 (n=31) - patients with NAFLD, with the mean age 47.2±2.6 years; group 2 (n=43) patients with NAFLD in combination with SH, with the mean age 56,8±6,5 years. Results of the performed tests have shown that patients with NAFLD combined with SH aged over 50 years have pro-atherogenic lipid profile and significantly more pronounced manifestations of endothelial dysfunction. The process of age-dependent shortening of telomere length predominantly in the buccal epithelium is an important point to be made. Consequently, the total effect of cardiometabolic risk factors in patients with NAFLD combined with SH probably is the determining factor of the rate of progression of vascular aging.
NASA Astrophysics Data System (ADS)
Parshina, S. S.; Tokaeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Strelnikova, O. A.
The origin of hemorheologic and endothelial defects in patients with unstable angina (comparing with healthy persons) is determined by a solar activity period: the blood viscosity increases in a period of high solar activity in the vessels of small, medium and macro diameters, a local decompensate dysfunction of small vessels endothelium had been fixed (microcirculation area). In the period of a low solar activity there is an increase of a blood viscosity in vessels of all diameters, generalized subcompensated endothelial dysfunction is developed (on the background of the III phase blood clotting activating). In the period of a high solar activity a higher blood viscosity had been fixed, comparing with the period of a low solar activity.
Erectile dysfunction and correlated factors in Brazilian men aged 18-40 years.
Martins, Fernando Gonini; Abdo, Carmita Helena Najjar
2010-06-01
Few population-based studies in erectile dysfunction (ED) included subjects less than 40 years old and analyzed the several factors and consequences potentially associated with this condition. Evaluation of the prevalence of erectile dysfunction (ED) and associated factors in a sample of Brazilian men aged 18 to 40 years old. Cross-sectional study in which subjects were contacted in public places of 18 major Brazilian cities and interviewed using an anonymous questionnaire. Survey data were submitted to chi-squared, student's t-test and logistic regression analyses. The data were collected by means of a self-administered questionnaire with 87 questions about sociodemographic variables, general health, habits and lifestyle-related factors, sexual behavior and sexual difficulties, including ED which was assessed by a single question. Prevalence of ED in 1,947 men was 35.0% (73.7% mild, 26.3% moderate/complete). Greater frequency of ED was seen in subjects that never had information about sex, experienced difficulties in the beginning of sexual life and have never masturbated. ED was associated to lower level of education, but not to race, sexual orientation, employment or marital status. Also, no association was found between ED and smoking, alcoholism, obesity, sedentary life, diabetes, hypertension, cardiovascular disease, hyperlipidemia, depression or anxiety. ED caused negative impact in men's self-esteem, interpersonal relationships, work and leisure activities, and in sexual life satisfaction. Less than 10% of men with ED had received medical treatment for this problem. Prevalence of ED in this young population was high, mostly of mild severity. Low education and psychosocial problems were associated to ED and, due probably to the sample subjects' young age, no association was found with organic problems. Measures in the fields of education and psychosocial difficulties prevention would have a positive impact in the control of erectile dysfunction in the young population.
Chen, Ren-An; Sun, Xiao-Mian; Yan, Chang-You; Liu, Li; Hao, Miao-Wang; Liu, Qiang; Jiao, Xi-Ying; Liang, Ying-Min
2016-09-02
Vascular endothelial dysfunction, a central hallmark of diabetes, predisposes diabetic patients to numerous cardiovascular complications. The POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1), is an important transcriptional regulatory factor and regulates divergent pathways depending on the cellular context, but its role in endothelial cells remains poorly understood. Herein, we report for the first time that endothelial PATZ1 expression was abnormally upregulated in diabetic endothelial cells (ECs) regardless of diabetes classification. This stimulatory effect was further confirmed in the high glucose-treated human umbilical vein endothelial cells (HUVECs). From a functional standpoint, transgenic overexpression of PATZ1 in endothelial colony forming cells (ECFCs) blunted angiogenesis in vivo and rendered endothelial cells unresponsive to established angiogenic factors. Mechanistically, PATZ1 acted as a potent transcriptional corepressor of fatty acid-binding protein 4 (FABP4), an essential convergence point for angiogenic and metabolic signaling pathways in ECs. Taken together, endothelial PATZ1 thus potently inhibits endothelial function and angiogenesis via inhibition of FABP4 expression, and abnormal induction of endothelial PATZ1 may contribute to multiple aspects of vascular dysfunction in diabetes. Copyright © 2016. Published by Elsevier Inc.
Erectile dysfunction and central obesity: an Italian perspective
Corona, Giovanni; Rastrelli, Giulia; Filippi, Sandra; Vignozzi, Linda; Mannucci, Edoardo; Maggi, Mario
2014-01-01
Erectile dysfunction (ED) is a frequent complication of obesity. The aim of this review is to critically analyze the framework of obesity and ED, dissecting the connections between the two pathological entities. Current clinical evidence shows that obesity, and in particular central obesity, is associated with both arteriogenic ED and reduced testosterone (T) levels. It is conceivable that obesity-associated hypogonadism and increased cardiovascular risk might partially justify the higher prevalence of ED in overweight and obese individuals. Conversely, the psychological disturbances related to obesity do not seem to play a major role in the pathogenesis of obesity-related ED. However, both clinical and preclinical data show that the association between ED and visceral fat accumulation is independent from known obesity-associated comorbidities. Therefore, how visceral fat could impair penile microcirculation still remains unknown. This point is particularly relevant since central obesity in ED subjects categorizes individuals at high cardiovascular risk, especially in the youngest ones. The presence of ED in obese subjects might help healthcare professionals in convincing them to initiate a virtuous cycle, where the correction of sexual dysfunction will be the reward for improved lifestyle behavior. Unsatisfying sexual activity represents a meaningful, straightforward motivation for consulting healthcare professionals, who, in turn, should take advantage of the opportunity to encourage obese patients to treat, besides ED, the underlying unfavorable conditions, thus not only restoring erectile function, but also overall health. PMID:24713832
Erectile dysfunction and central obesity: an Italian perspective.
Corona, Giovanni; Rastrelli, Giulia; Filippi, Sandra; Vignozzi, Linda; Mannucci, Edoardo; Maggi, Mario
2014-01-01
Erectile dysfunction (ED) is a frequent complication of obesity. The aim of this review is to critically analyze the framework of obesity and ED, dissecting the connections between the two pathological entities. Current clinical evidence shows that obesity, and in particular central obesity, is associated with both arteriogenic ED and reduced testosterone (T) levels. It is conceivable that obesity-associated hypogonadism and increased cardiovascular risk might partially justify the higher prevalence of ED in overweight and obese individuals. Conversely, the psychological disturbances related to obesity do not seem to play a major role in the pathogenesis of obesity-related ED. However, both clinical and preclinical data show that the association between ED and visceral fat accumulation is independent from known obesity-associated comorbidities. Therefore, how visceral fat could impair penile microcirculation still remains unknown. This point is particularly relevant since central obesity in ED subjects categorizes individuals at high cardiovascular risk, especially in the youngest ones. The presence of ED in obese subjects might help healthcare professionals in convincing them to initiate a virtuous cycle, where the correction of sexual dysfunction will be the reward for improved lifestyle behavior. Unsatisfying sexual activity represents a meaningful, straightforward motivation for consulting healthcare professionals, who, in turn, should take advantage of the opportunity to encourage obese patients to treat, besides ED, the underlying unfavorable conditions, thus not only restoring erectile function, but also overall health.
d'Uscio, Livius V.; Das, Pritam; Santhanam, Anantha V.R.; He, Tongrong; Younkin, Steven G.; Katusic, Zvonimir S.
2012-01-01
Aims Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Methods and results Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser1177 in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH4) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH4 and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH4 bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91phox and SODs, thereby reducing production of superoxide anion in the aortas. Conclusion Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production. PMID:22886847
d'Uscio, Livius V; Das, Pritam; Santhanam, Anantha V R; He, Tongrong; Younkin, Steven G; Katusic, Zvonimir S
2012-12-01
Existing evidence suggests that amyloid-β precursor protein (APP) causes endothelial dysfunction and contributes to pathogenesis of atherosclerosis. In the present study, experiments were designed to: (1) determine the mechanisms underlying endothelial dysfunction and (2) define the effects of peroxisome proliferator-activated receptor delta (PPARδ) ligand on endothelial function in transgenic Tg2576 mice overexpressing mutated human APP. Confocal microscopy and western blot analyses of wild-type mice aortas provided evidence that APP protein is mainly present in endothelial cells. Overexpression of APP significantly impaired endothelium-dependent relaxations to acetylcholine and phosphorylation of endothelial nitric oxide synthase at Ser(1177) in aortas. HPLC analysis revealed that tetrahydrobiopterin (BH(4)) levels were reduced in Tg2576 mice aortas. This was caused by increased oxidation of BH(4) and reduced expression and activity of GTP-cyclohydrolase I. Furthermore, gp91phox protein expression and superoxide anion production were increased in aortas of Tg2576 mice. This augmented superoxide formation was completely prevented by the NADPH oxidase inhibitor VAS2870. Expression of copper-/zinc-superoxide dismutase (Cu/ZnSOD) and extracellular SOD was downregulated. Treatment with PPARδ ligand GW501516 (2 mg/kg/day) for 14 days significantly increased BH(4) bioavailability and improved endothelium-dependent relaxations in Tg2576 mice aortas. GW501516 also normalized protein expression of gp91(phox) and SODs, thereby reducing production of superoxide anion in the aortas. Our results suggest that in APP transgenic mice loss of nitric oxide and increased oxidative stress are the major causes of endothelial dysfunction. The vascular protective effects of GW501516 in Tg2576 mice appear to be critically dependent on prevention of superoxide anion production.
Liu, Yuhong; Xie, An; Singh, Arun K; Ehsan, Afshin; Choudhary, Gaurav; Dudley, Samuel; Sellke, Frank W; Feng, Jun
2015-08-24
Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SK(Ca)/IK(Ca)) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hemoglobin = 9.6±0.25) and nondiabetic patients (glycosylated hemoglobin 5.4±0.12) during coronary artery bypass graft surgery (n=8/group). In-vitro relaxation response of precontracted arterioles was examined in the presence of the selective SK(Ca)/IK(Ca) activator NS309 and other vasodilatory agents. The channel density and membrane potential of diabetic and nondiabetic endothelial cells was measured by using the whole cell patch-clamp technique. The protein expression and distribution of the SK(Ca)/IK(Ca) in the human myocardium and coronary arterioles was examined by Western blotting and immunohistochemistry. Our results indicate that diabetes significantly reduced the coronary arteriolar response to the SK(Ca)/IK(Ca) activator NS309 compared to the respective responses of nondiabetic vessels (P<0.05 versus nondiabetes). The relaxation response of diabetic arterioles to NS309 was prevented by denudation of endothelium (P=0.001 versus endothelium-intact). Diabetes significantly decreased endothelial SK(Ca)/IK(Ca) currents and hyperpolarization induced by the SK(Ca)/IK(Ca) activator NS309 as compared with that of nondiabetics. There were no significant differences in the expression and distribution of SK(Ca)/IK(Ca) proteins in the coronary microvessels. Diabetes is associated with inactivation of endothelial SK(Ca)/IK(Ca) channels, which may contribute to endothelial dysfunction in diabetic patients. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.
2013-01-01
Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID:23141486
Zarzuelo, María José; López-Sepúlveda, Rocío; Sánchez, Manuel; Romero, Miguel; Gómez-Guzmán, Manuel; Ungvary, Zoltan; Pérez-Vizcaíno, Francisco; Jiménez, Rosario; Duarte, Juan
2013-05-01
Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation. Copyright © 2013 Elsevier Inc. All rights reserved.
Nonpharmacologic Treatment of Erectile Dysfunction
Montague, Drogo K
2002-01-01
Nonpharmacologic treatment for erectile dysfunction (ED) includes sex therapy, the use of vacuum erection devices, penile prosthesis implantation, and penile vascular surgery. Sex therapy is indicated for psychogenic ED and is at times a useful adjunct for other treatments in men with mixed psychogenic and organic ED. Vacuum erection devices produce usable erections in over 90% of patients; however, patient and partner acceptability is an issue. Three-piece inflatable penile prostheses create flaccidity and an erection that comes close to that which occurs naturally. Penile vascular surgery has shown greatest efficacy in young men with vasculogenic ED resulting from pelvic or perineal trauma. PMID:16986016
Chronic fatigue in Ehlers-Danlos syndrome-Hypermobile type.
Hakim, Alan; De Wandele, Inge; O'Callaghan, Chris; Pocinki, Alan; Rowe, Peter
2017-03-01
Chronic fatigue is an important contributor to impaired health-related quality of life in Ehlers-Danlos syndrome. There is overlap in the symptoms and findings of EDS and chronic fatigue syndrome. A proportion of those with CFS likely have EDS that has not been identified. The evaluation of chronic fatigue in EDS needs to include a careful clinical examination and laboratory testing to exclude common causes of fatigue including anemia, hypothyroidisim, and chronic infection, as well as dysfunction of major physiological or organ systems. Other problems that commonly contribute to fatigue in EDS include sleep disorders, chronic pain, deconditioning, cardiovascular autonomic dysfunction, bowel and bladder dysfunction, psychological issues, and nutritional deficiencies. While there is no specific pharmacological treatment for fatigue, many medications are effective for specific symptoms (such as headache, menstrual dysfunction, or myalgia) and for co-morbid conditions that result in fatigue, including orthostatic intolerance and insomnia. Comprehensive treatment of fatigue needs to also evaluate for biomechanical problems that are common in EDS, and usually involves skilled physical therapy and attention to methods to prevent deconditioning. In addition to managing specific symptoms, treatment of fatigue in EDS also needs to focus on maintaining function and providing social, physical, and nutritional support, as well as providing on-going medical evaluation of new problems and review of new evidence about proposed treatments. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Napolitano, Mariasanta; Bruno, Aldo; Mastrangelo, Diego; De Vizia, Marcella; Bernardo, Benedetto; Rosa, Buonagura; De Lucia, Domenico
2014-10-01
We performed a monocentric observational prospective study to evaluate coagulation activation and endothelial dysfunction parameters in patients with multiple sclerosis undergoing endovascular treatment for cerebro-spinal-venous insufficiency. Between February 2011 and July 2012, 144 endovascular procedures in 110 patients with multiple sclerosis and chronical cerebro-spinal venous insufficiency were performed and they were prospectively analyzed. Each patient was included in the study according to previously published criteria, assessed by the investigators before enrollment. Endothelial dysfunction and coagulation activation parameters were determined before the procedure and during follow-up at 1, 3, 6, 9, 12, 15 and 18 months after treatment, respectively. After the endovascular procedure, patients were treated with standard therapies, with the addition of mesoglycan. Fifty-five percent of patients experienced a favorable outcome of multiple sclerosis within 1 month after treatment, 25% regressed in the following 3 months, 24.9% did not experience any benefit. In only 0.1% patients, acute recurrence was observed and it was treated with high-dose immunosuppressive therapy. No major complications were observed. Coagulation activation and endothelial dysfunction parameters were shown to be reduced at 1 month and stable up to 12-month follow-up, and they were furthermore associated with a good clinical outcome. Endovascular procedures performed by a qualified staff are well tolerated; they can be associated with other currently adopted treatments. Correlations between inflammation, coagulation activation and neurodegenerative disorders are here supported by the observed variations in plasma levels of markers of coagulation activation and endothelial dysfunction.
Endothelial effects of emission source particles: acute toxic response gene expression profiles.
Nadadur, Srikanth S; Haykal-Coates, Najwa; Mudipalli, Anuradha; Costa, Daniel L
2009-02-01
Air pollution epidemiology has established a strong association between exposure to ambient particulate matter (PM) and cardiovascular outcomes. Experimental studies in both humans and laboratory animals support varied biological mechanisms including endothelial dysfunction as potentially a central step to the elicitation of cardiovascular events. We therefore hypothesized that relevant early molecular alterations on endothelial cells should be assessable in vitro upon acute exposure to PM components previously shown to be involved in health outcomes. Using a model emission PM, residual oil fly ash and one of its predominant constituents (vanadium-V), we focused on the development of gene expression profiles to fingerprint that particle and its constituents to explore potential biomarkers for PM-induced endothelial dysfunction. Here we present differential gene expression and transcription factor activation profiles in human vascular endothelial cells exposed to a non-cytotoxic dose of fly ash or V following semi-global gene expression profiling of approximately 8000 genes. Both fly ash and it's prime constituent, V, induced alterations in genes involved in passive and active transport of solutes across the membrane; voltage-dependent ion pumps; induction of extracellular matrix proteins and adhesion molecules; and activation of numerous kinases involved in signal transduction pathways. These preliminary data suggest that cardiovascular effects associated with exposure to PM may be mediated by perturbations in endothelial cell permeability, membrane integrity; and ultimately endothelial dysfunction.
Qi, Haiying; Casalena, Gabriella; Shi, Shaolin; Yu, Liping; Ebefors, Kerstin; Sun, Yezhou; Zhang, Weijia; D'Agati, Vivette; Schlondorff, Detlef; Haraldsson, Börje; Böttinger, Erwin; Daehn, Ilse
2017-03-01
The molecular signaling mechanisms between glomerular cell types during initiation/progression of diabetic kidney disease (DKD) remain poorly understood. We compared the early transcriptome profile between DKD-resistant C57BL/6J and DKD-susceptible DBA/2J (D2) glomeruli and demonstrated a significant downregulation of essential mitochondrial genes in glomeruli from diabetic D2 mice, but not in C57BL/6J, with comparable hyperglycemia. Diabetic D2 mice manifested increased mitochondrial DNA lesions (8-oxoguanine) exclusively localized to glomerular endothelial cells after 3 weeks of diabetes, and these accumulated over time in addition to increased urine secretion of 8-oxo-deoxyguanosine. Detailed assessment of glomerular capillaries from diabetic D2 mice demonstrated early signs of endothelial injury and loss of fenestrae. Glomerular endothelial mitochondrial dysfunction was associated with increased glomerular endothelin-1 receptor type A (Ednra) expression and increased circulating endothelin-1 (Edn1). Selective Ednra blockade or mitochondrial-targeted reactive oxygen species scavenging prevented mitochondrial oxidative stress of endothelial cells and ameliorated diabetes-induced endothelial injury, podocyte loss, albuminuria, and glomerulosclerosis. In human DKD, increased urine 8-oxo-deoxyguanosine was associated with rapid DKD progression, and biopsies from patients with DKD showed increased mitochondrial DNA damage associated with glomerular endothelial EDNRA expression. Our studies show that DKD susceptibility was linked to mitochondrial dysfunction, mediated largely by Edn1-Ednra in glomerular endothelial cells representing an early event in DKD progression, and suggest that cross talk between glomerular endothelial injury and podocytes leads to defects and depletion, albuminuria, and glomerulosclerosis. © 2017 by the American Diabetes Association.
Development of UK recommendations on treatment for post-surgical erectile dysfunction
Kirby, M G; White, I D; Butcher, J; Challacombe, B; Coe, J; Grover, L; Hegarty, P; Jackson, G; Lowndes, A; Payne, H; Rees, J; Sangar, V; Thompson, A
2014-01-01
Aim To develop a management strategy (rehabilitation programme) for postsurgical erectile dysfunction (ED) among men experiencing ED associated with treatment of prostate, bladder or rectal cancer that is suitable for use in a UK NHS healthcare context. Methods PubMed literature searches of ED management together with a survey of 13 experts in the management of ED from across the UK were conducted. Results Data from 37 articles and completed questionnaires were collated. The results discussed in this study demonstrate improved objective and subjective clinical outcomes for physical parameters, sexual satisfaction, and rates of both spontaneous erections and those associated with ED treatment strategies. Conclusion Based on the literature and survey analysis, recommendations are proposed for the standardisation of management strategies employed for postsurgical ED. PMID:24188207
Gortan Cappellari, Gianluca; Barazzoni, Rocco; Cattin, Luigi; Muro, Andrés F.; Zanetti, Michela
2016-01-01
Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA + FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA + FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA−/−, EDA+/+ (constitutively lacking and expressing EDA + FN respectively), and of wild-type mice (EDAwt/wt), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ + EDA−/− mice exhibited increased endothelial dysfunction compared with STZ + EDA+/+ and with STZ + EDAwt/wt. Analysis of the underlying mechanisms revealed that STZ + EDA−/− mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-β1, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ + EDA+/+ vessels is counteracted by increased eNOS coupling and function. Although EDA + FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress. PMID:27897258
Rossman, Matthew J; Kaplon, Rachelle E; Hill, Sierra D; McNamara, Molly N; Santos-Parker, Jessica R; Pierce, Gary L; Seals, Douglas R; Donato, Anthony J
2017-11-01
Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 ( r = -0.49, P = 0.003), p21 ( r = -0.38, P = 0.03), and p16 ( r = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed ( P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age. NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function. Copyright © 2017 the American Physiological Society.
In Situ Activation of Penile Progenitor Cells With Low-Intensity Extracorporeal Shockwave Therapy.
Lin, Guiting; Reed-Maldonado, Amanda B; Wang, Bohan; Lee, Yung-Chin; Zhou, Jun; Lu, Zhihua; Wang, Guifang; Banie, Lia; Lue, Tom F
2017-04-01
We previously reported that progenitor cells, or stem cells, exist within penile tissue. We hypothesized that acoustic wave stimulation by low-intensity extracorporeal shockwave therapy (Li-ESWT) would activate local stem or progenitor cells within the penis, producing regenerative effects. To study the feasibility of in situ penile progenitor cell activation by Li-ESWT. We performed a cohort analysis of young and middle-age male Sprague-Dawley rats treated with 5-ethynyl-2'-deoxyuridine (EdU) pulse followed by Li-ESWT. In addition, Li-ESWT was applied to cultured Schwann cells and endothelial cells to study the molecular mechanism involved in cell proliferation. Thirty minutes before Li-ESWT, each rat received an intraperitoneal injection of EdU. Li-ESWT was applied to the penis at very low (0.02 mJ/mm 2 at 3 Hz for 300 pulses) or low (0.057 mJ/mm 2 at 3 Hz for 500 pulses) energy levels. The endothelial and Schwann cells were treated with very low energy (0.02 mJ/mm 2 at 3 Hz for 300 pulses) in vitro. At 48 hours or 1 week after Li-ESWT, penile tissues were harvested for histologic study to assess EdU + and Ki-67 + cells, and cell proliferation, Ki-67 expression, Erk1/2 phosphorylation, translocation, and angiogenesis were examined in cultured Schwann and endothelial cells after Li-ESWT. Li-ESWT significantly increased EdU + cells within penile erectile tissues (P < .01) at 48 hours and 1 week. There were more cells activated in young animals than in middle-age animals, and the effect depended on dosage. Most activated cells were localized within subtunical spaces. In vitro studies indicated that Li-ESWT stimulated cell proliferation through increased phosphorylation of Erk1/2. The present results provide a possible explanation for the clinical benefits seen with Li-ESWT. The main limitation of the present project was the short period of study and the animal model used. Li-ESWT could be less effective in improving erectile function in old animals because of the decreased number and quality of penile stem or progenitor cells associated with aging. Li-ESWT activation of local penile progenitor cells might be one of the mechanisms that contribute to the beneficial effects of shockwave treatment for erectile dysfunction, which represents a non-invasive alternative to exogenous stem cell therapy. Lin G, Reed-Maldonado AB, Wang B, et al. In Situ Activation of Penile Progenitor Cells With Low-Intensity Extracorporeal Shockwave Therapy. J Sex Med 2017;14:493-501. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ming-Chung; Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan; Chen, Chia-Ling
An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-likemore » cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase in peritoneal vascular permeability.« less
Lucas, Rudolf; Yang, Guang; Gorshkov, Boris A; Zemskov, Evgeny A; Sridhar, Supriya; Umapathy, Nagavedi S; Jezierska-Drutel, Agnieszka; Alieva, Irina B; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D; Verin, Alexander D; Pittet, Jean-François; Caldwell, Ruth B; Mitchell, Timothy J; Cederbaum, Stephen D; Fulton, David J; Matthay, Michael A; Caldwell, Robert W; Romero, Maritza J; Chakraborty, Trinad
2012-10-01
Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)(+/-)/arginase II (AII)(-/-) C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI(+/+)/AII(-/-) counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction.
Yang, Guang; Gorshkov, Boris A.; Zemskov, Evgeny A.; Sridhar, Supriya; Umapathy, Nagavedi S.; Jezierska-Drutel, Agnieszka; Alieva, Irina B.; Leustik, Martin; Hossain, Hamid; Fischer, Bernhard; Catravas, John D.; Verin, Alexander D.; Pittet, Jean-François; Caldwell, Ruth B.; Mitchell, Timothy J.; Cederbaum, Stephen D.; Fulton, David J.; Matthay, Michael A.; Caldwell, Robert W.; Romero, Maritza J.; Chakraborty, Trinad
2012-01-01
Antibiotics-induced release of the pore-forming virulence factor pneumolysin (PLY) in patients with pneumococcal pneumonia results in its presence days after lungs are sterile and is a major factor responsible for the induction of permeability edema. Here we sought to identify major mechanisms mediating PLY-induced endothelial dysfunction. We evaluated PLY-induced endothelial hyperpermeability in human lung microvascular endothelial cells (HL-MVECs) and human lung pulmonary artery endothelial cells in vitro and in mice instilled intratracheally with PLY. PLY increases permeability in endothelial monolayers by reducing stable and dynamic microtubule content and modulating VE-cadherin expression. These events, dependent upon an increased calcium influx, are preceded by protein kinase C (PKC)-α activation, perturbation of the RhoA/Rac1 balance, and an increase in myosin light chain phosphorylation. At later time points, PLY treatment increases the expression and activity of arginase in HL-MVECs. Arginase inhibition abrogates and suppresses PLY-induced endothelial barrier dysfunction by restoring NO generation. Consequently, a specific PKC-α inhibitor and the TNF-derived tonoplast intrinsic protein peptide, which blunts PLY-induced PKC-α activation, are able to prevent activation of arginase in HL-MVECs and to reduce PLY-induced endothelial hyperpermeability in mice. Arginase I (AI)+/−/arginase II (AII)−/− C57BL/6 mice, displaying a significantly reduced arginase I expression in the lungs, are significantly less sensitive to PLY-induced capillary leak than their wild-type or AI+/+/AII−/− counterparts, indicating an important role for arginase I in PLY-induced endothelial hyperpermeability. These results identify PKC-α and arginase I as potential upstream and downstream therapeutic targets in PLY-induced pulmonary endothelial dysfunction. PMID:22582175
Longitudinal assessment of excessive daytime sleepiness in early Parkinson's disease.
Amara, Amy W; Chahine, Lama M; Caspell-Garcia, Chelsea; Long, Jeffrey D; Coffey, Christopher; Högl, Birgit; Videnovic, Aleksandar; Iranzo, Alex; Mayer, Geert; Foldvary-Schaefer, Nancy; Postuma, Ron; Oertel, Wolfgang; Lasch, Shirley; Marek, Ken; Simuni, Tanya
2017-08-01
Excessive daytime sleepiness (EDS) is common and disabling in Parkinson's disease (PD). Predictors of EDS are unclear, and data on biological correlates of EDS in PD are limited. We investigated clinical, imaging and biological variables associated with longitudinal changes in sleepiness in early PD. The Parkinson's Progression Markers Initiative is a prospective cohort study evaluating progression markers in participants with PD who are unmedicated at baseline (n=423) and healthy controls (HC; n=196). EDS was measured with the Epworth Sleepiness Scale (ESS). Clinical, biological and imaging variables were assessed for associations with EDS for up to 3 years. A machine learning approach (random survival forests) was used to investigate baseline predictors of incident EDS. ESS increased in PD from baseline to year 3 (mean±SD 5.8±3.5 to 7.55±4.6, p<0.0001), with no change in HC. Longitudinally, EDS in PD was associated with non-tremor dominant phenotype, autonomic dysfunction, depression, anxiety and probable behaviour disorder, but not cognitive dysfunction or motor severity. Dopaminergic therapy was associated with EDS at years 2 and 3, as dose increased. EDS was also associated with presynaptic dopaminergic dysfunction, whereas biofluid markers at year 1 showed no significant associations with EDS. A predictive index for EDS was generated, which included seven baseline characteristics, including non-motor symptoms and cerebrospinal fluid phosphorylated-tau/total-tau ratio. In early PD, EDS increases significantly over time and is associated with several clinical variables. The influence of dopaminergic therapy on EDS is dose dependent. Further longitudinal analyses will better characterise associations with imaging and biomarkers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Increased risk of osteoporosis in patients with erectile dysfunction
Wu, Chieh-Hsin; Lu, Ying-Yi; Chai, Chee-Yin; Su, Yu-Feng; Tsai, Tai-Hsin; Tsai, Feng-Ji; Lin, Chih-Lung
2016-01-01
Abstract In this study, we aimed to investigate the risk of osteoporosis in patients with erectile dysfunction (ED) by analyzing data from the Taiwan National Health Insurance Research Database (NHIRD). From the Taiwan NHIRD, we analyzed data on 4460 patients aged ≥40 years diagnosed with ED between 1996 and 2010. In total, 17,480 age-matched patients without ED in a 1:4 ratio were randomly selected as the non-ED group. The relationship between ED and the risk of osteoporosis was estimated using Cox proportional hazard regression models. During the follow-up period, 264 patients with ED (5.92%) and 651 patients without ED (3.65%) developed osteoporosis. The overall incidence of osteoporosis was 3.04-fold higher in the ED group than in the non-ED group (9.74 vs 2.47 per 1000 person-years) after controlling for covariates. Compared with patients without ED, patients with psychogenic and organic ED were 3.19- and 3.03-fold more likely to develop osteoporosis. Our results indicate that patients with a history of ED, particularly younger men, had a high risk of osteoporosis. Patients with ED should be examined for bone mineral density, and men with osteoporosis should be evaluated for ED. PMID:27368024
Periodontal treatment improves endothelial dysfunction in patients with severe periodontitis.
Seinost, Gerald; Wimmer, Gernot; Skerget, Martina; Thaller, Erik; Brodmann, Marianne; Gasser, Robert; Bratschko, Rudolf O; Pilger, Ernst
2005-06-01
Because epidemiological studies provide evidence that periodontal infections are associated with an increased risk of progression of cardiovascular and cerebrovascular disease, we postulated that endothelial dysfunction, a critical element in the pathogenesis of atherosclerosis, would be present in patients with periodontal disease. We tested endothelial function in 30 patients with severe periodontitis and 31 control subjects using flow-mediated dilation (FMD) of the brachial artery. The groups were matched for age, sex, and cardiovascular risk factors. Three months after periodontal treatment, including both mechanical and pharmacological therapy, endothelial function was reassessed by brachial artery FMD. Markers of systemic inflammation were measured at baseline and at follow up. Flow-mediated dilation was significantly lower in patients with periodontitis than in control subjects (6.1% +/- 4.4% vs 8.5% +/- 3.4%, P = .002). Successful periodontal treatment resulted in a significant improvement in FMD (9.8% +/- 5.7%; P = .003 compared to baseline) accompanied by a significant decrease in C-reactive protein concentrations (1.1 +/- 1.9 vs 0.8 +/- 0.8 at baseline, P = .026). Endothelium-independent nitro-induced vasodilation did not differ between the study groups at baseline or after periodontal therapy. These results indicate that treatment of severe periodontitis reverses endothelial dysfunction. Whether improved endothelial function will translate into a beneficial effect on atherogenesis and cardiovascular events needs further investigation.
Daehn, Ilse; Casalena, Gabriella; Zhang, Taoran; Shi, Shaolin; Fenninger, Franz; Barasch, Nicholas; Yu, Liping; D’Agati, Vivette; Schlondorff, Detlef; Kriz, Wilhelm; Haraldsson, Borje; Bottinger, Erwin P.
2014-01-01
Focal segmental glomerular sclerosis (FSGS) is a primary kidney disease that is commonly associated with proteinuria and progressive loss of glomerular function, leading to development of chronic kidney disease (CKD). FSGS is characterized by podocyte injury and depletion and collapse of glomerular capillary segments. Progression of FSGS is associated with TGF-β activation in podocytes; however, it is not clear how TGF-β signaling promotes disease. Here, we determined that podocyte-specific activation of TGF-β signaling in transgenic mice and BALB/c mice with Adriamycin-induced glomerulosclerosis is associated with endothelin-1 (EDN1) release by podocytes, which mediates mitochondrial oxidative stress and dysfunction in adjacent endothelial cells via paracrine EDN1 receptor type A (EDNRA) activation. Endothelial dysfunction promoted podocyte apoptosis, and inhibition of EDNRA or scavenging of mitochondrial-targeted ROS prevented podocyte loss, albuminuria, glomerulosclerosis, and renal failure. We confirmed reciprocal crosstalk between podocytes and endothelial cells in a coculture system. Biopsies from patients with FSGS exhibited increased mitochondrial DNA damage, consistent with EDNRA-mediated glomerular endothelial mitochondrial oxidative stress. Our studies indicate that segmental glomerulosclerosis develops as a result of podocyte-endothelial crosstalk mediated by EDN1/EDNRA-dependent mitochondrial dysfunction and suggest that targeting the reciprocal interaction between podocytes and endothelia may provide opportunities for therapeutic intervention in FSGS. PMID:24590287
Targeted antioxidant therapies in hyperglycemia-mediated endothelial dysfunction.
de Haan, Judy B; Cooper, Mark E
2011-01-01
Although intensive glycaemic and blood pressure control have reduced the risks of micro- and macrovascular complications, diabetes remains a major cause of cardiovascular events, end-stage renal failure, blindness and neuropathy. It is therefore imperative to understand the underlying mechanisms and to establish effective treatments to prevent, retard or reverse diabetic complications. One area of increased focus is the diabetic vascular endothelium. Hyperglycaemia triggers a cascade of events, not least an increase in reactive oxygen species (ROS) leading to enhanced oxidative stress, with its negative impact on endothelial function. In this review, we explore a unifying hypothesis that increased glucose-mediated ROS leads to endothelial dysfunction as the underpinning causative event triggering accelerated micro- and macrovascular complications. In particular, the consequences of deficiencies in the antioxidant enzyme, glutathione peroxidase, on endothelial dysfunction as a trigger of diabetic micro- and macrovascular complications, will be reviewed. Furthermore, novel antioxidant therapies will be highlighted. Specifically, use of Gpx1-mimetics holds promise as a targeted antioxidant approach and an alternative adjunct therapy to reduce diabetic complications.
Chatsuriyawong, Siriporn; Gozal, David; Kheirandish-Gozal, Leila; Bhattacharjee, Rakesh; Khalyfa, Ahamed A; Wang, Yang; Sukhumsirichart, Wasana; Khalyfa, Abdelnaby
2013-09-06
Obstructive sleep apnea (OSA) is associated with adverse and interdependent cognitive and cardiovascular consequences. Increasing evidence suggests that nitric oxide synthase (NOS) and endothelin family (EDN) genes underlie mechanistic aspects of OSA-associated morbidities. We aimed to identify single nucleotide polymorphisms (SNPs) in the NOS family (3 isoforms), and EDN family (3 isoforms) to identify potential associations of these SNPs in children with OSA. A pediatric community cohort (ages 5-10 years) enriched for snoring underwent overnight polysomnographic (NPSG) and a fasting morning blood draw. The diagnostic criteria for OSA were an obstructive apnea-hypopnea Index (AHI) >2/h total sleep time (TST), snoring during the night, and a nadir oxyhemoglobin saturation <92%. Control children were defined as non-snoring children with AHI <2/h TST (NOSA). Endothelial function was assessed using a modified post-occlusive hyperemic test. The time to peak reperfusion (Tmax) was considered as the indicator for normal endothelial function (NEF; Tmax<45 sec), or ED (Tmax ≥ 45 sec). Genomic DNA from peripheral blood was extracted and allelic frequencies were assessed for, NOS1 (209 SNPs), NOS2 (122 SNPs), NOS3 (50 SNPs), EDN1 (43 SNPs), EDN2 (48 SNPs), EDN3 (14 SNPs), endothelin receptor A, EDNRA, (27 SNPs), and endothelin receptor B, EDNRB (23 SNPs) using a custom SNPs array. The relative frequencies of NOS-1,-2, and -3, and EDN-1,-2,-3,-EDNRA, and-EDNRB genotypes were evaluated in 608 subjects [128 with OSA, and 480 without OSA (NOSA)]. Furthermore, subjects with OSA were divided into 2 subgroups: OSA with normal endothelial function (OSA-NEF), and OSA with endothelial dysfunction (OSA-ED). Linkage disequilibrium was analyzed using Haploview version 4.2 software. For NOSA vs. OSA groups, 15 differentially distributed SNPs for NOS1 gene, and 1 SNP for NOS3 emerged, while 4 SNPs for EDN1 and 1 SNP for both EDN2 and EDN3 were identified. However, in the smaller sub-group for whom endothelial function was available, none of the significant SNPs was retained due to lack of statistical power. Differences in the distribution of polymorphisms among NOS and EDN gene families suggest that these SNPs could play a contributory role in the pathophysiology and risk of OSA-induced cardiovascular morbidity. Thus, analysis of genotype-phenotype interactions in children with OSA may assist in the formulation of categorical risk estimates.
Red Blood Cell Dysfunction Induced by High-Fat Diet
Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.
2015-01-01
Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254
Ng, Hooi Hooi; Leo, Chen Huei; Prakoso, Darnel; Qin, Chengxue; Ritchie, Rebecca H.; Parry, Laura J.
2017-01-01
Serelaxin prevents endothelial dysfunction in the mouse aorta ex vivo and inhibits apoptosis in cardiomyocytes under acute hyperglycaemia. Less is known about the effects of serelaxin in an in vivo mouse model of diabetes. Therefore, we tested the hypothesis in streptozotocin (STZ)-treated mice that serelaxin is able to reverse diabetes-induced vascular dysfunction and cardiac remodelling. Mice were divided into citrate buffer + placebo, STZ + placebo and STZ + serelaxin (0.5 mg/kg/d, 2 weeks) groups. After 12 weeks of diabetes, sensitivity to the endothelium-dependent agonist acetylcholine (ACh) was reduced in the mesenteric artery. This was accompanied by an enhanced vasoconstrictor prostanoid contribution and a decrease in endothelium-derived hyperpolarisation (EDH)-mediated relaxation. Serelaxin restored endothelial function by increasing nitric oxide (NO)-mediated relaxation but not EDH. It also normalised the contribution of vasoconstrictor prostanoids to endothelial dysfunction and suppressed diabetes-induced hyper-responsiveness of the mesenteric artery to angiotensin II. Similarly, diabetes reduced ACh-evoked NO-mediated relaxation in the aorta which was reversed by serelaxin. In the left ventricle, diabetes promoted apoptosis, hypertrophy and fibrosis; serelaxin treatment reversed this ventricular apoptosis and hypertrophy, but had no effect on fibrosis. In summary, serelaxin reversed diabetes-induced endothelial dysfunction by enhancing NO-mediated relaxation in the mouse vasculature and attenuating left ventricular hypertrophy and apoptosis. PMID:28067255
[How does chocolate impact vascular function?].
Flammer, Andreas J; Sudano, Isabella
2014-11-12
For thousands of years, cocoa have been a very popular food and has been linked to various beneficial health effects. Observational and epidemiological studies point towards a beneficial effect of dark chocolate on cardiovascular morbidity. Several small, albeit controlled studies indeed demonstrate an amelioration of endothelial dysfunction - the dysfunction of the inner layer of the vessels - after intake of dark, flavanol-rich chocolate. This is important, as endothelial dysfunction is an important marker of the development of atherosclerosis and an important prognosticator of future cardiovascular events. This article summarizes the actual literature in this respect.
Scutellarin’s Cardiovascular Endothelium Protective Mechanism: Important Role of PKG-Iα
Chen, Chen; Yang, Jian; Li, Jiaxun; Hu, Na; Li, Yang; Zhang, Dongmei; Guo, Tao; Liu, Xuan; Yang, Weimin
2015-01-01
Scutellarin (SCU), a flavonoid glycoside compound, has been successfully used in clinic for treatment of ischemic diseases in China. In this report, we checked the effects of SCU on endothelium dysfunction (ED) of coronary artery (CA) against myocardial ischemia reperfusion (MIR) injury in vivo. The involvement of PKG-Iα was further studied using cultured endothelial cells subjected to hypoxia reoxygenation (HR) injury in vitro. In rat MIR model, SCU (45 and 90 mg/kg, iv) significantly reduced ischemic size and restored the endothelium-dependent vasodilation of isolated CA rings. PKG inhibitor Rp-8-Br-cGMP (50 μg/kg, iv) could ameliorate the protective effects of SCU. Increase in phosphorylation of vasodilator-stimulated phosphoprotein (VASP), a main substrate of PKG, at Ser 239 was observed in both heart tissue and serum of SCU-treated animals. In cultured human cardiac microvascular endothelial cells (HCMECs), SCU (1 and 10 μM) dose-dependently protected cell viability and increased the mRNA and protein level of PKG-Iα against HR injury. The activity of PKG was also increased by SCU treatment. The activation of PKG–1α was then studied using targeted proteomic analysis (MRM-MS) checking the phosphorylation state of the autophosphorylation domain (aa42-94). Significant decrease in phosphorylation of PKG-Iα at Ser50, Ser72, Ser89 was induced by HR injury while SCU treatment significantly increased the phosphorylation of PKG-Iα, not only at Ser50, Ser72 and Ser89, but also at Ser44 and Thr58 (two novel phosphorylation domains). Our results demonstrate PKG-Iα might play an important role in the protective effects of SCU on ED against MIR injury. PMID:26440524
NASA Astrophysics Data System (ADS)
Bleizgys, Andrius; Šapoka, Virginijus
2016-07-01
Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs—sICAM-1, sVCAM-1, sE-selectin and sP-selectin—were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels ( β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 ( β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 ( β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.
Carcamo-Orive, Ivan; Huang, Ngan F; Quertermous, Thomas; Knowles, Joshua W
2017-11-01
Insulin resistance leads to a number of metabolic and cellular abnormalities including endothelial dysfunction that increase the risk of vascular disease. Although it has been particularly challenging to study the genetic determinants that predispose to abnormal function of the endothelium in insulin-resistant states, the possibility of deriving endothelial cells from induced pluripotent stem cells generated from individuals with detailed clinical phenotyping, including accurate measurements of insulin resistance accompanied by multilevel omic data (eg, genetic and genomic characterization), has opened new avenues to study this relationship. Unfortunately, several technical barriers have hampered these efforts. In the present review, we summarize the current status of induced pluripotent stem cell-derived endothelial cells for modeling endothelial dysfunction associated with insulin resistance and discuss the challenges to overcoming these limitations. © 2017 American Heart Association, Inc.
de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.
2017-01-01
Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519
Chen, Yun-Xia; Li, Chun-Sheng
2014-08-01
To evaluate the prognostic and risk-stratified ability of heart-type fatty acid-binding protein (H-FABP) in septic patients in the emergency department (ED). From August to November 2012, 295 consecutive septic patients were enrolled. Circulating H-FABP was measured. The predictive value of H-FABP for 28-day mortality, organ dysfunction on ED arrival, and requirement for mechanical ventilation or a vasopressor within 6 hours after ED arrival was assessed by the receiver operating characteristic curve and logistic regression and was compared with Acute Physiology and Chronic Health Evaluation (APACHE) II score, Mortality in Emergency Department Sepsis (MEDS) score, and Sequential Organ Failure Assessment score. The 28-day mortality, APACHE II, MEDS, and Sequential Organ Failure Assessment scores were much higher in H-FABP-positive patients. The incidence of organ dysfunction at ED arrival and requirement for mechanical ventilation or a vasopressor within 6 hours after ED arrival was higher in H-FABP-positive patients. Heart-type fatty acid-binding protein was an independent predictor of 28-day mortality and organ dysfunction. The area under the receiver operating characteristic curve for H-FABP predicting 28-day mortality and organ dysfunction was 0.784 and 0.755, respectively. Combination of H-FABP and MEDS improved the performance of MEDS in predicting organ dysfunction, and the difference of AUC was statistically significant (P<.05). The combinations of H-FABP and MEDS or H-FABP and APACHE II also improved the prognostic value of MEDS and APACHE II, but the areas under the curve were not statistically different. Heart-type fatty acid-binding protein was helpful for prognosis and risk stratification of septic patients in the ED. Copyright © 2014 Elsevier Inc. All rights reserved.
Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen
2015-01-01
Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus re?ex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED.
Chung, Eric; Yan, Hanmu; De Young, Ling; Brock, Gerald B
2012-10-01
What's known on the subject? and What does the study add? Penile colour Doppler ultrasonography (CDU) can be an invaluable investigative tool to characterize penile abnormalities to complement clinical history and physical examination in the evaluation of men with Peyronie's disease (PD) and/or erectile dysfunction (ED). Although CDU findings between men with PD and those with ED were not markedly different, subtle differences were observed. The classic penile CDU findings in men with PD comprise tunical thickening, intracavernosal fibrosis, septal fibrosis and intracavernosal calcification, while, in men with ED, low peak systolic velocity and high end-diastolic velocity are found on penile haemodynamics. Previously published studies have focused predominantly on either ED or PD exclusively, or examine the risk of progression to ED in the PD population. To our knowledge, this is the largest and most comprehensive analysis of penile CDU and clinical findings in men with PD and/or ED. The large sample size and multivariable analysis allow meaningful interpretation of the results. This study has found some substantial differences in the penile CDU findings of men with PD and/or ED that have not previously been reported. Although the risk factors of ED may be greater than those for PD, there is crossover in age, cardiovascular risk factors, trauma and penile CDU findings in men with PD and/or ED. To explore the differences in penile colour Doppler ultrasonography (CDU) findings between men with Peyronie's disease (PD) and those with erectile dysfunction (ED). Patients presenting with PD and/or ED who underwent penile CDU were recruited to the study. Patient demographics, comorbidities, International Index of Erectile Function-5 scores, previous therapies and physical findings were documented. Penile curvature, presence of tunical thickening, septal fibrosis, intracavernosal fibrosis and calcification, and cavernosal vascular status were recorded. A total of 1500 men underwent penile CDU during the 10-year period. Of these men, 891 men presented with PD and 609 men had ED only. Men with ED had higher rates of diabetes and coronary artery disease (P < 0.05). Isolated tunical thickening was more common in older men and in the PD cohort. The presence of intracavernosal fibrosis correlated strongly with difficulty maintaining erection (P < 0.05). Impaired cavernosal arterial flow was observed in men with decrease penile rigidity and penile pain, while higher end-diastolic velocities were found in men with difficulty maintaining erection and tunical thickening on penile CDU. Men with PD and ED had many similarities and differences on penile CDU. Penile CDU continues to be an invaluable clinical tool in the management of men with male sexual dysfunction. © 2012 BJU INTERNATIONAL.
Hertle, Elisabeth; Arts, Ilja C W; van der Kallen, Carla J H; Feskens, Edith J M; Schalkwijk, Casper G; Hoffmann-Petersen, Ingeborg T; Thiel, Steffen; Stehouwer, Coen D A; van Greevenbroek, Marleen M J
2016-06-01
Previous studies suggested that the lectin-complement pathway plays a complex role in cardiovascular disease (CVD). To date, no prospective human studies have investigated the relationship between the initiating factor of the lectin pathway, that is, mannose-binding lectin (MBL), and low-grade inflammation, endothelial dysfunction, or carotid intima-media thickness (cIMT). Moreover, MBL-associated proteases (MASPs) and MBL-associated proteins (MAps), which mediate downstream complement activation, have not been studied in the development of CVD. In a prospective cohort (n=574; age 60±7 years; 7-year follow-up), we investigated longitudinal associations of plasma MBL, MASP-1, MASP-2, MASP-3, and MAp44 with biomarker scores that reflect low-grade inflammation and endothelial dysfunction, respectively, and with cIMT. We also investigated their associations with incident CVD (n=73). In adjusted analyses, low-grade inflammation was lowest in the middle tertile (TMiddle) of MBL, that is, TMiddle was 0.19 SD (0.03 to 0.34) lower than TLow, and 0.15 SD (-0.02 to 0.31) lower than THigh. cIMT was 28 μm (-50 to -5) lower in the highest MBL tertile (THigh) than in TMiddle and did not differ between TLow and TMiddle. MBL was not associated with endothelial dysfunction or CVD. MASP-1 and MASP-2 were not associated with any cardiovascular outcomes. MASP-3 and MAp44 were, independently of MBL levels, associated with endothelial dysfunction (per 1 SD higher MASP-3: β=0.10 SD [0.02 to 0.18]; per 1 SD higher MAp44 β=0.12 SD [0.04 to 0.20]) but not with low-grade inflammation, cIMT, or CVD. High MBL may contribute to low cIMT, whereas the association of MBL with low-grade inflammation was nonlinear. MASP-1 and MASP-2 were not associated with adverse cardiovascular outcomes. MASP-3 and MAp44 may play a role in endothelial dysfunction, potentially independent of lectin-pathway activation. © 2016 American Heart Association, Inc.
Investigation of erectile dysfunction.
Patel, D V; Halls, J; Patel, U
2012-11-01
Erectile dysfunction (ED) represents a common and debilitating condition with a wide range of organic and non-organic causes. Physical aetiologies can be divided into disorders affecting arterial inflow, the venous occlusion mechanism or the penile structure itself. Various imaging modalities can be utilised to investigate the physical causes of ED, but penile Doppler sonography (PDS) is the most informative technique, indicated in those patients with ED who do not respond to oral pharmacological agents (e.g. phosphodiesterase type 5 inhibitors). This review will examine the anatomical and physiological basis of penile erection, the method for performing PDS and features of specific causes of ED, and will also consider the alternative imaging modalities available.
Kajikawa, Masato; Nakashima, Ayumu; Maruhashi, Tatsuya; Iwamoto, Yumiko; Iwamoto, Akimichi; Matsumoto, Takeshi; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Goto, Chikara; Taguchi, Akira; Noma, Kensuke; Higashi, Yukihito
2014-01-01
Poor oral health is an independent predictor of cardiovascular outcome. Endothelial dysfunction is the initial step of atherosclerosis, resulting in cardiovascular outcomes; but there is no information on the association between oral health and endothelial function. The purpose of this study was to determine the relationships between oral health and endothelial function. A total of 190 subjects who underwent health examinations (mean age, 57±18 years), including patients with cardiovascular disease, completed a questionnaire on oral health and frequency of tooth brushing, and underwent measurement of vascular function, flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation. The subjects were divided into 2 groups according to frequency of tooth brushing (≥twice/day and
Corneal endothelial dysfunction in Pearson syndrome.
Kasbekar, Shivani A; Gonzalez-Martin, Jose A; Shafiq, Ayad E; Chandna, Arvind; Willoughby, Colin E
2013-01-01
Mitochondrial disorders are associated with well recognized ocular manifestations. Pearson syndrome is an often fatal, multisystem, mitochondrial disorder that causes variable bone marrow, hepatic, renal and pancreatic exocrine dysfunction. Phenotypic progression of ocular disease in a 12-year-old male with Pearson syndrome is described. This case illustrates phenotypic drift from Pearson syndrome to Kearns-Sayre syndrome given the patient's longevity. Persistent corneal endothelial failure was noted in addition to ptosis, chronic external ophthalmoplegia and mid-peripheral pigmentary retinopathy. We propose that corneal edema resulting from corneal endothelial metabolic pump failure occurs within a spectrum of mitochondrial disorders.
Zanetti, Michela; Gortan Cappellari, Gianluca; Burekovic, Ismet; Barazzoni, Rocco; Stebel, Marco; Guarnieri, Gianfranco
2010-11-01
Aging is characterized by activation of inducible over endothelial nitric oxide synthase (iNOS and eNOS), impaired antioxidant activity and increased oxidative stress, which reduces nitric oxide bioavailability and causes endothelial dysfunction. Caloric restriction (CR) blunts oxidative stress. We investigated whether CR impacts endothelial dysfunction in aging and the underlying mechanisms. Aortas from young (YC, 6 months of age) and old (OC, 24 months of age) rats ad-libitum fed and from old rats caloric-restricted for 3-weeks (OR, 26%) were investigated. Endothelium-dependent vasorelaxation was impaired in OC, associated with reduced eNOS and increased iNOS expression (P<0.05). Aortic nitrite was similar in OC and YC, but the contribution of calcium-independent NOS to total NOS activity was increased whereas that of calcium-dependent NOS was reduced (p≤0.0003). Plasma thiobarbituric acid-reactive substances (TBARS) were elevated in OC as well as aortic nitrotyrosine (P<0.05). Expression of manganese superoxide dismutase (MnSOD) and total SOD activity were impaired in OC (P<0.05 vs. YC), whereas copper-zinc (CuZn) SOD expression was similar in OC and YC. CR restored endothelial dysfunction in old rats, reduced iNOS expression, total nitrite and calcium-independent NOS activity in aorta (P<0.05) without changes in eNOS expression and calcium-dependent NOS activity. Sirtuin-1 expression did not differ among groups. Plasma TBARS and aortic nitrotyrosine were reduced (P<0.05) in OR compared with OC. In OR CuZnSOD protein and SOD activity increased (P<0.05) without changes in MnSOD expression. Short-term CR improves age-related endothelial dysfunction. Reversal of altered iNOS/eNOS ratio, reduced oxidative stress and increased SOD enzyme activity rather than enhanced NO production appear to be involved in this effect. Copyright © 2010 Elsevier Inc. All rights reserved.
Stam, Kelly; van Duin, Richard W B; Uitterdijk, André; Cai, Zongye; Duncker, Dirk J; Merkus, Daphne
2018-03-01
Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 4% of patients after pulmonary embolism and is accompanied by an impaired exercise tolerance, which is ascribed to the increased right ventricular (RV) afterload in combination with a ventilation/perfusion (V/Q) mismatch in the lungs. The present study aimed to investigate changes in arterial Po 2 and hemodynamics in response to graded treadmill exercise during development and progression of CTEPH in a novel swine model. Swine were chronically instrumented and received multiple pulmonary embolisms by 1) microsphere infusion (Spheres) over 5 wk, 2) endothelial dysfunction by administration of the endothelial nitric oxide synthase inhibitor N ω -nitro-l-arginine methyl ester (L-NAME) for 7 wk, 3) combined pulmonary embolisms and endothelial dysfunction (L-NAME + Spheres), or 4) served as sham-operated controls (sham). After a 9 wk followup, embolization combined with endothelial dysfunction resulted in CTEPH, as evidenced by mean pulmonary artery pressures of 39.5 ± 5.1 vs. 19.1 ± 1.5 mmHg (Spheres, P < 0.001), 22.7 ± 2.0 mmHg (L-NAME, P < 0.001), and 20.1 ± 1.5 mmHg (sham, P < 0.001), and a decrease in arterial Po 2 that was exacerbated during exercise, indicating V/Q mismatch. RV dysfunction was present after 5 wk of embolization, both at rest (trend toward increased RV end-systolic lumen area, P = 0.085, and decreased stroke volume index, P = 0.042) and during exercise (decreased stroke volume index vs. control, P = 0.040). With sustained pulmonary hypertension, RV hypertrophy (Fulton index P = 0.022) improved RV function at rest and during exercise, but this improvement was insufficient in CTEPH swine to result in an exercise-induced increase in cardiac index. In conclusion, embolization in combination with endothelial dysfunction results in CTEPH in swine. Exercise increased RV afterload, exacerbated the V/Q mismatch, and unmasked RV dysfunction. NEW & NOTEWORTHY Here, we present the first double-hit chronic thromboembolic pulmonary hypertension swine model. We show that embolization as well as endothelial dysfunction is required to induce sustained pulmonary hypertension, which is accompanied by altered exercise hemodynamics and an exacerbated ventilation/perfusion mismatch during exercise.
Manson, H
2006-01-01
There have been recent calls for the re-evaluation of health resource allocation for erectile dysfunction (ED) drugs. This paper discusses sociocultural prejudices associated with ED and its treatment, arising from the link with sexuality, the perception that ED is a 'lifestyle' issue and the belief that ED is part of the normal ageing process. These views diminish the perceived importance of sexual health, extending subjectively into the funding arena as a 'negative bias'. Empirical data are presented, which demonstrate that ED can have significant psychosocial consequences, and that ED drugs are valuable quality-of-life interventions. The assumption that ED is an inevitable part of ageing is also analysed and found to be questionable. Health resource allocation decisions for ED drugs must be conducted with an awareness of the ethical and clinical complexities described in this paper, and with the sensibility that negative personal value judgments (on the part of policymakers) must be guarded against.
Relation of Biochemical Parameters with Flow-mediated Dilatation in Patients with Metabolic Syndrome
Sipahioglu, Nurver Turfaner; Ilerigelen, Barıs; Gungor, Zeynep B.; Ayaz, Gulsel; Ekmekci, Hakan; Gurel, Cigdem Bayram; Can, Gunay; Sonmez, Huseyin; Ulutin, Turgut; Sipahioglu, Fikret
2017-01-01
Background: Metabolic syndrome (MetS) is one of the high cardiovascular (CV) situations. Endothelial dysfunction, which is a common finding in patients with MetS, is related with increased CV risk. In patients with MetS, the effect of the major CV risk factors, not included in the MetS definition, on endothelial dysfunction is not well known. The aim of this study was to determine the effect of major CV risk factors such as gender, smoking, family history, and biochemical parameters on endothelial dysfunction in patients with MetS. Methods: The study was performed between December 2010 and August 2014. A total of 55 patients (15 females and 40 males) with MetS and 81 healthy controls (37 females and 44 males) with a body mass index <25 kg/m2 were enrolled in the study. Endothelial dysfunction was measured by flow-mediated dilatation (FMD), oxidative stress parameters; high-sensitivity C-reactive protein (hs-CRP), oxidized low-density lipoprotein (ox-LDL), endothelial nitric oxide synthase (e-NOS), nitric oxide, and cell adhesion markers; von Willebrand factor, and e-selectin. Platelet aggregation (endothelial adenosine diphosphate), total platelet count, and mean platelet volume were additionally analyzed and demographic parameters were explored. Student's t-test, Mann-Whitney U-test, and Chi-square test were used to analyze the results. Results: The fasting blood glucose (z = 3.52, P = 0.001), hs-CRP (z = 3.23, P = 0.004), ox-LDL (z = 2.62, P = 0.013), and e-NOS (z = 2.22, P = 0.026) levels and cardiac risk score (z = 5.23, P < 0.001) were significantly higher in patients with MetS compared with the control group. Smoking was correlated with decreased FMD (χ2 = 9.26, P = 0.002) in MetS patients but not in the control group. Conclusions: Increased ox-LDL, hs-CRP, and e-NOS are likely to be a result of oxidative stress, a condition in which an imbalance occurs between the production and inactivation of reactive nitrogen and oxygen species. In addition, in patients with MetS, smoking is independently related to endothelial dysfunction. PMID:28639572
Choi, Seul Min; Kim, Jee Eun; Kang, Kyung Koo
2006-02-09
This study examined the effects of chronic treatment of a new phosphodiesterase type 5 inhibitor, DA-8159, on endothelial dysfunction in stroke-prone spontaneously hypertensive rats (SHR-SP). Six-week-old male SHR-SP were divided into 4 groups; vehicle control, DA-8159 1, 3, and 10 mg/kg/day. During a 32-week experimental period, the animals were administered DA-8159 orally and fed a 4% NaCl-loaded diet. The systolic blood pressure was measured every two weeks throughout the experimental period using the tail-cuff method. At the end of experiments, the vascular function (acetylcholine-induced vasodilation) in the endothelium-intact aortic rings was investigated. In addition, the mortality, the left ventricular hypertrophy index, the plasma parameters and the incidence of a cerebral infarction were assessed. In the DA-8159 treated-rats, the vascular reactivity improved significantly in a dose-dependent manner. Although DA-8159 did not alter the elevation of the systolic blood pressure directly, the 3 and 10 mg/kg/day DA-8159 treatment delayed the early death caused by stroke. DA-8159 significantly reduced the left ventricular heart weight/body weight ratio compared with the vehicle control group. Furthermore, the DA-8159 treatment significantly increased the plasma nitric oxide, cGMP, and the total antioxidative status. The DA-8159 treatment also reduced the occurrence of stroke-associated cerebral damage. These results indicate that DA-8159 can ameliorate an endothelial dysfunction-related vascular injury. Therefore, pharmacological intervention aimed at attenuating an endothelial dysfunction is important and might be useful in both preventing and treating endothelial dysfunction-related complications.
Alshahawey, Mona; Shahin, Sara Mahmoud; Elsaid, Tamer Wahid; Sabri, Nagwa Ali
2017-01-01
Endothelial dysfunction is an important risk factor for cardiovascular diseases to occur in end-stage renal disease patients. Febuxostat, being a novel xanthine oxidase inhibitor, is apparently having a beneficial role in improving the endothelial dysfunction; however, data among hemodialysis patients are still limited. A prospective, placebo-controlled, block-randomized, double-blinded study was carried out to evaluate the effect of oral febuxostat on the endothelial dysfunction in hemodialysis patients. Fifty-seven eligible hemodialysis patients were randomly assigned to either the drug group (40 mg thrice weekly) or the placebo group. Serum Asymmetric dimethylarginine (ADMA), Serum uric acid (UA), and serum high sensitivity C-reactive protein (hsCRP) were measured at baseline and at the end of a 2-month study. Serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), and the occurrence of pancytopenia were tested as safety parameters at baseline and at the end of study. Serum UA significantly decreased from 7.5 ± 0.8 to 5.1 ± 1.2 mg/dL in the febuxostat group, while it did not change significantly in the placebo group. Treatment with febuxostat resulted in a significant decrease in the serum ADMA level from 1.027 ± 0.116 to 0.944 ± 0.104 µmol/L and the serum hsCRP level from 12.5 ± 1.65 to 12.1 ± 1.70 mg/L. Testing of serum ALT, serum AST, and pancytopenia revealed no significant difference in both groups. Febuxostat appears to improve hyperuricemia and endothelial dysfunction and ameliorate inflammation in hemodialysis patients with no safety concerns. © 2017 S. Karger AG, Basel.
Syal, Sanjeev Kumar; Kapoor, Aditya; Bhatia, Eesh; Sinha, Archana; Kumar, Sudeep; Tewari, Satyendra; Garg, Naveen; Goel, Pravin K
2012-08-01
Vitamin D deficiency has been linked to an increased risk of coronary artery disease (CAD) and cardiovascular (CV) death. Endothelial dysfunction plays an important role in pathogenesis of CAD and vitamin D deficiency is postulated to promote endothelial dysfunction. Despite rising trends of CAD in Asians, only limited data are available on the relationship between vitamin D, CAD, and endothelial dysfunction. In a study of 100 patients undergoing coronary angiography, mean 25(OH)D level was 14.8 ± 9.1 ng/mL; vitamin D deficiency was present in 80% and only 7% had optimal 25(OH)D levels. Nearly one-third (36%) were severely deficient, with 25(OH)D levels <10 ng/mL. Those with vitamin D deficiency had significantly higher prevalence of double- or triple-vessel CAD (53% vs 38%), diffuse CAD (56% vs 34%), and higher number of coronary vessels involved as compared to those with higher 25(OH)D levels. Those with lower 25(OH)D levels had significantly lower brachial artery flow-mediated dilation (FMD; 4.57% vs 10.68%: P<.001) and significantly higher prevalence of impaired FMD (values <4.5%; 50.6% vs 7%; P<.002). A graded relationship between 25(OH)D levels and FMD was observed; impaired FMD was noted in 62.2%, 38.6%, and 13.3% in those with 25(OH)D levels <10 ng/mL, 10-20 ng/mL, and >20 ng/mL, respectively. Indian patients with angiographically documented CAD frequently have vitamin D deficiency. Patients with lower 25(OH)D levels had higher prevalence of double- or triple-vessel CAD and diffuse CAD. Endothelial dysfunction as assessed by brachial artery FMD was also more frequently observed in those with low 25(OH)D levels.
Addabbo, Francesco; Ratliff, Brian; Park, Hyeong-Cheon; Kuo, Mei-Chuan; Ungvari, Zoltan; Csiszar, Anna; Ciszar, Anna; Krasnikov, Boris; Krasnikof, Boris; Sodhi, Komal; Zhang, Fung; Nasjletti, Alberto; Goligorsky, Michael S
2009-01-01
Endothelial cell dysfunction is associated with bioavailable nitric oxide deficiency and an excessive generation of reactive oxygen species. We modeled this condition by chronically inhibiting nitric oxide generation with subpressor doses of N(G)-monomethyl-L-arginine (L-NMMA) in C57B6 and Tie-2/green fluorescent protein mouse strains. L-NMMA-treated mice exhibited a slight reduction in vasorelaxation ability, as well as detectable abnormalities in soluble adhesion molecules (soluble intercellular adhesion molecule-1 and vascular cellular adhesion molecule-1, and matrix metalloproteinase 9), which represent surrogate indicators of endothelial dysfunction. Proteomic analysis of the isolated microvasculature using 2-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy revealed abnormal expression of a cluster of mitochondrial enzymes, which was confirmed using immunodetection. Aconitase-2 and enoyl-CoA-hydratase-1 expression levels were decreased in L-NMMA-treated animals; this phenotype was absent in nitric oxide synthase-1 and -3 knockout mice. Depletion of aconitase-2 and enoyl-CoA-hydratase-1 resulted in the inhibition of the Krebs cycle and enhanced pyruvate shunting toward the glycolytic pathway. To assess mitochondrial mass in vivo, co-localization of green fluorescent protein and MitoTracker fluorescence was detected by intravital microscopy. Quantitative analysis of fluorescence intensity showed that L-NMMA-treated animals exhibited lower fluorescence of MitoTracker in microvascular endothelia as a result of reduced mitochondrial mass. These findings provide conclusive and unbiased evidence that mitochondriopathy represents an early manifestation of endothelial dysfunction, shifting cell metabolism toward "metabolic hypoxia" through the selective depletion of both aconitase-2 and enoyl-CoA-hydratase-1. These findings may contribute to an early preclinical diagnosis of endothelial dysfunction.
Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon
2014-01-01
Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736
Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction
Musicki, Biljana; Bella, Anthony J.; Bivalacqua, Trinity J.; Davies, Kelvin P.; DiSanto, Michael E.; Gonzalez-Cadavid, Nestor F.; Hannan, Johanna L.; Kim, Noel N.; Podlasek, Carol A.; Wingard, Christopher J.; Burnett, Arthur L.
2016-01-01
Introduction Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. Aim This study aims to provide scientific evidence for the link between CVMD and ED. Methods In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. Results A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). Conclusion Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions. PMID:26646025
Deng, Wensheng; Zhu, Yiming; Lin, Jiayun; Zheng, Lei; Zhang, Chihao; Luo, Meng
2017-07-01
Epoxyeicostrienoic acids (EETs) are arachidonic acid derived meditators which are catalyzed by soluble epoxide hydrolase (sEH) to less active dihydroeicostrienoics acids (DHETS). The aim of our study is to investigate the effects of sEH inhibition on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl4 cirrhotic rats. The sEH inhibitor,trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB) was administered to stabilize hepatic EETs by gavage at a dose of 1mg/kg/d. Our results showed that hepatic sEH expression was markedly increased in portal hypertension, and led to a lower ratio of EETs/DHETs which was effectively reversed by t-TUCB administration. t-TUCB significantly decreased portal pressure without significant changes in systemic hemodynamics, which was associated with the attenuation of intrahepatic vascular resistance (IHVR) and liver fibrosis. t-TUCB ameliorated endothelial dysfunction, increased hepatic endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. In addition, t-TUCB significantly reduced alpha-Smooth Muscle Actin (α-SMA) expression and liver fibrosis, which was associated with a decrease in NF-κB signaling. Taken together, inhibition of sEH reduces portal pressure, liver fibrosis and attenuates hepatic endothelial dysfunction in cirrhotic rats. Our results indicate that sEH inhbitors may be useful in the treatment of portal hypertension in patients with cirrhosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Sengupta, Anshuman; Patel, Peysh A; Yuldasheva, Nadira Y; Mughal, Romana S; Galloway, Stacey; Viswambharan, Hema; Walker, Andrew M N; Aziz, Amir; Smith, Jessica; Ali, Noman; Mercer, Ben N; Imrie, Helen; Sukumar, Piruthivi; Wheatcroft, Stephen B; Kearney, Mark T; Cubbon, Richard M
2018-05-15
Reduced systemic insulin signaling promotes endothelial dysfunction and diminished endogenous vascular repair. We asked whether restoration of endothelial insulin receptor expression could rescue this phenotype. Insulin receptor haploinsufficient mice (IRKO) were crossed with mice expressing a human insulin receptor transgene in the endothelium (hIRECO), to produce IRKO-hIRECO progeny. No metabolic differences were noted between IRKO and IRKO-hIRECO in glucose- and insulin-tolerance tests. In contrast with control IRKO littermates, IRKO-hIRECO exhibited normal blood pressure and aortic vasodilatation in response to acetylcholine, comparable to parameters noted in wild-type littermates. These phenotypic changes were associated with enhanced basal- and insulin-stimulated nitric oxide production. IRKO-hIRECO also demonstrated normalized endothelial repair after denuding arterial injury, which was associated with rescued endothelial cell migration in vitro, but not with changes in circulating progenitor populations or culture-derived myeloid angiogenic cells. These data show that restoration of endothelial insulin receptor expression alone is sufficient to prevent the vascular dysfunction caused by systemically reduced insulin signaling.
Hannan, Johanna L; Matsui, Hotaka; Sopko, Nikolai A; Liu, Xiaopu; Weyne, Emmanuel; Albersen, Maarten; Watson, Joseph W; Hoke, Ahmet; Burnett, Arthur L; Bivalacqua, Trinity J
2016-07-08
Axonal injury due to prostatectomy leads to Wallerian degeneration of the cavernous nerve (CN) and erectile dysfunction (ED). Return of potency is dependent on axonal regeneration and reinnervation of the penis. Following CN injury (CNI), RhoA and Rho-associated protein kinase (ROCK) increase in penile endothelial and smooth muscle cells. Previous studies indicate that nerve regeneration is hampered by activation of RhoA/ROCK pathway. We evaluated the role of RhoA/ROCK pathway in CN regulation following CNI using a validated rat model. CNI upregulated gene and protein expression of RhoA/ROCK and caspase-3 mediated apoptosis in the major pelvic ganglion (MPG). ROCK inhibitor (ROCK-I) prevented upregulation of RhoA/ROCK pathway as well as activation of caspase-3 in the MPG. Following CNI, there was decrease in the dimer to monomer ratio of neuronal nitric oxide synthase (nNOS) protein and lowered NOS activity in the MPG, which were prevented by ROCK-I. CNI lowered intracavernous pressure and impaired non-adrenergic non-cholinergic-mediated relaxation in the penis, consistent with ED. ROCK-I maintained the intracavernous pressure and non-adrenergic non-cholinergic-mediated relaxation in the penis following CNI. These results suggest that activation of RhoA/ROCK pathway mediates caspase-3 dependent apoptosis of nitrergic neurons in the MPG following CNI and that ROCK-I can prevent post-prostatectomy ED.
Mason, R Preston; Dawoud, Hazem; Jacob, Robert F; Sherratt, Samuel C R; Malinski, Tadeusz
2018-07-01
The endothelium exerts many vasoprotective effects that are largely mediated by release of nitric oxide (NO). Endothelial dysfunction represents an early but reversible step in atherosclerosis and is characterized by a reduction in the bioavailability of NO. Previous studies have shown that eicosapentaenoic acid (EPA), an omega-3 fatty acid (O3FA), and statins individually improve endothelial cell function, but their effects in combination have not been tested. Through a series of in vitro experiments, this study evaluated the effects of a combined treatment of EPA and the active metabolite of atorvastatin (ATM) on endothelial cell function under conditions of oxidative stress. Specifically, the comparative and time-dependent effects of these agents on endothelial dysfunction were examined by measuring the levels of NO and peroxynitrite (ONOO - ) released from human umbilical vein endothelial cells (HUVECs). The data suggest that combined treatment with EPA and ATM is beneficial to endothelial function and was unique to EPA and ATM since similar improvements could not be recapitulated by substituting another O3FA docosahexaenoic acid (DHA) or other TG-lowering agents such as fenofibrate, niacin, or gemfibrozil. Comparable beneficial effects were observed when HUVECs were pretreated with EPA and ATM before exposure to oxidative stress. Interestingly, the kinetics of EPA-based protection of endothelial function in response to oxidation were found to be significantly different than those of DHA. Lastly, the beneficial effects on endothelial function generated by combined treatment of EPA and ATM were reproduced when this study was expanded to an ex vivo model utilizing rat glomerular endothelial cells. Taken together, these findings suggest that a combined treatment of EPA and ATM can inhibit endothelial dysfunction that occurs in response to conditions such as hyperglycemia, oxidative stress, and dyslipidemia. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
"Non alcoholic fatty liver disease and eNOS dysfunction in humans".
Persico, Marcello; Masarone, Mario; Damato, Antonio; Ambrosio, Mariateresa; Federico, Alessandro; Rosato, Valerio; Bucci, Tommaso; Carrizzo, Albino; Vecchione, Carmine
2017-03-07
NAFLD is associated to Insulin Resistance (IR). IR is responsible for Endothelial Dysfunction (ED) through the impairment of eNOS function. Although eNOS derangement has been demonstrated in experimental models, no studies have directly shown that eNOS dysfunction is associated with NAFLD in humans. The aim of this study is to investigate eNOS function in NAFLD patients. Fifty-four NAFLD patients were consecutively enrolled. All patients underwent clinical and laboratory evaluation and liver biopsy. Patients were divided into two groups by the presence of NAFL or NASH. We measured vascular reactivity induced by patients' platelets on isolated mice aorta rings. Immunoblot assays for platelet-derived phosphorylated-eNOS (p-eNOS) and immunohistochemistry for hepatic p-eNOS have been performed to evaluate eNOS function in platelets and liver specimens. Flow-mediated-dilation (FMD) was also performed. Data were compared with healthy controls. Twenty-one (38, 8%) patients had NAFL and 33 (61, 7%) NASH. No differences were found between groups and controls except for HOMA and insulin (p < 0.0001). Vascular reactivity demonstrated a reduced function induced from NAFLD platelets as compared with controls (p < 0.001), associated with an impaired p-eNOS in both platelets and liver (p < 0.001). NAFL showed a higher impairment of eNOS phosphorylation in comparison to NASH (p < 0.01). In contrast with what observed in vitro, the vascular response by FMD was worse in NASH as compared with NAFL. Our data showed, for the first time in humans, that NAFLD patients show a marked eNOS dysfunction, which may contribute to a higher CV risk. eNOS dysfunction observed in platelets and liver tissue didn't match with FMD.
Erectile function profiles in men with Peyronie's disease.
Deveci, Serkan; Palese, Michael; Parker, Marilyn; Guhring, Patricia; Mulhall, John P
2006-05-01
In this study we investigated the erectile function status of men presenting with Peyronie's disease. Demographics of patients regarding age, duration of PD, nature of deformity and comorbidities were compared between the patients with PD, with and without erectile dysfunction. Patients with erectile dysfunction underwent dynamic infusion cavernosometry/cavernosography. The hemodynamic profile of patients presenting with combined PD and ED were analyzed and compared between those with onset of ED before and after diagnosis of PD. Of the 222 patients 78 had ED (35%) by self-report at presentation. The mean age of patients with PD and ED was 52 +/- 22 years old. Hypertension (71.5%), hyperlipidemia (60.4%) and smoking (49.2%) were the leading comorbidities in the entire group. Statistically significant differences were found between the groups with and without ED for hypertension (p = 0.02) and cigarette smoking (p = 0.009). Of 222 patients 45 (20%) had ED that predated PD onset (group 1) and 33 (15%) had ED that postdated the onset of PD (group 2). DICC showed normal hemodynamics in 14 of 78 patients (18%), arteriogenic insufficiency in 50 (64%) and corporoveno-occlusive dysfunction in 16 (20%). CVOD was evenly distributed between groups 1 and 2, whereas arteriogenic ED was significantly higher in group 1 (82%). Site specific leak was seen in 4 of 33 (12%), all group 2 patients. Patients in whom ED postdates the onset of PD are more likely to have normal erectile hemodynamics. Site specific leak is an uncommon contributor to PD and is seen only in the patients with PD in whom ED postdated PD onset. The leading vascular etiology of ED in PD is arteriogenic in older patients and those with greater associated comorbidities.
Endothelial dysfunction, vascular disease and stroke: the ARTICO study.
Roquer, J; Segura, T; Serena, J; Castillo, J
2009-01-01
Endothelial dysfunction is a fundamental step in the atherosclerotic disease process. Its presence is a risk factor for the development of clinical events, and may represent a marker of atherothrombotic burden. Also, endothelial dysfunction contributes to enhanced plaque vulnerability, may trigger plaque rupture, and favors thrombus formation. The assessment of endothelial vasomotion is a useful marker of atherosclerotic vascular disease. There are different methods to assess endothelial function: endothelium-dependent vasodilatation brachial flow-mediated dilation, cerebrovascular reactivity to L-arginine, and the determination of some biomarkers such as microalbuminuria, platelet function, and C-reactive protein. Endothelial dysfunction has been observed in stroke patients and has been related to stroke physiopathology, stroke subtypes, clinical severity and outcome. Resting ankle-brachial index (ABI) is also considered an indicator of generalized atherosclerosis, and a low ABI is associated with an increase in stroke incidence in the elderly. Despite all these data, there are no studies analyzing the predictive value of ABI for new cardiovascular events in patients after suffering an acute ischemic stroke. ARTICO is an ongoing prospective, observational, multicenter study being performed in 50 Spanish hospitals. The aim of the ARTICO study is to evaluate the prognostic value of a pathological ABI (
Shen, Yu; Ward, Natalie C; Hodgson, Jonathan M; Puddey, Ian B; Wang, Yutang; Zhang, Di; Maghzal, Ghassan J; Stocker, Roland; Croft, Kevin D
2013-12-01
Several lines of evidence indicate that quercetin, a polyphenol derived in the diet from fruit and vegetables, contributes to cardiovascular health. We aimed to investigate the effects of dietary quercetin on endothelial function and atherosclerosis in mice fed a high-fat diet. Wild-type C57BL/6 (WT) and apolipoprotein E gene knockout (ApoE(-/-)) mice were fed: (i) a high-fat diet (HFD) or (ii) a HFD supplemented with 0.05% w/w quercetin (HFD+Q), for 14 weeks. Compared with animals fed HFD, HFD+Q attenuated atherosclerosis in ApoE(-/-) mice. Treatment with the HFD+Q significantly improved endothelium-dependent relaxation of aortic rings isolated from WT but not ApoE(-/-) mice and attenuated hypochlorous acid-induced endothelial dysfunction in aortic rings of both WT and ApoE(-/-) mice. Mechanistic studies revealed that HFD+Q significantly improved plasma F2-isoprostanes, 24h urinary nitrite, and endothelial nitric oxide synthase activity, and increased heme oxygenase-1 (HO-1) protein expression in the aortas of both WT and ApoE(-/-) mice (P<0.05). HFD+Q also resulted in small changes in plasma cholesterol (P<0.05 in WT) and plasma triacylglycerols (P<0.05 in ApoE (-/-)mice). In a separate experiment, quercetin did not protect against hypochlorite-induced endothelial dysfunction in arteries obtained from heterozygous HO-1 gene knockout mice with low expression of HO-1 protein. Quercetin protects mice fed a HFD against oxidant-induced endothelial dysfunction and ApoE(-/-) mice against atherosclerosis. These effects are associated with improvements in nitric oxide bioavailability and are critically related to arterial induction of HO-1. © 2013 Elsevier Inc. All rights reserved.
Sharma, Shilpa; Mehta, Puja K; Arsanjani, Reza; Sedlak, Tara; Hobel, Zachary; Shufelt, Chrisandra; Jones, Erika; Kligfield, Paul; Mortara, David; Laks, Michael; Diniz, Marcio; Bairey Merz, C Noel
2018-06-19
The utility of exercise-induced ST-segment depression for diagnosing ischemic heart disease (IHD) in women is unclear. Based on evidence that IHD pathophysiology in women involves coronary vascular dysfunction, we hypothesized that coronary vascular dysfunction contributes to exercise electrocardiography (Ex-ECG) ST-depression in the absence of obstructive CAD, so-called "false positive" results. We tested our hypothesis in a pilot study evaluating the relationship between peripheral vascular endothelial function and Ex-ECG. Twenty-nine asymptomatic women without cardiac risk factors underwent maximal Bruce protocol exercise treadmill testing and peripheral endothelial function assessment using peripheral arterial tonometry (Itamar EndoPAT 2000) to measure reactive hyperemia index (RHI). The relationship between RHI and Ex-ECG ST-segment depression was evaluated using logistic regression and differences in subgroups using two-tailed t-tests. Mean age was 54 ± 7 years, body mass index 25 ± 4 kg/m 2 , and RHI 2.51 ± 0.66. Three women (10%) had RHI less than 1.68, consistent with abnormal peripheral endothelial function, while 18 women (62%) met criteria for a positive Ex-ECG based on ST-segment depression in contiguous leads. Women with and without ST-segment depression had similar baseline and exercise vital signs, metabolic equivalents (METS) achieved, and RHI (all p>0.05). RHI did not predict ST-segment depression. Our pilot study demonstrates a high prevalence of exercise-induced ST-segment depression in asymptomatic, middle-aged, overweight women. Peripheral vascular endothelial dysfunction did not predict Ex-ECG ST-segment depression. Further work is needed to investigate the utility of vascular endothelial testing and Ex-ECG for IHD diagnostic and management purposes in women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
La Favor, Justin D.; Dubis, Gabriel S.; Yan, Huimin; White, Joseph D.; Nelson, Margaret A.M.; Anderson, Ethan J.; Hickner, Robert C.
2016-01-01
Objective The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and to determine the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results Young, sedentary men and women were divided into lean (BMI 18–25; n=14), intermediate (BMI 28–32.5; n=13), and obese (BMI 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2O2) and superoxide levels in the vastus lateralis of obese compared to both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase (Nox) inhibitor, lowered (normalized) H2O2 and superoxide levels and reversed microvascular endothelial dysfunction in obese subjects. Following 8-weeks of exercise, H2O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the Nox subunits p22phox, p47phox, and p67phox were increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions This study implicates Nox as a source of excessive ROS production in skeletal muscle of obese individuals, and links excessive Nox derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these maladies. PMID:27765769
Petersen, Chrissa; Bharat, Divya; Cutler, Brett Ronald; Gholami, Samira; Denetso, Christopher; Mueller, Jennifer Ellen; Cho, Jae Min; Kim, Ji-Seok; Symons, J David; Anandh Babu, Pon Velayutham
2018-07-15
Cardiovascular disease is 2-4-fold more prevalent in patients with diabetes. Human studies support the cardiovascular benefits of strawberry consumption but the effects of strawberry on diabetic vasculature are unknown. We tested the hypothesis that dietary strawberry supplementation attenuates vascular inflammation and dysfunction in diabetic mice. Seven-week-old diabetic db/db mice that consumed standard diet (db/db) or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for ten weeks were compared to non-diabetic control mice (db/+). Indices of vascular inflammation and dysfunction were measured. Endothelial cells (ECs) were isolated from the vasculature to determine the influence of strawberry on them. The effect of metabolites of strawberry on endothelial inflammation was determined by incubating mouse aortic ECs (MAECs) with ±5% serum, obtained from strawberry fed mice (metabolites serum) or standard diet fed mice (control serum) ± 25 mM glucose and 100 μM palmitate. db/db mice exhibited an increased monocyte binding to vessel, elevated blood pressure, and reduced endothelial-dependent vasorelaxation compared with db/+ mice but each defect was attenuated in db/db + SB mice. The elevation of inflammatory molecules, NOX2 and inhibitor-κB kinase observed in ECs from db/db vs. db/+ mice was suppressed in db/db + SB mice. Glucose and palmitate increased endothelial inflammation in MAECs but were normalized by co-incubation with metabolites serum. Dietary supplementation of strawberry attenuates indices of vascular inflammation and dysfunction in diabetic db/db mice. The effect of strawberry on vasculature is endothelial-dependent and possibly mediated through their circulating metabolites. Strawberry might complement conventional therapies to improve vascular complications in diabetics. Copyright © 2017 Elsevier B.V. All rights reserved.
Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction.
Liu, Chang; Yao, Mu-Di; Li, Chao-Peng; Shan, Kun; Yang, Hong; Wang, Jia-Jian; Liu, Ban; Li, Xiu-Miao; Yao, Jin; Jiang, Qin; Yan, Biao
2017-01-01
Vascular dysfunction is a hallmark of ischemic, cancer, and inflammatory diseases, contributing to disease progression. Circular RNAs (circRNAs) are endogenous non-coding RNAs, which have been reported to be abnormally expressed in many human diseases. In this study, we used retinal vasculature to determine the role of circular RNA in vascular dysfunction. We revealed that cZNF609 was significantly up-regulated upon high glucose and hypoxia stress in vivo and in vitro . cZNF609 silencing decreased retinal vessel loss and suppressed pathological angiogenesis in vivo . cZNF609 silencing increased endothelial cell migration and tube formation, and protected endothelial cell against oxidative stress and hypoxia stress in vitro . By contrast, transgenic overexpression of cZNF609 showed an opposite effects. cZNF609 acted as an endogenous miR-615-5p sponge to sequester and inhibit miR-615-5p activity, which led to increased MEF2A expression. MEF2A overexpression could rescue cZNF609 silencing-mediated effects on endothelial cell migration, tube formation, and apoptosis. Moreover, dysregulated cZNF609 expression was detected in the clinical samples of the patients with diabetes, hypertension, and coronary artery disease. Intervention of cZNF609 expression is promising therapy for vascular dysfunction.
Koh, Kwang Kon; Han, Seung Hwan; Oh, Pyung Chun; Shin, Eak Kyun; Quon, Michael J.
2010-01-01
Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by ~30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin–angiotensin–aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin–angiotensin–aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance. PMID:19800624
García, Néstor H.; Juncos, Luis I.
2006-01-01
The most important goal of antihypertensive therapy is to prevent the complications associated with hypertension (stroke, myocardial infarction, end-stage renal disease, etc). For this, secondary targets such as left ventricular hypertrophy, proteinuria, dementia, and other signs of hypertension-induced organ damage help the physician to assess risks and monitor treatment efficacy. New treatment targets may be arising, however. One such target may be endothelial dysfunction. In effect, endothelial dysfunction not only may precede the elevation of blood pressure, but may also pave the way to conditions often associated with hypertension, such as diabetes, arteriosclerosis, microalbuminuria, congestive heart failure, and tissue hypertrophy. Because inflammation often accompanies endothelial dysfunction, approaches to counteract inflammation are now being evaluated. For this, antagonists of the renin-angiotensin-aldosterone system, statins, and beta blockers are all being tested. All of these agents seem to prevent or delay the induction of proinflammatory molecules aside from, and in addition to, their specific effects on blood pressure. The focus of this review is to update some of the animal and human research showing that hypertension sets off an inflammatory state and also to consider some of the anti-inflammatory approaches that may prevent the development of endothelial dysfunction, and the subsequent renal and cardiovascular damage.
Farb, Melissa G.; Tiwari, Stephanie; Karki, Shakun; Ngo, Doan TM; Carmine, Brian; Hess, Donald T.; Zuriaga, Maria A.; Walsh, Kenneth; Fetterman, Jessica L.; Hamburg, Naomi M.; Vita, Joseph A.; Apovian, Caroline M.; Gokce, Noyan
2013-01-01
Objective The purpose of this study was to determine whether cyclooxygenase inhibition improves vascular dysfunction of adipose microvessels from obese humans. Design and Methods In 20 obese subjects (age 37±12 yrs, BMI 47±8 kg/m2) we collected subcutaneous and visceral fat during bariatric surgery and characterized adipose depot-specific gene expression, endothelial cell phenotype, and microvascular function. Vasomotor function was assessed in response to endothelium-dependent agonists using videomicroscopy of small arterioles from fat. Results Arterioles from visceral fat exhibited impaired endothelium-dependent, acetylcholine-mediated vasodilation, compared to the subcutaneous depot (p<0.001). Expression of mRNA transcripts relevant to the cyclooxygenase pathway were upregulated in visceral compared to subcutaneous fat. Pharmacological inhibition of cyclooxygenase with indomethacin improved endothelium-dependent vasodilator function of arterioles from visceral fat by 2-fold (p=0.01), whereas indomethacin had no effect in the subcutaneous depot. Indomethacin increased activation via serine-1177 phosphorylation of endothelial nitric oxide synthase in response to acetylcholine in endothelial cells from visceral fat. Inhibition of endothelial nitric oxide synthase with Nω-nitro-L-arginine methyl ester abrogated the effects of cyclooxygenase-inhibition suggesting that vascular actions of indomethacin were related to increased nitric oxide bioavailability. Conclusions Our findings suggest that cyclooxygenase-mediated vasoconstrictor prostanoids partly contribute to endothelial dysfunction of visceral adipose arterioles in human obesity. PMID:23640904
Baker, Nathaniel L; Hunt, Kelly J; Stevens, Danielle R; Jarai, Gabor; Rosen, Glenn D; Klein, Richard L; Virella, Gabriel; Lopes-Virella, Maria F
2018-01-01
To determine whether biomarkers of inflammation and endothelial dysfunction are associated with the development of kidney dysfunction and the time frame of their association. Biomarkers were measured at four time points during 28 years of treatment and follow-up in patients with type 1 diabetes in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) cohort. In addition to traditional biomarkers of inflammation (C-reactive protein and fibrinogen), we measured interleukin-6 (IL-6) and soluble tumor necrosis factor receptors 1 and 2 (sTNFR-1/2), markers of endothelial dysfunction (soluble intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin [sE-selectin]), and fibrinolysis (total and active plasminogen activator inhibitor-1 [PAI-1]). Renal outcomes were defined as progression to incident chronic kidney disease (stage 3 or more severe) or macroalbuminuria (albumin excretion rate ≥300 mg/24 h). Prospective multivariate event-time analyses were used to determine the association of each biomarker with each subsequent event within prespecified intervals (3-year and 10-year windows). Multivariate event-time models indicated that several markers of inflammation (sTNFR-1/2), endothelial dysfunction (sE-selectin), and clotting/fibrinolysis (fibrinogen and PAI-1) are significantly associated with subsequent development of kidney dysfunction. Although some markers showed variations in the associations between the follow-up windows examined, the results indicate that biomarkers (sTNFR-1/2, sE-selectin, PAI-1, and fibrinogen) are associated with progression to chronic kidney disease in both the 3-year and the 10-year windows. Plasma markers of inflammation, endothelial dysfunction, and clotting/fibrinolysis are associated with progression to kidney dysfunction in type 1 diabetes during both short-term and long-term follow-up. © 2017 by the American Diabetes Association.
Acute and subacute effects of EV iron sucrose on endothelial functions in hemodialysis patients.
Ozkurt, Sultan; Ozenc, Fatma; Degirmenci, Nevbahar Akcar; Temiz, Gokhan; Musmul, Ahmet; Sahin, Garip; Yalcin, Ahmet Ugur
2012-01-01
Iron support is an important component of treatment of anemia in hemodialysis (HD) patients. However, there are concerns about endovenous (EV) iron therapy that may cause endothelial dysfunction (ED) by increasing oxidative stress (OS) and lead to cardiovascular events. In this study, we aimed to evaluate the effects of high and repeated doses of EV iron sucrose on endothelial functions in acute and subacute phases. We included 15 HD patients to our study. There were 16 patients with iron deficiency but normal kidney functions in control group. We also evaluated endothelium-dependent vasodilatation (EDV) and nitroglycerin-induced vasodilatation (NIV) from the brachial artery by ultrasonography at the beginning of the study, and then 200 mg EV iron sucrose was given initially to both groups for 1 h in 250 cc 0.9% saline and 4 h after the end of the infusion (acute phase) sonographic vasodilatation parameters were measured from brachial artery. These measurements and laboratory tests were repeated 1 week after the end of a total 1000 mg EV iron sucrose replacement (200 mg/week). There was a statistically significant increase in hemoglobin and ferritin levels after the EV iron sucrose therapy in both control and patient groups. EDV values in the HD group were significantly lower than that in the control group before therapy (6.25% vs. 10.53%, p < 0.05). EV iron sucrose therapy did not alter EDV and NIV values at the 4th hour and 6th week in both control and patient groups. According to our study, compared with the control group with normal kidney functions, HD patients had impaired endothelial functions. However, in HD patients, high and repeated doses of EV iron sucrose do not have deleterious effects on endothelial functions at acute and subacute phases and can be used safely in that patient group.
Safety of cornea and iris in ocular surgery with 355-nm lasers.
Wang, Jenny; Chung, Jae Lim; Schuele, Georg; Vankov, Alexander; Dalal, Roopa; Wiltberger, Michael; Palanker, Daniel
2015-09-01
A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay. Single-pulse damage to the iris was evaluated on porcine eyes using live/dead staining. In live rabbits, the cumulative median effective dose (ED50) for corneal damage was 231 J/cm2, as seen by lesion observation. Appearance of endothelial damage in live/dead staining or apoptosis occurred at higher radiant exposure of 287 J/cm2. On enucleated rabbit and porcine corneas, ED50 was 87 and 52 J/cm2, respectively, by MVL, and 241 and 160 J/cm2 for endothelial damage. In human eyes, ED50 for MVL was 110 J/cm2 and endothelial damage at 453 J/cm2. Single-pulse iris damage occurred at ED 50 of 208 mJ/cm2. These values determine the energy permitted for surgical patterns and can guide development of ophthalmic laser systems. Lower damage threshold in corneas of enucleated eyes versus live rabbits is noted for future safety evaluation.
Schmidt, Frank P; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas
2013-12-01
Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of chronic noise exposure with cardiovascular disease.
Schmidt, Frank P.; Basner, Mathias; Kröger, Gunnar; Weck, Stefanie; Schnorbus, Boris; Muttray, Axel; Sariyar, Murat; Binder, Harald; Gori, Tommaso; Warnholtz, Ascan; Münzel, Thomas
2013-01-01
Aims Aircraft noise disturbs sleep, and long-term exposure has been shown to be associated with increases in the prevalence of hypertension and an overall increased risk for myocardial infarction. The exact mechanisms responsible for these cardiovascular effects remain unclear. Methods and results We performed a blinded field study in 75 healthy volunteers (mean age 26 years), who were exposed at home, in random order, to one control pattern (no noise) and two different noise scenarios [30 or 60 aircraft noise events per night with an average maximum sound pressure level (SPL) of 60 dB(A)] for one night each. We performed polygraphy during each study night. Noise caused a worsening in sleep quality (P < 0.0001). Noise60, corresponding to equivalent continuous SPLs of 46.3 dB (Leq) and representing environmental noise levels associated with increased cardiovascular events, caused a blunting in FMD (P = 0.016). As well, although a direct comparison among the FMD values in the noise groups (control: 10.4 ± 3.8%; Noise30: 9.7 ± 4.1%; Noise60: 9.5 ± 4.3%, P = 0.052) did not reach significance, a monotone dose-dependent effect of noise level on FMD was shown (P = 0.020). Finally, there was a priming effect of noise, i.e. the blunting in FMD was particularly evident when subjects were exposed first to 30 and then to 60 noise events (P = 0.006). Noise-induced endothelial dysfunction (ED) was reversed by the administration of Vitamin C (P = 0.0171). Morning adrenaline concentration increased from 28.3 ± 10.9 to 33.2 ± 16.6 and 34.1 ± 19.3 ng/L (P = 0.0099). Pulse transit time, reflecting arterial stiffness, was also shorter after exposure to noise (P = 0.003). Conclusion In healthy adults, acute nighttime aircraft noise exposure dose-dependently impairs endothelial function and stimulates adrenaline release. Noise-induced ED may be in part due to increased production in reactive oxygen species and may thus be one mechanism contributing to the observed association of chronic noise exposure with cardiovascular disease. PMID:23821397
Draganski, Andrew; Tar, Moses T; Villegas, Guillermo; Friedman, Joel M; Davies, Kelvin P
2018-05-01
Curcumin, a naturally occurring anti-inflammatory compound, has shown promise in pre-clinical studies to treat erectile dysfunction (ED) associated with type-1 diabetes. However, poor bioavailability following oral administration limits its efficacy. The present study evaluated the potential of topical application of curcumin-loaded nanoparticles (curc-np) to treat ED in a rat model of type-2 diabetes (T2D). Determine if topical application of curc-np treats ED in a T2D rat model and modulates expression of inflammatory markers. Curc-np (4 mg curcumin) or blank nanoparticles were applied every 2 days for 2 weeks to the shaved abdomen of 20-week-old Zucker diabetic fatty male rats (N = 5 per group). Lean Zucker diabetic fatty male rat controls were treated with blank nanoparticles (N = 5). Penetration of nanoparticles and curcumin release were confirmed by 2-photon fluorescence microscopy and histology. Erectile function was determined by measuring intracorporal pressure (ICP) normalized to systemic blood pressure (ICP/BP) following cavernous nerve stimulation. Corporal tissue was excised and reverse transcription and quantitative polymerase chain reaction used to determine expression of the following markers: nuclear factor (NF)-κβ, NF-κβ-activating protein (Nkap), NF erythroid 2-related factor-2, Kelch-like enoyl-CoA hydratase-associated protein-1, heme oxygenase-1 (HO-1), variable coding sequence-A1, phosphodiesterase-5, endothelial and neuronal nitric oxide synthase, Ras homolog gene family member A, and Rho-associated coiled-coil containing protein kinases-1 and -2. Erectile function by determination of ICP/BP and expression of molecular markers in corporal tissue by RT-qPCR. Nanoparticles penetrated the abdominal epidermis and persisted in hair follicles for 24 hours. Curc-np-treated animals exhibited higher average ICP/BP than animals treated with blank nanoparticles at all levels of stimulation and this was statistically significant (P < .05) at 0.75 mA. In corporal tissue, Nkap expression decreased 60% and heme oxygenase-1 expression increased 60% in curc-np- compared to blank nanoparticle-treated animals. ICP/BP values inversely correlated with Nkap and directly correlated with HO-1 expression levels. These studies demonstrate the potential for topical application of curc-np as a treatment for ED in T2D patients. The T2D animal model of ED represents a more prevalent disease than the more commonly studied type-1 diabetes model. Although there is improved erectile response in curc-np-treated animals, only at the lower levels of stimulation (0.75 mA) was this significant compared to the blank nanoparticle-treated animals, suggesting more studies are needed to optimize protocols and evaluate toxicity. Topical application of curc-np to a rat model of T2D can systemically deliver curcumin, treat ED, and modulate corporal expression of inflammatory markers. Draganski A, Tar MT, Villegas G, et al. Topically Applied Curcumin-Loaded Nanoparticles Treat Erectile Dysfunction in a Rat Model of Type-2 Diabetes. J Sex Med 2018;15:645-653. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Kim, Joohwan; Lee, Kyu-Sun; Kim, Ji-Hee; Lee, Dong-Keon; Park, Minsik; Choi, Seunghwan; Park, Wonjin; Kim, Suji; Choi, Yoon Kyung; Hwang, Jong Yun; Choe, Jongseon; Won, Moo-Ho; Jeoung, Dooil; Lee, Hansoo; Ryoo, Sungwoo; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong
2017-03-01
Preeclampsia is an inflammatory disease with endothelial cell dysfunction that occurs via decreased endothelial nitric oxide synthase/nitric oxide (eNOS/NO) activity. Aspirin reduces the incidence of hypertensive pregnancy complications. However, the underlying mechanism has not been clearly explained. Here, we found that tumor necrosis factor (TNF)-α, microRNA (miR)-155, and eNOS levels as well as endothelial redox phenotype were differentially regulated in preeclamptic patients, implying the involvement of TNF-α- and redox signal-mediated miR-155 biogenesis and eNOS downregulation in the pathogenesis of preeclampsia. Aspirin prevented the TNF-α-mediated increase in miR-155 biogenesis and decreases in eNOS expression and NO/cGMP production in cultured human umbilical vein endothelial cells (HUVECs). Similar effects of aspirin were also observed in HUVECs treated with H 2 O 2 . The preventive effects of aspirin was associated with the inhibition of nuclear factor-κB (NF-κB)-dependent MIR155HG (miR-155 host gene) expression. Aspirin recovered the TNF-α-mediated decrease in wild-type, but not mutant, eNOS 3'-untranslated region reporter activity, whose effect was blocked by miR-155 mimic. Moreover, aspirin prevented TNF-α-mediated endothelial cell dysfunction associated with impaired vasorelaxation, angiogenesis, and trophoblast invasion, and the preventive effects were blocked by miR-155 mimic or an eNOS inhibitor. Aspirin rescued TNF-α-mediated eNOS downregulation coupled with endothelial dysfunction by inhibiting NF-κB-dependent transcriptional miR-155 biogenesis. Thus, the redox-sensitive NF-κB/miR-155/eNOS axis may be crucial in the pathogenesis of vascular disorders including preeclampsia. Copyright © 2017 Elsevier Inc. All rights reserved.
Nebivolol: impact on cardiac and endothelial function and clinical utility.
Toblli, Jorge Eduardo; DiGennaro, Federico; Giani, Jorge Fernando; Dominici, Fernando Pablo
2012-01-01
Endothelial dysfunction is a systemic pathological state of the endothelium characterized by a reduction in the bioavailability of vasodilators, essentially nitric oxide, leading to impaired endothelium-dependent vasodilation, as well as disarrangement in vascular wall metabolism and function. One of the key factors in endothelial dysfunction is overproduction of reactive oxygen species which participate in the development of hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and stroke. Because impaired endothelial activity is believed to have a major causal role in the pathophysiology of vascular disease, hypertension, and heart failure, therapeutic agents which modify this condition are of clinical interest. Nebivolol is a third-generation β-blocker with high selectivity for β1-adrenergic receptors and causes vasodilation by interaction with the endothelial L-arginine/ nitric oxide pathway. This dual mechanism of action underscores several hemodynamic qualities of nebivolol, which include reductions in heart rate and blood pressure and improvements in systolic and diastolic function. Although nebivolol reduces blood pressure to a degree similar to that of conventional β-blockers and other types of antihypertensive drugs, it may have advantages in populations with difficult-to-treat hypertension, such as patients with heart failure along with other comorbidities, like diabetes and obesity, and elderly patients in whom nitric oxide-mediated endothelial dysfunction may be more pronounced. Furthermore, recent data indicate that nebivolol appears to be a cost-effective treatment for elderly patients with heart failure compared with standard care. Thus, nebivolol is an effective and well tolerated agent with benefits above those of traditional β-blockers due to its influence on nitric oxide release, which give it singular hemodynamic effects, cardioprotective activity, and a good tolerability profile. This paper reviews the pharmacology structure and properties of nebivolol, focusing on endothelial dysfunction, clinical utility, comparative efficacy, side effects, and quality of life in general with respect to the other antihypertensive agents.
Role of Nanotechnology in Erectile Dysfunction Treatment.
Wang, Alice Y; Podlasek, Carol A
2017-01-01
The biological importance of nanotechnology-based delivery vehicles for in vivo tissue regeneration is gaining acceptance by the medical community; however, its relevance and incorporation into the treatment of sexual dysfunction are evolving and have not been well evaluated. To provide scientific evidence examining the use of state-of-the-art nanotechnology-based delivery methodology in the treatment of erectile dysfunction (ED) in animal models and in patients. This review assessed the current basic science literature examining the role of nanotechnology-based delivery vehicles in the development of potential ED therapies. There are four primary areas where nanotechnology has been applied for ED treatment: (i) topical delivery of drugs for on-demand erectile function, (ii) injectable gels into the penis to prevent morphologic changes after prostatectomy, (iii) hydrogels to promote cavernous nerve regeneration or neuroprotection, and (iv) encapsulation of drugs to increase erectile function (primarily of phosphodiesterase type 5 inhibitors). Basic science studies provide evidence for a significant and evolving role for nanotechnology in the development of therapies for ED and suggest that properly administered nano-based therapies might be advantageous for treating male sexual dysfunction. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Prevalence and risk factors of female sexual dysfunction among healthcare personnel in Malaysia.
Grewal, Gurdeep Singh; Gill, Jesjeet Singh; Sidi, Hatta; Gurpreet, Kaur; Jambunathan, Stephen Thevanathan; Suffee, Nusrat J; Midin, Marhani; Nik Jaafar, Nik Ruzyanei; Das, Srijit
2014-01-01
To determine the prevalence and risk factors of female sexual dysfunction (FSD) among healthcare personnel in selected healthcare facilities in Malaysia. This was a cross-sectional study carried out at three large healthcare facilities that were selected by convenience sampling. Within each facility, stratified random sampling was used to select suitable candidates to participate in the study (n=201). Validated questionnaires were used to assess depression, anxiety, sexual function in women and erectile dysfunction (ED) in their partners. The prevalence of FSD was 5.5%. Women with sexual dysfunction were more likely to be married longer (OR=4.08; 95% CI; 1.15-4.50), had lower frequency of sexual intercourse (OR=5.00; 95% C; 1.05-23.76) and had a spouse with ED (OR=24.35; 95% CI; 4.55-130.37). Multivariate analysis showed that ED was the strongest predictor for FSD (AOR=27.30; 95% CI; 4.706-159.08). One in eighteen female healthcare personnel suffered from FSD and presence of ED in the partner strongly impacted her sexual function, negatively. The findings highlight the importance of including the male partner in clinical assessment of FSD. Copyright © 2014 Elsevier Inc. All rights reserved.
Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen
2015-01-01
ABSTRACT Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus reflex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED. PMID:26689522
Lu, Zhaoyu; Lu, Fuhua; Zheng, Yanqun; Zeng, Yuqun; Zou, Chuan; Liu, Xusheng
2016-01-01
To investigate the effects of grape seed proanthocyanidin extract (GSPE) on indoxyl sulfate-induced Human Umbilical Vein Endothelial Cells (HUVECs) injury in vitro and study its mechanism. HUVECs were incubated with indoxyl sulfate at concentrations in the range found in uremic patients. Then we determined the effect of indoxyl sulfate on endothelial phenotype, endothelial function, ROS (reactive oxygen species), cell apoptosis and mitochondrial function. In addition, we detected whether GSPE can suppress the injury of HUVECs induced by indoxyl sulfate and probe the mechanism underlying the protective effects of GSPE by analyzing mitochondrial dysfunction. GSPE treatment significantly attenuated indoxyl sulfate-induced HVUECs injury in a dose- and time-dependent manner. GSPE-enhanced eNOS and VE-cadherin expression, inhibited intracellular ROS level and cell apoptosis, adjust mitochondrial membrane potential and reduced 8-hydroxy-desoxyguanosine (8-OHdG) level induced by indoxyl sulfate. These results suggest that GSPE prevents HUVECs from indoxyl sulfate-induced injury by ameliorating mitochondrial dysfunction and may be a promising agent for treating uremia toxin-induced injury.
RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Kun; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing
Retinal microvascular abnormality is an important pathological feature of diabetic retinopathy. Herein, we report the role of lncRNA-RNCR3 in diabetes mellitus-induced retinal microvascular abnormalities. We show that RNCR3 is significantly up-regulated upon high glucose stress in vivo and in vitro. RNCR3 knockdown alleviates retinal vascular dysfunction in vivo, as shown by decreased acellular capillaries, decreased vascular leakage, and reduced inflammatory response. RNCR3 knockdown decreases retinal endothelial cell proliferation, and reduces cell migration and tube formation in vitro. RNCR3 regulates endothelial cell function through RNCR3/KLF2/miR-185-5p regulatory network. RNCR3 inhibition may be a treatment option for the prevention of diabetes mellitus-induced retinal microvascular abnormalities. - Highlights:more » • RNCR3 expression is significantly up-regulated upon high glucose stress. • RNCR3 knockdown alleviates retinal vascular dysfunction in vivo. • RNCR3 regulates retinal endothelial cell function in vitro. • RNCR3 regulates retinal endothelial cell function via RNCR3/KLF2/miR-185-5p pathway.« less
van Bussel, Bas C T; Henry, Ronald M A; Ferreira, Isabel; van Greevenbroek, Marleen M J; van der Kallen, Carla J H; Twisk, Jos W R; Feskens, Edith J M; Schalkwijk, Casper G; Stehouwer, Coen D A
2015-03-01
A healthy diet rich in fish, fruit, and vegetables, but moderate in alcohol and low in dairy products and meat, has been associated with a lower rate of incident cardiovascular disease (CVD). The underlying mechanisms, however, remain unclear. Endothelial dysfunction and low-grade inflammation play important roles in CVD. A healthy diet might modify these phenomena. We investigated the associations between the above food groups and overall biomarker scores of endothelial dysfunction and low-grade inflammation in a 7-y longitudinal study. Using longitudinal data from 557 participants at increased CVD risk from the CODAM (Cohort on Diabetes and Atherosclerosis Maastricht) Study, we assessed diet intake by food-frequency questionnaire and measured plasma biomarkers of endothelial dysfunction [von Willebrand factor, soluble vascular cell adhesion molecule 1, soluble endothelial selectin, soluble thrombomodulin, soluble intercellular adhesion molecule 1 (sICAM-1)] and low-grade inflammation [C-reactive protein, serum amyloid A, interleukin (IL)-6, IL-8, tumor necrosis factor α, and sICAM-1]. At baseline, participants were aged 59.6 ± 6.9 y. Measurements were performed then and after 7 y. Biomarkers were combined into overall scores (sum of z scores; higher scores indicating worse function). Longitudinal data were analyzed with generalized estimating equations and adjusted for sex, age, glucose metabolism, energy intake, body mass index, physical activity, alcohol consumption, and smoking. Higher consumption of fish (per 100 g/wk), but not total consumption of vegetables, fruit, alcohol-containing beverages, dairy products, or meat, was associated with a lower overall endothelial dysfunction score over 7 y (β: -0.027; 95% CI: -0.051, -0.004). No associations were observed with the overall low-grade inflammation score. Further food component analyses indicated that consumption of more lean fish (per 100 g/wk) and raw vegetables (per 100 g/d), and fewer high-fat dairy products (per 100 g/d) was associated with less endothelial dysfunction [(β: -0.038; 95% CI: -0.072, -0.005), (β: -0.095; 95% CI: -0.191, 0.000), and (β: -0.070; 95% CI: -0.131, -0.009), respectively]. Consumption of more fresh fruit (per 100 g/d), wine (per 100 mL/wk), and poultry (per 100 g/d), and fewer high-fat dairy products (per 100 g/d) was associated with less low-grade inflammation [(β: -0.074; 95% CI: -0.133, -0.015), (β:-0.006; 95% CI: -0.013, 0.001), (β:-0.247; 95% CI: -0.479, -0.014), and (β:-0.100; 95% CI: -0.182, -0.019), respectively]. These data suggest that the dietary modification of endothelial dysfunction and low-grade inflammation, processes that are important in atherothrombosis, is possible. © 2015 American Society for Nutrition.
Current Diagnosis and Management of Erectile Dysfunction
Pastuszak, Alexander W.
2015-01-01
Erectile dysfunction (ED) affects a growing number of men in the USA and abroad, with significant impacts on sexual function and overall quality of life. The risk factors for ED are numerous and include a strong link to cardiovascular disease, such that men with ED should be screened for cardiovascular disease. The evaluation of men presenting with ED includes a comprehensive history and physical exam to aid in the identification of comorbidities as well as laboratory testing to evaluate hormone and lipid levels and sugar metabolism. Adjunct studies are also available, though their utility is often limited to specific subtypes of ED. Once the etiology of ED is established, treatment can be initiated using appropriate medical therapies, including phosphodiesterase type 5 (PDE5) inhibitors, and transurethral or intracavernosal therapies, with surgical intervention via revascularization or penile prosthesis placement in men demonstrating a lack of response to medical therapy. In all cases of ED, a psychogenic component is present and referral for psychological intervention with or without medical therapy should be considered. PMID:25878565
Identification of active and quiescent adipose vascular stromal cells.
Lin, Guiting; Xin, Zhongcheng; Zhang, Haiyang; Banie, Lia; Wang, Guifang; Qiu, Xuefeng; Ning, Hongxiu; Lue, Tom F; Lin, Ching-Shwun
2012-02-01
Recent studies have demonstrated the existence of both active and quiescent stem cells in bone marrow, hair follicle and intestine. We attempted to identify active and quiescent vascular stromal cells (VSC) in adipose tissue. For identification of active VSC, adult rats were injected intraperitoneally with thymidine analog 5-ethynyl-2-deoxyuridine (EdU) and their subcutaneous tissue harvested 3 days later. For identification of quiescent VSC, newborn rats were injected intraperitoneally with EdU and their subcutaneous tissue harvested 9 weeks later. The harvested adipose tissues were examined for the co-localization of EdU with VSC marker CD34, smooth muscle marker SMA, endothelial marker RECA and pericyte marker CD140b. In adult rat adipose tissues harvested 3 days after EdU injection, there were 28.80 ± 8.70 (mean ± SD) EdU+ cells/100 × microscopic field, and approximately 6.2% of cell nuclei were labeled with EdU. The percentages of EdU+ cells expressing the following markers were approximately: 84 for CD34, 5.6 for RECA (rat endothelial marker), 3.7 for SMA and 14.8 for CD140b. In the adipose tissues of newborn rats that were harvested 9 weeks after EdU injection, the percentages of EdU+ cells expressing the following markers were approximately: 76 for CD34, 1.8 for RECA, 0 for SMA and 12.9 for CD140b. In both the short-term (active) and long-term (quiescent) EdU-labeled adipose tissues, the EdU label was consistently co-localized with CD34 and in the proximity of CD140b stain or in the adventitia. Both active and quiescent VSC expressed CD34 and localized to capillaries and the adventitia of larger blood vessels.
Cayan, Selahittin; Bozlu, Murat; Canpolat, Bülent; Akbay, Erdem
2004-01-01
The aims of this prospective study were to compare sexual functioning between women with male partners who have erectile dysfunction (ED) and women without partners with ED and also to investigate the effect of the treatment of male ED on female partner's sexual function. The study included 87 women and their male partners. We divided the women into two groups: 38 women with male partners complaining of ED (ED group) and 49 women with male partners who have no ED (control group). Of the men with ED, 30 were treated with penile prosthesis implantation (n = 17) or oral sildenafil citrate (n = 13). We evaluated all the men with the International Index of Erectile Function (IIEF; Rosen, Cappelleri, Smith, Lipsky, & Pena, 1999), physical examination, and color penile Doppler ultrasound. We evaluated female sexual function with the Female Sexual Function Index (FSFI; Rosen et al., 2000) to assess sexual desire, arousal, lubrication, orgasm, satisfaction, and pain. We compared female sexual function scores between the women of the male partners with and without ED and also compared before both groups and after the treatment of male partners in the ED group. Additionally, we compare the scores according to the type of treatment given to the male partners. Sexual arousal (p = 0.009), lubrication (p = 0.001), orgasm (p = 0.006), satisfaction (p = 0.000), pain (p = 0.039), and total score (p = 0.003) were highly significantly lower in the ED group than in the control group, although sexual desire did not differ between the two groups (p = 0.515). We investigated the effect of male ED on female sexual functions and found no statistically significant differences in the presence of organic type impotence, older age, and lower erection scores on the IIEF (p = 0.53, p = 0.15, and p = 0.1, respectively). After the treatment of male ED, we observed significant improvement in sexual arousal (p = 0.001), lubrication (p = 0.002), orgasm (p = 0.000), satisfaction (p = 0.000), and pain (p = 0.002) in the women. These findings suggest that female sexual function is affected by male erection status and may improve after the treatment of male sexual dysfunction.
Davis, Niall F; Smyth, Lisa G; Flood, Hugh D
2012-12-01
What's known on the subject? and What does the study add? Despite the increasing prevalence of erectile dysfunction (ED), there is reluctance among symptomatic patients to present to healthcare providers for appropriate advice and treatment. A number of Internet campaigns have been launched by the Irish healthcare media since 2007 aiming to provide easily accessible advice on ED. Novel online technologies appear to provide a useful tool for educating the general public on the symptoms of ED because there has been a significant increase in overall Internet search activity for this term since 2007. • To assess Internet search trends for erectile dysfunction (ED) subsequent to public awareness campaigns being launched within the Republic of Ireland • To assess whether the advent of such campaigns correlates with increased Internet search activity for ED. • Google insights for search was utilized to examine Internet search trends for the term 'erectile dysfunction' across all categories between January 2005 and December 2011. • Search activity was limited to users from the Republic of Ireland within this timeframe. • Additionally, the number of Irish Internet media campaigns and Irish web pages providing information on ED was assessed between January 2005 and December 2011. • Statistical analysis of the data was performed using analysis of variance and Student's t-tests for pairwise comparisons. • There has been a significant increase in mean search activity for ED on an annual basis since 2007 (P < 0.001). • The number of Irish web pages associated with information on ED has also increased significantly on an annual basis since 2007 (P < 0.001). • There have been seven different Irish Internet media campaigns on ED since 2007 compared to two from 2005 to 2007 (P < 0.001). • There was no significant change in mean search activity for ED from 2005 to 2007 • The advent of recent Internet media campaigns and increasing number of Irish web pages is associated with a significant increase in online activity for ED in the Republic of Ireland. • Novel online technologies appear to provide a useful tool for educating the general public on the symptoms and treatment options available for ED. © 2012 BJU INTERNATIONAL.
Executive dysfunction post-stroke: an insight into the perspectives of physiotherapists.
Hayes, Sara; Donnellan, Claire; Stokes, Emma
2015-01-01
To gain an understanding of physiotherapy practice in relation to executive dysfunction (ED) post-stroke. Three focus groups were conducted using semi-structured interview schedules to highlight how ED post-stroke was understood by 12 physiotherapists with greater than 1 year of experience working in the area of stroke care. The focus group data were analysed using qualitative data analysis. The themes extracted from the data on physiotherapists' self-reported knowledge of ED post-stroke were: physiotherapists' lack of knowledge of ED post-stroke; current physiotherapy practice regarding ED post-stroke; the negative impact of ED on physiotherapy rehabilitation post-stroke and the future learning needs of physiotherapists regarding ED post-stroke. Current results demonstrate that ED has negative implications for physiotherapy rehabilitation post-stroke. Although further interdisciplinary research is warranted, the present results suggest that physiotherapists should be aware of the presence of ED in people post-stroke and develop strategies to minimise the impact of ED on physiotherapy rehabilitation. Implications for Rehabilitation Physiotherapists report a lack of knowledge of ED post-stroke and a requirement for future learning and training regarding the optimal management of people with ED undergoing physiotherapy rehabilitation post-stroke. ED has negative implications for physiotherapy rehabilitation post-stroke and physiotherapists should be aware of the presence of ED in people post-stroke and develop strategies to minimise the impact of ED on physiotherapy rehabilitation.
Sarin, Sabina; Amsel, Rhonda; Binik, Yitzchak M
2014-07-01
Despite much theorizing about the interchangeability of desire and arousal, research has yet to identify whether men with desire vs. arousal disorders can be differentiated based on their psychophysiological patterns of arousal. Additionally, little research has examined the relationship between subjective (SA) and genital arousal (GA) in sexually dysfunctional men. To compare patterns of SA and GA in a community sample of men meeting DSM-IV-TR criteria for hypoactive sexual desire disorder (HSDD), erectile dysfunction (ED), both HSDD and ED (ED/HSDD), and healthy controls. Seventy-one men (19 controls, 13 HSDD, 19 ED, 20 ED/HSDD) completed self-report measures and watched two 15-minute film clips (neutral and erotic), while GA and SA were measured both continuously and discretely. Groups were compared on genital temperature (as an indicator of GA), SA, and psychosocial variables (i.e., body image, emotion regulation, sexual attitudes, sexual inhibition/excitation, mood, and trauma). Genital temperature increased for all groups during the erotic condition, yet men with ED and ED/HSDD showed less GA than men without erectile difficulties. All groups increased in SA during the erotic condition, yet ED/HSDD men reported less SA than controls or ED men. SA and GA were highly correlated for controls, and less strongly correlated for clinical groups; men with ED showed low agreement between SA and GA. Groups also differed on body image, sexual inhibition/excitation, sexual attitudes and alexithymia. Low desire vs. arousal sufferers have unique patterns of response, with those with both difficulties showing greatest impairment. Results have important implications for the diagnosis and treatment of these disorders. © 2014 International Society for Sexual Medicine.
Linear shock wave therapy in the treatment of erectile dysfunction.
Pelayo-Nieto, M; Linden-Castro, E; Alias-Melgar, A; Espinosa-Pérez Grovas, D; Carreño-de la Rosa, F; Bertrand-Noriega, F; Cortez-Betancourt, R
2015-09-01
Linear Shock Wave Therapy (LSWT) is a new noninvasive therapy that uses low-intensity shock waves to induce local angiogenesis promising modality in the treatment of erectile dysfunction (ED). To evaluate the effectiveness of LSWT in men with vasculogenic erectile dysfunction (ED), in a Tertiary Care Center. Included 15 men aged 45-70 years, sexually active with mild and moderate vascular ED evaluated with the International Index of Erectile Function (IIEF). The study was conducted in three stage: screening, treatment and results. Treatment stage: 4 weekly sessions LSWT (RENOVA ®) 5000 waves (.09mJ/mm(2)). Erectile function was assessed with IIEFF-EF, SEP (Sexual Encounter Profile) and GAQ (Global Assessment Questions) at one and six months after treatment. The rate of success was 80% (12/15). Patients with mild ED (6/15) 40% and moderate ED (9/15) 60%. We found a positive association between IIEF-Basal (average 14.23 pts) and IIEF at one month and six months after therapy (19.69 pts) a difference of 5.46 pts. (P<.013). The feasibility and tolerability of this treatment, and rehabilitation potential features, make it this an attractive new treatment option for patients with ED. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba
2011-08-16
The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.
Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed
2016-01-01
Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952
Nanoliposomes protect against AL amyloid light chain protein-induced endothelial injury.
Truran, Seth; Weissig, Volkmar; Ramirez-Alvarado, Marina; Franco, Daniel A; Burciu, Camelia; Georges, Joseph; Murarka, Shishir; Okoth, Winter A; Schwab, Sara; Hari, Parameswaran; Migrino, Raymond Q
2014-03-01
A newly-recognized pathogenic mechanism underlying light chain amyloidosis (AL) involves endothelial dysfunction and cell injury caused by misfolded light chain proteins (LC). Nanoliposomes (NL) are artificial phospholipid vesicles that could attach to misfolded proteins and reduce tissue injury. To test whether co-treatment with NL reduces LC-induced endothelial dysfunction and cell death. Abdominal subcutaneous adipose arterioles from 14 non-AL subjects were cannulated; dilator response to acetylcholine and papaverine were measured at baseline and following 1-hour exposure to LC (20 µg/mL, 2 purified from AL subjects' urine, 1 from human recombinant LC [AL-09]) ± NL (phosphatidylcholine/cholesterol/phosphatidic acid 70/25/5 molar ratio) or NL alone. Human aortic artery endothelial cells (HAEC) were exposed to Oregon Green-labeled LC ± NL for 24 hours and intracellular LC and apoptosis (Hoechst stain) were measured. Circular dichroism spectroscopy was performed on AL-09 LC ± NL to follow changes in secondary structure and protein thermal stability. LC caused impaired dilation to acetylcholine that was restored by NL (control - 94.0 ± 1.8%, LC - 65.0 ± 7.1%, LC + NL - 95.3 ± 1.8%, p ≤ 0.001 LC versus control or LC + NL). NL protection was inhibited by L-NG-nitroarginine methyl ester. NL increased the beta sheet structure of LC, reduced endothelial cell internalization of LC and protected against LC-induced endothelial cell death. LC induced human adipose arteriole endothelial dysfunction and endothelial cell death, which were reversed by co-treatment with NL. This protection may partly be due to enhancing LC protein structure and reducing LC internalization. Nanoliposomes represent a promising new class of agents to ameliorate tissue injury from protein misfolding diseases such as AL.
O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.
Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H
2015-11-01
Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes. Copyright © 2015 the American Physiological Society.
Basuroy, Shyamali; Leffler, Charles W; Parfenova, Helena
2013-06-01
In cerebral microvascular endothelial cells (CMVEC) of newborn pigs, glutamate at excitotoxic concentrations (mM) causes apoptosis mediated by reactive oxygen species (ROS). Carbon monoxide (CO) produced by CMVEC or delivered by a CO-releasing molecule, CORM-A1, has antioxidant properties. We tested the hypothesis that CORM-A1 prevents cerebrovascular endothelial barrier dysfunction caused by glutamate excitotoxicity. First, we identified the glutamate receptors (GluRs) and enzymatic sources of ROS involved in the mechanism of endothelial apoptosis. In glutamate-exposed CMVEC, ROS formation and apoptosis were blocked by rotenone, 2-thenoyltrifluoroacetone (TTFA), and antimycin, indicating that mitochondrial complexes I, II, and III are the major sources of oxidative stress. Agonists of ionotropic GluRs (iGluRs) N-methyl-D-aspartate (NMDA), cis-ACPD, AMPA, and kainate increased ROS production and apoptosis, whereas iGluR antagonists exhibited antiapoptotic properties, suggesting that iGluRs mediate glutamate-induced endothelial apoptosis. The functional consequences of endothelial injury were tested in the model of blood-brain barrier (BBB) composed of CMVEC monolayer on semipermeable membranes. Glutamate and iGluR agonists reduced transendothelial electrical resistance and increased endothelial paracellular permeability to 3-kDa dextran. CORM-A1 exhibited potent antioxidant and antiapoptotic properties in CMVEC and completely prevented BBB dysfunction caused by glutamate and iGluR agonists. Overall, the endothelial component of the BBB is a cellular target for excitotoxic glutamate that, via a mechanism involving a iGluR-mediated activation of mitochondrial ROS production and apoptosis, leads to BBB opening that may be prevented by the antioxidant and antiapoptotic actions of CORMs. Antioxidant CORMs therapy may help preserve BBB functional integrity in neonatal cerebrovascular disease.
Dai, Yuk-Ling; Luk, Ting-Hin; Yiu, Kai-Hang; Wang, Mei; Yip, Pandora M C; Lee, Stephen W L; Li, Sheung-Wai; Tam, Sidney; Fong, Bonnie; Lau, Chu-Pak; Siu, Chung-Wah; Tse, Hung-Fat
2011-06-01
Coronary artery disease (CAD) is associated with endothelial dysfunction and mitochondrial dysfunction (MD). The aim of this study was to investigate whether co-enzyme Q10 (CoQ) supplementation, which is an obligatory coenzyme in the mitochondrial respiratory transport chain, can reverse MD and improve endothelial function in patients with ischaemic left ventricular systolic dysfunction (LVSD). We performed a randomized, double-blind, placebo-controlled trial to determine the effects of CoQ supplement (300 mg/day, n=28) vs. placebo (controls, n=28) for 8 weeks on brachial flow-mediated dilation (FMD) in patients with ischaemic LVSD(left ventricular ejection fraction <45%). Mitochondrial function was determined by plasma lactate/pyruvate ratio (LP ratio). After 8 weeks, CoQ-treated patients had significant increases in plasma CoQ concentration (treatment effect 2.20 μg/mL, P<0.001) and FMD (treatment effect 1.51%, P=0.03); and decrease in LP ratio (treatment effect -2.46, P=0.03) compared with controls. However, CoQ treatment did not alter nitroglycerin-mediated dilation, blood pressure, blood levels of fasting glucose, haemoglobin A1c, lipid profile, high-sensitivity C-reactive protein and oxidative stress as determined by serum superoxide dismutase and 8-isoprostane (all P>0.05). Furthermore, the reduction in LP ratio significantly correlated with improvement in FMD (r=-0.29, P=0.047). In patients with ischaemic LVSD, 8 weeks supplement of CoQ improved mitochondrial function and FMD; and the improvement of FMD correlated with the change in mitochondrial function, suggesting that CoQ improved endothelial function via reversal of mitochondrial dysfunction in patients with ischaemic LVSD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.
2012-01-01
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498
Pharmacotherapy of Sexual Dysfunctions : Current Status
Avasthi, Ajith; Biswas, Parthasarathy
2004-01-01
The sexual dysfunctions are one of the most prevalent conditions. Sexual dysfunctions can have profound effect on the psychological well-being of an individual and the psychosexual relationship of a couple. Management of the sexual dysfunction should be preceded by an accurate diagnosis reached after a complete medical and sexual history and physical examination. Current focus of researchers has been on understanding the pathophysiology of erectile dysfunction, premature ejaculation and other sexual dysfunctions that can help in developing newer pharmacological cures for these conditions. Recently, a number of clinical trials have studied the potential effectiveness of the phosphodiesterase (PDE)-5 inhibitor sildenafil in the treatment of Erectile Dysfunction (ED) and Premature Ejaculation (PME). The introduction of PDE-5 inhibitors like sildenafil, vardenafil and tadalafil has revolutionized the treatment of sexual dysfunctions. This review focuses on the recent pharmacological advances in the treatment of common sexual dysfunctions like ED and PME with special focus on the role of PDE-5 inhibitors. Also discussed is the pharmacological treatment of other less prevalent and recognized disorders like female sexual dysfunction, drug induced sexual dysfunction etc. PMID:21224902
Teoh, Joni Bing Fei; Yee, Anne; Danaee, Mahmoud; Ng, Chong Guan; Sulaiman, Ahmad Hatim Bin
Erectile dysfunction (ED) is a problem commonly encountered by patients on methadone maintenance therapy (MMT). This study aimed to assess the prevalence of ED among this group of patients along with its risk factors and association with quality of life (QOL). Male patients on MMT in a tertiary hospital in Malaysia were included in the study. A total of 134 patients with sexual partners were assessed for ED using the International Index of Erectile Function. Patients were assessed for substance use using Opiate Treatment Index (OTI) and depression using the Malay version of the self-rated Montgomery-Asberg Depression Rating Scale (MADRS-BM). QOL was evaluated using World Health Organisation Quality of Life (WHOQOL)-BREF. The prevalence of ED among patients on MMT was 67%, with 26.1% having mild ED, 30.4% having mild-to-moderate ED, 7.0% having moderate ED, and 17.2% having severe ED. Patients with depression were 4 times more likely to have ED compared with patients without depression, whereas increasing age significantly correlated with the severity of ED. Having ED predicted a poorer QOL in the social relationships domain. Depression is highly associated with ED, which negatively influences the social aspect of QOL among patients on methadone maintenance therapy.
Qin, Fangfang; Lu, Yi; He, Xi; Zhao, Ming; Bi, Xueyuan; Yu, Xiaojiang; Liu, Jinjun; Zang, Weijin
2014-03-01
1. Myocardial infarction (MI) is characterized by the withdrawal of vagal activity and increased sympathetic activity. We have shown previously that pyridostigmine (PYR), an acetylcholinesterase inhibitor, was able to improve vagal activity and ameliorate cardiac dysfunction following MI. However, the effect of PYR on endothelial dysfunction in peripheral arteries after MI remains unclear. 2. In the present study, MI was induced by coronary artery ligation in adult Sprague-Dawley rats. Rats were treated intragastrically with saline or PYR (approximately 31 mg/kg per day) for 2 weeks, at which time haemodynamic and parasympathetic parameters and the vascular reactivity of isolated mesenteric arteries were measured and the ultrastructure of the endothelium evaluated. 3. Compared with the MI group, PYR not only improved cardiac function, vagal nerve activity and endothelial impairment, but also reduced intravascular superoxide anion and malondialdehyde. In addition, in the PYR-treated MI group, nitric oxide (NO) bioavailability was increased and attenuated endothelium-dependent relaxations were improved, whereas restored vasodilator responses were inhibited by N(G)-nitro-L-arginine methyl ester. 4. Based on our results, PYR is able to attenuate the impairment of peripheral endothelial function and maintain endothelial ultrastructural integrity in MI rats by inhibiting reactive oxygen species production, enhancing NO bioavailability and improving vagal activity. © 2014 Wiley Publishing Asia Pty Ltd.
Abraham, Lucy; Symonds, Tara; Morris, Mark F
2008-03-01
An instrument that can systematically capture the impact of sexual dysfunction on quality of life (QoL) in men is needed. To psychometrically validate a sexual QoL instrument for men (SQOL-M) with premature ejaculation (PE) or erectile dysfunction (ED). The main assessment populations were men participating in clinical trials of treatments for PE or ED. Men with PE had a confirmed intravaginal ejaculatory latency time of < or = 2 minutes in > or = 70% of attempts. Men with ED had a score of > 21 on the International Index of Erectile Function (IIEF). Confirmatory psychometric testing was conducted in further groups of men with PE. The internal consistency, convergent and discriminant validity, test-retest reliability, and known-groups validity of the instrument were assessed. An 11-item version of the SQOL-M was produced following factor analyses on men with either PE or ED. Psychometric testing showed no overlap between items and good item-total correlations. Factor analysis confirmed a one-factor solution. Excellent internal consistency was demonstrated, with a Cronbach's alpha of > or = 0.82 in all groups. In men reporting no change in their symptoms, the SQOL-M showed excellent test-retest reliability: the intraclass correlation coefficient was 0.77 for men with PE, and 0.79 for men with ED. Convergent validity was also good. In men with PE, the SQOL-M correlated with the satisfaction and distress domains of the Index of Premature Ejaculation. In men with ED, the SQOL-M correlated with the overall satisfaction domain of the IIEF. The measure also demonstrated excellent discriminant validity between men with PE or ED and men with no sexual dysfunction (P < 0.0001). The SQOL-M instrument is a useful tool for evaluating sexual QoL in men with PE and ED.
Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance
NASA Astrophysics Data System (ADS)
Wassall, Cynthia D.
The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76% increase in ROS generation; this implies that higher ROS concentrations in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus of interest. We also investigated the role of ROS in chronic flow overload (CFO). Elevation of shear stress that increases production of vascular ROS has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. ROS production increased threefold in response to CFO. The endothelium dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. The present data implicate NADPH oxidase produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. In further work, a swine right ventricular hypertrophy (RVH) model induced by pulmonary artery (PA) banding was used to study right coronary artery (RCA) endothelial function and ROS level. Endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone. Finally, although hypertension-induced vascular stiffness and dysfunction are well established in patients and animal models, we hypothesize that stretch or distension due to hypertension and outward expansion is the cause of endothelial dysfunction mediated by angiotensin II type 1 (AT1) receptor in coronary arteries. The expression and activation of AT1 receptor and the production of ROS were up regulated and endothelial function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH oxidase partially restored the endothelial function. Stretch or distension activates the AT1 receptor which mediates ROS production; this collectively leads to endothelial dysfunction in coronary arteries.
Capogrosso, Paolo; Colicchia, Michele; Ventimiglia, Eugenio; Castagna, Giulia; Clementi, Maria Chiara; Suardi, Nazareno; Castiglione, Fabio; Briganti, Alberto; Cantiello, Francesco; Damiano, Rocco; Montorsi, Francesco; Salonia, Andrea
2013-07-01
Erectile dysfunction (ED) is a common complaint in men over 40 years of age, and prevalence rates increase throughout the aging period. Prevalence and risk factors of ED among young men have been scantly analyzed. Assessing sociodemographic and clinical characteristics of young men (defined as ≤ 40 years) seeking first medical help for new onset ED as their primary sexual disorder. Complete sociodemographic and clinical data from 439 consecutive patients were analyzed. Health-significant comorbidities were scored with the Charlson Comorbidity Index (CCI). Patients completed the International Index of Erectile Function (IIEF). Descriptive statistics tested sociodemographic and clinical differences between ED patients ≤ 40 years and >40 years. New onset ED as the primary disorder was found in 114 (26%) men ≤ 40 years (mean [standard deviation [SD
Kobori, Yoshitomo; Suzuki, Keisuke; Iwahata, Toshiyuki; Shin, Takeshi; Sadaoka, Yuko; Sato, Ryo; Nishio, Kojiro; Yagi, Hiroshi; Arai, Gaku; Soh, Shigehiro; Okada, Hiroshi; Strong, Jeffry Michael; Rohdewald, Peter
2015-09-30
We evaluated the effectiveness of antioxidant co-supplementation therapy using Larginine and Pycnogenol(®) in Japanese men with oligoasthenozoospermia and mild erectile dysfunction (ED). A total of forty-seven adult males with oligoasthenoteratozoospermia syndrome (OAT) were eligible for enrollment. The effectiveness of supplementation with a combination of L-arginine 690 mg and French maritime pine bark extract (Pycnogenol(®)) 60mg for OAT and ED was investigated. The sperm concentration was enhanced significantly after treatment 2 and 4 months (11.79 ± 9.86 to 21.22 ± 28.17 and 20.15 ± 23.99 × 106/ml). Significant improvements in the International Index of Erectile Function (IIEF) were observed in the total score of IIEF (57.69 ± 11.04 to 59.43 ± 12.57) and domain of Orgasmic Function (9.01 ± 1.92 to 9.34 ± 1.66) after 4 months of treatment. L-arginine acts to increase the production of nitric oxide and Pycnogenol(®) activates the endothelial nitric oxide synthase and it is a potent antioxidant and inhibitor of inducible nitric oxide synthase. This study suggests that the combination of Pycnogenol(®) and L-arginine (Edicare(®)) is helpful for infertile men to ameliorate simultaneously quality of sperms as well as erectile functions.
Kheirandish-Gozal, Leila; Philby, Mona F; Qiao, Zhuanghong; Khalyfa, Abdelnaby; Gozal, David
2017-02-09
Obstructive sleep apnea (OSA) is a highly prevalent condition, especially in obese children, and has been associated with increased risk for endothelial dysfunction and dislipidemia, which are precursors of atherosclerosis. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is recognized as an independent risk factor for cardiovascular risk and atheromatous plaque activity. We hypothesized that Lp-PLA2 levels would be elevated in children with OSA, particularly among obese children who also manifest evidence of endothelial dysfunction. One hundred sixty children (mean age 7.1±2.3 years), either nonobese with (n=40) and without OSA (n=40) or obese with (n=40) and without OSA (n=40) underwent overnight polysomnographic and postocclusive reperfusion evaluation and a fasting blood draw the morning after the sleep study. In addition to lipid profile, Lp-PLA2 plasma activity was assessed using a commercial kit. Obese children and OSA children had significantly elevated plasma Lp-PLA2 activity levels compared to controls. Furthermore, when both obesity and OSA were concurrently present or when endothelial function was present, Lp-PLA2 activity was higher. Treatment of OSA by adenotonsillectomy resulted in reductions of Lp-PLA2 activity (n=37; P <0.001). Lp-PLA2 plasma activity is increased in pediatric OSA and obesity, particularly when endothelial dysfunction is present, and exhibits decreases on OSA treatment. The short-term and long-term significance of these findings in relation to cardiovascular risk remain undefined. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian
2016-06-01
The aim of this study was to examine endothelial dysfunction and inflammation in hypertension and prediabetes by studying adhesion molecules and inflammatory factors. This study included 133 outpatients. Participants were categorized into three groups based on the presence or absence of hypertension and prediabetes: control subjects without prediabetes and hypertension (N group, n = 39); patients with hypertension only (H group, n = 34); and patients with hypertension and prediabetes (HD group, n = 60). Hypertension was diagnosed according to JNC7 criteria. Prediabetes was defined according to 2010 American Diabetes Association criteria. Plasma was isolated from overnight fasting blood samples for enzyme-linked immunosorbent assay (ELISA) analysis of concentrations of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), P-selectin, and interleukin-6 (IL-6) as indicators of endothelial function and inflammation. We found that the H and HD groups showed significantly higher levels of all four biomarkers compared with the N group (all p < 0.01). The HD group also showed significantly higher levels of ICAM-1 (p = 0.042) and TNF-α (p < 0.01) compared with the H group; no significant differences in P-selectin (p = 0.59) and IL-6 (p = 0.70) levels were observed among these groups. Prediabetes and hypertension induce endothelial dysfunction and inflammation by elevating levels of soluble adhesion molecules and inflammatory cytokines. The comorbidity of these diseases may exacerbate inflammation and endothelial dysfunction by enhancing the expression of ICAM-1 and TNF-α.
Potenza, Maria A; Marasciulo, Flora L; Tarquinio, Mariela; Quon, Michael J; Montagnani, Monica
2006-12-01
Spontaneously hypertensive rats (SHRs) exhibit endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance may contribute to hypertension by causing imbalanced regulation of endothelial-derived vasodilators (e.g., nitric oxide) and vasoconstrictors (e.g., endothelin-1 [ET-1]). Treatment of SHRs with rosiglitazone (insulin sensitizer) and/or enalapril (ACE inhibitor) may simultaneously improve hypertension, insulin resistance, and endothelial dysfunction by rebalancing insulin-stimulated production of vasoactive mediators. When compared with WKY control rats, 12-week-old vehicle-treated SHRs were hypertensive, overweight, and insulin resistant, with elevated fasting levels of insulin and ET-1 and reduced serum adiponectin levels. In mesenteric vascular beds (MVBs) isolated from vehicle-treated SHRs and preconstricted with norepinephrine (NE) ex vivo, vasodilator responses to insulin were significantly impaired, whereas the ability of insulin to oppose vasoconstrictor actions of NE was absent (versus WKY controls). Three-week treatment of SHRs with rosiglitazone and/or enalapril significantly reduced blood pressure, insulin resistance, fasting insulin, and ET-1 levels and increased adiponectin levels to values comparable with those observed in vehicle-treated WKY controls. By restoring phosphatidylinositol 3-kinase-dependent effects, rosiglitazone and/or enalapril therapy of SHRs also significantly improved vasodilator responses to insulin in MVB preconstricted with NE ex vivo. Taken together, our data provide strong support for the existence of reciprocal relationships between endothelial dysfunction and insulin resistance that may be relevant for developing novel therapeutic strategies for the metabolic syndrome.
Amissi, Said; Boisramé-Helms, Julie; Burban, Mélanie; Rashid, Sherzad K; León-González, Antonio J; Auger, Cyril; Toti, Florence; Meziani, Ferhat; Schini-Kerth, Valérie B
2017-03-01
Lipid emulsions for parenteral nutrition are used to provide calories and essential fatty acids for patients. They have been associated with hypertriglyceridemia, hypercholesterolemia, and metabolic stress, which may promote the development of endothelial dysfunction in patients. The aim of the present study was to determine whether five different industrial lipid emulsions may affect the endothelial function of coronary arteries. Porcine coronary artery rings were incubated with lipid emulsions 0.5, 1, or 2% (v/v) for 30 min before the determination of vascular reactivity in organ chambers and the level of oxidative stress using electron paramagnetic resonance. Incubation of coronary artery rings with either Lipidem ® , Medialipid ® containing long- and medium-chain triacylglycerols (LCT/MCT), or SMOFlipid ® containing LCT, MCT, omega-9, and -3, significantly reduced the bradykinin-induced endothelium-dependent relaxation, affecting both the nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) components, whereas, Intralipid ® containing LCT (soybean oil) and ClinOleic ® containing LCT (soybean and olive oil) did not have such an effect. The endothelial dysfunction induced by Lipidem ® was significantly improved by indomethacin, a cyclooxygenase (COX) inhibitor, inhibitors of oxidative stress (N-acetylcysteine, superoxide dismutase, catalase) and transition metal chelating agents (neocuproine, tetrathiomolybdate, deferoxamine and L-histidine). Lipidem ® significantly increased the arterial level of oxidative stress. The present findings indicate that lipid emulsions containing LCT/MCT induce endothelial dysfunction in coronary artery rings by blunting both NO- and EDH-mediated relaxations. The Lipidem ® -induced endothelial dysfunction is associated with increased vascular oxidative stress and the formation of COX-derived vasoconstrictor prostanoids.
Naringin ameliorates endothelial dysfunction in fructose-fed rats.
Malakul, Wachirawadee; Pengnet, Sirinat; Kumchoom, Chanon; Tunsophon, Sakara
2018-03-01
High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.
Yin, Qingqiao; Xia, Yuanyu; Wang, Guan
2016-09-02
As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression in HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Yu; Yu, Manli; Zhang, Le; Cao, Qingxin; Song, Ying; Liu, Yuxiu; Gong, Jianbin
2016-08-01
Vascular dysfunction including vascular remodeling and endothelial dysfunction in hypertension often results in poor clinical outcomes and increased risk of vascular accidents. We investigate the effect of treatment with soluble receptor for advanced glycation end products (sRAGE) on vascular dysfunction in spontaneously hypertensive rats (SHR). Firstly, the aortic AGE/RAGE pathway was investigated in SHR. Secondly, SHR received intraperitoneal injections of sRAGE daily for 4 weeks. Effect of sRAGE against vascular dysfunction in SHR and underlying mechanism was investigated. SHR aortas exhibited enhanced activity of aldose reductase, reduced activity of glyoxalase 1, accumulation of methylglyoxal and AGE, and upregulated expression of RAGE. Treatment of SHR with sRAGE had no significant effect on blood pressure, but alleviated aortic hypertrophy and endothelial dysfunction. In vitro, treatment with sRAGE reversed the effect of incubation with AGE on proliferation of smooth muscle cells and endothelial function. Treatment of SHR with sRAGE abated oxidative stress, suppressed inflammation and NF-κB activation, improved the balance between Ang II and Ang-(1-7) through reducing angiotensin-converting enzyme (ACE) activity and enhancing ACE2 expression, and upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in aortas. In conclusion, treatment with sRAGE alleviated vascular adverse remodeling in SHR, possibly via suppression of oxidative stress and inflammation, improvement in RAS balance, and activation of PPAR-γ pathway.
Chin, Calvin W L; Chin, Chee-Yang; Ng, Marie X R; Le, Thu-Thao; Huang, Fei-Qiong; Fong, Kok-Yong; Thumboo, Julian; Tan, Ru-San
2014-09-01
Endothelial dysfunction is associated with traditional and systemic lupus erythematosus (SLE)-specific risk factors, and early data suggest reversibility of endothelial dysfunction with therapy. The clinical relevance of endothelial function assessment has been limited by the lack of studies, demonstrating its prognostic significance and impact on early myocardial function. Therefore, we aimed to determine the association between endothelial and myocardial diastolic function in SLE women. Women with SLE and no coronary artery disease were prospectively recruited and underwent radionuclide myocardial perfusion imaging (MPI) (Jetstream, Philips, the Netherlands) to exclude subclinical myocardial ischemia. Cardiac and vascular functions were assessed in all patients (Alpha 10, Aloka, Tokyo). Diastolic function was assessed using pulse wave early (E) and late mitral blood inflow and myocardial tissue Doppler (mean of medial and lateral annulus e') velocities. Endothelial function was measured using brachial artery flow-mediated vasodilatation (FMD%). Univariate and multivariate linear regressions were used to assess the association between FMD% and myocardial diastolic function, adjusting for potential confounders. Thirty-eight patients without detectable myocardial ischemia on MPI were studied (mean age 44 ± 10 years; mean disease duration 14 ± 6 years). About 61 % of patients had normal diastolic function (E/e' ≤ 8), and 5 % of patients had definite diastolic dysfunction with E/e' > 13 (mean 7.1 ± 2.9). FMD% was associated with E/e' (regression coefficient β = -0.35; 95 % CI -0.62 to -0.08; p = 0.01) independent of systolic blood pressure, age, and SLICC/ACR Damage Index.
Endothelial-regenerating cells: an expanding universe.
Steinmetz, Martin; Nickenig, Georg; Werner, Nikos
2010-03-01
Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.
Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...
... your inbox ! All-natural tips to improve your sex life Exercise, diet changes may help reverse ED ... problem , may reverse your ED and improve your sex life. They are easy to adopt and enrich ...
Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.
Sankrityayan, Himanshu; Majumdar, Anuradha S
2016-01-01
Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.
Type 2 diabetes mellitus and exercise impairment.
Reusch, Jane E B; Bridenstine, Mark; Regensteiner, Judith G
2013-03-01
Limitations in physical fitness, a consistent finding in individuals with both type I and type 2 diabetes mellitus, correlate strongly with cardiovascular and all-cause mortality. These limitations may significantly contribute to the persistent excess cardiovascular mortality affecting this group. Exercise impairments in VO2 peak and VO2 kinetics manifest early on in diabetes, even with good glycemic control and in the absence of clinically apparent complications. Subclinical cardiac dysfunction is often present but does not fully explain the observed defect in exercise capacity in persons with diabetes. In part, the cardiac limitations are secondary to decreased perfusion with exercise challenge. This is a reversible defect. Similarly, in the skeletal muscle, impairments in nutritive blood flow correlate with slowed (or inefficient) exercise kinetics and decreased exercise capacity. Several correlations highlight the likelihood of endothelial-specific impairments as mediators of exercise dysfunction in diabetes, including insulin resistance, endothelial dysfunction, decreased myocardial perfusion, slowed tissue hemoglobin oxygen saturation, and impairment in mitochondrial function. Both exercise training and therapies targeted at improving insulin sensitivity and endothelial function improve physical fitness in subjects with type 2 diabetes. Optimization of exercise functions in people with diabetes has implications for diabetes prevention and reductions in mortality risk. Understanding the molecular details of endothelial dysfunction in diabetes may provide specific therapeutic targets for the remediation of this defect. Rat models to test this hypothesis are under study.
Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin
2016-08-01
The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Medina, M; Alberto, M R; Sierra, L; Van Nieuwenhove, C; Saad, S; Isla, M I; Jerez, S
2014-07-01
The present study evaluated the plasma fatty acid levels and the vascular prostaglandin (PG) release in a rabbit model of early hypercholesterolemia with endothelial dysfunction. Rabbits were fed either a control diet (CD) or a diet containing 1 % cholesterol (HD) for 5-6 weeks. The level of fatty acids was measured in plasma. The levels of PG and nitric oxide (NO) released from the aorta were also determined. Vascular morphology of the aorta was characterized by intima and media thickness measurements. The rabbits fed with HD had higher levels of arachidonic acid (ARA) and lower levels of oleic acid. The linoleic acid level was unchanged. PGI(2) and NO were diminished and PGF(2α) levels, the PGI(2)/TXA(2) ratio and the intima/media ratio were increased in rabbits fed with HD. In conclusion, feeding HD for a short period increased ARA plasma levels and unbalanced release of vasodilator/vasoconstrictor PG redirected the pathway to vasoconstrictor metabolite release. These lipid metabolism alterations in addition to the reduced NO levels and the moderate changes in the vascular morphology contributed to the endothelial dysfunction in this animal model. Therefore, the present findings support the importance of early correction or prevention of high cholesterol levels to disrupt the endothelial dysfunction process that leads to cardiovascular disease.
Gene therapy as future treatment of erectile dysfunction
Yoshimura, Naoki; Kato, Ryuichi; Chencellor, Michael B.; Nelson, Joel B.; Glorioso, Joseph C.
2011-01-01
Importance of the field Erectile dysfunction (ED) is a major men’s health problem. Although the high success rate of treating ED by phosphodiesterase 5 (PDE5) inhibitors has been reported, there are a significant number of ED patients who do not respond to currently available treatment modalities. Areas covered in this review To understand the current status of gene therapy application for ED, gene therapy approaches for ED treatment are reviewed. What the reader will gain Gene therapy strategies that can enhance nitric oxide (NO) production or NO-mediated signaling pathways, growth factor-mediated nerve regeneration or K+ channel activity in the smooth muscle could be promising approaches for the treatment of ED. Although the majority of gene therapy studies are still in the preclinical phase, the first clinical trial using non-viral gene transfer of Ca2+-activated, large-conductance K+ channels into the corpus cavernosum of ED patients showed positive results. Take home message Gene therapy represents an exciting future treatment option for ED, especially for people with severe ED unresponsive to current first-line therapies such as PDE5 inhibitors although the long-term safety of both viral and non-viral gene therapies should be established. PMID:20662742
El-Assmy, A; El-Tholoth, H S; Abou-El-Ghar, M E; Mohsen, T; Ibrahiem, E H I
2012-01-01
This study was conducted to determine the preoperative and intraoperative risk factors of ED and the underlying penile vascular abnormalities among patients with penile fracture treated surgically. In all, 180 patients with penile fracture were treated surgically and followed up in one center. None of our patients had ED before the penile trauma and only two of them had risk factors for systemic vascular diseases, such as diabetes mellitus (one patient) and hypertension (one patient). After a mean follow-up of 106 months, 11 patients (6.6%) developed ED, 7 had mild ED and 4 had moderate ED. The main risk factors for subsequent ED were aging, >50 years, and bilateral corporal involvement. Among the 11 patients with ED, color Doppler ultrasonography (CDU) showed normal Doppler indices in 4 (36.4%), veno-occlusive dysfunction in 4 (36.4%) and arterial insufficiency in the remaining 3 (27.2%) patients. CDU assessments from the injured and intact sides were comparable. ED of either a psychological or vascular origin can be encountered as a long-term sequel of surgical treatment of penile fracture. Aging, >50 years, at presentation and bilateral corporal involvement is the main risk factors for subsequent development of ED.
Emanu, Jessica C.; Avildsen, Isabelle K.; Nelson, Christian J.
2016-01-01
Purpose of review This review will discuss erectile dysfunction (ED) in prostate cancer patients following radical prostatectomy (RP). It will focus on the prevalence and current treatments for ED as well as the emotional impact of ED and the current psychosocial interventions designed to help patients cope with this side effect. Recent findings While there is a large discrepancy in prevalence rates of ED after RP, several recent studies have cited rates as high as 85%. The concept of “penile rehabilitation” is now the standard of practice to treat ED following RP. However, many men avoid seeking help or utilizing ED treatments. This avoidance is related to the shame, frustration, and distress many men with ED and their partners experience. Recent psychosocial interventions have been developed to facilitate the use of treatments and help men cope with ED. These interventions have shown initial promise, however, continued intervention development is needed to reduce distress and improve long-term erectile function (EF) outcomes. Summary ED is a significant problem following prostate cancer surgery. While there are effective medical treatments, the development of psychosocial interventions should continue to evolve to maximize the assistance we can give to men and their partners. PMID:26808052
The urea decomposition product cyanate promotes endothelial dysfunction
El-Gamal, Dalia; Rao, Shailaja Prabhakar; Holzer, Michael; Hallström, Seth; Haybaeck, Johannes; Gauster, Martin; Wadsack, Christian; Kozina, Andrijana; Frank, Saša; Schicho, Rudolf; Schuligoi, Rufina; Heinemann, Akos; Marsche, Gunther
2014-01-01
The dramatic cardiovascular mortality of chronic kidney disease patients is attributable in a significant proportion to endothelial dysfunction. Cyanate, a reactive species in equilibrium with urea, is formed in excess in chronic kidney disease. Cyanate is thought to have a causal role in promoting cardiovascular disease, but the underlying mechanisms remain unclear. Immunohistochemical analysis performed in the present study revealed that carbamylated epitopes associate mainly with endothelial cells in human atherosclerotic lesions. Cyanate treatment of human coronary artery endothelial cells reduced expression of endothelial nitric oxide synthase and increased tissue factor and plasminogen activator inhibitor-1 expression. In mice, administration of cyanate - promoting protein carbamylation at levels observed in uremic patients - attenuated arterial vasorelaxation of aortic rings in response to acetylcholine, without affecting sodium nitroprusside-induced relaxation. Total endothelial nitric oxide synthase and nitric oxide production were significantly reduced in aortic tissue of cyanate-treated mice. This coincided with a marked increase of tissue factor and plasminogen activator inhibitor-1 protein levels in aortas of cyanate-treated mice. These data provide evidence that cyanate compromises endothelial functionality in vitro and in vivo and may contribute to the dramatic cardiovascular risk of patients suffering from chronic kidney disease. PMID:24940796
Potential of Food and Natural Products to Promote Endothelial and Vascular Health.
Auger, Cyril; Said, Amissi; Nguyen, Phuong Nga; Chabert, Philippe; Idris-Khodja, Noureddine; Schini-Kerth, Valérie B
2016-07-01
Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Dubin, Ruth F; Guajardo, Isabella; Ayer, Amrita; Mills, Claire; Donovan, Catherine; Beussink, Lauren; Scherzer, Rebecca; Ganz, Peter; Shah, Sanjiv J
2016-01-01
Patients with end-stage renal disease (ESRD) suffer high rates of heart failure and cardiovascular mortality, and we lack a thorough understanding of what, if any, modifiable factors contribute to cardiac dysfunction in these high-risk patients. In order to evaluate endothelial function as a potentially modifiable cause of cardiac dysfunction in ESRD, we investigated cross-sectional associations of macro- and microvascular dysfunction with left and right ventricular dysfunction in a well-controlled ESRD cohort. We performed comprehensive echocardiography, including tissue Doppler imaging and speckle tracking echocardiography of the left and right ventricle, in 149 ESRD patients enrolled in an ongoing prospective, observational study. Of these participants, 123 also underwent endothelium-dependent flow-mediated dilation (FMD) of the brachial artery (macrovascular function). Microvascular function was measured as the velocity time integral (VTI) of hyperemic blood flow following cuff deflation. Impaired FMD was associated with higher LV mass, independently of age and blood pressure: per two-fold lower FMD, LV mass was 4.1% higher (95%CI [0.49, 7.7], p=0.03). After adjustment for demographics, blood pressure, comorbidities and medications, a two-fold lower VTI was associated with 9.5% higher E/e’ ratio (95% CI [1.0, 16], p=0.03) and 6.7% lower absolute RV longitudinal strain (95% CI [2.0, 12], p=0.003). Endothelial dysfunction is a major correlate of cardiac dysfunction in ESRD, particularly diastolic and right ventricular dysfunction, in patients whose volume status is well-controlled. Future investigations are needed to determine whether therapies targeting the vascular endothelium could improve cardiac outcomes in ESRD. PMID:27550915
Besiroglu, Huseyin; Otunctemur, Alper; Ozbek, Emin
2015-06-01
The studies examining the association between metabolic syndrome (MetS), its components, and erectile dysfunction (ED) should be reevaluated to arrive at comprehensive results in this field. Our aim was to gather individual studies in order to achieve a more reliable conclusion regarding the relationship between MetS, its components, and ED. Three investigators searched the Pubmed-Medline and Embase databases using the key words "metabolic syndrome" and "erectile dysfunction." The individual studies were evaluated for selection of suitable studies. Eight studies that met all inclusion criteria were chosen, and a pooled analysis of odds ratio (ORs) between MetS and ED was calculated. The components of MetS to ED were also estimated. Eight observational studies with a total of 12,067 participants were examined. The overall analysis revealed a 2.6-fold increase in patients with MetS having ED (2.67[1.79-3.96]; P < 0.0001). All individual components of MetS except high-density lipoprotein level were also found to correlate with an increased prevalence of ED. Of those, fasting blood sugar was detected highest rate for ED with OR of 2.07 ([1.49-2.87]; P < 0.0001). Metabolic syndrome is associated with a high risk rate of ED, and patients with MetS should be informed about this association and encouraged to make lifestyle modifications to improve their general health and to limit cardiovascular risk as well as ED prevalence. However, manuscripts included in meta-analysis were observational studies that prohibits ascertainment of temporal associations and necessitates further prospective studies. © 2015 International Society for Sexual Medicine.
Ma, GuoHua; Pan, Bing; Chen, Yue; Guo, CaiXia; Zhao, MingMing; Zheng, LeMin; Chen, BuXing
2017-04-30
Several studies have reported a strong association between high plasma level of trimethylamine N-oxide (TMAO) and atherosclerosis development. However, the exact mechanism underlying this correlation is unknown. In the present study, we try to explore the impact of TMAO on endothelial dysfunction. After TMAO treatment, human umbilical vein endothelial cells (HUVECs) showed significant impairment in cellular proliferation and HUVECs-extracellular matrix (ECM) adhesion compared with control. Likewise, TMAO markedly suppressed HUVECs migration in transwell migration assay and wound healing assay. In addition, we found TMAO up-regulated vascular cell adhesion molecule-1 (VCAM-1) expression, promoted monocyte adherence, activated protein kinase C (PKC) and p-NF-κB. Interestingly, TMAO-stimulated VCAM-1 expression and monocyte adherence were diminished by PKC inhibitor. These results demonstrate that TMAO promotes early pathological process of atherosclerosis by accelerating endothelial dysfunction, including decreasing endothelial self-repair and increasing monocyte adhesion. Furthermore, TMAO-induced monocyte adhesion is partly attributable to activation of PKC/NF-κB/VCAM-1. © 2017 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muenzel, Daniela; Lehle, Karla; Haubner, Frank
2007-10-19
Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that evenmore » under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)« less
Jin, Hai-Rong; Kim, Woo Jean; Song, Jae Sook; Piao, Shuguang; Choi, Min Ji; Tumurbaatar, Munkhbayar; Shin, Sun Hwa; Yin, Guo Nan; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu
2011-01-01
OBJECTIVE Patients with diabetic erectile dysfunction often have severe endothelial dysfunction and respond poorly to oral phosphodiesterase-5 inhibitors. We examined the effectiveness of the potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous endothelial regeneration and restoring erectile function in diabetic animals. RESEARCH DESIGN AND METHODS Four groups of mice were used: controls; streptozotocin (STZ)-induced diabetic mice; STZ-induced diabetic mice treated with repeated intracavernous injections of PBS; and STZ-induced diabetic mice treated with COMP-Ang1 protein (days −3 and 0). Two and 4 weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations, Western blot analysis, and cGMP quantification. We also performed a vascular permeability test. RESULTS Local delivery of the COMP-Ang1 protein significantly increased cavernous endothelial proliferation, endothelial nitric oxide (NO) synthase (NOS) phosphorylation, and cGMP expression compared with that in the untreated or PBS-treated STZ-induced diabetic group. The changes in the group that received COMP-Ang1 restored erectile function up to 4 weeks after treatment. Endothelial protective effects, such as marked decreases in the expression of p47phox and inducible NOS, in the generation of superoxide anion and nitrotyrosine, and in the number of apoptotic cells in the corpus cavernosum tissue, were noted in COMP-Ang1–treated STZ-induced diabetic mice. An intracavernous injection of COMP-Ang1 completely restored endothelial cell-cell junction proteins and decreased cavernous endothelial permeability. COMP-Ang1–induced promotion of cavernous angiogenesis and erectile function was abolished by the NOS inhibitor, N-nitro-L-arginine methyl ester, but not by the NADPH oxidase inhibitor, apocynin. CONCLUSIONS These findings support the concept of cavernous endothelial regeneration by use of the recombinant Ang1 protein as a curative therapy for diabetic erectile dysfunction. PMID:21270241
Sevelamer reduces endothelial inflammatory response to advanced glycation end products
Gregório, Paulo C; Favretto, Giane; Sassaki, Guilherme L; Cunha, Regiane S; Becker-Finco, Alessandra; Pecoits-Filho, Roberto; Souza, Wesley M; Barreto, Fellype C
2018-01-01
Abstract Background Advanced glycation end products (AGEs) have been related to the pathogenesis of cardiovascular diseases (CVD), chronic kidney disease (CKD) and diabetes mellitus. We sought to investigate the binding capacity of sevelamer to both AGEs and uremic serum in vitro and then test this pharmaceutical effect as a potential vascular anti-inflammatory strategy. Methods AGEs were prepared by albumin glycation and characterized by absorbance and electrophoresis. Human endothelial cells were incubated in culture media containing AGEs and uremic serum with or without sevelamer. Receptor for advanced glycation end product (RAGE) expression was evaluated through immunocytochemistry and western blot to explore the interactions between AGEs and the endothelium. Inflammatory and endothelial dysfunction biomarkers, such as interleukin 6 (IL-6) and IL-8, monocyte chemoattractant protein-1 (MCP-1), plasminogen activator inhibitor-1 (PAI-1) and serum amyloid A (SAA) were also measured in cell supernatant. The chemotactic property of the supernatant was evaluated. Results AGEs significantly induced the expression of RAGE, inflammatory and endothelial activation biomarkers [IL-6, (P < 0.005); IL-8, MCP-1, PAI-1 and SAA (P < 0.001)] and monocyte chemotaxis as compared with controls. In addition, AGEs increased the levels of inflammatory biomarkers, which were observed after 6 h of endothelial cell incubation with uremic serum [IL-6 (P < 0.001) IL-8, MCP-1 and PAI-1 (P < 0.05)]. On the other hand, after 6 h of endothelial cell treatment with sevelamer, RAGE expression (P < 0.05) and levels of inflammatory biomarkers [IL-6 and IL-8 (P < 0.001), MCP-1 (P < 0.01), PAI-1 and SAA (P < 0.005)] significantly decreased compared with the AGEs/uremic serum treatment alone. Conclusions Sevelamer decreased both endothelial expression of RAGE and endothelial dysfunction biomarkers, induced by AGEs, and uremic serum. Further studies are necessary for a better understanding of the potential protective role of sevelamer on uremic serum and AGEs-mediated endothelial dysfunction. PMID:29423208
Role of Vitamin C in the Function of the Vascular Endothelium
Harrison, Fiona E.
2013-01-01
Abstract Significance: Vitamin C, or ascorbic acid, has long been known to participate in several important functions in the vascular bed in support of endothelial cells. These functions include increasing the synthesis and deposition of type IV collagen in the basement membrane, stimulating endothelial proliferation, inhibiting apoptosis, scavenging radical species, and sparing endothelial cell-derived nitric oxide to help modulate blood flow. Although ascorbate may not be able to reverse inflammatory vascular diseases such as atherosclerosis, it may well play a role in preventing the endothelial dysfunction that is the earliest sign of many such diseases. Recent Advances: Beyond simply preventing scurvy, evidence is mounting that ascorbate is required for optimal function of many dioxygenase enzymes in addition to those involved in collagen synthesis. Several of these enzymes regulate the transcription of proteins involved in endothelial function, proliferation, and survival, including hypoxia-inducible factor-1α and histone and DNA demethylases. More recently, ascorbate has been found to acutely tighten the endothelial permeability barrier and, thus, may modulate access of ascorbate and other molecules into tissues and organs. Critical Issues: The issue of the optimal cellular content of ascorbate remains unresolved, but it appears that low millimolar ascorbate concentrations are normal in most animal tissues, in human leukocytes, and probably in the endothelium. Although there may be little benefit of increasing near maximal cellular ascorbate concentrations in normal people, many diseases and conditions have either systemic or localized cellular ascorbate deficiency as a cause for endothelial dysfunction, including early atherosclerosis, sepsis, smoking, and diabetes. Future Directions: A key focus for future studies of ascorbate and the vascular endothelium will likely be to determine the mechanisms and clinical relevance of ascorbate effects on endothelial function, permeability, and survival in diseases that cause endothelial dysfunction. Antioxid. Redox Signal. 19, 2068–2083. PMID:23581713
[Erectile dysfunction and obstructive sleep apnea syndrome].
Zhuravlev, V N; Frank, M A; Gomzhin, A I
2008-01-01
Of 72 patients with obstructive sleep apnea syndrome (OSAS) 32 had erectile dysfunction (ED). OSAS patients with erectile dysfunction had hypogonadism in 24 cases, in 8 men testosterone level was normal. A polysomnographic investigation with monitoring of nocturnal spontaneous erections showed that 32 patients had severe sleep fragmentation with reduced or complete absence of REM and deep sleep phases. In nocturnal penile tumescencia quantitative and qualitative characteristics were abnormal suggesting organic nature of erectile dysfunction in these patients. Eight ED and OSAS patients with normal testosterone received standard OSAS therapy with administration of FDE-5 type inhibitors. Six months later improvement of the erectile function was observed in 6 patients. OSAS patients with hypogonadism were divided into 2 groups. Group 1 (n = 5) received CPAP therapy and group 2 (n = 19) received OSAS standard therapy. Group 2 was treated with inhibitors of FDE-5 type. Three months later improvement of erectile function was seen only in 8. Group 1 received the inhibitors and testosterone replacement. Three months later all 5 patients had no ED complaints, their testosterone was normal. It is recommended to perform monitoring of nocturnal spontaneous erections in the algorithm of examination of all men with OSAS. All patients with OSAS, ED and documented hypogonadism need testosterone replacement therapy if its level persists low despite adequate therapy of OSAS.
Attenuation of endothelial dysfunction by exercise training in STZ-induced diabetic rats.
Chakraphan, Daroonwan; Sridulyakul, Patarin; Thipakorn, Bundit; Bunnag, Srichitra; Huxley, Virginia H; Patumraj, Suthiluk
2005-01-01
The protective effects of exercise training on the diabetic-induced endothelial cell (EC) dysfunction were determined using intravital fluorescent microscopy. Male Sprague-Dawley rats were divided into three groups of control (Con), diabetes (DM), and diabetes with exercise--training (DM+Ex). Diabetes was induced by single intravenous injection of streptozotocin (STZ; 50 mg/kg BW). The exercise training protocol consisted of treadmill running, 5 times/week with the velocity of 13-15 m/min, 30 min/day periods for 12 and 24 weeks (wks). 24 wks after the STZ injection, blood glucose (BG), glycosylated hemoglobin (HbA1C), mean arterial blood pressure (MAP) and heart weight (HW) were significantly higher in DM rats (p < 0.001). However, DM+Ex rats had reduced the abnormalities of MAP (p < 0.01) and HW (p < 0.05) compared with DM rats. Furthermore, there was a significant decrease in heart rate (HR) of DM+Ex rats (p < 0.05) relative to Con rats. To examine the influence of exercise training on EC dysfunction, leukocyte-EC interactions in mesenteric venules and vascular reactivity responses to vasodilators in mesenteric arterioles were monitored by using intravital fluorescence microscopy. The diabetic state enhanced leukocyte adhesion in mesenteric postcapillary venules (p < 0.001). Moreover, an impaired vasodilatory response to the EC-dependent vasodilator, acetylcholine (Ach), not to sodium nitroprusside (SNP), was found in 12- and 24-wk diabetic rats (p < 0.01). The leukocyte adhesion and the impairment of EC-dependent vasodilation to Ach were attenuated by exercise training (p < 0.05). In addition, exercise training was also shown to have favorable preventive effects on hyperglycemia induced oxidative stress, as lower malondialdehyde (MDA) levels were observed from both groups of 12 and 24 weeks DM+Ex compared with DM (p < 0.01). In conclusion, our findings indicate that the endothelial dysfunction of diabetic rats could be characterized by increased leukocyte adhesion and impaired endothelium-dependent relaxation. Regular low intensity exercise training could improve both indices of endothelial dysfunction through amelioration of diabetic-induced oxidant/antioxidant levels. These findings support the notion that regular exercise training could be a fundamental form of therapy in preventing diabetic cardiovascular complications potentiated by endothelial dysfunction.
Ye, Jing; Ji, Qingwei; Liu, Jianfang; Liu, Ling; Huang, Ying; Shi, Ying; Shi, Lei; Wang, Menglong; Liu, Mengling; Feng, Ying; Jiang, Huimin; Xu, Yao; Wang, Zhen; Song, Junlong; Lin, Yingzhong; Wan, Jun
2017-10-03
CD4+ T helper (Th) cells, including Th1, Th2, and Th17 cells, play critical roles in angiotensin II-induced hypertension. Th22 cells, a novel subset of Th cells, take part in cardiovascular diseases by producing IL-22 (interleukin 22). This study aimed to investigate whether IL-22 is involved in hypertension. Th22 cells and IL-22 levels were detected in angiotensin II-infused mice, and the results showed that Th22 cells and IL-22 levels significantly increased. To determine the effect of Th22/IL-22 on blood pressure regulation, angiotensin II-infused mice were treated with recombinant mouse IL-22, an anti-IL-22 neutralizing monoclonal antibody, or control. Treatment with recombinant IL-22 resulted in increased blood pressure, amplified inflammatory responses, and aggravated endothelial dysfunction, whereas the anti-IL-22 neutralizing monoclonal antibody decreased blood pressure, reduced inflammatory responses, and attenuated endothelial dysfunction. To determine whether the STAT3 (signal transducer and activator of transcription 3) pathway mediates the effect of IL-22 on blood pressure regulation, the special STAT3 pathway inhibitor S31-201 was administered to mice treated with recombinant IL-22. S31-201 treatment significantly ameliorated the IL-22 effects of increased blood pressure and endothelial dysfunction. In addition, serum IL-22 levels were significantly increased in hypertensive patients compared with healthy persons. Correlation analysis showed a positive correlation between IL-22 levels and blood pressure. IL-22 amplifies the inflammatory response, induces endothelial dysfunction and promotes blood pressure elevation in angiotensin II-induced hypertensive mice. The STAT3 pathway mediates the effect of IL-22 on hypertension. Blocking IL-22 may be a novel therapeutic strategy to prevent and treat hypertension. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Cabrera-Rego, Julio Oscar; Navarro-Despaigne, Daisy; Staroushik-Morel, Liudmila; Díaz-Reyes, Karel; Lima-Martínez, Marcos M; Iacobellis, Gianluca
Menopausal transition is critical for the development of early, subclinical vascular damage. Multiple factors, such as atherosclerosis, increased epicardial fat, and endothelial dysfunction can play a role. Hence, the objective of this study was the comparison of epicardial adipose tissue and carotid intima media thickness in order to establish the best predictor of carotid stiffness in middle-aged women with endothelial dysfunction. A total of 43 healthy women aged 40-59 years old with endothelial dysfunction previously demonstrated by flow mediated dilation were recruited to have anthropometric, biochemical, hormonal and ultrasound determinations of carotid intima media thickness and epicardial fat thickness. Carotid arterial stiffness parameters (local pulse wave velocity [4.7±0.7 vs 4.8±0.5 vs 5.6±0.5m/s, respectively, p<0.001], pressure strain elastic modulus [55.2±13.4 vs 59.2±11.8 vs 81.9±15.6kPa, respectively, p<0.001], arterial stiffness index β [4.4±1.4 vs 5.0±1.1 vs 6.4±1.3, respectively, p<0.001]) and epicardial fat thickness (2.98±1.4 vs 3.28±1.9 vs 4.70±1.0mm, respectively, p=0.007) showed a significant and proportional increase in the group of late post-menopausal women when compared to early post-menopausal and pre-menopausal groups, respectively. Among body fat markers, epicardial fat was the strongest predictor of local pulse wave velocity, independent of age. In menopausal women with endothelial dysfunction, menopausal transition is associated with increased carotid arterial stiffness and epicardial fat thickness, independent of age. Ultrasound measured epicardial fat was a better independent predictor of arterial stiffness than carotid intima media thickness in these women. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.
Chao, Chun; Song, Yiqing; Cook, Nancy; Tseng, Chi-Hong; Manson, JoAnn E.; Eaton, Charles; Margolis, Karen L.; Rodriguez, Beatriz; Phillips, Lawrence S.; Tinker, Lesley F.; Liu, Simin
2011-01-01
Background Recent studies have linked plasma markers of inflammation and endothelial dysfunction to type 2 diabetes mellitus (DM) development. However, the utility of these novel biomarkers for type 2 DM risk prediction remains uncertain. Methods The Women’s Health Initiative Observational Study (WHIOS), a prospective cohort, and a nested case-control study within the WHIOS of 1584 incident type 2 DM cases and 2198 matched controls were used to evaluate the utility of plasma markers of inflammation and endothelial dysfunction for type 2 DM risk prediction. Between September 1994 and December 1998, 93 676 women aged 50 to 79 years were enrolled in the WHIOS. Fasting plasma levels of glucose, insulin, white blood cells, tumor necrosis factor receptor 2, interleukin 6, high-sensitivity C-reactive protein, E-selectin, soluble intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 were measured using blood samples collected at baseline. A series of prediction models including traditional risk factors and novel plasma markers were evaluated on the basis of global model fit, model discrimination, net reclassification improvement, and positive and negative predictive values. Results Although white blood cell count and levels of interleukin 6, high-sensitivity C-reactive protein, and soluble intercellular adhesion molecule 1 significantly enhanced model fit, none of the inflammatory and endothelial dysfunction markers improved the ability of model discrimination (area under the receiver operating characteristic curve, 0.93 vs 0.93), net reclassification, or predictive values (positive, 0.22 vs 0.24; negative, 0.99 vs 0.99 [using 15% 6-year type 2 DM risk as the cutoff]) compared with traditional risk factors. Similar results were obtained in ethnic-specific analyses. Conclusion Beyond traditional risk factors, measurement of plasma markers of systemic inflammation and endothelial dysfunction contribute relatively little additional value in clinical type 2 DM risk prediction in a multiethnic cohort of postmenopausal women. PMID:20876407
Defenders and Challengers of Endothelial Barrier Function
Rahimi, Nader
2017-01-01
Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflammation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein interacting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function is moderated by the function of transmembrane receptors and signaling events that act to defend or destabilize it. Here, I highlight recent advances that have provided new insights into endothelial barrier function and mechanisms involved. Further investigation of these mechanisms could lead to the discovery of novel therapeutic targets for human diseases associated with endothelial dysfunction. PMID:29326721
Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue
2016-05-20
Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. Copyright © 2016 Elsevier Inc. All rights reserved.
Erectile dysfunction and fruit/vegetable consumption among diabetic Canadian men.
Wang, Feng; Dai, Sulan; Wang, Mingdong; Morrison, Howard
2013-12-01
To evaluate the association between fruit/vegetable consumption and erectile dysfunction (ED) among Canadian men with diabetes. Data from the 2011 Survey on Living with Chronic Diseases in Canada - Diabetes Component were analyzed using Statistical Analysis System Enterprise Guide (SAS EG). Respondents were asked a series questions related to their sociodemographics, lifestyle, and chronic health conditions. The association between fruit/vegetable consumption and ED was examined using logistic regression after controlling for potential confounding factors. Bootstrap procedure was used to estimate sample distribution and calculate confidence intervals. Overall, 26.2% of respondents reported having ED. The prevalence increased with age and duration of diabetes. Compared with respondents without ED, those with ED were more likely to be obese, smokers, physically inactive, and either divorced, widowed, or separated. Diabetes complications such as nerve damage, circulation problems, and kidney failure or kidney disease were also significantly associated with ED. After controlling for potential confounding factors, a 10% risk reduction of ED was found with each additional daily serving of fruit/vegetable consumed. ED is common among Canadian men with diabetes. ED was highly associated with age, duration of diabetes, obesity, smoking, and the presence of other diabetes-related complications. Fruit and vegetable consumption might have a protective effect against ED. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L
2018-04-27
Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was associated with minor alterations in gut microbiota composition, particularly in Db mice, although these effects did not conclusively mediate the improvements in vascular function. Dapagliflozin treatment improves arterial stiffness, endothelial dysfunction and vascular smooth muscle dysfunction, and subtly alters microbiota composition in type 2 diabetic mice. Collectively, the improvements in generalized vascular function may represent an important mechanism underlying the cardiovascular benefits of SGLT2i treatment.
Association Between Periodontal Disease and Erectile Dysfunction: A Systematic Review.
Kellesarian, Sergio Varela; Kellesarian, Tammy Varela; Ros Malignaggi, Vanessa; Al-Askar, Mansour; Ghanem, Alexis; Malmstrom, Hans; Javed, Fawad
2018-03-01
A limited number of studies have reported an association between erectile dysfunction (ED) and chronic periodontitis (CP). The aim of the present study is to assess the association between CP and ED through a systematic review of published literature. To address the focused question, "Is there a relationship between ED and CP?" indexed databases were searched till December 2015 using various key words "erectile dysfunction," "periodontal disease," "periodontitis," "dental infection," and "impotence." Letters to the editor, commentaries, historic reviews, and experimental studies were excluded. The pattern of the present systematic review was customized to primarily summarize the pertinent data. Nine studies were included. Seven studies had a cross-sectional design and two studies were randomized control trials. The number of study participants ranged between 53 and 513,258 individuals with age ranging between 20 years and 85 years (median age ranging between 34.9 ± 4.9 years and 50.9 ± 16.6 years). In all studies, a positive relationship between CP and ED was reported. In four studies, odds ratio were reported, ranging between 1.53 and 3.35. From the literature reviewed, there seems to be a positive association between ED and CP; however, further well-designed controlled clinical trials are needed in this regard. It is emphasized that physicians should refer patients with ED to oral health care providers for a comprehensive oral evaluation and treatment.
Rumination, experiential avoidance, and dysfunctional thinking in eating disorders
Rawal, Adhip; Park, Rebecca J.; Williams, J. Mark G.
2010-01-01
The majority of research in eating disorders (ED) has investigated the content of disorder-specific thoughts, while few studies have addressed underlying cognitive-affective processes. A better understanding of processes underpinning ED may have important implications for treatment development. Two studies were conducted that investigated levels of rumination, beliefs about rumination, experiential avoidance, and aspects of schematic thinking in individuals with eating pathology. The latter was assessed with a newly designed ED-Sentence Completion Task (ED-SCT). Study 1 (N = 177) examined relations between ED psychopathology and these variables in a student population. Extending this, Study 2 (N = 26) assessed differences between patients with anorexia nervosa and healthy control participants. The results showed that ED psychopathology was related to disorder-specific cognitions, experiential avoidance as well as ruminative brooding but not reflection. A follow-up of anorexia nervosa patients indicated that changes in ED psychopathology were associated with changes in dysfunctional attitudes and maladaptive cognitive-affective processes. These findings highlight cognitive processes that may play an important role in the maintenance of eating pathology. PMID:20598670
Erectile dysfunction management options in Nigeria.
Afolayan, Anthony Jide; Yakubu, Musa Toyin
2009-04-01
In Nigeria, the prevalence of erectile dysfunction (ED) among patients attending primary care clinics, age-standardized to the U.S. population in 2000 is 57.4%. This is considered high enough to warrant the attention of scientist for critical studies and analysis. The high ED prevalence is associated with etiologies such as psychosexual factors, chronic medical conditions, and some lifestyles. ED constitutes a major public health problem, influencing the patient's well-being and quality of life. It also leads to broken homes and marriages, psychological, social, and physical morbidity. To give an account of various ED management options in Nigeria. Review of peer-reviewed literature, questionnaire, and ethnobotanical survey to some indigenous herb sellers and herbalists. Cross cultural perspectives of ED management in Nigeria. The review suggests that traditional (phytotherapy, zootherapy, and occultism) and nontraditional, orthodox practice (drug therapy, psychological, and behavioral counseling) are applicable to ED management in Nigeria. This review should help in creating awareness into various options available for managing ED in the country, but does not recommend self medication of any form, be it the use of orthodox or herbal remedy.
Endothelial progenitor cells and rheumatic disease modifying therapy.
Lo Gullo, Alberto; Aragona, Caterina Oriana; Michele, Scuruchi; Versace, Antonio Giovanni; Antonino, Saitta; Egidio, Imbalzano; Loddo, Saverio; Campo, Giuseppe Maurizio; Giuseppe, Mandraffino
2018-05-26
Rheumatic diseases are associated with accelerated atherosclerosis and with increased risk of cardiovascular morbidity and mortality. The mechanisms underlying the higher prevalence of cardiovascular disease are not completely clarified, but it is likely that a pivotal role is played by vascular inflammation and consequently to altered vascular endothelium homeostasis. Also, high prevalence of traditional risk factors, proatherogenic activation and endothelial dysfunction further contribute to vascular damage. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and protect against atherosclerotic vascular disease. However, abnormalities in number and function of these cells in patients with rheumatic condition have been extensively reported. During the last years, growing interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD has been shown; in addition, pioneering studies show that EPC dysfunction might be improved with pharmacological strategies. However, how to restore EPC function, and whether achieving this aim may be effective in preventing cardiovascular complications in rheumatic disease, remain to be established. In this review we report an overview on the current stand of knowledge on the effect of pharmaceutical and lifestyle intervention in improving EPCs number and function in rheumatic disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Villa, Francesco; Carrizzo, Albino; Spinelli, Chiara C; Ferrario, Anna; Malovini, Alberto; Maciąg, Anna; Damato, Antonio; Auricchio, Alberto; Spinetti, Gaia; Sangalli, Elena; Dang, Zexu; Madonna, Michele; Ambrosio, Mariateresa; Sitia, Leopoldo; Bigini, Paolo; Calì, Gaetano; Schreiber, Stefan; Perls, Thomas; Fucile, Sergio; Mulas, Francesca; Nebel, Almut; Bellazzi, Riccardo; Madeddu, Paolo; Vecchione, Carmine; Puca, Annibale A
2015-07-31
Long living individuals show delay of aging, which is characterized by the progressive loss of cardiovascular homeostasis, along with reduced endothelial nitric oxide synthase activity, endothelial dysfunction, and impairment of tissue repair after ischemic injury. Exploit genetic analysis of long living individuals to reveal master molecular regulators of physiological aging and new targets for treatment of cardiovascular disease. We show that the polymorphic variant rs2070325 (Ile229Val) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) associates with exceptional longevity, under a recessive genetic model, in 3 independent populations. Moreover, the expression of BPIFB4 is instrumental to maintenance of cellular and vascular homeostasis through regulation of protein synthesis. BPIFB4 phosphorylation/activation by protein-kinase-R-like endoplasmic reticulum kinase induces its complexing with 14-3-3 and heat shock protein 90, which is facilitated by the longevity-associated variant. In isolated vessels, BPIFB4 is upregulated by mechanical stress, and its knock-down inhibits endothelium-dependent vasorelaxation. In hypertensive rats and old mice, gene transfer of longevity-associated variant-BPIFB4 restores endothelial nitric oxide synthase signaling, rescues endothelial dysfunction, and reduces blood pressure levels. Furthermore, BPIFB4 is implicated in vascular repair. BPIFB4 is abundantly expressed in circulating CD34(+) cells of long living individuals, and its knock-down in endothelial progenitor cells precludes their capacity to migrate toward the chemoattractant SDF-1. In a murine model of peripheral ischemia, systemic gene therapy with longevity-associated variant-BPIFB4 promotes the recruitment of hematopoietic stem cells, reparative vascularization, and reperfusion of the ischemic muscle. Longevity-associated variant-BPIFB4 may represent a novel therapeutic tool to fight endothelial dysfunction and promote vascular reparative processes. © 2015 American Heart Association, Inc.
2010-01-01
Background Postprandial hyperglycemia is believed to affect vascular endothelial function. The aim of our study was to compare the effects of acarbose and nateglinide on postprandial endothelial dysfunction. Methods We recruited a total of 30 patients with newly diagnosed type 2 diabetes (19 men and 11 women, age 67.8 ± 7.3 years). Patients were randomly assigned to 3 groups receiving either 300 mg/day acarbose, 270 mg/day nateglinide, or no medication. A cookie test (consisting of 75 g carbohydrate, 25 g butter fat, and 7 g protein for a total of 553 kcal) was performed as dietary tolerance testing. During the cookie test, glucose and insulin levels were determined at 0, 30, 60, and 120 min after load. In addition, endothelial function was assessed by % flow-mediated dilation (FMD) of the brachial artery at 0 and 120 min after cookie load. Results Postprandial glucose and insulin levels were similar in the 3 groups. Postprandial endothelial dysfunction was similar in the 3 groups before treatment. After 12 weeks of intervention, postprandial FMD was significantly improved in the acarbose group compared with the control group (6.8 ± 1.3% vs 5.2 ± 1.1%, p = 0.0022). Area under the curve (AUC) for insulin response was significantly increased in the nateglinide and control groups; however, no significant change was observed in the acarbose group. Conclusions Our results suggest that acarbose improves postprandial endothelial function by improvement of postprandial hyperglycemia, independent of postprandial hyperinsulinemia. Acarbose may thus have more beneficial effects on postprandial endothelial function in patients with type 2 diabetes than nateglinide. PMID:20334663
Kady, Nermin; Yan, Yuanqing; Salazar, Tatiana; Wang, Qi; Chakravarthy, Harshini; Huang, Chao; Beli, Eleni; Navitskaya, Svetlana; Grant, Maria; Busik, Julia
2017-01-01
Background Diabetic retinopathy (DR) is a microvascular disease that results from retinal vascular degeneration and defective repair due to diabetes induced endothelial progenitor dysfunction. Objective Understanding key molecular factors involved in vascular degeneration and repair is paramount for developing effective DR treatment strategies. We propose that diabetes-induced activation of acid sphingomyelinase (ASM) plays essential role in retinal endothelial and CD34+ circulating angiogenic cell (CAC) dysfunction in diabetes. Methods Human retinal endothelial cells (HRECs) isolated from control and diabetic donor tissue and human CD34+ CACs from control and diabetic patients were used in this study. ASM mRNA and protein expression was assessed by quantitative PCR and ELISA, respectively. To evaluate the effect of diabetes-induced ASM on HRECs and CD34+ CACs function, tube formation, CAC incorporation into endothelial tubes, and diurnal release of CD34+ CACs in diabetic individuals was determined. Results ASM expression level was significantly increased in HRECs isolated from diabetic compared to control donor tissue, as well as CD34+CACs and plasma of diabetic patients. A significant decrease in tube area was observed in HRECs from diabetic donors as compared to control HRECs. The tube formation deficiency was associated with increased expression of ASM in diabetic HRECs. Moreover, diabetic CD34+ CACs with high ASM showed defective incorporation into endothelial tubes. Diurnal release of CD34+ CACs was disrupted with the rhythmicity lost in diabetic patients. Conclusion Collectively, these findings support that diabetes-induced ASM upregulation has a marked detrimental effect on both retinal endothelial cells and CACs. PMID:28457994
Ferreira, Tatiane Anunciação; Machado, Vinícius Ramos; Perdiz, Marya Izadora; Lyra, Isa Menezes; Nascimento, Valma Lopes; Boa-Sorte, Ney; Andrade, Bruno B.; Ladeia, Ana Marice
2017-01-01
Background Hematological changes can drive damage of endothelial cells, which potentially lead to an early endothelial dysfunction in patients with sickle cell anemia (SCA). An association may exist between endothelial dysfunction and several clinical manifestations of SCA. The present study aims to evaluate the links between changes in endothelial function and clinical and laboratory parameters in children and adolescents with SCA. Methods This study included 40 children and adolescents with stable SCA as well as 25 healthy children; aged 6–18 years. All study subjects were evaluated for endothelial function using Doppler ultrasonography. In addition, a number of laboratory assays were performed, including reticulocyte and leukocyte counts as well as measurement of circulating levels of total bilirubin, C-reactive protein (CRP), glucose, lipoproteins and peripheral oxyhemoglobin saturation. These parameters were also compared between SCA patients who were undertaking hydroxyurea (HU) and those who were not. Results Flow-mediated vasodilation (FMD) values were found to be reduced in SCA patients compared with those detected in healthy controls. SCA individuals with lower FMD values exhibited higher number of hospital admissions due to vaso-occlusive events. Additional analyses revealed that patients who had decreased FMD values exhibited higher odds of acute chest syndrome (ACS) episodes. A preliminary analysis with limited number of individuals failed to demonstrate significant differences in FMD values between SCA individuals who were treated with HU and those who were not. Conclusions Children and adolescents with SCA exhibit impaired endothelial function. Reductions in FMD values are associated with ACS. These findings underline the potential use of FMD as screening strategy of SCA patients with severe prognosis at early stages. PMID:28863145
Arachidonic acid metabolites and endothelial dysfunction of portal hypertension.
Sacerdoti, David; Pesce, Paola; Di Pascoli, Marco; Brocco, Silvia; Cecchetto, Lara; Bolognesi, Massimo
2015-07-01
Increased resistance to portal flow and increased portal inflow due to mesenteric vasodilatation represent the main factors causing portal hypertension in cirrhosis. Endothelial cell dysfunction, defined as an imbalance between the synthesis, release, and effect of endothelial mediators of vascular tone, inflammation, thrombosis, and angiogenesis, plays a major role in the increase of resistance in portal circulation, in the decrease in the mesenteric one, in the development of collateral circulation. Reduced response to vasodilators in liver sinusoids and increased response in the mesenteric arterioles, and, viceversa, increased response to vasoconstrictors in the portal-sinusoidal circulation and decreased response in the mesenteric arterioles are also relevant to the pathophysiology of portal hypertension. Arachidonic acid (AA) metabolites through the three pathways, cyclooxygenase (COX), lipoxygenase, and cytochrome P450 monooxygenase and epoxygenase, are involved in endothelial dysfunction of portal hypertension. Increased thromboxane-A2 production by liver sinusoidal endothelial cells (LSECs) via increased COX-1 activity/expression, increased leukotriens, increased epoxyeicosatrienoic acids (EETs) (dilators of the peripheral arterial circulation, but vasoconstrictors of the portal-sinusoidal circulation), represent a major component in the increased portal resistance, in the decreased portal response to vasodilators and in the hyper-response to vasoconstrictors. Increased prostacyclin (PGI2) via COX-1 and COX-2 overexpression, and increased EETs/heme-oxygenase-1/K channels/gap junctions (endothelial derived hyperpolarizing factor system) play a major role in mesenteric vasodilatation, hyporeactivity to vasoconstrictors, and hyper-response to vasodilators. EETs, mediators of liver regeneration after hepatectomy and of angiogenesis, may play a role in the development of regenerative nodules and collateral circulation, through stimulation of vascular endothelial growth factor (VEGF) inside the liver and in the portal circulation. Pharmacological manipulation of AA metabolites may be beneficial for cirrhotic portal hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.
There's life in the old dog yet: vitamin C as a therapeutic option in endothelial dysfunction.
Rodemeister, Sandra; Biesalski, Hans K
2014-08-27
The use of vitamin C against different diseases has been controversially and emotionally discussed since Linus Pauling published his cancer studies. In vitro and animal studies showed promising results and explained the impact of vitamin C, particularly in cases with endothelial dysfunction. Indeed, studies (reviewed in this issue of Critical Care by Oudemans-van Straaten and colleagues) using high-dose vitamin C and the parenteral route of application seem to be more successful than oral vitamin C delivery.
Assessment of Nephroprotective Potential of Histochrome during Induced Arterial Hypertension.
Agafonova, I G; Bogdanovich, R N; Kolosova, N G
2015-12-01
Magnetic resonance tomography was employed to verify endothelial dysfunction of renal arteries in Wistar and OXYS rats under conditions of induced arterial hypertension. Angiography revealed changes in the size and form of renal arteries of hypertensive animals. In hypertensive rats, histochrome exerted a benevolent therapeutic effect in renal arteries: it decreased BP, diminished thrombus formation in fi ne capillaries and arterioles, demonstrated the anticoagulant properties, partially improved endothelial dysfunction of small renal arteries, and up-regulated the glomerular filtration.
Early Endothelial Bioactivity of Serum after Diesel Exhaust ...
Adverse cardiovascular effects of air pollution are often associated with a spike in systemic proinflammatory biomarkers, but causative linkage between circulating factors and deleterious outcomes following exposure remains elusive. Endothelial dysfunction is a consequence of systemic inflammation and precedes multiple cardiovascular pathologies. The purpose of this study was to examine the plausibility of serum-bound factors as initiators of an air pollution-induced pathologic sequelae beginning with endothelial injury, and later, cardiac dysfunction. We hypothesized that serum taken from diesel exhaust (DE)-exposed rats that develop cardiac dysfunction would alter aortic endothelial cell function in vitro. To assess cardiac function in vivo, left ventricular pressure (LVP) assessments were conducted in rats one day after a single 4 hour whole body exposure to 150 or 500 μg/m3 DE or filtered air. Rat aortic endothelial cells (RAEC) were then exposed to diluted serum (10%) collected 1 hour after exposure from a separate cohort of similarly exposed rats for measures of VCAM-1, cell viability, nitric oxide synthase (NOS) levels, and mRNA expression of key mediators of inflammation. Exposure of rats to 150 or 500 μg/m3 DE increased heart rate (HR) after exposure relative to rats exposed to filtered air, suggesting a shift towards increased sympathetic tone. LVP and HR in DE-exposed rats (500 μg/m3 DE) failed to recover to normal levels after challenge with the
Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Gutterman, David D.
2012-01-01
Objective To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Design Prospective cross-sectional study. Setting Academic institution in the Midwestern United States. Subjects Twenty-two professional ballet dancers volunteered for this study. Main Outcome Measures Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Results Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). Conclusions This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. PMID:21715240
Satitthummanid, Sudarat; Uaprasert, Noppacharn; Songmuang, Smonporn Boonyaratavej; Rojnuckarin, Ponlapat; Tosukhowong, Piyaratana; Sutcharitchan, Pranee; Srimahachota, Suphot
2017-09-01
Mechanisms of vascular disorders in β-thalassemia/HbE patients remain poorly understood. In the present study, we aimed to determine the presence of endothelial dysfunction and its association with altered vascular mediators in this population. Forty-three β-thalassemia/HbE patients without clinically documented vascular symptoms and 43 age-sex-matched healthy controls were enrolled. Endothelial function was assessed using flow-mediated dilatation (FMD) before and after administration of nitroglycerine (NTG). β-Thalassemia/HbE patients showed a significant endothelial dysfunction using FMD. The percentage change in the brachial artery diameter before NTG was significantly lower in the thalassemia group compared to the control (5.0 ± 5.9 vs. 9.0 ± 4.0%, p < 0.01) while no significant differences after NTG (18.4 ± 8.3 vs. 17.8 ± 6.3%, p = 0.71). Plasma nitric oxide metabolites (NO x ) and prostaglandin E 2 (PGE 2 ) levels were significantly decreased in β-thalassemia/HbE (117.2 ± 27.3 vs. 135.8 ± 11.3 µmol/L, p < 0.01) and (701.9 ± 676.0 vs. 1374.7 ± 716.5 pg/mL, p < 0.01), respectively, while a significant elevation in soluble thrombomodulin levels in β-thalassemia/HbE (3587.7 ± 1310.0 vs. 3093.9 ± 583.8 pg/mL, p = 0.028). NO x and PGE 2 levels were significantly correlated with FMD (r = 0.27, p = 0.025) and (r = 0.35, p = 0.003), respectively. These findings suggest roles for endothelial mediators and a new mechanism underlying endothelial dysfunction in β-thalassemia/HbE patients.
Borgi, Lea; McMullan, Ciaran; Wohlhueter, Ann; Curhan, Gary C; Fisher, Naomi D; Forman, John P
2017-02-01
Higher levels of serum uric acid are independently associated with endothelial dysfunction, a mechanism for incident hypertension. Overweight/obese individuals are more prone to endothelial dysfunction than their lean counterparts. However, the effect of lowering serum uric acid on endothelial dysfunction in these individuals has not been examined thoroughly. In this randomized, double-blind, placebo-controlled trial of nonhypertensive, overweight, or obese individuals with higher serum uric acid (body mass index ≥25 kg/m 2 and serum uric acid ≥5.0 mg/dL), we assigned subjects to probenecid (500-1000 mg/d), allopurinol (300-600 mg/d), or matching placebo. The primary outcome was endothelium-dependent vasodilation measured by brachial artery ultrasound at baseline and 8 weeks. By the end of the trial, 47, 49, and 53 participants had been allocated to receive probenecid, allopurinol, and placebo, respectively. Mean serum uric acid levels significantly decreased in the probenecid (from 6.1 to 3.5 mg/dL) and allopurinol groups (from 6.1 to 2.9 mg/dL) but not in the placebo group (6.1 to 5.6 mg/dL). None of the interventions produced any significant change in endothelium-dependent vasodilation (probenecid, 7.4±5.1% at baseline and 8.3±5.1% at 8 weeks; allopurinol, 7.6±6.0% at baseline and 6.2±4.8% at 8 weeks; and placebo, 6.5±3.8% at baseline and 7.1±4.9% at 8 weeks). In this randomized, double-blind, placebo-controlled trial, uric acid lowering did not affect endothelial function in overweight or obese nonhypertensive individuals. These data do not support the hypothesis that uric acid is causally related to endothelial dysfunction, a potential mechanism for development of hypertension. © 2016 American Heart Association, Inc.
Niazi, Zahid Rasul; Silva, Grazielle C; Ribeiro, Thais Porto; León-González, Antonio J; Kassem, Mohamad; Mirajkar, Abdur; Alvi, Azhar; Abbas, Malak; Zgheel, Faraj; Schini-Kerth, Valérie B; Auger, Cyril
2017-12-01
Eicosapentaenoic acid:docosahexaenoic acid (EPA:DHA) 6:1, an omega-3 polyunsaturated fatty acid formulation, has been shown to induce a sustained formation of endothelial nitric oxide (NO) synthase-derived NO, a major vasoprotective factor. This study examined whether chronic intake of EPA:DHA 6:1 prevents hypertension and endothelial dysfunction induced by angiotensin II (Ang II) in rats. Male Wister rats received orally corn oil or EPA:DHA 6:1 (500 mg kg -1 per day) before chronic infusion of Ang II (0.4 mg kg -1 per day). Systolic blood pressure was determined by tail cuff sphingomanometry, vascular reactivity using a myograph, oxidative stress using dihydroethidium and protein expression by immunofluorescence and western blot analysis. Ang II-induced hypertension was associated with reduced acetylcholine-induced relaxations of secondary branch mesenteric artery rings affecting the endothelium-dependent hyperpolarization (EDH)- and the NO-mediated relaxations, both of which were improved by the NADPH oxidase inhibitor VAS-2870. The Ang II treatment induced also endothelium-dependent contractile responses (EDCFs), which were abolished by the cyclooxygenase (COX) inhibitor indomethacin. An increased level of vascular oxidative stress and expression of NADPH oxidase subunits (p47 phox and p22 phox ), COX-1 and COX-2, endothelial NO synthase and Ang II type 1 receptors were observed in the Ang II group, whereas SK Ca and connexin 37 were downregulated. Intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction by improving both the NO- and EDH-mediated relaxations, and by reducing EDCFs and the expression of target proteins. The present findings indicate that chronic intake of EPA:DHA 6:1 prevented the Ang II-induced hypertension and endothelial dysfunction in rats, most likely by preventing NADPH oxidase- and COX-derived oxidative stress.
Hypothyroidism Is Associated With Coronary Endothelial Dysfunction in Women
Sara, Jaskanwal D; Zhang, Ming; Gharib, Hossein; Lerman, Lilach O; Lerman, Amir
2015-01-01
Background Hypothyroidism is associated with an increased risk of coronary artery disease, beyond that which can be explained by its association with conventional cardiovascular risk factors. Coronary endothelial dysfunction precedes atherosclerosis, has been linked to adverse cardiovascular events, and may account for some of the increased risk in patients with hypothyroidism. The aim of this study was to determine whether there is an association between epicardial and microvascular coronary endothelial dysfunction and hypothyroidism. Methods and Results In 1388 patients (mean age 50.5 [12.3] years, 34% male) presenting with stable chest pain to Mayo Clinic, Rochester, MN for diagnostic coronary angiography, and who were found to have nonobstructive coronary artery disease (<40% stenosis), we invasively assessed coronary artery endothelial-dependent microvascular and epicardial function by evaluating changes in coronary blood flow (% Δ CBF Ach) and diameter (% Δ CAD Ach), respectively, in response to intracoronary infusions of acetylcholine. Patients were divided into 2 groups: hypothyroidism, defined as a documented history of hypothyroidism or a thyroid-stimulating hormone (TSH) >10.0 mU/mL, n=188, and euthyroidism, defined as an absence of a history of hypothyroidism in the clinical record and/or 0.3
Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto
2014-03-20
Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4(+) lymphocytes, ICAM-1(+) and iNOS(+) microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and reduces mucosal inflammation in UC patients.
Scioli, Maria Giovanna; Stasi, Maria Antonietta; Passeri, Daniela; Doldo, Elena; Costanza, Gaetana; Camerini, Roberto; Fociani, Paolo; Arcuri, Gaetano; Lombardo, Katia; Pace, Silvia; Borsini, Franco; Orlandi, Augusto
2014-01-01
Objectives: Microvascular endothelial dysfunction characterizes ulcerative colitis (UC), the most widespread form of inflammatory bowel disease. Intestinal mucosal microvessels in UC display aberrant expression of cell adhesion molecules (CAMs) and increased inflammatory cell recruitment. Propionyl-L-carnitine (PLC), an ester of L-carnitine required for the mitochondrial transport of fatty acids, ameliorates propionyl-CoA bioavailability and reduces oxidative stress in ischemic tissues. The present study aimed to document the efficacy of anti-oxidative stress properties of PLC in counteracting intestinal microvascular endothelial dysfunction and inflammation. Methods: To evaluate the efficacy in vivo, we analyzed the effects in intestinal biopsies of patients with mild-to-moderate UC receiving oral PLC co-treatment and in rat TNBS-induced colitis; in addition, we investigated antioxidant PLC action in TNF-α-stimulated human intestinal microvascular endothelial cells (HIMECs) in vitro. Results: Four-week PLC co-treatment reduced intestinal mucosal polymorph infiltration and CD4+ lymphocytes, ICAM-1+ and iNOS+ microvessels compared with placebo-treated patients with UC. Oral and intrarectal administration of PLC but not L-carnitine or propionate reduced intestinal damage and microvascular dysfunction in rat TNBS-induced acute and reactivated colitis. In cultured TNF-α-stimulated HIMECs, PLC restored β-oxidation and counteracted NADPH oxidase 4-generated oxidative stress-induced CAM expression and leukocyte adhesion. Inhibition of β-oxidation by L-aminocarnitine increased reactive oxygen species production and PLC beneficial effects on endothelial dysfunction and leukocyte adhesion. Finally, PLC reduced iNOS activity and nitric oxide accumulation in rat TNBS-induced colitis and in HIMEC cultures. Conclusions: Our results show that the beneficial antioxidant effect of PLC targeting intestinal microvasculature restores endothelial β-oxidation and function, and reduces mucosal inflammation in UC patients. PMID:24646507
Gómez-Guzmán, Manuel; Jiménez, Rosario; Romero, Miguel; Sánchez, Manuel; Zarzuelo, María José; Gómez-Morales, Mercedes; O'Valle, Francisco; López-Farré, Antonio José; Algieri, Francesca; Gálvez, Julio; Pérez-Vizcaino, Francisco; Sabio, José Mario; Duarte, Juan
2014-08-01
Hydroxychloroquine has been shown to be efficacious in the treatment of autoimmune diseases, including systemic lupus erythematosus. Hydroxychloroquine-treated lupus patients showed a lower incidence of thromboembolic disease. Endothelial dysfunction, the earliest indicator of the development of cardiovascular disease, is present in lupus. Whether hydroxychloroquine improves endothelial function in lupus is not clear. The aim of this study was to analyze the effects of hydroxychloroquine on hypertension, endothelial dysfunction, and renal injury in a female mouse model of lupus. NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with hydroxychloroquine 10 mg/kg per day by oral gavage, or with tempol and apocynin in the drinking water, for 5 weeks. Hydroxychloroquine treatment did not alter lupus disease activity (assessed by plasma double-stranded DNA autoantibodies) but prevented hypertension, cardiac and renal hypertrophy, proteinuria, and renal injury in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and enhanced contraction to phenylephrine, which were normalized by hydroxychloroquine or antioxidant treatments. No differences among all experimental groups were found in both the relaxant responses to acetylcholine and the contractile responses to phenylephrine in rings incubated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. Vascular reactive oxygen species content and mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase subunits NOX-1 and p47(phox) were increased in lupus mice and reduced by hydroxychloroquine or antioxidants. Chronic hydroxychloroquine treatment reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, despite the persistent elevation of anti-double-stranded DNA, suggesting the involvement of new additional mechanisms to improve cardiovascular complications. © 2014 American Heart Association, Inc.
Hernandez-Lopez, Rubicel; Chavez-Gonzalez, Antonieta; Torres-Barrera, Patricia; Moreno-Lorenzana, Dafne; Lopez-DiazGuerrero, Norma; Santiago-German, David; Isordia-Salas, Irma; Smadja, David; C. Yoder, Mervin; Majluf-Cruz, Abraham
2017-01-01
Background Venous thromboembolic disease (VTD) is a public health problem. We recently reported that endothelial colony-forming cells (ECFCs) derived from endothelial cells (EC) (ECFC-ECs) from patients with VTD have a dysfunctional state. For this study, we proposed that a dysfunctional status of these cells generates a reduction of its proliferative ability, which is also associated with senescence and reactive oxygen species (ROS). Methods and results Human mononuclear cells (MNCs) were obtained from peripheral blood from 40 healthy human volunteers (controls) and 50 patients with VTD matched by age (20−50 years) and sex to obtain ECFCs. We assayed their proliferative ability with plasma of patients and controls and supernatants of cultures from ECFC-ECs, senescence-associated β-galactosidase (SA-β-gal), ROS, and expression of ephrin-B2/Eph-B4 receptor. Compared with cells from controls, cells from VTD patients showed an 8-fold increase of ECFCs that emerged 1 week earlier, reduced proliferation at long term (39%) and, in passages 4 and 10, a highly senescent rate (30±1.05% vs. 91.3±15.07%, respectively) with an increase of ROS and impaired expression of ephrin-B2/Eph-4 genes. Proliferation potential of cells from VTD patients was reduced in endothelial medium [1.4±0.22 doubling population (DP)], control plasma (1.18±0.31 DP), or plasma from VTD patients (1.65±0.27 DP). Conclusions As compared with controls, ECFC-ECs from individuals with VTD have higher oxidative stress, proliferation stress, cellular senescence, and low proliferative potential. These findings suggest that patients with a history of VTD are ECFC-ECs dysfunctional that could be associated to permanent risk for new thrombotic events. PMID:28910333
Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.
Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei
2017-11-01
Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p < 0.05). These effects were enhanced by spermine and completely negated by ruthenium red, which are known to activate and inhibit mitochondrial calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.
Antihypertensive therapy and endothelial function.
Nadar, Sunil; Blann, Andrew D; Lip, Gregory Y H
2004-01-01
The benefits of treating hypertension in terms of reduction of morbidity and mortality are well established. However, it is debatable whether this benefit is derived entirely from the effects of a reduced blood pressure or whether these agents exert effects over and above blood pressure reduction on the endothelium. Hypertension is associated with adverse changes (whether damage or dysfunction) in the endothelium. Indeed, endothelial damage/dysfunction has have been demonstrated to be a reliable prognostic indicator of future cardiovascular events in hypertension. Of the various drug classes, calcium channel blockers and the ACE inhibitors have significant direct effects on the endothelium. This is in contrast to the beta blockers and alpha adrenergic blockers that appear to indirectly influence endothelial function solely as a result of lowered blood pressure. Antioxidants may have a beneficial effect on endothelial function as well, although their clinical use does not seem to translate into clinical benefit.
Male erectile dysfunction: integrating psychopharmacology and psychotherapy.
Simopoulos, Eugene F; Trinidad, Anton C
2013-01-01
Erectile dysfunction (ED), defined as the inability to achieve or maintain an erection sufficient for satisfactory sexual performance, is the most common sexual problem in men. ED arises when there is disruption of the complex interplay between vascular, neurologic, hormonal and psychologic factors necessary for normal erectile function. It may have a significant effect on quality of life and portend undetected cardiovascular disease. Risk factors for development of ED include advancing age, tobacco use, a history of pelvic irradiation or surgery and antipsychotic use (Table 1) [1]. Treatment guidelines continue to evolve for optimal management of ED. In this article, we review diagnostic and treatment strategies for ED relevant to psychiatrists. We present an integrative approach to the treatment of ED based on a review of the urologic and psychiatric literature. ED is multifactorial in origin and responsive to a variety of therapeutic interventions, including psychopharmacology and psychotherapy in which cognitive underpinnings of poor sexual performance, including diminished self-esteem, lack of confidence and perceived failures in the male role, are examined. Psychiatrists can readily perform a basic workup for ED as they integrate both a medical and therapeutic model when confronted with such patients. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, Shengqiang; Wang, Jian; Zhao, Airong; Li, Jigang
2017-09-01
Sustained hyperglycemic stimulation of vascular cells is involved in the pathogenesis of diabetes mellitus‑induced cardiovascular complications. Silent information regulator T1 (SIRT1), a mammalian sirtuin, has been previously recognized to protect endothelial cells against hyperglycemia‑induced oxidative stress. In the present study, human umbilical vein endothelial cells (HUV‑EC‑C) were treated with D‑glucose, and the levels of oxidative stress, mitochondrial dysfunction, the rate of apoptosis and SIRT1 activity were measured. The effect of manipulated SIRT1 activity on hyperglycemia‑induced oxidative stress, mitochondrial dysfunction and apoptosis was then assessed using the SIRT1 activator, resveratrol (RSV), and the SIRT1 inhibitor, sirtinol. The present study confirmed that hyperglycemia promotes oxidative stress and mitochondrial dysfunction in HUV‑EC‑C cells. The accumulation of reactive oxygen species, the swelling of mitochondria, the ratio of adenosine 5'‑diphosphate to adenosine 5'‑triphosphate and localized mitochondrial superoxide levels were all increased following D‑glucose treatment, whereas the mitochondrial membrane potential was significantly reduced by >50 mg/ml D‑glucose treatment. In addition, hyperglycemia was confirmed to induce apoptosis in HUV‑EC‑C cells. Furthermore, the results confirmed the prevention and aggravation of hyperglycemia‑induced apoptosis by RSV treatment and sirtinol treatment, via the amelioration and enhancement of oxidative stress and mitochondrial dysfunction in HUV‑EC‑C cells, respectively. In conclusion, the present study revealed that hyperglycemia promotes oxidative stress, mitochondrial dysfunction and apoptosis in HUV‑EC‑C cells, and manipulation of SIRT1 activity regulated hyperglycemia‑induced mitochondrial dysfunction and apoptosis in HUV‑EC‑C cells. The data revealed the protective effect of SIRT1 against hyperglycemia‑induced apoptosis via the alleviation of mitochondrial dysfunction and oxidative stress.
Coffee bean polyphenols ameliorate postprandial endothelial dysfunction in healthy male adults.
Ochiai, Ryuji; Sugiura, Yoko; Otsuka, Kazuhiro; Katsuragi, Yoshihisa; Hashiguchi, Teruto
2015-05-01
To reveal the effect of coffee bean polyphenols (CBPs) on blood vessels, this study aimed to investigate the effect of CBPs on acute postprandial endothelial dysfunction. Thirteen healthy non-diabetic men (mean age, 44.9 ± 1.4 years) consumed a test beverage (active: containing CBPs, placebo: no CBPs) before a 554-kcal test meal containing 14 g of protein, 30 g of fat and 58 g of carbohydrates. Then, a crossover analysis was performed to investigate the time-dependent changes in flow-mediated dilation (FMD) in the brachial artery. In the active group, the postprandial impairment of FMD was significantly improved, the two-hour postprandial nitric oxide metabolite levels were significantly increased and the six-hour postprandial urinary 8-epi-prostaglandin F2α levels were significantly reduced compared to the placebo group. The test meal increased the levels of blood glucose, insulin and triglycerides in both groups with no significant intergroup differences. These findings indicate that CBPs intake ameliorates postprandial endothelial dysfunction in healthy men.
Hu, X Y; Fang, Q; Ma, D; Jiang, L; Yang, Y; Sun, J; Yang, C; Wang, J S
2016-06-10
Medical nitroglycerin (glyceryl trinitrate, GTN) use is limited principally by tolerance typified by a decrease in nitric oxide (NO) produced by biotransformation. Such tolerance may lead to endothelial dysfunction by inducing oxidative stress. In vivo studies have demonstrated that aldehyde dehydrogenase 2 (ALDH2) plays important roles in GTN biotransformation and tolerance. Thus, modification of ALDH2 expression represents a potentially effective strategy to prevent and reverse GTN tolerance and endothelial dysfunction. In this study, a eukaryotic expression vector containing the ALDH2 gene was introduced into human umbilical vein endothelial cells (HUVECs) by liposome-mediated transfection. An indirect immunofluorescence assay showed that ALDH2 expression increased 24 h after transfection. Moreover, real-time polymerase chain reaction and western blotting revealed significantly higher ALDH2 mRNA and protein expression in the gene-transfected group than in the two control groups. GTN tolerance was induced by treating HUVECs with 10 mM GTN for 16 h + 10 min, which significantly decreased NO levels in control cells, but not in those transfected with ALDH2. Overexpression of ALDH2 increased cell survival against GTN-induced cytotoxicity and conferred protection from oxidative damage resulting from nitrate tolerance, accompanied by decreased production of intracellular reactive oxygen species and reduced expression of heme oxygenase 1. Furthermore, ALDH2 overexpression promoted Akt phosphorylation under GTN tolerance conditions. ALDH2 gene transfection can reverse and prevent tolerance to GTN through its bioactivation and protect against oxidative damage, preventing the development of endothelial dysfunction.
Jiang, Jiaye; Gan, Zhongyuan; Li, Yuan; Zhao, Wenqi; Li, Hanqing; Zheng, Jian-Pu; Ke, Yan
2017-01-01
Sleep loss can induce or aggravate the development of cardiovascular and cerebrovascular diseases. However, the molecular mechanism underlying this phenomenon is poorly understood. The present study was designed to investigate the effects of REM sleep deprivation on blood pressure in rats and the underlying mechanisms of these effects. After Sprague-Dawley rats were subjected to REM sleep deprivation for 5 days, their blood pressures and endothelial function were measured. In addition, one group of rats was given continuous access to L-arginine supplementation (2% in distilled water) for the 5 days before and the 5 days of REM sleep deprivation to reverse sleep deprivation-induced pathological changes. The results showed that REM sleep deprivation decreased body weight, increased blood pressure, and impaired endothelial function of the aortas in middle-aged rats but not young rats. Moreover, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) concentrations as well as endothelial NO synthase (eNOS) phosphorylation in the aorta were decreased by REM sleep deprivation. Supplementation with L-arginine could protect against REM sleep deprivation-induced hypertension, endothelial dysfunction, and damage to the eNOS/NO/cGMP signaling pathway. The results of the present study suggested that REM sleep deprivation caused endothelial dysfunction and hypertension in middle-aged rats via the eNOS/NO/cGMP pathway and that these pathological changes could be inhibited via L-arginine supplementation. The present study provides a new strategy to inhibit the signaling pathways involved in insomnia-induced or insomnia-enhanced cardiovascular diseases.
Evaluation of erectile dysfunction risk factors in young male survivors of colorectal cancer.
Sendur, Mehmet A N; Aksoy, Sercan; Ozdemir, Nuriye Y; Yaman, Sebnem; Yazici, Ozan; Bulent Akinci, Muhammed; Uncu, Dogan; Zengin, Nurullah; Altundag, Kadri
2014-01-01
Improved long-term survival of colorectal cancer patients (CRC) treated with surgery and/or chemotherapy ± radiotherapy (RT) has led to increased awareness of long-term side effects, including effecting sexual life, which can ultimately affect the quality of life in these patients. Because the absolute risk factors of erectile dysfunction (ED) have not been defined in CRC patients, the aim of this research was to identify the severity and the absolute risk factors of ED in male CRC survivors. The medical records of 61 male survivors of CRC treated with surgery and/or chemotherapy ± RT were retrieved from the medical oncology outpatient clinics during routine follow-up visits in 2011-2012. Patients older than 55 years and those with ED history before diagnosis were excluded. International Index of Erectile Function (IIEF) questionnaire was filled in by the patients. The patient mean age was 47.6±6.7 years (range 18-55) at the time of filling in the questionnaire. According to the International Index of Erectile Function (IIEF) score, 83.6% of the patients had some degree of ED. The risk factors of erectile dysfunction were advancing age (p=0.01), tumor location (p=0.01), type of surgery (p=0.02), presence of stoma (p=0.03)) and RT (p=0.005). Chemotherapy didn't impact ED (p=0.46). Also, there was no significant correlation between smoking status, hypertension, diabetes mellitus, cardiovascular disease, stage of the tumor and ED. Also hormonal disturbances such as serum FSH, LH and testesterone levels did not affect the presence of ED. Overall, 83.6% of the male CRC survivors had some degree of ED according to the IIEF. The risk factors of ED were advancing age, tumor location, type of operation, presence of stoma and RT. Clinicians should be aware of these risk factors to offer their patients adequate treatment options and also come up with new treatment strategies necessary to reduce further ED in CRC survivors.
Wu, Haiyan; van Thiel, Bibi S; Bautista-Niño, Paula K; Reiling, Erwin; Durik, Matej; Leijten, Frank P J; Ridwan, Yanto; Brandt, Renata M C; van Steeg, Harry; Dollé, Martijn E T; Vermeij, Wilbert P; Hoeijmakers, Jan H J; Essers, Jeroen; van der Pluijm, Ingrid; Danser, A H Jan; Roks, Anton J M
2017-08-01
DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model ( Ercc1 Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1 Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser 1177 -eNOS were compromised in Ercc1 Δ / - DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1 Δ/- mice. Ercc1 Δ/ - mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Matsumoto, Takayuki; Ishida, Keiko; Nakayama, Naoaki; Taguchi, Kumiko; Kobayashi, Tsuneo; Kamata, Katsuo
2010-09-01
It is well known that type 2 diabetes mellitus is frequently associated with vascular dysfunction and an elevated systemic blood pressure, yet the underlying mechanisms are not completely understood. We previously reported that in mesenteric arteries from established type 2 diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats, which exhibit endothelial dysfunction, there is an imbalance between endothelium-derived vasodilators [namely, nitric oxide (NO) and hyperpolarizing factor (EDHF)] and vasoconstrictors [contracting factors (EDCFs) such as cyclooxygenase (COX)-derived prostanoids]. Here, we investigated whether the angiotensin II receptor antagonist losartan might improve endothelial dysfunction in OLETF rats at the established stage of diabetes. In mesenteric arteries isolated from OLETF rats [vs. those from age-matched control Long-Evans Tokushima Otsuka (LETO) rats]: (1) the acetylcholine (ACh)-induced relaxation was impaired, (2) the NO- and EDHF-mediated relaxations were reduced, (3) the ACh-induced EDCF-mediated contraction and the production of prostanoids were increased, and (4) superoxide generation was increased. After such OLETF rats had received losartan (25 mg/kg/day p.o. for 4 weeks), their isolated mesenteric arteries exhibited: (1) improvements in ACh-induced NO- and EDHF-mediated relaxations, (2) reduced EDCF- and arachidonic acid-induced contractions, (3) suppressed production of prostanoids, (4) reduced PGE(2)-mediated contraction, and (5) reduced superoxide generation. Within the timescale studied here, losartan did not change the protein expressions of endothelial NO synthase, COX1, or COX2 in mesenteric arteries from either OLETF or LETO rats. Losartan thus normalizes vascular dysfunction in this type 2 diabetic model, and the above effects may contribute to the reduction of adverse cardiovascular events seen in diabetic patients treated with angiotensin II receptor blockers. Copyright 2010 Elsevier Ltd. All rights reserved.
Muñoz, Mercedes; Sánchez, Ana; Pilar Martínez, María; Benedito, Sara; López-Oliva, Maria-Elvira; García-Sacristán, Albino; Hernández, Medardo; Prieto, Dolores
2015-07-01
Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS. Copyright © 2015 Elsevier Inc. All rights reserved.
Soterio-Pires, J H; Hirotsu, C; Kim, L J; Bittencourt, L; Tufik, S; Andersen, M L
2017-03-01
Depression (DEP) is one of the main disabling diseases and is considered a contributor factor for erectile dysfunction (ED). Both of these conditions may be associated with hormonal changes and sleep disturbances. We aimed to evaluate the interaction between ED complaints and depression symptoms on sleep parameters, hormone levels and quality of life in men. This was a cross-sectional study of 468 men aged 20-80 years. The participants were classified according to the presence of ED and/or DEP in groups of healthy individuals, ED, DEP and DEP with ED (DEP-ED). All participants completed questionnaires about sleep, clinical history and quality of life, and underwent polysomnography with blood collection the following morning. ED participants showed higher frequency of insomnia symptoms (65.5%), whereas DEP group had more complaints of difficulty in falling asleep and early morning awakening. In the polysomnography, all groups showed similar parameters. No differences were found in cortisol and total testosterone levels; however, free testosterone levels and the physiological domain of quality of life were lower in DEP-ED group. ED and DEP, as independent factors, negatively affected subjective sleep parameters. The interaction between these factors led to a low quality of life and was related to a decrease in free testosterone levels.
Endothelial Effects of Emission Source particles: Acute Toxic Response Gene Expression Profiles
Air pollution epidemiology has established a strong association between exposure to ambient particulate matter (PM) and cardiovascular outcomes. Experimental studies in both humans and laboratory animals support varied biological mechanisms including endothelial dysfunction as po...
The effects of hydroxychloroquine on endothelial dysfunction.
Rahman, Rahana; Murthi, Padma; Singh, Harmeet; Gurusinghe, Seshini; Mockler, Joanne C; Lim, Rebecca; Wallace, Euan M
2016-10-01
Hydroxychloroquine is an anti-malarial drug which, due to its anti-inflammatory and immunomodulatory effects, is widely used for the treatment of autoimmune diseases. In a model of systemic lupus erythematosus hydroxychloroquine has been shown to exert protective endothelial effects. In this study, we aimed to investigate whether hydroxychloroquine was endothelial protective in an in vitro model of TNF-α and preeclamptic serum induced dysfunction. We showed that hydroxychloroquine significantly reduced the production of TNF-α and preeclamptic serum induced endothelin-1 (ET-1). Hydroxychloroquine also significantly mitigated TNF-α induced impairment of angiogenesis. These findings support the further assessment of hydroxychloroquine as an adjuvant therapy in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Qingqiao; Xia, Yuanyu, E-mail: xiayuanyu.wh@gmail.com; Wang, Guan
As an early sign of diabetic cardiovascular disease, endothelial dysfunction may contribute to progressive diabetic nephropathy (DN). Endothelial hyperpermeability induced by hyperglycemia (HG) is a central pathogenesis for DN. Sinomenine (SIN) has strong anti-inflammatory and renal protective effects, following an unknown protective mechanism against HG-induced hyperpermeability. We herein explored the role of SIN in vitro in an HG-induced barrier dysfunction model in human renal glomerular endothelial cells (HRGECs). The cells were exposed to SIN and/or HG for 24 h, the permeability of which was significantly increased by HG. Moreover, junction protein occludin in the cell-cell junction area and its total expression inmore » HRGECs were significantly decreased by HG. However, the dysfunction of tight junction and hyperpermeability of HRGECs were significantly reversed by SIN. Furthermore, SIN prevented HG-increased reactive oxygen species (ROS) by activating nuclear factor-E2-related factor 2 (Nrf2). Interestingly, activation of RhoA/ROCK induced by HG was reversed by SIN or ROCK inhibitor. HG-induced hyperpermeability was prevented by SIN. High ROS level, tight junction dysfunction and RhoA/ROCK activation were significantly attenuated with knockdown of Nrf2. Mediated by activation of Nrf2, SIN managed to significantly prevent HG-disrupted renal endothelial barrier function by suppressing the RhoA/ROCK signaling pathway through reducing ROS. We successfully identified a novel pathway via which SIN exerted antioxidative and renal protective functions, and provided a molecular basis for potential SIN applications in treating DN vascular disorders.« less
Li, Xiang; Han, Wei-Qing; Boini, Krishna M; Xia, Min; Zhang, Yang; Li, Pin-Lan
2013-01-01
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 4 (DR4), have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MR) clustering and the formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and co-localized with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1 (+/+)) mice. Furthermore, TRAIL triggered ASM translocation, ceramide production, and NADPH oxidase aggregation in MR clusters in Smpd1 ( +/+ ) CAECs, whereas these observations were not found in Smpd1 (-/-) CAECs. Moreover, ASM deficiency reduced TRAIL-induced O(2) (-[Symbol: see text]) production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer, we found that Lamp-1 (lysosome membrane marker protein) and ganglioside G(M1) (MR marker) were trafficking together in Smpd1 (+/+) CAECs, which was absent in Smpd1 (-/-) CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1 (-/-) CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking, membrane fusion and formation of MR redox signaling platforms, which may play an important role in DR4-mediated redox signaling in CAECs and consequently endothelial dysfunction.
Psychogenic erectile dysfunction.
Bodie, Joshua A; Beeman, William W; Monga, Manoj
2003-01-01
To educate healthcare professionals on the historical aspects, clinical diagnosis, and current treatment methods of psychogenic erectile dysfunction. A topic review of current literature was performed. Chief sources included primarily mainstream journals in the fields of urology, psychiatry/psychology, impotence/erectile dysfunction, epidemiology, and internal medicine. MEDLINE and PsycINFO databases were utilized. Data from clinical studies, trials, and review articles concerned primarily with psychological aspects of the arousal (erectile function) phase of the male sexual response cycle were collected, analyzed, and summarized in this review article. There has been a shift in how erectile dysfunction has been perceived and treated over the past 30 years. With the current focus now on the very prevalent organic causes of ED, psychological factors are increasingly overlooked, though they remain important to the treatment of the patient as a whole. This article provides a complete, concise review of the interplay between psychological components and erectile function, reviews the work-up and diagnosis of psychogenic ED, and discusses treatment methods. Erectile dysfunction is a prevalent problem that can affect, and can be affected by, psychosocial aspects of a man's life. Medical or pharmacological interventions are often appropriate to treat ED, but the psychosocial aspects should not be ignored. It has become easier for practitioners to put aside patients' psychosocial and interpersonal concerns regarding sexual health. Clinicians provide the best possible treatment if they recognize that erectile dysfunction is a complex, multifactorial disorder, and treat accordingly.
Futrakul, Narisa; Butthep, Punnee; Vongthavarawat, Varaphon; Futrakul, Prasit; Sirisalipoch, Sasitorn; Chaivatanarat, Tawatchai; Suwanwalaikorn, Sompongse
2006-01-01
This paper was aimed to investigate (1) the early marker of endothelial injury in type 2 diabetes, (2) the intrarenal hemodynamics and renal function, and (3) the therapeutic strategy aiming to restore renal function. Fifty patients (35 normoalbuminuric and 15 albuminuric type 2 diabetes) were examined. Blood was collected for determination of circulating vascular endothelial cells (CEC) and the serum was prepared for determination of transforming growth factor beta (TGFbeta), ratio of CEC/TGFbeta, and soluble vascular cell adhesion molecule. Intrarenal hemodynamics and renal function were also assessed. The results showed that increased number of circulating EC, elevated TGFbeta and depleted ratio of CEC/TGFbeta were significantly observed. Intrarenal hemodynamic study revealed a hemodynamic maladjustment characterized by preferential constriction of the efferent arteriole, intraglomerular hypertension and reduction in peritubular capillary flow. It was concluded that early marker of endothelial injury is reflected by increasing number of CEC. Such markers correlate with the glomerular endothelial dysfunction associated with hemodynamic maladjustment. Early detection of endothelial injury and appropriate correction of hemodynamic maladjustment by multidrug vasodilators can effectively restore renal function in type 2 diabetic nephropathy.
Endothelial dysfunction in dengue virus pathology.
Vervaeke, Peter; Vermeire, Kurt; Liekens, Sandra
2015-01-01
Dengue virus (DENV) is a leading cause of illness and death, mainly in the (sub)tropics, where it causes dengue fever and/or the more serious diseases dengue hemorrhagic fever and dengue shock syndrome that are associated with changes in vascular permeability. Despite extensive research, the pathogenesis of DENV is still poorly understood and, although endothelial cells represent the primary fluid barrier of the blood vessels, the extent to which these cells contribute to DENV pathology is still under debate. The primary target cells for DENV are dendritic cells and monocytes/macrophages that release various chemokines and cytokines upon infection, which can activate the endothelium and are thought to play a major role in DENV-induced vascular permeability. However, recent studies indicate that DENV also replicates in endothelial cells and that DENV-infected endothelial cells may directly contribute to viremia, immune activation, vascular permeability and immune targeting of the endothelium. Also, the viral non-structural protein-1 and antibodies directed against this secreted protein have been reported to be involved in endothelial cell dysfunction. This review provides an extensive overview of the effects of DENV infection on endothelial cell physiology and barrier function. Copyright © 2014 John Wiley & Sons, Ltd.
Toda, Noboru; Nakanishi, Sadanobu; Tanabe, Shinichi
2013-01-01
Aldosterone, in doses inappropriate to the salt status, plays an important role in the development of cardiovascular injury, including endothelial dysfunction, independent of its hypertensive effects. Acute non-genomic effects of aldosterone acting on mineralocorticoid receptors are inconsistent in healthy humans: vasoconstriction or forearm blood flow decrease via endothelial dysfunction, vasodilatation mediated by increased NO actions, or no effects. However, in studies with experimental animals, aldosterone mostly enhances vasodilatation mediated by endothelium-derived NO. Chronic exposure to aldosterone, which induces genomic responses, results in impairments of endothelial function through decreased NO synthesis and action in healthy individuals, experimental animals and isolated endothelial cells. Chronic aldosterone reduces NO release from isolated human endothelial cells only when extracellular sodium is raised. Oxidative stress is involved in the impairment of endothelial function by promoting NO degradation. Aldosterone liberates endothelin-1 (ET-1) from endothelial cells, which elicits ETA receptor–mediated vasoconstriction by inhibiting endothelial NO synthesis and action and through its own direct vasoconstrictor action. Ca2+ flux through T-type Ca2+ channels activates aldosterone synthesis and thus enhances unwanted effects of aldosterone on the endothelium. Mineralocorticoid receptor inhibitors, ETA receptor antagonists and T-type Ca2+ channel blockers appear to diminish the pathophysiological participation of aldosterone in cardiovascular disease and exert beneficial actions on bioavailability of endothelium-derived NO, particularly in resistant hypertension and aldosteronism. PMID:23190073
Suganya, Natarajan; Mani, Krishna Priya; Sireesh, Dornadula; Rajaguru, Palanisamy; Vairamani, Mariappanadar; Suresh, Thiruppathi; Suzuki, Takayoshi; Chatterjee, Suvro; Ramkumar, Kunka Mohanram
2018-05-01
The involvement of endoplasmic reticulum (ER) stress in endothelial dysfunction and diabetes-associated complications has been well documented. Inhibition of ER stress represents a promising therapeutic strategy to attenuate endothelial dysfunction in diabetes. Recent attention has focused on the development of small molecule inhibitors of ER stress to maintain endothelial homeostasis in diabetes. Here we have developed a reliable, robust co-culture system that allows a study on the endothelial cells and pancreatic β-cells crosstalk under ER stress and validated using a known ER stress modulator, quercetin. Furthermore, sensitizing of endothelial cells by quercetin (25 μM) confers protection of pancreatic β-cells against ER stress through nitric oxide (NO ∙ ) signaling. In addition, increased intracellular insulin and NO ∙ -mediated cyclic 3',5'-guanosine monophosphate (cGMP) levels in pancreatic β-cells further confirmed the mechanism of protection under co-culture system. In addition, the potential protein targets of quercetin against ER stress in the endothelial cells were investigated through proteomic profiling and its phosphoprotein targets through Bioplex analysis. On the whole, the developed in vitro co-culture set up can serve as a platform to study the signaling network between the endothelial and pancreatic β-cells as well as provides a mechanistic insight for the validation of novel ER stress modulators. Copyright © 2018 Elsevier Inc. All rights reserved.
Agarwal, Gaurav; Nanda, Gitika; Kapoor, Aditya; Singh, Kul Ranjan; Chand, Gyan; Mishra, Anjali; Agarwal, Amit; Verma, Ashok K; Mishra, Saroj K; Syal, Sanjeev K
2013-12-01
Cardiovascular mortality in primary hyperparathyroidism (PHPT) is attributed to myocardial and endothelial dysfunction. In this prospective, case-control study we assessed cardiovascular dysfunction in patients with symptomatic PHPT and its reversal after successful parathyroidectomy. Fifty-six patients with symptomatic PHPT underwent two-dimensional echocardiography, tissue Doppler (diastolic function assessment), serum N-terminal pro-brain natriuretic peptide (s-NTproBNP, a myocardial damage marker), and endothelial- and smooth muscle-dependent vasodilatory response (vascular dysfunction) studies before, 3, and 6 months after parathyroidectomy; 25 age-matched controls were studied similarly. Patients had greater left ventricular mass (192 ± 70 vs. 149 ± 44 g; P = .006), interventricular septal thickness (10.8 ± 2.5 vs. 9.0 ± 1.6 mm; P = .001), posterior wall thickness (9.9 ± 2.0 vs. 8.6 ± 2.2 mm; P = .004), and diastolic dysfunction (lower E/A trans-mitral flow velocity ratio [1.0 ± 0.4 vs. 1.3 ± 0.4; P = .01). Patients had greater s-NTproBNP (4,625 ± 1,130 vs. 58 ± 49 pg/mL; P = .002) and lower endothelial-mediated vasodilation (9.3 ± 8.6 vs. 11.7 ± 6.3%; P = .03) and smooth muscle-mediated vasodilation (20.1 ± 17.9 vs. 23.8 ± 11.2%; P = .01). Improvements in left ventricular mass, systolic and diastolic function, and smooth muscle-mediated vasodilation were noted from 3 to 6 months after parathyroidectomy. Endothelial-mediated vasodilation did not improve significantly. S-NTproBNP levels mirrored echocardiographic changes with a substantial, sustained decrease. Results were similar in hypertensive and normotensive patients. Symptomatic PHPT patients have substantial cardiac and vascular dysfunction, which improve by 6 months after parathyroidectomy. Objective cardiovascular evaluation may improve outcomes in symptomatic PHPT patients. Copyright © 2013 Mosby, Inc. All rights reserved.
Cardiovascular Implications of Erectile Dysfunction
... the penis are not able to dilate during sexual stimulation because of endothelial dysfunction, the penis cannot fill ... blood to the penis to dilate better during sexual stimulation. The PDE5-Is decrease blood pressure a little ...
2013-01-01
About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches. PMID:24289502
Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio
2014-01-01
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972
Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe
2014-09-01
During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Standard operating procedures for neurophysiologic assessment of male sexual dysfunction.
Giuliano, Francois; Rowland, David L
2013-05-01
Can neurophysiological testing in male patients with sexual dysfunction benefit the decision-making process? The answer remains unclear. To provide standard operating procedures for the neurophysiologic assessment of male sexual dysfunction. Medical literature was reviewed and combined with expert opinion of the authors. Bulbocavernosus reflex latency time, pudendal somatosensory evoked potentials, and sympathetic skin responses have been considered as potential candidates for the diagnosis and assessment of erectile dysfunction (ED). Currently, there is no consensus on a standardized methodology for these neurophysiological investigations in the overall assessment of ED. These procedures are unable to assess the integrity of the efferent parasympathetic proerectile penile innervation; accordingly, none of these assessment procedures is recommended for ED patients. Corpus cavernosum electromyography (CC-EMG) can detect abnormalities in cavernous smooth muscle although these alterations can be attributed both to damage to autonomic penile innervation and to degenerative processes of the cavernous smooth muscle. CC-EMG is still considered experimental. Evidence does not support that men with premature ejaculation (PE) are consistently characterized by penile hypersensitivity; accordingly, penile threshold determination is not recommended to in the diagnosis of PE. Neurophysiological investigation of other components of the penile sensory pathways in PE patients has not provided any definitive contribution to the diagnosis. No neurophysiological assessment procedures yield additional information that consistently aids in the assessment of PE and ED. © 2013 International Society for Sexual Medicine.
Huang, Shiau-Shian; Lin, Ching-Heng; Chan, Chin-Hong; Loh, El-Wui; Lan, Tsuo-Hung
2013-12-15
The primary aim of this study was to explore the incidence rate of erectile dysfunction (ED) among major depressive disorder (MDD) patients in an Asian country. The second aim was to compare the risk of ED in MDD patients that were treated using antidepressants with a high risk-ED, antidepressants with a low risk-ED, or without treatment. We identified 4339 male patients with newly diagnosed MDD using the National Health Database. Four matched controls per case were selected for the study. The mean age of the participants was 42.3 ± 16.9. A higher crude HR of 3.6 (95% CI: 2.8-4.6) was seen in the male patients with MDD. After adjusting for obesity, monthly income, urbanization level, and comorbidity, the MDD patients had a 3.2-fold higher HR for an ED diagnosis than the controls. Patients with untreated depression had the highest risk of ED, compared to the control group (HR=3.9). Patients treated with IHiRA had a medium risk of developing ED (HR=3.6), and patients treated with ILoRA had the lowest risk of ED (HR: 2.5). This prospective cohort study found an association between ED and prior MDD. Patients with untreated depression may have the highest risk of developing ED. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Erectile dysfunction in hemodialysis patients.
Gorsane, Imen; Amri, Nadia; Younsi, Fathi; Helal, Imed; Kheder, Adel
2016-01-01
Erectile dysfunction (ED) is a common problem seen among patients on hemodialysis (HD), but it is still a taboo subject in our country. The attention given to this sexual problem remained low, and the prevalence of ED among these patients has not been well characterized. We carried out this study in order to determine the prevalence and severity of ED in HD patients. We conducted a descriptive cross-sectional study in our HD unit in March 2013. ED was evaluated using the International Index Erection Function. Thirty patients with a mean age of 49.1 years were eligible for this study. The main causes of chronic kidney disease were hypertension (62.5%) and diabetes (41.6%). The prevalence of ED was 80%, including 33.3% severe ED. Plasma levels of gonadotropins: luteinizing hormone (LH), follicule-stimulating hormone were in the standards except for one patient who had an elevated level of LH. Prolactin was elevated in four cases. ED was present in 8.4% of patients before the discovery of renal failure and in 91.6% of patients at the beginning of dialysis. For 19 patients (79.1%), the ED had increased during the dialysis sessions. A significant number of our HD patients presented with ED of varying degrees. Nephrologists should pay attention to the problem of ED in order to improve the quality of their life.
... 7 in Beck, D. E., Wexner, S. D., Eds. Fundamentals of Anorectal Surgery, 2nd Edition. WB Saunders, London, ... 18 in Beck, D. E., Wexner, S. D., Eds. Fundamentals of Anorectal Surgery, 2nd Edition. WB Saunders, London, ...
Common peroneal nerve dysfunction
... Silver JK, Rizzo TD Jr, eds. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation . 3rd ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 75. Review Date 8/7/2017 Updated by: Amit M. ...
Campbell, Jeffrey D.; Burnett, Arthur L.
2017-01-01
Erectile dysfunction (ED) is a significant cause of reduced quality of life in men and their partners. Cavernous nerve injury (CNI) during pelvic surgery results in ED in greater than 50% of patients, regardless of additional patient factors. ED related to CNI is difficult to treat and typically poorly responsive to first- and second-line therapeutic options. Recently, a significant amount of research has been devoted to exploring neuroprotective and neuroregenerative approaches to salvage erectile function in patients with CNI. In addition, therapeutic options such as neuregulins, immunophilin ligands, gene therapy, stem cell therapy and novel surgical strategies, have shown benefit in pre-clinical, and limited clinical studies. In the era of personalized medicine, these new therapeutic technologies will be the future of ED treatment and are described in this review. PMID:28820434
SOP: physical examination and laboratory testing for men with erectile dysfunction.
Ghanem, Hussein M; Salonia, Andrea; Martin-Morales, Antonio
2013-01-01
Physical examination and laboratory evaluation of men with erectile dysfunction (ED) are opportunities to identify potentially life-threatening etiologies and comorbid conditions. To review genital anatomy, identify any physical abnormalities, assess for comorbid conditions, and reveal significant risk factors for ED. Expert opinion was based on evidence-based medical literature and consensus discussions between members of this International Society for Sexual Medicine (ISSM) standards committee. For men with ED, a general examination including blood pressure and pulse measurements and a focused genital exam are advised. Fasting blood sugar, serum total testosterone, prolactin levels, and a lipid profile may reveal significant comorbid conditions. Though physical examination and laboratory evaluation of most men with ED may not reveal the exact diagnosis, these opportunities to identify critical comorbid conditions should not be missed. © 2012 International Society for Sexual Medicine.
Association Between Periodontal Disease and Erectile Dysfunction: A Systematic Review
Kellesarian, Sergio Varela; Kellesarian, Tammy Varela; Ros Malignaggi, Vanessa; Al-Askar, Mansour; Ghanem, Alexis; Malmstrom, Hans; Javed, Fawad
2016-01-01
A limited number of studies have reported an association between erectile dysfunction (ED) and chronic periodontitis (CP). The aim of the present study is to assess the association between CP and ED through a systematic review of published literature. To address the focused question, “Is there a relationship between ED and CP?” indexed databases were searched till December 2015 using various key words “erectile dysfunction,” “periodontal disease,” “periodontitis,” “dental infection,” and “impotence.” Letters to the editor, commentaries, historic reviews, and experimental studies were excluded. The pattern of the present systematic review was customized to primarily summarize the pertinent data. Nine studies were included. Seven studies had a cross-sectional design and two studies were randomized control trials. The number of study participants ranged between 53 and 513,258 individuals with age ranging between 20 years and 85 years (median age ranging between 34.9 ± 4.9 years and 50.9 ± 16.6 years). In all studies, a positive relationship between CP and ED was reported. In four studies, odds ratio were reported, ranging between 1.53 and 3.35. From the literature reviewed, there seems to be a positive association between ED and CP; however, further well-designed controlled clinical trials are needed in this regard. It is emphasized that physicians should refer patients with ED to oral health care providers for a comprehensive oral evaluation and treatment. PMID:27030114
Mura, Marzia; Palmieri, Daniela; Garella, Davide; Di Stilo, Antonella; Perego, Patrizia; Cravotto, Giancarlo; Palombo, Domenico
2015-01-01
This study proposes an alternative technique to prevent heat degradation induced by classic procedures of bioactive compound extraction, comparing classical maceration/decoction in hot water of polyphenols from Mango (Mangifera indica L.) (MI) with ultrasound-assisted extraction (UAE) in a water solution of β-cyclodextrin (β-CD) at room temperature and testing their biological activity on TNFα-induced endothelial dysfunction. Both extracts counteracted TNFα effects on EAhy926 cells, down-modulating interleukin-6, interleukin-8, cyclooxygenase-2 and intracellular adhesion molecule-1, while increasing endothelial nitric oxide synthase levels. β-CD extract showed higher efficacy in improving endothelial function. These effects were abolished after pre-treatment with the oestrogen receptor inhibitor ICI1182,780. Moreover, the β-CD extract induced Akt activation and completely abolished the TNFα-induced p38MAPK phosphorylation. UAE and β-CD encapsulation provide an efficient extraction protocol that increases polyphenol bioavailability. Polyphenols from MI play a protective role on endothelial cells and may be further considered as oestrogen-like molecules with vascular protective properties.
Williams, Julian M; Greenslade, Jaimi H; McKenzie, Juliet V; Chu, Kevin; Brown, Anthony F T; Lipman, Jeffrey
2017-03-01
A proposed revision of sepsis definitions has abandoned the systemic inflammatory response syndrome (SIRS), defined organ dysfunction as an increase in total Sequential Organ Function Assessment (SOFA) score of ≥ 2, and conceived "qSOFA" (quick SOFA) as a bedside indicator of organ dysfunction. We aimed to (1) determine the prognostic impact of SIRS, (2) compare the diagnostic accuracy of SIRS and qSOFA for organ dysfunction, and (3) compare standard (Sepsis-2) and revised (Sepsis-3) definitions for organ dysfunction in ED patients with infection. Consecutive ED patients admitted with presumed infection were prospectively enrolled over 3 years. Sufficient observational data were collected to calculate SIRS, qSOFA, SOFA, comorbidity, and mortality. We enrolled 8,871 patients, with SIRS present in 4,176 (47.1%). SIRS was associated with increased risk of organ dysfunction (relative risk [RR] 3.5) and mortality in patients without organ dysfunction (OR 3.2). SIRS and qSOFA showed similar discrimination for organ dysfunction (area under the receiver operating characteristic curve, 0.72 vs 0.73). qSOFA was specific but poorly sensitive for organ dysfunction (96.1% and 29.7%, respectively). Mortality for patients with organ dysfunction was similar for Sepsis-2 and Sepsis-3 (12.5% and 11.4%, respectively), although 29% of patients with Sepsis-3 organ dysfunction did not meet Sepsis-2 criteria. Increasing numbers of Sepsis-2 organ system dysfunctions were associated with greater mortality. SIRS was associated with organ dysfunction and mortality, and abandoning the concept appears premature. A qSOFA score ≥ 2 showed high specificity, but poor sensitivity may limit utility as a bedside screening method. Although mortality for organ dysfunction was comparable between Sepsis-2 and Sepsis-3, more prognostic and clinical information is conveyed using Sepsis-2 regarding number and type of organ dysfunctions. The SOFA score may require recalibration. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Sönmez, Mehmet Giray; Göğer, Yunus Emre; Sönmez, Leyla Öztürk; Aydın, Arif; Balasar, Mehmet; Kara, Cengiz
2016-01-01
Blood count parameters of patients referring with erectile dysfunction (ED) were examined in this study and it was investigated whether eosinophil count (EC), platelet count (PC), and mean platelet volume values among the suspected predictive parameters which may play a role in especially penile arteriogenic ED etiopathogenesis had a contribution on pathogenesis. Patients referring with ED complaint were evaluated. Depending on the medical story, ED degree was determined by measuring International Index of Erectile Function. Penile Doppler ultrasonography was taken in patients suspected to have vasculogenic ED. According to penile Doppler ultrasonography result, patients with arterial deficiency were included in the penile arteriogenic ED group and the patients with normal results were included in the nonvasculogenic ED group. A total of 36 patients participated in the study from the penile arteriogenic ED group and 32 patients from the nonvasculogenic ED group. Compared with the nonvasculogenic ED group, the penile arteriogenic ED group’s low International Index of Erectile Function score, high EC, mean platelet volume and PC values were detected to be statistically significant (p < .001, p = .021, p = .018, p = .034, respectively). No statistically significant difference was observed among the two groups when age, white blood cells, red blood cells, and hemoglobin values were considered. Pansystolic volume velocities were detected as statistically significantly low compared with the nonvasculogenic ED group in the measurements made in 5th, 10th, 15th, and 20th minutes on the right and left sides in the penile arteriogenic ED group. High MPV value and PC is a significant predictive factor for penile arteriogenic ED and vasculogenic ED and high EC is specifically predictive of arteriogenic ED. PMID:27895254
Influence of Appearance-Related TV Commercials on Body Image State
ERIC Educational Resources Information Center
Legenbauer, Tanja; Ruhl, Ilka; Vocks, Silja
2008-01-01
This study investigates the influence of media exposure on body image state in eating-disordered (ED) patients. The attitudinal and perceptual components of body image are assessed, as well as any associations with dysfunctional cognitions and behavioral consequences. Twenty-five ED patients and 25 non-ED controls (ND) viewed commercials either…
The Current Status of Stem-Cell Therapy in Erectile Dysfunction: A Review
Reed-Maldonado, Amanda B
2016-01-01
Stem cells are undifferentiated cells that are capable of renewal and repair of tissue due to their capacity for division and differentiation. The purpose of this review is to describe recent advances in the use of stem cell (SC) therapy for male erectile dysfunction (ED). We performed a MEDLINE database search of all relevant articles regarding the use of SCs for ED. We present a concise summary of the scientific principles behind the usage of SC for ED. We discuss the different types of SCs, delivery methods, current pre-clinical literature, and published clinical trials. Four clinical trials employing SC for ED have been published. These articles are summarized in this review. All four report improvements in ED after SC therapy. SC therapy remains under investigation for the treatment of ED. It is reassuring that clinical trials thus far have reported positive effects on erectile function and few adverse events. Safety and methodical concerns about SC acquisition, preparation and delivery remain and require continued investigation prior to wide-spread application of these methods. PMID:28053944
Wang, Yao-Ting; Chen, Hsi-Han; Lin, Ching-Heng; Lee, Shih-Hsiung; Chan, Chin-Hong; Huang, Shiau-Shian
2016-10-30
Previous studies indicated that panic disorder is correlated with erectile dysfunction (ED). The primary aim of this study was to explore the incidence rate of ED among panic disorder patients in an Asian country. The secondary aim was to compare the risk of ED in panic disorder patients that were treated with different kinds of antidepressants, and to explore the possible mechanism between these two disorders. We identified 1393 male patients with newly diagnosed panic disorder from the Taiwan's National Health Insurance Database. Four matched controls per case were selected for the study group by propensity score. After adjusting for age, obesity and comorbidities, the panic disorder patients had a higher hazard ratio of ED diagnosis than the controls, especially among the untreated panic disorder patients. This retrospective dynamic cohort study supports the link between ED and prior panic disorder in a large sample of panic disorder patients. This study points out the need of early antidepressant treatment for panic disorder to prevent further ED. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fischer, Tamás
2009-03-15
The beneficial effect achieved by the treatment of endothelial dysfunction in chronic cardiovascular diseases is already an evidence belonging to the basic treatment of the disease. Given the fact that the vascular system is uniform and consubstantial both physiologically, pathophysiologically and in terms of therapy, and that it plays a key role in age-related macular degeneration (AMD)--a disease leading to tragic loss of vision with its etiology and therapy being unknown--endothelial dysfunction should be treated. The pleiotropic effects of ACE-inhibitors, AR-blockers and statins and third generation beta blockers help to restitute the balance between vasodilators and vasoconstrictors in endothelial dysfunction caused by oxidative stress, the balance of growth factors and their inhibitors, pro- and anti-inflammatory substances and prothrombotic and fibrinolytic factors, inhibit the formation of oxidative stress and its harmful effects; while aspirin with its pleiotropic effects acting as an antiaggregation substance on platelets helps to set the endothelial layer back to its normal balance regarding its vasodilating, antithrombotic, antiadhesive and anti-inflammatory functions; trimetazidine as an adjuvant agent helps to normalize, to restore the disturbed metabolism of the retinal tissue functioning insufficiently, in the end. The angiotensin II receptor blocker telmisartan with its peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist effect inhibits the development of choroidal neovascularisation (CNV) and improves it clinically favourably. The third generation beta adrenergic receptor blocker carvedilol and nebivolol as well as the peroxisome proliferator-activated receptor-gamma agonist pioglitazone elicit their antioxidant vascular protective effects mitochondrially. For the above reasons it is suggested that, as a part of long term primary and/or secondary prevention, the following groups of patients with AMD receive--taking into consideration all possible side effects--ACE-inhibitor and/or AR blocker and statin and aspirin treatment, and trimetazidine as adjuvant medicine, and third generation beta adrenergic receptor blockers: 1. those without macular degeneration but being above the age of 50 and having risk factors inducing endothelial dysfunction; 2. those, who already developed AMD in one eye as a prevention in the second, unaffected eye; and 3. those patients who developed AMD in both eyes in order to ameliorate or merely slow the progression of the disease. Besides, it is advisory and important to eliminate AMD risk factors (cardiovascular risk factors also) inducing oxidative stress with consecutive endothelial dysfunction.
Müller, M J; Benkert, O
2001-10-01
Depressive symptoms in men with erectile dysfunction (ED) may improve under successful ED treatment. Self-reported depressive symptoms were compared in men with ED after sildenafil treatment to a group of untreated patients. In an open study, self-reported depressive symptoms of 54 men after successful treatment with sildenafil (>4 weeks) and 51 men awaiting ED treatment were investigated with the Center of Epidemiologic Studies-Depression Scale (CES-D). CES-D items were subjected to an exploratory factor analysis and group differences in CES-D items and factors were analyzed. Groups were comparable with respect to demographic characteristics and illness duration. CES-D total scores were lower in the group treated with sildenafil. Substantial differences were found in favor of the group treated with sildenafil, particularly in scores on a "positive affect" factor. The findings emphasize the relevance of depression associated with ED and the importance of effective ED treatment. Although depression was generally low in this sample, hedonistic aspects were substantially enhanced in the group of ED patients after sildenafil treatment. The open and cross-sectional study design does not permit causal inference. Selection bias and motivational aspects to participate in the study can not completely be ruled out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi
Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measuredmore » on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.« less
Flavorings in Tobacco Products Induce Endothelial Cell Dysfunction.
Fetterman, Jessica L; Weisbrod, Robert M; Feng, Bihua; Bastin, Reena; Tuttle, Shawn T; Holbrook, Monica; Baker, Gregory; Robertson, Rose Marie; Conklin, Daniel J; Bhatnagar, Aruni; Hamburg, Naomi M
2018-06-14
Use of alternative tobacco products including electronic cigarettes is rapidly rising. The wide variety of flavored tobacco products available is of great appeal to smokers and youth. The flavorings added to tobacco products have been deemed safe for ingestion, but the cardiovascular health effects are unknown. The purpose of this study was to examine the effect of 9 flavors on vascular endothelial cell function. Freshly isolated endothelial cells from participants who use nonmenthol- or menthol-flavored tobacco cigarettes showed impaired A23187-stimulated nitric oxide production compared with endothelial cells from nonsmoking participants. Treatment of endothelial cells isolated from nonsmoking participants with either menthol (0.01 mmol/L) or eugenol (0.01 mmol/L) decreased A23187-stimulated nitric oxide production. To further evaluate the effects of flavoring compounds on endothelial cell phenotype, commercially available human aortic endothelial cells were incubated with vanillin, menthol, cinnamaldehyde, eugenol, dimethylpyrazine, diacetyl, isoamyl acetate, eucalyptol, and acetylpyrazine (0.1-100 mmol/L) for 90 minutes. Cell death, reactive oxygen species production, expression of the proinflammatory marker IL-6 (interleukin-6), and nitric oxide production were measured. Cell death and reactive oxygen species production were induced only at high concentrations unlikely to be achieved in vivo. Lower concentrations of selected flavors (vanillin, menthol, cinnamaldehyde, eugenol, and acetylpyridine) induced both inflammation and impaired A23187-stimulated nitric oxide production consistent with endothelial dysfunction. Our data suggest that short-term exposure of endothelial cells to flavoring compounds used in tobacco products have adverse effects on endothelial cell phenotype that may have relevance to cardiovascular toxicity. © 2018 American Heart Association, Inc.
Traditional Chinese medical therapy for erectile dysfunction
Li, Hao; Jiang, Hongyang
2017-01-01
Traditional Chinese medicine (TCM), including acupuncture and Chinese herbs, is used as an alternative therapy to increase the curative effect for erectile dysfunction (ED). A large number of studies have been conducted to investigate the effect and mechanism of TCM for treating ED. The therapeutic effect of acupuncture on ED is still controversial at present. However, some Chinese herbs exhibited satisfying outcomes and they might improve erectile function by activating nitric oxide synthase (NOS)-cyclic guanosine monophosphate (cGMP) pathway, increasing cyclic adenosine monophosphate (cAMP) expression, elevating testosterone level, reducing intracellular Ca2+ concentration, down-regulating transforming growth factor β1 (TGFβ1)/Smad2 signaling pathway, or ameliorating the oxidative stress. PMID:28540226
Aubin, Sylvie; Heiman, Julia R; Berger, Richard E; Murallo, A V; Yung-Wen, Liu
2009-01-01
Treatment options for managing erectile dysfunction (ED) include medical and psychological interventions. The present study examined the effectiveness of a drug-only vs. combined treatment approach on erectile function as well as other domains of sexual function and cognition, couple intimacy and adaptation, and treatment satisfaction. Couples with ED were randomly assigned to either Viagra-only (VO) or Viagra plus sex therapy (VST). Sexual and relationship variables were measured at specific time points. Despite limitations, study findings extend previous conclusions and provide empirical support for the effectiveness and satisfaction with the combined treatment approach for treating men with ED of mixed etiology.
Low-Intensity Extracorporeal Shock Wave as a Novel Treatment for Erectile Dysfunction.
Pan, Michael M; Raees, Ayman; Kovac, Jason R
2016-03-01
The paradigm of erectile dysfunction (ED) treatment was fundamentally altered following the introduction of oral phosphodiesterase type 5 inhibitors. Unfortunately, a significant number of men exhibit a suboptimal response and require additional management strategies. One of the novel, minimally invasive strategies being developed is low-intensity extracorporeal shock wave therapy. Used in the hope of delaying placement of an inflatable penile prosthesis, the final phase of ED treatment, low-intensity extracorporeal shock wave therapy is a unique application of an established technology that may hopefully one day expand the medical options for patients with ED. This commentary will highlight the physiology underlying this technique and summarize the most recent studies. © The Author(s) 2015.
Association of erectile dysfunction with depression in patients with chronic viral hepatitis.
Ma, Bong Oh; Shim, Sang Goon; Yang, Hae Jin
2015-05-14
To investigate the prevalence of erectile dysfunction (ED) and its association with depression in patients with chronic viral hepatitis. This single center cross-sectional study was conducted from August 2013 through January 2014. All outpatients with chronic viral hepatitis in our liver clinic between 18 and 80 years of age were considered eligible for this study. The exclusion criteria included well-established causes of ED, such as diabetes, hypertension, hyperlipidemia, alcohol abuse, liver cirrhosis, ischemic heart disease, renal disease, neurologic disease, and malignancy. We also excluded the patients who had incompletely answered the questionnaires. ED was assessed using the validated Korean version of the International Index of Erectile Function (IIEF-5) scale. The Korean version of the self-administered Beck Depression Inventory (BDI) scale was used to assess depression in the patients. Demographic and medical data were obtained from the patients' medical records. Current or past history of psychiatric diagnosis and drug history including the use of an antiviral agent and an antidepressant were also recorded. A total of 727 patients met the initial eligibility criteria. Six hundred seventeen patients were excluded because their medical records contained one or more of the previously determined exclusion criteria. The remaining 110 patients were assessed based on the BDI and IIEF-5 questionnaires. Based on the IIEF-5 scale, the prevalence of ED among patients with chronic viral hepatitis was 40%. Compared with the non-ED group, patients in the ED group were older. The proportion of patients in the ED group who had a job or who were naïve peg-interferon users was lower than that in patients in the non-ED group. Patients with ED had significantly lower scores on the IIEF-5 scale than patients without ED (11.75 ± 4.88 vs 21.33 ± 1.86, P = 0.000). Patients with ED rated significantly higher scores on the BDI scale compared with patients without ED (12.59 ± 7.08 vs 5.30 ± 4.00, P = 0.000). Also, the IIEF-5 scores were negatively correlated with age, employment, and BDI scores. In the multiple logistic regression analysis, age and depression were independently associated with erectile dysfunction (P = 0.019 and 0.000, respectively). Patients with chronic viral hepatitis have a high prevalence of ED. Age and depression are independent factors for ED in male patients with chronic viral hepatitis.
Durrant, Jessica R.; Connell, Melanie L.; Folian, Brian J.; Donato, Anthony J.; Seals, Douglas R.
2011-01-01
We hypothesized that I kappa B kinase (IKK)-mediated nuclear factor kappa B and forkhead BoxO3a phosphorylation will be associated with age-related endothelial dysfunction. Endothelium-dependent dilation and aortic protein expression/phosphorylation were determined in young and old male B6D2F1 mice and old mice treated with the IKK inhibitor, salicylate. IKK activation was greater in old mice and was associated with greater nitrotyrosine and cytokines. Endothelium-dependent dilation, nitric oxide (NO), and endothelial NO synthase phosphorylation were lower in old mice. Endothelium-dependent dilation and NO bioavailability were restored by a superoxide dismutase mimetic. Nuclear factor kappa B and forkhead BoxO3a phosphorylation were greater in old and were associated with increased expression/activity of nicotinamide adenine dinucleotide phosphate oxidase and lower manganese superoxide dismutase expression. Salicylate lowered IKK phosphorylation and reversed age-associated changes in nitrotyrosine, endothelium-dependent dilation, NO bioavailability, endothelial NO synthase, nuclear factor kappa B and forkhead BoxO3a phosphorylation, nicotinamide adenine dinucleotide phosphate oxidase, and manganese superoxide dismutase. Increased activation of IKK with advancing age stimulates nuclear factor kappa B and inactivates forkhead BoxO3a. This altered transcription factor activation contributes to a pro-inflammatory/pro-oxidative arterial phenotype that is characterized by increased cytokines and nicotinamide adenine dinucleotide phosphate oxidase and decreased manganese superoxide dismutase leading to oxidative stress-mediated endothelial dysfunction. PMID:21303813
Gaubert, Mélanie; Marlinge, Marion; Alessandrini, Marine; Laine, Marc; Bonello, Laurent; Fromonot, Julien; Cautela, Jennifer; Thuny, Franck; Barraud, Jeremie; Mottola, Giovanna; Rossi, Pascal; Fenouillet, Emmanuel; Ruf, Jean; Guieu, Régis; Paganelli, Franck
2018-06-01
The role of serum uric acid in coronary artery disease has been extensively investigated. It was suggested that serum uric acid level (SUA) is an independent predictor of endothelial dysfunction and related to coronary artery lesions. However, the relationship between SUA and severity of coronary atherosclerosis evaluated via endothelial dysfunction using peripheral arterial tone (PAT) and the reactive hyperhemia index (RHI) has not been investigated during a first episode of acute coronary syndrome (ACS). The aim of our study was to address this point. We prospectively enrolled 80 patients with a first episode of ACS in a single-center observational study. All patients underwent coronary angiography, evaluation of endothelial function via the RHI, and SUA measurement. The severity of the coronary artery lesion was assessed angiographically, and patients were classified in three groups based on the extent of disease and Gensini and SYNTAX scores. Endothelial function was considered abnormal if RHI < 1.67. We identified a linear correlation between SUA and RHI (R 2 = 0.66 P < 0.001). In multivariable analyses, SUA remained associated with RHI, even after adjustment for traditional cardiovascular risk factors and renal function. SUA was associated with severity of coronary artery disease. SUA is associated with severity of coronary atherosclerosis in patients with asymptomatic hyperuricemia. This inexpensive, readily measured biological parameter may be useful to monitor ACS patients.
Nadar, Sunil K; Al Yemeni, Eman; Blann, Andrew D; Lip, Gregory Y H
2004-01-01
Endothelial disturbance (whether activation, dysfunction or damage) is a likely pathogenic mechanism in pre-eclampsia and pregnancy-induced hypertension (PIH). We set out to determine which of three plasma markers of endothelial disturbance, indicating endothelial activation (E-selectin) or damage/dysfunction (von Willebrand factor (vWf), soluble thrombomodulin), would provide the best discriminator of PIH compared to normotensive pregnancy. Cross-sectional study of 36 consecutive women with PIH (age 31+/-6 years) and 36 consecutive women with normotensive pregnancies (age 29+/-5 years) of similar parity. Plasma levels of vWf, E-selectin and thrombomodulin were measured using ELISA. As expected, women with PIH had significantly higher levels of plasma vWf (by 19%, p=0.003), E-selectin (by 40%, p<0.001) and thrombomodulin (by 61%, p=0.01) than normotensive women. However, on stepwise multiple regression analysis, only thrombomodulin was an independent significant predictor of the presence of PIH (p=0.023). We conclude that although vWf, E-selectin and thrombomodulin are all raised in PIH, only thrombomodulin was independently associated with PIH. This molecule could potentially be useful in monitoring and in providing clues in aetiology and pathophysiology, and may have implications for the clinical complications associated with PIH.
McCarthy, Cathal; Kenny, Louise C
2016-09-08
Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates.
Son, Youn-Jung; Jang, Miyoun; Jun, Eun-Young
2016-10-01
The current study aimed to identify the prevalence and associated factors of erectile dysfunction (ED) among 161 Korean adults 60 and older with coronary artery disease (CAD). ED was diagnosed in 72.2% of patients-the prevalence of which was significantly associated with age, education, employment, monthly income, frequency of sexual intercourse, body mass index, and low-density lipoprotein. Health-related quality of life (HRQoL) was lower in patients with ED than in those without ED (p < 0.001). Hierarchical multiple regression analysis revealed that ED significantly influenced HRQoL in patients with CAD after adjusting for sociodemographic and disease-related characteristic variables (p < 0.001). Interventions and training courses for health care providers should focus on improving caregivers' knowledge and communication skills with patients and spouses regarding sexual health. Furthermore, guidelines to improve HRQoL in patients with CAD should consider incorporating sexual counseling. [Journal of Gerontological Nursing, 42(10), 32-41.]. Copyright 2016, SLACK Incorporated.
Erectile dysfunction treatment and traditional medicine—can East and West medicine coexist?
Lee, Joe K. C.; Tan, Ronny B. W.
2017-01-01
Erectile dysfunction (ED) is a common sexual problem affecting many men irrespective of cultures, beliefs and nationalities. While medical therapy for ED has been revolutionized by the advent of oral phosphodiesterase type 5 inhibitors and intracavernosal injection of vasoactive agents, recent technological advances such stem cell therapy, low intensity shock wave and newer generation of penile prosthesis implant offer hope to men who do not respond to conventional medical therapy. In contrast, traditional and complementary medicine (TCM) focuses on the restoration and better overall bodily regulation with the use of various herbal and animal products as well as exercises to invigorate qi (energy) in vital organs. Western medicine involves an analysis of ED symptom and underlying causes that contribute to ED, while TCM emphases the concept of holism and harmonization of body organs to achieve natural sexual life. The following article reviews our current understanding regarding the philosophical approach, and evaluates the evidence surrounding various ED therapies between mainstream Western Medicine and TCM. PMID:28217454
Erectile dysfunction treatment and traditional medicine-can East and West medicine coexist?
Lee, Joe K C; Tan, Ronny B W; Chung, Eric
2017-02-01
Erectile dysfunction (ED) is a common sexual problem affecting many men irrespective of cultures, beliefs and nationalities. While medical therapy for ED has been revolutionized by the advent of oral phosphodiesterase type 5 inhibitors and intracavernosal injection of vasoactive agents, recent technological advances such stem cell therapy, low intensity shock wave and newer generation of penile prosthesis implant offer hope to men who do not respond to conventional medical therapy. In contrast, traditional and complementary medicine (TCM) focuses on the restoration and better overall bodily regulation with the use of various herbal and animal products as well as exercises to invigorate qi (energy) in vital organs. Western medicine involves an analysis of ED symptom and underlying causes that contribute to ED, while TCM emphases the concept of holism and harmonization of body organs to achieve natural sexual life. The following article reviews our current understanding regarding the philosophical approach, and evaluates the evidence surrounding various ED therapies between mainstream Western Medicine and TCM.
Fisher, William A; Rosen, Raymond C; Eardley, Ian; Sand, Michael; Goldstein, Irwin
2005-09-01
Much research has explored the experience of erectile dysfunction (ED) among men with ED, but far less attention has been paid to the perceptions and sexual experiences of the female partners of men with ED. The objective of this study was to characterize the attitudes, beliefs, and sexual experience of female partners of men with erectile difficulties. Female partners of men with ED who had participated in the Men's Attitudes to Life Events and Sexuality (MALES) study were recruited for this research via mail or Internet, after their male partners consented to this contact. Female partners of men with ED (N = 293) responded to questionnaire measures assessing their frequency of sexual activity and the nature of their sexual experience, both before and after the development of their partner's ED, and in relation to their partner's use of phosphodiesterase type 5 (PDE5) inhibitors. Women reported engaging in sexual activity significantly less frequently after their partner developed ED in comparison with before (P < 0.001). Moreover, significantly fewer women experienced sexual desire, arousal, or orgasm "almost always" or "most times," and significantly fewer women reported satisfaction with their sexual relationship after their partner developed ED, compared with before (P < 0.001). Decreases in female sexual satisfaction and frequency of orgasm were significantly related to the male partner's self-reported severity of ED (P < 0.01). The proportion of women who experienced sexual desire, arousal, and orgasm "almost always" or "most times" was significantly higher in the group whose partners were currently using a PDE5 inhibitor (P < 0.05). Erectile dysfunction has significant adverse effects on the female partner's sexual experience. Women with partners who were currently using PDE5 inhibitors had a more satisfying sexual experience than those whose partners did not use a PDE5 inhibitor.
Luo, Yawen; Zhang, Haiying; Liao, Ming; Tang, Qin; Huang, Yuzhen; Xie, Jinling; Tang, Yan; Tan, Aihua; Gao, Yong; Lu, Zheng; Yao, Ziting; Jiang, Yonghua; Lin, Xinggu; Wu, Chunlei; Yang, Xiaobo; Mo, Zengnan
2015-05-01
The decline of testosterone has been known to be associated with the prevalence of erectile dysfunction (ED), but the causal relationship between sex hormones and ED is still uncertain. To prove the association between sex hormones and ED, we carried out a prospective cohort study based on our previous cross-sectional study. We performed a prospective cohort study of 733 Chinese men who participated in Fangchenggang Area Males Health and Examination Survey from September 2009 to December 2009 and were followed for 4 years. Erectile function was estimated by scores of the five-item International Index of Erectile Dysfunction (IIEF-5) and relative ratios (RRs) were estimated using the Cox proportional hazards regression model. Data were collected at follow-up visit and included sex hormone measurements, IIEF-5 scores, physical examination, and health questionnaires. Men with the highest tertile of free testosterone (FT) (RR = 0.21, 95% confidence interval [CI]: 0.09-0.46) and the lowest tertile of sex hormone-binding globulin (SHBG) (RR = 0.38, 95% CI: 0.19-0.73) had decreased risk of ED. In young men (aged 21-40), a decreased risk was observed with the increase of FT and bioavailable testosterone (BT) (adjusted RR and 95% CI: 0.78 [0.67-0.92] and 0.75 [0.62-0.95], respectively). Total testosterone (TT) (RR = 0.89, 95% CI: 0.81-0.98) was inversely associated with ED after adjusting for SHBG, while SHBG (RR = 1.04, 95% CI: 1.02-1.06) remained positively associated with ED after further adjusting for TT. Men with both low FT and high SHBG had highest ED risk (adjusted RR = 4.61, 95% CI: 1.33-16.0). High FT and BT levels independently predicted a decreased risk of ED in young men. Further studies are urgently needed to clarify the molecular mechanisms of testosterone acting on ED. © 2015 International Society for Sexual Medicine.
Aging and pathogenesis of erectile dysfunction.
Corona, G; Mannucci, E; Mansani, R; Petrone, L; Bartolini, M; Giommi, R; Mancini, M; Forti, G; Maggi, M
2004-10-01
The prevalence and the severity of erectile dysfunction (ED) increase with advancing age; different pathogenetic factors could contribute to age-related ED. We studied organic, relational and intrapsychic components of ED as a function of patients' age in a consecutive series of 977 patients with ED, using the specifically designed structured interview SIEDY. A complete physical examination and a series of biochemical, hormonal, psychometric and penile vascular tests were also performed. Relational factors seems to be more relevant in patients aged over 60 y, while intrapsychic disturbances play a major role in younger subjects. Organic factors are the most important determinant of ED in all age groups, but their contribution is more important in older patients. In fact, basal and dynamic peak cavernosal velocity at Doppler ultrasound penile examination was reduced in older patients. Among hormonal factors, the body mass index-dependent reduction of testosterone in older patients does not seem to play a crucial role in the pathogenesis of ED. No significant correlation was observed between testosterone level and the severity of ED, although patients reporting hypoactive sexual desire showed significantly lower testosterone levels when compared with the rest of the sample. A better understanding of the relative contribution of age-related pathogenetic factors of ED could be of help in the design of appropriate therapeutic approaches.
Psychological determinants of erectile dysfunction among middle-aged men.
Aghighi, A; Grigoryan, V H; Delavar, A
2015-01-01
We describe psychological determinants of erectile dysfunction (ED) among middle-aged men with no identifiable medical risk factors and compare them with a sample of young individuals. Two groups of young (⩽ 30 years, n = 59) and middle-aged men (⩾ 40 years, n = 63) who scored ⩽ 25 on the erectile functioning domain of the International Index of Erectile Functioning were enrolled. Patients were included if they had no metabolic diseases, prostate problems or external genitalia abnormalities. Patients were not included if they were smokers, excessive drinkers or took medications known to cause ED. To assess psychopathology, symptom check list 90-revised (SCL-90-R) was administered. Structural equation modeling was performed to assess the relationship between psychopathology and ED. One in five men had severe ED, and the proportion was not different between the two groups. Middle-aged men had lower scores on different SCL-90-R domains. In both age groups, somatization and interpersonal sensitivity contributed to ED. Among younger individuals, anxiety and psychosis-related domains were also associated with ED. Unique contributors to ED in middle-aged men were depression and additional questions. In conclusion, among middle-aged men, psychological factors significantly contribute to ED when no medical risk factors are present. The pattern and composition of distress depicts distinct features, not seen in young age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eum, Sung Yong, E-mail: seum@miami.edu; Jaraki, Dima; András, Ibolya E.
Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2)more » after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP2A/MMP-2 induced PCB153-induced dysfunction of occludin. • Disrupted lipid rafts modulated PCB153-induced increase of permeability. • Lipid rafts act as a signaling platform for PCB153-induced dysfunction of occludin.« less
... activity (as an aphrodisiac), and treat male sexual performance problems (erectile dysfunction, ED). Women use deer velvet to reduce the dose of ... combinations, deer velvet is used to improve athletic performance; to improve ... reproductive disorders including premenstrual syndrome (PMS), ED, and ...
Lo, Wai Hon; Fu, Sau Nga; Wong, Carlos King Ho; Chen, Ee San
2014-01-01
To investigate the prevalence, correlates, attitude and treatment seeking behavior of erectile dysfunction (ED) in type 2 diabetes mellitus (T2DM) patients in the primary care setting, a multi-center cross-sectional survey using a structured anonymous self-administered questionnaire was performed in 10 general outpatient clinics. Of the 603 subjects (91% response rate), the prevalence of ED men, as defined by the International Index of Erectile Function, was 79.1%. Most subjects had mild ED (28.9%), followed by mild-to-moderate ED (27.9%), then moderate ED (13.4%) and severe ED (9%). Nearly 55% of those with ED did not consider themselves as having ED. Less than 10% of them had ever sought medical treatment, although 76.1% of them wished to receive management from doctor(s) should they be diagnosed with ED. They considered the most important management from doctors to be clinical assessment (41.7%), followed by management of potential underlying cause (37.8%), referral to specialist (27.5%), education (23.9%), prescription of phosphodiesterase type 5 inhibitors (16.9%) and referral to counseling service (6.7%). The prevalence of ED was strongly associated with subjects who thought they had ED (odds ratio (OR) = 90.49 (20.00–409.48, P< 0.001)) and were from the older age group (OR = 1.043 (1.011–1.076, P = 0.008)). In conclusion, ED is highly prevalent among T2DM men. The majority of them wanted management from doctors should they have ED, but only a minority would actually voice out the request. Screening of ED among T2DM men using structural questionnaire allowed the diagnosis of more than half of the ED cases, which otherwise would have gone undiagnosed. PMID:24759587
Ilo, D; Raluy-Callado, M; Graham-Clarke, P; Sadasivan, R; Birt, J; Donaldson, R; Zhu, E; Kirby, M G; Neasham, D
2015-08-01
The aim of this study was to assess patient characteristics, medication treatment patterns and healthcare resource utilization among men with existing erectile dysfunction (ED) or benign prostatic hyperplasia (BPH), who are newly diagnosed with the second condition (BPH or ED) compared with those with only one condition. This retrospective cohort study utilized the Clinical Practice Research Datalink. Males, aged 40 years or older, newly diagnosed with ED or symptomatic BPH between 1 June 2010 and 31 May 2011, were selected. Patient demographics, existing comorbidities and baseline medication use were analysed. Treatments initiated for the incident condition and treatment patterns were reported at 6, 12, 18 and 24-months postdiagnosis. Referrals to urologists and visits to general practitioners were reported around diagnosis and during follow-up. This study included 11,501 incident patients with BPH, of which 23% had a prior ED diagnosis and 9,734 incident patients with ED, of which 17% had a prior BPH diagnosis. The average age at diagnosis of BPH was similar across both cohorts. Among incident patients with ED, those with prior diagnosis of BPH were diagnosed at an older average age (65 ± 9.2 years) compared to those without BPH (57 ± 9.1 years). The majority of patients in both incident BPH cohorts (62.9-65.5%) were prescribed alpha-blockers as initial treatment. The majority of patients in both incident ED cohorts (49.6-51.6%) were prescribed sildenafil as initial treatment followed by tadalafil (24.3-26.0%). At 12 months, 50% of incident patients with BPH and 80% of patients with ED had discontinued the therapy initiated. This study found that in the UK, patients with co-occurring BPH and ED when newly diagnosed with the second condition initiated the same treatments as those without prior ED or BPH. During the first year, treatment patterns including discontinuation were comparable in the groups with one of the conditions and co-occurring BPH and ED. © 2015 John Wiley & Sons Ltd.
Erectile dysfunction in COPD patients
Ure, Iyimser; Turan, Pakize Ayse
2015-01-01
Sexual dysfunction is a common problem in chronic obstructive pulmonary disease (COPD). We aimed to assess the presence of erectile dysfunction (ED) in COPD patients. Ninety-three outpatients who had been diagnosed as COPD and followed in Bolvadin State Hospital, Afyon, Turkey, were included in the study. All patients underwent pulmonary function tests and arterial blood gas analysis. They completed International Physical Activity Questionnaire (IPAQ), Medical Research Council (MRC) Dyspnea Scale, Short Form 36-item Scale (SF-36), and International Index of Erectile Function (IIEF) Questionnaire. The mean age of 10 (10.8%) mild, 46 (49.5%) moderate, 28 (30.1%) severe, and 9 (9.7%) very severe COPD patients was 61.4 ± 9.8 years. Varying degrees of ED were detected in 67.7% of COPD patients. All patients with hypoxemia had ED. IPAQ score and all SF-36 parameters were low in patients with ED, while MRC score was high. Forced expiratory volume in one second, forced vital capacity, partial pressure of oxygen in blood, oxygen (O2) saturation, IPAQ score, and role-physical parameters were statistically low in ED patients (p = 0.04, 0.02, <0.01, <0.01, 0.02, and 0.04, respectively); MRC score was statistically higher in patients with ED (p = 0.02). Patients with moderate and severe ED had statistically lower score of mental health (p < 0.01 and p = 0.02, respectively). There was a positive correlation between IIEF score and IPAQ scores (p < 0.01), MRC scores (p = 0.01), general health (p < 0.01), role-physical (p < 0.01), role-emotional (p < 0.01), physical functioning (p < 0.01), and mental health (p < 0.01) parameters in SF-36. ED is frequently seen in COPD patients. Hypoxemia, smoking, and limitation of physical activity are thought to be associated with ED in COPD as mechanisms. Quality of life and the functional capacity are negatively affected with the presence of ED. It is important for a physician to question the sexual functions in patients with COPD. The presence of ED may be routinely considered in the daily practice of pulmonologists in COPD patients. PMID:26647416
Erectile dysfunction in COPD patients.
Turan, Onur; Ure, Iyimser; Turan, Pakize Ayse
2016-02-01
Sexual dysfunction is a common problem in chronic obstructive pulmonary disease (COPD). We aimed to assess the presence of erectile dysfunction (ED) in COPD patients. Ninety-three outpatients who had been diagnosed as COPD and followed in Bolvadin State Hospital, Afyon, Turkey, were included in the study. All patients underwent pulmonary function tests and arterial blood gas analysis. They completed International Physical Activity Questionnaire (IPAQ), Medical Research Council (MRC) Dyspnea Scale, Short Form 36-item Scale (SF-36), and International Index of Erectile Function (IIEF) Questionnaire. The mean age of 10 (10.8%) mild, 46 (49.5%) moderate, 28 (30.1%) severe, and 9 (9.7%) very severe COPD patients was 61.4 ± 9.8 years. Varying degrees of ED were detected in 67.7% of COPD patients. All patients with hypoxemia had ED. IPAQ score and all SF-36 parameters were low in patients with ED, while MRC score was high. Forced expiratory volume in one second, forced vital capacity, partial pressure of oxygen in blood, oxygen (O2) saturation, IPAQ score, and role-physical parameters were statistically low in ED patients (p = 0.04, 0.02, <0.01, <0.01, 0.02, and 0.04, respectively); MRC score was statistically higher in patients with ED (p = 0.02). Patients with moderate and severe ED had statistically lower score of mental health (p < 0.01 and p = 0.02, respectively). There was a positive correlation between IIEF score and IPAQ scores (p < 0.01), MRC scores (p = 0.01), general health (p < 0.01), role-physical (p < 0.01), role-emotional (p < 0.01), physical functioning (p < 0.01), and mental health (p < 0.01) parameters in SF-36. ED is frequently seen in COPD patients. Hypoxemia, smoking, and limitation of physical activity are thought to be associated with ED in COPD as mechanisms. Quality of life and the functional capacity are negatively affected with the presence of ED. It is important for a physician to question the sexual functions in patients with COPD. The presence of ED may be routinely considered in the daily practice of pulmonologists in COPD patients. © The Author(s) 2015.
Celano, Christopher M.; Beale, Eleanor E.; Beach, Scott R.; Belcher, Arianna M.; Suarez, Laura; Motiwala, Shweta R.; Gandhi, Parul U.; Gaggin, Hanna; Januzzi, James L.; Healy, Brian C.; Huffman, Jeff C.
2016-01-01
Objective Psychological constructs are associated with cardiovascular health, but the biological mechanisms mediating these relationships are unknown. We examined relationships between psychological constructs and markers of inflammation, endothelial function, and myocardial strain in a cohort of post-acute coronary syndrome (ACS) patients. Methods Participants (N=164) attended study visits 2 weeks and 6 months post-ACS. During these visits, they completed self-report measures of depressive symptoms, anxiety, optimism, and gratitude, and blood samples were collected for measurement of biomarkers reflecting inflammation, endothelial function, and myocardial strain. Generalized estimating equations and linear regression analyses were performed to examine concurrent and prospective relationships between psychological constructs and biomarkers. Results In concurrent analyses, depressive symptoms were associated with elevated markers of inflammation (interleukin-17: β=.047, 95% confidence interval [.010, .083]), endothelial dysfunction (endothelin-1: β=.020, [.004, .037]), and myocardial strain (N-terminal pro-B-type natriuretic peptide: β=.045, [.008, .083]), independent of age, sex, medical variables, and anxiety, while anxiety was not associated with these markers in multivariable adjusted models. Optimism and gratitude were associated with lower levels of markers of endothelial dysfunction (endothelin-1: gratitude: β=−.009, [−.017, −.001]; optimism: β=−.009, [−.016, −.001]; soluble intercellular adhesion molecule-1: gratitude: β=−.007, [−.014, −.000]), independent of depressive and anxiety symptoms. Psychological constructs at 2 weeks were not prospectively associated with biomarkers at 6 months. Conclusions Depressive symptoms were associated with more inflammation, myocardial strain, and endothelial dysfunction in the 6 months post-ACS, while positive psychological constructs were linked to better endothelial function. Larger, prospective studies may clarify the directionality of these relationships. PMID:27749683
Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong
2016-01-01
Purpose Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Materials and Methods Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. Results SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. NG-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. Conclusion These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions. PMID:27593859
HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.
Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E
2011-10-01
Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.
Nguyen, Minh Cong; Park, Jong Taek; Jeon, Yeong Gwan; Jeon, Byeong Hwa; Hoe, Kwang Lae; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo
2016-11-01
Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.
van den Heuvel, Mieke; Sorop, Oana; van Ditzhuijzen, Nienke S; de Vries, René; van Duin, Richard W B; Peters, Ilona; van Loon, Janine E; de Maat, Moniek P; van Beusekom, Heleen M; van der Giessen, Wim J; Jan Danser, A H; Duncker, Dirk J
2018-02-01
We studied the effect of bioresorbable vascular scaffold (BVS) implantation on distal coronary endothelial function, in swine on a high fat diet without (HFD) or with diabetes (DM+HFD). Five DM+HFD and five HFD swine underwent BVS implantation on top of coronary plaques, and were studied six months later. Conduit artery segments >5mm proximal and distal to the scaffold and corresponding segments of non-scaffolded coronary arteries, and segments of small arteries within the flow-territory of scaffolded and non-scaffolded arteries were harvested for in vitro vasoreactivity studies. Conduit segments proximal and distal of the BVS edges showed reduced endothelium-dependent vasodilation as compared to control vessels (p≤0.01), with distal segments being most prominently affected(p≤0.01). Endothelial dysfunction was only observed in DM±HFD swine and was principally due to a loss of NO. Endothelium-independent vasodilation and vasoconstriction were unaffected. Surprisingly, segments from the microcirculation distal to the BVS showed enhanced endothelium-dependent vasodilation (p<0.01), whereas endothelium-independent vasodilation and vasoconstriction were unaltered. This enhanced vasorelaxation was only observed in DM+HFD swine, and did not appear to be either NO- or EDHF-mediated. Six months of BVS implantation in DM+HFD swine causes NO-mediated endothelial dysfunction in nearby coronary segments, which is accompanied by a, possibly compensatory, increase in endothelial function of the distal microcirculation. Endothelial dysfunction extending into coronary conduit segments beyond the implantation-site, is in agreement with recent reports expressing concern for late scaffold thrombosis and of early BVS failure in diabetic patients. Copyright © 2017. Published by Elsevier B.V.
Hypochlorous acid-induced heme oxygenase-1 gene expression promotes human endothelial cell survival
Wei, Yong; Liu, Xiao-ming; Peyton, Kelly J.; Wang, Hong; Johnson, Fruzsina K.; Johnson, Robert A.
2009-01-01
Hypochlorous acid (HOCl) is a unique oxidant generated by the enzyme myeloperoxidase that contributes to endothelial cell dysfunction and death in atherosclerosis. Since myeloperoxidase localizes with heme oxygenase-1 (HO-1) in and around endothelial cells of atherosclerotic lesions, the present study investigated whether there was an interaction between these two enzymes in vascular endothelium. Treatment of human endothelial cells with the myeloperoxidase product HOCl stimulated a concentration- and time-dependent increase in HO-1 protein that resulted in a significant rise in carbon monoxide (CO) production. The induction of HO-1 protein was preceded by a prominent increase in HO-1 mRNA and total and nuclear factor-erythroid 2-related factor 2 (Nrf2). In addition, HOCl induced a significant rise in HO-1 promoter activity that was blocked by mutating the antioxidant response element (ARE) in the promoter or by overexpressing a dominant-negative mutant of Nrf2. The HOCl-mediated induction of Nrf2 or HO-1 was blocked by the glutathione donor N-acetyl-l-cysteine but was unaffected by ascorbic or uric acid. Finally, treatment of endothelial cells with HOCl stimulated mitochondrial dysfunction, caspase-3 activation, and cell death that was potentiated by the HO inhibitor, tin protoporphyrin-IX, or by the knockdown of HO-1, and reversed by the exogenous administration of biliverdin, bilirubin, or CO. These results demonstrate that HOCl induces HO-1 gene transcription via the activation of the Nrf2/ARE pathway to counteract HOCl-mediated mitochondrial dysfunction and cell death. The ability of HOCl to activate HO-1 gene expression may represent a critical adaptive response to maintain endothelial cell viability at sites of vascular inflammation and atherosclerosis. PMID:19625608
Vitamin D Is a Regulator of Endothelial Nitric Oxide Synthase and Arterial Stiffness in Mice
Andrukhova, Olena; Slavic, Svetlana; Zeitz, Ute; Riesen, Sabine C.; Heppelmann, Monika S.; Ambrisko, Tamas D.; Markovic, Mato; Kuebler, Wolfgang M.
2014-01-01
The vitamin D hormone 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] is essential for the preservation of serum calcium and phosphate levels but may also be important for the regulation of cardiovascular function. Epidemiological data in humans have shown that vitamin D insufficiency is associated with hypertension, left ventricular hypertrophy, increased arterial stiffness, and endothelial dysfunction in normal subjects and in patients with chronic kidney disease and type 2 diabetes. However, the pathophysiological mechanisms underlying these associations remain largely unexplained. In this study, we aimed to decipher the mechanisms by which 1,25(OH)2D3 may regulate systemic vascular tone and cardiac function, using mice carrying a mutant, functionally inactive vitamin D receptor (VDR). To normalize calcium homeostasis in VDR mutant mice, we fed the mice lifelong with the so-called rescue diet enriched with calcium, phosphate, and lactose. Here, we report that VDR mutant mice are characterized by lower bioavailability of the vasodilator nitric oxide (NO) due to reduced expression of the key NO synthesizing enzyme, endothelial NO synthase, leading to endothelial dysfunction, increased arterial stiffness, increased aortic impedance, structural remodeling of the aorta, and impaired systolic and diastolic heart function at later ages, independent of changes in the renin-angiotensin system. We further demonstrate that 1,25(OH)2D3 is a direct transcriptional regulator of endothelial NO synthase. Our data demonstrate the importance of intact VDR signaling in the preservation of vascular function and may provide a mechanistic explanation for epidemiological data in humans showing that vitamin D insufficiency is associated with hypertension and endothelial dysfunction. PMID:24284821
Calderón-Garcidueñas, L; Villarreal-Calderon, R; Valencia-Salazar, G; Henríquez-Roldán, C; Gutiérrez-Castrellón, P; Torres-Jardón, R; Osnaya-Brizuela, N; Romero, L; Torres-Jardón, R; Solt, A; Reed, W
2008-03-01
Mexico City children are chronically exposed to significant concentrations of air pollutants and exhibit chronic respiratory-tract inflammation. Epidemiological, controlled human exposures, laboratory-based animal models, and in vitro/in vivo studies have shown that inflammatory, endothelial dysfunction, and endothelial damage mediators are upregulated upon exposure to particulate matter (PM). Endothelial dysfunction is a critical event in cardiovascular disease. The focus of this work was to investigate whether exposure to ambient air pollution including PM(2.5) produces systemic inflammation and endothelial injury in healthy children. We measured markers of endothelial activation, and inflammatory mediators in 52 children age 8.6+/-0.1 yr, residents of Mexico City (n: 28) or of Polotitlán (n: 24), a city with low levels of pollutants. Mexico City children had significant increases in inflammatory mediators and vasoconstrictors, including tumor necrosis factor (TNF)alpha, prostaglandin (PG) E2, C-reactive protein, interleukin-1beta, and endothelin-1. There was a significant anti-inflammatory response, and a downregulation of vascular adhesion molecule-1, intercellular adhesion molecule-1 and -2, and selectins sE and sL. Results from linear regression found TNF a positively associated with 24- and 48-h cumulative levels of PM(2.5), while the 7-d PM(2.5) value was negatively associated with the numbers of white blood cells in peripheral blood in highly exposed children. Systemic subclinical inflammation, increased endothelin- 1, and significant downregulation of soluble adhesion molecules are seen in Mexico City children. Children chronically exposed to fine PM above the standard could be at risk of developing cardiovascular diseases, atherosclerosis, stroke, and other systemic effects later in life.
Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv
2015-02-01
In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P < 0.001). The data suggest that albumin infusion improves renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Freestone, Bethan; Gustafsson, Finn; Chong, Aun Yeong; Corell, Pernille; Kistorp, Caroline; Hildebrandt, Per; Lip, Gregory Y H
2008-05-01
Endothelial dysfunction is present in patients with heart failure (HF) due to left ventricular systolic dysfunction, as well as in patients with atrial fibrillation (AF) who have normal cardiac function. It is unknown whether AF influences the degree of endothelial dysfunction in patients with systolic HF. We measured levels of plasma von Willebrand factor (vWF) and E-selectin (as indexes of endothelial damage/dysfunction and endothelial activation, respectively; both enzyme-linked immunosorbent assay) in patients with AF and HF (AF-HF), who were compared to patients with sinus rhythm and HF (SR-HF), as well as in age-matched, healthy, control subjects. We also assessed the relationship of vWF and E-selectin to plasma N-terminal pro B-type natriuretic peptide (NTpro-BNP), a marker for HF severity and prognosis. One hundred ninety patients (73% men; mean age, 69.0 +/- 10.1 years [+/- SD]) with systolic HF were studied, who were compared to 117 healthy control subjects: 52 subjects (27%) were in AF, while 138 subjects (73%) were in sinus rhythm. AF-HF patients were older than SR-HF patients (p = 0.046), but left ventricular ejection fraction and New York Heart Association class were similar. There were significant differences in NT-proBNP (p < 0.0001) and plasma vWF (p = 0.003) between patients and control subjects. On Tukey post hoc analysis, AF-HF patients had significantly increased NT-proBNP (p < 0.001) and vWF (p = 0.0183) but not E-selectin (p = 0.071) levels when compared to SR-HF patients. On multivariate analysis, the presence of AF was related to plasma vWF levels (p = 0.018). Plasma vWF was also significantly correlated with NT-proBNP levels (Spearman r = 0.139; p = 0.017). There is evidence of greater endothelial damage/dysfunction in AF-HF patients when compared to SR-HF patients. The clinical significance of this is unclear but may have prognostic value.
Medrano, Luz M; Garcia-Broncano, Pilar; Berenguer, Juan; González-García, Juan; Jiménez-Sousa, Ma Ángeles; Guardiola, Josep M; Crespo, Manuel; Quereda, Carmen; Sanz, José; Canorea, Isabel; Carrero, Ana; Hontañón, Victor; Muñoz-Fernández, Ma Ángeles; Resino, Salvador
2018-06-01
Immune dysregulation is a hallmark of HIV and hepatitis C virus (HCV) infections. We aimed to evaluate the relationship between liver stiffness measurement (LSM) and biomarkers of T-cell activation, bacterial translocation, inflammation, endothelial dysfunction, and coagulopathy in HIV/HCV-coinfected patients. Cross-sectional study. We studied 238 HIV/HCV-coinfected patients, 32 healthy controls, and 39 HIV-monoinfected patients. Patients were stratified according to LSM into four groups: less than 12.5, 12.5-25, 25-40, and more than 40 kPa. T-cell subsets were measured using flow cytometry and plasma biomarkers using immunoassays. HIV/HCV-coinfected patients had higher biomarker levels of immune activation in peripheral blood [T-cell activation (CD4CD38 and CD8CD38), bacterial translocation (soluble CD14), inflammation [IL-1b, IL-6, IL-8, IL-18, IFN-γ-inducible protein 10 (IP-10)] endothelial dysfunction [soluble vascular cell adhesion molecule 1 (sVCAM1), soluble intercellular cell adhesion molecule 1 (sICAM1), and soluble tumor necrosis factor receptor 1 (sTNFR1)], and coagulopathy (plasminogen activator inhibitor-1)] than healthy controls and HIV-monoinfected patients. Moreover, in HIV/HCV-coinfected patients, a direct relationship between LSM and immune activation [T-cell activation (CD8CD38 bacterial translocation (lipopolysaccharide), inflammation (IL-8, IP-10), endothelial dysfunction (sVCAM1, sICAM1, and sTNFR1), and coagulopathy (D-dimer)] was found. Subsequently, patients were stratified into different fibrosis stages, finding that patients with cirrhosis who had LSM at least 40 kPa showed higher biomarker values of immune activation [T-cell activation (CD4CD38 and CD8CD38), bacterial translocation (lipopolysaccharide), inflammation (IL-8, IL-6, IP-10), endothelial dysfunction (sVCAM1, sICAM1, and sTNFR1), and coagulopathy (D-dimer)] than patients from the other three groups (<12.5, 12.5-25, and 25-40 kPa). T-cell activation, bacterial translocation, inflammation, endothelial dysfunction, and coagulopathy increased with the severity of liver fibrosis in HIV/HCV-coinfected patients, particularly in patients who had LSM at least 40 kPa.
Martin, Sean; Atlantis, Evan; Wilson, David; Lange, Kylie; Haren, Matthew T; Taylor, Anne; Wittert, Gary
2012-08-01
Erectile dysfunction (ED) and other related sexual dysfunctions in men have recently been shown to associate with a range of conditions and biopsychosocial factors. However, few studies have been able to control for these related factors simultaneously. To determine the prevalence of and associated risk factors for ED and low solitary and dyadic sexual desire. Erectile function (International Index of Erectile Function-erectile function) and sexual desire (Sexual Desire Inventory 2), as well as associated sociodemographic, lifestyle, biological, and clinical risk factors. Data were collected from 1,195 randomly selected, community-dwelling men as part of the Florey Adelaide Male Ageing Study. The prevalence of ED, low solitary, and dyadic sexual desire was 17.7%, 67.7%, and 13.5%, respectively. Increasing age, abdominal fat mass, obstructive sleep apnea risk, and the absence of a regular partner were associated with both degrees of ED severity. Insufficient physical activity, low alcohol consumption, and hypertension were associated with mild ED only, and voiding lower urinary tract symptoms, diabetes, and lower plasma testosterone were independently associated with moderate to severe ED. Increasing age, lower alcohol consumption, insufficient physical activity, and a diagnosis of depression, anxiety, or insomnia were associated with both low dyadic and solitary sexual desire. Postschool qualifications and lower plasma testosterone were associated with low dyadic desire, whereas lower education and income, unemployment, and migration were associated with low solitary sexual desire. The absence of a regular partner and postschool qualifications were associated with higher solitary sexual desire. While ED and low dyadic and solitary sexual desire share some risk factors, we were able to demonstrate that unique factors exist for each of these domains. Attention should first be given to addressing these modifiable risk factors. © 2012 International Society for Sexual Medicine.
[Circuit resistance training improved endothelial dysfunction in obese aged women].
Rosety, Ignacio; Pery, María Teresa; Rosety, Jesús; García, Natalia; Rodríguez-Pareja, María Antonia; Brenes-Martín, Francisco; Díaz, Antonio; Rosety-Rodríguez, Manuel; Ordoñez, Francisco Javier; Rosety, Miguel Ángel
2016-02-16
It is widely accepted that obesity is associated with endothelial dysfunction. In a recent paper, we have also found circuit resistance training may reduce visceral fat in obese aged women. Accordingly, the current study was conducted to ascertain the effects of circuit resistance training on markers of endothelial dysfunction in this population group. In the present interventional study, a total of 48 obese aged women were recruited from the community. Twenty-four of them were randomly assigned to perform a 12-week resistance circuit training programme, 3-days per week. This training was circularly performed in 6 stations: arm curl, leg extension, seated row, leg curl, triceps extension and leg press. The Jamar handgrip electronic dynamometer was used to assess maximal handgrip strength of the dominant hand. Lastly, serum samples were analysed using an immunoassay (ELISA) for endothelin-1, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). When compared to baseline, resistance training significantly reduced serum levels of endothelin-1 (2.28 ± 0.7 vs. 1.98 ± 1.1 pg/ml; p = 0.019; d = 0.67) and ICAM-1 (290 ± 69 vs. 255 ± 76 ng/ml; p = 0.004; d = 0.92) in the experimental group. No significant changes in any of the tested outcomes were found in the control group. A short-term circuit resistance program improved endothelial dysfunction in aged obese women. Further studies on this topic are still required to consolidate this approach in clinical application.
Role of reactive oxygen and nitrogen species in the vascular responses to inflammation
Kvietys, Peter R.; Granger, D. Neil
2012-01-01
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653
Bernhart, Eva; Kogelnik, Nora; Prasch, Jürgen; Gottschalk, Benjamin; Goeritzer, Madeleine; Depaoli, Maria Rosa; Reicher, Helga; Nusshold, Christoph; Plastira, Ioanna; Hammer, Astrid; Fauler, Günter; Malli, Roland; Graier, Wolfgang F; Malle, Ernst; Sattler, Wolfgang
2018-05-01
Peripheral leukocytes induce blood-brain barrier (BBB) dysfunction through the release of cytotoxic mediators. These include hypochlorous acid (HOCl) that is formed via the myeloperoxidase-H 2 O 2 -chloride system of activated phagocytes. HOCl targets the endogenous pool of ether phospholipids (plasmalogens) generating chlorinated inflammatory mediators like e.g. 2-chlorohexadecanal and its conversion product 2-chlorohexadecanoic acid (2-ClHA). In the cerebrovasculature these compounds inflict damage to brain microvascular endothelial cells (BMVEC) that form the morphological basis of the BBB. To follow subcellular trafficking of 2-ClHA we synthesized a 'clickable' alkyne derivative (2-ClHyA) that phenocopied the biological activity of the parent compound. Confocal and superresolution structured illumination microscopy revealed accumulation of 2-ClHyA in the endoplasmic reticulum (ER) and mitochondria of human BMVEC (hCMEC/D3 cell line). 2-ClHA and its alkyne analogue interfered with protein palmitoylation, induced ER-stress markers, reduced the ER ATP content, and activated transcription and secretion of interleukin (IL)-6 as well as IL-8. 2-ClHA disrupted the mitochondrial membrane potential and induced procaspase-3 and PARP cleavage. The protein kinase R-like ER kinase (PERK) inhibitor GSK2606414 suppressed 2-ClHA-mediated activating transcription factor 4 synthesis and IL-6/8 secretion, but showed no effect on endothelial barrier dysfunction and cleavage of procaspase-3. Our data indicate that 2-ClHA induces potent lipotoxic responses in brain endothelial cells and could have implications in inflammation-induced BBB dysfunction. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze
2014-08-01
Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.
Randomized clinical trial on acute effects of i.v. iron sucrose during haemodialysis.
Garcia-Fernandez, Nuria; Echeverria, Aitziber; Sanchez-Ibarrola, Alfonso; Páramo, José Antonio; Coma-Canella, Isabel
2010-03-01
Haemodialysis induces endothelial dysfunction by oxidation and inflammation. Intravenous iron administration during haemodialysis could worsen endothelial dysfunction. The aim of this study was to ascertain if iron produces endothelial dysfunction and the possible neutralizing effect of N-acetylcysteine when infused before iron. The oxidative and inflammatory effects of iron during haemodialysis were also assessed. Forty patients undergoing haemodialysis were studied in a randomized and cross-over design with and without N-acetylcysteine infused before iron sucrose (50 or 100 mg). Plasma Von Willebrand factor (vWF), soluble intercellular adhesion molecule-1 (sICAM-1) levels, malondialdehyde, total antioxidant capacity, CD11b/CD18 expression in monocytes, interleukin (IL)-8 in monocytes and plasma IL-8 were studied at baseline and during haemodialysis. Haemodialysis produced significant (P < 0.001) increase in plasma vWF, sICAM-1, malondialdehyde, IL-8 and CD11b/CD18 expression in monocytes, as well as decrease in total antioxidant capacity. Iron induced significant increase in plasma malondialdehyde and IL-8 in monocytes, but had no effect on total antioxidant capacity, CD11b/CD18 expression, plasma IL-8, vWF and sICAM-1. The addition of N-acetylcysteine to 50 mg of iron produced a significant (P = 0.040) decrease in malondialdehyde. Standard (100 mg) and low (50 mg) doses of iron during haemodialysis had no effects on endothelium. Iron only had minor effects on inflammation and produced an increase in oxidative stress, which was neutralized by N-acetylcysteine at low iron dose. Haemodialysis caused a significant increase in oxidative stress, inflammation and endothelial dysfunction markers.
Ceron, Carla S; Marchi, Katia C; Muniz, Jaqueline J; Tirapelli, Carlos R
2014-01-01
The observation that the excessive consumption of ethyl alcohol (ethanol) is associated with high blood pressure is nearing its centennial mark. Mechanisms linking ethanol consumption and hypertension are complex and not fully understood. It is established that chronic ethanol consumption leads to hypertension and that this process is a multimediated event involving increased sympathetic activity, stimulation of the renin-angiotensin-aldosterone system with a subsequent increase in vascular oxidative stress and endothelial dysfunction. Under physiological conditions, reactive oxygen species (ROS) play an important role as a signaling molecule in the control of vascular tone and endothelial function. Increased ROS bioavailability is associated with important processes underlying vascular injury in cardiovascular disease such as endothelial dysfunction, vascular remodeling, and inflammation. Studies focusing on molecular mechanisms showed a link between overproduction of ROS in the vasculature and ethanol-induced hypertension. Of the ROS generated in vascular cells, superoxide anion (O2(-)) and hydrogen peroxide (H2O2) appear to be especially important. Ethanol-mediated generation of O2(-) and H2O2 in vascular tissues is associated with elevations in intracellular calcium ([Ca(2+)]i), reduced nitric oxide (NO) bioavailability, endothelial dysfunction and vasoconstriction. O2(-) can also act as a vascular signaling molecule regulating signaling pathways that lead to vascular contraction. Thus, through increased generation of ROS and activation of redox-sensitive pathways, ethanol induces vascular dysfunction, a response that might contribute to the hypertension associated with ethanol consumption. The present article reviews the role of ROS in vascular (patho)biology of ethanol.
Yuen, Darren A; Zhang, Yanling; Thai, Kerri; Spring, Christopher; Chan, Lauren; Guo, Xiaoxin; Advani, Andrew; Sivak, Jeremy M; Gilbert, Richard E
2012-12-01
Impaired endothelial repair is a key contributor to microvascular rarefaction and consequent end-organ dysfunction in diabetes. Recent studies suggest an important role for bone marrow-derived early outgrowth cells (EOCs) in mediating endothelial repair, but the function of these cells is impaired in diabetes, as in advanced age. We sought to determine whether diabetes-associated EOC dysfunction might be attenuated by pharmacological activation of silent information regulator protein 1 (SIRT1), a lysine deacetylase implicated in nutrient-dependent life span extension in mammals. Despite being cultured in normal (5.5 mM) glucose for 7 days, EOCs from diabetic rats expressed less SIRT1 mRNA, induced less endothelial tube formation in vitro and neovascularization in vivo, and secreted less of the proangiogenic ELR(+) CXC chemokines CXCL1, CXCL3, and CXCL5. Ex vivo SIRT1 activation restored EOC chemokine secretion and increased the in vitro and in vivo angiogenic activity of EOC conditioned medium derived from diabetic animals to levels similar to that derived from control animals. These findings suggest a pivotal role for SIRT1 in diabetes-induced EOC dysfunction and that its pharmacologic activation may provide a new strategy for the restoration of EOC-mediated repair mechanisms.
Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G
1995-06-01
We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.
Domingueti, Caroline Pereira; Dusse, Luci Maria Sant'Ana; Carvalho, Maria das Graças; de Sousa, Lirlândia Pires; Gomes, Karina Braga; Fernandes, Ana Paula
2016-01-01
Vascular complications are the leading cause of morbidity and mortality among patients with type 1 and type 2 diabetes mellitus. These vascular abnormalities result of a chronic hyperglycemic state, which leads to an increase in oxidative stress and inflammatory responses. This review addresses the relationships among endothelial dysfunction, hypercoagulability and inflammation and their biomarkers in the development of vascular complications in type 1 and type 2 diabetes. Inflammation, endothelial dysfunction, and hypercoagulability are correlated to each other, playing an important role in the development of vascular complications in diabetic patients. Moreover, it has been observed that several endothelial, inflammatory and pro-coagulant biomarkers, such as VWF, IL-6, TNF-α, D-dimer and PAI-1, are increased in diabetic patients who have microvascular and macrovascular complications, including nephropathy or cardiovascular disease. It is promising the clinical and laboratory use of endothelial, inflammatory and pro-coagulant biomarkers for predicting the risk of cardiovascular and renal complications in diabetic patients and for monitoring these patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Foocharoen, Chingching; Tyndall, Alan; Hachulla, Eric; Rosato, Edoardo; Allanore, Yannick; Farge-Bancel, Dominique; Caramaschi, Paola; Airó, Paolo; Nikolaevna, Starovojtova M; Pereira da Silva, José António; Stamenkovic, Bojana; Riemekasten, Gabriela; Rednic, Simona; Sibilia, Jean; Wiland, Piotr; Tarner, Ingo; Smith, Vanessa; Onken, Anna T; Abdel Atty Mohamed, Walid Ahmed; Distler, Oliver; Morović-Vergles, Jadranka; Himsel, Andrea; de la Peña Lefebvre, Paloma Garcia; Hügle, Thomas; Walker, Ulrich A
2012-02-20
Erectile dysfunction (ED) is common in men with systemic sclerosis (SSc) but the demographics, risk factors and treatment coverage for ED are not well known. This study was carried out prospectively in the multinational EULAR Scleroderma Trial and Research database by amending the electronic data-entry system with the International Index of Erectile Function-5 and items related to ED risk factors and treatment. Centres participating in this EULAR Scleroderma Trial and Research substudy were asked to recruit patients consecutively. Of the 130 men studied, only 23 (17.7%) had a normal International Index of Erectile Function-5 score. Thirty-eight per cent of all participants had severe ED (International Index of Erectile Function-5 score ≤ 7). Men with ED were significantly older than subjects without ED (54.8 years vs. 43.3 years, P < 0.001) and more frequently had simultaneous non-SSc-related risk factors such as alcohol consumption. In 82% of SSc patients, the onset of ED was after the manifestation of the first non-Raynaud's symptom (median delay 4.1 years). ED was associated with severe cutaneous, muscular or renal involvement of SSc, elevated pulmonary pressures and restrictive lung disease. ED was treated in only 27.8% of men. The most common treatment was sildenafil, whose efficacy is not established in ED of SSc patients. Severe ED is a common and early problem in men with SSc. Physicians should address modifiable risk factors actively. More research into the pathophysiology, longitudinal development, treatment and psychosocial impact of ED is needed.
Alzubaidi, Raidh
2017-01-01
Erectile dysfunction (ED) is a common condition that significantly impacts a man’s physical and psychological well-being. ED is often associated with Peyronie’s disease (PD), which is an abnormal curvature of the penis. Delayed treatment of or surgical invention for PD often results in ED and therefore unsatisfied patients. The pathophysiology of PD is incompletely understood, but has been studied extensively and based on our current understanding of PD physiology, many medical treatment options have been proposed. In this paper, we will review what is known about the pathophysiology of PD and the medical treatment options that have been trialed as a result. More investigations in regards to the basic science of PD need to be carried out in order to elucidate the exact mechanisms of the fibrosis, and propose new, more successful treatment options which should be implemented prior to the onset of ED. PMID:28217450
Yamagata, Kazuo
2018-02-04
Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome.
Yamagata, Kazuo
2018-01-01
Epidemiologic studies from several countries have found that mortality rates associated with the metabolic syndrome are inversely associated with coffee consumption. Metabolic syndrome can lead to arteriosclerosis by endothelial dysfunction, and increases the risk for myocardial and cerebral infarction. Accordingly, it is important to understand the possible protective effects of coffee against components of the metabolic syndrome, including vascular endothelial function impairment, obesity and diabetes. Coffee contains many components, including caffeine, chlorogenic acid, diterpenes and trigonelline. Studies have found that coffee polyphenols, such as chlorogenic acids, have many health-promoting properties, such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetes, and antihypertensive properties. Chlorogenic acids may exert protective effects against metabolic syndrome risk through their antioxidant properties, in particular toward vascular endothelial cells, in which nitric oxide production may be enhanced, by promoting endothelial nitric oxide synthase expression. These effects indicate that coffee components may support the maintenance of normal endothelial function and play an important role in the prevention of metabolic syndrome. However, results related to coffee consumption and the metabolic syndrome are heterogeneous among studies, and the mechanisms of its functions and corresponding molecular targets remain largely elusive. This review describes the results of studies exploring the putative effects of coffee components, especially in protecting vascular endothelial function and preventing metabolic syndrome. PMID:29401716
Daher, Jalil; Martin, Maud; Rousseau, Alexandre; Nuyens, Vincent; Fayyad-Kazan, Hussein; Van Antwerpen, Pierre; Courbebaisse, Guy; Martiat, Philippe; Badran, Bassam; Dequiedt, Frank
2014-01-01
Cardiovascular disease linked to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is mainly linked to dysfunction in vascular endothelial cells and subendothelial accumulation of oxidized forms of LDL. In the present study, we investigated the role of myeloperoxidase oxidized LDL (Mox-LDL) in endothelial cell dysfunction. We studied the effect of proinflammatory Mox-LDL treatment on endothelial cell motility, a parameter essential for normal vascular processes such as angiogenesis and blood vessel repair. This is particularly important in the context of an atheroma plaque, where vascular wall integrity is affected and interference with its repair could contribute to progression of the disease. We investigated in vitro the effect of Mox-LDL on endothelial cells angiogenic properties and we also studied the signalling pathways that could be affected by analysing Mox-LDL effect on the expression of angiogenesis-related genes. We report that Mox-LDL inhibits endothelial cell motility and tubulogenesis through an increase in miR-22 and heme oxygenase 1 expression. Our in vitro data indicate that Mox-LDL interferes with parameters associated with angiogenesis. They suggest that high LDL levels in patients would impair their endothelial cell capacity to cope with a damaged endothelium contributing negatively to the progression of the atheroma plaque. PMID:25530680
Angulo, Javier; Wright, Harold M; Cuevas, Pedro; González-Corrochano, Rocío; Fernández, Argentina; Cuevas, Begoña; La Fuente, José M; Gupta, Sandeep; Sáenz de Tejada, Iñigo
2010-08-01
Traditional beta-blockers have sometimes been associated with erectile dysfunction (ED). Nebivolol is a cardioselective β(1)-adrenoceptor antagonist that promotes vasodilation through a nitric oxide (NO)-dependent mechanism. We evaluated the effects of nebivolol on the NO/cyclic guanosine monophosphate (cGMP) signaling pathway, on erectile function and dysfunction, and in human penile vascular tissues. Erectile response to cavernosal nerve electrical stimulation in control and diabetes-induced ED rats were evaluated, along with serum nitrite/nitrate (NOx) concentration and plasma/tissue cGMP levels. Endothelium-dependent and sildenafil-induced relaxation of isolated human corpus cavernosum (HCC) and human penile resistance arteries (HPRA) were also determined. The effects of nebivolol on erectile function and dysfunction and on NO/cGMP-mediated responses. Treatment with nebivolol significantly potentiated erectile response in control rats, regardless of its effects on blood pressure. Nebivolol increased NOx and plasma cGMP by 3-fold and 2.75-fold, respectively, and significantly augmented the elevation of plasma cGMP produced by sildenafil. Nebivolol enhanced endothelium-dependent and sildenafil-induced relaxations of HCC tissue, and produced endothelium-dependent vasodilation of HPRA. Nebivolol, but not atenolol, significantly improved erectile response in diabetic rats (51.6%, 53.2%, and 87.1% of response at 3 Hz in nondiabetic rats, for vehicle-treated, atenolol-treated, and nebivolol-treated diabetic rats, respectively); after sildenafil administration, ED was completely reversed in nebivolol-treated diabetic rats (69.6% and 112% for diabetic rats treated with sildenafil and nebivolol plus sildenafil, respectively). Accordingly, nebivolol restored systemic NOx levels and cGMP content in penile tissue from these animals. Nebivolol in vivo activated the NO/cGMP pathway, enhanced erectile response and reversed ED in diabetic rats. Moreover, nebivolol in vitro potentiated NO/cGMP-mediated relaxation of human erectile tissues. These effects may account for the low incidence of ED in nebivolol-treated hypertensive patients. Nebivolol therefore may have utility in the treatment of ED, particularly ED associated with diabetes. © 2010 International Society for Sexual Medicine.
Vascular endothelial dysfunction in patients with mild obstructive sleep apnea syndrome.
Duchna, Hans-Werner; Stoohs, Riccardo; Guilleminault, Christian; Christine Anspach, Marie; Schultze-Werninghaus, Gerhard; Orth, Maritta
2006-11-01
We investigated endothelial dysfunction, an early manifestation of atherosclerosis, in patients with mild obstructive sleep apnea syndrome (OSAS) (5/h < AHI < 15/h). Endothelium-dependent and -independent vasodilatory function was tested in 10 patients with mild OSAS, 12 healthy controls and 20 subjects with moderate to severe OSAS using the hand vein compliance technique. Maximum endothelium-dependent vasodilation to bradykinin (Emax) was significantly blunted in patients with mild OSAS (68.6 +/- 30.2 %) compared to healthy controls (94.8 +/- 9.5 %; p < 0.05; moderate to severe OSAS: 57.1 +/- 23.4 %; p = 0.33). Mean endothelium-independent venodilation was not altered. After 160.7 +/- 82.2 nights of CPAP therapy, mean Emax was significantly improved to 90.8 +/- 23.8 % (p < 0.01 vs. baseline; p = 0.7 vs. healthy controls) in 7 patients with mild OSAS. Systemic endothelium-dependent venodilation is markedly reduced in subjects with mild OSAS, which may imply adverse cardiovascular consequences. CPAP-treatment leads to a sustained restoration of endothelial dysfunction in these patients and is thus highly recommended.
Yiu, Kai-Hang; Tse, Hung-Fat
2014-06-01
The disease burden of diabetes mellitus (DM) and its associated cardiovascular complications represent a growing and major global health problem. Recent studies suggest that circulating exogenous endothelial progenitor cells (EPCs) play an important role in endothelial repair and neovascularization at sites of injury or ischemia. Both experimental and clinical studies have demonstrated that hyperglycemia related to DM can induce alterations to EPCs. The reduction and dysfunction of EPCs related to DM correlate with the occurrence and severity of microvascular and macrovascular complications, suggesting a close mechanistic link between EPC dysfunction and impaired vascular function/repair in DM. These alterations to EPCs, likely mediated by multiple pathophysiological mechanisms, including inflammation, oxidative stress, and alterations in Akt and the nitric oxide pathway, affect EPCs at multiple stages: differentiation and mobilization in the bone marrow, trafficking and survival in the circulation, and homing and neovascularization. Several different therapeutic approaches have consequently been proposed to reverse the reduction and dysfunction of EPCs in DM and may represent a novel therapeutic approach to prevent and treat DM-related cardiovascular complications. © 2014 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajalakshmi, Palanivel; Priya, Mani Krishna; Pradeep, Thangaraj
Widely used chemotherapeutic breast cancer drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) are known to cause various cardiovascular side-effects among long term cancer survivors. Vascular modulation warrants nitric oxide (NO) signal transduction, which targets the vascular endothelium. We hypothesize that TC, CP and EP interference with the nitric oxide downstream signaling specifically, could lead to cardiovascular dysfunctions. The results demonstrate that while all three drugs attenuate NO and cyclic guanosine mono-phosphate (cGMP) production in endothelial cells, they caused elevated levels of NO in the plasma and RBC. However, PBMC and platelets did not show any significantmore » changes under treatment. This implies that the drug effects are specific to the endothelium. Altered eNOS and phosphorylated eNOS (Ser-1177) localization patterns in endothelial cells were observed following drug treatments. Similarly, the expression of phosphorylated eNOS (Ser-1177) protein was decreased under the treatment of drugs. Altered actin polymerization was also observed following drug treatment, while addition of SpNO and 8Br-cGMP reversed this effect. Incubation with the drugs decreased endothelial cell migration whereas addition of YC-1, SC and 8Br-cGMP recovered the effect. Additionally molecular docking studies showed that all three drugs exhibited a strong binding affinity with the catalytic domain of human sGC. In conclusion, results indicate that TC, CP and EP cause endothelial dysfunctions via the NO–sGC–cGMP pathway and these effects could be recovered using pharmaceutical agonists of NO signaling pathway. Further, the study proposes a combination therapy of chemotherapeutic drugs and cGMP analogs, which would confer protection against chemotherapy mediated vascular dysfunctions in cancer patients. - Highlights: • NO production is reduced in endothelial cells under breast cancer drug treatment. • Cellular cGMP level is decreased under the treatments of breast cancer drugs. • Breast cancer drugs induce vasoconstriction by interfering with NO pathway. • NO donors, cGMP analogs rescue breast cancer drug induced endothelial dysfunctions.« less
Houghton, Jan L; Philbin, Edward F; Strogatz, David S; Torosoff, Mikhail T; Fein, Steven A; Kuhner, Patricia A; Smith, Vivienne E; Carr, Albert A
2002-04-17
The purpose of our study was to determine if the presence of African American ethnicity modulates improvement in coronary vascular endothelial function after supplementary L-arginine. Endothelial dysfunction is an early stage in the development of coronary atherosclerosis and has been implicated in the pathogenesis of hypertension and cardiomyopathy. Amelioration of endothelial dysfunction has been demonstrated in patients with established coronary atherosclerosis or with risk factors in response to infusion of L-arginine, the precursor of nitric oxide. Racial and gender patterns in L-arginine responsiveness have not, heretofore, been studied. Invasive testing of coronary artery and microvascular reactivity in response to graded intracoronary infusions of acetylcholine (ACh) +/- L-arginine was carried out in 33 matched pairs of African American and white subjects with no angiographic coronary artery disease. Pairs were matched for age, gender, indexed left ventricular mass, body mass index and low-density lipoprotein cholesterol. In addition to the matching parameters, there were no significant differences in peak coronary blood flow (CBF) response to intracoronary adenosine or in the peak CBF response to ACh before L-arginine infusion. However, absolute percentile improvement in CBF response to ACh infusion after L-arginine, as compared with before, was significantly greater among African Americans as a group (45 +/- 10% vs. 4 +/- 6%, p = 0.0016) and after partitioning by gender. The mechanism of this increase was mediated through further reduction in coronary microvascular resistance. L-arginine infusion also resulted in greater epicardial dilator response after ACh among African Americans. We conclude that intracoronary infusion of L-arginine provides significantly greater augmentation of endothelium-dependent vascular relaxation in those of African American ethnicity when compared with matched white subjects drawn from a cohort electively referred for coronary angiography. Our findings suggest that there are target populations in which supplementary L-arginine may be of therapeutic benefit in the amelioration of microvascular endothelial dysfunction. In view of the excess prevalence of cardiomyopathy among African Americans, pharmacologic correction of microcirculatory endothelial dysfunction in this group is an important area of further investigation and may ultimately prove to be clinically indicated.
Choi, Hoon Young; Park, Hyeong Cheon
2015-01-01
Hypertension is a complex trait determined by both genetic and environmental factors and is a major public health problem due to its high prevalence and concomitant increase in the risk for cardiovascular disease. With the recent large increase of dietary salt intake in most developed countries, the prevalence of hypertension increases tremendously which is about 30% of the world population. There is substantial evidence that suggests some people can effectively excrete high dietary salt intake without an increase in arterial BP, and another people cannot excrete effectively without an increase in arterial BP. Salt sensitivity of BP refers to the BP responses for changes in dietary salt intake to produce meaningful BP increases or decreases. The underlying mechanisms that promote salt sensitivity are complex and range from genetic to environmental influences. The phenotype of salt sensitivity is therefore heterogeneous with multiple mechanisms that potentially link high salt intake to increases in blood pressure. Moreover, excess salt intake has functional and pathological effects on the vasculature that are independent of blood pressure. Epidemiologic data demonstrate the role of high dietary salt intake in mediating cardiovascular and renal morbidity and mortality. Almost five decades ago, Guyton and Coleman proposed that whenever arterial pressure is elevated, pressure natriuresis enhances the excretion of sodium and water until blood volume is reduced sufficiently to return arterial pressure to control values. According to this hypothesis, hypertension can develop only when something impairs the excretory ability of sodium in the kidney. However, recent studies suggest that nonosmotic salt accumulation in the skin interstitium and the endothelial dysfunction which might be caused by the deterioration of vascular endothelial glycocalyx layer (EGL) and the epithelial sodium channel on the endothelial luminal surface (EnNaC) also play an important role in nonosmotic storage of salt. These new concepts emphasize that sodium homeostasis and salt sensitivity seem to be related not only to the kidney malfunction but also to the endothelial dysfunction. Further investigations will be needed to assess the extent to which changes in the sodium buffering capacity of the skin interstitium and develop the treatment strategy for modulating the endothelial dysfunction. PMID:26240595
Sugiyama, Seigo; Jinnouchi, Hideaki; Hieshima, Kunio; Kurinami, Noboru; Suzuki, Tomoko; Miyamoto, Fumio; Kajiwara, Keizo; Matsui, Kunihiko; Jinnouchi, Tomio
2015-04-23
Elevated cholesterol in type 2 diabetes mellitus (DM) can cause endothelial dysfunction. An effective clinical therapy to improve endothelial dysfunction remains to be established. Different cardiovascular actions between treatments for the inhibition of cholesterol absorption and the suppression of cholesterol synthesis for achieving improvement in endothelial function are unknown in DM. Stable patients with type 2 DM and mildly elevated low-density lipoprotein cholesterol were enrolled. We evaluated peripheral microvascular endothelial function using reactive hyperemia peripheral arterial tonometry (RH-PAT) examination and calculated a natural logarithmic transformed value for the RH-PAT index (LnRHI). We randomly assigned 33 patients to each monotherapy: cholesterol synthesis suppression using atorvastatin (5 mg/day, n=16) or cholesterol absorption inhibition using ezetimibe (10 mg/day, n=17). Patients were prospectively followed for 6 months. Serum lipids and LnRHI were repeatedly examined before and after each therapy. LDL significantly decreased in both groups, but the percent changes of LDL showed a greater decrease in the atorvastatin group compared with the ezetimibe group (-34.5±7.8% vs. -21.9±9.6%, p<0.01). Serum levels of non-esterified free fatty acids (NEFA) significantly decreased in the ezetimibe group but not in the atorvastatin group (ezetimibe group: 561.1±236.8 to 429.7±195.9, p<0.01; atorvastatin group: 538.8±319.5 to 520.2±227.3, p=0.75). The percent decrease in NEFA was significantly greater in the ezetimibe group compared with the atorvastatin group (-19.9±27.4% vs. 11.3±44.1%, p<0.05). LnRHI showed a significant increase in the ezetimibe group but not in the atorvastatin group (ezetimibe group: 0.471±0.157 to 0.678±0.187, p<0.01; atorvastatin group: 0.552±0.084 to 0.558±0.202, p=0.64). The percent changes in LnRHI were significantly greater in the ezetimibe group compared with the atorvastatin group (63.3±89.2% vs. 7.4±41.2%, p<0.05). In patients with type 2 DM, ezetimibe monotherapy significantly reduced LDL and NEFA, and improved peripheral microvascular endothelial dysfunction. Ezetimibe could potentially exhibit beneficial effects on lipid disorders and microvascular endothelial dysfunction in DM.
Lum, H; Jaffe, H A; Schulz, I T; Masood, A; RayChaudhury, A; Green, R D
1999-09-01
We investigated the hypothesis that cAMP-dependent protein kinase (PKA) protects against endothelial barrier dysfunction in response to proinflammatory mediators. An E1-, E3-, replication-deficient adenovirus (Ad) vector was constructed containing the complete sequence of PKA inhibitor (PKI) gene (AdPKI). Infection of human microvascular endothelial cells (HMEC) with AdPKI resulted in overexpression of PKI. Treatment with 0.5 microM thrombin increased transendothelial albumin clearance rate (0.012 +/- 0.003 and 0.035 +/- 0.005 microl/min for control and thrombin, respectively); the increase was prevented with forskolin + 3-isobutyl-1-methylxanthine (F + I) treatment. Overexpression of PKI resulted in abrogation of the F + I-induced inhibition of the permeability increase. However, with HMEC infected with ultraviolet-inactivated AdPKI, the F + I-induced inhibition was present. Also, F + I treatment of HMEC transfected with reporter plasmid containing the cAMP response element-directed transcription of the luciferase gene resulted in an almost threefold increase in luciferase activity. Overexpression of PKI inhibited this induction of luciferase activity. The results show that Ad-mediated overexpression of PKI in endothelial cells abrogated the cAMP-mediated protection against increased endothelial permeability, providing direct evidence that cAMP-dependent protein kinase promotes endothelial barrier function.
Influence of irradiation on release of endothelial microparticles (EMP) in vitro.
Neuber, Christin; Pufe, Johanna; Pietzsch, Jens
2015-01-01
Survivors of Hodgkin's disease as well as of breast and lung cancer are at risk of radiation-associated cardiovascular disease. Recent studies demonstrated a correlation between cardiovascular risk factors and circulating endothelial microparticles (EMP) and thereby suggest increased EMP levels in circulation to be an early biomarker of endothelial dysfunction and cardiovascular risk. This prompted us to analyze the amount of EMP released by human aortic endothelial cells (HAEC) after exposure to different doses of X-ray (0.4, 2, 4, 6, and 20 Gy) using antibodies against the endothelial cell markers CD31, CD144, and CD146 by flow cytometry. In this pilot experiment only CD146 proved appropriate for quantification of HAEC-derived EMP. Exposure of HAEC to different doses of X-ray did not significantly influence formation of CD146-positive EMP. However, low doses (0.4 Gy) tended to decrease EMP formation, whereas higher doses (2 or 4 Gy) slightly increased release of CD146-positive EMP. By contrast, inflammatory activation of HAEC by TPA significantly increased EMP release about 15-fold (P < 0.01). In conclusion, under the present experimental conditions EMP did not prove a suitable biomarker for radiation-induced endothelial dysfunction in vitro.
Lei, Hongen; Xin, Hua; Guan, Ruili; Xu, Yongde; Li, Huixi; Tian, Wenjie; Wang, Lin; Gao, Zhezhu; Guo, Yinglu; Lue, Tom F; Lin, Guiting; Xin, Zhongcheng
2015-12-01
To investigate the effect of low-intensity pulsed ultrasound (LIPUS) as a treatment for erectile dysfunction (ED) in a rat model of type I diabetes mellitus (DM) induced by streptozotocin (STZ). Seventy male Sprague-Dawley rats were randomly assigned to 2 cohorts: a normal control (NC) group and an STZ-induced DM group, which was further subdivided into DM, DM+LIPUS 100, DM+LIPUS 200, and DM+LIPUS 300 groups and a DM+LESWT (low-energy shock wave therapy) 300 positive control group. Animals in the LIPUS subgroups were treated at different energy levels (100, 200, and 300 mW/cm(2)) for 3 minutes, and animals in the LESWT group received 300 shocks at 0.09 mJ/mm(2). All procedures were repeated 3 times per week for 2 weeks. After a 2-week wash-out period, intracavernous pressure (ICP) was measured; the midpenile region was examined histologically; and VEGF, αSMA, eNOS, and nNOS expression, and activity of the TGF-β1/Smad/CTGF signaling pathway were examined in penile tissue by Western blot analysis. LIPUS therapy significantly improved erectile function in diabetic rats, as evidenced by enhanced ICP levels, increased endothelial and smooth muscle content, a higher collagen I/collagen III ratio, increased quantity of elastic fibers, and elevated eNOS and nNOS expression. Interestingly, LIPUS was also associated with downregulation of the TGF-β1/Smad/CTGF signaling pathway in penile tissue, whose activation is correlated with ED pathology. LIPUS therapy improved erectile function and reversed pathologic changes in penile tissue of STZ-induced diabetic rats. LIPUS therapy has potential as a noninvasive therapy for diabetic ED in the clinic. Copyright © 2015 Elsevier Inc. All rights reserved.
Cardiovascular autonomic dysfunction in Ehlers-Danlos syndrome-Hypermobile type.
Hakim, Alan; O'Callaghan, Chris; De Wandele, Inge; Stiles, Lauren; Pocinki, Alan; Rowe, Peter
2017-03-01
Autonomic dysfunction contributes to health-related impairment of quality of life in the hypermobile type of Ehlers-Danlos syndrome (hEDS). Typical signs and symptoms include tachycardia, hypotension, gastrointestinal dysmotility, and disturbed bladder function and sweating regulation. Cardiovascular autonomic dysfunction may present as Orthostatic Intolerance, Orthostatic Hypotension, Postural Orthostatic Tachycardia Syndrome, or Neurally Mediated Hypotension. The incidence, prevalence, and natural history of these conditions remain unquantified, but observations from specialist clinics suggest they are frequently seen in hEDS. There is growing understanding of how hEDS-related physical and physiological pathology contributes to the development of these conditions. Evaluation of cardiovascular symptoms in hEDS should include a careful history and clinical examination. Tests of cardiovascular function range from clinic room observation to tilt-table assessment to other laboratory investigations such as supine and standing catecholamine levels. Non-pharmacologic treatments include education, managing the environment to reduce exposure to triggers, improving cardiovascular fitness, and maintaining hydration. Although there are limited clinical trials, the response to drug treatments in hEDS is supported by evidence from case and cohort observational data, and short-term physiological studies. Pharmacologic therapy is indicated for patients with moderate-severe impairment of daily function and who have inadequate response or tolerance to conservative treatment. Treatment in hEDS often requires a focus on functional maintenance. Also, the negative impact of cardiovascular symptoms on physical and psycho-social well-being may generate a need for a more general evaluation and on-going management and support. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Endothelial function in youth: A biomarker modulated by adiposity-related insulin resistance
USDA-ARS?s Scientific Manuscript database
To investigate the physical and metabolic determinants of endothelial dysfunction, an early marker of subclinical atherosclerosis, in normal weight and overweight adolescents with and without type 2 diabetes mellitus. A cross-sectional study of 81 adolescents: 21 normal weight, 25 overweight with no...
Modifying Risk Factors in the Management of Erectile Dysfunction: A Review
DeLay, Kenneth J; Haney, Nora
2016-01-01
Erectile dysfunction (ED) is prevalent among men and its presence is often an indicator of systemic disease. Risk factors for ED include cardiovascular disease, hypertension, diabetes mellitus (DM), tobacco use, hyperlipidemia, hypogonadism, lower urinary tract symptoms, metabolic syndrome, and depression. Addressing the modifiable risk factors frequently improves a patient's overall health and increases lifespan. The literature suggests that smoking cessation, treatment of hyperlipidemia, and increasing physical activity will improve erectile function in many patients. How the treatment of DM, depression, and hypogonadism impacts erectile function is less clear. Clinicians need to be aware that certain antihypertensive agents can adversely impact erectile function. The treatment of men with ED needs to address the underlying risk factors to ameliorate the disease process. PMID:27574592
Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Schwartzman, Michal Laniado; Rocic, Petra
2017-03-01
Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO ·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS. NEW & NOTEWORTHY Elevated 20-hydroxyeicosatetraenoic acid (20-HETE) impairs coronary collateral growth (CCG) in metabolic syndrome by eliciting endothelial dysfunction and apoptosis via excessive neutrophil infiltration. 20-HETE antagonists completely restore coronary collateral growth in metabolic syndrome. microRNA-145 (miR-145) is an upstream regulator of 20-HETE production in metabolic syndrome; low expression of miR-145 in metabolic syndrome promotes elevated production of 20-HETE. Copyright © 2017 the American Physiological Society.
Park, Jimin; Woo, Jong Shin; Leem, Jungtae; Park, Jun Hyeong; Lee, Sanghoon; Chung, Hyemoon; Lee, Jung Myung; Kim, Jin-Bae; Kim, Woo-Shik; Kim, Kwon Sam; Kim, Weon
2017-01-01
Objective Exploring clinically effective methods to reduce ischemia-reperfusion (IR) injury in humans is critical. Several drugs have shown protective effects, but studies using other interventions have been rare. Electroacupuncture (EA) has induced similar protection in several animal studies but no study has investigated how the effects could be translated and reproduced in humans. This study aimed to explore the potential effect and mechanisms of EA in IR-induced endothelial dysfunction in humans. Methods This is a prospective, randomized, crossover, sham-controlled trial consisting of two protocols. Protocol 1 was a crossover study to investigate the effect of EA on IR-induced endothelial dysfunction. Twenty healthy volunteers were randomly assigned to EA or sham EA (sham). Flow mediated dilation (FMD) of the brachial artery (BA), nitroglycerin-mediated endothelial independent dilation, blood pressure before and after IR were measured. In protocol 2, seven volunteers were administered COX-2 inhibitor celecoxib (200 mg orally twice daily) for five days. After consumption, volunteers underwent FMD before and after IR identical to protocol 1. Results In protocol 1, baseline BA diameter, Pre-IR BA diameter and FMD were similar between the two groups (p = NS). After IR, sham group showed significantly blunted FMD (Pre-IR: 11.41 ± 3.10%, Post-IR: 4.49 ± 2.04%, p < 0.001). However, EA protected this blunted FMD (Pre-IR: 10.96 ± 5.30%, Post-IR: 9.47 ± 5.23%, p = NS, p < 0.05 compared with sham EA after IR). In protocol 2, this protective effect was completely abolished by pre-treatment with celecoxib (Pre-IR: 11.05 ± 3.27%; Post-IR: 4.20 ± 1.68%, p = 0.001). Conclusion EA may prevent IR-induced endothelial dysfunction via a COX-2 dependent mechanism. PMID:28591155
Tantawy, Azza Abdel Gawad; Adly, Amira Abdel Moneam; Ismail, Eman Abdel Rahman; Youssef, Omneya Ibrahim; Ali, Mohamed ElSayed
2017-11-01
Endothelial damage has been implicated in the pathogenesis of vascular complications in β-thalassemia intermedia (β-TI). Soluble fms-like tyrosine kinase 1 (sFLT-1) is a member of the vascular endothelial growth factor receptor (VEGFR) family. Soluble fms-like tyrosine kinase 1 is an antiangiogenic protein that induces endothelial dysfunction by adhering to and inhibiting VEGF and placenta growth factor. The aim of this study was to assess the level of sFLT-1 in 35 children and adolescents with β-TI, correlating it with markers of hemolysis and iron overload as well as cardiopulmonary complications. Patients were studied focusing on the history of cardiac disease, splenectomy, transfusion, chelation/hydroxyurea therapy, serum ferritin, and sFLT-1 levels. Echocardiography and measurement of carotid intima-media thickness (CIMT) were done for all participants. Soluble fms-like tyrosine kinase 1 was significantly higher in TI patients compared to the control group (median [interquartile range], 110 [80-155] pg/mL versus 70 [60-90] pg/mL; P < .001). Splenectomized patients and those who had pulmonary hypertension risk or heart disease had higher sFLT-1 levels than those without ( P < .001). The sFLT-1 cutoff value that differentiates patients with and without pulmonary hypertension risk or heart disease was determined. Soluble fms-like tyrosine kinase 1 was lower among patients who received chelation therapy and/or hydroxyurea. Significant positive relations were observed between sFLT-1 and lactate dehydrogenase, serum ferritin, liver iron concentration, tricuspid regurgitant jet velocity, and CIMT. We suggest that sFLT-1 represents a link between angiogenesis, endothelial dysfunction, and subclinical atherosclerosis. Measurement of sFLT-1 as a marker of vascular dysfunction in β-TI may provide utility for early identification of patients at increased risk of cardiopulmonary complications.
Hypothyroidism Is Associated With Coronary Endothelial Dysfunction in Women.
Sara, Jaskanwal D; Zhang, Ming; Gharib, Hossein; Lerman, Lilach O; Lerman, Amir
2015-07-29
Hypothyroidism is associated with an increased risk of coronary artery disease, beyond that which can be explained by its association with conventional cardiovascular risk factors. Coronary endothelial dysfunction precedes atherosclerosis, has been linked to adverse cardiovascular events, and may account for some of the increased risk in patients with hypothyroidism. The aim of this study was to determine whether there is an association between epicardial and microvascular coronary endothelial dysfunction and hypothyroidism. In 1388 patients (mean age 50.5 [12.3] years, 34% male) presenting with stable chest pain to Mayo Clinic, Rochester, MN for diagnostic coronary angiography, and who were found to have nonobstructive coronary artery disease (<40% stenosis), we invasively assessed coronary artery endothelial-dependent microvascular and epicardial function by evaluating changes in coronary blood flow (% Δ CBF Ach) and diameter (% Δ CAD Ach), respectively, in response to intracoronary infusions of acetylcholine. Patients were divided into 2 groups: hypothyroidism, defined as a documented history of hypothyroidism or a thyroid-stimulating hormone (TSH) >10.0 mU/mL, n=188, and euthyroidism, defined as an absence of a history of hypothyroidism in the clinical record and/or 0.3
Goldstein, Irwin; Kim, Edward; Steers, William D; Pryor, Jon L; Wilde, Dixon W; Natanegara, Fanni; Wong, David G; Ahuja, Sanjeev
2007-01-01
Limited efficacy and safety data exist from open-label clinical trials of phosphodiesterase 5 inhibitors in men with erectile dysfunction (ED) and multiple comorbid (MCM) conditions, historically a difficult group to treat. A multicenter study (Multiple Observations in Men with Erectile Dysfunction in National Tadalafil Study in the US) assessed efficacy and safety of tadalafil in men with ED and MCM conditions. The primary end point was change from baseline in the erectile function (EF) domain of the International Index of Erectile Function. Secondary end points included the Sexual Encounter Profile, Global Assessment Questions, and Sexual Self-Confidence and Spontaneity Domains of the Psychological and Interpersonal Relationship Scales. This was an open-label, multicenter study in men with ED. Tadalafil 20 mg was administered as needed prior to sexual activity, up to once/day, for 12 weeks following a 4-week ED-treatment-free period. The MCM group was 155 of 1,911 men enrolled in this study. Men in the MCM group met eligibility criteria but could not be included in other predefined groups: (i) Caucasian; (ii) Black American; (iii) Hispanic (groups 1-3, < or =65 years, no diabetes or depression); (iv) depression, < or =65 years, no diabetes; (v) diabetes, < or =65 years, no depression; (vi) >65 years, no diabetes or depression; and (vii) ED subsequent to traumatic spinal cord injury. Mean baseline EF domain score in MCM (mean age 65 +/- 9 years) was 12.2 +/- 6.5; 52% of subjects had severe ED; 72% diabetes mellitus; 67% cardiovascular disease (including hypertension); 49% hyperlipidemia; 38% depression; 84% had two or more comorbidities. At end point, there was a significant (P < 0.001) mean change of 7.6 from baseline in mean EF domain score. Among men with severe ED, 22% achieved an EF domain score > or =26. Most common adverse events were headache 5.2%; flushing 3.9% and nasal congestion 3.2%; 3% discontinued use because of an adverse event. In this open-label clinical trial of older men with ED and MCMs, tadalafil 20 mg significantly increased all efficacy end points and was well-tolerated.
Cho, Sung Yong; Chai, Ji Sun; Lee, Sun Hee; Park, Kwanjin; Paick, Jae-Seung; Kim, Soo Woong
2012-06-01
Poor glycemic control is associated with erectile dysfunction (ED); however, differences in ED according to the level of glycemic control have been poorly investigated. The aim of this paper is to investigate the change in erectile function according to the level of glycemic control and to clarify the pathophysiological mechanism of diabetes-associated ED. Streptozotocin was injected into 55 male Sprague-Dawley rats classified into four groups: control (group 1), diabetes with multiple insulin injections (group 2), diabetes with a single injection (group 3), and untreated diabetes (group 4). Daily insulin injections in groups 2 and 3 were administered for 4 weeks after 10 weeks of diabetic induction. The main outcome measures are the anova or Kruskal-Wallis tests to evaluate glycosylated hemoglobin (HbA1c), testosterone levels, the ratios of intracavernosal pressure to mean arterial pressure (ICP/MAP), area under the ICP curve to MAP (AUC/MAP), and changes in cavernous tissue and protein expression related to Rho kinase and nitric oxide pathways. HbA1c levels were different between pairs of groups. Group 4 showed the lowest erectile parameters and group 2 showed near normal level. No differences in erectile parameters were found between groups 1 and 2 or between groups 3 and 4, except the ratio of AUC to MAP for group 1 was significantly higher than that of group 2 (20 Hz stimulation). Decrease in erectile function of group 2 was related to decreased expression of nitrergic nitric oxide synthase or decreased testosterone level compared with group 1. Groups 2 and 3 showed significant differences in erectile parameters, which were associated with difference in apoptotic index. Groups 3 and 4 showed no differences in erectile parameters, although these groups had significant differences in apoptotic index, smooth muscle component, and protein expression ratios of phosphorylated to total myosin phosphatase target subunit 1, endothelial nitric oxide synthase, and Akt. Improvement in glycemic control assists recovery from diabetes-associated ED; however, only tight glycemic control can provide recovery from ED to a near normal status. © 2012 International Society for Sexual Medicine.