Science.gov

Sample records for endothelial marker podoplanin

  1. Podoplanin is a novel myoepithelial cell marker in pleomorphic adenoma and other salivary gland tumors with myoepithelial differentiation.

    PubMed

    Tsuneki, Masayuki; Maruyama, Satoshi; Yamazaki, Manabu; Essa, Ahmed; Abé, Tatsuya; Babkair, Hamzah Ali; Ahsan, Md Shahidul; Cheng, Jun; Saku, Takashi

    2013-03-01

    The expression of podoplanin, one of the representative immunohistochemical markers for lymphatic endothelium, is upregulated in various kinds of cancers. Based on our previous studies, we have developed a hypothesis that podoplanin plays a role in cell adhesion via its association with extracellular matrix (ECM). Since salivary pleomorphic adenoma is histologically characterized by its ECM-enriched stroma, we firstly wanted to explore the expression modes of podoplanin in pleomorphic adenoma and related salivary tumors by immunohistochemistry. In normal salivary gland, podoplanin was specifically localized in myoepithelial cells, which were also positively labeled by antibodies against P63, of the intercalated duct as well as acini. In pleomorphic adenoma, podoplanin was colocalized with P63 and CD44 in basal cells of glandular structures as well as in stellate/spindle cells in myxochondroid matrices, where perlecan and hyaluronic acid were enriched. The expression of podoplanin was confirmed at both protein and mRNA levels in pleomorphic adenoma cell systems (SM-AP1 and SM-AP4) by using immunofluorescence, western blotting, and reverse transcription polymerase chain reaction. Podoplanin was localized on the cell border as well as in the external periphery of the cells. Moreover, podoplanin expression was also confirmed in tumor cells with myoepithelial differentiation in myoepithelioma and intraductal papilloma. The results indicate that podoplanin can be regarded as a novel myoepithelial marker in salivary gland tumors and suggest that podoplanin's communication with ECM molecules is essential to phenotypic differentiation to myoepithelial cells.

  2. The Spectrum of Podoplanin Expression in Encapsulating Peritoneal Sclerosis

    PubMed Central

    Braun, Niko; Alscher, M. Dominik; Fritz, Peter; Latus, Joerg; Edenhofer, Ilka; Reimold, Fabian; Alper, Seth L.; Kimmel, Martin; Biegger, Dagmar; Lindenmeyer, Maja; Cohen, Clemens D.; Wüthrich, Rudolf P.; Segerer, Stephan

    2012-01-01

    Encapsulating peritoneal sclerosis (EPS) is a life threatening complication of peritoneal dialysis (PD). Podoplanin is a glycoprotein expressed by mesothelial cells, lymphatic endothelial cells, and myofibroblasts in peritoneal biopsies from patients with EPS. To evaluate podoplanin as a marker of EPS we measured podoplanin mRNA and described the morphological patterns of podoplanin-positive cells in EPS. Included were 20 peritoneal biopsies from patients with the diagnosis of EPS (n = 5), patients on PD without signs of EPS (n = 5), and control patients (uremic patients not on PD, n = 5, non-uremic patients n = 5). EPS patient biopsies revealed significantly elevated levels of podoplanin mRNA (p<0.05). In 24 peritoneal biopsies from patients with EPS, podoplanin and smooth muscle actin (SMA) were localized by immunohistochemistry. Four patterns of podoplanin distribution were distinguishable. The most common pattern (8 of 24) consisted of organized, longitudinal layers of podoplanin-positive cells and vessels in the fibrotic zone (“organized” pattern). 7 of 24 biopsies demonstrated a diffuse distribution of podoplanin-positive cells, accompanied by occasional, dense clusters of podoplanin-positive cells. Five biopsies exhibited a mixed pattern, with some diffuse areas and some organized areas ("mixed"). These contained cuboidal podoplanin-positive cells within SMA-negative epithelial structures embedded in extracellular matrix. Less frequently observed was the complete absence of, or only focal accumulations of podoplanin-positive fibroblasts outside of lymphatic vessels (podoplanin “low”, 4 of 24 biopsies). Patients in this group exhibited a lower index of systemic inflammation and a longer symptomatic period than in EPS patients with biopsies of the "mixed" type (p<0.05). In summary we confirm the increased expression of podoplanin in EPS, and distinguish EPS biopsies according to different podoplanin expression patterns which are

  3. Immunohistochemical evaluation of podoplanin in odontogenic tumours & cysts using anti-human podoplanin antibody.

    PubMed

    Singhal, Namrata; Khanduri, Nitin; Kurup, Deepak; Gupta, Brijesh; Mitra, Pranjan; Chawla, Roshani

    2017-01-01

    Odontogenic Cysts & tumors originate through some aberration from the normal pattern of odontogenesis. Ameloblastoma is one of the most frequent intraosseous odontogenic tumors. However it is no longer appropriate to use the diagnosis of ameloblastoma without specifying the type. Varied-clinical entities of ameloblastoma differ in their biologic behaviour. Odontogenic cysts like dentigerous and radicular cysts are less aggressive in nature than odontogenic tumors. Recently, podoplanin commonly used as a lymphatic endothelial marker in cancers has recently been found to play a possible role in odontogenic tumorigenesis also. Therefore the purpose of this study was to immunohistochemically analyse the expression of podoplanin in ameloblastomas, KCOTs, dentigerous cysts, radicular cysts & dental follicles. Paraffin-embedded tissue specimens of 15 Ameloblastomas (7 follicular, 6 unicystic, 2 desmoplastic),10KCOTs, 5 dentigerous cysts, 5 radicular cysts & 5 dental follicles were immunohistochemically examined using antibody against podoplanin. All ameloblastomas displayed podoplanin expression in ameloblast-like cells of the epithelial islands while the stellate-reticulum like cells exhibited no or weak immunostaining. Expression of podoplanin in KCOTs was strongly positive in the cells of the basal and suprabasal layers & odontogenic epithelial nests. Positive immunoreaction for podoplanin was observed in the inflammatory radicular cysts and inflamed dentigerous cyst only and negative or weak expression in the lining epithelium of uninflamed dentigerous cysts and dental follicles. Our results suggest that podoplanin can be used as a potential proliferative marker to observe the aggressive behaviour of ameloblastomas and KCOTs.

  4. Syk and Src Family Kinases Regulate C-type Lectin Receptor 2 (CLEC-2)-mediated Clustering of Podoplanin and Platelet Adhesion to Lymphatic Endothelial Cells*

    PubMed Central

    Pollitt, Alice Y.; Poulter, Natalie S.; Gitz, Eelo; Navarro-Nuñez, Leyre; Wang, Ying-Jie; Hughes, Craig E.; Thomas, Steven G.; Nieswandt, Bernhard; Douglas, Michael R.; Owen, Dylan M.; Jackson, David G.; Dustin, Michael L.; Watson, Steve P.

    2014-01-01

    The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development. PMID:25368330

  5. Podoplanin: a marker for reactive gliosis in gliomas and brain injury.

    PubMed

    Kolar, Kushal; Freitas-Andrade, Moises; Bechberger, John F; Krishnan, Harini; Goldberg, Gary S; Naus, Christian C; Sin, Wun Chey

    2015-01-01

    Reactive astrogliosis is associated with many pathologic processes in the central nervous system, including gliomas. The glycoprotein podoplanin (PDPN) is upregulated in malignant gliomas. Using a syngeneic intracranial glioma mouse model, we show that PDPN is highly expressed in a subset of glial fibrillary acidic protein-positive astrocytes within and adjacent to gliomas. The expression of PDPN in tumor-associated reactive astrocytes was confirmed by its colocalization with the astrocytic marker S100β and with connexin43, a major astrocytic gap junction protein. To determine whether the increase in PDPN is a general feature of gliosis, we used 2 mouse models in which astrogliosis was induced either by a needle injury or ischemia and observed similar upregulation of PDPN in reactive astrocytes in both models. Astrocytic PDPN was also found to be coexpressed with nestin, an intermediate filament marker for neural stem/progenitor cells. Our findings confirm that expression of PDPN is part of the normal host response to brain injury and gliomas, and suggest that it may be a novel cell surface marker for a specific population of reactive astrocytes in the vicinity of gliomas and nonneoplastic brain lesions. The findings also highlight the heterogeneity of glial fibrillary acidic protein-positive astrocytes in reactive gliosis.

  6. D2-40/podoplanin expression in the human placenta.

    PubMed

    Wang, Y; Sun, J; Gu, Y; Zhao, S; Groome, L J; Alexander, J S

    2011-01-01

    Placental tissue expresses many lymphatic markers. The current study was undertaken to examine if D2-40/podoplanin, a lymphatic endothelial marker, was expressed in the human placenta, and how it is altered developmentally and pathologically. We examined D2-40/podoplanin and VEGFR-3 expressions in placentas from normotensive pregnancies at different gestational ages and in placentas from women with clinically defined preeclampsia. D2-40 expression in systemic lymphatic vessel endothelium served as a positive control. Protein expression for D2-40, VEGFR-3, and β-actin was determined by Western blot in placentas from normotensive (n = 6) and preeclamptic (n = 5) pregnancies. Our results show that D2-40/podoplanin was strongly expressed in the placenta, mainly as a network plexus pattern in the villous stroma throughout gestation. CD31 was limited to villous core fetal vessel endothelium and VEGFR-3 was found in both villous core fetal vessel endothelium and trophoblasts. D2-40/podoplanin expression was significantly decreased, and VEGFR-3 significantly increased in preeclamptic placental tissues compared to normotensive placental controls. Placental villous stroma is a reticular-like structure, and the localization of D2-40 to the stroma suggests that a lymphatic-like conductive network may exist in the human placenta. D2-40/podoplanin is an O-linked sialoglycoprotein. Although little is known regarding biological functions of sialylated glycoproteins within the placenta, placental D2-40/podoplanin may support fetal vessel angiogenesis during placenta development and reduced D2-40/podoplanin expression in preeclamptic placenta may contribute to altered interstitial fluid homeostasis and impaired angiogenesis in this pregnancy disorder. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Podoplanin expression correlates with sentinel lymph node metastasis in early squamous cell carcinomas of the oral cavity and oropharynx.

    PubMed

    Huber, Gerhard Frank; Fritzsche, Florian R; Züllig, Lena; Storz, Martina; Graf, Nicole; Haerle, Stephan K; Jochum, Wolfram; Stoeckli, Sandro J; Moch, Holger

    2011-09-15

    In patients with early head and neck squamous cell carcinoma (HNSCC), occult lymph node metastasis is difficult to predict by clinical or pathological parameters. However, such parameters are necessary to select patients either for elective neck dissection or the sentinel lymph node (SLN) procedure. The membrane glycoprotein podoplanin is normally expressed in lymphatic endothelial cells. Recently, expression of podoplanin by cancer cells was demonstrated to promote tumor cell motility and tumor lymphangiogenesis in vitro. The value of cancer cell-expressed podoplanin was to be determined as a predictive marker for SLN metastasis in early HNSCC of the oral cavity and oropharynx. One hundred twenty patients with HNSCC of the oral cavity and oropharynx undergoing a SLN biopsy were enrolled in this prospective clinical trial of SLN biopsy. Cancer cell-expressed podoplanin was determined by immunohistochemistry using tissue microarrays. Podoplanin expression was quantified by the intensity reactivity score and categorized into expression and nonexpression. SLN examination revealed occult metastasis in 45 patients (37.5%). Twenty-nine of 120 (24.2%) primary HNSCC showed podoplanin expression. Podoplanin expression correlated significantly with SLN metastasis (p = 0.029) and remained a significant predictor for lymph node status even after controlling for tumor stage (p = 0.028). As a predictive marker for SLN metastasis, however, podoplanin expression reached a sensitivity of a mere 36% and a specificity of 83%. Podoplanin expression is associated with metastasis to lymph nodes in vivo. Podoplanin immunohistochemistry in early HNSCC of the oral cavity and oropharynx may help to select patients for the SLN procedure and to identify patients with increased risk for presence of occult lymph node metastasis in the neck.

  8. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium

    PubMed Central

    Cimini, Maria; Cannatá, Antonio; Pasquinelli, Gianandrea; Rota, Marcello

    2017-01-01

    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro

  9. Morphological study of tooth development in podoplanin-deficient mice

    PubMed Central

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone. PMID:28222099

  10. Morphological study of tooth development in podoplanin-deficient mice.

    PubMed

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  11. Podoplanin Expression in Canine Melanoma

    PubMed Central

    Ogasawara, Satoshi; Honma, Ryusuke; Kaneko, Mika K.; Fujii, Yuki; Kagawa, Yumiko; Konnai, Satoru

    2016-01-01

    A type I transmembrane protein, podoplanin (PDPN), is expressed in several normal cells such as lymphatic endothelial cells or pulmonary type I alveolar cells. We recently demonstrated that anticanine PDPN monoclonal antibody (mAb), PMab-38, recognizes canine PDPN of squamous cell carcinomas, but does not react with lymphatic endothelial cells. Herein, we investigated whether PMab-38 reacts with canine melanoma. PMab-38 reacted with 90% of melanoma cells (9/10 cases) using immunohistochemistry. Of interest, PMab-38 stained the lymphatic endothelial cells and cancer-associated fibroblasts in melanoma tissues, although it did not stain any lymphatic endothelial cells in normal tissues. PMab-38 could be useful for uncovering the function of PDPN in canine melanomas. PMID:27918691

  12. Podoplanin Expression in Canine Melanoma.

    PubMed

    Ogasawara, Satoshi; Honma, Ryusuke; Kaneko, Mika K; Fujii, Yuki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari

    2016-12-01

    A type I transmembrane protein, podoplanin (PDPN), is expressed in several normal cells such as lymphatic endothelial cells or pulmonary type I alveolar cells. We recently demonstrated that anticanine PDPN monoclonal antibody (mAb), PMab-38, recognizes canine PDPN of squamous cell carcinomas, but does not react with lymphatic endothelial cells. Herein, we investigated whether PMab-38 reacts with canine melanoma. PMab-38 reacted with 90% of melanoma cells (9/10 cases) using immunohistochemistry. Of interest, PMab-38 stained the lymphatic endothelial cells and cancer-associated fibroblasts in melanoma tissues, although it did not stain any lymphatic endothelial cells in normal tissues. PMab-38 could be useful for uncovering the function of PDPN in canine melanomas.

  13. Characterization of Monoclonal Antibody LpMab-3 Recognizing Sialylated Glycopeptide of Podoplanin

    PubMed Central

    Oki, Hiroharu; Ogasawara, Satoshi; Kaneko, Mika Kato; Takagi, Michiaki; Yamauchi, Masanori

    2015-01-01

    Podoplanin (PDPN/Aggrus/T1α/gp36/OTS-8), a type I transmembrane sialoglycoprotein, is involved in platelet aggregation, cell invasion, and cancer metastasis. Podoplanin expression in cancer cells or cancer-associated fibroblasts was reported to be involved in poor prognosis of several cancers. Furthermore, podoplanin is expressed in lymphatic endothelial cells or lung type I alveolar cells. Although many anti-podoplanin monoclonal antibodies (MAbs), such as NZ-1 and D2–40, have been established, almost all anti-podoplanin MAbs are produced against a platelet aggregation-inducing (PLAG) domain. In this study, we produced and characterized a novel anti-podoplanin monoclonal antibody, LpMab-3, the epitope of which is a sialylated glycopeptide of podoplanin. We identified the minimum epitope of LpMab-3 as Thr76–Glu81 of human podoplanin, which is different from PLAG domain, using Western blot analysis and flow cytometry. Immunohistochemical analysis showed that LpMab-3 is useful for detecting lung type I alveolar cells and lymphatic endothelial cells. Because LpMab-3 detects only sialylated podoplanin, it could be useful for uncovering the physiological function of sialylated human podoplanin. PMID:25723283

  14. Immunohistochemical examination for the distribution of podoplanin-expressing cells in developing mouse molar tooth germs.

    PubMed

    Imaizumi, Yuri; Amano, Ikuko; Tsuruga, Eichi; Kojima, Hiroshi; Sawa, Yoshihiko

    2010-10-27

    We recently reported the expression of podoplanin in the apical bud of adult mouse incisal tooth. This study was aimed to investigate the distribution of podoplanin-expressing cells in mouse tooth germs at several developing stages. At the bud stage podoplanin was expressed in oral mucous epithelia and in a tooth bud. At the cap stage podoplanin was expressed on inner and outer enamel epithelia but not in mesenchymal cells expressing the neural crest stem cell marker nestin. At the early bell stage nestin and podoplanin were expressed in cervical loop and odontoblasts. At the root formation stage both nestin and podoplanin were weakly expressed in odontoblasts generating radicular dentin. Podoplanin expression was also found in the Hertwig epithelial sheath. These results suggest that epithelial cells of developing tooth germ acquire the ability to express nestin, and that tooth germ epithelial cells maintain the ability to express podoplanin in oral mucous epithelia. The expression of podoplanin in odontoblasts was induced as tooth germ development advanced, but was suppressed with the completion of the primary dentin, suggesting that podoplanin may be involved in the cell growth of odontoblasts. Nestin may function as an intermediate filament that binds podoplanin in odontoblasts.

  15. A Cancer-specific Monoclonal Antibody Recognizes the Aberrantly Glycosylated Podoplanin

    PubMed Central

    Kato, Yukinari; Kaneko, Mika Kato

    2014-01-01

    Podoplanin (PDPN/Aggrus/T1α), a platelet aggregation-inducing mucin-like sialoglycoprotein, is highly expressed in many cancers and normal tissues. A neutralizing monoclonal antibody (mAb; NZ-1) can block the association between podoplanin and C-type lectin-like receptor-2 (CLEC-2) and inhibit podoplanin-induced cancer metastasis, but NZ-1 reacts with podoplanin-expressing normal cells such as lymphatic endothelial cells. In this study, we established a cancer-specific mAb (CasMab) against human podoplanin. Aberrantly glycosylated podoplanin including keratan sulfate or aberrant sialylation, which was expressed in LN229 glioblastoma cells, was used as an immunogen. The newly established LpMab-2 mAb recognized both an aberrant O-glycosylation and a Thr55-Leu64 peptide from human podoplanin. Because LpMab-2 reacted with podoplanin-expressing cancer cells but not with normal cells, as shown by flow cytometry and immunohistochemistry, it is an anti-podoplanin CasMab that is expected to be useful for molecular targeting therapy against podoplanin-expressing cancers. PMID:25080943

  16. Podoplanin Expression Correlates with Disease Progression in Mycosis Fungoides.

    PubMed

    Jankowska-Konsur, Alina; Kobierzycki, Christopher; Grzegrzółka, Jędrzej; Piotrowska, Aleksandra; Gomulkiewicz, Agnieszka; Glatzel-Plucinska, Natalia; Reich, Adam; Podhorska-Okołów, Marzenna; Dzięgiel, Piotr; Szepietowski, Jacek C

    2017-02-08

    The aim of this study was to investigate the role of lymphangiogenesis in the clinical progression and outcome of mycosis fungoides. Immunohistochemistry and Western blot techniques were used to assess the expression of podoplanin and vascular endothelial growth factor C in mycosis fungoides. Expression of vascular endothelial growth factor C measured by immunohistochemistry was significantly higher in mycosis fungoides samples in comparison with control cases (chronic benign dermatoses) (p = 0.0012). Increased expression of podoplanin was found in advanced vs. early mycosis fungoides (p < 0.0001), and was positively correlated with cutaneous and nodal involvement (p < 0.001, p < 0.0001; respectively). Higher podoplanin expression was also significantly associated with shorter survival (p < 0.001). Strong positive correlation was observed between expression of podoplanin analysed by immunohistochemistry and Western blot (r = 0.75, p < 0.0001). A similar association was shown regarding expression of vascular endothelial growth factor C (r = 0.68, p = 0.0007). In conclusion, these results suggest that increased expression of podoplanin is associated with poor clinical course, as well as shorter survival, of patients with mycosis fungoides.

  17. Podoplanin expression in adamantinoma of long bones and osteofibrous dysplasia.

    PubMed

    Kashima, Takeshi G; Dongre, Arunthati; Flanagan, Adrienne M; Hogendoorn, Pancras C W; Taylor, Richard; Athanasou, Nicholas A

    2011-07-01

    Adamantinoma of long bones (ALB) and osteofibrous dysplasia (OFD) are rare osteolytic bone tumours that principally arise in the tibia. Both ALB and OFD contain epithelial and stromal elements, as well as areas of fibro-osseous proliferation. We assessed expression of podoplanin, a glycoprotein found in osteocytes, in OFD and ALB as well as in fibrous dysplasia and metastatic cancer. Forty-two cases of ALB and OFD, 20 cases of fibrous dysplasia and 20 cases of metastatic carcinoma to bone were stained by immunohistochemistry for expression of podoplanin, epithelial (cytokeratin, epithelial membrane antigen) and vascular (CD34, LYVE-1) markers. Podoplanin was expressed in epithelial cells and tumour glands in ALB as well as in scattered intertrabecular stromal cells in both ALB and OFD. Podoplanin was not expressed by intertrabecular stromal cells in fibrous dysplasia or in metastatic adenocarcinoma. Podoplanin was expressed by osteocytes but not osteoblasts of woven and lamellar bone trabeculae in ALB, OFD, fibrous dysplasia and skeletal metastases. The finding of a common osteocyte marker in OFD/ALB stromal cells is in keeping with a close histogenetic relationship between OFD and ALB; this may reflect the prominence of fibro-osseous proliferation in these tumours. The expression of podoplanin in an osteolytic tumour of the tibia may be useful as a diagnostic discriminant in distinguishing OFD from fibrous dysplasia and ALB from metastatic adenocarcinoma.

  18. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton.

    PubMed

    Wicki, Andreas; Lehembre, François; Wick, Nikolaus; Hantusch, Brigitte; Kerjaschki, Dontscho; Christofori, Gerhard

    2006-04-01

    The expression of podoplanin, a small mucin-like protein, is upregulated in the invasive front of a number of human carcinomas. We have investigated podoplanin function in cultured human breast cancer cells, in a mouse model of pancreatic beta cell carcinogenesis, and in human cancer biopsies. Our results indicate that podoplanin promotes tumor cell invasion in vitro and in vivo. Notably, the expression and subcellular localization of epithelial markers are unaltered, and mesenchymal markers are not induced in invasive podoplanin-expressing tumor cells. Rather, podoplanin induces collective cell migration by filopodia formation via the downregulation of the activities of small Rho family GTPases. In conclusion, podoplanin induces an alternative pathway of tumor cell invasion in the absence of epithelial-mesenchymal transition (EMT).

  19. Podoplanin expression in the development and progression of laryngeal squamous cell carcinomas

    PubMed Central

    2010-01-01

    Background Podoplanin expression is attracting interest as a marker for cancer diagnosis and prognosis. We therefore investigated the expression pattern and clinical significance of podoplanin during the development and progression of laryngeal carcinomas. Results Podoplanin expression was determined by immunohistochemistry in paraffin-embedded tissue specimens from 84 patients with laryngeal premalignancies and 53 patients with laryngeal squamous cell carcinomas. We found podoplanin expression extending from the basal to the suprabasal layer of the epithelium in 37 (44%) of 84 dysplastic lesions, whereas normal epithelium showed negligible expression. Patients carrying podoplanin-positive lesions had a higher laryngeal cancer incidence than those with negative expression reaching borderline statistical significance (51% versus 30%, P = 0.071). Podoplanin expression in laryngeal carcinomas exhibited two distinct patterns. 20 (38%) cases showed diffuse expression in most tumour cells and 33 (62%) focal expression at the proliferating periphery of tumour nests. High podoplanin expression was inversely correlated with T classification (P = 0.033), disease stage (P = 0.006), and pathological grade (P = 0.04). There was a trend, although not significant, towards reduced disease-specific survival for patients with low podoplanin levels (P = 0.31) and diffuse expression pattern (P = 0.08). Conclusions Podoplanin expression increases in the early stages of laryngeal tumourigenesis and it seems to be associated with a higher laryngeal cancer risk. Podoplanin expression in laryngeal squamous cell carcinomas, however, diminishes during tumour progression. Taken together, these data support a role for podoplanin expression in the initiation but not in the progression of laryngeal cancers. PMID:20196862

  20. Single cell time-lapse analysis reveals that podoplanin enhances cell survival and colony formation capacity of squamous cell carcinoma cells

    PubMed Central

    Miyashita, Tomoyuki; Higuchi, Youichi; Kojima, Motohiro; Ochiai, Atsushi; Ishii, Genichiro

    2017-01-01

    Tumor initiating cells (TICs) are characterized by high clonal expansion capacity. We previously reported that podoplanin is a TIC-specific marker for the human squamous cell carcinoma cell line A431. The aim of this study is to explore the molecular mechanism underlying the high clonal expansion potential of podoplanin-positive A431cells using Fucci imaging. Single podoplanin-positive cells created large colonies at a significantly higher frequency than single podoplanin-negative cells, whereas no difference was observed between the two types of cells with respect to cell cycle status. Conversely, the cell death ratio of progenies derived from podoplanin-positive single cell was significantly lower than that of cells derived from podoplanin-negative cells. Single A431 cells, whose podoplanin expression was suppressed by RNA interference, exhibited increased cell death ratios and decreased frequency of large colony forming. Moreover, the frequency of large colony forming decreased significantly when podoplanin-positive single cells was treated with a ROCK (Rho-associated coiled-coil kinase) inhibitor, whereas no difference was observed in single podoplanin-negative cells. Our current study cleared that high clonal expansion capacity of podoplanin-positive TICs populations was the result of reduced cell death by podoplanin-mediated signaling. Therefore, podoplanin activity may be a therapeutic target in the treatment of squamous cell carcinomas. PMID:28059107

  1. Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation.

    PubMed

    Uhrin, Pavel; Zaujec, Jan; Breuss, Johannes M; Olcaydu, Damla; Chrenek, Peter; Stockinger, Hannes; Fuertbauer, Elke; Moser, Markus; Haiko, Paula; Fässler, Reinhard; Alitalo, Kari; Binder, Bernd R; Kerjaschki, Dontscho

    2010-05-13

    During embryonic development, lymph sacs form from the cardinal vein, and sprout centrifugally to form mature lymphatic networks. Separation of the lymphatic from the blood circulation by a hitherto unknown mechanism is essential for the homeostatic function of the lymphatic system. O-glycans on the lymphatic endothelium have recently been suggested to be required for establishment and maintenance of distinct blood and lymphatic systems, primarily by mediating proper function of podoplanin. Here, we show that this separation process critically involves platelet activation by podoplanin. We found that platelet aggregates build up in wild-type embryos at the separation zone of podoplanin(+) lymph sacs and cardinal veins, but not in podoplanin(-/-) embryos. Thus, podoplanin(-/-) mice develop a "nonseparation" phenotype, characterized by a blood-filled lymphatic network after approximately embryonic day 13.5, which, however, partially resolves in postnatal mice. The same embryonic phenotype is also induced by treatment of pregnant mice with acetyl salicylic acid, podoplanin-blocking antibodies, or by inactivation of the kindlin-3 gene required for platelet aggregation. Therefore, interaction of endothelial podoplanin of the developing lymph sac with circulating platelets from the cardinal vein is critical for separating the lymphatic from the blood vascular system.

  2. Novel Identity and Functional Markers for Human Corneal Endothelial Cells

    PubMed Central

    Bartakova, Alena; Alvarez-Delfin, Karen; Weisman, Alejandra D.; Salero, Enrique; Raffa, Gabriella A.; Merkhofer, Richard M.; Kunzevitzky, Noelia J.; Goldberg, Jeffrey L.

    2016-01-01

    Purpose Human corneal endothelial cell (HCEC) density decreases with age, surgical complications, or disease, leading to vision impairment. Such endothelial dysfunction is an indication for corneal transplantation, although there is a worldwide shortage of transplant-grade tissue. To overcome the current poor donor availability, here we isolate, expand, and characterize HCECs in vitro as a step toward cell therapy. Methods Human corneal endothelial cells were isolated from cadaveric corneas and expanded in vitro. Cell identity was evaluated based on morphology and immunocytochemistry, and gene expression analysis and flow cytometry were used to identify novel HCEC-specific markers. The functional ability of HCEC to form barriers was assessed by transendothelial electrical resistance (TEER) assays. Results Cultured HCECs demonstrated canonical morphology for up to four passages and later underwent endothelial-to-mesenchymal transition (EnMT). Quality of donor tissue influenced cell measures in culture including proliferation rate. Cultured HCECs expressed identity markers, and microarray analysis revealed novel endothelial-specific markers that were validated by flow cytometry. Finally, canonical HCECs expressed higher levels of CD56, which correlated with higher TEER than fibroblastic HCECs. Conclusions In vitro expansion of HCECs from cadaveric donor corneas yields functional cells identifiable by morphology and a panel of novel markers. Markers described correlated with function in culture, suggesting a basis for cell therapy for corneal endothelial dysfunction. PMID:27196322

  3. Podoplanin: emerging functions in development, the immune system, and cancer.

    PubMed

    Astarita, Jillian L; Acton, Sophie E; Turley, Shannon J

    2012-01-01

    Podoplanin (PDPN) is a well-conserved, mucin-type transmembrane protein expressed in multiple tissues during ontogeny and in adult animals, including the brain, heart, kidney, lungs, osteoblasts, and lymphoid organs. Studies of PDPN-deficient mice have demonstrated that this molecule plays a critical role in development of the heart, lungs, and lymphatic system. PDPN is widely used as a marker for lymphatic endothelial cells and fibroblastic reticular cells of lymphoid organs and for lymphatics in the skin and tumor microenvironment. Much of the mechanistic insight into PDPN biology has been gleaned from studies of tumor cells; tumor cells often upregulate PDPN as they undergo epithelial-mesenchymal transition and this upregulation is correlated with increased motility and metastasis. The physiological role of PDPN that has been most studied is its ability to aggregate and activate CLEC-2-expressing platelets, as PDPN is the only known endogenous ligand for CLEC-2. However, more recent studies have revealed that PDPN also plays crucial roles in the biology of immune cells, including T cells and dendritic cells. This review will provide a comprehensive overview of the diverse roles of PDPN in development, immunology, and cancer.

  4. The origin of endothelial cells in novel structures, Bonghan ducts and Bonghan corpuscles determined using immunofluorescence.

    PubMed

    Yi, Sun-Shin; Hwang, In-Koo; Kim, Min-Su; Soh, Kwang-Sup; Yoon, Yeo-Sung

    2009-09-01

    Bonghan ducts (BHDs), and their associated Bonghan corpuscles (BHCs), which are novel threadlike structures, were recently observed in rats and rabbits by using various methods. As further support for the putative circulatory function of the novel threadlike structures (NTS), we investigated the presence and the origin of the endothelial cells within these structures. We immunostained the NTS with anti-CD146, an endothelial cell marker, and with anti-podoplanin, a lymphatic cell marker. Positive expression of CD146 in the BHDs was obtained, and the distribution of endothelial cells showed that the inner boundaries of the channels in the subducts branched from the BHDs and curled around, in a complicated manner, inside a BHCs. The negative expression of podoplanin implies that the endothelial cells in the BHDs are likely to be of vascular and not of lymphatic origin.

  5. Kaposi's sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation.

    PubMed

    Carroll, Patrick A; Brazeau, Elizabeth; Lagunoff, Michael

    2004-10-10

    Kaposi's sarcoma-associated herpesvirus (KSHV) is necessary for KS, a highly vascularized tumor predominated by endothelial-derived spindle cells that express markers of lymphatic endothelium. Following KSHV infection of TIME cells, an immortalized human dermal microvascular endothelial cell (DMVEC) line, expression of many genes specific to lymphatic endothelium, including VEGFR3, podoplanin, LYVE-1, and Prox-1, is significantly increased. Increases in VEGFR3 and podoplanin protein are also demonstrated following latent infection. Examination of cytokine secretion showed that KSHV infection significantly induces hIL-6 while strongly inhibiting secretion of IL-8, a gene product that is decreased by differentiation of blood to lymphatic endothelial cells. These studies support the hypotheses that latent KSHV infection of blood endothelial cells drives their differentiation to lymphatic endothelial cells.

  6. Emerging Role of Endothelial and Inflammatory Markers in Preeclampsia

    PubMed Central

    Swellam, Menha; Samy, Nervana; Abdl Wahab, Susan; Ibrahim, Mohamed Saeed

    2009-01-01

    Objectives: Endothelial disturbance and excess inflammatory response are pathogenic mechanisms in pre-eclampsia (PE). Authors determine the clinical diagnostic role for thrombomodulin (TM), plasminogen activator inhibitor-1 (PAI-1) as endothelial markers and C-reactive protein (CRP), and interlukin-6 (IL-6) as inflammatory markers when tested independently or in combinations. Materials and methods: We conducted a retrospective study in a cohort of 185 women grouped as 80 women with PE, 55 normotensive pregnant and 50 healthy non-pregnant. Plasma levels of TM, PAI-1, CRP and IL-6 were examined using enzyme linked immunosorbent assays. Results: Median levels and the positivity rates for the investigated markers were higher in PE as compared to the other groups (P < 0.0001). Using linear regression analysis, the investigated markers were significantly correlated regarding healthy nonpregnant vs PE or normotensive pregnant vs PE. The sensitivity of PAI-1 was the highest (98%) among the tested biomarkers. Combination between the investigated markers revealed absolute sensitivity (100%) and reliable specificity especially when PAI-1 was combined with CRP at 83% specificity. Conclusions: Investigated endothelial and inflammatory markers revealed sensitive diagnostic test for PE. However, coupled combination between PAI-1 with CRP showed superior both sensitivity and specificity which represent a promising new approach for detection of PE. PMID:19597295

  7. Immunohistochemical Examination of Novel Rat Monoclonal Antibodies against Mouse and Human Podoplanin

    PubMed Central

    Kaji, Chiaki; Tsujimoto, Yuta; Kato Kaneko, Mika; Kato, Yukinari; Sawa, Yoshihiko

    2012-01-01

    This study aims to develop new monoclonal antibodies (mAbs) against mouse and human podoplanin. Rats were immunized with synthetic peptides, corresponding to amino acids 38–51 of mouse podoplanin or human podoplanin which is 100% homologous to the same site of monkey podoplanin; anti-mouse podoplanin mAb PMab-1 (IgG2a) and anti-human mAb NZ-1.2 (IgG2a) were established. In immunocytochemistry, the mouse melanoma B16-F10 and mouse podoplanin (mPDPN)-expressed CHO transfectant were stained by PMab-1; human lymphatic endothelial cells (LEC) and human podoplanin (hPDPN)-expressed squamous cell carcinoma HSC3 transfectant, were stained by NZ-1.2. Western-blot analysis detected an about 40-kDa protein in CHO-mPDPN and B16-F10 by PMab-1, and in HSC3-hPDPN and LEC by NZ-1.2. In frozen sections, PMab-1 reacted with mouse kidney, pulmonary alveoli, pulmonary pleura, and salivary gland myoepithelial cells while NZ-1.2 reacted to the human salivary gland myoepithelial cells. The immunostaining of paraffin-embedded sections also showed the reaction of PMab-1 or NZ-1.2 to the mouse or monkey kidney glomerulus, pulmonary alveoli, and lung lymphatic vessels. These results indicate that the two novel rat mAbs to the mouse and human/monkey podoplanin are useful for Western-blot and immunostaining of somatic tissues on paraffin-embedded sections as well as frozen sections. PMID:23012488

  8. High expression of podoplanin in squamous cell carcinoma of the tongue occurs predominantly in patients ≤40 years but does not correlate with tumour spread

    PubMed Central

    Lindell Jonsson, Eva; Boldrup, Linda; Califano, Luigi; Coates, Philip J; Tartaro, Gianpaolo; Lo Muzio, Lorenzo; Fåhraeus, Robin; Colella, Giuseppe; Dell'Aversana Orabona, Giovanni; Loljung, Lotta; Santagata, Mario; Rossiello, Riccardo; Wilms, Torben; Danielsson, Karin; Laurell, Göran

    2015-01-01

    Abstract More than 30% of patients with squamous cell carcinoma (SCC) of the mobile tongue have clinically undetectable lymph node metastasis. Tumour cells can spread as single cells or collectively. A protein known to play a role in both processes is podoplanin, which is expressed in endothelial cells not only in lymph vessels but also in some aggressive tumours with high invasive and metastatic potential. Here we studied samples from 129 patients with primary SCC of the tongue for expression of podoplanin using immunohistochemistry. mRNA levels were analysed in another 27 cases of tongue SCC with adjacent clinically tumour‐free tongue tissue and 14 tongue samples from healthy donors. Higher levels of podoplanin were seen in tumours compared to both normal tongue and clinically normal tongue in the tumour vicinity. No association was found between levels of podoplanin, presence of lymph node metastases or other clinical factors. Patients aged 40 or less were more likely to express high levels of podoplanin protein compared to older patients (p = 0.027). We conclude that levels of podoplanin in primary tongue SCCs are not associated with lymph node metastases. However, tongue SCCs arising in young patients (≤40 years of age) are more likely to express high levels of podoplanin than tongue SCCs that arise in the more elderly. The data suggest that podoplanin has a distinctive role in young patients, who are known to have a poor prognosis: these patients may, therefore, benefit from podoplanin inhibitory therapies. PMID:27499910

  9. High expression of podoplanin in squamous cell carcinoma of the tongue occurs predominantly in patients ≤40 years but does not correlate with tumour spread.

    PubMed

    Sgaramella, Nicola; Lindell Jonsson, Eva; Boldrup, Linda; Califano, Luigi; Coates, Philip J; Tartaro, Gianpaolo; Lo Muzio, Lorenzo; Fåhraeus, Robin; Colella, Giuseppe; Dell'Aversana Orabona, Giovanni; Loljung, Lotta; Santagata, Mario; Rossiello, Riccardo; Wilms, Torben; Danielsson, Karin; Laurell, Göran; Nylander, Karin

    2016-01-01

    More than 30% of patients with squamous cell carcinoma (SCC) of the mobile tongue have clinically undetectable lymph node metastasis. Tumour cells can spread as single cells or collectively. A protein known to play a role in both processes is podoplanin, which is expressed in endothelial cells not only in lymph vessels but also in some aggressive tumours with high invasive and metastatic potential. Here we studied samples from 129 patients with primary SCC of the tongue for expression of podoplanin using immunohistochemistry. mRNA levels were analysed in another 27 cases of tongue SCC with adjacent clinically tumour-free tongue tissue and 14 tongue samples from healthy donors. Higher levels of podoplanin were seen in tumours compared to both normal tongue and clinically normal tongue in the tumour vicinity. No association was found between levels of podoplanin, presence of lymph node metastases or other clinical factors. Patients aged 40 or less were more likely to express high levels of podoplanin protein compared to older patients (p = 0.027). We conclude that levels of podoplanin in primary tongue SCCs are not associated with lymph node metastases. However, tongue SCCs arising in young patients (≤40 years of age) are more likely to express high levels of podoplanin than tongue SCCs that arise in the more elderly. The data suggest that podoplanin has a distinctive role in young patients, who are known to have a poor prognosis: these patients may, therefore, benefit from podoplanin inhibitory therapies.

  10. Obstructive Sleep Apnoea Syndrome, Endothelial Function and Markers of Endothelialization. Changes after CPAP

    PubMed Central

    Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C.; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    Study objectives This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Design Observational study, before and after CPAP therapy. Setting and Patients We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. Measurements and results After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. Conclusions CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage. PMID:25815511

  11. Obstructive sleep apnoea syndrome, endothelial function and markers of endothelialization. Changes after CPAP.

    PubMed

    Muñoz-Hernandez, Rocio; Vallejo-Vaz, Antonio J; Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Observational study, before and after CPAP therapy. We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage.

  12. Microvesicles: potential markers and mediators of endothelial dysfunction.

    PubMed

    Liu, Ming-Lin; Williams, Kevin Jon

    2012-04-01

    Microvesicles (also known as microparticles) are small membranous structures that are released from platelets and cells upon activation or during apoptosis. Microvesicles have been found in blood, urine, synovial fluid, extracellular spaces of solid organs, atherosclerotic plaques, tumors, and elsewhere. Here, we focus on new clinical and basic work that implicates microvesicles as markers and mediators of endothelial dysfunction and hence novel contributors to cardiovascular and other diseases. Advances in the detection of microvesicles and the use of cell type-specific markers to determine their origin have allowed studies that associated plasma concentrations of specific microvesicles with major types of endothelial dysfunction - namely, inappropriate or maladaptive vascular tone, leukocyte recruitment, and thrombosis. Recent investigations have highlighted microvesicular transport of key biologically active molecules besides tissue factor, such as ligands for pattern-recognition receptors, elements of the inflammasome, and morphogens. Microvesicles generated from human cells under different pathologic circumstances, for example, during cholesterol loading or exposure to endotoxin, carry different subsets of these molecules and thereby alter endothelial function through several distinct, well characterized molecular pathways. Clinical and basic studies indicate that microvesicles may be novel markers and mediators of endothelial dysfunction. This work has advanced our understanding of the development of cardiovascular and other diseases. Opportunities and obstacles to clinical applications are discussed.

  13. Endothelial function markers in parkinsonian patients with hyperhomocysteinemia.

    PubMed

    Bostantjopoulou, Sevasti; Katsarou, Zoe; Frangia, Theodora; Hatzizisi, Olga; Papazisis, Kostas; Kyriazis, George; Kiosseoglou, Gregory; Kazis, Aristidis

    2005-08-01

    Hyperhomocysteinemia is considered a risk factor for vascular disease causing endothelial damage and consequently atherogenesis. The purpose of this study was to investigate the effect of elevated homocysteine on certain biochemical markers of endothelial function in patients with idiopathic Parkinson's disease (PD). Blood homocysteine levels were assessed in 57 PD patients and 40 matched normal controls. Investigation of the C677T 5,10 methylenetetrahydrofolate reductase (MTHFR) genotype was also performed in 43 PD patients. The following markers of endothelial function were assessed: superoxide dismutase (SOD), nitric oxide (NO), sICAM-1 and sE-selectin. Homocysteine levels were found mildly elevated in PD patients particularly in those treated with L-Dopa. MTHFR genotype did not influence significantly this finding. SOD activity was found reduced but it was not correlated to homocysteine levels. All other parameters measured were normal and were not related to hyperhomocysteinemia. Our findings indicate that mild hyperhomocysteinemia in PD patients was not associated with endothelial dysfunction.

  14. Suprabasin as a novel tumor endothelial cell marker

    PubMed Central

    Alam, Mohammad T; Nagao-Kitamoto, Hiroko; Ohga, Noritaka; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2014-01-01

    Recent studies have reported that stromal cells contribute to tumor progression. We previously demonstrated that tumor endothelial cells (TEC) characteristics were different from those of normal endothelial cells (NEC). Furthermore, we performed gene profile analysis in TEC and NEC, revealing that suprabasin (SBSN) was upregulated in TEC compared with NEC. However, its role in TEC is still unknown. Here we showed that SBSN expression was higher in isolated human and mouse TEC than in NEC. SBSN knockdown inhibited the migration and tube formation ability of TEC. We also showed that the AKT pathway was a downstream factor of SBSN. These findings suggest that SBSN is involved in the angiogenic potential of TEC and may be a novel TEC marker. PMID:25283635

  15. CD144+ endothelial microparticles as a marker of endothelial injury in neonatal ABO blood group incompatibility.

    PubMed

    Awad, Hisham A E; Tantawy, Azza A G; El-Farrash, Rania A; Ismail, Eman A; Youssif, Noha M

    2014-04-01

    ABO antigens are expressed on the surfaces of red blood cells and the vascular endothelium. We studied circulating endothelial microparticles (EMP) in ABO haemolytic disease of the newborn (ABO HDN) as a marker of endothelial activation to test a hypothesis of possible endothelial injury in neonates with ABO HDN, and its relation with the occurrence and severity of haemolysis. Forty-five neonates with ABO HDN were compared with 20 neonates with Rhesus incompatibility (Rh HDN; haemolytic controls) and 20 healthy neonates with matched mother and infant blood groups (healthy controls). Laboratory investigations were done for markers of haemolysis and von Willebrand factor antigen (vWF Ag). EMP (CD144(+)) levels were measured before and after therapy (exchange transfusion and/or phototherapy). vWF Ag and pre-therapy EMP levels were higher in infants with ABO HDN or Rh HDN than in healthy controls, and were significantly higher in babies with ABO HDN than in those with Rh HDN (p<0.05). In ABO HDN, pre-therapy EMP levels were higher in patients with severe hyperbilirubinaemia than in those with mild and moderate disease or those with Rh HDN (p<0.001). Post-therapy EMP levels were lower than pre-therapy levels in both the ABO HDN and Rh HDN groups; however, the decline in EMP levels was particularly evident after exchange transfusion in ABO neonates with severe hyperbilirubinaemia (p<0.001). Multiple regression analysis revealed that the concentrations of haemoglobin, lactate dehydrogenase and indirect bilirubin were independently correlated with pre-therapy EMP levels in ABO HDN. Elevated EMP levels in ABO HDN may reflect an IgG-mediated endothelial injury parallel to the IgG-mediated erythrocyte destruction and could serve as a surrogate marker of vascular dysfunction and disease severity in neonates with this condition.

  16. Emerging roles of podoplanin in vascular development and homeostasis.

    PubMed

    Pan, Yanfang; Xia, Lijun

    2015-12-01

    Podoplanin (PDPN) is a mucin-type O-glycoprotein expressed in diverse cell types, such as lymphatic endothelial cells (LECs) in the vascular system and fibroblastic reticular cells (FRCs) in lymph nodes. PDPN on LECs or FRCs activates CLEC-2 in platelets, triggering platelet activation and/or aggregation through downstream signaling events, including activation of Syk kinase. This mechanism is required to initiate and maintain separation of blood and lymphatic vessels and to stabilize high endothelial venule integrity within lymphnodes. In the vascular system, normal expression of PDPN at the LEC surface requires transcriptional activation of Pdpn by Prox1 and modification of PDPN with core 1-derived O-glycans. This review provides a comprehensive overview of the roles of PDPN in vascular development and lymphoid organ maintenance and discusses the mechanisms that regulate PDPN expression related to its function.

  17. Podoplanin, E-cadherin, β-catenin, and CD44v6 in recurrent ameloblastoma: their distribution patterns and relevance.

    PubMed

    Siar, Chong Huat; Ishak, Ismadi; Ng, Kok Han

    2015-01-01

    Ameloblastoma is a benign but locally infiltrative odontogenic epithelial neoplasm with a high risk for recurrence. Podoplanin, a lymphatic endothelium marker, putatively promotes collective cell migration and invasiveness in this neoplasm. However, its role in the recurrent ameloblastoma (RA) remains unclear. As morphological, signaling, and genetic differences may exist between primary and recurrent tumors, clarification of their distribution patterns is of relevance. Podoplanin was examined immunohistochemically in conjunction with E-cadherin, β-catenin, and CD44v6 in 25 RA. Immunostaining according to tumor area, cellular type, and location, and relationship of these proteins were analyzed. Findings were compared with 25 unrelated primary ameloblastomas (UPA). All four proteins were detected in RA and UPA samples. Expression rates for each protein were not significantly different between these two groups. RA demonstrated significant upregulation of podoplanin at the invasive front (P < 0.05), whereas upregulation of β-catenin and CD44v6 and downregulation of E-cadherin at this site were not statistically significant (P > 0.05). Immunolocalization for all four proteins was predominantly membranous and less frequently cytoplasmic. Pre-ameloblast-like cells were podoplanin(+) /CD44v6(-), while stellate reticulum-like cells were podoplanin(-)/CD44v6(+). Acanthomatous, granular cell, and desmoplastic variants in both RA and UPA were podoplanin(-/low) but stained weak-to-moderate for E-cadherin, β-catenin, and CD44v6. Stromal fibroblasts and lymph channels were variably podoplanin-positive. Podoplanin, β-catenin, and CD44v6 upregulation at the tumor invasive fronts in RA and UPA supports a differential regulatory role by these molecules in mediating collective cell migration and local invasiveness. E-cadherin downregulation suggests altered cell adhesion function during tumor progression. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Alcohol consumption, cardiovascular health, and endothelial function markers.

    PubMed

    Bau, Paulo F D; Bau, Claiton H D; Rosito, Guido A; Manfroi, Waldomiro C; Fuchs, Flávio D

    2007-11-01

    Cardiovascular diseases are among the worldwide leading causes of shorter life expectancy and loss of quality of life. Thus, any influence of diet or life habits on the cardiovascular system may have important implications for public health. Most world populations consume alcoholic beverages. Since alcohol may have both protective and harmful effects on cardiovascular health, the identification of biochemical mechanisms that could explain such paradoxical effects is warranted. The vascular endothelium is the target of important mediating pathways of differential ethanol concentrations, such as oxidative stress, lipoproteins, and insulin resistance. Alcohol-induced endothelial damage or protection may be related to the synthesis or action of several markers, such as nitric oxide, cortisol, endothelin-1, adhesion molecules, tumor necrosis factor alpha, interleukin-6, C-reactive protein, and haemostatic factors. The expression of these markers is consistent with the J-shaped curve between alcohol consumption and cardiovascular health. However, there is genetic and phenotypic heterogeneity in alcohol response, and despite the apparent beneficial biochemical effects of low doses of ethanol, there is not enough clinical and epidemiological evidence to allow the recommendation to consume alcoholic beverages for abstemious individuals. Considering the potential for addiction of alcoholic beverage consumption and other negative consequences of alcohol, it would be worthwhile to identify substances able to mimic the beneficial effects of low doses of ethanol without its adverse effects.

  19. Porcine EPCs downregulate stem cell markers and upregulate endothelial maturation markers during in vitro cultivation.

    PubMed

    Avci-Adali, Meltem; Nolte, Andrea; Simon, Perikles; Ziemer, Gerhard; Wendel, Hans P

    2009-10-01

    In recent years, interest in endothelial progenitor cells (EPCs) in the field of tissue engineering and regenerative medicine has increased tremendously. However, each clinical stem cell application requires prior validation through animal experiments. This study investigates the isolation and characterization of porcine EPCs from peripheral blood and the change of their cell surface marker expression during in vitro cultivation. RT-PCR demonstrated that the EPCs express stem cell markers CD34 and CD133, which decrease with in vitro cultivation time. Throughout the cultivation process EPCs did not express monocytic (CD14) or haematopoietic marker (CD45). Surprisingly, the CD31 and VE-cadherin expression in EPCs was significantly higher than in endothelial cells (ECs). In contrast, the VEGFR2 and E-selectin expression was significantly lower than in ECs, but increased during the expansion process. This study clarifies the characteristic properties of porcine EPCs during cell culture and may help to improve the impact of EPC-based therapies in porcine animal studies.

  20. Ulex europaeus I lectin as a marker for tumors derived from endothelial cells.

    PubMed

    Miettinen, M; Holthofer, H; Lehto, V P; Miettinen, A; Virtanen, I

    1983-01-01

    Some skin and soft tumors, which generally are assumed to be derived from endothelial cells or blood vessels, were characterized with fluorochrome-labeled Ulex europaeus I agglutinin (UEA I), recently shown to bind specifically to endothelial cells in various normal human tissues. The staining pattern was compared with that obtained with immunostaining using antibodies against factor-VIII-related antigen (FVIII-RAG), a known marker for endothelial cells. The results showed that UEA-I is a specific and a more sensitive marker for the endothelial cells in benign vascular lesions as compared with anti-FVIII-RAG. UEA-I also stained many neoplastic cells of endothelial sarcomas, which generally were negative for FVIII-RAG. Melanomas, anaplastic carcinomas, and other types of sarcomas were negative for both UEA-I and FVIII-RAG. The results suggest that UEA-I lectin is a specific and sensitive adjunct tool in demonstrating endothelial cells and endothelial derivation of human tumors.

  1. Magic roundabout, a tumor endothelial marker: expression and signaling.

    PubMed

    Seth, Pankaj; Lin, Yanfeng; Hanai, Jun-ichi; Shivalingappa, Venkatesha; Duyao, Mabel P; Sukhatme, Vikas P

    2005-07-01

    Molecular signals that guide blood vessels to specific paths are not fully deciphered, but are thought to be similar to signals that mediate neuronal guidance. These cues are not only critical for normal blood vessel development, but may also play a major role in tumor angiogenesis. In this study, we have demonstrated the tumor endothelial specific expression of a Robo family member, magic roundabout (MRB), functionally characterized its role in endothelial cell migration and defined a signaling pathway that might mediate this function. We show that MRB is differentially over-expressed in tumor endothelial cells versus normal adult endothelial cells in numerous solid tumors. Moreover, over-expression of MRB in endothelial cells activates MRB in a ligand-independent fashion, and activation of MRB via Slit2, a putative ligand, results in inhibition of VEGF and FGF induced migration. We also demonstrate that MRB induced inhibition of endothelial migration is partially mediated by the Ras-Raf-Mek-Erk signaling pathway. We therefore hypothesize that expression of MRB is involved in regulating the migration of endothelial cells during tumor angiogenesis.

  2. Tumor endothelial markers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy

    PubMed Central

    Mehran, Reza; Nilsson, Monique; Khajavi, Mehrdad; Du, Zhiqiang; Cascone, Tina; Wu, Hua Kang; Cortes, Andrea; Xu, Li; Zurita, Amado; Schier, Robert; Riedel, Bernhard; El-Zein, Randa; Heymach, John V.

    2014-01-01

    Circulating endothelial cells (CEC) are derived from multiple sources including bone marrow (circulating endothelial progenitors [CEP]) and established vasculature (mature CEC). Although CEC have shown promise as a biomarker for cancer patients, their utility has been limited in part by the lack of specificity for tumor vasculature and the different non-malignant causes that can impact CEC. Tumor endothelial markers (TEM) are antigens enriched in tumor vs non-malignant endothelia. We hypothesized that TEMs may be detectable on CEC and that these circulating TEM+ endothelial cells (CTEC) may be a more specific marker for cancer and tumor response than standard CEC. We found that tumor-bearing mice had a relative increase in numbers of circulating CTEC, specifically with increased levels of TEM7 and TEM8 expression. Following treatment with various vascular targeting agents, we observed a decrease in CTEC that correlated with the reductions in tumor growth. We extended these findings to human clinical samples and observed that CTEC were present in esophageal cancer and non-small cell lung cancer (NSCLC) patients (N=40) and their levels decreased after surgical resection. These results demonstrate that CTEC are detectable in preclinical cancer models and cancer patients. Further, they suggest that CTEC offer a novel cancer-associated marker that may be useful as a blood-based surrogate for assessing the presence of tumor vasculature and antiangiogenic drug activity. PMID:24626092

  3. Characterization of circulating endothelial microparticles and endothelial progenitor cells in primary Sjögren's syndrome: new markers of chronic endothelial damage?

    PubMed

    Bartoloni, Elena; Alunno, Alessia; Bistoni, Onelia; Caterbi, Sara; Luccioli, Filippo; Santoboni, Gianluca; Mirabelli, Giulia; Cannarile, Francesca; Gerli, Roberto

    2015-03-01

    Chronic autoimmune diseases are associated with increased risk of cardiovascular death. Endothelial dysfunction represents the first stage of subclinical atherosclerosis and multiple factors contribute to endothelial injury. Among these, an altered balance between endothelial microparticle (EMP) release and endothelial progenitor cell (EPC) generation promotes endothelial dysfunction. The role of EMPs and EPCs in promoting endothelial damage in primary SS (pSS) has never been investigated. Our aim was to evaluate the role of EMPs and EPCs as markers of endothelial damage in pSS and their correlation with disease clinical and immunological features. Circulating EMPs (CD31(+)/CD42(-)), true EPCs (CD34(+)/KDR(+)/CD133(+)) and mature EPCs (CD34(+)/KDR(+)/CD133(-)) were quantified by FACS analysis in 34 pSS patients and 18 age- and sex-matched controls. Correlation between EMP and EPC levels and parameters of disease activity and damage, clinical features and markers of immunological dysfunction was performed. Patients displayed higher EMP numbers with respect to healthy controls [HCs; mean 450 n/μl (S.D. 155) vs 231 (110), P < 0.0001]. EPC and mature EPC levels were higher in patients compared with HCs [mean 226 n/ml (S.D. 181) vs 69 (53), P < 0.001 and 166 (161) vs 36 (32), P < 0.0001, respectively). EMP levels directly correlated with disease duration from symptoms and diagnosis (ρ = 0.5, P < 0.01). Early EPCs inversely correlated with disease duration from symptoms (ρ = -0.5, P < 0.01) and diagnosis (ρ = -0.4, P < 0.05). This is the first demonstration of chronic endothelial fragmentation characterizing pSS. The reparative potentiality of the endothelial layer appears to be preserved in the earliest stages of disease. During the course of the disease, progressive exhaustion of the precursor endothelial pool may be hypothesized, leading to defective vascular layer restoration and endothelial dysfunction. © The Author 2014. Published by Oxford University Press on

  4. Surgical Skin Markers Impair Human Saphenous Vein Graft Smooth Muscle and Endothelial Function

    PubMed Central

    EAGLE, SUSAN; BROPHY, COLLEEN M.; KOMALAVILAS, PADMINI; HOCKING, KYLE; PUTUMBAKA, GOWTHAMI; OSGOOD, MICHAEL; SEXTON, KEVIN; LEACCHE, MARZIA; CHEUNG-FLYNN, JOYCE

    2012-01-01

    Marking human saphenous vein graft (HSV) with a surgical skin marker to prevent twisting on implantation is a common practice in peripheral and coronary artery bypass procedures. This study is designed to examine the effects of surgical skin markers on the HSV smooth muscle and endothelial functional responses. De-identified HSV remnants were collected during peripheral and coronary artery bypass procedures. Physiologic responses of the HSV were measured using a muscle bath. Veins that were marked with surgical skin markers intraoperatively generated significantly less contractile force to depolarizing KCl (110 mM) and receptor-mediated contractile agonists than unmarked HSV, suggesting that surgical skin markers impaired HSV smooth muscle contractility. To directly access the effects of chemical components in the surgical skin markers, unmarked HSV was exposed to isopropyl alcohol (a solvent commonly used in surgical skin markers) or methylene blue (a dye). Smooth muscle contractility was significantly reduced by isopropyl alcohol and methylene blue. Endothelial-dependent relaxation to carbachol was significantly reduced after exposure to surgical skin markers. Our data demonstrated that marking HSV with surgical skin markers reduces smooth muscle and endothelial functional viability. PMID:21944360

  5. Podoplanin lymphatic density and invasion correlate with adverse clinicopathologic and biological factors and survival in neuroblastomas.

    PubMed

    Ramani, Pramila; Somerville, Michelle S; May, Margaret T

    2012-06-01

    Neuroblastoma (NB) is a challenging problem in oncology, as the majority of patients have lymphatic and/or hematogenous metastases at diagnosis. We investigated the prognostic significance of lymphatic density (LD) and invasion (LI) in NBs using the lymphatic endothelial marker podoplanin (PDPN). A total of 77 neuroblastic tumors and 9 ganglioneuromas (GNs) were immunostained for PDPN using D2-40 antibody. Intratumoral lymphatics were identified in 87% (67/77) of NBs and 7/9 GNs. The LD counts were significantly higher (P<0.01) in NBs (median=19.6, range=0.00 to 89.3) than in GNs (median=10.2, range=0 to 18.7). LI, assessed in D2-40-stained lymphatics, was present in 52/67 (78%) NBs. LDs were significantly higher in NBs from patients with adverse clinical factors (advanced-stage, high-risk group, primary abdominal compared with extra-abdominal sites), biological factors (MYCN amplification, 1p deletion, 17q gain), and distant lymph node metastases. LDs and LI were also significantly higher in NBs belonging to an unfavorable pathology prognostic group and in those with a high mitosis-karyorrhexis index. High LD and the presence of LI correlated with a shorter event-free survival in univariable analyses. High LD and the presence of LI were also associated with worse overall survival, although the association was less strong. In conclusion, increased LDs and the presence of LI correlated with adverse clinicopathologic and biological factors and survival. These findings suggest that PDPN has the potential to provide valuable prognostic information to clinicians for risk assessment in NBs.

  6. High Throughput Gene Expression Analysis Identifies Reliable Expression Markers of Human Corneal Endothelial Cells

    PubMed Central

    Chng, Zhenzhi; Peh, Gary S. L.; Herath, Wishva B.; Cheng, Terence Y. D.; Ang, Heng-Pei; Toh, Kah-Peng; Robson, Paul; Mehta, Jodhbir S.; Colman, Alan

    2013-01-01

    Considerable interest has been generated for the development of suitable corneal endothelial graft alternatives through cell-tissue engineering, which can potentially alleviate the shortage of corneal transplant material. The advent of less invasive suture-less key-hole surgery options such as Descemet’s Stripping Endothelial Keratoplasty (DSEK) and Descemet’s Membrane Endothelial Keratoplasty (DMEK), which involve transplantation of solely the endothelial layer instead of full thickness cornea, provide further impetus for the development of alternative endothelial grafts for clinical applications. A major challenge for this endeavor is the lack of specific markers for this cell type. To identify genes that reliably mark corneal endothelial cells (CECs) in vivo and in vitro, we performed RNA-sequencing on freshly isolated human CECs (from both young and old donors), CEC cultures, and corneal stroma. Gene expression of these corneal cell types was also compared to that of other human tissue types. Based on high throughput comparative gene expression analysis, we identified a panel of markers that are: i) highly expressed in CECs from both young donors and old donors; ii) expressed in CECs in vivo and in vitro; and iii) not expressed in corneal stroma keratocytes and the activated corneal stroma fibroblasts. These were SLC4A11, COL8A2 and CYYR1. The use of this panel of genes in combination reliably ascertains the identity of the CEC cell type. PMID:23844023

  7. Circulating endothelial cells as marker of endothelial damage in male hypogonadism.

    PubMed

    Milardi, Domenico; Grande, Giuseppe; Giampietro, Antonella; Vendittelli, Francesca; Palumbo, Sara; Tartaglione, Linda; Marana, Riccardo; Pontecorvi, Alfredo; de Marinis, Laura; Zuppi, Cecilia; Capoluongo, Ettore

    2012-01-01

    Testosterone deficiency has become a frequently diagnosed condition in today's society affected by epidemic obesity, and is associated with cardiovascular risk. Recent studies have established the importance of altered vascular endothelium function in cardiovascular disease. The damage to the endothelium might also cause endothelial cell detachment, resulting in increased numbers of circulating endothelial cells (CEC) within the bloodstream. To evaluate whether hypogonadism could modify CEC count in peripheral bloodstream, we investigated peripheral blood CEC count using the CellSearch System, a semiautomatic method to accurately and reliably enumerate CECs, which are sorted based on a CD146(+), CD105(+), DAPI(+), CD45(-) phenotype, in a population of 20 patients with hypogonadism. The control group comprised 10 age- and sex-matched healthy participants. CEC count per milliliter was significantly increased in patients with hypogonadism vs the control group. In the group with hypogonadism, an inverse exponential correlation was present between testosterone levels and CEC count per milliliter. A direct linear correlation was present between waist circumference and CECs and between body mass index and CECs. The regression analysis showed that testosterone was the significant independent determinant of CECs. Our results underline that male hypogonadism is associated with endothelial dysfunction. The correlation between CEC and waist circumference underlines that visceral obesity may be synergically implicated in this regulation. Future studies are required to unveil the mechanisms involved in the pathogenesis of testosterone-induced endothelial disfunction, which may provide novel therapeutic targets to be incorporated in the management of hypogonadism.

  8. Urine albumin to creatinine ratio: A marker of early endothelial dysfunction in youth

    USDA-ARS?s Scientific Manuscript database

    The urine albumin-to-creatinine ratio (UACR) is a useful predictor of cardiovascular (CV) events in adults. Its relationship to vascular function in children is not clear. We investigated whether UACR was related to insulin resistance and endothelial function, a marker of subclinical atherosclerosis...

  9. The optimum marker for the detection of lymphatic vessels.

    PubMed

    Kong, Ling-Ling; Yang, Nian-Zhao; Shi, Liang-Hui; Zhao, Guo-Hai; Zhou, Wenbin; Ding, Qiang; Wang, Ming-Hai; Zhang, Yi-Sheng

    2017-10-01

    Podoplanin, lymphatic vessel endothelial hyaluronic acid receptor-1, prospero-related homeobox-1 and vascular endothelial growth factor receptor 3 have been demonstrated to have crucial roles in the development of the lymphatic system and lymphangiogenesis process by combining with their corresponding receptors. Thus, the four markers have been widely used in labelling lymphatic vessels for the detection of lymphangiogenesis and lymphatic vessel invasion. Numerous authors have aimed to identify the roles of these four markers in the lymphatic system and the mechanisms have been partly clarified at the molecular level. The aim of the present review was to comprehensively clarify the characteristics and latent action modes of the four markers in order to determine which is the best one for the detection of lymphangiogenesis and lymphatic vessel invasion.

  10. Blood markers of fibrinolysis and endothelial activation in canine babesiosis.

    PubMed

    Kuleš, Josipa; Gotić, Jelena; Mrljak, Vladimir; Barić Rafaj, Renata

    2017-03-31

    Canine babesiosis is a tick-borne disease caused by hemoprotozoan parasites of the genus Babesia. The disease can be clinically classified into uncomplicated and complicated forms. The aim of this study was to assess the level of endothelial activation and alterations in the fibrinolytic pathway during canine babesiosis. Blood samples were collected on the day of admission and on the 6th day after treatment with imidocarb propionate, from 30 dogs of various breeds and of both sexes with naturally occurring babesiosis caused by B. canis. In this prospective study, plasminogen activity was assessed using a chromogenic assay, and concentrations of high mobility group box-1 protein (HMGB-1), intercellular adhesive molecule-1 (ICAM-1), vascular adhesive molecule-1 (VCAM-1), soluble urokinase receptor of plasminogen activator (suPAR), thrombin activatable fibrinolysis inhibitor (TAFI), soluble thrombomodulin (TM) and plasminogen activator inhibitor-1 (PAI-1) were determined using a canine specific ELISA. Concentrations of TM, HMGB-1, VCAM-1 and suPAR were increased in dogs with babesiosis at admission compared to healthy dogs. After treatment, concentrations of TM were lower in infected dogs compared to healthy dogs. Dogs with babesiosis also had increased concentrations of TM, ICAM-1 and HMGB-1 and decreased plasminogen and PAI-1 at presentation compared to day 6 after treatment. Dogs with complicated babesiosis had higher concentrations of TM, HMGB1 and TAFI at admission compared to the 6th day. Biomarkers of endothelial activation and fibrinolysis were altered in dogs with babesiosis. Further studies into their usefulness as biomarkers of disease severity or prognosis is warranted.

  11. Soluble endothelial adhesion molecules and inflammation markers in patients with beta-thalassemia intermedia.

    PubMed

    Kanavaki, Ino; Makrythanasis, Periklis; Lazaropoulou, Christina; Tsironi, Maria; Kattamis, Antonis; Rombos, Ioannis; Papassotiriou, Ioannis

    2009-01-01

    The term thalassemia intermedia, indicates a clinical condition of intermediate severity between thalassaemia minor, the asymptomatic carrier, and thalassaemia major, the transfusion-dependent, severe form. Thromboembolic events frequently complicate the outcome of thalassemia intermedia patients, reflecting a hypercoagulable state to which endothelial activation is believed to play an important role. The aim of this study was to evaluate the levels of soluble endothelial adhesion molecules that reflect endothelial activation and dysfunction and levels of chronic inflammation markers in the serum of beta-thalassemia intermedia patients. Thirty-five Greek patients with beta-thalassemia intermedia that have received different types of treatment (Hydroxyurea, splenectomy, untreated), aged 8-63 years, were included in the study. Twenty apparently healthy individuals matched for age and sex, formed the control group. Measurements of sVCAM-1, sICAM-1, sTM, P-selectin, E-selectin and CRP levels were performed using immunoassays. We found that all endothelial adhesion molecules and CRP were significantly increased in patients (p<0.001) and not influenced by treatment. A negative correlation was observed between levels of sICAM-1 and sTM and this finding agrees with the results of studies, which propose this correlation as a predictive marker of increased risk for vascular damage. No correlation was observed between endothelial adhesion molecules and inflammation markers. These findings support the hypothesis that a serious degree of endothelial activation and damage along with a state of chronic inflammation underlie the pathophysiology of beta-thalassemia intermedia. Furthermore, these findings are of particular importance in patients who can otherwise be characterized by a subtle clinical phenotype and may have an important role in their clinical care.

  12. Characterization and microarray analysis of genes in human lymphatic endothelial cells from patients with breast cancer.

    PubMed

    Kawai, Yoshiko; Minami, Takashi; Fujimori, Minoru; Hosaka, Kayoko; Mizuno, Risuke; Ikomi, Fumitaka; Kodama, Tatsuhiko; Ohhashi, Toshio

    2007-01-01

    We successfully isolated human lymphatic endothelial cells from afferent lymph vessels (HALEC) of sentinel lymph nodes in patients with breast cancer by using trypsin digestion. The cells were cultured in EGM-2 medium with 10% FBS under the condition of 5% O2, 5% CO2, and 90% N2 at 37 degrees C. The cultured cells exhibited a monolayer with cobblestone appearance and a marked phagocytosis of Dil-Ac-LDL. Immunohistochemical lymphatic vessel markers were also found, such as podoplanin, LYVE-1, VEGF receptor 3, and Prox-1. Quantitative RT-PCR analysis also showed that podoplanin, VEGF R3, and Prox-1 mRNA were expressed more selectively in the cultured cells. The cells had marked immunoreactivity to antisera of ecNOS, iNOS, COX1, and weak reactivity of COX2. Constitutively expressed cell-type specific genes of the cultured cells were also analyzed by oligonucleotide microarray methods. Compared with human umbilical vein endothelial cells (HUVEC), the cells selectively expressed 88 known genes such as angiopoietin-like 4, oxygen radicals-related enzymes, and adhesion molecules and the related proteoglycans. The findings suggest that the cultured cells seem to be human lymphatic endothelial cells. In conclusion, the isolated, cannulated and enzymatic digested method we adopted for culture of human lymphatic endothelial cells may be easy and useful for investigating cellular, molecular biological, and genomic properties of the cells.

  13. [Definitions destruction of endothelial cells as a marker of endothelial dysfunction in aging men].

    PubMed

    Пустовойт, Ганна Л; Ярмола, Тетяна І; Мохначов, Олександр В; Ткаченко, Лідія А; Супруненко, Сергій М

    Ukraine occupies the 143 place in the world in life expectancy and the first place in terms of mortality. The main cause of death - cardiovascular diseases - 58%. Recent studies show the important and independent role of endothelium in the development of cardiovascular disease. examination of the endothelium destruction in aging men by determining the level of surface specific antigens of endothelial microparticles. 88 men age from 45 to 76 years. 50 people of the main group had a history of the second type diabetes mellitus (DM-2) combined with arterial hypertension (AH). The control group included 38 men without aforementioned diseases. Also, men were divided into two groups by age: 45-59 years and over 60. in the main subgroup I endothelin level was higher than the control subgroup I: 2,07 ± 0,6 and 1,27 ± 0,25 (p <0.05). In main subgroup II endothelin level was also significantly higher compared with the specified index in control subgroup II: 3,91 ± 0,7 and 1,79 ± 0,27 (p <0.05). Among patients of the main subgroup II endothelin level (3,88 ± 0,7 and 2,04 ± 0,6 (p <0.05)), and triglycerides (2,77 ± 0,08 vs. 1.99 ± 0.05 (p <0.05)) was higher compared with the I subgroup. age androgen deficiency is accompanied by lipid metabolism, development of endothelial dysfunction, insulin resistance, diabetes and hypertension. Reduction of the cardiovascular risk includes measures aimed at normalizing hormonal balance and lipid metabolism in aging men with DM-2 and hypertension.

  14. [Definitions destruction of endothelial cells as a marker of endothelial dysfunction in aging men].

    PubMed

    Пустовойт, Ганна Л; Ярмола, Тетяна І; Мохначов, Олександр В; Ткаченко, Лідія А; Супруненко, Сергій М

    2016-01-01

    Ukraine occupies the 143 place in the world in life expectancy and the first place in terms of mortality. The main cause of death - cardiovascular diseases - 58%. Recent studies show the important and independent role of endothelium in the development of cardiovascular disease. examination of the endothelium destruction in aging men by determining the level of surface specific antigens of endothelial microparticles. 88 men age from 45 to 76 years. 50 people of the main group had a history of the second type diabetes mellitus (DM-2) combined with arterial hypertension (AH). The control group included 38 men without aforementioned diseases. Also, men were divided into two groups by age: 45-59 years and over 60. in the main subgroup I endothelin level was higher than the control subgroup I: 2,07 ± 0,6 and 1,27 ± 0,25 (p <0.05). In main subgroup II endothelin level was also significantly higher compared with the specified index in control subgroup II: 3,91 ± 0,7 and 1,79 ± 0,27 (p <0.05). Among patients of the main subgroup II endothelin level (3,88 ± 0,7 and 2,04 ± 0,6 (p <0.05)), and triglycerides (2,77 ± 0,08 vs. 1.99 ± 0.05 (p <0.05)) was higher compared with the I subgroup. age androgen deficiency is accompanied by lipid metabolism, development of endothelial dysfunction, insulin resistance, diabetes and hypertension. Reduction of the cardiovascular risk includes measures aimed at normalizing hormonal balance and lipid metabolism in aging men with DM-2 and hypertension.

  15. Podoplanin serum and urine concentration in transitional bladder cancer.

    PubMed

    Sankiewicz, Anna; Guszcz, Tomasz; Mena-Hortelano, Rocio; Zukowski, Krzysztof; Gorodkiewicz, Ewa

    2016-01-01

    Podoplanin (PDP) is a mucin - a type of transmembrane protein expressed in numerous tissues during ontogeny and in adult animals, including the brain, heart, kidney, osteoblasts and lymphoid organs. The aim of this study was to determine podoplanin concentration in the blood serum and urine of patients with bladder cancer. Quantifying podoplanin concentration and its correlation with various clinicopathological parameters may be useful for more accurate predictions and identifying high-risk patients. The present study included 82 patients with bladder cancer confirmed by transurethral resection or cystectomy and 27 healthy volunteers. The Surface Plasmon Resonance Imaging biosensor was applied for the detection of podoplanin in the serum and urine samples. Significant differences in serum and urine podoplanin concentration levels were observed between bladder cancer patients. The statistically significant higher values of PDP were detected in serum of patients with invasive, more aggressive, larger, multifocal tumors. The association between podoplanin concentration and clinicopathological features indicates that it might be useful while making therapeutic decisions.

  16. The Multifaceted Role of Podoplanin Expression in Hepatocellular Carcinoma

    PubMed Central

    Cioca, Andreea; Ceausu, Amalia R.; Marin, Irina; Raica, Marius; Cimpean, Anca Maria

    2017-01-01

    The role of podoplanin in hepatocellular carcinoma (HCC) is not clear yet. The aim of our study was to evaluate the expression of podoplanin in HCC and to determine its role in hepatocarcinogenesis. We performed immunohistochemistry with monoclonal D2-40 antibody, on paraffin-embedded tissue sections of 72 patients diagnosed with HCC. Lymphatic vessels density (LVD) was increased in patients who had vascular invasion at the time of diagnosis (P=0.018) and in those with associated cirrhosis (P=0.006). Tumor cells showing podoplanin expression were correlated with histological grade (P=0.040). Podoplanin-expressing cancer associated fibroblasts (CAFs) were correlated with both LVD (P=0.019) and tumor cells (P=0.015). Our results sustain the dual role of podoplanin in HCC by its involvement in both HCC tumorigenesis, lymphatic neovascularization and tumor invasion invasiveness. A possible crosstalk between epithelial and stromal tumor cells in HCC tumor microenvironment may be mediated by podoplanin, but this hypothesis needs further studies to elucidate this interrelation. PMID:28348421

  17. The use of novel lymphatic endothelial cell-specific immunohistochemical markers to differentiate cutaneous angiosarcomas in dogs.

    PubMed

    Halsey, C H C; Worley, D R; Curran, K; Charles, J B; Ehrhart, E J

    2016-09-01

    Lymphangiosarcomas are uncommon vascular neoplasms that arise from lymphatic endothelial cells (LECs). They efface and replace normal subcutaneous tissue and are characterised by arborising, vascular channels lined by a single layer of pleomorphic endothelial cells and a paucity of erythrocytes. Lymphangiosarcomas are architecturally similar to hemangiosarcomas, a common malignancy of vascular origin arising from blood vascular endothelial cells. Common immunohistochemical markers for vascular endothelium, such as Factor VIII-related antigen (F8RA) and CD31, have traditionally been used to confirm the diagnosis of tumours of vascular origin. However, these markers fail to differentiate between lymphangiosarcoma and hemangiosarcoma, which often show overlapping morphologic features, disparate clinical behaviour and require different treatment modalities. Here we describe the use of two novel LEC-specific markers, lymphatic vessel endothelial receptor-1 (LYVE-1) and prospero-related homeobox gene-1 (PROX-1), to further differentiate between vascular tumours of lymphatic (lymphangiosarcoma) and blood (hemangiosarcoma) endothelial cell origin in the dog.

  18. Selective targeting of liver cancer with the endothelial marker CD146

    PubMed Central

    Thomann, Stefan; Longerich, Thomas; Bazhin, Alexandr V.; Mier, Walter; Schemmer, Peter; Ryschich, Eduard

    2014-01-01

    Hepatocellular carcinomas are well-vascularized tumors; the endothelial cells in these tumors have a specific phenotype. Our aim was to develop a new approach for tumor-specific drug delivery with monoclonal antibody targeting of endothelial ligands. CD146, a molecule expressed on the endothelial surface of hepatocellular carcinoma, was identified as a promising candidate for targeting. In the present study, endothelial cells immediately captured circulating anti-CD146 (ME-9F1) antibody, while antibody binding in tumors was significantly higher than in hepatic endothelium. Macroscopically, after intravenous injection, there were no differences in the mean accumulation of anti-CD146 antibody in tumor compared to liver tissue, due to a compensating higher blood vessel density in the liver tissue. Additional blockade of nontumoral epitopes and intra-arterial administration, improved selective antibody capture in the tumor microvasculature and largely prevented antibody distribution in the lung and liver. The potential practical use of this approach was demonstrated by imaging of radionuclide-labeled ME-9F1 antibody, which showed excellent tumor-selective uptake. Our results provide a promising principle for the use of endothelial markers for intratumoral drug delivery. Tumor endothelium–based access might offer new opportunities for the imaging and therapy of hepatocellular carcinoma and other liver malignancies. PMID:25238265

  19. [Effects of mexidol and sulodexide on the level of specific markers of endothelial dysfunction in animals with experimental diabetes mellitus].

    PubMed

    Tiurenkov, I N; Voronkov, A V; Slietsans, A A; Snigur, G L

    2012-01-01

    Streptozotocin-induced diabetes leads to the development of endothelial dysfunction, as evidenced by decreased expression of endothelial nitric oxide synthase (eNOS) and increased expression of endothelin-1 as specific markers of endothelial disorders. All test substances showed endotelioprotective activity by increasing the concentration of eNOS and reducing the level of endothelin-1. With respect to the degree of impact on the eNOS and endothelin-1 levels, the compounds studied can be rated as follows: sulodexide > meksidol.

  20. Endothelial marker-expressing stromal cells are critical for kidney formation.

    PubMed

    Mukherjee, Elina; Maringer, Katherine; Papke, Emily; Bushnell, Daniel; Schaefer, Caitlin; Kramann, Rafael; Ho, Jacqueline; Humphreys, Benjamin D; Bates, Carlton; Sims-Lucas, Sunder

    2017-09-01

    Kidneys are highly vascularized and contain many distinct vascular beds. However, the origins of renal endothelial cells and roles of the developing endothelia in the formation of the kidney are unclear. We have shown that the Foxd1-positive renal stroma gives rise to endothelial marker-expressing progenitors that are incorporated within a subset of peritubular capillaries; however, the significance of these cells is unclear. The purpose of this study was to determine whether deletion of Flk1 in the Foxd1 stroma was important for renal development. To that end, we conditionally deleted Flk1 (critical for endothelial cell development) in the renal stroma by breeding-floxed Flk1 mice (Flk1(fl/fl) ) with Foxd1cre mice to generate Foxd1cre; Flk1(fl/fl) (Flk1(ST-/-) ) mice. We then performed FACsorting, histological, morphometric, and metabolic analyses of Flk1(ST-/-) vs. control mice. We confirmed decreased expression of endothelial markers in the renal stroma of Flk1(ST-/-) kidneys via flow sorting and immunostaining, and upon interrogation of embryonic and postnatal Flk1(ST-/-) mice, we found they had dilated peritubular capillaries. Three-dimensional reconstructions showed reduced ureteric branching and fewer nephrons in developing Flk1(ST-/-) kidneys vs. Juvenile Flk1(ST-/-) kidneys displayed renal papillary hypoplasia and a paucity of collecting ducts. Twenty-four-hour urine collections revealed that postnatal Flk1(ST-/-) mice had urinary-concentrating defects. Thus, while lineage-tracing revealed that the renal cortical stroma gave rise to a small subset of endothelial progenitors, these Flk1-expressing stromal cells are critical for patterning the peritubular capillaries. Also, loss of Flk1 in the renal stroma leads to nonautonomous-patterning defects in ureteric lineages. Copyright © 2017 the American Physiological Society.

  1. Differential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophages.

    PubMed

    Cheng, Shu-Meng; Chang, Shing-Jyh; Tsai, Tsung-Neng; Wu, Chun-Hsien; Lin, Wei-Shing; Lin, Wen-Yu; Cheng, Cheng-Chung

    2013-01-01

    Bone marrow-derived endothelial progenitor cells (EPCs) play a fundamental role in postnatal angiogenesis. Currently, EPCs are defined as early and late EPCs based on their biological properties and their time of appearance during in vitro culture. Reports have shown that early EPCs share common properties and surface markers with adherent blood cells, especially CD14+ monocytes. Distinguishing early EPCs from circulating monocytes or monocyte-derived macrophages (MDMs) is therefore crucial to obtaining pure endothelial populations before they can be applied as part of clinical therapies. We compared the gene expression profiles of early EPCs, blood cells (including peripheral blood mononuclear cells, monocytes, and MDMs), and various endothelial lineage cells (including mature endothelial cells, late EPCs, and CD133+ stem cells). We found that early EPCs expressed an mRNA profile that showed the greatest similarity to MDMs than any other cell type tested. The functional significance of this molecular profiling data was explored by Gene Ontology database search. Novel plasma membrane genes that might potentially be novel isolation biomarkers were also pinpointed. Specifically, expression of CLEC5A was high in MDMs, whereas early EPCs expressed abundant SIGLEC8 and KCNE1. These detailed mRNA expression profiles and the identified functional modules will help to develop novel cell isolation approaches that will allow EPCs to be purified; these can then be used to target cardiovascular disease, tumor angiogenesis, and various ischemia-related diseases.

  2. ERG is a novel and reliable marker for endothelial cells in central nervous system tumors.

    PubMed

    Haber, Matthew A; Iranmahboob, Amir; Thomas, Cheddhi; Liu, Mengling; Najjar, Amanda; Zagzag, David

    2015-01-01

    ETS-related gene (ERG) is a transcription factor that has been linked to angiogenesis. Very little research has been done to assess ERG expression in central nervous system (CNS) tumors. We evaluated 57 CNS tumors, including glioblastomas (GBMs) and hemangioblastomas (HBs), as well as two arteriovenous malformations and four samples of normal brain tissue with immunohistochemistry using a specific ERG rabbit monoclonal antibody. In addition, immunostains for CD31, CD34, and α-smooth muscle actin (α-SMA) were performed on all samples. CD31 demonstrated variable and sometimes weak immunoreactivity for endothelial cells. Furthermore, in 1 case of a GBM, CD34 stained not only endothelial cells, but also tumor cells. In contrast, we observed that ERG was only expressed in the nuclei of endothelial cells, for example, in the hyperplastic vascular complexes that comprise the glomeruloid microvascular proliferation seen in GBMs. Conversely, α-SMA immunoreactivity was identified in the abluminal cells of these hyperplastic vessels. Quantitative evaluation with automated methodology and custom Matlab 2008b software was used to calculate percent staining of ERG in each case. We observed significantly higher quantitative expression of ERG in HBs than in other CNS tumors. Our results show that ERG is a novel, reliable, and specific marker for endothelial cells within CNS tumors that can be used to better study the process of neovascularization.

  3. [Reduction of exercise-mediated endothelial dysfunction markers in sedentary adults with chronic spinal cord injury].

    PubMed

    Rosety-Rodriguez, Manuel; Camacho-Molina, Alejandra; Rosety, Ignacio; Fornieles, Gabriel; Rosety, Miguel A; Ordoñez, Francisco Javier

    2015-01-20

    Recent studies have found increased markers of endothelial activation in men with chronic spinal cord injury. This study was conducted to determine the effects of arm-cranking exercise on endothelial dysfunction in male adults with chronic SCI. A prospective randomized study of 17 sedentary adult males with chronic SCI at or under T5 level. Nine performed a supervised exercise program at a moderate intensity (arm-cranking: 12 weeks, 3 sessions/week). Plasma levels of endothelin-1, soluble intercellular adhesion molecule type 1 (sICAM-1), and soluble vascular adhesion molecule type 1 (sVCAM-1) were assessed by ELISA. Outcome measurements also included physical fitness and total body fat mass percentage. We observed both in the randomized and in the before-after studies a significant reduction of the levels of endothelin-1 and sICAM-1. Furthermore, significant improvements of both physical fitness and body composition were also found. Arm-cranking exercise improved endothelial dysfunction in adult males with chronic SCI. Long-term studies are still required to determine whether the correction of endothelial dysfunction improves the clinical outcomes of adults with chronic SCI. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  4. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    PubMed

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  5. Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    PubMed Central

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro. PMID:25807145

  6. Flow cytometry-based isolation of dermal lymphatic endothelial cells from newborn rats.

    PubMed

    Thiele, W; Rothley, M; Schmaus, A; Plaumann, D; Sleeman, J

    2014-12-01

    The lymphatic system plays a key role in tissue homeostasis, fatty acid transport, and immune surveillance. Pathologically, dysfunction of the lymphatic system results in edema, and increased lymphangiogenesis can contribute to tumor metastasis. Lymphatic vessels are composed of lymphatic endothelial cells (LECs) that can be identified by distinct marker molecules such as Prox-1, podoplanin, VEGFR-3 and LYVE-1. Primary LECs represent a valuable tool for the study of basic functions of the lymphatic system. However, their isolation remains a challenge, particularly if rodent tissues are used as a source. We developed a method for the isolation of rat dermal LECs from the skin of newborn rats based on sequential enzymatic digestion with trypsin and Liberase followed by flow cytometric sorting using LYVE-1 specific antibodies. Cells isolated according to this protocol expressed the lymphatic markers Prox-1, podoplanin, LYVE-1 and VEGFR-3, and displayed an endothelial-like morphology when taken into culture. These primary cells can be used for studying lymphatic biology in rat models, and the protocol we describe here therefore represents an important extension of the experimental repertoire available for rats and for modeling the human lymphatic system.

  7. High density of peritumoral lymphatic vessels measured by D2-40/podoplanin and LYVE-1 expression in gastric cancer patients: an excellent prognostic indicator or a false friend?

    PubMed

    Rudno-Rudzinska, Julia; Kielan, Wojciech; Grzebieniak, Zygmunt; Dziegiel, Piotr; Donizy, Piotr; Mazur, Grzegorz; Knakiewicz, Monika; Frejlich, Ewelina; Halon, Agnieszka

    2013-10-01

    One of the most important prognostic indicators in gastric cancer is the presence of metastases in lymph nodes. Even now, little is known about lymphangiogenesis in neoplastic tissue, and little is also known about the transmission of a neoplastic cell from the tumor mass into a lymphatic vessel. This study examined the relationships between the density of lymphatic vessels (LVD) stained immunohistochemically with lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) and D2-40 (podoplanin) antibodies, the expression of vascular endothelial growth factor (VEGF)-C/D, selected clinical and pathomorphological factors, and the 5-year overall survival of gastric cancer patients. Statistical analysis showed no impact of increased intratumoral or peritumoral LVD on gastric cancer patient survival, irrespective of the protein used to stain lymphatic vessels. Analysis showed that the probability of overall survival was decreased in the cases with enhanced VEGF-D immunoreactivity (P = 0.0045). The study showed that the studied markers cannot be used to determine the required extent of the surgical procedure, as they have no statistically significant correlation with the degree of progression of the cancer, the stage of the disease assessed according to the TNM 5th classification of malignant tumors, clinicopathological features, and patient survival. VEGF-D is the only marker that can be regarded as an unfavorable prognostic indicator for patients with advanced gastric cancer.

  8. Chimeric Anti-Human Podoplanin Antibody NZ-12 of Lambda Light Chain Exerts Higher Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity Compared with NZ-8 of Kappa Light Chain.

    PubMed

    Kaneko, Mika K; Abe, Shinji; Ogasawara, Satoshi; Fujii, Yuki; Yamada, Shinji; Murata, Takeshi; Uchida, Hiroaki; Tahara, Hideaki; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Podoplanin (PDPN), a type I transmembrane 36-kDa glycoprotein, is expressed not only in normal cells, such as renal epithelial cells (podocytes), lymphatic endothelial cells, and pulmonary type I alveolar cells, but also in cancer cells, including brain tumors and lung squamous cell carcinomas. Podoplanin activates platelet aggregation by binding to C-type lectin-like receptor-2 (CLEC-2) on platelets, and the podoplanin/CLEC-2 interaction facilitates blood/lymphatic vessel separation. We previously produced neutralizing anti-human podoplanin monoclonal antibody (mAb), clone NZ-1 (rat IgG2a, lambda), which neutralizes the podoplanin/CLEC-2 interaction and inhibits platelet aggregation and cancer metastasis. Human-rat chimeric antibody, NZ-8, was previously developed using variable regions of NZ-1 and human constant regions of heavy chain (IgG1) and light chain (kappa chain). Although NZ-8 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cells, the binding affinity of NZ-8 was lower than that of NZ-1. Herein, we produced a novel human-rat chimeric antibody, NZ-12, the constant regions of which consist of IgG1 heavy chain and lambda light chain. Using flow cytometry, we demonstrated that the binding affinity of NZ-12 was much higher than that of NZ-8. Furthermore, ADCC and CDC activities of NZ-12 were significantly increased against glioblastoma cell lines (LN319 and D397) and lung cancer cell line (PC-10). These results suggested that NZ-12 could become a promising therapeutic antibody against podoplanin-expressing brain tumors and lung cancers.

  9. Superior sensitivity of novel molecular imaging probe: simultaneously targeting two types of endothelial injury markers

    PubMed Central

    Sun, Dawei; Nakao, Shintaro; Xie, Fang; Zandi, Souska; Schering, Alexander; Hafezi-Moghadam, Ali

    2010-01-01

    The need remains great for early diagnosis of diseases. The special structure of the eye provides a unique opportunity for noninvasive light-based imaging of fundus vasculature. To detect endothelial injury at the early and reversible stage of adhesion molecule up-regulation, we generated novel imaging agents that target two distinct types of endothelial molecules, a mediator of rolling, P-selectin, and one that mediates firm adhesion, ICAM-1. Interactions of these double-conjugated fluorescent microspheres (MSs) in retinal or choroidal microvasculature were visualized in live animals by scanning laser ophthalmoscopy. The new imaging agents showed significantly higher sensitivity for detection of endothelial injury than singly conjugated MSs (rPSGL-1- or α-ICAM-1-conjugated), both in terms of rolling (P<0.01) and firm adhesion (P<0.01). The rolling flux of α-ICAM-1-conjugated MSs did not differ in EIU animals, whereas double-conjugated MSs showed significantly higher rolling flux (P<0.01), revealing that ICAM-1 in vivo supports rolling, once MS interaction with the endothelium is initiated. Double-conjugated MSs specifically detected firmly adhering leukocytes (P<0.01), allowing in vivo quantification of immune response. Antiinflammatory treatment with dexamethasone led to reduced leukocyte accumulation (P<0.01) as well as MS interaction (P<0.01), which suggests that treatment success and resolution of inflammation is quantitatively reflected with this molecular imaging approach. This work introduces novel imaging agents for noninvasive detection of endothelial injury in vivo. Our approach may be developed further to diagnose human disease at a much earlier stage than currently possible.—Sun, D., Nakao, S., Xie, F., Zandi, S., Schering, A., Hafezi-Moghadam, A. Superior sensitivity of novel molecular imaging probe: simultaneously targeting two types of endothelial injury markers. PMID:20103715

  10. Tumor endothelial marker 7 (TEM-7): a novel target for antiangiogenic therapy.

    PubMed

    Bagley, Rebecca G; Rouleau, Cecile; Weber, William; Mehraein, Khodadad; Smale, Robert; Curiel, Maritza; Callahan, Michelle; Roy, Andre; Boutin, Paula; St Martin, Thia; Nacht, Mariana; Teicher, Beverly A

    2011-11-01

    Antiangiogenesis has been validated as a therapeutic strategy to treat cancer, however, a need remains to identify new targets and therapies for specific diseases and to improve clinical benefit from antiangiogenic agents. Tumor endothelial marker 7 (TEM-7) was investigated as a possible target for therapeutic antiangiogenic intervention in cancer. TEM-7 expression was assessed by in situ hybridization or by immunohistochemistry (IHC) in 130 formalin-fixed paraffin-embedded (FFPE) and 410 frozen human clinical specimens of cancer plus 301 normal tissue samples. In vitro TEM-7 expression was evaluated in 4 human endothelial cell models and in 32 human cancer cell lines by RT-PCR and flow cytometry. An anti-TEM-7 antibody was tested in vitro on human SKOV3 ovarian and MDA-MB-231 breast carcinoma cells that expressed TEM-7 in antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis assays. In frozen tumor tissues, TEM-7 mRNA and protein was detected in all but one of the cancer types tested and was infrequently expressed in normal frozen tissues. In FFPE tumor tissues, TEM-7 protein was detected by IHC in colon, breast, lung, bladder, ovarian and endometrial cancers and in sarcomas. TEM-7 protein was not detected in head and neck, prostate or liver cancers. TEM-7 expression was restricted to the vasculature and was absent from tumor cells. In vitro, TEM-7 was not detected in human microvascular endothelial cells (HMVEC) or human umbilical vein endothelial cells (HUVEC) but was induced in endothelial precursor/progenitor cells (EPC) in the presence of the mitogen phorbol ester PMA. An anti-TEM-7 antibody mediated ADCC and phagocytosis in SKOV3 and MDA-MB-231 cell lines infected with an adenovirus expressing TEM-7. These data demonstrate that TEM-7 is a vascular protein associated with angiogenic states. TEM-7 is a novel and attractive target for antiangiogenic therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    SciTech Connect

    Vallon, Mario; Rohde, Franziska; Janssen, Klaus-Peter; Essler, Markus

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  12. Expression pattern of tumor endothelial marker 8 protein in gallbladder carcinomas.

    PubMed

    Maurya, Sanjeev Kumar; Tewari, Mallika; Kumar, Mohan; Thakur, Mahendra Kumar; Shukla, Hari Shanker

    2011-01-01

    Tumor endothelial marker 8 protein (TEM8) is highly specific to tumor angiogenesis and is not required for normal adult angiogenesis and hence might prove to be a target for anti-angiogenic therapies in the future. We here evaluated protein and gene expression patterns in human endothelial cells of benign gallbladder - gallstone diseases (GSDs) and gallbladder carcinomas (GBCs) using immunostaining, immunofluorescence and western blotting techniques. Subjects comprised 175 GBC patients, 38 males and 137 females, aged 30-85 years (mean age 50.3 ± 13.4 years) and twenty with GSDs, aged 30-75 years, (51.4 ± 10.0 years) for comparison (male 4/20 and females 16/20). TEM8 protein expression increased significantly (p < 0.0001) with increasing stage of GBC and was mostly limited to endothelial cells, although there was no significant change with the grade. Interestingly, only 80-85 kDa and 60 kDa isoforms of TEM8 increased significantly whereas 45 kDa isoform was absent in GBCs. Conclusions- These results suggest that TEM8 plays an unknown important biological role to promote tumor angiogenesis in GBC.

  13. Endothelial Dysfunction: An Early Cardiovascular Risk Marker in Asymptomatic Obese Individuals with Prediabetes

    PubMed Central

    Gupta, Alok K.; Ravussin, Eric; Johannsen, Darcy L.; Stull, April J.; Cefalu, William T.; Johnson, William D.

    2012-01-01

    Aims To elucidate if endothelial dysfunction is an early CV risk marker in obese men and women with prediabetes. Study Design Cross-sectional study. Place and Duration of Study Clinical Research Unit, Pennington Biomedical Research Center, Baton Rouge, LA. United States. Methodology Overweight and obese status denotes an increasing adipose tissue burden which spills over into ectopic locations, including the visceral compartment, muscle and liver. Associated co-morbidities enhance cardiovascular (CV) risk. Endothelium which is the largest receptor-effector end-organ in our bodies, while responding to numerous physical and chemical stimuli maintains vascular homeostasis. Endothelial dysfunction (ED) is the initial perturbation, which precedes fatty streak known to initiate atherosclerosis: insidious process which often culminates as sudden catastrophic CV adverse event. Asymptomatic men and women; [n=42] coming in after an overnight fast had demographic, anthropometric, clinical chemistry and resting endothelial function [EF: increased test finger peripheral arterial tone (PAT) relative to control; expressed as relative hyperemia index (RHI)] assessments. Results Adults with desirable weight [n=12] and overweight [n=8] state, had normal fasting plasma glucose [Mean(SD)]: FPG [91.1(4.5), 94.8(5.8) mg/dL], insulin [INS, 2.3(4.4), 3.1(4.8) μU/ml], insulin sensitivity by homeostasis model assessment [HOMA-IR, 0.62(1.2), 0.80(1.2)] and desirable resting clinic blood pressure [SBP/DBP, 118(12)/74(5), 118(13)/76(8) mmHg]. Obese adults [n=22] had prediabetes [FPG, 106.5(3.5) mg/dL], hyperinsulinemia [INS 18.0(5.2) μU/ml], insulin resistance [HOMA-IR 4.59(2.3)], prehypertension [PreHTN; SBP/DBP 127(13)/81(7) mmHg] and endothelial dysfunction [ED; reduced RHI 1.7(0.3) vs. 2.4(0.3); all p<0.05]. Age-adjusted RHI correlated with BMI [r=−0.53; p<0.001]; however, BMI-adjusted RHI was not correlated with age [r=−0.01; p=0.89]. Conclusion Endothelial dysfunction reflective of

  14. Postnatal Deletion of Podoplanin in Lymphatic Endothelium Results in Blood Filling of the Lymphatic System and Impairs Dendritic Cell Migration to Lymph Nodes.

    PubMed

    Bianchi, Roberta; Russo, Erica; Bachmann, Samia B; Proulx, Steven T; Sesartic, Marko; Smaadahl, Nora; Watson, Steve P; Buckley, Christopher D; Halin, Cornelia; Detmar, Michael

    2017-01-01

    The lymphatic vascular system exerts major physiological functions in the transport of interstitial fluid from peripheral tissues back to the blood circulation and in the trafficking of immune cells to lymph nodes. Previous studies in global constitutive knockout mice for the lymphatic transmembrane molecule podoplanin reported perinatal lethality and a complex phenotype with lung abnormalities, cardiac defects, lymphedema, blood-filled lymphatic vessels, and lack of lymph node organization, reflecting the importance of podoplanin expression not only by the lymphatic endothelium but also by a variety of nonendothelial cell types. Therefore, we aimed to dissect the specific role of podoplanin expressed by adult lymphatic vessels. We generated an inducible, lymphatic-specific podoplanin knockout mouse model (Pdpn(ΔLEC)) and induced gene deletion postnatally. Pdpn(ΔLEC) mice were viable, and their lymphatic vessels appeared morphologically normal with unaltered fluid drainage function. Intriguingly, Pdpn(ΔLEC) mice had blood-filled lymph nodes and vessels, most frequently in the neck and axillary region, and displayed a blood-filled thoracic duct, suggestive of retrograde filling of blood from the blood circulation into the lymphatic system. Histological and fluorescence-activated cell sorter analyses revealed normal lymph node organization with the presence of erythrocytes within lymph node lymphatic vessels but not surrounding high endothelial venules. Moreover, fluorescein isothiocyanate painting experiments revealed reduced dendritic cell migration to lymph nodes in Pdpn(ΔLEC) mice. These results reveal an important role of podoplanin expressed by lymphatic vessels in preventing postnatal blood filling of the lymphatic vascular system and in contributing to efficient dendritic cell migration to the lymph nodes. © 2016 American Heart Association, Inc.

  15. Leptin increases blood pressure and markers of endothelial activation during pregnancy in rats.

    PubMed

    Ibrahim, Hisham Saleh; Omar, Effat; Froemming, Gabrielle Ruth Anisah; Singh, Harbindar Jeet

    2013-01-01

    Raised leptin levels have been reported in the placentae and serum of women with elevated blood pressure and proteinuria during pregnancy. The role of leptin in this however remains unknown. This study investigates the effect of leptin administration on systolic blood pressure (SBP) and proteinuria and serum markers of endothelial activation during pregnancy in Sprague Dawley rats. From day 1 of pregnancy, 24 rats were randomised into those given either saline (group 1) or leptin at 60 or 120 μ g/kg/body weight/day (groups 2 and 3 resp.). SBP was measured every 5 days and 24-h urinary protein was measured at days 0 and 20 of pregnancy. Animals were euthanised on day 20 of pregnancy, and serum was collected for estimation of E-selectin and ICAM-1. Compared to group 1, SBP during the latter part of the pregnancy was significantly higher in the leptin-treated group (P < 0.01). Urinary protein excretion, serum E-selectin, and ICAM-1 were significantly higher in leptin-treated rats (P < 0.05). It seems that leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases SBP, urinary protein excretion, and markers of endothelial activation. However, further studies are required to examine the underlying mechanism responsible for this and its relevance to preeclampsia in humans.

  16. Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates

    PubMed Central

    2016-01-01

    Colorectal cancer (CRC) is the third most common cancer in the world. The early detection of CRC, during the promotion/progression stages, is an enormous challenge for a successful outcome and remains a fundamental problem in clinical approach. Despite the continuous advancement in diagnostic and therapeutic methods, there is a need for discovery of sensitive and specific, noninvasive biomarkers. Tumor endothelial markers (TEMs) are associated with tumor-specific angiogenesis and are potentially useful to discriminate between tumor and normal endothelium. The most promising TEMs for oncogenic signaling in CRC appeared to be the TEM1, TEM5, TEM7, and TEM8. Overexpression of TEMs especially TEM1, TEM7, and TEM8 in colorectal tumor tissue compared to healthy tissue suggests their role in tumor blood vessels formation. Thus TEMs appear to be perspective candidates for early detection, monitoring, and treatment of CRC patients. This review provides an update on recent data on tumor endothelial markers and their possible use as biomarkers for screening, diagnosis, and therapy of colorectal cancer patients. PMID:27965519

  17. Immunohistochemical Expression of VEGF and Podoplanin in Uterine Cervical Squamous Intraepithelial Lesions

    PubMed Central

    Belfort-Mattos, Patrícia Napoli; Focchi, Gustavo Rubino de Azevedo; Ribalta, Julisa Chamorro Lascasas; Megale De Lima, Tatiana; Nogueira Carvalho, Carmen Regina; Kesselring Tso, Fernanda; De Góis Speck, Neila Maria

    2016-01-01

    VEGF and podoplanin (PDPN) have been identified as angiogenesis and/or lymphangiogenesis regulators and might be essential to restrict tumor growth, progression, and metastasis. In the present study, we evaluate the association between the expression of these markers and CIN grade. Immunohistochemistry was performed in 234 uterine cervical samples using conventional histologic sections or TMA with the monoclonal antibodies to VEGF (C-1 clone) and podoplanin (D2-40 clone). Positive-staining rates of VEGF in 191 CIN specimens were significantly associated with histological grade (P < 0.001). Negative and/or focal immunostaining for PDPN were more frequent in CIN 3 (P = 0.016). We found that patients with CIN 3 more frequently had strong and more diffuse staining for VEGF and diminished staining for PDPN (P = 0.018). Strong and more diffuse VEGF immunoexpressions in CIN 2 and CIN 3 were detected when compared to CIN 1. Negative and/or focal PDPN immunoexpression appear to be more frequent in CIN 3. Moderate to strong VEGF expression may be a tendency among patients with high-grade lesions and diminished PDPN expression. PMID:27313335

  18. Coagulopathy in patients with acute pulmonary embolism: a pilot study of whole blood coagulation and markers of endothelial damage.

    PubMed

    Lehnert, Per; Johansson, Pär I; Ostrowski, Sisse R; Møller, Christian H; Bang, Lia E; Olsen, Peter Skov; Carlsen, Jørn

    2017-02-01

    Whole blood coagulation and markers of endothelial damage were studied in patients with acute pulmonary embolism (PE), and evaluated in relation to PE severity. Twenty-five patients were enrolled prospectively each having viscoelastical analysis of whole blood done using thrombelastography (TEG) and Multiplate aggregometry. Fourteen of these patients were investigated for endothelial damage by ELISA measurements of Syndecan-1 (endothelial glycocalyx degradation), soluble endothelial Selectin (endothelial cell activation), soluble Thrombomodulin (endothelial cell injury) and Histone Complexed DNA fragments (endothelial cytotoxic histones). The mean values of TEG and Multiplate parameters were all within the reference levels, but a significant difference between patients with high and intermediate risk PE was observed for Ly30 (lytic activity) 1.5% [0-10] vs. 0.2% [0-2.2] p = .04, and ADP (platelet reactivity) 92 U [20-145] vs. 59 U [20-111] p = .03. A similar difference was indicated for functional fibrinogen 21 mm [17-29] vs. 18 mm [3-23] p = .05. Analysis of endothelial markers identified a significant difference in circulating levels between high and intermediate risk PE patients for Syndecan-1 118.6 ng/mL [76-133] vs. 36.3 ng/mL [11.8-102.9] p = .008. In conclusion, patients with acute PE had normal whole blood coagulation, but high risk PE patients had signs of increased activity of the haemostatic system and significantly increased level of endothelial glycocalyx degradation.

  19. Differential Expression of Stem Cell Markers and Vascular Endothelial Growth Factor in Human Retinoblastoma Tissue

    PubMed Central

    Kim, Martha; Kim, Jeong Hun; Kim, Jin Hyoung; Kim, Dong Hun

    2010-01-01

    Purpose To investigate the relationship between vascular endothelial growth factor (VEGF) and the cancer stem cell-vascular niche complex in human retinoblastoma tissue. Methods Six human retinoblastoma specimens primarily enucleated for Reese-Ellsworth classification stage 5a were stained to detect cancer stem cell markers, including ABCG2 for the stem cell marker and MCM2 for the neural stem cell marker, as well as to detect VEGF for the angiogenic cytokine. Using immunofluorescence, the expression of these proteins was analyzed, and their relative locations noted. Results In non-neoplastic retina of tumor-bearing eyes, ABCG2 and MCM2 were sporadically expressed in the ganglion cell layer and the inner nuclear layer, whereas VEGF was sporadically expressed in inner retina where retinal vessels are abundantly distributed. In the tumor, ABCG2 was strongly expressed out of Wintersteiner rosettes, whereas MCM2 and VEGF were strongly stained in the rosettes. Interestingly, the outer portion of the rosettes was positive for MCM2, and the inner portion of the rosettes was positive for VEGF. Conclusions Our data demonstrated that MCM2 and VEGF are strongly expressed in the rosettes of the tumor, which were far from the area of ABCG2-positive cells. Although VEGF might not directly contribute to the cancer stem cell-vascular niche complex, it could play some role in the differentiation of tumor cells to build up the rosettes. PMID:20157412

  20. Differential expression of stem cell markers and vascular endothelial growth factor in human retinoblastoma tissue.

    PubMed

    Kim, Martha; Kim, Jeong Hun; Kim, Jin Hyoung; Kim, Dong Hun; Yu, Young Suk

    2010-02-01

    To investigate the relationship between vascular endothelial growth factor (VEGF) and the cancer stem cell-vascular niche complex in human retinoblastoma tissue. Six human retinoblastoma specimens primarily enucleated for Reese-Ellsworth classification stage 5a were stained to detect cancer stem cell markers, including ABCG2 for the stem cell marker and MCM2 for the neural stem cell marker, as well as to detect VEGF for the angiogenic cytokine. Using immunofluorescence, the expression of these proteins was analyzed, and their relative locations noted. In non-neoplastic retina of tumor-bearing eyes, ABCG2 and MCM2 were sporadically expressed in the ganglion cell layer and the inner nuclear layer, whereas VEGF was sporadically expressed in inner retina where retinal vessels are abundantly distributed. In the tumor, ABCG2 was strongly expressed out of Wintersteiner rosettes, whereas MCM2 and VEGF were strongly stained in the rosettes. Interestingly, the outer portion of the rosettes was positive for MCM2, and the inner portion of the rosettes was positive for VEGF. Our data demonstrated that MCM2 and VEGF are strongly expressed in the rosettes of the tumor, which were far from the area of ABCG2-positive cells. Although VEGF might not directly contribute to the cancer stem cell-vascular niche complex, it could play some role in the differentiation of tumor cells to build up the rosettes.

  1. Endothelial cell labeling with indium-111-oxine as a marker of cell attachment to bioprosthetic surfaces

    SciTech Connect

    Sharefkin, J.B.; Lather, C.; Smith, M.; Rich, N.M.

    1983-03-01

    Canine vascular endothelium labeled with indium-111-oxine was used as a marker of cell attachment to vascular prosthetic surfaces with complex textures. Primarily cultured and freshly harvested endothelial cells both took up the label rapidly. An average of 72% of a 32 micro Ci labeling dose was taken up by 1.5 X 10(6) cells in 10 min in serum-free medium. Over 95% of freshly labeled cells were viable by trypan blue tests and only 5% of the label was released after 1 h incubations at 37 degrees C. Labeled and unlabeled cells had similar rates of attachment to plastic dishes. Scanning electron microscopic studies showed that labeled cells retained their ability to spread on tissue culture dishes even at low (1%) serum levels. Labeled endothelial cells seeded onto Dacron or expanded polytetrafluoroethylene vascular prostheses by methods used in current surgical models could be identified by autoradiography of microscopic sections of the prostheses, and the efficiency of cell attachment to the prosthesis could be measured by gamma counting. Indium-111 labeling affords a simple and rapid way to measure initial cell attachment to, and distribution on, vascular prosthetic materials. The method could also allow measurement of early cell loss from a flow surface in vivo by using external gamma imaging.

  2. Oral glucose tolerance test effects on endothelial inflammation markers in healthy subjects and diabetic patients.

    PubMed

    Derosa, G; D'Angelo, A; Salvadeo, S A T; Ferrari, I; Fogari, E; Gravina, A; Mereu, R; Palumbo, I; Maffioli, P; Randazzo, S; Cicero, A F G

    2010-01-01

    The aim of this study was to evaluate the effect of an oral glucose tolerance test (OGTT) on the level of endothelial dysfunction and vascular inflammation markers in healthy subjects (H) and diabetic overweight patients (D). We enrolled 256 healthy subjects and 274 type 2 diabetic patients. We evaluated blood glucose (BG), soluble intercellular adhesion molecule-1 (sICAM-1), interleukin-6 (IL-6), high-sensitivity C reactive protein (hsCRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), soluble E-selectin (sE-selectin), and tumor necrosis factor-alpha (TNF-alpha) at baseline and after OGTT. We observed that BG, sICAM-1, IL-6, hs-CRP, sVCAM-1, sE-selectin, and TNF-alpha values were higher in D group than in H group. In a large sample of adult healthy subjects and type 2 diabetics we observed that both answer to an OGTT with a significant increase in biomarkers of systemic low-grade inflammation and endothelial dysfunction such as hsCRP, IL-6, TNF-alpha, sICAM-1, sVCAM-1, and sE-selectin. Type 2 diabetics experienced, however, a more significant increase in TNF-alpha, and sE-selectin.

  3. Antibodies to endothelial cells in systemic lupus erythematosus: a potential marker for nephritis and vasculitis.

    PubMed

    D'Cruz, D P; Houssiau, F A; Ramirez, G; Baguley, E; McCutcheon, J; Vianna, J; Haga, H J; Swana, G T; Khamashta, M A; Taylor, J C

    1991-08-01

    Using an ELISA, anti-endothelial cell antibodies (AECA) have been found in sera obtained at the time of renal biopsy in 46 out of 57 patients (81%) with systemic lupus erythematosus (SLE) and nephritis (mean binding index (BI) = 84% +/- 52.8) compared with 22 out of 50 SLE patients (44%) without nephritis (mean BI = 45% +/- 35.9). Seventy normal human sera had a mean BI of 10% +/- 9.8. The highest levels were seen in patients with diffuse proliferative glomerulonephritis (WHO grade IV) and in patients with proteinuria and nephrotic syndrome. When the biopsies were assessed for activity and chronicity scores, AECA were associated with active renal lesions (P less than 0.001). AECA levels correlated with low complement levels but not with anti-DNA antibodies to extractable nuclear antigens (ENA), anti-cardiolipin or anti-neutrophil cytoplasmic antibodies. The presence of AECA conferred a positive predictive value of 0.68 for the presence of nephritis. Twenty-five patients had active vasculitis at the time of assay and the highest AECA values were seen in patients with both nephritis and vasculitis. No correlation was seen with serum immunoglobulin levels and immune complexes did not bind significantly to the endothelial surface. The possible role of these antibodies as a marker in lupus nephritis is discussed.

  4. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention.

    PubMed

    Montero, D; Walther, G; Perez-Martin, A; Roche, E; Vinet, A

    2012-05-01

    With an increasing prevalence, pediatric obesity is often a prelude to adulthood obesity, and represents a major public health issue. Comorbidities are very common and severe in obese adults, justifying the search for earlier markers or risk factors for cardiovascular diseases in obese children. Endothelial dysfunction has been found to be present in the early stages of atherosclerosis, and can be non-invasively assessed with widely accepted and well-standardized techniques at the macrocirculation level. Endothelial dysfunction at the microcirculation level is less documented in obese children. Obesity in children has been repeatedly and independently correlated to endothelial dysfunction, inflammation and oxidative stress markers, although the relationship between these factors remains to be investigated. However, this would not only allow substantial improvements in risk stratification, but also provide essential data regarding the evolution of endothelial dysfunction in childhood obesity, especially during puberty when pro-inflammatory and pro-oxidative changes, with relative insulin resistance, occur. Therapeutic strategies such as lifestyle interventions in early childhood obesity appear all the more necessary, optimally including both exercise and diet because of their known effects on inflammatory and oxidative stress markers, potentially reversing endothelial dysfunction.

  5. Relationship between Inflammatory Markers, Endothelial Activation Markers, and Carotid Intima-Media Thickness in HIV-Infected Patients Receiving Antiretroviral Therapy

    PubMed Central

    Ross, Allison C.; Rizk, Nesrine; O'Riordan, Mary Ann; Dogra, Vikram; El-Bejjani, Dalia; Storer, Norma; Harrill, Danielle; Tungsiripat, Marisa; Adell, Jerome; McComsey, Grace A.

    2014-01-01

    Background Human immunodeficiency virus (HIV)–infected patients are at increased risk of cardiovascular disease, which may be related to chronic inflammation and endothelial dysfunction despite virological control with antiretroviral therapy. The relationship between carotid intima-media thickness (IMT), a surrogate marker for cardiovascular disease, proinflammatory cytokines, and endothelial activation markers has not been fully explored in HIV-infected patients who are receiving antiretroviral therapy. Methods We conducted a prospective, cross-sectional, observational study of treated HIV-infected patients and healthy control subjects to evaluate the relationship between carotid IMT, proinflammatory cytokines, endothelial activation biomarkers, and metabolic parameters in treated HIV-infected patients, compared with healthy control subjects. Results We enrolled 73 HIV-infected patients and 21 control subjects. Common carotid artery and internal carotid artery IMT measurements, as well as tumor necrosis factor–α, high-sensitivity C-reactive protein, inter-leukin-6, myeloperoxidase, and soluble vascular cell adhesion molecule-1 levels were higher in the HIV-infected group. High-sensitivity C-reactive protein was the only biomarker that was positively correlated with carotid IMT in both groups. In the HIV-infected group, soluble vascular cell adhesion molecule–1 was positively correlated with all inflammatory cytokine levels. In multiple regression analysis, soluble vascular cell adhesion molecule–1, myeloperoxidase, and tumor necrosis factor–α levels were all associated with internal carotid artery IMT in the HIV-infected group, whereas age was associated with both common carotid artery and internal carotid artery IMT. Conclusions Enhanced endothelial activation, inflammation, and increased carotid IMT occur in HIV-infected patients despite antiretroviral therapy. Inflammatory markers are associated with endothelial activation, and both are associated

  6. Anti-podoplanin Monoclonal Antibody LpMab-7 Detects Metastatic Lesions of Osteosarcoma.

    PubMed

    Kaneko, Mika K; Oki, Hiroharu; Ogasawara, Satoshi; Takagi, Michiaki; Kato, Yukinari

    2015-06-01

    Osteosarcoma is the most common primary malignant bone tumor and is highly metastatic to the lungs. Therefore, the development of a novel molecular targeting therapy against metastasis of osteosarcoma is necessary. A platelet aggregation-inducing factor, podoplanin/aggrus, is involved in tumor metastasis. Furthermore, podoplanin expression was reported to be involved in the poor prognosis of osteosarcoma patients. However, the association between podoplanin expression and metastasis of osteosarcoma remains unclear because of the lack of highly sensitive anti-podoplanin monoclonal antibodies (MAbs). In this study, we used a novel anti-podoplanin MAb, LpMab-7, which is more sensitive than well-known anti-podoplanin MAbs in immunohistochemistry. Immunohistochemical analysis using LpMab-7 showed that podoplanin expression at primary lesions is observed in 15 out of 16 (93.8%) cases. Furthermore, podoplanin expression at metastatic lesions was higher compared with primary lesions in three out of four (75%) cases with lung metastasis. Because LpMab-7 has high sensitivity against podoplanin, it is expected to be useful for molecular targeting therapy for osteosarcomas.

  7. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    PubMed Central

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  8. Interactions between autophagic and endo-lysosomal markers in endothelial cells.

    PubMed

    Oeste, Clara L; Seco, Esther; Patton, Wayne F; Boya, Patricia; Pérez-Sala, Dolores

    2013-05-01

    Autophagic and endo-lysosomal degradative pathways are essential for cell homeostasis. Availability of reliable tools to interrogate these pathways is critical to unveil their involvement in physiology and pathophysiology. Although several probes have been recently developed to monitor autophagic or lysosomal compartments, their specificity has not been validated through co-localization studies with well-known markers. Here, we evaluate the selectivity and interactions between one lysosomal (Lyso-ID) and one autophagosomal (Cyto-ID) probe under conditions modulating autophagy and/or endo-lysosomal function in live cells. The probe for acidic compartments Lyso-ID was fully localized inside vesicles positive for markers of late endosome-lysosomes, including Lamp1-GFP and GFP-CINCCKVL. Induction of autophagy by amino acid deprivation in bovine aortic endothelial cells caused an early and potent increase in the fluorescence of the proposed autophagy dye Cyto-ID. Cyto-ID-positive compartments extensively co-localized with the autophagosomal fluorescent reporter RFP-LC3, although the time and/or threshold for organelle detection was different for each probe. Interestingly, use of Cyto-ID in combination with Lysotracker Red or Lyso-ID allowed the observation of structures labeled with either one or both probes, the extent of co-localization increasing upon treatment with protease inhibitors. Inhibition of the endo-lysosomal pathway with chloroquine or U18666A resulted in the formation of large Cyto-ID and Lyso-ID-positive compartments. These results constitute the first assessment of the selectivity of Cyto-ID and Lyso-ID as probes for the autophagic and lysosomal pathways, respectively. Our observations show that these probes can be used in combination with protein-based markers for monitoring the interactions of both pathways in live cells.

  9. Monoclonal Antibody against Angiotensin-Converting Enzyme: Its Use as a Marker for Murine, Bovine, and Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Auerbach, R.; Alby, L.; Grieves, J.; Joseph, J.; Lindgren, C.; Morrissey, L. W.; Sidky, Y. A.; Tu, M.; Watt, S. L.

    1982-12-01

    A monoclonal antibody has been prepared against rat angiotensin-converting enzyme (ACE). By selection for antibody binding to endothelial cells of bovine rather than rat origin we have obtained a reagent that has broad cross-species binding properties and that can at the same time serve as a useful marker for the surface of endothelial cells. The IgM-producing clone that we have established, α -ACE 3.1.1, has been grown in ascites form to yield ascites fluid that binds selectively to immobilized ACE at a >1:10,000 dilution. By use of enzyme-linked immunosorbent assays, immunofluorescence histology, and flow cytometry, we have demonstrated the presence of ACE on endothelial cells of murine, bovine, and human origin. By means of a fluorescence-activated cell sorter (FACS-IV) we have been able to selectively isolate viable endothelial cells from a mixture of endothelial cells and fibroblasts. We believe the antibody will be useful not only for the selection and in vitro cultivation of endothelial cells but also as a tool for the identification and pharmacological study of ACE.

  10. Chronic exposure to biomass fuel smoke and markers of endothelial inflammation.

    PubMed

    Caravedo, M A; Herrera, P M; Mongilardi, N; de Ferrari, A; Davila-Roman, V G; Gilman, R H; Wise, R A; Miele, C H; Miranda, J J; Checkley, W

    2016-10-01

    Indoor smoke exposure may affect cardiovascular disease (CVD) risk via lung-mediated inflammation, oxidative stress, and endothelial inflammation. We sought to explore the association between indoor smoke exposure from burning biomass fuels and a selected group of markers for endothelial inflammation. We compared serum concentrations of amyloid A protein, E-selectin, soluble intercellular adhesion molecule 1 (ICAM-1) and VCAM-1, von Willebrand factor (vWF), and high-sensitivity C-reactive protein (hs-CRP) in 228 biomass-exposed vs. 228 non-exposed participants living in Puno, Peru. Average age was 56 years (s.d. = 13), average BMI was 26.5 kg/m(2) (s.d. = 4.4), 48% were male, 59.4% completed high school, and 2% reported a physician diagnosis of CVD. In unadjusted analysis, serum levels of soluble ICAM-1 (330 vs. 302 ng/ml; P < 0.001), soluble VCAM-1 (403 vs. 362 ng/ml; P < 0.001), and E-selectin (54.2 vs. 52.7 ng/ml; P = 0.05) were increased in biomass-exposed vs. non-exposed participants, respectively, whereas serum levels of vWF (1148 vs. 1311 mU/ml; P < 0.001) and hs-CRP (2.56 vs. 3.12 mg/l; P < 0.001) were decreased, respectively. In adjusted analyses, chronic exposure to biomass fuels remained positively associated with serum levels of soluble ICAM-1 (P = 0.03) and VCAM-1 (P = 0.05) and E-selectin (P = 0.05), and remained negatively associated with serum levels of vWF (P = 0.02) and hs-CRP (P < 0.001). Daily exposure to biomass fuel smoke was associated with important differences in specific biomarkers of endothelial inflammation and may help explain accelerated atherosclerosis among those who are chronically exposed.

  11. The brain-tumor related protein podoplanin regulates synaptic plasticity and hippocampus-dependent learning and memory

    PubMed Central

    Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M.; Kerjaschki, Dontscho; Pollak, Daniela D.; Uhrin, Pavel; Monje, Francisco J.

    2016-01-01

    Abstract Introduction: Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Materials and methods: Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Results: Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. Discussion: This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology.Key messagesPodoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions.Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation.Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these

  12. The brain-tumor related protein podoplanin regulates synaptic plasticity and hippocampus-dependent learning and memory.

    PubMed

    Cicvaric, Ana; Yang, Jiaye; Krieger, Sigurd; Khan, Deeba; Kim, Eun-Jung; Dominguez-Rodriguez, Manuel; Cabatic, Maureen; Molz, Barbara; Acevedo Aguilar, Juan Pablo; Milicevic, Radoslav; Smani, Tarik; Breuss, Johannes M; Kerjaschki, Dontscho; Pollak, Daniela D; Uhrin, Pavel; Monje, Francisco J

    2016-12-01

    Podoplanin is a cell-surface glycoprotein constitutively expressed in the brain and implicated in human brain tumorigenesis. The intrinsic function of podoplanin in brain neurons remains however uncharacterized. Using an established podoplanin-knockout mouse model and electrophysiological, biochemical, and behavioral approaches, we investigated the brain neuronal role of podoplanin. Ex-vivo electrophysiology showed that podoplanin deletion impairs dentate gyrus synaptic strengthening. In vivo, podoplanin deletion selectively impaired hippocampus-dependent spatial learning and memory without affecting amygdala-dependent cued fear conditioning. In vitro, neuronal overexpression of podoplanin promoted synaptic activity and neuritic outgrowth whereas podoplanin-deficient neurons exhibited stunted outgrowth and lower levels of p-Ezrin, TrkA, and CREB in response to nerve growth factor (NGF). Surface Plasmon Resonance data further indicated a physical interaction between podoplanin and NGF. This work proposes podoplanin as a novel component of the neuronal machinery underlying neuritogenesis, synaptic plasticity, and hippocampus-dependent memory functions. The existence of a relevant cross-talk between podoplanin and the NGF/TrkA signaling pathway is also for the first time proposed here, thus providing a novel molecular complex as a target for future multidisciplinary studies of the brain function in the physiology and the pathology. Key messages Podoplanin, a protein linked to the promotion of human brain tumors, is required in vivo for proper hippocampus-dependent learning and memory functions. Deletion of podoplanin selectively impairs activity-dependent synaptic strengthening at the neurogenic dentate-gyrus and hampers neuritogenesis and phospho Ezrin, TrkA and CREB protein levels upon NGF stimulation. Surface plasmon resonance data indicates a physical interaction between podoplanin and NGF. On these grounds, a relevant cross-talk between podoplanin and NGF as well

  13. Generation and Characterization of Telomerase-Transfected Human Lymphatic Endothelial Cells with an Extended Life Span

    PubMed Central

    Nisato, Riccardo E.; Harrison, Jillian A.; Buser, Raphaele; Orci, Lelio; Rinsch, Chris; Montesano, Roberto; Dupraz, Philippe; Pepper, Michael S.

    2004-01-01

    The study of lymphatic endothelial cells and lymphangiogenesis has, in the past, been hampered by the lack of lymphatic endothelial-specific markers. The recent discovery of several such markers has permitted the isolation of lymphatic endothelial cells (LECs) from human skin. However, cell numbers are limited and purity is variable with the different isolation procedures. To overcome these problems, we have transfected human dermal microvascular endothelial cells (HDMVECs) with a retrovirus containing the coding region of human telomerase reverse transcriptase (hTERT), and have produced a cell line, hTERT-HDLEC, with an extended lifespan. hTERT-HDLEC exhibit a typical cobblestone morphology when grown in culture, are contact-inhibited, and express endothelial cell-specific markers. hTERT-HDLEC also express the recognized lymphatic markers, Prox-1, LYVE-1 and podoplanin, as well as integrin α9, but do not express CD34. They also form tube-like structures in three-dimensional collagen gels when stimulated with vascular endothelial growth factors -A and -C. Based on these currently recognized criteria, these cells are LEC. Surprisingly, we also found that the widely studied HMEC-1 cell line expresses recognized lymphatic markers; however, these cells are also CD34-positive. In summary, the ectopic expression of hTERT increases the life span of LECs and does not affect their capacity to form tube-like structures in a collagen matrix. The production and characterization of hTERT-HDLEC will facilitate the study of the properties of lymphatic endothelium in vitro. PMID:15215158

  14. Endosomal recycling regulates Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8-dependent cell spreading.

    PubMed

    Gu, Jingsheng; Faundez, Victor; Werner, Erica

    2010-07-15

    Mechanisms for receptor-mediated anthrax toxin internalization and delivery to the cytosol are well understood. However, far less is known about the fate followed by anthrax toxin receptors prior and after cell exposure to the toxin. We report that Anthrax Toxin Receptor 1/Tumor Endothelial Marker 8 (TEM8) localized at steady state in Rab11a-positive and transferrin receptor-containing recycling endosomes. TEM8 followed a slow constitutive recycling route of approximately 30min as determined by pulsed surface biotinylation and chase experiments. A Rab11a dominant negative mutant and Myosin Vb tail expression impaired TEM8 recycling by sequestering TEM8 in intracellular compartments. Sequestration of TEM8 in intracellular compartments with monensin coincided with increased TEM8 association with a multi-protein complex isolated with antibodies against transferrin receptor. Addition of the cell-binding component of anthrax toxin, Protective Antigen, reduced TEM8 half-life from 7 to 3 hours, without preventing receptor recycling. Pharmacological and molecular perturbation of recycling endosome function using monensin, dominant negative Rab11a, or myosin Vb tail, reduced PA binding efficiency and TEM8-dependent cell spreading on PA-coated surfaces without affecting toxin delivery to the cytosol. These results indicate that the intracellular fate of TEM8 differentially affect its cell adhesion and cell intoxication functions.

  15. Markers of endothelial dysfunction and evaluation of vascular reactivity tests in Behçet disease.

    PubMed

    Ozuguz, Pinar; Karabulut, Ayse Anil; Tulmac, Murat; Kisa, Ucler; Kocak, Mukadder; Gunduz, Ozgur

    2014-11-01

    We assessed endothelial dysfunction (ED) in patients with Behcet disease (BD; n=40) and healthy controls (n=20). Serum lipid, homocysteine, asymmetric dimethylarginine (ADMA) and high-sensitivity C-reactive protein (hsCRP) levels, erythrocyte sedimentation rates (ESRs), and ultrasonographic flow-mediated dilatation (FMD) were measured. Mean hsCRP, ESR, homocysteine, and ADMA were significantly higher in the BD group (P<.001 for all). Patients with active BD had higher serum levels of hsCRP, homocysteine, and ESR compared with those in remission (P<.001, P<.001, and P=.005, respectively). Flow-mediated dilatation was significantly lower in patients with BD than in controls (P=.001). Flow-mediated dilatation correlated negatively with BD duration and serum ADMA levels (P<.001, r=-.745 and P<.001, r=-.682); a positive correlation was seen between serum ADMA levels and BD duration (P<.001, r=.552). Only stepwise multivariate regression analysis revealed BD duration to have a significant effect on FMD. Flow-mediated dilatation, in conjunction with markers of inflammation, may evaluate ED in patients with BD.

  16. Carotid Endothelial VCAM-1 Is an Early Marker of Carotid Atherosclerosis and Predicts Coronary Artery Disease in Swine

    PubMed Central

    Masseau, I.; Bowles, D. K.

    2015-01-01

    Objective The aim was to determine if endothelial VCAM-1 (eVCAM-1) expression in the common carotid artery (CCA) would correlate with predictive markers of atherosclerotic disease, would precede reduction of markers of endothelial cell function and would predict coronary artery disease (CAD). Methods and results Carotid arterial segments (bifurcation, proximal and distal CCA) were harvested from 14 and 24 month-old male castrated familial hypercholesterolemic (FH) swine, a model of spontaneous atherosclerosis. Quantification of local expression of eVCAM-1, intimal macrophage accumulation, oxidative stress, intima-media (I/M) ratio, intima-media thickness (IMT), endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) in selected regions of the carotids revealed a relationship between local inflammation and atheroscle-rotic plaque progression. Importantly, inflammation was not uniform throughout the CCA. Endo-thelial VCAM-1 expression was the greatest at the bifurcation and increased with age. Finally, eV-CAM-1 best estimated the severity of CAD compared to blood levels of glucose, hypercholestero-lemia, carotid IMT, and p-eNOS. Conclusion Our data suggested that eVCAM-1 was closely associated with atherosclerotic plaque progression and preceded impairment of EDD. Thus, this study supported the use of carotid VCAM-1 targeting agents to estimate the severity of CAD. PMID:26702331

  17. The effect of high altitude on endothelial and vascular dysfunction markers in preeclamptic patients.

    PubMed

    Bashir, S O; Suekit, H; Elkarib, A O; Dafaalla, M A; Abd Elrouf, M B; Morsy, M D; Eskandar, M

    2015-12-01

    Placental hypoxia, a major component of the pathophysiology of preeclampsia, is associated with various maternal vascular and endothelial dysfunctions. The higher incidence of preeclampsia at high altitude remains incompletely explained. The aim of the present study was to investigate the effect of high altitude on some endothelial and vascular dysfunction markers in normal and preeclamptic pregnancies. Eighty pregnant women (Paras 2-4) were enrolled in this study, which included four groups (each n = 20): normal pregnancies at low altitude (NL), normal pregnancies at high altitude (NH), preeclamptic pregnancies at low altitude (PL), and preeclamptic pregnancies at high altitude (PH). In normal pregnancies at high altitude serum ET-1, plasma TXA2, and serum TNF-α levels increased significantly with a significant reduction in plasma PGI2 (66.81 ± 7.36, 122.86 ± 13.37, 102.23 ± 13.31, 191.57 ± 19.68, respectively) compared with the NL group (48.92 ± 4.58, 89.03 ± 10.67, 69.86 ± 7.97, 238.01 ± 24.55, respectively). In preeclampsia at low altitude serum ET-1, plasma TXA2, and serum TNF-α levels increased significantly with a significant reduction in plasma PGI2 (88.39 ± 9.54, 162.73 ± 15.92, 142.39 ± 15.37, 149.155 ± 15.66, respectively) compared with both NL and NH groups. High altitude significantly augmented these changes in preeclamptic patients (117.75 ± 12.96, 211.01 ± 22.69, 196.86 ± 17.64, 111.92 ± 10.74) compared with PL, NH and NL groups. In conclusion hypoxia at high altitude aggravated the disturbances in the levels of ET-1, TXA2, PGI2 and TNF-α associated with preeclampsia. This may contribute to the higher risk of preeclampsia at high altitude.

  18. Exposure to High or Low Glucose Levels Accelerates the Appearance of Markers of Endothelial Cell Senescence and Induces Dysregulation of Nitric Oxide Synthase

    PubMed Central

    2013-01-01

    To test the hypothesis that aging impairs endothelial cell response to glucose stress, we utilized a human umbilical vein endothelial cell in vitro model in which clinically relevant concentrations of normal (5.5mM), high (25mM), and low (1.5mM) glucose were tested. With advancing population doubling, exposure to normal glucose gradually decreased endothelial nitric oxide synthase expression and activity, resulting in slow, progressive development of markers of cell senescence (by population doubling level [PDL] 44). High or low glucose treatment accelerated the appearance of markers of senescence (by ~PDL 35) along with declines in endothelial nitric oxide synthase expression and activity. Human umbilical vein endothelial cells exposed to alternating low and high glucose gave even more rapid acceleration in the appearance of markers of senescence (by ~PDL 18) and reduction in endothelial nitric oxide synthase levels. Thus, exposure to low and high glucose induces earlier appearance of markers of endothelial cell senescence and dysregulation of the nitric oxide synthase gene and protein expression and function. These findings will help to elucidate endothelial dysfunction associated with glucose intolerance and improve future therapy for diabetic seniors. PMID:23585419

  19. Markers of inflammation, thrombosis and endothelial activation correlate with carotid IMT regression in stable coronary disease after atorvastatin treatment.

    PubMed

    Baldassarre, D; Porta, B; Camera, M; Amato, M; Arquati, M; Brusoni, B; Fiorentini, C; Montorsi, P; Romano, S; Veglia, F; Tremoli, E; Cortellaro, M

    2009-09-01

    MIAMI is a prospective multicenter clinical study designed to investigate the relationship between changes in carotid intima-media thickness (C-IMT) and changes in circulating markers of inflammation, thrombosis and endothelial activation in stable coronary patients treated for 20+/-3.7 months with 20mg/day atorvastatin. Eighty-five subjects had their C-IMT, blood lipids and soluble markers measured at baseline, at the 12th month and at the end of the study. Almost all soluble markers decreased upon treatment except for high-sensitivity C-reactive protein (hs-CRP), interleukin-18 (IL-18), tissue factor pathway inhibitor-free (TFPI-free) and soluble vascular cell adhesion molecules-1 (sVCAM-1) which did not change significantly, and interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and soluble CD40 ligand (sCD40L) which increased. sCD40L, fibrinogen, tissue factor pathway inhibitor-total (TFPI-total), soluble intercellular adhesion molecules-1 (sICAM-1), sE-selectin, interleukin-8 (IL-8) and von Willebrand factor (vWF) changed significantly even after application of the Bonferroni correction for multiple comparisons. Changes in lipids did not correlate with C-IMT regression either when considered singly or when combined in a lipid score. Changes in soluble markers correlated poorly with C-IMT regression when analyzed singly, but strongly when combined in relevant composite scores (inflammation/coagulation score, endothelial activation score, soluble markers score and total score). In patients with stable coronary artery disease treated with moderate doses of atorvastatin, carotid IMT regression correlated with changes of inflammation, thrombosis and endothelial activation profiles.

  20. Markers of endothelial damage in patients with chronic kidney disease on hemodialysis.

    PubMed

    Carmona, Andrés; Agüera, Maria L; Luna-Ruiz, Carlos; Buendía, Paula; Calleros, Laura; García-Jerez, Andrea; Rodríguez-Puyol, Manuel; Arias, Manuel; Arias-Guillen, Marta; de Arriba, Gabriel; Ballarin, Jose; Bernis, Carmen; Fernández, Elvira; García-Rebollo, Sagrario; Mancha, Javier; Del Peso, Gloria; Pérez, Estefanía; Poch, Esteban; Portolés, Jose M; Rodríguez-Puyol, Diego; Sánchez-Villanueva, Rafael; Sarro, Felipe; Torres, Armando; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael; Carracedo, Julia

    2017-04-01

    Patients with Stage 5 chronic kidney disease who are on hemodialysis (HD) remain in a chronic inflammatory state, characterized by the accumulation of uremic toxins that induce endothelial damage and cardiovascular disease (CVD). Our aim was to examine microvesicles (MVs), monocyte subpopulations, and angiopoietins (Ang) to identify prognostic markers in HD patients with or without diabetes mellitus (DM). A total of 160 prevalent HD patients from 10 centers across Spain were obtained from the Biobank of the Nephrology Renal Network (Madrid, Spain): 80 patients with DM and 80 patients without DM who were matched for clinical and demographic criteria. MVs from plasma and several monocyte subpopulations (CD14(2+)/CD16(+), CD14(+)/CD16(2+)) were analyzed by flow cytometry, and the plasma concentrations of Ang1 and Ang2 were quantified by ELISA. Data on CVD were gathered over the 5.5 yr after these samples were obtained. MV level, monocyte subpopulations (CD14(+)/CD16(2+) and CD14(2+)/CD16(+)), and Ang2-to-Ang1 ratios increased in HD patients with DM compared with non-DM patients. Moreover, MV level above the median (264 MVs/µl) was associated independently with greater mortality. MVs, monocyte subpopulations, and Ang2-to-Ang1 ratio can be used as predictors for CVD. In addition, MV level has a potential predictive value in the prevention of CVD in HD patients. These parameters undergo more extensive changes in patients with DM. Copyright © 2017 the American Physiological Society.

  1. Effect of repetitive SCUBA diving on humoral markers of endothelial and central nervous system integrity.

    PubMed

    Bilopavlovic, Nada; Marinovic, Jasna; Ljubkovic, Marko; Obad, Ante; Zanchi, Jaksa; Pollock, Neal W; Denoble, Petar; Dujic, Zeljko

    2013-07-01

    During SCUBA diving decompression, there is a significant gas bubble production in systemic veins, with rather frequent bubble crossover to arterial side even in asymptomatic divers. The aim of the current study was to investigate potential changes in humoral markers of endothelial and brain damage (endothelin-1, neuron-specific enolase and S-100β) after repetitive SCUBA diving with concomitant assessment of venous gas bubble production and subsequent arterialization. Sixteen male divers performed four open-water no-decompression dives to 18 msw (meters of sea water) lasting 49 min in consecutive days during which they performed moderate-level exercise. Before and after dives 1 and 4 blood was drawn, and bubble production and potential arterialization were echocardiographically evaluated. In addition, a control dive to 5 msw was performed with same duration, water temperature and exercise load. SCUBA diving to 18 msw caused significant bubble production with arterializations in six divers after dive 1 and in four divers after dive 4. Blood levels of endothelin-1 and neuron-specific enolase did not change after diving, but levels of S-100β were significantly elevated after both dives to 18 msw and a control dive. Creatine kinase activity following a control dive was also significantly increased. Although serum S-100β levels were increased after diving, concomitant increase of creatine kinase during control, almost bubble-free, dive suggests the extracranial release of S-100β, most likely from skeletal muscles. Therefore, despite the significant bubble production and sporadic arterialization after open-water dives to 18 msw, the current study found no signs of damage to neurons or the blood-brain barrier.

  2. Soya isoflavone-enriched cereal bars affect markers of endothelial function in postmenopausal women.

    PubMed

    Hallund, J; Bügel, S; Tholstrup, T; Ferrari, M; Talbot, D; Hall, W L; Reimann, M; Williams, C M; Wiinberg, N

    2006-06-01

    Soya isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. In order to investigate the effect of soya isoflavones on markers of endothelial function we conducted a randomised, double-blind, placebo-controlled, cross-over study with thirty healthy postmenopausal women. The women consumed cereal bars, with or without soya isoflavones (50 mg/d), for 8 weeks, separated by an 8-week washout period. Systemic arterial compliance (SAC), isobaric arterial compliance (IAC), flow-mediated endothelium-dependent vasodilation (FMD) and nitroglycerine-mediated endothelium-independent vasodilation (NMD) were measured at the beginning of the study and after each intervention period. Blood pressure (BP) and plasma concentrations of nitrite and nitrate (NOx) and endothelin-1 (ET-1) were measured at the beginning and end of each intervention period. NMD was 13.4 (SEM 2.0)% at baseline and 15.5 (SEM 1.1) % after isoflavone treatment compared with 12.4 (SEM 1.0)% after placebo treatment (P=0.03). NOx increased from 27.7 (SEM 2.7) to 31.1 (SEM 3.2) microM after isoflavones treatment compared with 25.4 (SEM 1.5) to 20.4 (SEM 1.1) microM after placebo treatment (P=0.003) and a significant increase in the NOx:ET-1 ratio (P=0.005) was observed after the isoflavone treatment compared with placebo. A significant difference in SAC after the isoflavone and placebo treatment was observed (P=0.04). No significant difference was found in FMD, IAC, BP and ET-1. In conclusion, 8 weeks' consumption of cereals bars enriched with 50 mg soya isoflavones/d increased plasma NOx concentrations and improved endothelium-independent vasodilation in healthy postmenopausal women.

  3. Quantitative analysis of lymphangiogenic markers in human colorectal cancer.

    PubMed

    Parr, C; Jiang, W G

    2003-08-01

    Lymphatic spread of colorectal cancer cells to regional lymph nodes is one of the early events in metastatic cancer, and is often associated with distant metastatic spread and a poor prognosis. This study examined lymphangiogenic factors, and in particular a panel of newly discovered lymphangiogenic markers, in colorectal cancer tissues from a cohort of patients. Paired samples (background normal mucosa and cancer) of colon tissue were obtained from patients with colorectal cancer. The expression and levels of the VEGF-C and VEGF-D cytokines, the VEGF receptors VEGFR-2 and VEGFR-3, and newly described lymphatic endothelial markers, LYVE-1, Prox-1, podoplanin and 5'-nucleotidase were assessed. RNA was extracted from the frozen colon tissues. The level of expression for each factor/marker was determined using RT-PCR and quantified using a real-time quantitative PCR (RT-QPCR) technique, with respective cloned cDNA plasmids as internal standards. VEGF-D was expressed to a significantly higher degree in the colon tumour tissues. There was no significant difference between the expression levels for both VEGF-C and its receptor, VEGFR-2, in background and cancer tissues. However, levels of the VEGFR-3 receptor were found to be significantly higher in colon cancer than the normal background tissues. LYVE-1 levels were below detection in most cases. There was a significant increase in the degree of Prox-1 and 5'-nucleotidase expression in colon cancer tissue. Podoplanin expression was also increased in the cancer samples. These markers indicate an increase in lymphangiogenesis in colon cancer, and may therefore have prognostic value for colon cancer patients.

  4. [Subclinical endothelial inflammation markers in a family with type I familial hyperaldosteronism caused by a de novo mutation].

    PubMed

    Stehr, Carlos B; Carvajal, Cristian A; Lacourt, Patricia; Alcaíno, Hernán; Mellado, Rosemarie; Cattani, Andreína; Mosso, Lorena M; Lavandera, Sergio; Fardella, Carlos E

    2008-09-01

    Type I familial hyperaldosteronism is caused by the presence of a chimaeric gene CYPl 1B1/CYP11BZ which encodes an enzyme with aldosterone synthetase activity regulated by adrenocorticotrophic hormone (ACTH). Therefore, in patients with FH I is possible to normalize the aldosterone levels with glucocorticoid treatment. Recently it has been shown that aldosterone plays a role in the production of endothelial oxidative stress and subclinical inflammation. To evaluate subclinical endothelial inflammation markers, like Metalloproteinase 9 (MMP-9) and ultrasensitive C reactive protein (usPCR), before and after glucocorticoid treatment in family members with FH-I caused by a de novo mutation. We report three subjects with FH-I in a single family (proband, father and sister). We confirmed the presence of a chimaeric CYPl 1B1/CYP11B2 gene by long-PCR in all of them. Paternal grandparents were unaffected by the mutation. The proband was a 13-year-old boy with hypertension stage 2 (in agree to The Joint National Committee VII, JNC-VII), with an aldosterone/plasma rennin activity ratio equal to 161. A DNA paternity test confirmed the parental relationship between the grandparents and father with the index case. MMP-9 and usPCR levels were determined by gelatin zymography and nephelometry, respectively. All affected subjects had approximately a 50% increase in MMP-9 levels. Only the father had an elevated usPCR. The endothelial inflammation markers returned to normal range after glucocorticoid treatment. We report a family carrying a FH-I caused by a de novo mutation. The elevation of endothelial inflammation markers in these patients and its normalization after glucocorticoid treatment provides new insight about the possible deleterious effect of aldosterone on the endothelium.

  5. Markers of endothelial cell activation and immune activation are increased in patients with severe leptospirosis and associated with disease severity.

    PubMed

    Goeijenbier, Marco; Gasem, M Hussein; Meijers, Joost C M; Hartskeerl, Rudy A; Ahmed, Ahmed; Goris, Marga G A; Isbandrio, Bambang; Schuller, Simone S; Osterhaus, Albert D M E; Martina, Byron E E; van Gorp, Eric C M; Nally, Jarlath E; Wagenaar, Jiri F P

    2015-10-01

    Previous studies concluded that haemorrhage is one of the most accurate prognostic factors of mortality in leptospirosis. Therefore, endothelial cell activation was investigated in relation to disease severity in severe leptospirosis. Prospective cohort study of severe leptospirosis patients. Plasma levels of sE-selectin and Von Willebrand factor (VWF) were determined. Consequently, an in vitro endothelial cell model was used to assess endothelial activation after exposure to virulent Leptospira. Finally, immune activation, as a potential contributing factor to endothelial cell activation, was determined by soluble IL2-receptor (sIL-2r) and soluble Fas-ligand (sFasL) levels. Plasma levels of sE-selectin and VWF strongly increased in patients compared to healthy controls. Furthermore, sE-selectin was significantly elevated (203 ng/ml vs. 157 ng/ml, p < 0.05) in survivors compared to non-survivors. Endothelial cells exposed to virulent Leptospira showed increased VWF expression. E-selectin and ICAM-1 expression did not change. Immunohistochemistry revealed the presence of intracellular Leptospira and qPCR suggested replication. In vivo analysis showed that increased levels of sFasL and sIL-2r were both strongly associated with mortality. Furthermore sIL-2r levels were increased in patients that developed bleeding and significantly correlated to duration of hospital stay. Markers of endothelial activation and immune activation were associated with disease severity in leptospirosis patients. Copyright © 2015 The British Infection Association. All rights reserved.

  6. ALDH1 and podoplanin expression patterns predict the risk of malignant transformation in oral leukoplakia

    PubMed Central

    Habiba, Umma; Hida, Kyoko; Kitamura, Tetsuya; Matsuda, Aya Yanagawa; Higashino, Fumihiro; Ito, Yoichi M.; Ohiro, Yoichi; Totsuka, Yasunori; Shindoh, Masanobu

    2017-01-01

    Oral leukoplakia (OL) is a clinically diagnosed preneoplastic lesion of the oral cavity with an increased oral cancer risk. However, the risk of malignant transformation is still difficult to assess. The objective of the present study was to examine the expression patterns of aldehyde dehydrogenase 1 (ALDH1) and podoplanin in OL, and to determine their roles in predicting oral cancer development. In the present study, the expression patterns of ALDH1 and podoplanin were determined in samples from 79 patients with OL. The association between protein expression and clinicopathological parameters, including oral cancer-free survival, was analyzed during a mean follow-up period of 3.4 years. Expression of ALDH1 and podoplanin was observed in 61 and 67% patients, respectively. Kaplan-Meier analysis demonstrated that the expression of the proteins was correlated with the risk of progression to oral cancer. Multivariate analysis revealed that expression of ALDH1 and podoplanin was associated with 3.02- and 2.62-fold increased risk of malignant transformation, respectively. The malignant transformation risk of OL was considerably higher in cases with expression of both proteins. Point-prevalence analysis revealed that 66% of patients with co-expression of ALDH1 and podoplanin developed oral cancer. Taken together, our data indicate that ALDH1 and podoplanin expression patterns in OL are associated with oral cancer development, suggesting that ALDH1 and podoplanin may be useful biomarkers to identify OL patients with a substantially high oral cancer risk. PMID:28123562

  7. ALDH1 and podoplanin expression patterns predict the risk of malignant transformation in oral leukoplakia.

    PubMed

    Habiba, Umma; Hida, Kyoko; Kitamura, Tetsuya; Matsuda, Aya Yanagawa; Higashino, Fumihiro; Ito, Yoichi M; Ohiro, Yoichi; Totsuka, Yasunori; Shindoh, Masanobu

    2017-01-01

    Oral leukoplakia (OL) is a clinically diagnosed preneoplastic lesion of the oral cavity with an increased oral cancer risk. However, the risk of malignant transformation is still difficult to assess. The objective of the present study was to examine the expression patterns of aldehyde dehydrogenase 1 (ALDH1) and podoplanin in OL, and to determine their roles in predicting oral cancer development. In the present study, the expression patterns of ALDH1 and podoplanin were determined in samples from 79 patients with OL. The association between protein expression and clinicopathological parameters, including oral cancer-free survival, was analyzed during a mean follow-up period of 3.4 years. Expression of ALDH1 and podoplanin was observed in 61 and 67% patients, respectively. Kaplan-Meier analysis demonstrated that the expression of the proteins was correlated with the risk of progression to oral cancer. Multivariate analysis revealed that expression of ALDH1 and podoplanin was associated with 3.02- and 2.62-fold increased risk of malignant transformation, respectively. The malignant transformation risk of OL was considerably higher in cases with expression of both proteins. Point-prevalence analysis revealed that 66% of patients with co-expression of ALDH1 and podoplanin developed oral cancer. Taken together, our data indicate that ALDH1 and podoplanin expression patterns in OL are associated with oral cancer development, suggesting that ALDH1 and podoplanin may be useful biomarkers to identify OL patients with a substantially high oral cancer risk.

  8. Podoplanin mediates ECM degradation by squamous carcinoma cells through control of invadopodia stability

    PubMed Central

    Martín-Villar, E; Borda-d'Agua, B; Carrasco-Ramirez, P; Renart, J; Parsons, M; Quintanilla, M; Jones, G E

    2015-01-01

    Invadopodia are actin-rich cell membrane projections used by invasive cells to penetrate the basement membrane. Control of invadopodia stability is critical for efficient degradation of the extracellular matrix (ECM); however, the underlying molecular mechanisms remain poorly understood. Here, we uncover a new role for podoplanin, a transmembrane glycoprotein closely associated with malignant progression of squamous cell carcinomas (SCCs), in the regulation of invadopodia-mediated matrix degradation. Podoplanin downregulation in SCC cells impairs invadopodia stability, thereby reducing the efficiency of ECM degradation. We report podoplanin as a novel component of invadopodia-associated adhesion rings, where it clusters prior to matrix degradation. Early podoplanin recruitment to invadopodia is dependent on lipid rafts, whereas ezrin/moesin proteins mediate podoplanin ring assembly. Finally, we demonstrate that podoplanin regulates invadopodia maturation by acting upstream of the ROCK-LIMK-Cofilin pathway through the control of RhoC GTPase activity. Thus, podoplanin has a key role in the regulation of invadopodia function in SCC cells, controlling the initial steps of cancer cell invasion. PMID:25486435

  9. Lycopersicon esculentum lectin: an effective and versatile endothelial marker of normal and tumoral blood vessels in the central nervous system.

    PubMed

    Mazzetti, S; Frigerio, S; Gelati, M; Salmaggi, A; Vitellaro-Zuccarello, L

    2004-01-01

    The binding of Lycopersicon esculentum lectin (LEA) to the vascular endothelium was studied in the central nervous system of rat, mouse and guinea pig at different developmental ages, and in a gliosarcoma model. Our observations showed that LEA consistently stained the entire vascular tree in the spinal cord and in the brain of all animal species at all developmental ages investigated. In the tumor model, the staining of the vascular network was very reproducible, enabled an easy identification of vascular profiles and displayed a higher efficiency when compared to two other commonly used vascular marker (EHS laminin and PECAM-1). Moreover, our results showed that LEA staining was comparable in both vibratome and paraffin sections and could be easily combined with other markers in double labeling experiments. These observations indicate that LEA staining may represent an effective and versatile endothelial marker for the study of the vasculature of the central nervous system in different animal species and experimental conditions.

  10. LpMab-23: A Cancer-Specific Monoclonal Antibody Against Human Podoplanin.

    PubMed

    Yamada, Shinji; Ogasawara, Satoshi; Kaneko, Mika K; Kato, Yukinari

    2017-04-07

    Human podoplanin (hPDPN), the ligand of C-type lectin-like receptor-2, is involved in cancer metastasis. Until now, many monoclonal antibodies (mAbs) have been established against hPDPN. However, it is still difficult to develop a cancer-specific mAb (CasMab) against hPDPN because the protein sequence of hPDPN expressed in cancer cells is the same as that in normal cells. Herein, we report LpMab-23 of the mouse IgG1 subclass, a novel CasMab against hPDPN. In an immunohistochemical analysis, LpMab-23 reacted with tumor cells of human oral cancer, but did not react with normal cells such as lymphatic endothelial cells (LECs). In contrast, LpMab-17, another anti-hPDPN mAb, reacted with both tumor cells and LECs. Furthermore, flow cytometric analysis revealed that LpMab-23 reacted with hPDPN-expressing cancer cell lines (LN319, RERF-LC-AI/hPDPN, Y-MESO-14/hPDPN, and HSC3/hPDPN) but showed little reaction with normal cells (LECs and HEK-293T), although another anti-hPDPN mAb, LpMab-7, reacted with both hPDPN-expressing cancer cells and normal cells, indicating that LpMab-23 is a CasMab against hPDPN.

  11. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism.

    PubMed

    Riedl, Julia; Preusser, Matthias; Nazari, Pegah Mir Seyed; Posch, Florian; Panzer, Simon; Marosi, Christine; Birner, Peter; Thaler, Johannes; Brostjan, Christine; Lötsch, Daniela; Berger, Walter; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2017-03-30

    Venous thromboembolism (VTE) is common in patients with brain tumors, and underlying mechanisms are unclear. We hypothesized that podoplanin, a sialomucin-like glycoprotein, increases the risk of VTE in primary brain tumors via its ability to induce platelet aggregation. Immunohistochemical staining against podoplanin and intratumoral platelet aggregates was performed in brain tumor specimens of 213 patients (mostly high-grade gliomas [89%]) included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study of patients with newly diagnosed cancer or progressive disease aimed at identifying patients at risk of VTE. Platelet aggregation in response to primary human glioblastoma cells was investigated in vitro. During 2-year follow-up, 29 (13.6%) patients developed VTE. One-hundred fifty-one tumor specimens stained positive for podoplanin (33 high expression, 47 medium expression, 71 low expression). Patients with podoplanin-positive tumors had lower peripheral blood platelet counts (P < .001) and higher D-dimer levels (P < .001). Podoplanin staining intensity was associated with increasing levels of intravascular platelet aggregates in tumor specimens (P < .001). High podoplanin expression was associated with an increased risk of VTE (hazard ratio for high vs no podoplanin expression: 5.71; 95% confidence interval, 1.52-21.26; P =010), independent of age, sex, and tumor type. Podoplanin-positive primary glioblastoma cells induced aggregation of human platelets in vitro, which could be abrogated by an antipodoplanin antibody. In conclusion, high podoplanin expression in primary brain tumors induces platelet aggregation, correlates with hypercoagulability, and is associated with increased risk of VTE. Our data indicate novel insights into the pathogenesis of VTE in primary brain tumors. © 2017 by The American Society of Hematology.

  12. Folic Acid: A Marker of Endothelial Function in Type 2 Diabetes?

    PubMed Central

    Mangoni, Arduino A; Sherwood, Roy A; Asonganyi, Belinda; Ouldred, Emma L; Thomas, Stephen; Jackson, Stephen HD

    2005-01-01

    Objectives Endothelial dysfunction is a common feature of type 2 diabetes. Recent studies suggest that the B-vitamin folic acid exerts direct beneficial effects on endothelial function, beyond the well known homocysteine lowering effects. Therefore, folic acid might represent a novel “biomarker” of endothelial function. We sought to determine whether plasma levels of folic acid determine endothelial-dependent vasodilation in patients with type 2 diabetes. Methods Forearm arterial blood flow (FABF) was measured at baseline and during intrabrachial infusion of the endothelial-dependent vasodilator acetylcholine (15 μg/min) and the endothelial-independent vasodilator sodium nitroprusside (2 μg/min) in 26 type 2 diabetic patients (age 56.5 ± 0.9 years, means ± SEM) with no history of cardiovascular disease. Results FABF ratio (ie, the ratio between the infused and control forearm FABF) significantly increased during acetylcholine (1.10 ± 0.04 vs 1.52 ± 0.07, p < 0.001) and sodium nitroprusside (1.12 ± 0.11 vs 1.62 ± 0.06, p < 0.001) infusions. After correcting for age, gender, diabetes duration, smoking, hypertension, body mass index, microalbuminuria, glycated hemoglobin, low-density lipoprotein cholesterol, and homocysteine, multiple regression analysis showed that plasma folic acid concentration was the only independent determinant (p = 0.037, R2 = 0.22) of acetylcholine-mediated, but not sodium nitroprusside-mediated, vasodilatation. Conclusions Folic acid plasma concentrations determine endothelium-mediated vasodilatation in patients with type 2 diabetes. These results support the hypothesis of a direct effect of folic acid on endothelial function and the rationale for interventions aimed at increasing folic acid levels to reduce cardiovascular risk. PMID:17319100

  13. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    PubMed Central

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  14. Expression of Podoplanin in Non-melanoma Skin Cancers and Actinic Keratosis.

    PubMed

    Wojciechowska-Zdrojowy, Marta; Szepietowski, Jacek C; Matusiak, Łukasz; Dzięgiel, Piotr; Puła, Bartosz

    2016-04-01

    Recent studies have indicated that expression of podoplanin changes during the neoplastic processes, we therefore aimed at assessing its expression in cancer and stromal cells of basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and actinic keratosis (AK). Formalin-fixed paraffin-embedded tissue samples of 134 patients (38 BCC, 57 SCC, 20 AK and from 19 healthy volunteers) were analyzed. Podoplanin-immunoreactivity was detected in 32.1%/44.7%, 70%/20% and 87.7%/79% for BCC, AK and SCC tumour/stroma cells, respectively. Mean podoplanin expression in tumour cells was 1.2±1.8, 1.4±1.1 and 5.6±3.9 for BCC, AK and SCC, respectively. Mean podoplanin expression in stromal cells was 1.5±2.3, 0.65±1.57 and 3.2±2.4 for BCC, AK and SCC, respectively. Podoplanin expression was significantly higher in SCC stromal cells compared to the rest of the analyzed groups (p<0.001), suggesting a potential role of podoplanin in the development and progression of this malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells.

    PubMed

    Barsotti, M C; Magera, A; Armani, C; Chiellini, F; Felice, F; Dinucci, D; Piras, A M; Minnocci, A; Solaro, R; Soldani, G; Balbarini, A; Di Stefano, R

    2011-02-01

    Transplantation of endothelial progenitor cells (EPCs) is a promising approach for revascularization of tissue. We have used a natural and biocompatible biopolymer, fibrin, to induce cell population growth, differentiation and functional activity of EPCs. Peripheral blood mononuclear cells were cultured for 1 week to obtain early EPCs. Fibrin was characterized for stiffness and capability to sustain cell population expansion at different fibrinogen-thrombin ratios. Viability, differentiation and angiogenic properties of EPCs were evaluated and compared to those of EPCs grown on fibronectin. Fibrin had a nanometric fibrous structure forming a porous network. Fibrinogen concentration significantly influenced fibrin stiffness and cell growth: 9 mg/ml fibrinogen and 25 U/ml thrombin was the best ratio for enhanced cell viability. Moreover, cell viability was significantly higher on fibrin compared to being on fibronectin. Even though no significant difference was observed in expression of endothelial markers, culture on fibrin elicited marked induction of stem cell markers OCT 3/4 and NANOG. In vitro angiogenesis assay on Matrigel showed that EPCs grown on fibrin retain angiogenetic capability as EPCs grown on fibronectin, but significantly better release of cytokines involved in cell recruitment was produced by EPC grown on fibrin. Fibrin is a suitable matrix for EPC growth, differentiation and angiogenesis capability, suggesting that fibrin gel may be very useful for regenerative medicine. © 2010 Blackwell Publishing Ltd.

  16. Effects of Olive Oil on Markers of Inflammation and Endothelial Function-A Systematic Review and Meta-Analysis.

    PubMed

    Schwingshackl, Lukas; Christoph, Marina; Hoffmann, Georg

    2015-09-11

    The aim of the present systematic review was to synthesize data from randomized controlled trials investigating the effects of olive oil on markers of inflammation or endothelial function. Literature search in electronic databases Cochrane Trial Register, EMBASE, and MEDLINE was performed. Thirty studies enrolling 3106 participants fulfilled the selection criteria. Pooled effects of different interventions were assessed as mean difference using a random effects model. Olive oil interventions (with daily consumption ranging approximately between 1 mg and 50 mg) resulted in a significantly more pronounced decrease in C-reactive protein (mean difference: -0.64 mg/L, (95% confidence interval (CI) -0.96 to -0.31), p < 0.0001, n = 15 trials) and interleukin-6 (mean difference: -0.29 (95% CI -0.7 to -0.02), p < 0.04, n = 7 trials) as compared to controls, respectively. Values of flow-mediated dilatation (given as absolute percentage) were significantly more increased in individuals subjected to olive oil interventions (mean difference: 0.76% (95% CI 0.27 to 1.24), p < 0.002, n = 8 trials). These results provide evidence that olive oil might exert beneficial effects on endothelial function as well as markers of inflammation and endothelial function, thus representing a key ingredient contributing to the cardiovascular-protective effects of a Mediterranean diet. However, due to the heterogeneous study designs (e.g., olive oil given as a supplement or as part of dietary pattern, variations in control diets), a conservative interpretation of the results is necessary.

  17. Effects of Olive Oil on Markers of Inflammation and Endothelial Function—A Systematic Review and Meta-Analysis

    PubMed Central

    Schwingshackl, Lukas; Christoph, Marina; Hoffmann, Georg

    2015-01-01

    The aim of the present systematic review was to synthesize data from randomized controlled trials investigating the effects of olive oil on markers of inflammation or endothelial function. Literature search in electronic databases Cochrane Trial Register, EMBASE, and MEDLINE was performed. Thirty studies enrolling 3106 participants fulfilled the selection criteria. Pooled effects of different interventions were assessed as mean difference using a random effects model. Olive oil interventions (with daily consumption ranging approximately between 1 mg and 50 mg) resulted in a significantly more pronounced decrease in C-reactive protein (mean difference: −0.64 mg/L, (95% confidence interval (CI) −0.96 to −0.31), p < 0.0001, n = 15 trials) and interleukin-6 (mean difference: −0.29 (95% CI −0.7 to −0.02), p < 0.04, n = 7 trials) as compared to controls, respectively. Values of flow-mediated dilatation (given as absolute percentage) were significantly more increased in individuals subjected to olive oil interventions (mean difference: 0.76% (95% CI 0.27 to 1.24), p < 0.002, n = 8 trials). These results provide evidence that olive oil might exert beneficial effects on endothelial function as well as markers of inflammation and endothelial function, thus representing a key ingredient contributing to the cardiovascular-protective effects of a Mediterranean diet. However, due to the heterogeneous study designs (e.g., olive oil given as a supplement or as part of dietary pattern, variations in control diets), a conservative interpretation of the results is necessary. PMID:26378571

  18. Carotid Intima Media Thickness, Inflammatory Markers, and Endothelial Activation Markers in HIV Patients with Lipoatrophy Increased at 48 Weeks Regardless of Use of Rosiglitazone or Placebo

    PubMed Central

    Tungsiripat, Marisa; El-Bejjani, Dalia; Rizk, Nesrine; Dogra, Vikram; O'Riordan, Mary Ann; Ross, Allison C.; Hileman, Corrilynn; Storer, Norma; Harrill, Danielle

    2011-01-01

    Abstract Rosiglitazone may be useful for the treatment of antiretroviral therapy-associated lipoatrophy, but an association with cardiovascular disease (CVD) has been questioned in diabetics. We evaluated rosiglitazone's effect on surrogate markers of CVD in HIV-infected individuals with lipoatrophy. HIV+ patients with lipoatrophy on thymidine-sparing regimens were randomized to rosiglitazone vs. placebo for 48 weeks. We serially assessed carotid IMT, fasting metabolic profiles, tumor necrosis factor (TNF)-α, soluble receptors (sTNFRI and II), interleukin (IL)-6, high-sensitivity C-reactive protein (hsCRP), myeloperoxidase (MPO), and endothelial activation markers [von Willebrand factor (vWF), soluble intercellular cell adhesion molecules-1 (sICAM-1), and vascular cell adhesion molecules-1 (sVCAM-1)]. Seventy-one subjects enrolled: 17% were female and 51%were white. Baseline characteristics were similar between groups except for higher total cholesterol in the placebo group (p = 0.04). At 48 weeks, common carotid artery (CCA) IMT changed significantly (p ≤ 0.05) within but not between the groups (p = 0.36): the median (IQR) increase was 0.10 (0.05, 0.25) mm and 0.15 (0, 0.25) mm in the rosiglitazone and placebo groups, respectively. hsCRP, sTNFRI and II, sVCAM-1, and vWF changed significantly (p ≤ 0.02) within but not between groups. Total cholesterol increased significantly in the rosiglitazone group (p = 0.008). In our study of virologically controlled subjects with lipoatrophy, rosiglitazone did not independently increase carotid IMT, endothelial activation, and inflammatory cytokines. PMID:20969457

  19. The effects of interleukin-7 on the lymphangiogenic properties of human endothelial cells.

    PubMed

    Al-Rawi, Mahir A A; Watkins, Gareth; Mansel, Robert E; Jiang, Wen G

    2005-09-01

    Lymphangiogenesis (growth of new lymphatic vessels) is thought to play an important role in cancer lymphatic spread to the regional lymph nodes. However, the molecular pathways involved in lymphangiogenesis and their regulation are still unclear. Recently, there has been a significant advance in the studies of the lymphatic system and lymphangiogenesis as several novel specific lymphatic markers are discovered. Here, the effects of several cytokines on the lymphatic expression of human endothelial cells were studied. Amongst these cytokines, interleukin-7 (IL-7) was found to have significant impact on the lymphatic expression as it induced the expression of podoplanin, prox-1 and LYVE-1 in endothelial cells. Furthermore, IL-7 enhanced endothelial cell growth, migration and generation of lymphatic tubules in vitro via upregulating the expression of the lymphangiogenic growth factor and vascular endothelial growth factor-D. The specificity of these effects of IL-7 was confirmed using blocking anti-bodies and ribozyme transgene technology. These effects of IL-7 were totally abolished when IL-7R null endothelial cell mutants were used. IL-7 activated its transmembrane receptor, IL-7R, on endothelial cells, as well as its downstream signalling intermediates, Jak-1, Jak-3, PI3-K and Stat-5. Selective inhibition of these intermediates using specific inhibitors showed that IL-7 induced the afore-mentioned effects via a Wortmannin sensitive pathway. Collectively, these results demonstrate, for the first time, that IL-7 is a lymphangiogenic growth factor by inducing the lymphangiogenic properties of endothelial cells. This might have a significant impact on the lymphatic spread of solid tumours. Furthermore, interruption of IL-7 signalling might provide an attractive therapeutic option in cancer lymphatic metastasis.

  20. Serum Markers of Endothelial Dysfunction and Inflammation Increase in Hypertension with Prediabetes Mellitus.

    PubMed

    Huang, Zhouqing; Chen, Chen; Li, Sheng; Kong, Fanqi; Shan, Peiren; Huang, Weijian

    2016-06-01

    The aim of this study was to examine endothelial dysfunction and inflammation in hypertension and prediabetes by studying adhesion molecules and inflammatory factors. This study included 133 outpatients. Participants were categorized into three groups based on the presence or absence of hypertension and prediabetes: control subjects without prediabetes and hypertension (N group, n = 39); patients with hypertension only (H group, n = 34); and patients with hypertension and prediabetes (HD group, n = 60). Hypertension was diagnosed according to JNC7 criteria. Prediabetes was defined according to 2010 American Diabetes Association criteria. Plasma was isolated from overnight fasting blood samples for enzyme-linked immunosorbent assay (ELISA) analysis of concentrations of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), P-selectin, and interleukin-6 (IL-6) as indicators of endothelial function and inflammation. We found that the H and HD groups showed significantly higher levels of all four biomarkers compared with the N group (all p < 0.01). The HD group also showed significantly higher levels of ICAM-1 (p = 0.042) and TNF-α (p < 0.01) compared with the H group; no significant differences in P-selectin (p = 0.59) and IL-6 (p = 0.70) levels were observed among these groups. Prediabetes and hypertension induce endothelial dysfunction and inflammation by elevating levels of soluble adhesion molecules and inflammatory cytokines. The comorbidity of these diseases may exacerbate inflammation and endothelial dysfunction by enhancing the expression of ICAM-1 and TNF-α.

  1. Serum vascular endothelial cadherin and thrombomodulin are markers of non-alcoholic fatty liver disease in children.

    PubMed

    Kan, Xuan; Liu, Geli; Yang, Yong; Yang, Qingyan; Li, Yapu; Wang, Feng

    2016-12-01

    The diagnosis of non-alcoholic fatty liver disease (NAFLD) is usually based on liver ultrasonography and serum alanine aminotransferase (ALT) levels. However, the serum ALT level is not sensitive for detecting NAFLD. If more serum markers are available, serum analysis may play a more important role in the diagnosis of NAFLD. Here, we have investigated whether vascular endothelial cadherin (VE-cad) and thrombomodulin (TM) are markers of NAFLD in children. After an examination of liver ultrasonography, 90 children were divided into a lean control group (n=32), an overweight/obese NAFLD group (group-NAFLD, n=34) and an overweight/obese non-NAFLD group (group-SOO, n=24). Two overweight/obese groups had similar obesity. However, serum VE-cad and TM levels were increased in group-NAFLD but not group-SOO. When data from all children were pooled, serum VE-cad and TM levels were positively correlated to body-mass index (BMI) and serum ALT levels. In conclusion, VE-cad and TM are markers of pediatric NAFLD.

  2. Association of family history of type 2 diabetes mellitus with markers of endothelial dysfunction in South Indian population.

    PubMed

    Dhananjayan, R; Malati, T; Brindha, G; Kutala, Vijay Kumar

    2013-04-01

    Studies indicate that risk for type 2 diabetes mellitus (T2D) or cardiovascular disease is detectable in childhood, though these disorders may not emerge until adulthood. This study was aimed to assess the markers of endothelial dysfunction in patients with the family history of T2D from South Indian population. A total of 450 subjects were included in the study comprising Group I (n = 200) of T2D, Group II (n = 200) of age- and sex-matched healthy controls, Group III (n = 25) of children of T2D patients and Group IV (n = 25) of children of healthy controls. Results showed that intimal medial thickening (IMT) was significantly higher in T2D patients, compared with control subjects with no family history of diabetes. The fasting plasma glucose, glycated hemoglobin, serum total cholesterol, triglyceride, LDL-cholesterol, apolipoprotein B (ApoB) and high-sensitive C-reactive protein (hsCRP) levels were significantly increased, whereas HDL-cholesterol and serum nitrite levels were significantly decreased in T2D patients. However, children of T2D patients who were not diabetic did not show significant increase in the IMT, as compared to those of healthy controls. In conclusion, the present study demonstrate that IMT was significantly higher in the T2D patients and increased with age and family history. The increased levels of lipids, hsCRP, IMT and decreased nitrite levels might contribute to the risk of endothelial dysfunction in patients with T2D. However, further studies are warranted with other biomarkers of endothelial dysfunction in T2D patients with increased sample size.

  3. Association between endothelial and platelet function markers and adiponectin in renal transplanted recipients on cyclosporine and tacrolimus immunosuppression based therapy.

    PubMed

    Sahin, Garip; Akay, Olga Meltem; Uslu, Sema; Bal, Cengiz; Yalcin, Ahmet Ugur; Gulbas, Zafer

    2015-06-01

    Coagulation abnormalities, endothelial dysfunction and arteriosclerosis play a key role in cardiovascular disease state observed in transplanted patients. Plasma adiponectin levels are lower following kidney transplantation. However, there is still a debate about this topic in the literature. This study evaluated, adiponectin levels associated with markers of endothelial dysfunction and platelet function in renal transplant patients. Sixty-six renal transplant patients were studied. Patients were grouped according to immunosuppression regimen. Group 1 (n = 36) were treated with cyclosporine A based regimes and group 2 (n = 30) were treated with tacrolimus based regimes. Plasma adiponectin, asymmetric dimethyl arginine (ADMA), sP-selectin levels and platelet aggregation tests were studied and were compared with those in control group (n = 15, group 3). Adiponectin, sP-selectin and ADMA levels were higher in group 1 and statistically significant differences were observed compared with those of group 2 and group 3, respectively (P < 0.001, P < 0.05, P < 0.05). Platelet aggregation values induced by agonists were lower in group 1 than group 2 and group 3, but the difference did not reach statistical significance (P > 0.05). Adiponectin levels are elevated in line with ADMA and sP-selectin levels. Since CsA induces higher adiponectin levels, platelet activation and endothelial dysfunction. These changes may be responsible for the increased risk of post-transplant cardiovascular events in renal transplant patients. © 2015 Asian Pacific Society of Nephrology.

  4. Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk.

    PubMed

    Buscemi, Silvio; Rosafio, Giuseppe; Arcoleo, Gioacchina; Mattina, Alessandro; Canino, Baldassare; Montana, Maria; Verga, Salvatore; Rini, Giovanbattista

    2012-05-01

    Oxidative and inflammatory stresses are involved in the pathogenesis of atherosclerosis. The consumption of fruit and vegetables is associated with improved health and reduced cardiovascular risk. Red oranges have a high content of antioxidant and antiinflammatory substances, but there is a paucity of data concerning their effects on cardiovascular biomarkers in subjects with increased cardiovascular risk. We investigated the effect of red orange juice intake on endothelial function, oxidative stress, and markers of inflammation in subjects with increased cardiovascular risk. Nineteen nondiabetic subjects with increased cardiovascular risk (aged 27-56 y) were included in a randomized, placebo-controlled, single-blind crossover study and compared with 12 healthy, nonobese control subjects. In 2 periods of 7 d each with a 3-d interval, each participant alternatively received 500 mL red orange juice/d and 500 mL placebo/d in a random sequence. All measurements were performed in the morning after overnight fasting. Endothelial function, which was measured as flow-mediated dilation, significantly improved and was normalized (5.7% compared with 7.9%; P < 0.005) after 1 wk of red orange juice consumption. Similarly, concentrations of high-sensitivity C-reactive protein, IL-6, and TNF-α significantly decreased (P < 0.001). Red orange juice had no significant effect on nitric oxide plasma concentrations. A 7-d consumption of red orange juice ameliorates endothelial function and reduces inflammation in nondiabetic subjects with increased cardiovascular risk. This trial was registered at biomedcentral.com as ISRCTN39987296.

  5. Red meat intake, insulin resistance, and markers of endothelial function among Iranian women.

    PubMed

    Barak, Farzaneh; Falahi, Ebrahim; Keshteli, Ammar Hassanzadeh; Yazdannik, Ahmadreza; Saneei, Parvane; Esmaillzadeh, Ahmad

    2015-02-01

    Few data, with conflicting findings, are available linking red meat consumption to indicators of insulin resistance and endothelial dysfunction. This study aimed to investigate the association of red meat consumption with insulin resistance and endothelial dysfunction among a sample of female nurses in Isfahan, Iran. This cross-sectional study was carried out among 420 female nurses who were selected by a multistage cluster random sampling method. Usual dietary intakes were assessed using a validated food frequency questionnaire. Red meat intake was calculated by summing up the consumption of all kinds of red meat in foods and processed meat in sausages and fast foods. To measure serum concentrations of adhesion molecules and glycemic indexes, a fasting blood sample was taken. After adjustment for potential confounders, high red meat intake was significantly associated with higher fasting plasma glucose, homeostasis model assessment of insulin resistance, and lower quantitative insulin sensitivity check index. Although high red meat intake was significantly associated with higher serum insulin levels and lower homeostasis model assessment of beta-cell function in the crude model, after controlling for BMI, the association was no longer significant. Red meat consumption was associated with high concentrations of E-selectin, soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intercellular adhesion molecule-1 (sICAM-1) after adjustment for different potential confounders. We found that increased red meat intake was associated with high concentrations of plasma endothelial dysfunction biomarkers and abnormal glucose homeostasis among Iranian women. Prospective studies are required to confirm these findings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  7. Effect of a prolonged endurance marathon on vascular endothelial and inflammation markers in runners with exercise-induced hypertension.

    PubMed

    Jee, Haemi; Park, Jaehyun; Oh, Jae-Gun; Lee, Yoon-Hee; Shin, Kyung-A; Kim, Young-Joo

    2013-06-01

    The aim of this study was to observe the changes in endothelial and inflammatory markers in middle-aged male runners with exercise-induced hypertension (EIH) at baseline and at 100-km, 200-km, and 308-km checkpoints during a prolonged endurance ultramarathon. Among a total of 62 ultramarathon volunteers, 8 with systolic blood pressure higher than 210 mm Hg and 8 with normal systolic blood pressure were selected for this study. The subjects were designated to EIH and control (CON) groups. Blood was collected for the analysis of soluble vascular cell adhesion molecule-1, soluble E-selectin, leukocytes, creatine kinase, and high-sensitivity C-reactive protein. Soluble vascular cell adhesion molecule-1 showed a significantly greater increase in the EIH group than in the CON group at 100 km and 200 km. Soluble E-selectin also showed a significantly greater increase in the EIH group than in the CON group at 100 km. Leukocytes significantly increased in the EIH group than in the CON group at 308 km. Creatine kinase and high-sensitivity C-reactive protein showed no group differences. Leukocytes, creatine kinase, and high-sensitivity C-reactive protein showed delayed-onset increases in both groups. Increased exercise intensity may stimulate greater endothelial responses independent of the inflammatory markers in EIH. The loss of a protective effect may be greater in those with EIH than in CONs. Acknowledging and prescribing proper exercise intensity may be critical in preventing possible vascular-related complications in runners with EIH.

  8. Secondhand smoke (SHS) exposure is associated with circulating markers of inflammation and endothelial function in adult men and women.

    PubMed

    Jefferis, B J; Lowe, G D O; Welsh, P; Rumley, A; Lawlor, D A; Ebrahim, S; Carson, C; Doig, M; Feyerabend, C; McMeekin, L; Wannamethee, S G; Cook, D G; Whincup, P H

    2010-02-01

    Secondhand smoke (SHS) exposure is associated with elevated CHD risks. Yet the pathways through which this may operate have not been investigated in epidemiologic studies with objective SHS exposure measures and a wide range of CHD risk factors associated with active smoking. Therefore we investigate associations between SHS exposure and CHD risk factors, to clarify how SHS exposure may raise risk of CHD. Cross-sectional population-based study of 5029 men and women aged 59-80 years from primary care practices in Great Britain. Smoking, behavioural and demographic information was reported in questionnaires; nurses made physical measurements and took blood samples for analysis of serum cotinine and markers of inflammation, hemostasis and endothelial dysfunction. Active cigarette smokers had lower albumin and higher triglycerides, CRP, IL-6, white cell count, fibrinogen, blood viscosity, factor VIII, VWF and t-PA than non-smokers. Among non-smokers, serum cotinine levels were independently positively associated with CRP, fibrinogen, factor VIII, VWF and t-PA and inversely associated with albumin, after adjustment for age, gender, social and behavioural factors. The differences in CRP, fibrinogen and albumin between cotinine < or =0.05 and >0.7 ng/ml were one-third to one half the size of differences between cotinine < or =0.05 ng/ml and current smokers, but were of similar magnitude for VWF and t-PA. Endothelial, inflammatory and haemostatic markers related to CHD risk showed independent associations with SHS exposure in the same direction as those for active smoking. Results aid understanding of the associations between SHS exposure and elevated CHD risks. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  9. Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis

    PubMed Central

    Sekiguchi, Takaya; Takemoto, Ai; Takagi, Satoshi; Takatori, Kazuki; Sato, Shigeo; Takami, Miho; Fujita, Naoya

    2016-01-01

    Podoplanin/Aggrus is a sialoglycoprotein expressed in various cancers. We previously identified podoplanin as a key factor in tumor-induced platelet aggregation. Podoplanin-mediated platelet aggregation enhances tumor growth and metastasis by secreting growth factors and by forming tumor emboli in the microvasculature. Thus, precise analysis of the mechanisms of podoplanin-mediated platelet aggregation is critical for developing anti-tumor therapies. Here we report the discovery of a novel platelet aggregation-inducing domain, PLAG4 (81-EDLPT-85). PLAG4 has high homology to the previously reported PLAG3 and contributes to the binding of its platelet receptor CLEC-2. Mutant analyses indicated that PLAG4 exhibits a predominant platelet-aggregating function relative to PLAG3 and that conserved Glu81/Asp82/Thr85 residues in PLAG4 are indispensable for CLEC-2 binding. By establishing anti-PLAG4-neutralizing monoclonal antibodies, we confirmed its role in CLEC-2 binding, platelet aggregation, and tumor emboli formation. Our results suggest the requirement of simultaneous inhibition of PLAG3/4 for complete suppression of podoplanin-mediated tumor growth and metastasis. PMID:26684030

  10. Plasma myeloperoxidase in patients with erectile dysfunction of arteriogenic- and non-arteriogenic origin: association with markers of endothelial dysfunction.

    PubMed

    Dozio, E; Barassi, A; Marazzi, M G; Vianello, E; Colpi, G M; Solimene, U; Melzi D'Eril, G L; Corsi Romanelli, M M

    2013-01-01

    Endothelial dysfunction and the disruption of the nitric oxide-cyclic guanosine monophosphate (cGMP) pathway have been considered the early mechanisms for the development of erectile dysfunction (ED). Myeloperoxidase (MPO), a heme-containing enzyme mainly released by activated neutrophils and monocytes, may contribute to endothelial dysfunction by promoting oxidation of different substrates and thus may play a role in ED. MPO level and its correlation with different plasma biomarkers of endothelial dysfunction were studied in patient with ED of arteriogenic (A-ED) and non-arteriogenic (NA-ED) to assess potential differences between the two ED subgroups. Diagnosis of ED was based on the International Index of Erectile Function Score. Its etiology was classified with penile echo-color Doppler at baseline and after intracavernous injection of prostaglandin E1. MPO, soluble (s) cGMP, sICAM-1, sVCAM-1 and sP-Selectin were measured by enzyme-linked immunosorbent assay. MPO concentration in A-ED was significantly higher compared to control subjects and NA-ED patients. Plasmatic cGMP level resulted lower both in A-ED and in NA-ED patients, whereas no difference has been observed between the two ED groups. sICAM-1 concentration resulted higher in A-ED compared both to controls and NA-ED. sVCAM-1 level was the same in controls, A-ED and NA-ED patients. sP-Selectin concentration resulted higher both in A-ED and in NA-ED patients than in controls, whereas no difference has been observed between the two ED groups. Correlation analysis indicated a positive correlation between plasmatic MPO, sICAM-1 and sP-Selectin levels. MPO may represent an important link between oxidation, inflammation and cardiovascular diseases and may also represent a potential marker to distinguish between the two subgroups of ED patients. Moreover, in ED subjects circulating cGMP may reflect the local signaling dysfunction. The use cGMP as a potential marker for monitoring the disease needs further

  11. Markers of Endothelial Dysfunction, Coagulation and Tissue Fibrosis Independently Predict Venous Thromboembolism in HIV

    PubMed Central

    MUSSELWHITE, Laura W.; SHEIKH, Virginia; NORTON, Thomas D.; RUPERT, Adam; PORTER, Brian O.; PENZAK, Scott R.; SKINNER, Jeff; MICAN, JoAnn M.; HADIGAN, Colleen; SERETI, Irini

    2015-01-01

    Objective HIV infection is associated with coagulation abnormalities and significantly increased risk of venous thrombosis. It has been shown that higher plasma levels of coagulation and inflammatory biomarkers predicted mortality in HIV. We investigated the relationship between venous thrombosis and HIV-related characteristics, traditional risk factors of hypercoagulability and pre-event levels of biomarkers. Design A retrospective case-control study of 23 HIV-infected individuals who experienced an incident venous thromboembolic (VTE) event while enrolled in National Institutes of Health studies from 1995–2010 and 69 age and sex-matched HIV-infected individuals without known VTE. Methods Biomarkers of inflammation, endothelial dysfunction, coagulation, tissue fibrosis, and cytomegalovirus (CMV) reactivation were assessed by ELISA-based assays and PCR using plasma obtained prior to the event. Results VTE events were related to nadir CD4 count, lifetime history of multiple opportunistic infections, CMV disease, CMV viremia, immunological AIDS, active infection and provocation (i.e. recent hospitalization, surgery or trauma). VTE events were independently associated with increased plasma levels of P-selectin, P=0.002; D-dimer, P=0.01; and hyaluronic acid, P=0.009 in a multivariate analysis. No significant differences in antiretroviral or interleukin 2 exposures, plasma HIV viremia, or other traditional risk factors were observed. Conclusion Severe immunodeficiency, active infection and provocation are associated with venous thromboembolic disease in HIV. Biomarkers of endothelial dysfunction, coagulation and tissue fibrosis may help identify HIV-infected patients at elevated risk of VTE. PMID:21412059

  12. [Inflammation markers and endothelial disfunction in children with type 1 diabetes].

    PubMed

    Velarde, María S; Del R Carrizo, Teresita; Prado, María M; Díaz, Elba I; Fonio, María C; Bazán, María C; Abregu, Adela V

    2010-01-01

    A subclinical inflammation state was detected in the early step of diabetes, which increases the serum levels of cytokines that induce acute-phase protein synthesis as C-reactive protein (PCR) and fibrinogen (Fg), stimulating the endothelial disfunction of adhesion molecules. Thirty patients (15 boys, 15 girls) with type 1 diabetes (DT1), without vascular complications, were studied. Their mean age and duration of diabetes were 11.8 +/- 2.1 and 3.9 +/- 3.2 years, respectively. The laboratory parameters evaluated were: blood leukocytes count, globular sedimentation velocity, fasting glycemia, glycosylated hemoglobin (HbA1c), high sensitivity PCR (uPCR), plasma soluble E-selectin (sE-S), sVCAM-1 and microalbuminuria. Increased levels of uPCR, sE-S and VCAM-1 were found, compared with the control group control [0.60 (0.30-1.25) vs. 0.20 (0.20-0.65) mg/l, p = 0.013], [108 (60-150) vs. 68 (56-82) ng/ml, p = 0.0031] y [750 (708-826) vs. 721 (674-751) ng/ml, p = 0.039] respectively. When diabetic patients were grouped according to duration of disease (3 and > de 3 years), uPCR values were higher in the second group. uPCR levels were better correlated with sE-S (r = 0.44, p = 0.03) and VCAM-1 (r = 0.49, p = 0.02). These results suggest the presence of pro-inflammatory and endothelial activation states, which are strongly associated with DT1.

  13. Plasma angiopoietin-2 outperforms other markers of endothelial injury in prognosticating pediatric ARDS mortality.

    PubMed

    Zinter, Matt S; Spicer, Aaron; Orwoll, Benjamin O; Alkhouli, Mustafa; Dvorak, Christopher C; Calfee, Carolyn S; Matthay, Michael A; Sapru, Anil

    2016-02-01

    Angiopoietin-2 (Ang-2) is a key mediator of pulmonary vascular permeability. This study tested the association between plasma Ang-2 and mortality in pediatric acute respiratory distress syndrome (ARDS), with stratification for prior hematopoietic cellular transplantation (HCT), given the severe, yet poorly understood, ARDS phenotype of this subgroup. We enrolled 259 children <18 years of age with ARDS; 25 had prior HCT. Plasma Ang-2, von Willebrand Factor antigen (vWF), and vascular endothelial growth factor (VEGF) were measured on ARDS days 1 and 3 and correlated with patient outcomes. Day 1 and day 3 Ang-2 levels were associated with mortality independent of age, sex, race, and P/F ratio [odds ratio (OR) 3.7, 95% CI 1.1-11.5, P = 0.027; and OR 10.2, 95% confidence interval (CI) 2.2-46.5, P = 0.003, for each log10 increase in Ang-2]. vWF was associated with mortality (P = 0.027), but VEGF was not. The association between day 1 Ang-2 and mortality was independent of levels of both vWF and VEGF (OR 3.6, 95% CI 1.1-12.1, P = 0.039, for each log10 increase in Ang-2). 45% of the cohort had a rising Ang-2 between ARDS day 1 and 3 (adjusted mortality OR 3.3, 95% CI 1.2-9.2, P = 0.026). HCT patients with a rising Ang-2 had 70% mortality compared with 13% mortality for those without (OR 16.3, 95% CI 1.3-197.8, P = 0.028). Elevated plasma levels of Ang-2 were associated with mortality independent of vWF and VEGF. A rising Ang-2 between days 1 and 3 was strongly associated with mortality, particularly in pediatric HCT patients, suggesting vulnerability to ongoing endothelial damage.

  14. Early circulating levels of endothelial cell activation markers in aneurysmal subarachnoid haemorrhage: associations with cerebral ischaemic events and outcome

    PubMed Central

    Frijns, C J M; Fijnheer, R; Algra, A; van Mourik, J A; van Gijn, J; Rinkel, G J E

    2006-01-01

    Objective To investigate the relation of endothelial cell activation with delayed cerebral ischaemia (DCI) and outcome after subarachnoid haemorrhage (SAH). Methods Concentrations of soluble (s) intercellular adhesion molecule‐1, sE‐selectin, sP‐selectin, ED1‐fibronectin, von Willebrand Factor (vWf), and vWf propeptide were measured within three days of SAH onset. The associations with poor outcome were investigated at three months in 106 patients. In 90 patients in whom the occurrence of cerebral ischaemia could be dated accurately, two analyses were undertaken: one for all ischaemic events (n = 32), including those related to treatment, and another for spontaneous DCI (n = 11). Concentrations of markers were dichotomised at their medians. The associations of endothelial cell activation markers with outcome were expressed as odds ratios (OR) from logistic regression and those with ischaemic events as hazard ratios (HR) derived from Cox regression. Results Early vWf concentrations were associated with poor outcome (crude OR = 4.6 (95% CI, 2.0 to 10.9; adjusted OR = 3.3 (1.1 to 9.8). Early levels of vWf were also positively related to occurrence of all ischaemic events (crude HR = 2.3 (1.1 to 4.9); adjusted HR = 1.8 (0.8 to 3.9) and with occurrence of spontaneous DCI (crude HR = 3.5 (0.9 to 13.1); adjusted HR = 2.2 (0.5 to 9.8). None of the other markers showed any associations. Conclusions Concentrations of sICAM‐1, sP‐selectin, sE‐selectin, and ED1‐fibronectin do not predict the occurrence of DCI or outcome. The positive associations of raised early vWf concentrations with ischaemic events and poor outcome after SAH may reflect a predisposition to further ischaemic injury through formation of microthrombi in the cerebral circulation. PMID:16361599

  15. Effects of Complementary Creatine Monohydrate and Physical Training on Inflammatory and Endothelial Dysfunction Markers Among Heart Failure Patients

    PubMed Central

    Hemati, Farajollah; Rahmani, Asghar; Asadollahi, Khairollah; Soleimannejad, Koroush; Khalighi, Zahra

    2016-01-01

    Background: Previous studies have reported endothelial dysfunction and inflammatory cytokine in heart failure patients (HF). Objectives: The purpose of this study was to determine the effects of creatine monohydrate and exercise on inflammatory and endothelial dysfunction markers among HF patients. Patients and Methods: One hundred patients were prospectively randomized into two groups: Intervention group which received 5 grams/day creatine monohydrate and exercised for 8 weeks; and control group which did not receive any interventions. Interleukine-6 (IL-6), high sensitivity C reactive protein (hs-CRP), P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) were measured at the start and end of the study for both groups. Results: In total, 100 patients including 50 controls and 50 intervention group (54% male, mean EF of 34.2 ± 10.5% and 52% male, mean EF of 35.6 ± 12.7%, respectively) were analyzed. The serum levels of hs-CRP and IL-6 increased at the end of the study in the control group compared to the baseline, (7.5 ± 1.5 mg/L vs. 6.9 ± 1.3 mg/L, P < 0.05 and 3.0 ± 0.75 ng/L vs. 2.55 ± 0.9 ng/L, P < 0.05, respectively). However, compared to the baseline, the level of both markers decreased at the end of the study in the intervention group (6.3 ± 1.6 mg/L vs.7.5 ± 1.5 mg/L, P < 0.05 and 2.1 ± 0.8 ng/L vs.2.5 ± 0.5 ng/L, P < 0.05). Also, P-selectin and ICAM-1 levels increased at the end of study (56.9 ± 1.8 ng/L vs. 51.9 ± 1.5 ng/L, P < 0.05 and 368.1 ± 25.4 µg/L vs. 353.1 ± 10.4 µg/L, P < 0.05 respectively). Inversely, the levels of these markers decreased in the intervention group, at the end of study (49.7 ± 1.9 ng/l vs. 51.4 ± 2.1 ng/l, P < 0.05 and 342.7 ± 16.5 µg/l vs. 350.4 ± 14.7 µg/l, P < 0.05, respectively). VCAM-1 level was not decreased significantly at the end of the study in the intervention group (570.5 ± 78.4 µg/L vs. 575.3 ± 86.5 µg/L, P > 0.05). Conclusions: Combination

  16. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues.

    PubMed

    Pusztaszeri, Marc P; Seelentag, Walter; Bosman, Fred T

    2006-04-01

    Few systematic studies have been published comparing the expression and distribution of endothelial cell (EC) markers in different vascular beds in normal human tissues. We investigated by immunohistochemistry the expression of CD31, CD34, von Willebrand factor (vWF), and Fli-1 in EC of the major organs and large vessels. Tissue samples obtained from autopsies and biopsy specimens were routinely processed and stained immunohistochemically for CD31, CD34, and vWF. Biopsy material was also stained immunohistochemically for Fli-1, D2-40, and Lyve-1. The expression pattern of the markers was heterogeneous in some of the organs studied. In the kidney, fenestrated endothelium of the glomeruli strongly expressed CD31 and CD34 but was only focally positive or completely negative for vWF. Alveolar wall capillaries of the lung strongly stained for CD31 and CD34 but were usually negative for vWF. The staining intensity for vWF increased gradually with the vessel caliber in the lung. Sinusoids of the spleen and liver were diffusely positive for CD31. They were negative for CD34 in the spleen and only expressed CD34 in the periportal area in the liver. Fli-1 was expressed in all types of EC but also in lymphocytes. D2-40 stained lymphatic endothelium only. Lyve-1 immunostaining was too variable to be applied to routinely processed tissues. The expression of EC markers CD31, CD34, and vWF in the vascular tree is heterogeneous with a specific pattern for individual vessel types and different anatomic compartments of the same organ. D2-40 labels lymphatic EC only.

  17. Increased RhoA/Rho-Kinase Activity and Markers of Endothelial Dysfunction in Young Adult Subjects with Metabolic Syndrome.

    PubMed

    Leguina-Ruzzi, Alberto; Pereira, Jaime; Pereira-Flores, Karla; Valderas, Juan P; Mezzano, Diego; Velarde, Victoria; Sáez, Claudia G

    2015-11-01

    Metabolic syndrome, a chronic condition associated with higher risk of cardiovascular diseases, is increasingly prevalent in young adults. Dyslipidemia, proinflammatory cytokines, endothelial dysfunction signs, and RhoA/Rho-kinase (ROCK) activation are considered risk factors of cardiovascular diseases. The occurrence of these factors in young patients with metabolic syndrome but without type 2 diabetes or hypertension has not been fully studied. The objective of this study was to evaluate young subjects with enlarged waist circumference and dyslipidemia but without type 2 diabetes or hypertension,for markers associated with a higher risk of cardiovascular diseases. Thirty-two male patients aged 31 ± 1.3 years diagnosed with metabolic syndrome according to the National Cholesterol Education Program Adult Treatment Panel III guide for enlarged waist circumference, elevated triglycerides, and low HDL levels, but with blood pressure and fasting glucose within normal ranges, were evaluated for RhoA/ROCK activity in leukocytes, serum fatty acid methyl esters profile, proinflammatory cytokines, and oxidative stress markers in addition to thrombin generation and biochemical analysis. Age- and gender-matched healthy subjects were equivalently evaluated. Patients showed higher RhoA/ROCK activity, elevated levels of interleukin-6, soluble CD40L, monocyte chemoattractant protein, and high-sensitivity C-reactive protein (P < 0.001) as well as parameters of endogenous thrombin generation potential (P < 0.05) compared with healthy subjects. Increased thiobarbituric acid reactive substances, advanced oxidation protein product, and insulin levels and low nitric oxide biodisponibility (P < 0.001) were also found in patients as compared with controls. Palmitic acid was one of the saturated fatty acids found to be significantly elevated in patients compared with control subjects (P = 0.0087). Increased markers of cardiovascular risk are already present in young

  18. Vascular Endothelial Growth Factor as an Angiogenic Marker in Malignant Astrocytoma and Oligodendroglioma: An Indian Scenario

    PubMed Central

    Vokuda, Ramya S; Srinivas, Bheemanathi Hanuman; Madhugiri, Venkatesh S

    2017-01-01

    Introduction The role of Vascular Endothelial Growth Factor (VEGF) in angiogenesis has been extensively studied in gliomas, such as astrocytoma and oligodendrogliomas, worldwide. However, there is limited information available with regard to the Indian population. Aim To study, whether VEGF is expressed in the Indian population in a pattern similar to that in other population. Materials and Methods In this prospective study approved by the Institute Ethics Committee for Human Studies at Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER) the patients operated for glioma in 2014 and 2015 (n = 60) were included. Tumours were graded as per the World Health Organization (WHO) grading system. VEGF expression in various grades was analysed using immunohistochemistry. Results Of the 60 patients included in this study, 15 were Grade II- (diffuse astrocytomas – 12; oligodendrogliomas- 3), 15 were Grade III-(anaplastic astrocytomas- 2; anaplastic oligodendrogliomas – 13) and 30 were Grade IV-glioblastomas. For VEGF antibody staining, two patients (3.33%) showed negative results and 58 patients (96%) showed positive results. VEGF positivity was 100% in Grade II and III, while it was 93.3% (28/30) in Grade IV tumours (p=0.012). Conclusion The expression of VEGF was associated with the grade of tumour, which gradually increased from Grade II to Grade IV. We conclude that VEGF-regulated angiogenesis plays an important role in tumour progression of astrocytomas and oligodendrogliomas in the Indian population as observed worldwide.

  19. Effect of exercise intensity on postprandial lipemia, markers of oxidative stress, and endothelial function after a high-fat meal.

    PubMed

    Lopes Krüger, Renata; Costa Teixeira, Bruno; Boufleur Farinha, Juliano; Cauduro Oliveira Macedo, Rodrigo; Pinto Boeno, Francesco; Rech, Anderson; Lopez, Pedro; Silveira Pinto, Ronei; Reischak-Oliveira, Alvaro

    2016-12-01

    The aim of this study was to compare the effects of 2 different exercise intensities on postprandial lipemia, oxidative stress markers, and endothelial function after a high-fat meal (HFM). Eleven young men completed 2-day trials in 3 conditions: rest, moderate-intensity exercise (MI-Exercise) and heavy-intensity exercise (HI-Exercise). Subjects performed an exercise bout or no exercise (Rest) on the evening of day 1. On the morning of day 2, an HFM was provided. Blood was sampled at fasting (0 h) and every hour from 1 to 5 h during the postprandial period for triacylglycerol (TAG), thiobarbituric acid reactive substance (TBARS), and nitrite/nitrate (NOx) concentrations. Flow-mediated dilatation (FMD) was also analyzed. TAG concentrations were reduced in exercise conditions compared with Rest during the postprandial period (P < 0.004). TAG incremental area under the curve (iAUC) was smaller after HI-Exercise compared with Rest (P = 0.012). TBARS concentrations were reduced in MI-Exercise compared with Rest (P < 0.041). FMD was higher in exercise conditions than Rest at 0 h (P < 0.02) and NOx concentrations were enhanced in MI-Exercise compared with Rest at 0 h (P < 0.01). These results suggest that acute exercise can reduce lipemia after an HFM. However, HI-Exercise showed to be more effective in reducing iAUC TAG, which might suggest higher protection against postprandial TAG enhancement. Conversely, MI-Exercise can be beneficial to attenuate the susceptibility of oxidative damage induced by an HFM and to increase endothelial function in the fasted state compared with Rest.

  20. Relationship between arterial vascular calcifications seen on screening mammograms and biochemical markers of endothelial injury.

    PubMed

    Pidal, Diego; Sánchez Vidal, M Teresa; Rodríguez, Juan Carlos; Corte, M Daniela; Pravia, Paz; Guinea, Oscar; Pidal, Iván; Bongera, Miguel; Escribano, Dámaso; González, Luis O; Díez, M Cruz; Venta, Rafael; Vizoso, Francisco J

    2009-01-01

    To assess whether breast arterial calcifications (BAC) are associated with altered serum markers of cardiovascular risk, mammograms and records from 1759 women (age range: 45-65 years) screened for breast cancer were revised. One hundred and forty seven (8.36%) women showed BAC. A total of 136 women with BAC and controls (mean age: 57 and 55 years, respectively) accepted entering the study. There were no significant differences in serum levels of urea, glucose, uric acid, creatinine, total cholesterol, HDL-C, LDL-C, folic acid, vitamin B(12), TSH or cysteine, between both groups of patients. However, women with BAC showed higher serum levels of triglycerides (p=0.006), homocysteine (p=0.002) and hs-CRP (p=0.003) than women without BAC. Likewise, we found a significantly higher percentage of cases with an elevated LDL-C/HDL-C ratio (coronary risk index >2) amongst women with BAC than in women without BAC (56.7 and 38.2%, respectively; p=0.04). Our results indicate that the finding of BAC identify women showing altered serum markers of cardiovascular risk.

  1. Identity of M2A (D2-40) antigen and gp36 (Aggrus, T1A-2, podoplanin) in human developing testis, testicular carcinoma in situ and germ-cell tumours.

    PubMed

    Sonne, Si Brask; Herlihy, Amy S; Hoei-Hansen, Christina E; Nielsen, John E; Almstrup, Kristian; Skakkebaek, Niels E; Marks, Alexander; Leffers, Henrik; Rajpert-De Meyts, Ewa

    2006-08-01

    Testicular germ-cell tumours of young adults are derived from a pre-invasive intratubular lesion, carcinoma in situ (CIS). In a recent genome-wide gene expression screening using cDNA microarrays, we found PDPN over-expressed in CIS compared to normal adult testis. PDPN encodes podoplanin (Aggrus, human gp36, T1A-2), a transmembrane glycoprotein expressed in lymphatic endothelium and various solid tumours. To examine a potential role for PDPN in testicular neoplasms and during testicular development, we investigated its expression pattern during the development of human testis and in a series of testicular CIS, gonadoblastoma and overt germ-cell tumours. We established by RT-PCR and by immunohistochemistry with a gp36 antibody that PDPN mRNA and the protein product were expressed in testes with germ-cell neoplasms but not in the normal adult testis. We also found gp36 expression in early foetal gonocytes and immature Sertoli cells, similar to the expression pattern of M2A antigen, a previously identified marker for CIS and seminoma. This reinforced our previous proposal that M2A (D2-40) antigen was identical to gp36 (podoplanin, Aggrus, T1A-2). Our findings also suggest that podoplanin has a function in developing testis, most likely at the level of cell-cell interactions among pre-meiotic germ cells and immature Sertoli cells.

  2. Markers of coagulation activation, endothelial stimulation, and inflammation in dogs with babesiosis.

    PubMed

    Barić Rafaj, R; Kuleš, J; Selanec, J; Vrkić, N; Zovko, V; Zupančič, M; Trampuš Bakija, A; Matijatko, V; Crnogaj, M; Mrljak, V

    2013-01-01

    Babesia infections in dogs can result in a wide range of clinical and laboratory presentations, including coagulopathy. Expression of intercellular adhesion molecule-1 (ICAM-1) and von Willebrand factor (vWF) in dogs with babesiosis is unknown. Whether inflammation in babesiosis triggers activation of ICAM-1 and the coagulation system. Twelve and 10 dogs with naturally occurring babesiosis before and after antiparasitic treatment, respectively, were compared with 10 healthy dogs. In this prospective study, diagnosis was made by blood smear examination and confirmed by PCR. C-reactive protein (CRP), soluble intercellular adhesion molecule 1 (sICAM-1), and von Willebrand factor (vWF) levels were measured by a canine ELISA kit, fibrinogen (FIB) and factor VIII activity levels were measured by coagulometric methods, and blood cell counts (WBC, RBC, PLT) were determined with an automatic analyzer. Compared to healthy dogs, the CRP, sICAM-1, and FIB concentrations were significantly increased before therapy and remained high for 3 days after therapy in dogs with babesiosis. vWF activity was significantly decreased in dogs with babesiosis before treatment. FVIII activity did not differ between dogs with babesiosis and healthy dogs. WBC; RBC and PLT were significantly lower before treatment and normalized by 3 days after treatment. A proinflammatory condition in babesiosis appears to influence endothelial dysfunction and hemostatic activity. Although clearly beneficial for the parasite, sequestered blood cells can obstruct blood flow in small vessels, promote an inflammatory state, and could increase the severity of babesiosis. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  3. Markers of Islet Endothelial Dysfunction Occur in Male B6.BKS(D)-Leprdb/J Mice and May Contribute to Reduced Insulin Release.

    PubMed

    Hogan, Meghan F; Liu, Amy W; Peters, Michael J; Willard, Joshua R; Rabbani, Zaheen; Bartholomew, Erik C; Ottley, Adam; Hull, Rebecca L

    2017-02-01

    Islet endothelial cells produce paracrine factors that support β-cell function and growth. Endothelial dysfunction underlies diabetic microvascular complications; thus, we hypothesized that in diabetes, islet endothelial cells become dysfunctional, which may contribute to β-cell secretory dysfunction. Islets/islet endothelial cells were isolated from diabetic B6.BKS(D)-Leprdb/J male (db/db) mice, treated with or without the glucose-lowering agent phlorizin, or from C57BL/6J mice fed a high-fat diet for 18 weeks and appropriate controls. Messenger RNA (mRNA) and/or the protein levels of the cell adhesion molecule E-selectin (Sele), proinflammatory cytokine interleukin-6 (Il6), vasoconstrictor endothelin-1 (Edn1), and endothelial nitric oxide synthase (Nos3; Nos3) were evaluated, along with advanced glycation end product immunoreactivity. Furthermore, an islet endothelial cell line (MS-1) was exposed to diabetic factors (glucose, palmitate, insulin, and tumor necrosis factor-α) for six days. Conditioned media were collected from these cells, incubated with isolated islets, and glucose-stimulated insulin secretion and insulin content were assessed. Islet endothelial cells from db/db mice exhibited increased Sele, Il6, and Edn1 mRNA levels, decreased Nos3 protein, and accumulation of advanced glycation end products. Phlorizin treatment significantly increased Nos3 protein levels but did not alter expression of the other markers. High-fat feeding in C57BL/6J mice resulted in increased islet Sele, Il6, and Edn1 but no change in Nos3. Exposure of islets to conditioned media from MS-1 cells cultured in diabetic conditions resulted in a 50% decrease in glucose-stimulated insulin secretion and 30% decrease in insulin content. These findings demonstrate that, in diabetes, islet endothelial cells show evidence of a dysfunctional phenotype, which may contribute to loss of β-cell function. Copyright © 2017 by the Endocrine Society.

  4. Markers of Endothelial-to-Mesenchymal Transition: Evidence for Antibody-Endothelium Interaction during Antibody-Mediated Rejection in Kidney Recipients.

    PubMed

    Xu-Dubois, Yi-Chun; Peltier, Julie; Brocheriou, Isabelle; Suberbielle-Boissel, Caroline; Djamali, Arjang; Reese, Shannon; Mooney, Nuala; Keuylian, Zela; Lion, Julien; Ouali, Nacéra; Levy, Pierre P; Jouanneau, Chantal; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    Antibody-mediated rejection (ABMR) is a leading cause of allograft loss. Treatment efficacy depends on accurate diagnosis at an early stage. However, sensitive and reliable markers of antibody-endothelium interaction during ABMR are not available for routine use. Using immunohistochemistry, we retrospectively studied the diagnostic value of three markers of endothelial-to-mesenchymal transition (EndMT), fascin1, vimentin, and heat shock protein 47, for ABMR in 53 renal transplant biopsy specimens, including 20 ABMR specimens, 24 cell-mediated rejection specimens, and nine normal grafts. We validated our results in an independent set of 74 unselected biopsy specimens. Endothelial cells of the peritubular capillaries in grafts with ABMR expressed fascin1, vimentin, and heat shock protein 47 strongly, whereas those from normal renal grafts did not. The level of EndMT marker expression was significantly associated with current ABMR criteria, including capillaritis, glomerulitis, peritubular capillary C4d deposition, and donor-specific antibodies. These markers allowed us to identify C4d-negative ABMR and to predict late occurrence of disease. EndMT markers were more specific than capillaritis for the diagnosis and prognosis of ABMR and predicted late (up to 4 years after biopsy) renal graft dysfunction and proteinuria. In the independent set of 74 renal graft biopsy specimens, the EndMT markers for the diagnosis of ABMR had a sensitivity of 100% and a specificity of 85%. Fascin1 expression in peritubular capillaries was also induced in a rat model of ABMR. In conclusion, EndMT markers are a sensitive and reliable diagnostic tool for detecting endothelial activation during ABMR and predicting late loss of allograft function.

  5. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3

    PubMed Central

    Chen, Wei-Sheng; Cao, Zhiyi; Sugaya, Satoshi; Lopez, Maria J.; Sendra, Victor G.; Laver, Nora; Leffler, Hakon; Nilsson, Ulf J.; Fu, Jianxin; Song, Jianhua; Xia, Lijun; Hamrah, Pedram; Panjwani, Noorjahan

    2016-01-01

    Lymphangiogenesis plays a pivotal role in diverse pathological conditions. Here, we demonstrate that a carbohydrate-binding protein, galectin-8, promotes pathological lymphangiogenesis. Galectin-8 is markedly upregulated in inflamed human and mouse corneas, and galectin-8 inhibitors reduce inflammatory lymphangiogenesis. In the mouse model of corneal allogeneic transplantation, galectin-8-induced lymphangiogenesis is associated with an increased rate of corneal graft rejection. Further, in the murine model of herpes simplex virus keratitis, corneal pathology and lymphangiogenesis are ameliorated in Lgals8−/− mice. Mechanistically, VEGF-C-induced lymphangiogenesis is significantly reduced in the Lgals8−/− and Pdpn−/− mice; likewise, galectin-8-induced lymphangiogenesis is reduced in Pdpn−/− mice. Interestingly, knockdown of VEGFR-3 does not affect galectin-8-mediated lymphatic endothelial cell (LEC) sprouting. Instead, inhibiting integrins α1β1 and α5β1 curtails both galectin-8- and VEGF-C-mediated LEC sprouting. Together, this study uncovers a unique molecular mechanism of lymphangiogenesis in which galectin-8-dependent crosstalk among VEGF-C, podoplanin and integrin pathways plays a key role. PMID:27066737

  6. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2.

    PubMed

    Acton, Sophie E; Astarita, Jillian L; Malhotra, Deepali; Lukacs-Kornek, Veronika; Franz, Bettina; Hess, Paul R; Jakus, Zoltan; Kuligowski, Michael; Fletcher, Anne L; Elpek, Kutlu G; Bellemare-Pelletier, Angelique; Sceats, Lindsay; Reynoso, Erika D; Gonzalez, Santiago F; Graham, Daniel B; Chang, Jonathan; Peters, Anneli; Woodruff, Matthew; Kim, Young-A; Swat, Wojciech; Morita, Takashi; Kuchroo, Vijay; Carroll, Michael C; Kahn, Mark L; Wucherpfennig, Kai W; Turley, Shannon J

    2012-08-24

    To initiate adaptive immunity, dendritic cells (DCs) move from parenchymal tissues to lymphoid organs by migrating along stromal scaffolds that display the glycoprotein podoplanin (PDPN). PDPN is expressed by lymphatic endothelial and fibroblastic reticular cells and promotes blood-lymph separation during development by activating the C-type lectin receptor, CLEC-2, on platelets. Here, we describe a role for CLEC-2 in the morphodynamic behavior and motility of DCs. CLEC-2 deficiency in DCs impaired their entry into lymphatics and trafficking to and within lymph nodes, thereby reducing T cell priming. CLEC-2 engagement of PDPN was necessary for DCs to spread and migrate along stromal surfaces and sufficient to induce membrane protrusions. CLEC-2 activation triggered cell spreading via downregulation of RhoA activity and myosin light-chain phosphorylation and triggered F-actin-rich protrusions via Vav signaling and Rac1 activation. Thus, activation of CLEC-2 by PDPN rearranges the actin cytoskeleton in DCs to promote efficient motility along stromal surfaces.

  7. Effect of weight loss on inflammatory and endothelial markers and FMD using two low-fat diets.

    PubMed

    Clifton, P M; Keogh, J B; Foster, P R; Noakes, M

    2005-12-01

    Cardiovascular disease is strongly associated with obesity and there is evidence that weight loss has positive effects on cardiovascular disease risk. The aims of this study were to compare meal replacements (MR) with a conventional low-fat diet as weight loss strategies and to examine the effect of weight loss on flow-mediated dilatation (FMD) and other markers of endothelial function in overweight Australians with raised triglycerides (TG) (> 2 mmol/l). Subjects matched for age, gender, fasting plasma TG and body mass index were randomized to two low- fat high- carbohydrate weight loss strategies (both < 6000 kJ), one using MR and the other a structured eating plan, control (C). Subjects followed both diets for 3 months. In total, 55 subjects completed the study. FMD, pulse wave velocity and blood pressure (BP) were measured at baseline and at 3 months, as were fasting blood samples for lipids, glucose, insulin, C reactive protein (CRP) and endothelium-derived factors. Mean weight loss was 6.3 +/- 3.7 kg (6.0 +/- 4.2 vs 6.63 +/- 3.35 kg, MR vs C) with no difference between diet groups. TG, insulin, CRP, plasminogen activator inhibitor 1 (PAI-1) and soluble intracellular adhesion molecule-1 (sICAM1) fell after weight loss, but FMD did not change. Systolic BP fell by 8 mmHg and pulse wave velocity improved. In subjects with elevated TG, weight loss resulted in significant improvements in cardiovascular risk markers, particularly endothelium-derived factors (PAI-1 and sICAM1). However, FMD did not improve with weight loss.

  8. Diagnostic value of endothelial markers and HHV-8 staining in gastrointestinal Kaposi sarcoma and its difference in endoscopic tumor staging.

    PubMed

    Nagata, Naoyoshi; Igari, Toru; Shimbo, Takuro; Sekine, Katsunori; Akiyama, Junichi; Hamada, Yohei; Yazaki, Hirohisa; Ohmagari, Norio; Teruya, Katsuji; Oka, Shinichi; Uemura, Naomi

    2013-06-21

    To clarify the diagnostic values of hematoxylin and eosin (HE), D2-40, CD31, CD34, and HHV-8 immunohistochemical (IHC) staining in gastrointestinal Kaposi's sarcoma (GI-KS) in relation to endoscopic tumor staging. Biopsy samples (n = 133) from 41 human immunodeficiency virus-infected patients were reviewed. GI-KS was defined as histologically negative for other GI diseases and as a positive clinical response to KS therapy. The receiver operating characteristic area under the curve (ROC-AUC) was compared in relation to lesion size, GI location, and macroscopic appearances on endoscopy. GI-KS was confirmed in 84 lesions (81.6%). Other endoscopic findings were polyps (n = 9), inflammation (n = 4), malignant lymphoma (n = 4), and condyloma (n = 2), which mimicked GI-KS on endoscopy. ROC-AUC of HE, D2-40, blood vessel markers, and HHV-8 showed results of 0.83, 0.89, 0.80, and 0.82, respectively. For IHC staining, the ROC-AUC of D2-40 was significantly higher (P < 0.05) than that of HE staining only. In the analysis of endoscopic appearance, the ROC-AUC of HE and IHC showed a tendency toward an increase in tumor staging (e.g., small to large, patches, and polypoid to SMT appearance). D2-40 was significantly (P < 0.05) advantageous in the upper GI tract and for polypoid appearance compared with HE staining. The diagnostic value of endothelial markers and HHV-8 staining was found to be high, and its accuracy tended to increase with endoscopic tumor staging. D2-40 will be useful for complementing HE staining in the diagnosis of GI-KS, especially in the upper GI tract and for polypoid appearance.

  9. Markers of endothelial and haemostatic function in the treatment of relapsed myeloma with the immunomodulatory agent Actimid (CC-4047) and their relationship with venous thrombosis.

    PubMed

    Streetly, Matthew; Hunt, Beverley J; Parmar, Kiran; Jones, Richard; Zeldis, Jerome; Schey, Steve

    2005-04-01

    We evaluated the serum/plasma levels of cytokines [interleukin (IL)-6, vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-beta2] and markers of coagulation, fibrinolysis, endothelial and platelet activation during the first 4 wk of treatment with the thalidomide analogue Actimid (CC-4047) in 15 patients with relapsed/refractory myeloma. There was evidence of activation of endothelium (soluble vascular cell adhesion molecule, sVCAM), coagulation (prothrombin fragment 1 + 2, PF1 + 2) and fibrinolysis (D-dimers) but no evidence of platelet activation or endothelial cell damage in myeloma patients. These parameters were not affected by the use of CC-4047. Three of four patients with baseline D-dimers levels >500 microg/L subsequently developed deep vein thrombosis (DVT). The hypothesis that D-dimer level >500 microg/L may predict for those patients most at risk of thromboembolism with multiple myeloma undergoing treatment is worthy of further study.

  10. Novel Monoclonal Antibody LpMab-17 Developed by CasMab Technology Distinguishes Human Podoplanin from Monkey Podoplanin.

    PubMed

    Kato, Yukinari; Ogasawara, Satoshi; Oki, Hiroharu; Honma, Ryusuke; Takagi, Michiaki; Fujii, Yuki; Nakamura, Takuro; Saidoh, Noriko; Kanno, Hazuki; Umetsu, Mitsuo; Kamata, Satoshi; Kubo, Hiroshi; Yamada, Mitsuhiro; Sawa, Yoshihiko; Morita, Kei-Ichi; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kaneko, Mika Kato

    2016-04-01

    Podoplanin (PDPN) is a type-I transmembrane sialoglycoprotein, which possesses a platelet aggregation-stimulating (PLAG) domain in its N-terminus. Among the three PLAG domains, O-glycan on Thr52 of PLAG3 is critical for the binding with C-type lectin-like receptor-2 (CLEC-2) and is essential for platelet-aggregating activity of PDPN. Although many anti-PDPN monoclonal antibodies (mAbs) have been established, almost all mAbs bind to PLAG domains. We recently established CasMab technology to produce mAbs against membranous proteins. Using CasMab technology, we produced a novel anti-PDPN mAb, LpMab-17, which binds to non-PLAG domains. LpMab-17 clearly detected endogenous PDPN of cancer cells and normal cells in Western-blot, flow cytometry, and immunohistochemistry. LpMab-17 recognized glycan-deficient PDPN in flow cytometry, indicating that the interaction between LpMab-17 and PDPN is independent of its glycosylation. The minimum epitope of LpMab-17 was identified as Gly77-Asp82 of PDPN using enzyme-linked immunosorbent assay. Of interest, LpMab-17 did not bind to monkey PDPN, whereas the homology is 94% between human PDPN and monkey PDPN, indicating that the epitope of LpMab-17 is unique compared with the other anti-PDPN mAbs. The combination of different epitope-possessing mAbs could be advantageous for the PDPN-targeting diagnosis or therapy.

  11. Ligand-independent assembly of purified soluble magic roundabout (Robo4), a tumor-specific endothelial marker.

    PubMed

    Yoshikawa, Mai; Mukai, Yohei; Okada, Yoshiaki; Yoshioka, Yasuo; Tsunoda, Shin-Ichi; Tsutsumi, Yasuo; Okada, Naoki; Aird, William C; Doi, Takefumi; Nakagawa, Shinsaku

    2008-09-01

    Magic roundabout (Robo4) is the fourth recently identified member of the roundabout receptor family. Robo4 is predominantly expressed in embryonic or tumor vascular endothelium and is considered important for vascular development and as a candidate tumor endothelial marker. Much remains unknown about the Robo4 molecule, however, such as its ligands, structure, and the details of its function. Thus, we aimed to establish an expression and purification method for obtaining soluble recombinant human Robo4 (shRobo4) and mouse Robo4 (smRobo4) for use in Robo4 characterization studies. In this work, we expressed the extracellular domain of hRobo4 and mRobo4 in mammalian 293F cells and purified them by two-step chromatography. Based on gel-filtration chromatography and Blue Native polyacrylamide gel electrophoresis, these purified proteins exist as multimers. The shRobo4 and smRobo4 we obtained will be useful in advanced studies to determine the importance of multimerization, identify the ligands, and elucidate the ligand-receptor interactions and Robo4-mediated signaling. The results of these studies will help to elucidate the role of Robo4 in angiogenesis and perhaps eventually contribute to the development of novel vessel-targeting therapies.

  12. Prospective surface marker-based isolation and expansion of fetal endothelial colony-forming cells from human term placenta.

    PubMed

    Patel, Jatin; Seppanen, Elke; Chong, Mark S K; Yeo, Julie S L; Teo, Erin Y L; Chan, Jerry K Y; Fisk, Nicholas M; Khosrotehrani, Kiarash

    2013-11-01

    The term placenta is a highly vascularized tissue and is usually discarded upon birth. Our objective was to isolate clinically relevant quantities of fetal endothelial colony-forming cells (ECFCs) from human term placenta and to compare them to the well-established donor-matched umbilical cord blood (UCB)-derived ECFCs. A sorting strategy was devised to enrich for CD45-CD34+CD31Lo cells prior to primary plating to obtain pure placental ECFCs (PL-ECFCs) upon culture. UCB-ECFCs were derived using a well-described assay. PL-ECFCs were fetal in origin and expressed the same cell surface markers as UCB-ECFCs. Most importantly, a single term placenta could yield as many ECFCs as 27 UCB donors. PL-ECFCs and UCB-ECFCs had similar in vitro and in vivo vessel forming capacities and restored mouse hind limb ischemia in similar proportions. Gene expression profiles were only minimally divergent between PL-ECFCs and UCB-ECFCs, probably reflecting a vascular source versus a circulating source. Finally, PL-ECFCs and UCB-ECFCs displayed similar hierarchies between high and low proliferative colonies. We report a robust strategy to isolate ECFCs from human term placentas based on their cell surface expression. This yielded much larger quantities of ECFCs than UCB, but the cells were comparable in immunophenotype, gene expression, and in vivo functional ability. We conclude that PL-ECFCs have significant bio-banking and clinical translatability potential.

  13. Postprandial effects of a high salt meal on serum sodium, arterial stiffness, markers of nitric oxide production and markers of endothelial function.

    PubMed

    Dickinson, Kacie M; Clifton, Peter M; Burrell, Louise M; Barrett, P Hugh R; Keogh, Jennifer B

    2014-01-01

    The aim of the study was to determine if a high salt meal containing 65 mmol Na causes a rise in sodium concentrations and a reduction in plasma nitrate/nitrite concentrations (an index of nitric oxide production). Secondary aims were to determine the effects of a high salt meal on augmentation index (AIx) a measure of arterial stiffness and markers of endothelial function. In a randomised cross-over study 16 healthy normotensive adults consumed a low sodium soup containing 5 mmol Na and a high sodium soup containing 65 mmol Na. Sodium, plasma nitrate/nitrite, endothelin-1 (ET-1), C-reactive protein (CRP), vasopressin (AVP) and atrial natriuretic peptide (ANP) concentrations before and every 30 min after the soup for 2 h. Blood pressure (BP) and AI were also measured at these time points. There were significant increases in serum sodium, osmolality and chloride in response to the high sodium meal. However plasma nitrate/nitrite concentrations were not different between meals (meal p = 0.812; time p = 0.45; meal × time interaction p = 0.50). Plasma ANP, AVP and ET-1 were not different between meals. AI was significantly increased following the high sodium meal (p = 0.02) but there was no effect on BP. A meal containing 65 mmol Na increases serum sodium and arterial stiffness but does not alter postprandial nitrate/nitrite concentration in healthy normotensive individuals. Further research is needed to explore the mechanism by which salt affects vascular function in the postprandial period. This trial was registered with the Australian and New Zealand Clinical Trials Registry Unique Identifier: ACTRN12611000583943http://www.anzctr.org.au/trial_view.aspx?ID=343019. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Cell adhesion markers are expressed by a stable human endothelial cell line transformed by the SV40 large T antigen under vimentin promoter control.

    PubMed

    Vicart, P; Testut, P; Schwartz, B; Llorens-Cortes, C; Perdomo, J J; Paulin, D

    1993-10-01

    Markers of endothelium have been studied in a new endothelial cell line derived from human umbilical cord vein cells by microinjection of a recombinant gene that includes a deletion mutant of the human vimentin gene regulatory region controlling the large T and small t antigen coding region of the SV40 virus. In culture, this immortalized venous endothelial cell line (IVEC) demonstrated morphological characteristics of endothelium; uptake of acetylated low density lipoprotein and presence of the Factor VIII-related antigen. Treatment of IVEC cells with Interleukin-1 beta (IL-1 beta) at 10 U.ml-1 activates the expression of cell adhesion molecules such as endothelial leucocyte adhesion molecule (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), as observed in primary culture. Prostacyclin secretion was induced in the IVEC cells by 100 nM PMA treatment and thrombin at 0.5 U/ml. Angiotensin converting enzyme (ACE) activity detected in IVEC cells was present but lower than ACE activity in primary endothelial cells and was completely blocked by enalaprilat (1 microM), a specific ACE inhibitor. The presence of ACE mRNA was also demonstrated in IVEC cells by RT-PCR amplification. Our data demonstrate that endothelial cells immortalized by use of this recombinant gene retain the morphological organization and numerous differentiated properties of endothelium.

  15. Development of Blood and Lymphatic Endothelial Cells in Embryonic and Fetal Human Skin.

    PubMed

    Schuster, Christopher; Mildner, Michael; Botta, Albert; Nemec, Lucas; Rogojanu, Radu; Beer, Lucian; Fiala, Christian; Eppel, Wolfgang; Bauer, Wolfgang; Petzelbauer, Peter; Elbe-Bürger, Adelheid

    2015-09-01

    Blood and lymphatic vessels provide nutrients for the skin and fulfill important homeostatic functions, such as the regulation of immunologic processes. In this study, we investigated the development of blood and lymphatic endothelial cells in prenatal human skin in situ using multicolor immunofluorescence and analyzed angiogenic molecules by protein arrays of lysates and cell culture supernatants. We found that at 8 to 10 weeks of estimated gestational age, CD144(+) vessels predominantly express the venous endothelial cell marker PAL-E, whereas CD144(+)PAL-E(-) vessels compatible with arteries only appear at the end of the first trimester. Lymphatic progenitor cells at 8 weeks of estimated gestational age express CD31, CD144, Prox1, and temporary PAL-E. At that developmental stage not all lymphatic progenitor cells express podoplanin or Lyve-1, which are acquired with advancing gestational age in a stepwise fashion. Already in second-trimester human skin, the phenotype of blood and lymphatic vessels roughly resembles the one in adult skin. The expression pattern of angiogenic molecules in lysates and cell culture supernatants of prenatal skin did not reveal the expected bent to proangiogenic molecules, indicating a complex regulation of angiogenesis during ontogeny. In summary, this study provides enticing new insights into the development and phenotypic characteristics of the vascular system in human prenatal skin. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia

    PubMed Central

    Piccin, Andrea; Murphy, Ciaran; Eakins, Elva; Kunde, Jan; Corvetta, Daisy; Di Pierro, Angela; Negri, Giovanni; Guido, Mazzoleni; Sainati, Laura; Mc Mahon, Corrina; Smith, Owen Patrick; Murphy, William

    2015-01-01

    Introduction Circulating microparticles (MP) have been described in sickle cell anaemia (SCA); however, their interaction with endothelial markers remains unclear. We investigated the relationship between MP, protein C (PC), free protein S (PS), nitric oxide (NO), endothelin-1 (ET-1) and adrenomedullin (ADM) in a large cohort of paediatric patients. Method A total of 111 children of African ethnicity with SCA: 51 in steady state; 15 in crises; 30 on hydroxyurea (HU) therapy; 15 on transfusion; 17 controls (HbAA) of similar age/ethnicity. MP were analysed by flow cytometry using: Annexin V (AV), CD61, CD42a, CD62P, CD235a, CD14, CD142 (tissue factor), CD201 (endothelial PC receptor), CD62E, CD36 (TSP-1), CD47 (TSP-1 receptor), CD31 (PECAM), CD144 (VE-cadherin). Protein C, free PS, NO, pro-ADM and C-terminal ET-1 were also measured. Results Total MP AV was lower in crisis (1.26×106 ml−1; 0.56–2.44×106) and steady state (1.35×106 ml−1; 0.71–3.0×106) compared to transfusion (4.33×106 ml−1; 1.6–9.2×106, p<0.01). Protein C levels were significantly lower in crisis (median 0.52 IU ml−1; interquartile range 0.43–0.62) compared with all other groups: HbAA (0.72 IU ml−1; 0.66–0.82, p<0.001); HU (0.67 IU ml−1; 0.58–0.77, p<0.001); steady state (0.63 IU ml−1; 0.54–0.70, p<0.05) and transfusion (0.60 IU ml−1; 0.54–0.70, p<0.05). In addition, levels were significantly reduced in steady state (0.63 IU ml−1; 0.54–0.70) compared with HbAA (0.72 IU ml−1; 0.66–0.80, p<0.01). PS levels were significantly higher in HbAA (0.85 IU ml−1; 0.72–0.97) compared with crisis (0.49 IU ml−1; 0.42–0.64, p<0.001), HU (0.65 IU ml−1; 0.56–0.74, p<0.01) and transfusion (0.59 IU ml−1; 0.47–0.71, p<0.01). There was also a significant difference in crisis patients compared with steady state (0.49 IU ml−1; 0.42–0.64 vs. 0.68 IU ml−1; 0.58–0.79, p<0.05). There was high correlation (R>0.9, p<0.05) between total numbers of AV-positive MP

  17. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes.

    PubMed

    Lanzinger, Stefanie; Breitner, Susanne; Neas, Lucas; Cascio, Wayne; Diaz-Sanchez, David; Hinderliter, Alan; Peters, Annette; Devlin, Robert B; Schneider, Alexandra

    2014-10-01

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investigate short-term effects of temperature and ozone on endothelial function in individuals having diabetes. Moreover, we investigated interactive effects between air temperature and air pollution on markers of endothelial function. Between November 2004 and December 2005 flow-mediated dilatation (FMD), nitroglycerin-mediated dilatation (NTGMD) and several blood markers representing endothelial function were measured using brachial artery ultrasound on four consecutive days in 22 individuals with type-2 diabetes mellitus in Chapel Hill, North Carolina (USA). Daily measurements of meteorological parameters, ozone and particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) were obtained from fixed monitoring sites. We used additive mixed-models adjusting for time trend, day of the week, relative humidity and barometric pressure to assess temperature and ozone associations with endothelial function. A 1 °C decrease in the 24-h temperature average was associated with a decrease in mean FMD on the same day (-2.2% (95%-confidence interval:[-4.7;0.3%])) and with a delay of one and four days. A temperature decrement also led to an immediate (-1.7%[-3.3;-0.04]) decrease in NTGMD. Moreover, we observed an immediate (-14.6%[-26.3;-2.9%]) and a one day delayed (-13.5%[-27.0; 0.04%]) decrease in FMD in association with a 0.01 ppm increase in the maximum 8-h moving average of ozone. Temperature effects on FMD strengthened when PM2.5 and ozone concentrations were high. The associations were similar during winter and summer. We detected an association between temperature decreases and ozone increases on endothelial dysfunction in individuals having diabetes. We conclude that endothelial dysfunction

  18. Soluble endothelial protein C receptor and high sensitivity C reactive protein levels as markers of endothelial dysfunction in patients with type 1 and type 2 diabetes mellitus: their role in the prediction of vascular complications.

    PubMed

    Zaghloul, Amal; Al-Bukhari, T A M A; Al-Pakistani, H A; Shalaby, Maged; Halawani, Saeed H; Bajuaifer, Nada; Teama, Shirin H

    2014-12-01

    Endothelial dysfunction in diabetes mellitus (DM) is an important factor in the pathogenesis of micro and macrovascular complications. We aimed to measure soluble endothelial protein C receptor (sEPCR) and high sensitivity C reactive protein (hsCRP) levels as markers of endothelial damage in both types of diabetes mellitus and to determine if they can be used as predictors of vascular complications. Fifty patients with DM, 20 with type 1 and 30 with type 2 as well as 30 healthy subjects were included. All were subjected to measurement of sEPCR and hsCRP by enzyme linked immunosorbent assay. sEPCR and hsCRP were significantly increased when compared to the control group in both types of DM. sEPCR was a significant predictor of macrovascular complications and thrombosis in type 1 p=0.02, and p=0.015, respectively. hsCRP was a significant predictor of macrovascular complications in type 2 p=0.04. Patients with type 1 and type 2 DM exhibit higher sEPCR and hsCRP levels compared to healthy controls which suggesting endothelial damage. sEPCR could be used as a predictor of macrovascular complications and thrombosis in type 1 DM, whereas, hsCRP might be used as a predictor of macrovascular complications in type 2 DM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Ets-1 Is Required for the Activation of VEGFR3 during Latent Kaposi's Sarcoma-Associated Herpesvirus Infection of Endothelial Cells

    PubMed Central

    Gutierrez, Kimberley D.; Morris, Valerie A.; Wu, David; Barcy, Serge

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma (KS), is present in the predominant tumor cells of KS, the spindle cells. Spindle cells express markers of lymphatic endothelium and, interestingly, KSHV infection of blood endothelial cells reprograms them to a lymphatic endothelial cell phenotype. KSHV-induced reprogramming requires the activation of STAT3 and phosphatidylinositol 3 (PI3)/AKT through the activation of cellular receptor gp130. Importantly, KSHV-induced reprogramming is specific to endothelial cells, indicating that there are additional host genes that are differentially regulated during KSHV infection of endothelial cells that contribute to lymphatic reprogramming. We found that the transcription factor Ets-1 is highly expressed in KS spindle cells and is upregulated during KSHV infection of endothelial cells in culture. The KSHV latent vFLIP gene is sufficient to induce Ets-1 expression in an NF-κB-dependent fashion. Ets-1 is required for KSHV-induced expression of VEGFR3, a lymphatic endothelial-cell-specific receptor important for lymphangiogenesis, and Ets-1 activates the promoter of VEGFR3. Ets-1 knockdown does not alter the expression of another lymphatic-specific gene, the podoplanin gene, but does inhibit the expression of VEGFR3 in uninfected lymphatic endothelium, indicating that Ets-1 is a novel cellular regulator of VEGFR3 expression. Knockdown of Ets-1 affects the ability of KSHV-infected cells to display angiogenic phenotypes, indicating that Ets-1 plays a role in KSHV activation of endothelial cells during latent KSHV infection. Thus, Ets-1 is a novel regulator of VEGFR3 and is involved in the induction of angiogenic phenotypes by KSHV. PMID:23552426

  20. Ets-1 is required for the activation of VEGFR3 during latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells.

    PubMed

    Gutierrez, Kimberley D; Morris, Valerie A; Wu, David; Barcy, Serge; Lagunoff, Michael

    2013-06-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma (KS), is present in the predominant tumor cells of KS, the spindle cells. Spindle cells express markers of lymphatic endothelium and, interestingly, KSHV infection of blood endothelial cells reprograms them to a lymphatic endothelial cell phenotype. KSHV-induced reprogramming requires the activation of STAT3 and phosphatidylinositol 3 (PI3)/AKT through the activation of cellular receptor gp130. Importantly, KSHV-induced reprogramming is specific to endothelial cells, indicating that there are additional host genes that are differentially regulated during KSHV infection of endothelial cells that contribute to lymphatic reprogramming. We found that the transcription factor Ets-1 is highly expressed in KS spindle cells and is upregulated during KSHV infection of endothelial cells in culture. The KSHV latent vFLIP gene is sufficient to induce Ets-1 expression in an NF-κB-dependent fashion. Ets-1 is required for KSHV-induced expression of VEGFR3, a lymphatic endothelial-cell-specific receptor important for lymphangiogenesis, and Ets-1 activates the promoter of VEGFR3. Ets-1 knockdown does not alter the expression of another lymphatic-specific gene, the podoplanin gene, but does inhibit the expression of VEGFR3 in uninfected lymphatic endothelium, indicating that Ets-1 is a novel cellular regulator of VEGFR3 expression. Knockdown of Ets-1 affects the ability of KSHV-infected cells to display angiogenic phenotypes, indicating that Ets-1 plays a role in KSHV activation of endothelial cells during latent KSHV infection. Thus, Ets-1 is a novel regulator of VEGFR3 and is involved in the induction of angiogenic phenotypes by KSHV.

  1. Predictive Role of Coagulation, Fibrinolytic, and Endothelial Markers in Patients with Atrial Fibrillation, Stroke, and Thromboembolism: A Meta-Analysis, Meta-Regression, and Systematic Review

    PubMed Central

    Weymann, Alexander; Sabashnikov, Anton; Ali-Hasan-Al-Saegh, Sadeq; Popov, Aron-Frederik; Mirhosseini, Seyed Jalil; Baker, William L.; Lotfaliani, Mohammadreza; Liu, Tong; Dehghan, Hamidreza; Yavuz, Senol; de Oliveira Sá, Michel Pompeu Barros; Jang, Jae-Sik; Zeriouh, Mohamed; Meng, Lei; D’Ascenzo, Fabrizio; Deshmukh, Abhishek J.; Biondi-Zoccai, Giuseppe; Dohmen, Pascal M.; Calkins, Hugh

    2017-01-01

    Background The pathophysiological mechanism associated with the higher prothrombotic tendency in atrial fibrillation (AF) is complex and multifactorial. However, the role of prothrombotic markers in AF remains inconclusive. Material/Methods We conducted a meta-analysis of observational studies evaluating the association of coagulation activation, fibrinolytic, and endothelial function with occurrence of AF and clinical adverse events. A comprehensive subgroup analysis and meta-regression was performed to explore potential sources of heterogeneity. Results A literature search of major databases retrieved 1703 studies. After screening, a total of 71 studies were identified. Pooled analysis showed the association of coagulation markers (D-dimer (weighted mean difference (WMD)=197.67 and p<0.001), fibrinogen (WMD=0.43 and p<0.001), prothrombin fragment 1–2 (WMD=0.53 and p<0.001), antithrombin III (WMD=23.90 and p=0.004), thrombin-antithrombin (WMD=5.47 and p=0.004)); fibrinolytic markers (tissue-type plasminogen activator (t-PA) (WMD=2.13 and p<0.001), plasminogen activator inhibitor (WMD=11.44 and p<0.001), fibrinopeptide-A (WMD=4.13 and p=0.01)); and endothelial markers (von Willebrand factor (WMD=27.01 and p<0.001) and soluble thrombomodulin (WMD=3.92 and p<0.001)) with AF. Conclusions The levels of coagulation, fibrinolytic, and endothelial markers have been reported to be significantly higher in AF patients than in SR patients. PMID:28360407

  2. ABO blood group associations with markers of endothelial dysfunction in the Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Larson, Nicholas B.; Bell, Elizabeth J.; Decker, Paul A.; Pike, Mindy; Wassel, Christina L.; Tsai, Michael Y.; Pankow, James S.; Tang, Weihong; Hanson, Naomi Q.; Alexander, Kristine; Zakai, Neil; Cushman, Mary; Bielinski, Suzette J.

    2016-01-01

    Background and aims ABO blood type is associated with cardiovascular disease, although the underlying mechanisms are presumed to be complex. While the relationship between non-O blood types and von Willebrand Factor (vWF) is well-established, associations with cellular adhesion molecules (CAMs) across diverse populations are understudied. Methods We genetically inferred ABO alleles for N=6202 participants from the Multi-Ethnic Study of Atherosclerosis. Linear regression was used to evaluate associations between major ABO allele dosages and log-transformed measurements of vWF (N=924), soluble E-selectin (sE-selectin, N=925), soluble P-selectin (sP-selectin, N=2392), and soluble ICAM-1 (sICAM-1, N=2236) by race/ethnicity. Results For the selectins, the A1 allele was associated with significantly lower levels for all races/ethnicities, with each additional allele resulting in a 28-39% decrease in sE-selectin and 10-18% decrease in sP-selectin relative to Type O subjects. However, the A2 allele demonstrated effect heterogeneity across race/ethnicity for sE-selectin, with lower levels for non-Hispanic whites (p=0.0011) but higher levels for Hispanics (p=0.0021). We also identified elevated sP-selectin levels for B-allele carriers solely in Hispanic participants (p=1.0E-04). ABO-by-race/ethnicity interactions were significant for both selectins (p <0.0125). More modest associations were observed between A1 allele dosage and levels of sICAM-1, with ABO alleles explaining 0.8-1.1% of the total phenotypic variation within race/ethnicity. ABO associations with vWF activity were consistent across race/ethnicity, with B allele carriers corresponding to the highest vWF activity levels. Conclusions ABO blood type demonstrates complex associations with endothelial markers that are largely generalizable across diverse populations. PMID:27298014

  3. Tumor endothelial marker 8 expression levels in dendritic cell-based cancer vaccines are related to clinical outcome.

    PubMed

    Venanzi, Franco Maria; Petrini, Massimiliano; Fiammenghi, Laura; Bolli, Elisabetta; Granato, Anna Maria; Ridolfi, Laura; Gabrielli, Federica; Barucca, Alessandra; Concetti, Antonio; Ridolfi, Ruggero; Riccobon, Angela

    2010-01-01

    Previous studies have shown that tumor endothelial markers (TEMs 1-9) are up modulated in immunosuppressive, pro-angiogenic dendritic cells (DCs) found in tumor microenvironments. We recently reported that monocyte-derived DCs used for vaccination trials may accumulate high levels of TEM8 gene transcripts. Here, we investigate whether TEM8 expression in DC preparations represents a specific tumor-associated change of potential clinical relevance. TEM8 expression at the mRNA and protein level was evaluated by quantitative real-time RT-PCR and cytofluorimetric analysis in human clinical grade DCs utilized for the therapeutic vaccination of 17 advanced cancer patients (13 melanoma and 4 renal cell carcinoma). The analyses revealed that DCs from patients markedly differ in their ability to up-modulate TEM8. Indeed, mDCs from eight non-progressing patients [median overall survival (OS) = 32 months, all positive to the delayed-type hypersensitivity test (DTH)], had similar TEM8 mRNA expression levels [mDCs vs. immature iDCs; mean fold increase (mfi) = 1.97] to those found in healthy donors (mfi = 2.7). Conversely, mDCs from nine progressing patients (OS < 5 months, all but one with negative DTH) showed an increase in TEM8 mRNA levels (mfi = 12.88, p = 0.0018). The present observations suggest that TEM8 expression levels in DC-based therapeutic vaccines would allow the selection of a subgroup of patients who are most likely to benefit from therapeutic vaccination.

  4. Air pollution and markers of coagulation, inflammation and endothelial function: Associations and epigene-environment interactions in an elderly cohort

    PubMed Central

    Bind, Marie-Abele; Baccarelli, Andrea; Zanobetti, Antonella; Tarantini, Letizia; Suh, Helen; Vokonas, Pantel; Schwartz, Joel

    2012-01-01

    BACKGROUND Previous studies suggest that air pollution is related to thrombosis, inflammation, and endothelial dysfunction. Mechanisms and sources of susceptibility are still unclear. One possibility is that these associations can be modified by DNA methylation states. METHODS We conducted a cohort study with repeated measurements of fibrinogen, C-reactive protein, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in 704 elderly men participating in the Veterans Administration Normative Aging Study (2000-2009). We investigated short- and intermediate-term air pollution effects on these blood markers, and epigene-environment interactions by DNA methylation of Alu, LINE-1, tissue factor (F3), Toll-Like Receptor 2 (TLR-2), and ICAM-1. RESULTS We found effects of particle number, black carbon, nitrogen dioxide (NO2), and carbon monoxide (CO) on fibrinogen. Ozone was a significant predictor of C-reactive protein and ICAM-1. Particle number, black carbon, NO2, CO, PM2.5, and sulfates were associated with ICAM-1and VCAM-1. An interquartile range increase in 24-hour exposure for NO2; was associated with a 1.7% (95% confidence interval = 0.2% to 3.3%) increase in fibrinogen for ozone a 10.8% (2.2% to 20.0%) increase in C-reactive protein for particle number, a 5.9% (3.6% to 8.3%) increase in ICAM-1; and for PM2.5 a 3.7% (1.7% to 5.8%) increase in VCAM-1. The air pollution effect was stronger among subjects having higher Alu, lower LINE-1, tissue factor, or TLR-2 methylation status. CONCLUSION We observed associations of traffic-related pollutants on fibrinogen, and both traffic and secondary particles on C-reactive protein, ICAM-1, and VCAM-1. There was effect modification by DNA methylation status, indicating that epigenetic states can convey susceptibility to air pollution. PMID:22237295

  5. Circulating intercellular cell adhesion molecule-1, endothelin-1 and von Willebrand factor-markers of endothelial dysfunction in uncomplicated essential hypertension: the effect of treatment with ACE inhibitors.

    PubMed

    Hlubocká, Z; Umnerová, V; Heller, S; Peleska, J; Jindra, A; Jáchymová, M; Kvasnicka, J; Horký, K; Aschermann, M

    2002-08-01

    The aim of the study was to examine whether the circulating cell adhesion molecules, von Willebrand factor (vWf) and endothelin-1, are elevated in patients with essential hypertension with no other risk factors for atherosclerosis and thus may serve as a markers of endothelial dysfunction in uncomplicated hypertension. Furthermore, the effect of treatment with the ACE inhibitor, quinapril, on levels of endothelial dysfunction markers were studied. The levels of adhesion molecules (intercellular cell adhesion molecule-1 [ICAM-1], E-selectin, P-selectin), von Willebrand factor (vWf) and endothelin-1 were measured in patients with hypertension without any other risk factors of atherosclerosis before and after treatment with quinapril (n = 22) and in normotensive controls (n = 22). Compared with normotensive subjects, the hypertensive patients had significantly higher levels of ICAM-1 (238 vs 208 ng/ml, P = 0.02), vWf (119 vs 105 IU/dl, P < 0.05) and endothelin-1 (5.76 vs 5.14 fmol/ml, P < 0.05). Three-month treatment of hypertensive patients with quinapril led to a significant decrease in the levels of endothelin-1 (5.76 vs 5.28 fmol/ml, P < 0.01). We did not observe significant changes in the levels of adhesion molecules and vWf after ACE inhibitor treatment, although a trend toward a decrease was apparent with all these parameters. Patients with uncomplicated hypertension with no other risk factors of atherosclerosis had significantly elevated levels of ICAM-1, vWf, and endothelin-1. Our data suggest that these factors may serve as markers of endothelial damage even in uncomplicated hypertension. In hypertensive patients, treatment with the ACE inhibitor quinapril resulted in a significant decrease in endothelin-1 levels. These findings indicate a beneficial effect of ACE inhibitors on endothelial dysfunction in hypertensive patients.

  6. Immunohistochemical expression of podoplanin (D2-40), lymphangiogenesis, and neoangiogenesis in tooth germ, ameloblastomas, and ameloblastic carcinomas.

    PubMed

    Sánchez-Romero, Celeste; Bologna-Molina, Ronell; Mosqueda-Taylor, Adalberto; de Almeida, Oslei Paes

    2017-09-01

    Ameloblastoma is a benign but locally aggressive odontogenic tumor, while ameloblastic carcinoma is its malignant counterpart. Angiogenesis and lymphangiogenesis in malignancies have been correlated with higher aggressiveness and poor prognosis, as well as greater expression of podoplanin by tumoral cells. Immunohistochemical expression of podoplanin, CD34, and CD105 (endoglin) was evaluated in 53 ameloblastomas and three ameloblastic carcinomas; additionally, immunohistochemistry for podoplanin was also performed in 10 tooth germs. Microvessel density of blood and lymphatic vessels was calculated and compared between ameloblastomas and ameloblastic carcinomas. Immunoexpression of podoplanin by ameloblastic cells was evaluated in tooth germs, ameloblastomas, and ameloblastic carcinomas. Podoplanin was similarly expressed by odontogenic epithelial cells of tooth germs and ameloblastomas, while its expression was lower in ameloblastic carcinomas. There was no difference in microvessel density assessed by CD34 between ameloblastomas and ameloblastic carcinomas; nevertheless, the latter presented higher amounts of lymphatic and new formed blood vessels. Results suggest that podoplanin does not seem to be involved in invasion mechanisms of ameloblastic carcinomas, as its expression was decreased in the malignant tumoral cells. On the other hand, the increased lymphatic microvessel density and neoangiogenesis found in ameloblastic carcinomas could be related to its aggressiveness and potential for metastasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Endovascular treatment of chronic cerebro spinal venous insufficiency in patients with multiple sclerosis modifies circulating markers of endothelial dysfunction and coagulation activation: a prospective study.

    PubMed

    Napolitano, Mariasanta; Bruno, Aldo; Mastrangelo, Diego; De Vizia, Marcella; Bernardo, Benedetto; Rosa, Buonagura; De Lucia, Domenico

    2014-10-01

    We performed a monocentric observational prospective study to evaluate coagulation activation and endothelial dysfunction parameters in patients with multiple sclerosis undergoing endovascular treatment for cerebro-spinal-venous insufficiency. Between February 2011 and July 2012, 144 endovascular procedures in 110 patients with multiple sclerosis and chronical cerebro-spinal venous insufficiency were performed and they were prospectively analyzed. Each patient was included in the study according to previously published criteria, assessed by the investigators before enrollment. Endothelial dysfunction and coagulation activation parameters were determined before the procedure and during follow-up at 1, 3, 6, 9, 12, 15 and 18 months after treatment, respectively. After the endovascular procedure, patients were treated with standard therapies, with the addition of mesoglycan. Fifty-five percent of patients experienced a favorable outcome of multiple sclerosis within 1 month after treatment, 25% regressed in the following 3 months, 24.9% did not experience any benefit. In only 0.1% patients, acute recurrence was observed and it was treated with high-dose immunosuppressive therapy. No major complications were observed. Coagulation activation and endothelial dysfunction parameters were shown to be reduced at 1 month and stable up to 12-month follow-up, and they were furthermore associated with a good clinical outcome. Endovascular procedures performed by a qualified staff are well tolerated; they can be associated with other currently adopted treatments. Correlations between inflammation, coagulation activation and neurodegenerative disorders are here supported by the observed variations in plasma levels of markers of coagulation activation and endothelial dysfunction.

  8. Markers

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  9. Suppression of Aggrus/podoplanin-induced platelet aggregation and pulmonary metastasis by a single-chain antibody variable region fragment.

    PubMed

    Miyata, Kenichi; Takagi, Satoshi; Sato, Shigeo; Morioka, Hiroshi; Shiba, Kiyotaka; Minamisawa, Tamiko; Takami, Miho; Fujita, Naoya

    2014-12-01

    Almost all highly metastatic tumor cells possess high platelet aggregating abilities, thereby form large tumor cell-platelet aggregates in the microvasculature. Embolization of tumor cells in the microvasculature is considered to be the first step in metastasis to distant organs. We previously identified the platelet aggregation-inducing factor expressed on the surfaces of highly metastatic tumor cells and named as Aggrus. Aggrus was observed to be identical to the marker protein podoplanin (alternative names, T1α, OTS-8, and others). Aggrus is frequently overexpressed in several types of tumors and enhances platelet aggregation by interacting with the platelet receptor C-type lectin-like receptor 2 (CLEC-2). Here, we generated a novel single-chain antibody variable region fragment (scFv) by linking the variable regions of heavy and light chains of the neutralizing anti-human Aggrus monoclonal antibody MS-1 with a flexible peptide linker. Unfortunately, the generated KM10 scFv failed to suppress Aggrus-induced platelet aggregation in vitro. Therefore, we performed phage display screening and finally obtained a high-affinity scFv, K-11. K-11 scFv was able to suppress Aggrus-induced platelet aggregation in vitro. Moreover, K-11 scFv prevented the formation of pulmonary metastasis in vivo. These results suggest that K-11 scFv may be useful as metastasis inhibitory scFv and is expected to aid in the development of preclinical and clinical examinations of Aggrus-targeted cancer therapies.

  10. Co-Expression of Bmi-1 and Podoplanin Predicts Overall Survival in Patients With Squamous Cell Carcinoma of the Head and Neck Treated With Radio(chemo)therapy

    SciTech Connect

    Vormittag, Laurenz; Thurnher, Dietmar; Geleff, Silvana; Pammer, Johannes; Heiduschka, Gregor; Brunner, Markus; Grasl, Matthaeus Ch.; Erovic, Boban M.

    2009-03-01

    Purpose: This study was conducted to determine the expression of Bmi-1 and podoplanin in healthy oral mucosa and in untreated tumor tissues samples of patients with squamous cell carcinomas of the head and neck. All patients were treated by primary radio(chemo)therapy. Methods and Materials: The expression of Bmi-1 and podoplanin was immunohistochemically evaluated in 12 normal oral mucosa and 63 tumor specimens and correlated with patients' clinical data. Results: In healthy mucosa expression of Bmi-1 and podoplanin was restricted to the basal cell layer. Expression of both proteins was found in 79% and 86% of our tumor samples, respectively. In 17 and 8 samples, Bmi-1 and podoplanin were co-expressed at the invasive border or diffuse in the bulk of the tumor, respectively. Univariate analysis showed that the co-expression of Bmi-1 and podoplanin correlated to decreased overall survival (p = 0.044). Moreover, multivariate testing identified high expression of podoplanin (p = 0.044), co-expression of Bmi-1 and podoplanin (p = 0.007) and lack of response to therapy (p < 0.0001) as predictors of shortened overall survival in patients treated with primary radio(chemo)therapy. Conclusions: Bmi-1 and podoplanin are expressed at the invasive front of squamous cell carcinomas of the head and neck. Co-expression of Bmi-1 and podoplanin predicts significantly overall survival of patients treated with primary radio(chemo)therapy.

  11. Corona sign: manifestation of peripheral corneal epithelial edema as a possible marker of the progression of corneal endothelial dysfunction.

    PubMed

    Inoue, Tomoyuki; Hara, Yuko; Kobayashi, Takeshi; Zheng, Xiaodong; Suzuki, Takashi; Shiraishi, Atsushi; Ohashi, Yuichi

    2016-09-01

    To describe a characteristic form of the corona sign and its clinical relevance to the degree of corneal endothelial decompensation and investigate the underlying mechanism using a rabbit model. These observational cases include 31 patients undergoing penetrating keratoplasty (PKP) and 15 patients undergoing Descemet stripping automated endothelial keratoplasty (DSAEK) with special attention to the circumferentially developed corneal epithelial edema. We also conducted a laboratory observation of horizontal water flow in the rabbit cornea. We consistently observed the corona sign at the superior periphery during the initial stage of corneal endothelial decompensation after PKP. With progressive corneal endothelial cellular loss, the epithelial edema gradually expanded circumferentially in the periphery. The endothelial cellular density associated with the corona sign significantly (P < 0.01) decreased compared with that without the sign. The endothelial cellular density decreased significantly (P < 0.05) in cases with a circumferential corona sign compared with a superior corona sign. After DSAEK, however, the corneal epithelial edema subsided from the center but persisted peripherally as a corona sign in all cases. By 3 months postoperatively, the epithelial edema was confined to the superior periphery along with uneventful corneal endothelial healing. Rabbit experiments showed that total corneal endothelial decompensation decreased the horizontal intracorneal water migration (Inoue-Ohashi phenomenon) in the corneal periphery and induced peripheral corneal edema. The slit-lamp microscopic findings of the corona-like epithelial edema in the peripheral cornea are associated with the stage of corneal endothelial function. To support this, the developmental mechanism of the corona sign was demonstrated experimentally.

  12. Markers of endothelial cell activation and immune activation are increased in patients with severe leptospirosis and associated with disease severity

    USDA-ARS?s Scientific Manuscript database

    Objectives: Previous studies concluded that haemorrhage is one of the most accurate prognostic factors of mortality in leptospirosis. Therefore, endothelial cell activation was investigated in relation to disease severity in severe leptospirosis. Methods: Prospective cohort study of severe leptospi...

  13. Micro- and nano-topography to enhance proliferation and sustain functional markers of donor-derived primary human corneal endothelial cells.

    PubMed

    Muhammad, Rizwan; Peh, Gary S L; Adnan, Khadijah; Law, Jaslyn B K; Mehta, Jodhbir S; Yim, Evelyn K F

    2015-06-01

    One of the most common indications for corneal transplantation is corneal endothelium dysfunction, which can lead to corneal blindness. Due to a worldwide donor cornea shortage, alternative treatments are needed, but the development of new treatment strategies relies on the successful in vitro culture of primary human corneal endothelial cells (HCECs) because transformed cell lines and animal-derived corneal endothelial cells are not desirable for therapeutic applications. Primary HCECs are non-proliferative in vivo and challenging to expand in vitro while maintaining their characteristic cell morphology and critical markers. Biochemical cues such as growth factors and small molecules have been investigated to enhance the expansion of HCECs with a limited increase in proliferation. In this study, patterned tissue culture polystyrene (TCPS) was shown to significantly enhance the expansion of HCECs. The proliferation of HCECs increased up to 2.9-fold, and the expression amount and localization of cell-cell tight junction protein Zona Occludens-1 (ZO-1) was significantly enhanced when grown on 1 μm TCPS pillars. 250 nm pillars induced an optimal hexagonal morphology of HCEC cells. Furthermore, we demonstrated that the topographical effect on tight-junction expression and cell morphology could be maintained throughout each passage, and was effectively 'remembered' by the cells. Higher amount of tight-junction protein expression was maintained at cell junctions when topographic cues were removed in the successive seeding. This topographic memory suggested topography-exposed/induced cells would maintain the enhanced functional markers, which would be useful in cell-therapy based approaches to enable the in situ endothelial cell monolayer formation upon delivery. The development of patterned TCPS culture platforms could significantly benefit those researching human corneal endothelial cell cultivation for cell therapy, and tissue engineering applications.

  14. A transcriptome signature of endothelial lymphatic cells coexists with the chronic oxidative stress signature in radiation-induced post-radiotherapy breast angiosarcomas.

    PubMed

    Hadj-Hamou, Nabila-Sandra; Laé, Marick; Almeida, Anna; de la Grange, Pierre; Kirova, Youlia; Sastre-Garau, Xavier; Malfoy, Bernard

    2012-07-01

    Radiation-induced breast angiosarcomas are rare but recognized complication of breast cancer radiotherapy and are of poor prognosis. Little is known about the genetic abnormalities present in these secondary tumors. Herein, we investigated the differences in the genome and in the transcriptome that discriminate these tumors as a function of their etiology. Seven primary breast angiosarcomas and 18 secondary breast angiosarcomas arising in the irradiation field of a radiotherapy were analyzed. Copy number alterations and gene expression were analyzed using Affymetrix SNP 6.0 Array and Affymetrix Exon Arrays, respectively. We showed that two transcriptome signatures of the radiation tumorigenesis coexisted in these tumors. One was histology specific and correctly discriminated 100% of the primary tumors from the radiation-induced tumors. The deregulation of marker genes, including podoplanin (PDPN), prospero homeobox 1 (PROX-1), vascular endothelial growth factor 3 (VEGFR3) and endothelin receptor A (EDNRA), suggests that the radiation-induced breast angiosarcomas developed from radiation-stimulated lymphatic endothelial cells. None of the genes of the histology-specific signature were present in our previously published signature of the radiation tumorigenesis which shows the presence of a chronic oxidative stress in radiation-induced sarcomas of various histologies. Nevertheless, this oxidative stress signature classified correctly 88% of the breast angiosarcomas as a function of the etiology. In contrast, MYC amplification, which is observed in all radiation-induced tumors but also at a low rate in primary tumors, was not a marker of the radiation tumorigenesis.

  15. Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis.

    PubMed

    Zanetta, L; Marcus, S G; Vasile, J; Dobryansky, M; Cohen, H; Eng, K; Shamamian, P; Mignatti, P

    2000-01-15

    von Willebrand factor (vWF), a glycoprotein produced uniquely by endothelial cells and megakaryocytes, is routinely used to identify vessels in tissue sections. Vessel density in tumor specimens, as determined by immuno-histochemical staining for vWF or other endothelial cell markers, is a negative prognostic factor for many solid tumors. vWF is heterogeneously distributed throughout the vasculature, transcriptional control in response to the tissue microenvironment being responsible for local variations in endothelial cell levels of vWF. Here, we report that fibroblast growth factor-2 and vascular endothelial growth factor, potent angiogenesis inducers expressed in a variety of tumors, up-regulate expression of vWF mRNA and protein in cultured endothelial cells with a synergistic effect. Our data support the measurement of vWF mRNA in tumors to detect activated endothelium or angiogenesis. For this purpose, we developed a semi-quantitative RT-PCR for vWF mRNA. Preliminary results obtained with specimens from colon carcinoma and the corresponding normal colonic mucosa showed higher vWF mRNA levels in most tumors than in their normal counterparts. The differences in vWF mRNA levels were much larger than the differences in vessel counts between a tumor and the corresponding normal mucosa, indicating that high vWF mRNA levels in tumors may indeed be an early sign of activation of the endothelium. The rapidity, objectivity, sensitivity and specificity of this technique make it suitable for routine clinical application to identify aggressive, highly angiogenic tumors.

  16. Epithelial deletion of podoplanin is dispensable for re-epithelialization of skin wounds.

    PubMed

    Baars, Sebastian; Bauer, Christine; Szabowski, Sibylle; Hartenstein, Bettina; Angel, Peter

    2015-10-01

    The mucin-like transmembrane protein podoplanin (PDPN) is prominently represented in tumor-associated gene expression signatures of numerous types of cancer including squamous cell carcinoma, and gain-of-function and knockdown approaches in tissue culture strongly suggested an important role of PDPN in cell proliferation, migration and adhesion. PDPN is absent during epidermal homeostasis but is highly expressed in basal keratinocytes during cutaneous wound healing. Enhanced motility of immortalized keratinocytes upon ectopic PDPN overexpression argues for wound healing defects upon podoplanin deficiency in keratinocytes; however, in vivo data that unequivocally define the impact of PDPN by functional studies in a physiologically relevant system are still missing. Here, we have applied an in vivo loss-of-function approach by generating a novel transgenic mouse line with keratinocyte-specific podoplanin deficiency. Performing cutaneous full-thickness excisional wounds to examine re-epithelialization capacity, unexpectedly, no defects were observed in wound healing properties of mutant mice. Similarly, PDPN-deficient primary keratinocytes showed no impairment in migration, adhesion or proliferation. Thus, PDPN function is not rate-limiting for re-epithelialization but may be functionally compensated by an as yet unknown protein. Our data also call for in vivo functional studies on PDPN in settings of skin tumor development and progression to clarify PDPN's role in skin pathology.

  17. The Relation of Markers of Inflammation and Endothelial Dysfunction to the Prevalence and Progression of Diabetic Retinopathy. Wisconsin Epidemiologic Study of Diabetic Retinopathy

    PubMed Central

    Klein, Barbara E.K.; Knudtson, Michael D.; Tsai, Michael Y.; Klein, Ronald

    2009-01-01

    Context Levels of glycemia, blood pressure, and serum total cholesterol are associated with prevalence and incidence of diabetic retinopathy. It has been reported the markers of systemic inflammation and endothelial dysfunction may be important additional risk factors. Objective To determine the association of several systemic markers of inflammation and endothelial dysfunction to prevalence and incidence of diabetic retinal outcomes in persons with long duration type 1 diabetes. Design Longitudinal population based study of persons with type 1 diabetes who were receiving care for their diabetes in south central Wisconsin in 1978-1979. Data for this investigation were from 1990-1992 through 2005-2007. Main Outcome Measures Severity of diabetic retinopathy and macular edema. Results In prevalence data from 1990-1992, soluble vascular cell adhesion molecule (sVCAM-1), tumor necrosis factor alpha (TNF-α) and homocysteine (Hcy) were associated with increased odds of more severe retinopathy (Odds ratios [highest versus lowest quartile] 2.43, 95% Confidence Interval 1.56, 3.78; 3.14 [1.98, 4.99]; 3.79 [2.33, 6.15], respectively) in those with kidney disease while controlling for relevant confounders. Similar odds were found for proliferative diabetic retinopathy. Only homocysteine was associated with increased odds of macular edema (4.68; 1.25-17.57) irrespective of kidney disease. None of the markers were associated with incidence of proliferative retinopathy, macular edema, or progression of retinopathy 15 years later. Conclusions A limited number of markers was associated with increased odds of prevalent retinal outcomes in persons with type 1 diabetes and kidney disease. Only Hcy was associated with macular edema in those with and without kidney disease. In the absence of kidney disease the markers do not add to the more conventional descriptors and predictors of diabetic retinopathy in persons with type 1 diabetes. This may reflect the close association of diabetic

  18. Phosphorylated mTOR expression correlates with podoplanin expression and high tumor grade in esophageal squamous cell carcinoma

    PubMed Central

    Chuang, Wen-Yu; Chang, Yu-Sun; Chao, Yin-Kai; Yeh, Chi-Ju; Ueng, Shir-Hwa; Chang, Chiu-Yueh; Liu, Yun-Hen; Tseng, Chen-Kan; Chang, Hsien-Kun; Wan, Yung-Liang; Hsueh, Chuen

    2015-01-01

    Mechanistic (or mammalian) target of rapamycin (mTOR) plays important roles in cell growth and proliferation. In esophageal squamous cell carcinoma (SCC), high expression of phosphorylated (activated) mTOR (p-mTOR) has been reported as an adverse prognostic factor in some but not all studies. The signals of mTOR pathway and mitogen-activated protein kinase (MAPK) pathway converge on 4E-binding protein 1 (4EBP1), which drives the downstream proliferative signals. We previously found that high expression of phosphorylated 4EBP1 (p-4EBP1) is an adverse prognostic factor in esophageal SCC. Podoplanin is a type-1 transmembrane glycoprotein expressed in various normal human tissues, including lymphatic endothelium. Our previous study showed that high podoplanin expression correlates with clinical nodal metastasis, which is associated with short survival in esophageal SCC. In current study, we investigated p-mTOR expression by immunohistochemistry in 75 cases of surgically resected esophageal SCC. The result was correlated with p-4EBP1 expression, podoplanin expression, clinicopathologic features and patient survival. We found that high p-mTOR expression was significantly associated with high podoplanin expression (P = 0.0030) and high tumor grade (P = 0.0014). No correlation with p-4EBP1 expression, patient survival or other clinicopathologic features was found. Recently, podoplanin expression in astrocytic brain tumors was found to be regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT/activator protein-1 (AP-1) pathway. Similarly, mTOR is activated by a PI3K/AKT/mTOR pathway. The association of p-mTOR and podoplanin expression in our study could be due to a common upstream pathway. Since both mTOR and podoplanin are potential therapeutic targets, the possible benefit of combined targeted therapy warrants further investigation. PMID:26722465

  19. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    PubMed Central

    Li, Ting; Lu, Xinshan; Sun, Yanfei; Yang, Xingbin

    2016-01-01

    Background Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO) level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34) showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58), which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet. Conclusions The intake of

  20. Epi-aortic lesions, pathologic FMD, endothelial activation and inflammatory markers in advanced naïve HIV-infected patients starting ART therapy.

    PubMed

    Bellacosa, Chiara; Maggi, Paolo; Volpe, Anna; Altizio, Sergio; Ladisa, Nicoletta; Cicalini, Silvia; Viglietti, Rosaria; Chirianni, Antonio; Bellazzi, Lara; Zanaboni, Domenico; Maserati, Renato; Martinelli, Canio; Corsi, Paola; Sofia, Silvia; Celesia, Maurizio; Sozio, Ferdinando; Abbrescia, Nicola; Angarano, Gioacchino

    2014-01-01

    PREVALEAT II (PREmature VAscular LEsions and Antiretroviral Therapy II) is an ongoing multicenter, longitudinal cohort study aimed to the evaluation of cardiovascular (CV) risk in advanced HIV-infected antiretroviral (ARV) naïve patients starting their first antiretroviral therapy (ART). All consecutive naïve patients with CD4 cell count<200/mL starting any PI/r-based or NNRTI-based + 2 NRTIs regimen from January 2010 to January 2013 in the participant centres were enrolled. At baseline and after 3 (T1), 6 (T2) and 12 (T3) months patients were subjected to epi-aortic vessels ultrasonography and brachial artery flow mediated dilation (FMD). Viral load, CD4+ cell count, serum lipid values, serum glucose, endothelial activation (ICAM-1 and VCAM-1) and inflammatory markers (IL-6 and hsCRP) values were recorded at the same time. Data about independent risk factors for HIV infection and CV disease are taken at time 0. We enrolled 94 patients: 81% males, 87% caucasians, 40% smokers, 8.2% HCV co-infected and 3.5% with lipodystrophy; 33% of them were homosexuals, 12% drug addicts; 23% were AIDS at presentation. Statistical data analysis has been conducted by the χ(2) nonparametric method. In Table 1 it is reported the percentage of patients with pathologic values, moreover, at T3, 60.46% showed undetectable viraemia and 69.77% had CD4 + > 200. Our data evidence at baseline has a relevant deterioration of CV conditions in terms of ultrasonographic data, FMD, inflammation and cytokine markers among advanced naïves. During follow-up epi-aortic lesions tend to worsen but not significantly, percentage of pathologic FMD remains stable. Regarding markers of endothelial activation ICAM-1 significantly worsens during the period of observation; also VCAM-1 has a trend towards the worsening while not significantly. Conversely, a significant improvement was observed for the markers of inflammation D-dimers and high sensitivity C-reactive protein (hsCRP). IL-6 improved but not

  1. Use of tritiated thymidine as a marker to compare the effects of matrix proteins on adult human vascular endothelial cell attachment: implications for seeding of vascular prostheses

    SciTech Connect

    Hasson, J.E.; Wiebe, D.H.; Sharefkin, J.B.; D'Amore, P.A.; Abbott, W.M.

    1986-11-01

    We have developed a technique to measure attachment of adult human vascular endothelial cells to test surfaces with tritiated thymidine used as a marker. With this technique, we measured attachment of adult human vascular endothelial cells to a series of extracellular matrix proteins, including fibronectin-coated (10 micrograms/cm/sup 2/), laminin-coated (10 micrograms/cm/sup 2/), and collagen-coated (1% gelatin) surfaces because of the role of these proteins in promoting cell attachment and growth. For a typical experiment, in the presence of serum, initial attachment (at 1 hour) was greatest on fibronectin-coated (63%) and gelatin-coated (60%) tissue culture plastic (polystyrene) and was least on laminin-coated (28%) or untreated polystyrene (18%). The data suggest that fibronectin, either alone, or with a more complex combination of extracellular components may need to be present on prosthetic surfaces to produce maximal cell attachment and subsequent growth to confluence in vivo. The described method of measuring attachment is independent of surface properties, ensures complete recovery of cells, and will allow systematic exploration of those properties that best support human endothelial cell attachment to vascular prosthetic surfaces.

  2. Compressive Elasticity of Three-Dimensional Nanofiber Matrix Directs Mesenchymal Stem Cell Differentiation to Vascular Cells with Endothelial or Smooth Muscle Cell Markers

    PubMed Central

    Wingate, Kathryn; Bonani, Walter; Tan, Yan; Bryant, Stephanie J.; Tan, Wei

    2012-01-01

    The importance of mesenchymal stem cell (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. We utilized electrospinning and photopolymerization techniques to fabricate a 3D PEGdma nanofiber hydrogel matrix with a tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3D matrices ranged from 2 to 15 kPa, similar to the in-vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8–15 kPa) showed an increase in cell area compared to those seeded on soft matrices (2–5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3D matrices with an elasticity of 5 kPa showed Flk-1 endothelial markers within 24 hr, while only 20% of MSC seeded on the matrices with elasticity greater than 8 kPa demonstrated Flk-1 marker. In contrast, around 80% of MSC seeded on 3D matrices with elasticity greater than 8 kPa demonstrated smooth muscle α-actin marker within 24 hr, while less than 10% of MSC seeded on 3D matrices with elasticity less than 5 kPa showed α-actin markers. The ability to control MSC differentiation into either endothelial or smooth muscle-like cells based purely on the local elasticity of the substrate could be a powerful tool for vascular tissue regeneration. PMID:22266031

  3. A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis

    PubMed Central

    Takemoto, Ai; Okitaka, Mina; Takagi, Satoshi; Takami, Miho; Sato, Shigeo; Nishio, Makoto; Okumura, Sakae; Fujita, Naoya

    2017-01-01

    The tumour microenvironment is critical for various characteristics of tumour malignancies. Platelets, as part of the tumour microenvironment, are associated with metastasis formation via increasing the rate of tumour embolus formation in microvasculature. However, the mechanisms underlying the ability of tumour cells to acquire invasiveness and extravasate into target organs at the site of embolization remain unclear. In this study, we reported that platelet aggregation-inducing factor podoplanin expressed on tumour cell surfaces were found to not only promote the formation of tumour-platelet aggregates via interaction with platelets, but also induced the epithelial-mesenchymal transition (EMT) of tumour cells by enhancing transforming growth factor-β (TGF-β) release from platelets. In vitro and in vivo analyses revealed that podoplanin-mediated EMT resulted in increased invasiveness and extravasation of tumour cells. Treatment of mice with a TGF-β-neutralizing antibody statistically suppressed podoplanin-mediated distant metastasis in vivo, suggesting that podoplanin promoted haematogenous metastasis in part by releasing TGF-β from platelets that was essential for EMT of tumour cells. Therefore, our findings suggested that blocking the TGF-β signalling pathway might be a promising strategy for suppressing podoplanin-mediated haematogenous metastasis in vivo. PMID:28176852

  4. Expression of podoplanin in salivary gland adenoid cystic carcinoma and its association with distant metastasis and clinical outcomes.

    PubMed

    Wu, He-Ming; Ren, Guo-Xin; Wang, Li-Zhen; Zhang, Chun-Ye; Chen, Wan-Tao; Guo, Wei

    2012-08-01

    Distant metastasis is a common cause of mortality in patients with salivary gland adenoid cystic carcinoma (SACC). However, presently, the development of distant metastasis is unable to be predicted in clinical practice. Recent studies have shown that overexpression of podoplanin is associated with metastasis and survival in patients with several cancer types. The purpose of the present study was to determine whether podoplanin is overexpressed in SACC and whether such overexpression is associated with distant metastasis and survival. Podoplanin expression was determined using immunohistochemistry (IHC) in tumors from 40 SACC patients. The expression status was analyzed in regards to patient clinicopathological parameters and survival rates. Overexpression of podoplanin was detected in 13 (32.5%) of the 40 tumors. Overexpression was significantly associated with disease-free survival (P=0.025) and distant metastasis (P=0.015), although it was not associated with recurrence and overall survival. In conclusion, podoplanin is overexpressed in a subset of SACCs and may be a biomarker predicting distant metastasis in patients with SACC.

  5. A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis.

    PubMed

    Takemoto, Ai; Okitaka, Mina; Takagi, Satoshi; Takami, Miho; Sato, Shigeo; Nishio, Makoto; Okumura, Sakae; Fujita, Naoya

    2017-02-08

    The tumour microenvironment is critical for various characteristics of tumour malignancies. Platelets, as part of the tumour microenvironment, are associated with metastasis formation via increasing the rate of tumour embolus formation in microvasculature. However, the mechanisms underlying the ability of tumour cells to acquire invasiveness and extravasate into target organs at the site of embolization remain unclear. In this study, we reported that platelet aggregation-inducing factor podoplanin expressed on tumour cell surfaces were found to not only promote the formation of tumour-platelet aggregates via interaction with platelets, but also induced the epithelial-mesenchymal transition (EMT) of tumour cells by enhancing transforming growth factor-β (TGF-β) release from platelets. In vitro and in vivo analyses revealed that podoplanin-mediated EMT resulted in increased invasiveness and extravasation of tumour cells. Treatment of mice with a TGF-β-neutralizing antibody statistically suppressed podoplanin-mediated distant metastasis in vivo, suggesting that podoplanin promoted haematogenous metastasis in part by releasing TGF-β from platelets that was essential for EMT of tumour cells. Therefore, our findings suggested that blocking the TGF-β signalling pathway might be a promising strategy for suppressing podoplanin-mediated haematogenous metastasis in vivo.

  6. Analysis of correlations between selected endothelial cell activation markers, disease activity, and nailfold capillaroscopy microvascular changes in systemic lupus erythematosus patients.

    PubMed

    Ciołkiewicz, Mariusz; Kuryliszyn-Moskal, Anna; Klimiuk, Piotr Adrian

    2010-02-01

    The aim of the study was to evaluate the correlation between selected serum endothelial cell activation markers such as vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), soluble thrombomodulin (sTM), soluble E-selectin (sE-selectin), disease activity, and microvascular changes determined by nailfold capillaroscopy in patients with systemic lupus erythematosus (SLE). Serum levels of VEGF, ET-1, sTM, and sE-selectin were determined by an enzyme-linked immunosorbent assay in 80 SLE patients. The disease activity was measured with Systemic Lupus Erythematosus Disease Activity Index score. Nailfold capillaroscopy was performed in all patients. Positive correlation was found between VEGF and both ET-1 (r = 0.294, p < 0.01) and sE-selectin (r = 0.274, p < 0.05) serum levels as well as between sTM and ET-1 (r = 0.273, p < 0.05) serum concentrations. We noticed also positive correlation between VEGF (r = 0.224, p < 0.05) and ET-1 (r = 0.471, p < 0.001) serum levels and disease activity, and also between VEGF serum concentration and grade of morphological changes observed by nailfold capillaroscopy (r = 0.458, p < 0.001). There was also positive correlation between capillaroscopic score and disease activity (r = 0.339, p < 0.01). Our data suggest that correlation between VEGF and both ET-1 and E-selectin serum levels as well as between sTM and ET-1 serum concentrations may reflect their participation in the pathogenesis of SLE. VEGF seems to reflect changes in microcirculation in the course of SLE, visualised by nailfold capillaroscopy. The relationship between changes in nailfold capillaroscopy, endothelial cell activation markers, and the clinical activity of SLE points to an important role of microvascular abnormalities in the clinical manifestation of the disease.

  7. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors.

    PubMed

    Riso, Patrizia; Klimis-Zacas, Dorothy; Del Bo', Cristian; Martini, Daniela; Campolo, Jonica; Vendrame, Stefano; Møller, Peter; Loft, Steffen; De Maria, Renata; Porrini, Marisa

    2013-04-01

    Wild blueberries (WB) (Vaccinium angustifolium) are rich sources of polyphenols, such as flavonols, phenolic acids and anthocyanins (ACNs), reported to decrease the risk of cardiovascular and degenerative diseases. This study investigated the effect of regular consumption of a WB or a placebo (PL) drink on markers of oxidative stress, inflammation and endothelial function in subjects with risk factors for cardiovascular disease. Eighteen male volunteers (ages 47.8 ± 9.7 years; body mass index 24.8 ± 2.6 kg/m²) received according to a cross-over design, a WB (25 g freeze-dried powder, providing 375 mg of ACNs) or a PL drink for 6 weeks, spaced by a 6-week wash-out. Endogenous and oxidatively induced DNA damage in blood mononuclear cells, serum interleukin levels, reactive hyperemia index, nitric oxide, soluble vascular adhesion molecule concentration and other variables were analyzed. Wild blueberry drink intake significantly reduced the levels of endogenously oxidized DNA bases (from 12.5 ± 5.6 % to 9.6 ± 3.5 %, p ≤ 0.01) and the levels of H₂O₂-induced DNA damage (from 45.8 ± 7.9 % to 37.2 ± 9.1 %, p ≤ 0.01), while no effect was found after the PL drink. No significant differences were detected for markers of endothelial function and the other variables under study. In conclusion, the consumption of the WB drink for 6 weeks significantly reduced the levels of oxidized DNA bases and increased the resistance to oxidatively induced DNA damage. Future studies should address in greater detail the role of WB in endothelial function.

  8. Cell-Surface MMP-9 Protein Is a Novel Functional Marker to Identify and Separate Proangiogenic Cells from Early Endothelial Progenitor Cells Derived from CD133(+) Cells.

    PubMed

    Kanayasu-Toyoda, Toshie; Tanaka, Takeshi; Kikuchi, Yutaka; Uchida, Eriko; Matsuyama, Akifumi; Yamaguchi, Teruhide

    2016-05-01

    To develop cell therapies for ischemic diseases, endothelial progenitor cells (EPCs) have been expected to play a pivotal role in vascular regeneration. It is desirable to use a molecular marker that is related to the function of the cells. Here, a quantitative polymerase chain reaction array revealed that early EPCs derived from CD133(+) cells exhibited significant expression of MMP-9. Some populations of early EPCs expressed MMP-9 on the cell surface and others did not. We also attempted to separate the proangiogenic fraction from early EPCs derived from CD133(+) cells using a functional cell surface marker, and we then analyzed the MMP-9(+) and MMP-9(-) cell fractions. The MMP-9(+) cells not only revealed higher invasion ability but also produced a high amount of IL-8. Moreover, the stimulative effect of MMP-9(+) cells on angiogenesis in vitro and in vivo was prohibited by anti-IL-8 antibody. These data indicate that MMP-9 is one of the useful cell surface markers for the separation of angiogenic cells. Our treatment of early EPCs with hyaluronidase caused not only a downregulation of cell-surface MMP-9 but also a decrease in invasion ability, indicating that membrane-bound MMP-9, which is one of the useful markers for early EPCs, plays an important role in angiogenesis. Stem Cells 2016;34:1251-1262. © 2016 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  9. Expression of prox1, lymphatic endothelial nuclear transcription factor, in Kaposiform hemangioendothelioma and tufted angioma.

    PubMed

    Le Huu, Aude Rimella; Jokinen, Chris H; Rubin, Brian P; Ruben, Brian P; Mihm, Martin C; Weiss, Sharon W; North, Paula E; Dadras, Soheil S

    2010-11-01

    Kaposiform hemangioendothelioma (KHE) and tufted angioma (TA) are rare tumors mainly occurring in early childhood. Our recent results showed that ectopic overexpression of human Prox1 gene, a lymphatic endothelial nuclear transcription factor, promoted an aggressive behavior in 2 murine models of KHE. This dramatic Prox1-induced phenotype prompted us to investigate immunohistochemical staining pattern of Prox1, podoplanin (D2-40), LYVE-1, and Prox1/CD34 as well as double immunofluorescent staining pattern of LYVE-1/CD31 in KHE and TA, compared with other pediatric vascular tumors. For this purpose, we examined 75 vascular lesions: KHE (n=18), TA (n=13), infantile hemangioma (n=13), pyogenic granuloma (n=18), and granulation tissue (n=13). Overall, KHE and TA shared an identical endothelial immunophenotype: the neoplastic spindle cells were Prox1, podoplanin, LYVE-1, CD31, and CD34, whereas endothelial cells within glomeruloid foci were Prox1, podoplanin, LYVE-1, CD31, and CD34. The lesional cells of all infantile hemangiomas and pyogenic granulomas were negative for Prox1 in the presence of positive internal control. These findings provide immunophenotypic evidence to support a preexisting notion that KHE and TA are closely related, if not identical. Overall, our results show, for the first time, that Prox1 is an immunohistochemical biomarker helpful in confirming the diagnosis of KHE/TA and in distinguishing it from infantile hemangioma and pyogenic granuloma.

  10. Possibility of D2-40 as a diagnostic and tumor differentiation-suggestive marker for some of phosphaturic mesenchymal tumors.

    PubMed

    Tajima, Shogo; Fukayama, Masashi

    2015-01-01

    Phosphaturic mesenchymal tumor (PMT) has been established as a tumor that causes tumor-induced osteomalacia (TIO) associated with mesenchymal neoplasm. Its lineage of differentiation has not been elucidated. Previously, the presence of lymphatic vessels inside PMTs has been documented using an anti-podoplanin antibody; the tumor cells of PMTs were reported to not react with it. In this study of 14 cases of PMTs, we used immunohistochemistry of D2-40, a relatively specific lymphatic endothelial marker, to see if they stained PMTs or not, with particular interest in its reaction with microcystic structures containing lymph-like fluid. We report that most of the PMTs (12 out of 14 cases; 86%) were immunostained by D2-40 in their tumor cells; D2-40-positive lymphatic vessels inside the tumor were also observed. We used a proportion score (0-4+), an intensity score (0-3+), and a total score (the sum of the proportion score and the intensity score) to quantitate our results. We report that 50% of cases (7 out of 14 cases) had a total score ≥ 4+; immunostaining of D2-40 in cases with a total score ≥ 4+ was easy to observe at a glance. Most of the tumor cells lining the microcystic structures were immunostained with D2-40. Thus, D2-40 could be a useful diagnostic marker of PMTs and it might also indicate that PMTs take a lymphatic endothelial immunophenotype.

  11. Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation

    PubMed Central

    Andrés, Germán; Gopal, Shashi K.; Martín-Villar, Ester; Renart, Jaime; Simpson, Richard J.; Quintanilla, Miguel

    2016-01-01

    Podoplanin (PDPN) is a transmembrane glycoprotein that plays crucial roles in embryonic development, the immune response, and malignant progression. Here, we report that cells ectopically or endogenously expressing PDPN release extracellular vesicles (EVs) that contain PDPN mRNA and protein. PDPN incorporates into membrane shed microvesicles (MVs) and endosomal-derived exosomes (EXOs), where it was found to colocalize with the canonical EV marker CD63 by immunoelectron microscopy. We have previously found that expression of PDPN in MDCK cells induces an epithelial-mesenchymal transition (EMT). Proteomic profiling of MDCK-PDPN cells compared to control cells shows that PDPN-induced EMT is associated with upregulation of oncogenic proteins and diminished expression of tumor suppressors. Proteomic analysis of exosomes reveals that MDCK-PDPN EXOs were enriched in protein cargos involved in cell adhesion, cytoskeletal remodeling, signal transduction and, importantly, intracellular trafficking and EV biogenesis. Indeed, expression of PDPN in MDCK cells stimulated both EXO and MV production, while knockdown of endogenous PDPN in human HN5 squamous carcinoma cells reduced EXO production and inhibited tumorigenesis. EXOs released from MDCK-PDPN and control cells both stimulated in vitro angiogenesis, but only EXOs containing PDPN were shown to promote lymphatic vessel formation. This effect was mediated by PDPN on the surface of EXOs, as demonstrated by a neutralizing specific monoclonal antibody. These results contribute to our understanding of PDPN-induced EMT in association to tumor progression, and suggest an important role for PDPN in EV biogenesis and/or release and for PDPN-EXOs in modulating lymphangiogenesis. PMID:26893367

  12. Endocan, a putative endothelial cell marker, is elevated in preeclampsia, decreased in acute pyelonephritis, and unchanged in other obstetrical syndromes

    PubMed Central

    Adekola, Henry; Romero, Roberto; Chaemsaithong, Piya; Korzeniewski, Steven J.; Dong, Zhong; Yeo, Lami; Hassan, Sonia S.; Chaiworapongsa, Tinnakorn

    2015-01-01

    Abstract Objective: Endocan, a dermatan sulphate proteoglycan produced by endothelial cells, is considered a biomarker for endothelial cell activation/dysfunction. Preeclampsia is characterized by systemic vascular inflammation, and endothelial cell activation/dysfunction. Therefore, the objectives of this study were to determine whether: (1) plasma endocan concentrations in preeclampsia differ from those in uncomplicated pregnancies; (2) changes in plasma endocan concentration relate to the severity of preeclampsia, and whether these changes are specific or observed in other obstetrical syndromes such as small-for-gestational age (SGA), fetal death (FD), preterm labor (PTL) or preterm prelabor rupture of membranes (PROM); (3) a correlation exists between plasma concentration of endocan and angiogenic (placental growth factor or PlGF)/anti-angiogenic factors (soluble vascular endothelial growth factor receptor or sVEGFR-1, and soluble endoglin or sEng) among pregnancies complicated by preeclampsia; and (4) plasma endocan concentrations in patients with preeclampsia and acute pyelonephritis (both conditions in which there is endothelial cell activation) differ. Method: This cross-sectional study included the following groups: (1) uncomplicated pregnancy (n = 130); (2) preeclampsia (n = 102); (3) pregnant women without preeclampsia who delivered an SGA neonate (n = 51); (4) FD (n = 49); (5) acute pyelonephritis (AP; n = 35); (6) spontaneous PTL (n = 75); and (7) preterm PROM (n = 64). Plasma endocan concentrations were determined in all groups, and PIGF, sEng and VEGFR-1 plasma concentrations were measured by ELISA in the preeclampsia group. Results: (1) Women with preeclampsia had a significantly higher median plasma endocan concentration than those with uncomplicated pregnancies (p = 0.004); (2) among women with preeclampsia, the median plasma endocan concentration did not differ significantly according to disease severity (p = 0

  13. Endocan, a putative endothelial cell marker, is elevated in preeclampsia, decreased in acute pyelonephritis, and unchanged in other obstetrical syndromes.

    PubMed

    Adekola, Henry; Romero, Roberto; Chaemsaithong, Piya; Korzeniewski, Steven J; Dong, Zhong; Yeo, Lami; Hassan, Sonia S; Chaiworapongsa, Tinnakorn

    2015-01-01

    Endocan, a dermatan sulphate proteoglycan produced by endothelial cells, is considered a biomarker for endothelial cell activation/dysfunction. Preeclampsia is characterized by systemic vascular inflammation, and endothelial cell activation/dysfunction. Therefore, the objectives of this study were to determine whether: (1) plasma endocan concentrations in preeclampsia differ from those in uncomplicated pregnancies; (2) changes in plasma endocan concentration relate to the severity of preeclampsia, and whether these changes are specific or observed in other obstetrical syndromes such as small-for-gestational age (SGA), fetal death (FD), preterm labor (PTL) or preterm prelabor rupture of membranes (PROM); (3) a correlation exists between plasma concentration of endocan and angiogenic (placental growth factor or PlGF)/anti-angiogenic factors (soluble vascular endothelial growth factor receptor or sVEGFR-1, and soluble endoglin or sEng) among pregnancies complicated by preeclampsia; and (4) plasma endocan concentrations in patients with preeclampsia and acute pyelonephritis (both conditions in which there is endothelial cell activation) differ. This cross-sectional study included the following groups: (1) uncomplicated pregnancy (n = 130); (2) preeclampsia (n = 102); (3) pregnant women without preeclampsia who delivered an SGA neonate (n = 51); (4) FD (n = 49); (5) acute pyelonephritis (AP; n = 35); (6) spontaneous PTL (n = 75); and (7) preterm PROM (n = 64). Plasma endocan concentrations were determined in all groups, and PIGF, sEng and VEGFR-1 plasma concentrations were measured by ELISA in the preeclampsia group. (1) Women with preeclampsia had a significantly higher median plasma endocan concentration than those with uncomplicated pregnancies (p = 0.004); (2) among women with preeclampsia, the median plasma endocan concentration did not differ significantly according to disease severity (p = 0.1), abnormal uterine artery Doppler

  14. Antiglycopeptide Mouse Monoclonal Antibody LpMab-21 Exerts Antitumor Activity Against Human Podoplanin Through Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity.

    PubMed

    Kato, Yukinari; Kunita, Akiko; Fukayama, Masashi; Abe, Shinji; Nishioka, Yasuhiko; Uchida, Hiroaki; Tahara, Hideaki; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Fujii, Yuki; Honma, Ryusuke; Takagi, Michiaki; Ogasawara, Satoshi; Murata, Takeshi; Kaneko, Mika K

    2017-02-01

    The interaction between podoplanin (PDPN) and C-type lectin-like receptor 2 (CLEC-2) is involved in tumor malignancy. We have established many monoclonal antibodies (mAbs) against human podoplanin using the cancer-specific mAb (CasMab) technology. LpMab-21, one of the mouse antipodoplanin mAbs, is of the IgG2a subclass, and its minimum epitope was determined to be Thr76-Arg79 of the human podoplanin. Importantly, sialic acid is linked to Thr76; therefore, LpMab-21 is an antiglycopeptide mAb (GpMab). In this study, we investigated whether LpMab-21 shows antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cell lines in vitro and also studied its antitumor activities using a xenograft model. LpMab-21 showed high ADCC and CDC activities against not only podoplanin-expressing Chinese hamster ovary cells but also LN319 glioblastoma cells and PC-10 lung cancer cells, both of which endogenously express podoplanin. Furthermore, LpMab-21 decreased tumor growth in vivo, indicating that LpMab-21 could be useful for antibody therapy against human podoplanin-expressing cancers.

  15. The effects of folic acid on markers of endothelial function in patients with type 1 diabetes mellitus.

    PubMed

    Alian, Zahra; Hashemipour, Mahin; Dehkordi, Elham Hashemi; Hovsepian, Silva; Amini, Massoud; Moadab, Mohammad Hassan; Javanmard, Shaghayegh Haghjooy

    2012-01-01

    Endothelial dysfunction is considered as a fundamental and also preventable factor in the progression of vascular complications among type 1 diabetic patient. It occurs before the clinical manifestation of the mentioned complications. The aim of this study was to evaluate the effects of folic acid on endothelial function by measurements of adhesion molecules and von Willebrand factor (vWF) in patients with type 1 diabetes in Isfahan, Iran. This double blind, placebo-controlled crossover trial included type 1 diabetic patients aged 5-20 years old. Selected patients were randomized into two groups of A and B to receive folic acid 5 mg daily or placebo for 8 weeks. After a 2-week washout period, patients in the two groups were swapped to receive placebo or folic acid, respectively, for another 8 weeks. Blood and urine samples were taken to evaluate glycosylated hemoglobin (HbAlc), folic acid, vWF, intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), and microalbuminuria levels. Results of these measurements were compared in the two groups before and after folic acid and placebo administrations. Fifty five type 1 diabetic patients aged 12.1 +/- 3.4 years with diabetes duration of 3.9 +/- 2.1 years were enrolled. Mean of folic acid level in the two studied groups was increased significantly (10.1 +/- 3.8 vs. 21.2 +/- 1.1 in group A and 15.5 +/- 1.9 vs. 19.9 +/- 2.8 in group B, p < 0.05). Mean of VCAM and microalbuminuria was decreased significantly after folic acid administration in the two groups (p < 0.05). Mean of HbA1c, ICAM and vWF did not significantly change after folic acid administration in the two groups (p > 0.05). Folic acid administration decreased the level of endothelial dysfunction measured by adhesion molecules, especially VCAM and microalbuminuria. However, it did not significantly affect vWF. Further studies with larger sample size and long-term administration of folic acid are necessary for making precise decisions in this

  16. Physical exercise, fitness and dietary pattern and their relationship with circadian blood pressure pattern, augmentation index and endothelial dysfunction biological markers: EVIDENT study protocol.

    PubMed

    García-Ortiz, Luis; Recio-Rodríguez, José I; Martín-Cantera, Carlos; Cabrejas-Sánchez, Alfredo; Gómez-Arranz, Amparo; González-Viejo, Natividad; Iturregui-San Nicolás, Eguskiñe; Patino-Alonso, Maria C; Gómez-Marcos, Manuel A

    2010-05-06

    Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. A cross-sectional multicenter study with six research groups. From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro), central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse) and SphymgoCor System Px (Pulse Wave Analysis), pulse wave velocity (PWV) with SphymgoCor System Px (Pulse Wave Velocity), nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X), physical fitness with the cycle ergometer (PWC-170), carotid intima-media thickness by ultrasound (Micromax), and endothelial dysfunction biological markers (endoglin and osteoprotegerin). Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical exercise and diet. ClinicalTrials.gov Identifier: NCT01083082.

  17. Physical exercise, fitness and dietary pattern and their relationship with circadian blood pressure pattern, augmentation index and endothelial dysfunction biological markers: EVIDENT study protocol

    PubMed Central

    2010-01-01

    Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro), central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse) and SphymgoCor System Px (Pulse Wave Analysis), pulse wave velocity (PWV) with SphymgoCor System Px (Pulse Wave Velocity), nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X), physical fitness with the cycle ergometer (PWC-170), carotid intima-media thickness by ultrasound (Micromax), and endothelial dysfunction biological markers (endoglin and osteoprotegerin). Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical exercise and diet

  18. Identification and expression of troponin T, a new marker on the surface of cultured tumor endothelial cells by aptamer ligand

    PubMed Central

    Ara, Mst Naznin; Hyodo, Mamoru; Ohga, Noritaka; Akiyama, Kosuke; Hida, Kyoko; Hida, Yasuhiro; Shinohara, Nobuo; Harashima, Hideyoshi

    2014-01-01

    The identification of a specific biomarker involves the development of new clinical diagnostic tools, and an in-depth understanding of the disease at the molecular level. When new blood vessels form in tumor cells, endothelial cell production is induced, a process that plays a key role in disease progression and metastasis to distinct organs for solid tumor types. The present study reports on the identification of a new biomarker on primary cultured mouse tumor endothelial cells (mTECs) using our recently developed high-affinity DNA aptamer AraHH001 (Kd = 43 nmol/L) assisted proteomics approach. We applied a strategy involving aptamer-facilitated biomarker discovery. Biotin-tagged AraHH001 was incubated with lysates of mTECs and the aptamer-proteins were then conjugated with streptavidin magnetic beads. Finally, the bound proteins were separated by sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with silver staining. We identified troponin T via matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, the molecular target of aptamer AraHH001, and its presence was confirmed by measuring mRNA, protein levels, western blot, immunostaining, a gel shift assay of AraHH001 with troponin T. We first report here on the discovery of troponin T on mTECs, a promising and interesting diagnostic tool in the development of antiangiogenic therapy techniques the involves the targeting of the tumor vasculature. PMID:24810801

  19. Concurrent hypermulticolor monitoring of CD31, CD34, CD45 and CD146 endothelial progenitor cell markers for acute myocardial infarction.

    PubMed

    Shim, Yumi; Nam, Myung Hyun; Hyuk, Song Woo; Yoon, Soo Young; Song, Joon Myong

    2015-01-01

    The circulating endothelial progenitor cells (EPCs) in blood of acute myocardial infarction (AMI) patient have been monitored in many previous studies. The number of circulating EPC increases in the blood of patients at onset of the AMI. EPC is originated from bone marrow. It performs vessel regeneration. There are many markers used for detecting EPC. Four of these markers, CD31, CD34, CD45, and CD146, were concurrently detected at the single cell level for the identification of EPC in the present preliminary study. The CD45 negative cell sorting was performed to peripheral blood mononuclear cells (PBMCs) acquired from four AMI patients with a magnetic bead sorter, since, EPCs expressed CD45 negative or dim. The resultant PBMC eluents were treated with quantum-antibody conjugates for the probing four different markers of EPCs and then applied to a high-content single cell imaging cytometer using acousto-optical tunable filter (AOTF). The use of quantum dot, with narrow emission wavelength range and AOTF enabling cellular image at a particular single wavelength, is very advantageous for accurate high-content AMI diagnosis based on simultaneous monitoring of many markers. The number of EPC increased as compared with control in three of four AMI patients. In this approach, two EPC subtypes were found, CD31(+), CD34(+), CD45(-/dim), CD146(-) as early outgrowth EPCs and CD31(+), CD34(+), CD45(-/dim), CD146(+) as late outgrowth EPCs. Patient 1 had CD31(+), CD34(+), CD45(-/dim), CD146(+) cells whose percentage was 4.21% of cells. Patient 2 had 2.38% of CD31(+), CD34(+), CD45(-/dim), CD146(-) cells and patient 3 had 4.28% of CD31(+), CD34(+), CD45(-/dim), CD146(+) cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Insulin-like growth factor I messenger RNA and protein are expressed in the human lymph node and distinctly confined to subtypes of macrophages, antigen-presenting cells, lymphocytes and endothelial cells.

    PubMed

    Oberlin, Dominique; Fellbaum, Christian; Eppler, Elisabeth

    2009-11-01

    Insulin-like growth factor I (IGF-I) is a potent hormone that stimulates growth and differentiation and inhibits apoptosis in numerous tissues. Preliminary evidence suggests that IGF-I exerts differentiating, mitogenic and restoring activities in the immune system but the sites of synthesis of local IGF-I are unknown. Identification of these sites would allow the functional role of local IGF-I to be clarified. The presence of IGF-I in non-immune cells suggests that it acts as a trophic factor, while its occurrence in subtypes of lymphocytes or antigen-presenting cells indicates paracrine/autocrine direct regulatory involvement of IGF-I in the human immune response. The present study investigated the location of IGF-I messenger RNA and protein on archival human lymph node samples by in situ hybridization, immunohistochemistry and double immunofluorescence staining using an IGF-I probe and antisera specific for human IGF-I and CD3 (T lymphocytes), CD20 (B lymphocytes), CD68 (macrophages), CD21 (follicular dendritic cells), S100 (interdigitating dendritic cells) and podoplanin (fibroblastic reticular cells). Numerous cells within the B- and T-cell compartments expressed the IGF-I gene, and the majority of these cells were identified as macrophages. Solitary follicular dendritic cells exhibited IGF-I. A few T lymphocytes, and no B lymphocytes, contained IGF-I immunoreactive material. Furthermore, IGF-I immunoreactive cells outside the follicles that did not react with CD3, CD20, S100 or podoplanin markers were identified as high-endothelial venule (HEV) cells. From this we conclude that the main task of IGF-I in human non-tumoral lymph node may be autocrine and paracrine regulation of the differentiation, stimulation and survival of lymphocytes, antigen-presenting cells and macrophages and the differentiation and maintenance of HEV cells.

  1. Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells.

    PubMed

    Burger, Dylan; Touyz, Rhian M

    2012-01-01

    Endothelial dysfunction, the shift from a healthy endothelium to a damaged pro-coagulative, pro-inflammatory, and pro-vasoconstrictive phenotype, is an early event in many chronic diseases that frequently precedes cardiovascular complications. Functional assessment of the endothelium can identify endothelial damage and predict cardiovascular risk; however, this assessment provides little information as to the mechanisms underlying development of endothelial dysfunction. Changes in plasma asymmetric dimethyl arginine levels, markers of lipid peroxidation, circulating levels of inflammatory mediators, indices of coagulation and cellular surrogates such as microparticles, circulating endothelial cells, and endothelial progenitor cells may reflect alterations in endothelial status and as such have been defined as "biomarkers" of endothelial function. Biomarkers may be chemical or cellular. This review examines some markers of endothelial dysfunction, with a particular focus on cellular biomarkers of endothelial dysfunction and their diagnostic potential. Copyright © 2012 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  2. Podoplanin expression in tumor-free resection margins of oral squamous cell carcinomas: an immunohistochemical and fractal analysis study.

    PubMed

    Margaritescu, C; Raica, M; Pirici, D; Simionescu, C; Mogoanta, L; Stinga, A C; Stinga, A S; Ribatti, D

    2010-06-01

    Podoplanin is involved in tumorigenesis and cancer progression in head and neck malignancies and its expression is not restricted to lymphatic vessel endothelium. The aim of this study was to establish podoplanin expression in the tumor-free resection margins of oral squamous cell carcinomas (OSCCs) and to evaluate the geometric complexity of the lymphatic vessels in oral mucosa by utilizing fractal analysis. As concerns the podoplanin expression in noncancerous tissue, forty tumor-free resection margins from OSCCs were investigated utilizing immunohistochemistry for D2-40 antibody and image densitometry analysis. Podoplanin expression was extremely low in basal cells, especially in resection margins of OSCCs developed in the lower lip regions. However, a highly variable D2-40 expression in tumor-free resection margins associated with hyperplastic or dysplastic lesions was identified. Moreover, podoplanin expression also extended to the basal layer of the lower lip skin appendages, the myoepithelial cells of acini and ducts of minor salivary glands, and other structures from the oral cavity. As concerns the study of the density and complexity of oral lymphatic vessels architecture by means of immunohistochemistry (D2-40, CD31 and Ki-67 antibodies) and fractal analysis, we demonstrated that in normal oral mucosa the geometry of the lymphatic vessels was less complex at the level of the lower lip compared to the anterior part of the oral floor mucosa or the tongue. A comparative analysis between the normal and pathological aspects revealed statistically significant differences between the fractal dimension (FD) of the vessels' outline, especially in the tongue. Fractal analysis proved an increasing lymphatic network complexity from normal to premalignant oral mucosal lesions, providing additional prognostic information in oral malignant tumors.

  3. Development and characterization of anti-glycopeptide monoclonal antibodies against human podoplanin, using glycan-deficient cell lines generated by CRISPR/Cas9 and TALEN.

    PubMed

    Kaneko, Mika K; Nakamura, Takuro; Honma, Ryusuke; Ogasawara, Satoshi; Fujii, Yuki; Abe, Shinji; Takagi, Michiaki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Nishioka, Yasuhiko; Kato, Yukinari

    2017-02-01

    Human podoplanin (hPDPN), which binds to C-type lectin-like receptor-2 (CLEC-2), is involved in platelet aggregation and cancer metastasis. The expression of hPDPN in cancer cells or cancer-associated fibroblasts indicates poor prognosis. Human lymphatic endothelial cells, lung-type I alveolar cells, and renal glomerular epithelial cells express hPDPN. Although numerous monoclonal antibodies (mAbs) against hPDPN are available, they recognize peptide epitopes of hPDPN. Here, we generated a novel anti-hPDPN mAb, LpMab-21. To characterize the hPDPN epitope recognized by the LpMab-21, we established glycan-deficient CHO-S and HEK-293T cell lines, using the CRISPR/Cas9 or TALEN. Flow cytometric analysis revealed that the minimum hPDPN epitope, in which sialic acid is linked to Thr76, recognized by LpMab-21 is Thr76-Arg79. LpMab-21 detected hPDPN expression in glioblastoma, oral squamous carcinoma, and seminoma cells as well as in normal lymphatic endothelial cells. However, LpMab-21 did not react with renal glomerular epithelial cells or lung type I alveolar cells, indicating that sialylation of hPDPN Thr76 is cell-type-specific. LpMab-21 combined with other anti-hPDPN antibodies that recognize different epitopes may therefore be useful for determining the physiological function of sialylated hPDPN. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Association of Urinary N-Domain Angiotensin I-Converting Enzyme with Plasma Inflammatory Markers and Endothelial Function

    PubMed Central

    Fernandes, Fernanda B; Plavnik, Frida L; Teixeira, Andressa MS; Christofalo, Dejaldo MJ; Ajzen, Sergio A; Higa, Elisa MS; Ronchi, Fernanda A; Sesso, Ricardo CC; Casarini, Dulce E

    2008-01-01

    The aim of this study was to investigate the association between urinary 90 kDa N-domain Angiotensin I-converting enzyme (ACE) form with C-reactive protein (CRP) and homocysteine plasma levels (Hcy), urinary nitric oxide (NOu), and endothelial function (EF) in normotensive subjects. Forty healthy subjects were evaluated through brachial Doppler US to test the response to reactive hyperemia and a panel of blood tests to determine CRP and Hcy levels, NOu, and urinary ACE. They were divided into groups according to the presence (ACE90+) or absence (ACE90–) of the 90 kDa ACE, the presence (FH+) or absence (FH–) of family history of hypertension, and the presence or absence of these two variables FH+/ACE90+ and FH–/ACE90–. We found an impaired endothelial dilatation in subjects who presented the 90 kDa N-domain ACE as follows: 11.4% ± 5.3% in ACE90+ compared with 17.6% ± 7.1% in ACE90– group and 12.4% ± 5.6% in FH+/ACE90+ compared with 17.7% ± 6.2% in FH–/ACE90– group, P < 0.05. Hcy and CRP levels were statistically significantly lower in FH+/ACE90+ than in FH–/ACE90– group, as follows: 10.0 ± 2.3 μM compared with 12.7 ± 1.5 μM, and 1.3 ± 1.8 mg/L compared with 3.6 ± 2.0 mg/L, respectively. A correlation between flow-mediated dilatation (FMD) and CRP, Hcy, and NOu levels was not found. Our study suggests a reduction in the basal NO production confirmed by NOu analysis in subjects with the 90 kDa N-domain ACE isoform alone or associated with a family history of hypertension. Our data suggest that the presence of the 90 kDa N-domain ACE itself may have a negative impact on flow-mediated dilatation stimulated by reactive hyperemia. PMID:18475311

  5. [Interactions between markers of endothelial damage (homocysteine and asymmetric dimethylarginine) and antioxidants and B-vitamins in preeclamptic women].

    PubMed

    López-Alarcón, Mardia; Vital-Reyes, Victor Saúl; Montalvo-Velarde, Irene; Hinojosa-Cruz, Juan Carlos; Puellotamara, Edgardo

    2015-06-01

    Preeclampsia is a pregnancy-related pathological condition triggered by an abnormal placentation which produces endothelial dysfunction (ED). ED, in turn, is associated with an increase in homocysteine (hcy) and asymmetric dimethylarginine (ADMA); these molecules are also increased when some of the B-vitamins are deficient. It is unclear whether increases in hcy and ADMA during preeclampsia are the result of ED, or the consequence of a B-vitamin deficiency. To evaluate hcy, ADMA, folic acid (FA), vitamin B6 and B2 concentrations in patients with preeclampsia. In a cross-sectional design 19 patients with severe preeclamp- sia (preeclampsia) and 57 with normal pregnancy (no-preeclampsia), paired by gestational age and body mass index, were studied. Plasma hcy, ADMA, FA and vitamins B6 and B12 were determined. Non-parametric statistics was used for between-groups comparisons and regression analyses to evaluate interactions among molecules. 72% of women were vitamin B deficient, 40% were deficient of B12 and 4% of FA. Preeclamptic patients presented hcy and ADMA concentrations higher than no-preeclamptic ones. Inferential analyses demonstrated that: hcy and ADMA are increased during preeclampsia independently from vitamins blood concentration; that the risk for pre- eclampsia is associated with high hcy but not with vitamins deficiency; and that the ratio L-arginine:ADMA decreases the preeclampsia risk. In patients with preeclampsia, increases of hcy and ADMA are associated with ED, but not with deficiency of the vitamins involved in their metabolism.

  6. Comparison of cardiovascular disease risk markers in HIV-infected patients receiving abacavir and tenofovir: the nucleoside inflammation, coagulation and endothelial function (NICE) study

    PubMed Central

    Wohl, David A; Arnoczy, Gretchen; Fichtenbaum, Carl J; Campbell, Thomas; Taiwo, Babafemi; Hicks, Charles; McComsey, Grace A; Koletar, Susan; Sax, Paul; Tebas, Pablo; Ha, Belinda; Massengale, Kelly; Walsh, Kendall; Stein, James H

    2015-01-01

    Background The association between abacavir (ABC) and cardiovascular disease (CVD) risk in HIV-infected individuals is unclear. Putative mechanisms for an effect of ABC on CVD risk including endothelial dysfunction have been proposed; however, a biological mechanism has not been established. Methods This was a cross-sectional study of HIV-infected subjects with HIV RNA levels <400 copies/ml, who were randomly assigned to ABC or tenofovir (TDF) as initial therapy during a prior clinical trial. A small cohort of subjects on zidovudine (AZT; not randomly assigned) were studied to explore long-term exposure to this agent. All underwent brachial artery ultrasound for flow-mediated dilation (FMD), and D-dimer, high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6) and fasting lipids were measured. Between-arm differences were evaluated by multivariable linear or logistic regression modelling. Results There were 148 subjects (46 on ABC, 72 on TDF and 30 on AZT). Demographic characteristics were balanced across the groups except, as expected, AZT-treated participants were older, had higher CD4+ T-cell counts, and longer antiretroviral therapy duration. After adjusting for age, brachial artery diameter, and treatment duration, FMD was similar in those on ABC (3.9%) and TDF (5.4%; P=0.181). FMD was higher in those on AZT (6.1%; P<0.005). Levels of IL-6, hsCRP and detectable D-dimer were similar between groups. Conclusions Among individuals assigned to ABC or TDF in randomized clinical trials there were no significant differences in FMD or markers of inflammation and coagulation. Whether ABC contributes to risk of CVD remains unclear, but our results suggest that endothelial dysfunction, heightened inflammation, and altered coagulation are unlikely to be mechanisms by which the drug could increase CVD risk above that seen with TDF. PMID:23985706

  7. Circulating and progenitor endothelial cells are abnormal in patients with different types of von Willebrand disease and correlate with markers of angiogenesis.

    PubMed

    Gritti, Giuseppe; Cortelezzi, Agostino; Bucciarelli, Paolo; Rezzonico, Francesca; Lonati, Silvia; La Marca, Silvia; Silvestris, Ilaria; Federici, Augusto B

    2011-08-01

    von Willebrand disease (VWD) is the most common inherited bleeding disorder and is caused by quantitative or qualitative defects of von Willebrand factor (VWF). VWF, synthesized by endothelium and megakaryocytes (MK), circulates in plasma and is present in subendothelium and platelets. Circulating endothelial cells (CEC) and progenitor endothelial cells (EPC) have been recently proposed as markers of peripheral and bone marrow-derived angiogenesis. To evaluate the association of CEC/EPC with known inherited defects of cellular and circulating VWF, we have measured the number of CEC/EPC together with cytokines involved in angiogenesis in different VWD types. A group of 74 patients was composed by the following VWD types: VWD1 (n = 22), VWD2A (n = 9), VWD2B (n = 19), VWD2M (n = 17), and VWD3 (n = 7). Healthy individuals (n = 20) were used as controls. CEC (CD146(+) , CD31(+) , and CD45(-) ) and EPC (CD34(+) , CD133(+) , and CD45(-) ) were evaluated by flow cytometry. Circulating serum levels of VEGF, E-selectin, P-selectin, EPO, and TPO were determined by ELISA. CEC, VEGF, E-selectin, and EPO were higher and EPC lower in VWD patients than in controls (P < 0.01). Among the five groups of VWD patients and controls, a significant difference was found for CEC (one-way ANOVA: P = 0.005), EPC (P = 0.001), E-Selectin (P < 0.0001), EPO (P = 0.021), and TPO (P = 0.004): the latter was high in VWD3 patients. In VWD1, we found an inverse relationship between CEC and VWF:Ag levels (P = 0.048; R(2) = 0.19). Based on these data, CEC are increased in VWD and are associated with the high levels of cytokines involved in angiogenesis (up-regulation). EPC are decreased, suggesting down-regulation of bone marrow-derived angiogenesis in VWD.

  8. Weight loss, but not fish oil consumption, improves fasting and postprandial serum lipids, markers of endothelial function, and inflammatory signatures in moderately obese men.

    PubMed

    Plat, Jogchum; Jellema, Annemarie; Ramakers, Julian; Mensink, Ronald P

    2007-12-01

    Overweight persons are at risk for cardiovascular diseases, which may relate to a disturbed endothelial function and pro-inflammatory serum profiles. Indeed, weight loss lowers cardiovascular disease risk, but weight maintenance is difficult. Therefore, dietary supplements such as fish oil, which improve endothelial function, are useful. In this study, we evaluated effects of fish oil and moderate weight loss in the same population. For this, 11 normolipidemic healthy, moderately obese men (BMI 30-35 kg/m2) received in random order 1.1 g/d eicosapentanoic acid (EPA) + docosahexanoic acid (DHA) or oleic acid (control) for 6 wk. In the 3rd period, 8 of the 11 subjects consumed low-energy diets (2 MJ/d) for 4 wk followed by 4 wk weight stabilization. Their body weight was reduced by 9.4 +/- 2.0 kg (P < 0.05). On the final day of all 3 periods, a postprandial test was conducted. Weight loss lowered fasting and postprandial plasma triacylglycerol (TG) responses (P < 0.001), whereas fish oil reduced only postprandial TG (P = 0.006). Fish oil did not affect soluble intercellular adhesion molecule (s-ICAM), whereas weight loss reduced fasting (P = 0.009) and postprandial s-ICAM responses (P < 0.001). Fasting s-ICAM and TG correlated (r = 0.68; P = 0.029), as did changes in fasting s-ICAM and TG during weight loss (r = 0.80; P = 0.029) and fish oil treatment (r = 0.76; P = 0.009). Fasting (P = 0.027) and postprandial (P < 0.001) serum C-reactive protein were lowered by weight loss. The postprandial monocyte chemoattractant protein-1 response was lowered by fish oil and after weight loss (P < 0.001). This indicates that 1.1 g/d EPA+DHA supplied for 6 wk, in contrast to approximately 10 kg weight loss, does not improve markers of endothelial function and inflammation.

  9. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    EPA Science Inventory

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  10. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    EPA Science Inventory

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  11. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture.

    PubMed

    Astarita, Jillian L; Cremasco, Viviana; Fu, Jianxin; Darnell, Max C; Peck, James R; Nieves-Bonilla, Janice M; Song, Kai; Kondo, Yuji; Woodruff, Matthew C; Gogineni, Alvin; Onder, Lucas; Ludewig, Burkhard; Weimer, Robby M; Carroll, Michael C; Mooney, David J; Xia, Lijun; Turley, Shannon J

    2015-01-01

    In lymph nodes, fibroblastic reticular cells (FRCs) form a collagen-based reticular network that supports migratory dendritic cells (DCs) and T cells and transports lymph. A hallmark of FRCs is their propensity to contract collagen, yet this function is poorly understood. Here we demonstrate that podoplanin (PDPN) regulates actomyosin contractility in FRCs. Under resting conditions, when FRCs are unlikely to encounter mature DCs expressing the PDPN receptor CLEC-2, PDPN endowed FRCs with contractile function and exerted tension within the reticulum. Upon inflammation, CLEC-2 on mature DCs potently attenuated PDPN-mediated contractility, which resulted in FRC relaxation and reduced tissue stiffness. Disrupting PDPN function altered the homeostasis and spacing of FRCs and T cells, which resulted in an expanded reticular network and enhanced immunity.

  12. Podoplanin Immunopositive Lymphatic Vessels at the Implant Interface in a Rat Model of Osteoporotic Fractures

    PubMed Central

    Lips, Katrin Susanne; Kauschke, Vivien; Hartmann, Sonja; Thormann, Ulrich; Ray, Seemun; Kampschulte, Marian; Langheinrich, Alexander; Schumacher, Matthias; Gelinsky, Michael; Heinemann, Sascha; Hanke, Thomas; Kautz, Armin R.; Schnabelrauch, Matthias; Schnettler, Reinhard; Heiss, Christian; Alt, Volker; Kilian, Olaf

    2013-01-01

    Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages

  13. Podoplanin immunopositive lymphatic vessels at the implant interface in a rat model of osteoporotic fractures.

    PubMed

    Lips, Katrin Susanne; Kauschke, Vivien; Hartmann, Sonja; Thormann, Ulrich; Ray, Seemun; Kampschulte, Marian; Langheinrich, Alexander; Schumacher, Matthias; Gelinsky, Michael; Heinemann, Sascha; Hanke, Thomas; Kautz, Armin R; Schnabelrauch, Matthias; Schnettler, Reinhard; Heiss, Christian; Alt, Volker; Kilian, Olaf

    2013-01-01

    Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages

  14. Potential anti-inflammatory effects of maraviroc in HIV-positive patients: a pilot study of inflammation, endothelial dysfunction, and coagulation markers.

    PubMed

    Francisci, Daniela; Falcinelli, Emanuela; Baroncelli, Silvia; Petito, Eleonora; Cecchini, Enisia; Weimer, Liliana Elena; Floridia, Marco; Gresele, Paolo; Baldelli, Franco

    2014-06-01

    Persistent immune activation and chronic inflammation significantly contribute to non-AIDS morbidity in HIV-infected patients. The HIV inhibitor maraviroc (MVC) targets the cellular chemokine CCR5 HIV co-receptor, which is involved in important inflammatory pathways. MVC could have significant anti-inflammatory and anti-atherosclerotic effects, also reducing immune activation. We designed a pilot study to determine which plasma biomarkers of inflammation, endothelial dysfunction, and hypercoagulability were modified by MVC in 2 groups of 10 patients starting MVC-free or MVC-containing regimens. Ten age- and gender-matched healthy controls were also included. We found higher levels of all inflammatory biomarkers in HIV-infected patients compared to healthy controls. Both groups showed decreasing levels of interleukin (IL)-17, IL-10, and macrophage inflammatory protein (MIP)-1a following the achievement of viral suppression. Vascular cell adhesion molecule (VCAM)-1 levels were decreased in the MVC group and increased in the MVC-free group. In conclusion, some inflammatory biomarkers tend to decrease with the salvage regimen; MVC was not associated with a better impact on these measured markers.

  15. Detection of Autoantibodies to Vascular Endothelial Growth Factor Receptor-3 in Bile Duct Ligated Rats and Correlations with a Panel of Traditional Markers of Liver Diseases

    PubMed Central

    Duval, Florent; Cruz-Vega, Delia Elva; González-Gamboa, Ivonne; González-Garza, María Teresa; Ponz, Fernando; Sánchez, Flora; Alarcón-Galván, Gabriela; Moreno-Cuevas, Jorge E.

    2016-01-01

    There is a need for new noninvasive biomarkers (NIBMs) able to assess cholestasis and fibrosis in chronic cholestatic liver diseases (CCLDs). Tumorigenesis can arise from CCLDs. Therefore, autoantibodies to tumor-associated antigens (TAA) may be early produced in response to abnormal self-antigen expression caused by cholestatic injury. Vascular endothelial growth factor receptor-3 (VEGFR-3) has TAA potential since it is involved in cholangiocytes and lymphatic vessels proliferations during CCLDs. This study aims to detect autoantibodies directed at VEGFR-3 during bile duct ligation- (BDL-) induced cholestatic injury in rat sera and investigate whether they could be associated with traditional markers of liver damage, cholestasis, and fibrosis. An ELISA was performed to detect anti-VEGFR-3 autoantibodies in sera of rats with different degree of liver injury and results were correlated with aminotransferases, total bilirubin, and the relative fibrotic area. Mean absorbances of anti-VEGFR-3 autoantibodies were significantly increased from week one to week five after BDL. The highest correlation was observed with total bilirubin (R2 = 0.8450, P = 3.04e − 12). In conclusion, anti-VEGFR-3 autoantibodies are early produced during BDL-induced cholestatic injury, and they are closely related to cholestasis, suggesting the potential of anti-VEGFR-3 autoantibodies as NIBMs of cholestasis in CCLDs and justifying the need for further investigations in patients with CCLD. PMID:27212785

  16. The effect of Citrus Aurantifolia (Lemon) peels on cardiometabolic risk factors and markers of endothelial function in adolescents with excess weight: A triple-masked randomized controlled trial.

    PubMed

    Hashemipour, Mahin; Kargar, Maryam; Ghannadi, Alireza; Kelishadi, Roya

    2016-01-01

    Background: Childhood obesity is becoming a global problem and its incidence is increasing. The role of dietary intervention with fruits containing vitamin C and flavonoid to control obesity consequences in childhood has not been yet defined. Lemon (Citrus aurantifolia) peels contain flavonoid, pectin and vitamin C. We aimed to compare the effects of lemon peels and placebo on cardiometabolic risk factors and markers of endothelial function among adolescents with overweight and obesity. Methods: In this triple-masked, randomized controlled trial, 60 overweight/obese adolescents were enrolled in a 4-week trial. Eligible participants were randomly assigned into two groups of equal number receiving daily oral capsules containing lemon powder or placebo. Fasting blood sugar, lipid profile, ICAM-1 and VCAM-1, as well as systolic and diastolic blood pressure were compared between the two groups before and after administration of medication and placebo. Results: Of the total 60 enrolled patients, 30 and 29 patients in the lemon and control groups completed the study, respectively. The results of within-group analysis demonstrated a slight reduction in body mass index, LDL-C and systolic blood pressure in the lemon group, but no between group differences existed in the studied variables. Conclusion: This study revealed that consumption of lemon peel extract has some beneficial effects for childhood obesity; however, no considerable effect was documented on anthropometric measures and biochemical factors. Future studies with longer follow up are highly recommended.

  17. The effect of Citrus Aurantifolia (Lemon) peels on cardiometabolic risk factors and markers of endothelial function in adolescents with excess weight: A triple-masked randomized controlled trial

    PubMed Central

    Hashemipour, Mahin; Kargar, Maryam; Ghannadi, Alireza; Kelishadi, Roya

    2016-01-01

    Background: Childhood obesity is becoming a global problem and its incidence is increasing. The role of dietary intervention with fruits containing vitamin C and flavonoid to control obesity consequences in childhood has not been yet defined. Lemon (Citrus aurantifolia) peels contain flavonoid, pectin and vitamin C. We aimed to compare the effects of lemon peels and placebo on cardiometabolic risk factors and markers of endothelial function among adolescents with overweight and obesity. Methods: In this triple-masked, randomized controlled trial, 60 overweight/obese adolescents were enrolled in a 4-week trial. Eligible participants were randomly assigned into two groups of equal number receiving daily oral capsules containing lemon powder or placebo. Fasting blood sugar, lipid profile, ICAM-1 and VCAM-1, as well as systolic and diastolic blood pressure were compared between the two groups before and after administration of medication and placebo. Results: Of the total 60 enrolled patients, 30 and 29 patients in the lemon and control groups completed the study, respectively. The results of within-group analysis demonstrated a slight reduction in body mass index, LDL-C and systolic blood pressure in the lemon group, but no between group differences existed in the studied variables. Conclusion: This study revealed that consumption of lemon peel extract has some beneficial effects for childhood obesity; however, no considerable effect was documented on anthropometric measures and biochemical factors. Future studies with longer follow up are highly recommended. PMID:28210594

  18. Incorporation of podoplanin into HIV released from HEK-293T cells, but not PBMC, is required for efficient binding to the attachment factor CLEC-2

    PubMed Central

    2010-01-01

    Background Platelets are associated with HIV in the blood of infected individuals and might modulate viral dissemination, particularly if the virus is directly transmitted into the bloodstream. The C-type lectin DC-SIGN and the novel HIV attachment factor CLEC-2 are expressed by platelets and facilitate HIV transmission from platelets to T-cells. Here, we studied the molecular mechanisms behind CLEC-2-mediated HIV-1 transmission. Results Binding studies with soluble proteins indicated that CLEC-2, in contrast to DC-SIGN, does not recognize the viral envelope protein, but a cellular factor expressed on kidney-derived 293T cells. Subsequent analyses revealed that the cellular mucin-like membranous glycoprotein podoplanin, a CLEC-2 ligand, was expressed on 293T cells and incorporated into virions released from these cells. Knock-down of podoplanin in 293T cells by shRNA showed that virion incorporation of podoplanin was required for efficient CLEC-2-dependent HIV-1 interactions with cell lines and platelets. Flow cytometry revealed no evidence for podoplanin expression on viable T-cells and peripheral blood mononuclear cells (PBMC). Podoplanin was also not detected on HIV-1 infected T-cells. However, apoptotic bystander cells in HIV-1 infected cultures reacted with anti-podoplanin antibodies, and similar results were obtained upon induction of apoptosis in a cell line and in PBMCs suggesting an unexpected link between apoptosis and podoplanin expression. Despite the absence of detectable podoplanin expression, HIV-1 produced in PBMC was transmitted to T-cells in a CLEC-2-dependent manner, indicating that T-cells might express an as yet unidentified CLEC-2 ligand. Conclusions Virion incorporation of podoplanin mediates CLEC-2 interactions of HIV-1 derived from 293T cells, while incorporation of a different cellular factor seems to be responsible for CLEC-2-dependent capture of PBMC-derived viruses. Furthermore, evidence was obtained that podoplanin expression is

  19. Markers of endothelial dysfunction and inflammation predict progression of diabetic nephropathy in African Americans with type 1 diabetes.

    PubMed

    Roy, Monique S; Janal, Malvin N; Crosby, Juan; Donnelly, Robert

    2015-02-01

    African Americans with early-onset type 1 diabetes mellitus are at a high risk for severe diabetic nephropathy and end-stage renal disease. In order to determine whether baseline plasma levels of inflammatory markers predict incidence of overt proteinuria or renal failure in African Americans with type 1 diabetes mellitus, we re-examined data of 356 participants in our observational follow-up study of 725 New Jersey African Americans with type 1 diabetes. At baseline and 6-year follow-up, a detailed structured clinical interview was conducted to document medical history including kidney dialysis or transplant, other diabetic complications, and renal-specific mortality. Plasma levels of 28 inflammatory biomarkers were measured using a multiplex bead analysis system. After adjusting for baseline age, glycohemoglobin, and other confounders, the baseline plasma levels of soluble intercellular adhesion molecule-1 (sICAM-1) in the upper two quartiles were, respectively, associated with a three- to fivefold increase in the risk of progression from no albuminuria or microalbuminuria to overt proteinuria. Baseline plasma levels of the chemokine eotaxin in the upper quartile were significantly associated with a sevenfold increase in risk of incident renal failure. These associations were independent of traditional risk factors for progression of diabetic nephropathy. Thus, in type 1 diabetic African Americans, sICAM-1 predicted progression to overt proteinuria and eotaxin-predicted progression to renal failure.

  20. Interdependencies among Selected Pro-Inflammatory Markers of Endothelial Dysfunction, C-Peptide, Anti-Inflammatory Interleukin-10 and Glucose Metabolism Disturbance in Obese Women.

    PubMed

    Janowska, Joanna; Chudek, Jerzy; Olszanecka-Glinianowicz, Magdalena; Semik-Grabarczyk, Elżbieta; Zahorska-Markiewicz, Barbara

    2016-01-01

    Currently increasing importance is attributed to the inflammatory process as a crucial factor responsible for the progressive damage to vascular walls and progression of atherosclerosis in obese people. We have studied the relationship between clinical and biochemical parameters and C-peptide and anti-inflammatory IL-10, as well as selected markers of inflammation and endothelial dysfunction such as: CCL2, CRP, sICAM-1, sVCAM-1 and E-selectin in obese women with various degree of glucose metabolism disturbance. The studied group consisted of 61 obese women, and 20 normal weight, healthy volunteers. Obese patients were spited in subgroups based on the degree of glucose metabolism disorder. Serum samples were analyzed using ELISA kits. Increased concentrations of sICAM-1, sVCAM-1, E-selectin, CCL2 and CRP were found in all obese groups compared to the normal weight subjects. In patients with Type 2 diabetes mellitus (T2DM) parameters characterizing the degree of obesity significantly positively correlated with levels of CRP and CCL2. Significant relationships were found between levels of glucose and sICAM-1and also E-selectin and HOMA-IR. C-peptide levels are positively associated with CCL2, E-selectin, triglycerides levels, and inversely with IL-10 levels in newly diagnosed T2DM group (p<0.05). Concentrations of IL-10 correlated negatively with E-selectin, CCL2, C-peptide levels, and HOMA-IR in T2DM group (p<0.05). Disturbed lipid and carbohydrate metabolism are manifested by enhanced inflammation and endothelial dysfunction in patients with simply obesity. These disturbances are associates with an increase of adhesion molecules. The results suggest the probable active participation of higher concentrations of C-peptide in the intensification of inflammatory and atherogenic processes in obese patients with type 2 diabetes. In patients with obesity and type 2 diabetes, altered serum concentrations of Il-10 seems to be dependent on the degree of insulin resistance and

  1. Markers of endothelial dysfunction and leucocyte activation in Saudi and non-Saudi haplotypes of sickle cell disease.

    PubMed

    Al Najjar, Salwa; Adam, Soheir; Ahmed, Nessar; Qari, Mohamed

    2017-01-01

    Sickle cell disease (SCD) is an autosomal recessive inherited hemoglobinopathy, characterized by chronic hemolysis and recurrent vaso-occlusive crisis (VOC). This study investigates changes in leucocyte subsets and the relationship between cell adhesion molecule expression and disease manifestations in patients during steady state and acute VOC. We compared soluble E-selectin and P-selectin levels in 84 SCD patients, in steady state and during VOC to 84 healthy controls. Using immunophenotyping, we also compared lymphocyte subsets in these three groups. Further, we compared E-selectin and P-selectin levels in patients of Saudi ethnicity to non-Saudi patients, in all three groups. Lymphocyte subsets showed high percentages of total T lymphocytes, T helper and suppressor lymphocytes, B lymphocytes as well as NK cells in patients with SCD during steady state, while B lymphocytes and NK cells were significantly higher during acute VOC crisis. High levels of both soluble E-selectin (sE-selectin) and soluble P-selectin (sP-selectin) markers were demonstrated in the serum of patients with SCD during both steady state and acute VOC. Levels of selectins were significantly higher in acute VOC. The immunophenotypic expression of L-selectin, on leucocytes, was high in SCD both during steady state and during acute VOC in comparison to normal control subjects. There was no significant difference in all three study groups between Saudi and non-Saudi patients. These findings suggest that patients with SCD have increased expression of adhesion molecules: E-selectin and P-selectin, which play an important role in the pathogenesis of VOC. Despite the distinct phenotype of Saudi patients with SCD, there was no significant difference in levels of soluble E-selectin and soluble P-selectin between Saudi and non-Saudi patients in all three groups. While sickle cell disease is a well-recognized state of chronic inflammation, the role of specific adhesion molecules is steadily unraveling

  2. HuR and podoplanin expression is associated with a high risk of malignant transformation in patients with oral preneoplastic lesions.

    PubMed

    Habiba, Umma; Kitamura, Tetsuya; Yanagawa-Matsuda, Aya; Higashino, Fumihiro; Hida, Kyoko; Totsuka, Yasunori; Shindoh, Masanobu

    2016-11-01

    The risk of malignant transformation in oral preneoplastic lesions (OPLs) is challenging to assess. The objective of the present study was to determine the expression of ELAV like RNA binding protein 1 (HuR) and podoplanin in OPLs, and to evaluate the use of each protein as biomarkers for the risk assessment of malignant transformations. Immunohistochemistry for HuR and podoplanin was performed on the tissues of 51 patients with OPL, including cases of low grade dysplasia (LGD) and high grade dysplasia (HGD). The association between the protein expression patterns and clinicopathological parameters, including oral cancer free survival (OCFS) time, was analyzed during the follow-up period. HuR and podoplanin expression was observed in 28 (55%) and 36 (71%) of 51 patients, respectively. Kaplan-Meier analysis showed that the expression of HuR and podoplanin was associated with the risk of progression to oral cancer (P<0.05). Multivariate analysis revealed that HuR and podoplanin expression was associated with a 2.93-fold (95% confidence interval (CI), 0.98-10.34; P=0.055) and 2.06-fold (95% CI, 0.55-8.01; P=0.283) increase in risk of malignant transformation, respectively. The risk of OPL malignant transformation was considerably increased with the coexpression of HuR and podoplanin compared with the histological grading (95% CI, 1.64-23.59; P=0.005). The results of the present study demonstrated that the expression of HuR and podoplanin associates with malignant transformation and suggests that the proteins may be used as biomarkers to identify OPL patients with an increased risk of cancer development.

  3. HuR and podoplanin expression is associated with a high risk of malignant transformation in patients with oral preneoplastic lesions

    PubMed Central

    Habiba, Umma; Kitamura, Tetsuya; Yanagawa-Matsuda, Aya; Higashino, Fumihiro; Hida, Kyoko; Totsuka, Yasunori; Shindoh, Masanobu

    2016-01-01

    The risk of malignant transformation in oral preneoplastic lesions (OPLs) is challenging to assess. The objective of the present study was to determine the expression of ELAV like RNA binding protein 1 (HuR) and podoplanin in OPLs, and to evaluate the use of each protein as biomarkers for the risk assessment of malignant transformations. Immunohistochemistry for HuR and podoplanin was performed on the tissues of 51 patients with OPL, including cases of low grade dysplasia (LGD) and high grade dysplasia (HGD). The association between the protein expression patterns and clinicopathological parameters, including oral cancer free survival (OCFS) time, was analyzed during the follow-up period. HuR and podoplanin expression was observed in 28 (55%) and 36 (71%) of 51 patients, respectively. Kaplan-Meier analysis showed that the expression of HuR and podoplanin was associated with the risk of progression to oral cancer (P<0.05). Multivariate analysis revealed that HuR and podoplanin expression was associated with a 2.93-fold (95% confidence interval (CI), 0.98–10.34; P=0.055) and 2.06-fold (95% CI, 0.55–8.01; P=0.283) increase in risk of malignant transformation, respectively. The risk of OPL malignant transformation was considerably increased with the coexpression of HuR and podoplanin compared with the histological grading (95% CI, 1.64–23.59; P=0.005). The results of the present study demonstrated that the expression of HuR and podoplanin associates with malignant transformation and suggests that the proteins may be used as biomarkers to identify OPL patients with an increased risk of cancer development. PMID:27899983

  4. Platelets Promote Tumor Growth and Metastasis via Direct Interaction between Aggrus/Podoplanin and CLEC-2

    PubMed Central

    Takagi, Satoshi; Sato, Shigeo; Oh-hara, Tomoko; Takami, Miho; Koike, Sumie; Mishima, Yuji; Hatake, Kiyohiko; Fujita, Naoya

    2013-01-01

    The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus–CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus–CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet–tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma. PMID:23991201

  5. Expression of Aggrus/podoplanin in bladder cancer and its role in pulmonary metastasis

    PubMed Central

    Takagi, Satoshi; Oh-hara, Tomoko; Sato, Shigeo; Gong, Bo; Takami, Miho; Fujita, Naoya

    2014-01-01

    Platelet aggregation-inducing factor Aggrus, also known as podoplanin, is associated with tumor malignancy by promoting hematogenous metastasis. Aggrus overexpression has been reported in some tumor tissues including lung, esophagus, head and neck and brain. We here found the frequent upregulation of aggrus mRNA in urinary bladder cancers using cancer tissue panels from various organs. Immunohistochemical analysis confirmed Aggrus protein expression in urinary bladder cancers and suggested a positive correlation between Aggrus expression and metastatic tendency in bladder cancers. Endogenous expression of Aggrus protein on the cell surface was found in the mouse bladder cancer MBT-2 cell line and human bladder cancer SCaBER cell lines. Knockdown of Aggrus expression in MBT-2 cells decreased their ability to induce platelet aggregation and form pulmonary metastasis in syngeneic mouse models. Knockdown of Aggrus expression in the human bladder cancer SCaBER cells also attenuated their ability to induce platelet aggregation and form pulmonary metastasis in mice. Moreover, pulmonary metastasis of SCaBER cells was prevented by prior administration of our generated anti-Aggrus neutralizing monoclonal antibodies by attenuating their retention in lung. These results indicate that Aggrus plays an important role in bladder cancer metastasis. Thus, anti-Aggrus neutralizing antibodies would be useful for the prevention of hematogenous metastasis of Aggrus-positive bladder cancer. PMID:24222607

  6. Short communication: Effect of supplementation with Lactobacillus casei Shirota on insulin sensitivity, β-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome--a pilot study.

    PubMed

    Tripolt, N J; Leber, B; Blattl, D; Eder, M; Wonisch, W; Scharnagl, H; Stojakovic, T; Obermayer-Pietsch, B; Wascher, T C; Pieber, T R; Stadlbauer, V; Sourij, H

    2013-01-01

    Based on animal studies, intake of probiotic bacteria was suggested to improve insulin sensitivity by reducing endotoxinemia and inflammation. The objective of this study was to determine the effects of supplementation with the probiotic strain Lactobacillus casei Shirota (LcS) over 12 wk on insulin sensitivity, β-cell function, inflammation, and endothelial dysfunction parameters in subjects with metabolic syndrome. In a randomized-controlled study, 30 subjects with metabolic syndrome either received Lactobacillus casei Shirota 3 times daily for 12 wk or served as controls with standard medical therapy. Fasting blood samples were taken and a 75-g oral glucose tolerance test was performed to derive indices for insulin sensitivity and β-cell function. In addition, parameters to assess endothelial function and inflammation markers were determined. Even though the insulin sensitivity index significantly improved after 3 mo of probiotic supplementation (0.058±0.021 vs. 0.038±0.025), the change was not significantly different compared with the control group. No improvements were seen in additional indices of insulin sensitivity (quantitative insulin sensitivity check index, insulin sensitivity by oral glucose tolerance test, and homeostasis model assessment for insulin resistance) and β-cell function (first and second phase insulin secretion, and homeostasis model assessment for β-cell function). Probiotic supplementation resulted in a significant reduction in soluble vascular cell adhesion molecule-1 (sVCAM-1) level (1,614±343 vs. 1,418±265 ng/mL). No significant changes in parameters used to assess low-grade inflammation or endothelial dysfunction were observed. Intake of LcS for 12 wk in subjects with metabolic syndrome did not improve insulin sensitivity, β-cell function, endothelial function, or inflammation markers in this trial.

  7. Definition of a serum marker panel for glioblastoma discrimination and identification of Interleukin 1β in the microglial secretome as a novel mediator of endothelial cell survival induced by C-reactive protein.

    PubMed

    Nijaguna, Mamatha B; Schröder, Christoph; Patil, Vikas; Shwetha, Shivayogi D; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Santosh, Vani; Hoheisel, Jörg D; Somasundaram, Kumaravel

    2015-10-14

    Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n=27) and GBM (n=28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p<0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-FcγRIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1β (IL1β) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1β neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1β which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma

  8. Debulking surgery for elephantiasis nostras with large ectatic podoplanin-negative lymphatic vessels in patients with lipo-lymphedema.

    PubMed

    Wollina, Uwe; Heinig, Birgit; Schönlebe, Jaqueline; Nowak, Andreas

    2014-01-01

    Elephantiasis nostras is a rare complication in advanced lipo-lymphedema. While lipedema can be treated by liposuction and lymphedema by decongestive lymphatic therapy, elephantiasis nostras may need debulking surgery. We present 2 cases of advanced lipo-lymphedema complicated by elephantiasis nostras. After tumescent microcannular laser-assisted liposuction both patients underwent a debulking surgery with a modification of Auchincloss-Kim's technique. Histologic examination of the tissue specimen was performed. The surgical treatment was well tolerated and primary healing was uneventful. After primary wound healing and ambulation of the patients, a delayed ulceration with lymphorrhea developed. It was treated by surgical necrectomy and vacuum-assisted closure leading to complete healing. Mobility of the leg was much improved. Histologic examination revealed massive ectatic lymphatic vessels nonreactive for podoplanin. Debulking surgery can be an adjuvant technique for elephantiasis nostras in advanced lipo-lymphedema. Although delayed postoperative wound healing problems were observed, necrectomy and vacuum-assisted closure achieved a complete healing. Histologic data suggest that the ectatic lymphatic vessels in these patients resemble finding in podoplanin knockout mice. The findings would explain the limitations of decongestive lymphatic therapy and tumescent liposuction in such patients and their predisposition to relapsing erysipelas.

  9. Debulking Surgery for Elephantiasis Nostras With Large Ectatic Podoplanin-Negative Lymphatic Vessels in Patients With Lipo-Lymphedema

    PubMed Central

    Wollina, Uwe; Heinig, Birgit; Schönlebe, Jaqueline; Nowak, Andreas

    2014-01-01

    Objective: Elephantiasis nostras is a rare complication in advanced lipo-lymphedema. While lipedema can be treated by liposuction and lymphedema by decongestive lymphatic therapy, elephantiasis nostras may need debulking surgery. Methods: We present 2 cases of advanced lipo-lymphedema complicated by elephantiasis nostras. After tumescent microcannular laser-assisted liposuction both patients underwent a debulking surgery with a modification of Auchincloss-Kim's technique. Histologic examination of the tissue specimen was performed. Results: The surgical treatment was well tolerated and primary healing was uneventful. After primary wound healing and ambulation of the patients, a delayed ulceration with lymphorrhea developed. It was treated by surgical necrectomy and vacuum-assisted closure leading to complete healing. Mobility of the leg was much improved. Histologic examination revealed massive ectatic lymphatic vessels nonreactive for podoplanin. Conclusions: Debulking surgery can be an adjuvant technique for elephantiasis nostras in advanced lipo-lymphedema. Although delayed postoperative wound healing problems were observed, necrectomy and vacuum-assisted closure achieved a complete healing. Histologic data suggest that the ectatic lymphatic vessels in these patients resemble finding in podoplanin knockout mice. The findings would explain the limitations of decongestive lymphatic therapy and tumescent liposuction in such patients and their predisposition to relapsing erysipelas. PMID:24741382

  10. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1-year follow-up study.

    PubMed

    Park, Sun-Hee; Do, Jun-Young; Kim, Yeong Hoon; Lee, Ho Yung; Kim, Beom Seok; Shin, Sug-Kyun; Kim, Hyun Chul; Chang, Yoon-Kyung; Yang, Jong-Oh; Chung, Hyun-Chul; Kim, Chan-Duck; Lee, Won Kee; Kim, Jong-Yeon; Kim, Yong-Lim

    2012-03-01

    The local peritoneal effects of low-glucose degradation product (GDP)-containing peritoneal dialysis fluid (PDF) have been extensively described. However, the systemic effects of prolonged prescription of these solutions are unknown. This study aimed to evaluate the effects of neutral pH and low-GDP PDF on systemic inflammation and endothelial dysfunction markers in peritoneal dialysis (PD) patients. This is a multicenter, open labeled, randomized controlled trial including one hundred fifty-two patients initiating continuous ambulatory peritoneal dialysis for end-stage renal disease from seven centers in Korea. Participants were randomly allocated to conventional PDF (Stay safe®; Fresenius Medical Care, Bad Homburg, Germany) or low-GDP PDF (Balance®; Fresenius Medical Care) and were followed for 1 year. Primary outcome variable was the inflammation and endothelial dysfunction index (IEDI), a composite score derived from serum levels of soluble intercellular adhesion molecule (sICAM)-1, soluble vascular cellular adhesion molecule (sVCAM)-1 and high-sensitivity C-reactive protein (hs-CRP). sICAM-1, sVCAM-1, residual renal function (RRF), peritoneal membrane transport characteristics, ultrafiltration volume and nutritional parameters were measured as secondary outcome variables. Of 152 patients randomized, 146 (low-GDP: conventional PDF, 79:67) patients entered the trial (46% male, 53% with diabetes mellitus). At 12-month follow-up, the low-GDP group had significantly lower levels of IEDI, sICAM-1 and sVCAM-1 compared to the conventional group; hs-CRP was not different between groups. Peritoneal transport characteristics, RRF, nutritional parameters, incidence of peritonitis and death-censored technique survival were not different between groups. Neutral pH and low-GDP PDF likely produce fewer changes in markers of endothelial dysfunction compared to conventional PDF in incident PD patients.

  11. Cyclosporine triggers endoplasmic reticulum stress in endothelial cells: a role for endothelial phenotypic changes and death.

    PubMed

    Bouvier, Nicolas; Flinois, Jean Pierre; Gilleron, Jerome; Sauvage, François-Ludovic; Legendre, Christophe; Beaune, Philippe; Thervet, Eric; Anglicheau, Dany; Pallet, Nicolas

    2009-01-01

    Calcineurin inhibitors cyclosporine and tacrolimus are effective immunosuppressants, but both substances have the same intrinsic nephrotoxic potential that adversely affects allograft survival in renal transplant patients and causes end-stage renal disease in other solid organ or bone marrow transplant recipients. Endothelial cells are the first biological interface between drugs and the kidney, and calcineurin inhibitors may influence endothelial function and viability in a number of ways. Notably, endothelial cells have recently been shown to contribute to the accumulation of interstitial fibroblasts in nonrenal models, through endothelial-to-mesenchymal transition. Here we demonstrate that cyclosporine, but not tacrolimus or its metabolites, induces morphological and phenotypic endothelial changes suggestive of a partial endothelial-to-mesenchymal transition in human umbilical arterial endothelial cells. We identify for the first time a contingent of interstitial myofibroblasts that coexpress endothelial markers in rat kidneys treated with cyclosporine, suggesting that endothelial-to-mesenchymal transition could occur in vivo. Finally, our findings suggest that endoplasmic reticulum stress triggered by cyclosporine induces endothelial cells to undergo endothelial phenotypic changes suggestive of a partial endothelial-to-mesenchymal transition, whereas salubrinal partially preserves the endothelial phenotype. Inversely, tacrolimus does not induce endothelial-to-mesenchymal transition or endoplasmic reticulum stress. In conclusion, this study demonstrates for the first time that cyclosporine, and not tacrolimus, induces endoplasmic reticulum stress in endothelial cells. Our findings also suggest that endoplasmic reticulum stress contributes to endothelial cell death and phenotypic changes similar to a partial endothelial-to-mesenchymal transition.

  12. CXCR4 pos circulating progenitor cells coexpressing monocytic and endothelial markers correlating with fibrotic clinical features are present in the peripheral blood of patients affected by systemic sclerosis.

    PubMed

    Campioni, Diana; Lo Monaco, Andrea; Lanza, Francesco; Moretti, Sabrina; Ferrari, Luisa; Fotinidi, Maria; La Corte, Renato; Cuneo, Antonio; Trotta, Francesco

    2008-08-01

    There is still controversy regarding the role of circulating endothelial and progenitor cells (CECs/CEPs) in the pathogenesis of systemic sclerosis (SSc). Using a sequential Boolean gating strategy based on a 4-color flow cytometric protocol, an increased number of CD31(pos)/CD184(pos)(CXCR4)/CD34(pos)/CD45(pos) and CD31(pos)/CD117(pos) (c-kit-R) /CD34(pos)/ CD45(pos) hematopoietic circulating progenitor cells (HCPCs) was detected in SSc patients compared with healthy subjects. In SSc, no circulating mature and progenitor endothelial cells were observed, while an enhanced generation of erythroid progenitor cells was found to be correlated with the presence of CD117+ HCPCs. The presence of freshly detected CXCR4posHCPC was correlated either to the in vitro cultured spindle-shaped endothelial like cells (SELC) with an endo/myelomonocytic profile or to SDF-1 and VEGF serum level. These data are related to more fibrotic clinical features of the disease, thus supporting a possible role of these cells in fibrosis.

  13. [Markers of angiogenesis in tumor growth].

    PubMed

    Nefedova, N A; Kharlova, O A; Danilova, N V; Malkov, P G; Gaifullin, N M

    2016-01-01

    Angiogenesis is a process of new blood vessels formation. The role of angiogenesis in growth, invasion and metastasis of malignant tumours is nowdays universally recognized. Though, investigation of mechanisms of blood vessels formation and elaboration methods for assessment of tumour angiogenesis are still up-dated. Another important concern are different aspects of usage of immunohistochemical markers of blood vessels endothelium (CD31 and CD34) for assessment of tumour aggressiveness and prognosis. The problems of malignant lymphangiogenesis are also up-to-date. The focus is on methods of immunohistochemical visualization of forming lymphatic vessels, role of podoplanin, the most reliable marker of lymphatic vessels, in their identification, and formulization of the main criteria for lymphangiogenesis estimation, its correlation with metastatic activity and prognostic potential. Studying of angiogenesis and lymph angiogenesis in malignant tumors is important and challenging direction for researching tumour progression and invention of antiangiogenic therapy.

  14. Stromal cell markers are differentially expressed in the synovial tissue of patients with early arthritis.

    PubMed

    Choi, Ivy Y; Karpus, Olga N; Turner, Jason D; Hardie, Debbie; Marshall, Jennifer L; de Hair, Maria J H; Maijer, Karen I; Tak, Paul P; Raza, Karim; Hamann, Jörg; Buckley, Christopher D; Gerlag, Danielle M; Filer, Andrew

    2017-01-01

    Previous studies have shown increased expression of stromal markers in synovial tissue (ST) of patients with established rheumatoid arthritis (RA). Here, ST expression of stromal markers in early arthritis in relationship to diagnosis and prognostic outcome was studied. ST from 56 patients included in two different early arthritis cohorts and 7 non-inflammatory controls was analysed using immunofluorescence to detect stromal markers CD55, CD248, fibroblast activation protein (FAP) and podoplanin. Diagnostic classification (gout, psoriatic arthritis, unclassified arthritis (UA), parvovirus associated arthritis, reactive arthritis and RA), disease outcome (resolving vs persistent) and clinical variables were determined at baseline and after follow-up, and related to the expression of stromal markers. We observed expression of all stromal markers in ST of early arthritis patients, independent of diagnosis or prognostic outcome. Synovial expression of FAP was significantly higher in patients developing early RA compared to other diagnostic groups and non-inflammatory controls. In RA FAP protein was expressed in both lining and sublining layers. Podoplanin expression was higher in all early inflammatory arthritis patients than controls, but did not differentiate diagnostic outcomes. Stromal marker expression was not associated with prognostic outcomes of disease persistence or resolution. There was no association with clinical or sonographic variables. Stromal cell markers CD55, CD248, FAP and podoplanin are expressed in ST in the earliest stage of arthritis. Baseline expression of FAP is higher in early synovitis patients who fulfil classification criteria for RA over time. These results suggest that significant fibroblast activation occurs in RA in the early window of disease.

  15. Single automated donor plateletpheresis increases the plasma level of proinflammatory cytokine tumor necrosis factor-alpha which does not associate with endothelial release markers von Willebrand factor and fibronectin.

    PubMed

    Karadoğan, I; Ozdoğan, M; Undar, L

    2000-12-01

    The effect of plateletpheresis on endothelium, which has strong effects on blood coagulation, fibrinolysis and platelet function, is not known. Activation of leukocytes and subsequent generation of proinflammatory cytokines during the extracorporeal circulation may activate the endothelium. To test this hypothesis we measured plasma levels of tumor necrosis factor (TNF)-alpha as a prototype of the proinflammatory cytokines, and von Willebrand factor (vWF) and fibronectin as endothelial release/damage markers before and after a single plateletpheresis procedure on an intermittent-flow machine Haemonetics MCS 3p in 17 healthy donors. We found a significant increase in median plasma level of TNF-alpha following plateletpheresis (3.5 vs 26.5 pg/ml, P=0.02). Such increases in vWF and fibronectin were not observed. The increase in plasma TNF-alpha indicates that a single plateletpheresis procedure causes leukocyte activation which does not seemingly impair endothelial cell function. The relation of plateletpheresis-induced proinflammatory cytokine release to some adverse effects observed in both donors and recipients, and the effect of repeated plateletpheresis on endothelium deserve further studies.

  16. The role of vascular endothelial growth factor gene as the genetic marker of atherothrombotic disorders and in the gene therapy of coronary artery disease.

    PubMed

    Petrovic, Daniel

    2010-01-01

    Many human diseases are characterized by vasculature disorders. Out of the many players in the angiogenic network, the vascular endothelial growth genes are by far the best characterized. The vascular endothelial growth factor (VEGF) has been implicated in the pathogenesis of coronary artery disease (CAD) and in its complication, the acute myocardial infarction (AMI). Several common polymorphisms in the promoter region of the VEGF gene have been reported, but only few single nucleotide polymorphisms (SNPs) have been demonstrated to be associated with variations in VEGF serum concentrations and with a susceptibility to CAD and its complications-acute coronary syndromes. Moreover, the -634 C/G VEGF SNP (rs2010963) has been demonstrated to be associated with AMI and the development of heart failure after AMI. Gene-based therapy for patients with refractory CAD has been the subject of extensive investigation. Preclinical studies have shown promise for the delivery of VEGF gene for treating CAD, whereas the results of randomized placebo-controlled trials have not demonstrated unequivocal evidence of efficacy. To conclude, at present the role of VEGF and VEGF SNPs in pathogenesis of AMI and the development of heart failure after AMI is still uncertain and remains to be determined. Obviously, larger studies as well as functional studies are needed to confirm the role of VEGF SNPs in AMI and its complications after AMI.

  17. Effect of a special carbohydrate-protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners.

    PubMed

    Samaras, Antonios; Tsarouhas, Konstantinos; Paschalidis, Eleftherios; Giamouzis, Grigorios; Triposkiadis, Filippos; Tsitsimpikou, Christina; Becker, Aphrodite Tousia; Goutzourelas, Nikolaos; Kouretas, Demetrios

    2014-07-01

    It is well established that exercise induces excessive production of reactive species leading to oxidative stress, which has been implicated in oxidative damage of macromolecules, immune dysfunction, muscle damage and fatigue. The present study examined the effect of supplementation of ultra-marathon runners for a two-months-period with a special whey protein bar containing carbohydrates and protein in a specific ratio (1:1) (N=16), prepared using as starting material the by-products of cheese manufacturing, and supplementation with commercially available tomato juice (N=15). Thiobarbituric-acid reactive substances and protein carbonyls were significantly decreased in both supplementation groups, while a pronounced increased in reduced glutathione was observed in the protein bar group. Total anti-oxidant activity remained unchanged in both groups. Flow-mediated dilatation, used as an estimate of endothelial function, was increased in both groups, with a significant rise observed only in the tomato juice administration group. In conclusion, supplementation of ultra marathon runners for a two-months-period with a special protein bar and tomato juice significantly improved the oxidative status of the subjects, while tomato juice also improved vascular endothelial function in these athletes. Copyright © 2014. Published by Elsevier Ltd.

  18. Vascular Endothelial Growth Factor Gene Polymorphism (rs2010963) and Its Receptor, Kinase Insert Domain-Containing Receptor Gene Polymorphism (rs2071559), and Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Merlo, Sebastjan; Starčević, Jovana Nikolajević; Mankoč, Sara; Šantl Letonja, Marija; Cokan Vujkovac, Andreja; Zorc, Marjeta; Petrovič, Daniel

    2016-01-01

    Background. The current study was designed to reveal possible associations between the polymorphisms of the vascular endothelial growth factor (VEGF) gene (rs2010963) and its receptor, kinase insert domain-containing receptor (KDR) gene polymorphism (rs2071559), and markers of carotid atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Patients and Methods. 595 T2DM subjects and 200 control subjects were enrolled. The carotid intima-media thickness (CIMT) and plaque characteristics (presence and structure) were assessed ultrasonographically. Biochemical analyses were performed using standard biochemical methods. Genotyping of VEGF/KDR polymorphisms (rs2010963, rs2071559) was performed using KASPar assays. Results. Genotype distributions and allele frequencies of the VEGF/KDR polymorphisms (rs2010963, rs2071559) were not statistically significantly different between diabetic patients and controls. In our study, we demonstrated an association between the rs2071559 of KDR and either CIMT or the sum of plaque thickness in subjects with T2DM. We did not, however, demonstrate any association between the tested polymorphism of VEGF (rs2010963) and either CIMT, the sum of plaque thickness, the number of involved segments, hsCRP, the presence of carotid plaques, or the presence of unstable carotid plaques. Conclusions. In the present study, we demonstrated minor effect of the rs2071559 of KDR on markers of carotid atherosclerosis in subjects with T2DM. PMID:26881237

  19. Vascular Endothelial Growth Factor Gene Polymorphism (rs2010963) and Its Receptor, Kinase Insert Domain-Containing Receptor Gene Polymorphism (rs2071559), and Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Merlo, Sebastjan; Starčević, Jovana Nikolajević; Mankoč, Sara; Šantl Letonja, Marija; Cokan Vujkovac, Andreja; Zorc, Marjeta; Petrovič, Daniel

    2016-01-01

    Background. The current study was designed to reveal possible associations between the polymorphisms of the vascular endothelial growth factor (VEGF) gene (rs2010963) and its receptor, kinase insert domain-containing receptor (KDR) gene polymorphism (rs2071559), and markers of carotid atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Patients and Methods. 595 T2DM subjects and 200 control subjects were enrolled. The carotid intima-media thickness (CIMT) and plaque characteristics (presence and structure) were assessed ultrasonographically. Biochemical analyses were performed using standard biochemical methods. Genotyping of VEGF/KDR polymorphisms (rs2010963, rs2071559) was performed using KASPar assays. Results. Genotype distributions and allele frequencies of the VEGF/KDR polymorphisms (rs2010963, rs2071559) were not statistically significantly different between diabetic patients and controls. In our study, we demonstrated an association between the rs2071559 of KDR and either CIMT or the sum of plaque thickness in subjects with T2DM. We did not, however, demonstrate any association between the tested polymorphism of VEGF (rs2010963) and either CIMT, the sum of plaque thickness, the number of involved segments, hsCRP, the presence of carotid plaques, or the presence of unstable carotid plaques. Conclusions. In the present study, we demonstrated minor effect of the rs2071559 of KDR on markers of carotid atherosclerosis in subjects with T2DM.

  20. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells

    PubMed Central

    Hantusch, Brigitte; Kalt, Romana; Krieger, Sigurd; Puri, Christina; Kerjaschki, Dontscho

    2007-01-01

    Background Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Here, we characterized the molecular mechanism controlling basal PDPN transcription in human osteoblast-like MG63 versus Saos-2 cells. Results We cloned and sequenced 2056 nucleotides from the 5'-flanking region of the PDPN gene and a computational search revealed that the TATA and CAAT box-lacking promoter possesses features of a growth-related gene, such as a GC-rich 5' region and the presence of multiple putative Sp1, AP-4 and NF-1 sites. Reporter gene assays demonstrated a functional promoter in MG63 cells exhibiting 30-fold more activity than in Saos-2 cells. In vitro DNase I footprinting revealed eight protected regions flanked by DNaseI hypersensitive sites within the region bp -728 to -39 present in MG63, but not in Saos-2 cells. Among these regions, mutation and supershift electrophoretic mobility shift assays (EMSA) identified four Sp1/Sp3 binding sites and two binding sites for yet unknown transcription factors. Deletion studies demonstrated the functional importance of two Sp1/Sp3 sites for PDPN promoter activity. Overexpression of Sp1 and Sp3 independently increased the stimulatory effect of the promoter and podoplanin mRNA levels in MG63 and Saos-2 cells. In SL2 cells, Sp3 functioned as a repressor, while Sp1 and Sp3 acted positively synergistic. Weak PDPN promoter activity of Saos-2 cells correlated with low Sp1/Sp3 nuclear levels, which was confirmed by Sp1/Sp3 chromatin immunoprecipitations in vivo. Moreover, methylation-sensitive Southern blot analyses and bisulfite sequencing detected strong methylation of CpG sites upstream of bp -464 in MG63 cells, but hypomethylation of these sites in Saos-2 cells. Concomitantly, treatment with the DNA

  1. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells.

    PubMed

    Hantusch, Brigitte; Kalt, Romana; Krieger, Sigurd; Puri, Christina; Kerjaschki, Dontscho

    2007-03-07

    Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Here, we characterized the molecular mechanism controlling basal PDPN transcription in human osteoblast-like MG63 versus Saos-2 cells. We cloned and sequenced 2056 nucleotides from the 5'-flanking region of the PDPN gene and a computational search revealed that the TATA and CAAT box-lacking promoter possesses features of a growth-related gene, such as a GC-rich 5' region and the presence of multiple putative Sp1, AP-4 and NF-1 sites. Reporter gene assays demonstrated a functional promoter in MG63 cells exhibiting 30-fold more activity than in Saos-2 cells. In vitro DNase I footprinting revealed eight protected regions flanked by DNaseI hypersensitive sites within the region bp -728 to -39 present in MG63, but not in Saos-2 cells. Among these regions, mutation and supershift electrophoretic mobility shift assays (EMSA) identified four Sp1/Sp3 binding sites and two binding sites for yet unknown transcription factors. Deletion studies demonstrated the functional importance of two Sp1/Sp3 sites for PDPN promoter activity. Overexpression of Sp1 and Sp3 independently increased the stimulatory effect of the promoter and podoplanin mRNA levels in MG63 and Saos-2 cells. In SL2 cells, Sp3 functioned as a repressor, while Sp1 and Sp3 acted positively synergistic. Weak PDPN promoter activity of Saos-2 cells correlated with low Sp1/Sp3 nuclear levels, which was confirmed by Sp1/Sp3 chromatin immunoprecipitations in vivo. Moreover, methylation-sensitive Southern blot analyses and bisulfite sequencing detected strong methylation of CpG sites upstream of bp -464 in MG63 cells, but hypomethylation of these sites in Saos-2 cells. Concomitantly, treatment with the DNA methyltransferase inhibitor 5

  2. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults.

    PubMed

    Sawyer, Brandon J; Tucker, Wesley J; Bhammar, Dharini M; Ryder, Justin R; Sweazea, Karen L; Gaesser, Glenn A

    2016-07-01

    We hypothesized that high-intensity interval training (HIIT) would be more effective than moderate-intensity continuous training (MICT) at improving endothelial function and maximum oxygen uptake (V̇o2 max) in obese adults. Eighteen participants [35.1 ± 8.1 (SD) yr; body mass index = 36.0 ± 5.0 kg/m(2)] were randomized to 8 wk (3 sessions/wk) of either HIIT [10 × 1 min, 90-95% maximum heart rate (HRmax), 1-min active recovery] or MICT (30 min, 70-75% HRmax). Brachial artery flow-mediated dilation (FMD) increased after HIIT (5.13 ± 2.80% vs. 8.98 ± 2.86%, P = 0.02) but not after MICT (5.23 ± 2.82% vs. 3.05 ± 2.76%, P = 0.16). Resting artery diameter increased after MICT (3.68 ± 0.58 mm vs. 3.86 ± 0.58 mm, P = 0.02) but not after HIIT (4.04 ± 0.70 mm vs. 4.09 ± 0.70 mm; P = 0.63). There was a significant (P = 0.02) group × time interaction in low flow-mediated constriction (L-FMC) between MICT (0.63 ± 2.00% vs. -2.79 ± 3.20%; P = 0.03) and HIIT (-1.04 ± 4.09% vs. 1.74 ± 3.46%; P = 0.29). V̇o2 max increased (P < 0.01) similarly after HIIT (2.19 ± 0.65 l/min vs. 2.64 ± 0.88 l/min) and MICT (2.24 ± 0.48 l/min vs. 2.55 ± 0.61 l/min). Biomarkers of cardiovascular risk and endothelial function were unchanged. HIIT and MICT produced different vascular adaptations in obese adults, with HIIT improving FMD and MICT increasing resting artery diameter and enhancing L-FMC. HIIT required 27.5% less total exercise time and ∼25% less energy expenditure than MICT.

  3. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults

    PubMed Central

    Sawyer, Brandon J.; Tucker, Wesley J.; Bhammar, Dharini M.; Ryder, Justin R.; Sweazea, Karen L.

    2016-01-01

    We hypothesized that high-intensity interval training (HIIT) would be more effective than moderate-intensity continuous training (MICT) at improving endothelial function and maximum oxygen uptake (V̇o2 max) in obese adults. Eighteen participants [35.1 ± 8.1 (SD) yr; body mass index = 36.0 ± 5.0 kg/m2] were randomized to 8 wk (3 sessions/wk) of either HIIT [10 × 1 min, 90-95% maximum heart rate (HRmax), 1-min active recovery] or MICT (30 min, 70–75% HRmax). Brachial artery flow-mediated dilation (FMD) increased after HIIT (5.13 ± 2.80% vs. 8.98 ± 2.86%, P = 0.02) but not after MICT (5.23 ± 2.82% vs. 3.05 ± 2.76%, P = 0.16). Resting artery diameter increased after MICT (3.68 ± 0.58 mm vs. 3.86 ± 0.58 mm, P = 0.02) but not after HIIT (4.04 ± 0.70 mm vs. 4.09 ± 0.70 mm; P = 0.63). There was a significant (P = 0.02) group × time interaction in low flow-mediated constriction (L-FMC) between MICT (0.63 ± 2.00% vs. −2.79 ± 3.20%; P = 0.03) and HIIT (−1.04 ± 4.09% vs. 1.74 ± 3.46%; P = 0.29). V̇o2 max increased (P < 0.01) similarly after HIIT (2.19 ± 0.65 l/min vs. 2.64 ± 0.88 l/min) and MICT (2.24 ± 0.48 l/min vs. 2.55 ± 0.61 l/min). Biomarkers of cardiovascular risk and endothelial function were unchanged. HIIT and MICT produced different vascular adaptations in obese adults, with HIIT improving FMD and MICT increasing resting artery diameter and enhancing L-FMC. HIIT required 27.5% less total exercise time and ∼25% less energy expenditure than MICT. PMID:27255523

  4. Decreased Endothelial Progenitor Cells (EPCs) and increased Natural Killer (NK) cells in peripheral blood as possible early markers of preeclampsia: a case-control analysis.

    PubMed

    Laganà, Antonio Simone; Giordano, Domenico; Loddo, Saverio; Zoccali, Giuseppe; Vitale, Salvatore Giovanni; Santamaria, Angelo; Buemi, Michele; D'Anna, Rosario

    2017-04-01

    Endothelial Progenitor Cells (EPCs) and Natural Killer (NK) cells were recently advocates in the pathogenesis of preeclampsia (PE), since they can be mobilized into the bloodstream and may orchestrate vascular endothelium function. The aim of our study was to evaluate in early pregnancy circulating EPCs and NK cells in peripheral blood in women who later developed PE compared to uncomplicated pregnancies. We prospectively enrolled pregnant women at 9(+0)-11(+6) weeks of gestation at the time of first-trimester integrated screening for trisomy 21, who underwent peripheral venous blood (20 mL) sample. We included only women who later developed PE (cases) and women with uncomplicated pregnancy (controls), matched for maternal age, parity, and Body Mass Index. In these groups, we evaluated the levels of CD16(+)CD45(+)CD56(+) NK cells and CD34(+)CD133(+)VEGF-R2(+) EPCs in peripheral blood samples previously stored. EPCs were significantly lower (p < 0.001), whereas NK cells were significantly higher (p < 0.001) in PE group compared to uncomplicated pregnancies during the first trimester. The evaluation of EPCs and NK cells in peripheral blood during the first trimester may be considered an effective screening for the early identification of women at risk of developing PE.

  5. Expression of vascular endothelial growth factor and proliferation marker MIB1 are influenced by neoadjuvant chemotherapy in locally advanced breast cancer.

    PubMed

    Singh, Meenakshi; Capocelli, Kelly E; Marks, Jeni L; Schleicher, Rhoda B; Finlayson, Christina A; Seligman, Paul A

    2005-06-01

    Neoadjuvant chemotherapy (NACT) has become the standard of care for patients with locally advanced breast cancer (LABC). This was a retrospective review of 21 consecutive women who received NACT as initial treatment of LABC, followed by surgical excision. The pre- and post-treatment breast specimens and post-treatment axillary lymph nodes with metastases were immunostained to evaluate for proliferative index (PI) (MIB-1 Immunotech) and vascular endothelial growth factor (VEGF) expression (Santa Cruz, CA, clone A-20). Thirteen of the 21 patients (62%) had more than 50% tumor shrinkage following NACT. The breast's mean PI decreased from 47.86% to 23.95% after treatment (P = 0.005). The mean PI in the post-treatment lymph nodes was 24.47%. A nodal post-NACT PI of less than 10% and progesterone receptor-positive tumor status were associated with better survival, as all such patients are alive. A high PI after NACT was associated with recurrence or death. All of the patients who showed an excellent clinical response had either a decrease in the PI or an absence of a high level of VEGF after NACT. Most patients exhibited persistent expression of VEGF after NACT. Pathologic response in the primary tumor did not correlate with the response in the lymph nodes or with overall survival. NACT reduces the size and PI of the primary breast tumor independent of the patient's node status. The PI may be an early means by which to identify tumors most likely to reduce in size with chemotherapy. A low PI after NACT is associated with better survival. There is persistent expression of VEGF in post-NACT residual breast carcinoma. Thus, anti-VEGF drugs after conventional chemotherapy may benefit patients with residual carcinoma.

  6. Evaluation of the Effects of Mesoglycan on Some Markers of Endothelial Damage and Walking Distance in Diabetic Patients with Peripheral Arterial Disease

    PubMed Central

    Giuseppe, Derosa; Angela, D’Angelo; Romano, Davide; Pamela, Maffioli

    2017-01-01

    The aim of this study was to evaluate the variation of some parameters involved in peripheral artery disease progression in diabetic patients with peripheral artery disease after six months of mesoglycan. We enrolled 64 Caucasian, type 2 diabetic patients, with stage IIa peripheral artery disease. They were randomized to mesoglycan (Prisma®), 50 mg twice a day, or placebo, for six months. We evaluated: glycemic control, metalloproteinase-2, and -9 (MMP-2, and -9), soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular cell adhesion protein-1 (sVCAM-1), interleukin-6 (IL-6), soluble E-selectin (sE-selectin), high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-α (TNF-α), and plasminogen activator inhibitor-1 (PAI-1). We recorded a decrease of MMP-2, MMP-9, sE-selectin, TNF-α, sVCAM-1, and IL-6 compared to baseline, and to placebo in the group treated with mesoglycan. Regarding sICAM-1, and hs-CRP, instead, we recorded a decrease with mesoglycan only compared to baseline. Preliminary results seem to suggest an improvement of pain free walking distance with mesoglycan in 18 patients both compared to baseline and to placebo, even if data should be taken cautiously. Our study showed that supplementation with mesoglycan improved endothelial dysfunction in type 2 diabetic patients with peripheral artery disease. Regarding the preliminary data suggesting also a slight improvement of clinical parameters such as pain free walking distance, more data and a bigger sample of patients are necessary to better verify this aspect. PMID:28272312

  7. Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified by Podoplanin, to Inhibit Transformed Cell Growth and Migration

    PubMed Central

    Shen, Yongquan; Acharya, Nimish K.; Han, Min; McNulty, Dean E.; Hasegawa, Hitoki; Hyodo, Toshinori; Senga, Takeshi; Geng, Jian-Guo; Kosciuk, Mary; Shin, Seung S.; Goydos, James S.; Temiakov, Dmitry; Nagele, Robert G.; Goldberg, Gary S.

    2012-01-01

    Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth. PMID:22844530

  8. Plant lectin can target receptors containing sialic acid, exemplified by podoplanin, to inhibit transformed cell growth and migration.

    PubMed

    Ochoa-Alvarez, Jhon Alberto; Krishnan, Harini; Shen, Yongquan; Acharya, Nimish K; Han, Min; McNulty, Dean E; Hasegawa, Hitoki; Hyodo, Toshinori; Senga, Takeshi; Geng, Jian-Guo; Kosciuk, Mary; Shin, Seung S; Goydos, James S; Temiakov, Dmitry; Nagele, Robert G; Goldberg, Gary S

    2012-01-01

    Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.

  9. [The vascular endothelial growth factor (VEGF): a model of gene regulation and a marker of tumour aggressiveness. An obvious therapeutic target?].

    PubMed

    Grépin, Renaud; Pagès, Gilles

    2009-01-01

    VEGF represents a model of gene expression regulation. RAS/RAF/MEK/ERK and PI3 Kinase pathways, activated in response to growth factors stimulation or by oncogenes, contribute to its expression by activating transcription factors or inactivating proteins implicated in degradation of its mRNA. These factors (Sp1/Sp3, HIF-1 and TTP) constitute molecular markers of tumor aggressiveness. VEGF is overexpressed in solid or hematologic tumors. Thus, numerous compounds regulating angiogenesis by targeting VEGF have been developed. However, their effects are not as spectacular as expected. The existence of anti-angiogenic isoforms of VEGF could be a cause of their less potent activity. These different points are discussed in this review article.

  10. Evaluation of Vascular Endothelial Growth Factor as a Prognostic Marker for Local Relapse in Early-Stage Breast Cancer Patients Treated With Breast-Conserving Therapy

    SciTech Connect

    Moran, Meena S.; Yang Qifeng; Goyal, Sharad; Harris, Lyndsay; Chung, Gina; Haffty, Bruce G.

    2011-12-01

    Purpose: Vascular endothelial growth factor (VEGF) is an important protein involved in the process of angiogenesis that has been found to correlate with relapse-free and overall survival in breast cancer, predominantly in locally advanced and metastatic disease. A paucity of data is available on the prognostic implications of VEGF in early-stage breast cancer; specifically, its prognostic value for local relapse after breast-conserving therapy (BCT) is largely unknown. The purpose of our study was to assess VEGF expression in a cohort of early-stage breast cancer patients treated with BCT and to correlate the clinical and pathologic features and outcomes with overexpression of VEGF. Methods and Materials: After obtaining institutional review board approval, the paraffin specimens of 368 patients with early-stage breast cancer treated with BCT between 1975 and 2005 were constructed into tissue microarrays with twofold redundancy. The tissue microarrays were stained for VEGF and read by a trained pathologist, who was unaware of the clinical details, as positive or negative according the standard guidelines. The clinical and pathologic data, long-term outcomes, and results of VEGF staining were analyzed. Results: The median follow-up for the entire cohort was 6.5 years. VEGF expression was positive in 56 (15%) of the 368 patients. Although VEGF expression did not correlate with age at diagnosis, tumor size, nodal status, histologic type, family history, estrogen receptor/progesterone receptor status, or HER-2 status, a trend was seen toward increased VEGF expression in the black cohort (26% black vs. 13% white, p = .068). Within the margin-negative cohort, VEGF did not predict for local relapse-free survival (RFS) (96% vs. 95%), nodal RFS (100% vs. 100%), distant metastasis-free survival (91% vs. 92%), overall survival (92% vs. 97%), respectively (all p >.05). Subset analysis revealed that VEGF was highly predictive of local RFS in node-positive, margin

  11. Clinicopathological Correlations of Podoplanin (gp38) Expression in Rheumatoid Synovium and Its Potential Contribution to Fibroblast Platelet Crosstalk

    PubMed Central

    Izquierdo, Elena; Usategui, Alicia; Rodríguez-Fernández, José L.; Suárez-Fueyo, Abel; Cañete, Juan D.; Pablos, José L.

    2014-01-01

    Introduction Synovial fibroblasts (SF) undergo phenotypic changes in rheumatoid arthritis (RA) that contribute to inflammatory joint destruction. This study was undertaken to evaluate the clinical and functional significance of ectopic podoplanin (gp38) expression by RA SF. Methods Expression of gp38 and its CLEC2 receptor was analyzed by immunohistochemistry in synovial arthroscopic biopsies from RA patients and normal and osteoarthritic controls. Correlation between gp38 expression and RA clinicopathological variables was analyzed. In patients rebiopsied after anti-TNF-α therapy, changes in gp38 expression were determined. Platelet-SF coculture and gp38 silencing in SF were used to analyze the functional contribution of gp38 to SF migratory and invasive properties, and to SF platelet crosstalk. Results gp38 was abundantly but variably expressed in RA, and it was undetectable in normal synovial tissues. Among clinicopathologigal RA variables, significantly increased gp38 expression was only found in patients with lymphoid neogenesis (LN), and RF or ACPA autoantibodies. Cultured synovial but not dermal fibroblasts showed strong constitutive gp38 expression that was further induced by TNF-α. In RA patients, anti-TNF-α therapy significantly reduced synovial gp38 expression. In RA synovium, CLEC2 receptor expression was only observed in platelets. gp38 silencing in cultured SF did not modify their migratory and invasive properties but reduced the expression of IL-6 and IL-8 genes induced by SF-platelet interaction. Conclusions In RA, synovial expression of gp38 is strongly associated to LN and it is reduced after anti-TNF-α therapy. Interaction between gp38 and CLEC2 platelet receptor is feasible in RA synovium in vivo and can specifically contribute to gene expression by SF. PMID:24932813

  12. Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation.

    PubMed

    Dörr, Oliver; Liebetrau, Christoph; Möllmann, Helge; Gaede, Luise; Troidl, Christian; Rixe, Johannes; Hamm, Christian; Nef, Holger

    2014-05-01

    Renal sympathetic denervation (RSD) is a treatment option for patients with resistant arterial hypertension, but in some patients it is not successful. Predictive parameters on the success of RSD remain unknown. The angiogenic factors soluble fms-like tyrosine kinase-1 (sFLT-1), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) are known to be associated with endothelial dysfunction, vascular remodeling, and hypertension. We evaluated whether sFLT-1, ICAM-1, and VCAM-1 are predictive markers for blood pressure reduction after RSD. Consecutive patients (n=55) undergoing renal denervation were included. Venous serum samples for measurement of sFlt-1, ICAM-1, and VCAM-1 were collected before and 6 months after RSD. A therapeutic response was defined as an office systolic blood pressure reduction of >10 mm Hg 6 months after RSD. A significant mean office systolic blood pressure reduction of 31.2 mm Hg was observed in 46 patients 6 months after RSD. Nine patients were classified as nonresponders, with a mean systolic blood pressure reduction of 4.6 mm Hg. At baseline, sFLT-1 levels were significantly higher in responders than in nonresponders (P<0.001) as were ICAM-1 (P<0.001) and VCAM-1 levels (P<0.01). The areas under the curve for sFLT-1, ICAM-1, and VCAM-1 were 0.82 (interquartile range, 0.718-0.921; P<0.001), 0.754 (0.654-0.854; P<0.001), and 0.684 (0.564-804; P=0.01), respectively, demonstrating prediction of an RSD response. Responders showed significantly higher serum levels of sFLT-1, ICAM-1, and VCAM-1 at baseline compared with nonresponders. Thus, this study identified for the first time potential biomarkers with a predictive value indicating a responder or nonresponder before renal denervation.

  13. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    PubMed Central

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  14. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema.

    PubMed

    Doyle, Margaret F; Tracy, Russell P; Parikh, Megha A; Hoffman, Eric A; Shimbo, Daichi; Austin, John H M; Smith, Benjamin M; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50-79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.

  15. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage.

    PubMed

    Luna, Carlos; Alique, Matilde; Navalmoral, Estefanía; Noci, Maria-Victoria; Bohorquez-Magro, Lourdes; Carracedo, Julia; Ramírez, Rafael

    2016-01-01

    Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.

  16. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    PubMed Central

    Luna, Carlos; Alique, Matilde; Navalmoral, Estefanía; Noci, Maria-Victoria; Bohorquez-Magro, Lourdes; Carracedo, Julia; Ramírez, Rafael

    2016-01-01

    Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects. PMID:27042026

  17. Expression of lymphatic markers during avian and mouse cardiogenesis

    PubMed Central

    Karunamuni, Ganga; Yang, Ke; Doughman, Yong Qiu; Wikenheiser, Jamie; Bader, David; Barnett, Joey; Austin, Anita; Parsons-Wingerter, Patricia; Watanabe, Michiko

    2013-01-01

    The adult heart has been reported to have an extensive lymphatic system, yet the development of this important system during cardiogenesis is still largely unexplored. The nuclear-localized transcription factor Prox-1 identified a sheet of Prox-1-positive cells on the developing aorta and pulmonary trunk in avian and murine embryos just prior to septation of the four heart chambers. The cells coalesced into a branching lymphatic network that spread within the epicardium to cover the heart. These vessels eventually expressed the lymphatic markers LYVE-1, VEGFR-3, and podoplanin. Before the Prox-1-positive cells were detected in the mouse epicardium, LYVE-1, a homologue of the CD44 glycoprotein, was primarily expressed in individual epicardial cells. Similar staining patterns were observed for CD44 in avian embryos. The proximity of these LYVE-1/CD44-positive mesenchymal cells to Prox-1-positive vessels suggests that they may become incorporated into the lymphatics. Unexpectedly, we detected LYVE-1/PECAM/VEGFR-3-positive vessels within the embryonic and adult myocardium which remained Prox-1/podoplanin-negative. Lymphatic markers were surprisingly found in adult rat and embryonic mouse epicardial cell lines, with Prox-1 also exhibiting nuclear-localized expression in primary cultures of embryonic avian epicardial cells. Our data identified three types of cells in the embryonic heart expressing lymphatic markers: (1) Prox-1-positive cells from an extracardiac source that migrate within the serosa of the outflow tract into the epicardium of the developing heart, (2) individual LYVE-1-positive cells in the epicardium that may be incorporated into the Prox-1-positive lymphatic vasculature, and (3) LYVE-1-positive cells/vessels in the myocardium that do not become Prox-1-positive even in the adult heart. PMID:19938109

  18. Circulating endothelial cells: a new biomarker of endothelial dysfunction in hematological diseases.

    PubMed

    Gendron, Nicolas; Smadja, David M

    2016-08-01

    The endothelium and its integrity are in the center of numerous cardiovascular, pulmonary and tumoral diseases. Several studies identified different circulating cellular sub-populations, which allow a noninvasive exploration of endothelial dysfunction. Furthermore, angiogenesis plays a major role in the biology of benign and malignant hematologic diseases. Among these biomarkers, circulating endothelial cells could be considered as a marker of endothelial injury and/or endothelial activation as well as vascular remodeling, whereas circulating endothelial progenitor cells would be only involved in the vascular regeneration. In the future, the quantification of circulating endothelial cells in many diseases could be a noninvasive biomarker used in diagnosis, prognostic and therapeutic follow-up of lung vasculopathy and/or residual disease of hematological malignancies.

  19. Immunohistochemical study of the lymphatic vessels in major salivary glands of the rat.

    PubMed

    Aiyama, Shigeo; Kikuchi, Kenichiro; Takada, Kiyomi; Ikeda, Rie; Sato, Sumie; Kuroki, Jyunya

    2011-02-01

    This study was designed to examine whether lymphatic vessels are present in the lobules of major salivary glands in the rat. Immunostaining with an antibody against podoplanin, a lymphatic endothelial cell marker, was performed on sections of the submandibular, sublingual and parotid glands. Light microscopy demonstrated podoplanin-positive lymphatic vessels around the interlobular ducts and the interlobular arteries and veins in the interlobular connective tissue in all of the major salivary glands. No podoplanin-positive lymphatic vessels were found in the lobules. Electron microscopy also demonstrated lymphatic endothelial cells showing podoplanin expression only in the interlobular connective tissue. These findings suggest that the lymphatic system of the rat major salivary glands originates in the interlobular connective tissue, and not in the lobules.

  20. Plasticity of human dedifferentiated adipocytes toward endothelial cells.

    PubMed

    Poloni, Antonella; Maurizi, Giulia; Anastasi, Sara; Mondini, Eleonora; Mattiucci, Domenico; Discepoli, Giancarlo; Tiberi, Fabiola; Mancini, Stefania; Partelli, Stefano; Maurizi, Angela; Cinti, Saverio; Olivieri, Attilio; Leoni, Pietro

    2015-02-01

    The process of cellular differentiation in terminally differentiated cells is thought to be irreversible, and these cells are thought to be incapable of differentiating into distinct cell lineages. Our previous study showed that mature adipocytes represent an alternative source of mesenchymal stem cells. Here, results showed the capacity of mature adipocytes to differentiate into endothelial-like cells, using the ability of these cells to revert into an immature phase without any relievable chromosomal alterations. Mature adipocytes were isolated from human omental and subcutaneous fat and were dedifferentiated in vitro. The resulting cells were subcultivated for endothelial differentiation and were analyzed for their expression of specific genes and proteins. Endothelial-like cells were harvested from the differentiation medium and were traditionally cultured to evaluate the endothelial markers and the karyotype. Cells cultured in specific medium formed tube-like structures and expressed several endothelial marker genes and proteins. The endothelial-like cells expressed significantly higher levels of vascular endothelium growth factor receptor 2, vascular endothelial cadherin, Von Willebrand factor, and CD133 than the untreated cells. These cells were positively stained for CD31 and vascular endothelial cadherin, markers of mature endothelial cells. Moreover, the low-density lipoprotein-uptake assay demonstrated a functionally endothelial differentiation of these cells. When these cells were harvested and reseeded in basal medium, they lost the endothelial markers and reacquired the typical mesenchymal stem cell markers and the ability to expand in a short time period. Moreover, karyotype analysis showed that these cells reverted into an immature phase without any karyotype alterations. In conclusion, the results showed that adipocytes exhibited a great plasticity toward the endothelial lineage, suggesting their possible use in cell therapy applications for

  1. Endothelial Differentiation of Mesenchymal Stromal Cells

    PubMed Central

    Janeczek Portalska, Karolina; Leferink, Anne; Groen, Nathalie; Fernandes, Hugo; Moroni, Lorenzo; van Blitterswijk, Clemens; de Boer, Jan

    2012-01-01

    Human mesenchymal stromal cells (hMSCs) are increasingly used in regenerative medicine for restoring worn-out or damaged tissue. Newly engineered tissues need to be properly vascularized and current candidates for in vitro tissue pre-vascularization are endothelial cells and endothelial progenitor cells. However, their use in therapy is hampered by their limited expansion capacity and lack of autologous sources. Our approach to engineering large grafts is to use hMSCs both as a source of cells for regeneration of targeted tissue and at the same time as the source of endothelial cells. Here we investigate how different stimuli influence endothelial differentiation of hMSCs. Although growth supplements together with shear force were not sufficient to differentiate hMSCs with respect to expression of endothelial markers such as CD31 and KDR, these conditions did prime the cells to differentiate into cells with an endothelial gene expression profile and morphology when seeded on Matrigel. In addition, we show that endothelial-like hMSCs are able to create a capillary network in 3D culture both in vitro and in vivo conditions. The expansion phase in the presence of growth supplements was crucial for the stability of the capillaries formed in vitro. To conclude, we established a robust protocol for endothelial differentiation of hMSCs, including an immortalized MSC line (iMSCs) which allows for reproducible in vitro analysis in further studies. PMID:23056481

  2. Bubble-Induced Endothelial Microparticles Promote Endothelial Dysfunction

    PubMed Central

    Huang, Guoyang; Zhang, Kun; Qing, Long; Liu, Wenwu; Xu, Weigang

    2017-01-01

    Decompression sickness is a systemic pathophysiological process caused by bubbles and endothelial microparticles (EMPs) are established markers reflecting competency of endothelial function and vascular biology. Here, we investigated the effects of bubble-induced EMPs on endothelial cells in vitro and vivo. Rat pulmonary microvascular endothelial cells (PMVECs) were isolated and stimulated by bubbles and bubble-induced EMPs were collected and incubated with normal PMVECs in vitro. Cell viability and apoptosis were detected using Cell Counting Kit-8 assay and Annexin V FITC/PI double staining, respectively. Cell permeability and pro-inflammatory cytokines were determined by electric cell substrate impedance sensing and enzyme-linked immunosorbent assay, respectively. Intracellular nitric oxide and reactive oxygen species production were analyzed microscopically. In vivo study, bubble-induced EMPs were intravenously injected to the rats and soluble thrombomodulin, intercellular adhesion molecule 1, and vascullar adhesion molecule 1 were involved in evaluating endothelial dysfunction. In our study, bubble stimulus resulted in a significant increase of EMPs release by 3 fold. Bubble-induced EMPs significantly decreased cell viability and increased cell apoptosis. Moreover, bubble-induced EMPs induced abnormal increase of cell permeability and over-expression of pro-inflammatory cytokines. Intracellular ROS production increased while NO production decreased. These negative effects caused by bubble-induced EMPs were remarkably suppressed when EMPs pretreated with surfactant FSN-100. Finally, intravenous injection of bubble-induced EMPs caused elevations of soluble thrombomodulin and pro-inflammatory cytokines in the circulation. Altogether, our results demonstrated that bubble-induced EMPs can mediate endothelial dysfunction in vitro and vivo, which can be attenuated by EMPs abatement strategy. These data expanded our horizon of the detrimental effects of bubble

  3. Epithelial to mesenchymal transition markers are associated with an increased metastatic risk in primary cutaneous squamous cell carcinomas but are attenuated in lymph node metastases.

    PubMed

    Toll, Agustí; Masferrer, Emili; Hernández-Ruiz, M E; Ferrandiz-Pulido, Carla; Yébenes, Mireia; Jaka, Ane; Tuneu, Anna; Jucglà, Anna; Gimeno, Javier; Baró, Teresa; Casado, Beatriz; Gandarillas, Alberto; Costa, Irmgard; Mojal, Sergi; Peña, Raul; de Herreros, Antonio García; García-Patos, Vicenç; Pujol, Ramon M; Hernández-Muñoz, Inmaculada

    2013-11-01

    Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epithelial to mesenchymal transition (EMT) is a process involving loss of intercellular adhesion, acquisition of a mesenchymal phenotype and enhanced migratory potential; epithelial markers, such as E-cadherin, are down-regulated and mesenchymal proteins (Vimentin), increased. To investigate the expression of EMT markers in metastatic SCC (MSCC) and their corresponding metastases, and to correlate them with clinico-pathological factors associated with an increased risk of metastasis. We performed a retrospective study that included 146 cSCC samples (51 primary non-metastatic, 56 primary metastatic, 39 lymphatic metastases). Immunohistochemistry for E-cadherin, Vimentin, Snail, beta-catenin, Twist, Zeb1 and Podoplanin was performed. Loss of membranous E-cadherin was observed in 77% cSCCs, with no differences between MSCC and non-MSCC. Among the transcriptional factors controlling EMT, no significant Snail1 expression was detected. Twist, Zeb1, Vimentin, beta-catenin and Podoplanin were significantly overexpressed in MSCCs. Twist ectopic expression in SCC13 cells induced Zeb1, Vimentin and Podoplanin expression and E-cadherin delocalization. These changes resulted in a scattered migration pattern in vitro. Expression of EMT markers was decreased in the metastases when compared with the corresponding primary tumors. These results suggest that a partial EMT, characterized by the expression of Twist but without a total E-cadherin depletion, is involved in the acquisition of invasive traits by cSCC, but the process is downregulated in lymph node metastases. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Embryogenesis of the First Circulating Endothelial Cells

    PubMed Central

    Cui, Cheng; Filla, Michael B.; Jones, Elizabeth A. V.; Lansford, Rusty; Cheuvront, Tracey; Al-Roubaie, Sarah; Rongish, Brenda J.; Little, Charles D.

    2013-01-01

    Prior to this study, the earliest appearance of circulating endothelial cells in warm-blooded animals was unknown. Time-lapse imaging of germ-line transformed Tie1-YFP reporter quail embryos combined with the endothelial marker antibody QH1 provides definitive evidence for the existence of circulating endothelial cells – from the very beginning of blood flow. Blood-smear counts of circulating cells from Tie1-YFP embryos showed that up to 30% of blood-borne cells are Tie1 positive; though cells expressing low levels of YFP were also positive for benzidine, a hemoglobin stain, suggesting that these cells were differentiating into erythroblasts. Electroporation-based time-lapse experiments, exclusively targeting the intra-embryonic mesoderm were combined with QH1 immunostaining. The latter antibody marks quail endothelial cells. Together the optical data provide conclusive evidence that endothelial cells can enter blood flow from vessels of the embryo proper, as well as from extra-embryonic areas. When Tie1-YFP positive cells and tissues are transplanted to wild type host embryos, fluorescent cells emigrate from such transplants and join host vessels; subsequently a few YFP cells are shed into circulation. These data establish that entering circulation is a commonplace activity of embryonic vascular endothelial cells. We conclude that in the class of vertebrates most closely related to mammals a normal component of primary vasculogenesis is production of endothelial cells that enter circulation from all vessels, both intra- and extra-embryonic. PMID:23737938

  5. Elevated PTH induces endothelial-to-chondrogenic transition in aortic endothelial cells.

    PubMed

    Wu, Min; Zhang, Jian-Dong; Tang, Ri-Ning; Crowley, Steven D; Liu, Hong; Lv, Lin-Li; Ma, Kun-Ling; Liu, Bi-Cheng

    2017-03-01

    Previous studies have shown that increased parathyroid hormone (PTH) attributable to secondary hyperparathyroidism in chronic kidney disease accelerates the arteriosclerotic fibrosis and calcification. Although the underlying mechanisms remain largely unknown, endothelial cells (ECs) have recently been demonstrated to participate in calcification in part by providing chondrogenic cells via the endothelial-to-mesenchymal transition (EndMT). Therefore, this study aimed to investigate whether elevated PTH could induce endothelial-to-chondrogenic transition in aortic ECs and to determine the possible underlying signaling pathway. We found that treatment of ECs with PTH significantly upregulated the expression of EndMT-related markers. Accordingly, ECs treated with PTH exhibited chondrogenic potential. In vivo, lineage-tracing model-subjected mice with endothelial-specific green fluorescent protein fluorescence to chronic PTH infusion showed a marked increase in the aortic expression of chondrocyte markers, and confocal microscopy revealed the endothelial origin of cells expressing chondrocyte markers in the aorta after PTH infusion. Furthermore, this in vitro study showed that PTH enhanced the nuclear localization of β-catenin in ECs, whereas β-catenin siRNA or DKK1, an inhibitor of β-catenin nuclear translocation, attenuated the upregulation of EndMT-associated and chondrogenic markers induced by PTH. In summary, our study demonstrated that elevated PTH could induce the transition of ECs to chondrogenic cells via EndMT, possibly mediated by the nuclear translocation of β-catenin. Copyright © 2017 the American Physiological Society.

  6. Isolation and Characterization of Circulating Lymphatic Endothelial Colony Forming Cells

    PubMed Central

    DiMaio, Terri A.; Wentz, Breanna L.; Lagunoff, Michael

    2016-01-01

    Rationale The identification of circulating endothelial progenitor cells has led to speculation regarding their origin as well as their contribution to neovascular development. Two distinct types of endothelium make up the blood and lymphatic vessel system. However, it has yet to be determined whether there are distinct lymphatic-specific circulating endothelial progenitor cells. Objective This study aims to isolate and characterize the cellular properties and global gene expression of lymphatic-specific endothelial progenitor cells. Methods and Results We isolated circulating endothelial colony forming cells (ECFCs) from whole peripheral blood. These cells are endothelial in nature, as defined by their expression of endothelial markers and their ability to undergo capillary morphogenesis in three-dimensional culture. A subset of isolated colonies express markers of lymphatic endothelium, including VEGFR-3 and Prox-1, with low levels of VEGFR-1, a blood endothelial marker, while the bulk of the isolated cells express high VEGFR-1 levels with low VEGFR-3 and Prox-1 expression. The different isolates have differential responses to VEGF-C, a lymphatic endothelial specific cytokine, strongly suggesting that there are lymphatic specific and blood specific ECFCs. Global analysis of gene expression revealed key differences in the regulation of pathways involved in cellular differentiation between blood and lymphatic-specific ECFCs. Conclusion These data indicate that there are two distinguishable circulating ECFC types, blood and lymphatic, which are likely to have discrete functions during neovascularization. PMID:26597759

  7. Monocytes can be induced to express lymphatic phenotypes.

    PubMed

    Changming, W; Xin, L; Hua, T; Shikun, W; Qiong, X; Zhigeng, Z; Xueying, W

    2011-06-01

    Although it has been recently shown that monocytes can transdifferentiate into blood vascular endothelial cells which are involved in angiogenesis, little attention has been paid to their potential to transdifferentiate into lymphatic endothelial cells. Therefore, we examined this question in our study. We first stimulated monocytes with either fibronectin (FN), VEGF-C, TNF-alpha, LPS, or IL-3 for 24h. Then we examined the expression of several markers of lymphatic endothelium and found that the monocytes expressed specific lymphatic endothelial markers, LYVE-1, Podoplanin, and Prox-1, but not common endothelial markers vWF or eNOS. Next, monocytes were incubated in endothelial growth medium with FN and VEGF-C for 6d. These monocytes were also found to express LYVE-1, Podoplanin and Prox-1, but not vWF or eNOS. Our results indicate that monocytes in vitro can be easily induced to present lymphatic phenotypes in an inflammatory environment.

  8. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  9. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    PubMed

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  10. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis

    PubMed Central

    Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-01-01

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  11. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial.

    PubMed

    Azimi, Paria; Ghiasvand, Reza; Feizi, Awat; Hosseinzadeh, Javad; Bahreynian, Maryam; Hariri, Mitra; Khosravi-Boroujeni, Hossein

    2016-06-01

    Herbal medicines with high amounts of phytochemicals have been shown to have beneficial effects on blood pressure (BP), endothelial function and anthropometric measures. This study aimed to determine the effect of herbal treatment on BP, endothelial function and anthropometric measures in patients with type 2 diabetes mellitus (T2DM). This clinical trial included 204 T2DM patients randomly assigned to four intervention groups receiving 3 g cinnamon, 3 g cardamom, 1 g saffron or 3 g ginger with three glasses of black tea, and one control group consuming only three glasses of tea without any herbals, for 8 weeks. Intercellular adhesion molecule-1 (ICAM-1), systolic and diastolic BP and anthropometric measures were collected at baseline and after 8 weeks. No significant difference was found between various medicinal plants in terms of influencing BP, serum soluble (s)ICAM-1 concentrations and anthropometric measures. However, in within-group comparison saffron and ginger intakes significantly reduced sICAM-1 concentrations (340.9 ± 14.4 vs 339.69 ± 14.4 ng/ml, p = 0.01, and 391.78 ± 16.0 vs 390.97 ± 15.8 ng/ml, p = 0.009, respectively) and ginger intake affected systolic BP (143.06 ± 0.2 vs 142.07 ± 0.2 mmHg, p = 0.02). Although administration of these herbal medicines as supplementary remedies could affect BP and sICAM-1 concentrations, there was no significant difference between the plants in terms of influencing anthropometric measures, BP and endothelial function.

  12. Enrichment of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)-positive macrophages around blood vessels in the normal human sclera.

    PubMed

    Schlereth, Simona L; Neuser, Barbara; Caramoy, Albert; Grajewski, Rafael S; Koch, Konrad R; Schrödl, Falk; Cursiefen, Claus; Heindl, Ludwig M

    2014-02-10

    To investigate whether the normal adult human sclera contains lymphatic vessels and to study their relation to immune cells and blood vessel anatomy. Scleral tissue probes from 35 adult human donor bulbi were analyzed by immunohistochemistry and confocal microscopy for blood vessels (CD31+), lymphatic vessels (lymphatic vessel endothelial hyaluronan receptor 1 [LYVE1]+, podoplanin+), and macrophages (CD68+) at 12 locations (anterior, equatorial, and posterior at 3, 6, 9, and 12 o'clock positions of the eye) in all three scleral layers (episclera, stroma, and lamina fusca). Approval for scientific examination was obtained. CD31+ blood vessels were detectable in the human sclera, where the percentage area covered by CD31+ blood vessels was highest in the anterior episclera, followed by equatorial and posterior episclera, and was lowest in the scleral stroma (regardless of location). LYVE1+ podoplanin+ lymphatic vessels were not detectable in any location investigated, although there was a high number of LYVE1+ CD68+ macrophages. These macrophages were concentrated around blood vessels. In contrast, in the episclera, the number of detected LYVE1+ CD68+ macrophages was comparable in all locations; within the stroma, their number increased toward the posterior part of the eye. The adult sclera contains blood vessels but lacks, as revealed by immunohistochemistry and confocal microscopy, true lymphatic vessels. LYVE1+ CD68+ macrophages are located adjacent to the longitudinal axis of blood vessels. The function of these cells needs further investigation, but could be a next step toward a better understanding of pathological disorders such as inflammation, tumor, trauma, or glaucoma.

  13. Marker development

    SciTech Connect

    Adams, M.R.

    1987-05-01

    This report is to discuss the marker development for radioactive waste disposal sites. The markers must be designed to last 10,000 years, and place no undue burdens on the future generations. Barriers cannot be constructed that preclude human intrusion. Design specifications for surface markers will be discussed, also marker pictograms will also be covered.

  14. Dynamics of Caveolae in Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Mengistu, Meron

    2005-03-01

    The blood flow subjects endothelial cells to various shear stress conditions, regulating the formation and localization of caveolae for macromolecular transport and potentially mechanosensing. We simulate this condition by exposing cultured bovine endothelial cells to various flow conditions in flow chambers. Using GFP-constructs of caveolar markers such as caveolin-1, dynamin II, and intersectin, we targeted caveolae with optical tweezers laser as probes to measure changes in viscoelastic properties that the cell undergoes in the different flow conditions. We also tracked the transport of fluorescently labeled Bovine serum albumin (BSA) through caveolae using confocal microscopy. This technique allows us to study the transport dynamics of caveolae once they are internalized in endothelial cells. Integrating optical tweezers and confocal fluorescence microscopy will allow us to measure the micro-mechanical properties of caveolae and give us insights into its function as a mechanosensor as well as its role in transcytosis.

  15. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  16. Clinically important factors influencing endothelial function.

    PubMed

    Vapaatalo, H; Mervaala, E

    2001-01-01

    The endothelium, a continuous cellular monolayer lining the blood vessels, has an enormous range of important homeostatic roles. It serves and participates in highly active metabolic and regulatory functions including control of primary hemostasis, blood coagulation and fibrinolysis, platelet and leukocyte interactions with the vessel wall, interaction with lipoprotein metabolism, presentation of histocompatibility antigens, regulation of vascular tone and growth and further of blood pressure. Many crucial vasoactive endogenous compounds like prostacyclin, thromboxane, nitric oxide, endothelin, angiotensin, endothelium derived hyperpolarizing factor, free radicals and bradykinin are formed in the endothelial cells to control the functions of vascular smooth muscle cells and of circulating blood cells. These versatile and complex systems and cellular interactions are extremely vulnerable. The balances may be disturbed by numerous endogenous and exogenous factors including psychological and physical stress, disease states characterized by vasospasm, inflammation, leukocyte and platelet adhesion and aggregation, thrombosis, abnormal vascular proliferation, atherosclerosis and hypertension. The endothelial cells are also the site of action of many drugs and exogenous toxic substances (e.g. smoking, alcohol). As markers and assays for endothelial dysfunction, direct measurement of nitric oxide, its metabolites from plasma and urine, functional measurement of vascular nitric oxide dependent responses and assay of different circulating markers have been used. In numerous pathological conditions (e.g. atherosclerosis, hypertension, congestive heart failure, hyperhomocysteinemia, diabetes, renal failure, transplantation, liver cirrhosis) endothelial dysfunction has been described to exist. Some of them, as well as hormonal and nutritional factors and drug treatment will be discussed in this short review.

  17. Islet Endothelial Cells Derived From Mouse Embryonic Stem Cells.

    PubMed

    Jain, Neha; Lee, Eun Jung

    2016-01-01

    The islet endothelium comprises a specialized population of islet endothelial cells (IECs) expressing unique markers such as nephrin and α-1 antitrypsin (AAT) that are not found in endothelial cells in surrounding tissues. However, due to difficulties in isolating and maintaining a pure population of these cells, the information on these islet-specific cells is currently very limited. Interestingly, we have identified a large subpopulation of endothelial cells exhibiting IEC phenotype, while deriving insulin-producing cells from mouse embryonic stem cells (mESCs). These cells were identified by the uptake of low-density lipoprotein (LDL) and were successfully isolated and subsequently expanded in endothelial cell culture medium. Further analysis demonstrated that the mouse embryonic stem cell-derived endothelial cells (mESC-ECs) not only express classical endothelial markers, such as platelet endothelial cell adhesion molecule (PECAM1), thrombomodulin, intercellular adhesion molecule-1 (ICAM-1), and endothelial nitric oxide synthase (eNOS) but also IEC-specific markers such as nephrin and AAT. Moreover, mESC-ECs secrete basement membrane proteins such as collagen type IV, laminin, and fibronectin in culture and form tubular networks on a layer of Matrigel, demonstrating angiogenic activity. Further, mESC-ECs not only express eNOS, but also its eNOS expression is glucose dependent, which is another characteristic phenotype of IECs. With the ability to obtain highly purified IECs derived from pluripotent stem cells, it is possible to closely examine the function of these cells and their interaction with pancreatic β-cells during development and maturation in vitro. Further characterization of tissue-specific endothelial cell properties may enhance our ability to formulate new therapeutic angiogenic approaches for diabetes.

  18. Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis

    PubMed Central

    Yang, XueZhi; Chang, Yan; Wei, Wei

    2016-01-01

    Inflammation, as a feature of rheumatoid arthritis (RA), leads to the activation of endothelial cells (ECs). Activated ECs induce atherosclerosis through an increased expression of leukocyte adhesion molecules. Endothelial dysfunction (ED) is recognized as a failure of endothelial repair mechanisms. It is also an early preclinical marker of atherosclerosis and is commonly found in RA patients. RA is now established as an independent cardiovascular risk factor, while mechanistic determinants of ED in RA are still poorly understood. An expanding body of study has shown that EC at a site of RA is both active participant and regulator of inflammatory process. Over the last decade, a role for endothelial dysfunction in RA associated with cardiovascular disease (CVD) has been hypothesized. At the same time, several maintenance drugs targeting this phenomenon have been tested, which has promising results. Assessment of endothelial function may be a useful tool to identify and monitor RA patients. PMID:27122657

  19. Focally regulated endothelial proliferation and cell death in human synovium.

    PubMed Central

    Walsh, D. A.; Wade, M.; Mapp, P. I.; Blake, D. R.

    1998-01-01

    Angiogenesis and vascular insufficiency each may support the chronic synovial inflammation of rheumatoid arthritis. We have shown by quantitative immunohistochemistry and terminal uridyl deoxynucleotide nick end labeling that endothelial proliferation and cell death indices were each increased in synovia from patients with rheumatoid arthritis compared with osteoarthritic and noninflamed controls, whereas endothelial fractional areas did not differ significantly among disease groups. Markers of proliferation were associated with foci immunoreactive for vascular endothelial growth factor and integrin alpha(v)beta3, whereas cell death was observed in foci in which immunoreactivities for these factors were weak or absent. No association was found with thrombospondin immunoreactivity. The balance between angiogenesis and vascular regression in rheumatoid synovitis may be determined by the focal expression of angiogenic and endothelial survival factors. Increased endothelial cell turnover may contribute to microvascular dysfunction and thereby facilitate persistent synovitis. Images Figure 1 Figure 3 Figure 4 PMID:9502411

  20. Lipopolysaccharide induces a fibrotic-like phenotype in endothelial cells.

    PubMed

    Echeverría, César; Montorfano, Ignacio; Sarmiento, Daniela; Becerra, Alvaro; Nuñez-Villena, Felipe; Figueroa, Xavier F; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Simon, Felipe

    2013-06-01

    Endothelial dysfunction is crucial in endotoxaemia-derived sepsis syndrome pathogenesis. It is well accepted that lipopolysaccharide (LPS) induces endothelial dysfunction through immune system activation. However, LPS can also directly generate actions in endothelial cells (ECs) in the absence of participation by immune cells. Although interactions between LPS and ECs evoke endothelial death, a significant portion of ECs are resistant to LPS challenge. However, the mechanism that confers endothelial resistance to LPS is not known. LPS-resistant ECs exhibit a fibroblast-like morphology, suggesting that these ECs enter a fibrotic programme in response to LPS. Thus, our aim was to investigate whether LPS is able to induce endothelial fibrosis in the absence of immune cells and explore the underlying mechanism. Using primary cultures of ECs and culturing intact blood vessels, we demonstrated that LPS is a crucial factor to induce endothelial fibrosis. We demonstrated that LPS was able and sufficient to promote endothelial fibrosis, in the absence of immune cells through an activin receptor-like kinase 5 (ALK5) activity-dependent mechanism. LPS-challenged ECs showed an up-regulation of both fibroblast-specific protein expression and extracellular matrix proteins secretion, as well as a down-regulation of endothelial markers. These results demonstrate that LPS is a crucial factor in inducing endothelial fibrosis in the absence of immune cells through an ALK5-dependent mechanism. It is noteworthy that LPS-induced endothelial fibrosis perpetuates endothelial dysfunction as a maladaptive process rather than a survival mechanism for protection against LPS. These findings are useful in improving current treatment against endotoxaemia-derived sepsis syndrome and other inflammatory diseases.

  1. [Assessment of endothelial function in autoimmune diseases].

    PubMed

    Benhamou, Y; Bellien, J; Armengol, G; Gomez, E; Richard, V; Lévesque, H; Joannidès, R

    2014-08-01

    Numerous autoimmune-inflammatory rheumatic diseases have been associated with accelerated atherosclerosis or other types of vasculopathy leading to an increase in cardiovascular disease incidence. In addition to traditional cardiovascular risk factors, endothelial dysfunction is an important early event in the pathogenesis of atherosclerosis, contributing to plaque initiation and progression. Endothelial dysfunction is characterized by a shift of the actions of the endothelium toward reduced vasodilation, a proinflammatory and a proadhesive state, and prothrombic properties. Therefore, assessment of endothelial dysfunction targets this vascular phenotype using several biological markers as indicators of endothelial dysfunction. Measurements of soluble adhesion molecules (ICAM-1, VCAM-1, E-selectin), pro-thrombotic factors (thrombomodulin, von Willebrand factor, plasminogen activator inhibitor-1) and inflammatory cytokines are most often performed. Regarding the functional assessment of the endothelium, the flow-mediated dilatation of conduit arteries is a non-invasive method widely used in pathophysiological and interventional studies. In this review, we will briefly review the most relevant information upon endothelial dysfunction mechanisms and explorations. We will summarize the similarities and differences in the biological and functional assessments of the endothelium in different autoimmune diseases.

  2. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow.

    PubMed

    Tura, Olga; Skinner, Elizabeth M; Barclay, G Robin; Samuel, Kay; Gallagher, Ronald C J; Brittan, Mairi; Hadoke, Patrick W F; Newby, David E; Turner, Marc L; Mills, Nicholas L

    2013-02-01

    A decade of research has sought to identify circulating endothelial progenitor cells (EPC) in order to harness their potential for cardiovascular regeneration. Endothelial outgrowth cells (EOC) most closely fulfil the criteria for an EPC, but their origin remains obscure. Our aim was to identify the source and precursor of EOC and to assess their regenerative potential compared to mature endothelial cells. EOC are readily isolated from umbilical cord blood (6/6 donors) and peripheral blood mononuclear cells (4/6 donors) but not from bone marrow (0/6) or peripheral blood following mobilization with granulocyte-colony stimulating factor (0/6 donors). Enrichment and depletion of blood mononuclear cells demonstrated that EOC are confined to the CD34(+)CD133(-)CD146(+) cell fraction. EOC derived from blood mononuclear cells are indistinguishable from mature human umbilical vein endothelial cells (HUVEC) by morphology, surface antigen expression, immunohistochemistry, real-time polymerase chain reaction, proliferation, and functional assessments. In a subcutaneous sponge model of angiogenesis, both EOC and HUVEC contribute to de novo blood vessel formation giving rise to a similar number of vessels (7.0 ± 2.7 vs. 6.6 ± 3.7 vessels, respectively, n = 9). Bone marrow-derived outgrowth cells isolated under the same conditions expressed mesenchymal markers rather than endothelial cell markers and did not contribute to blood vessels in vivo. In this article, we confirm that EOC arise from CD34(+)CD133(-)CD146(+) mononuclear cells and are similar, if not identical, to mature endothelial cells. Our findings suggest that EOC do not arise from bone marrow and challenge the concept of a bone marrow-derived circulating precursor for endothelial cells. Copyright © 2012 AlphaMed Press.

  3. Vascular endothelial-cadherin downregulation as a feature of endothelial transdifferentiation in monocrotaline-induced pulmonary hypertension.

    PubMed

    Nikitopoulou, Ioanna; Orfanos, Stylianos E; Kotanidou, Anastasia; Maltabe, Violetta; Manitsopoulos, Nikolaos; Karras, Panagiotis; Kouklis, Panos; Armaganidis, Apostolos; Maniatis, Nikolaos A

    2016-08-01

    Increased pulmonary vascular resistance in pulmonary hypertension (PH) is caused by vasoconstriction and obstruction of small pulmonary arteries by proliferating vascular cells. In analogy to cancer, subsets of proliferating cells may be derived from endothelial cells transitioning into a mesenchymal phenotype. To understand phenotypic shifts transpiring within endothelial cells in PH, we injected rats with alkaloid monocrotaline to induce PH and measured lung tissue levels of endothelial-specific protein and critical differentiation marker vascular endothelial (VE)-cadherin. VE-cadherin expression by immonoblotting declined significantly 24 h and 15 days postinjection to rebound to baseline at 30 days. There was a concomitant increase in transcriptional repressors Snail and Slug, along with a reduction in VE-cadherin mRNA. Mesenchymal markers α-smooth muscle actin and vimentin were upregulated by immunohistochemistry and immunoblotting, and α-smooth muscle actin was colocalized with endothelial marker platelet endothelial cell adhesion molecule-1 by confocal microscopy. Apoptosis was limited in this model, especially in the 24-h time point. In addition, monocrotaline resulted in activation of protein kinase B/Akt, endothelial nitric oxide synthase (eNOS), nuclear factor (NF)-κB, and increased lung tissue nitrotyrosine staining. To understand the etiological relationship between nitrosative stress and VE-cadherin suppression, we incubated cultured rat lung endothelial cells with endothelin-1, a vasoconstrictor and pro-proliferative agent in pulmonary arterial hypertension. This resulted in activation of eNOS, NF-κB, and Akt, in addition to induction of Snail, downregulation of VE-cadherin, and synthesis of vimentin. These effects were blocked by eNOS inhibitor N(ω)-nitro-l-arginine methyl ester. We propose that transcriptional repression of VE-cadherin by nitrosative stress is involved in endothelial-mesenchymal transdifferentiation in experimental PH.

  4. Endothelial cells mediate the regeneration of hematopoietic stem cells

    PubMed Central

    Li, Bei; Bailey, Alexis S.; Jiang, Shuguang; Liu, Bin; Goldman, Devorah C.; Fleming, William H.

    2010-01-01

    Recent studies suggest that endothelial cells are a critical component of the normal hematopoietic microenvironment. Therefore, we sought to determine whether primary endothelial cells have the capacity to repair damaged hematopoietic stem cells. Highly purified populations of primary CD31+ microvascular endothelial cells isolated from the brain or lung did not express the pan hematopoietic marker CD45, hematopoietic lineage markers, or the progenitor marker c-kit and did not give rise hematopoietic cells in vitro or in vivo. Remarkably, the transplantation of small numbers of these microvascular endothelial cells consistently restored hematopoiesis following bone marrow lethal doses of irradiation. Analysis of the peripheral blood of rescued recipients demonstrated that both short term and long term multilineage hematopoietic reconstitution was exclusively of host origin. Secondary transplantation studies revealed that microvascular endothelial cell-mediated hematopoietic regeneration also occurs at the level of the hematopoietic stem cell. These findings suggest a potential therapeutic role for microvascular endothelial cells in the self-renewal and repair of adult hematopoietic stem cells. PMID:19720572

  5. Marker chromosomes.

    PubMed

    Rao, Kiran Prabhaker; Belogolovkin, Victoria

    2013-04-01

    Marker chromosomes are a morphologically heterogeneous group of structurally abnormal chromosomes that pose a significant challenge in prenatal diagnosis. Phenotypes associated with marker chromosomes are highly variable and range from normal to severely abnormal. Clinical outcomes are very difficult to predict when marker chromosomes are detected prenatally. In this review, we outline the classification, etiology, cytogenetic characterization, and clinical consequences of marker chromosomes, as well as practical approaches to prenatal diagnosis and genetic counseling.

  6. Increased Detection of Lymphatic Vessel Invasion by D2-40 (Podoplanin) in Early Breast Cancer: Possible Influence on Patient Selection for Accelerated Partial Breast Irradiation

    SciTech Connect

    Debald, Manuel; Poelcher, Martin; Flucke, Uta; Walgenbach-Bruenagel, Gisela

    2010-07-15

    Purpose: Several international trials are currently investigating accelerated partial breast irradiation (APBI) for patients with early-stage breast cancer. According to existing guidelines, patients with lymphatic vessel invasion (LVI) do not qualify for APBI. D2-40 (podoplanin) significantly increases the frequency of LVI detection compared with conventional hematoxylin and eosin (HE) staining in early-stage breast cancer. Our purpose was to retrospectively assess the hypothetical change in management from APBI to whole breast radiotherapy with the application of D2-40. Patients and Methods: Immunostaining with D2-40 was performed on 254 invasive breast tumors of 247 patients. The following criteria were used to determine the eligibility for APBI: invasive ductal adenocarcinoma of {<=}3 cm, negative axillary node status (N0), and unifocal disease. Of the 247 patients, 74 with available information concerning LVI, as detected by D2-40 immunostaining and routine HE staining, formed our study population. Results: Using D2-40, our results demonstrated a significantly greater detection rate (p = .031) of LVI compared with routine HE staining. LVI was correctly identified by D2-40 (D2-40-positive LVI) in 10 (13.5%) of 74 tumors. On routine HE staining, 4 tumors (5.4%) were classified as HE-positive LVI. Doublestaining of these specimens with D2-40 unmasked false-positive LVI status in 2 (50%) of the 4 tumors. According to the current recommendations for APBI, immunostaining with D2-40 would have changed the clinical management from APBI to whole breast radiotherapy in 8 (10.8%) of 74 patients and from whole breast radiotherapy to APBI in 2 patients (2.7%). Conclusion: These data support the implementation of D2-40 immunostaining in the routine workup to determine a patient's eligibility for APBI.

  7. The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity

    PubMed Central

    Ogasawara, Satoshi; Fujii, Yuki; Oki, Hiroharu; Fukayama, Masashi; Nishioka, Yasuhiko; Kaneko, Mika K.

    2015-01-01

    Podoplanin (PDPN/Aggrus/T1α) binds to C-type lectin-like receptor-2 (CLEC-2) and induces platelet aggregation. PDPN is associated with malignant progression, tumor metastasis, and poor prognosis in several types of cancer. Although many anti-human PDPN (hPDPN) monoclonal antibodies (mAbs), such as D2-40 and NZ-1, have been established, these epitopes are limited to the platelet aggregation-stimulating (PLAG) domain (amino acids 29-54) of hPDPN. Recently, we developed a novel mouse anti-hPDPN mAb, LpMab-7, which is more sensitive than D2-40 and NZ-1, using the Cancer-specific mAb (CasMab) method. The epitope of LpMab-7 was shown to be entirely different from that of NZ-1, a neutralizing mAb against the PLAG domain according to an inhibition assay and lectin microarray analysis. In the present study, we produced a mouse-human chimeric anti-hPDPN mAb, chLpMab-7. ChLpMab-7 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, chLpMab-7 inhibited the growth of hPDPN-expressing tumors in vivo. Although chLpMab-7 recognizes a non-PLAG domain of hPDPN, it suppressed the hematogenous metastasis of hPDPN-expressing tumors. These results indicated that chLpMab-7 suppressed tumor development and hematogenous metastasis in a neutralization-independent manner. In conclusion, hPDPN shows promise as a target in the development of a novel antibody-based therapy. PMID:26416352

  8. Central Role of eNOS in the Maintenance of Endothelial Homeostasis

    PubMed Central

    Rodriguez-Mateos, Ana; Kelm, Malte

    2015-01-01

    Abstract Significance: Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. Recent Advances: Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. Critical Issues: Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. Future Directions: Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance. Antioxid. Redox Signal. 22, 1230–1242. PMID:25330054

  9. Glucose transporter 1-positive endothelial cells in infantile hemangioma exhibit features of facultative stem cells.

    PubMed

    Huang, Lan; Nakayama, Hironao; Klagsbrun, Michael; Mulliken, John B; Bischoff, Joyce

    2015-01-01

    Endothelial glucose transporter 1 (GLUT1) is a definitive and diagnostic marker for infantile hemangioma (IH), a vascular tumor of infancy. To date, GLUT1-positive endothelial cells in IH have not been quantified nor directly isolated and studied. We isolated GLUT1-positive and GLUT1-negative endothelial cells from IH specimens and characterized their proliferation, differentiation, and response to propranolol, a first-line therapy for IH, and to rapamycin, an mTOR pathway inhibitor used to treat an increasingly wide array of proliferative disorders. Although freshly isolated GLUT1-positive cells, selected using anti-GLUT1 magnetic beads, expressed endothelial markers CD31, VE-Cadherin, and vascular endothelial growth factor receptor 2, they converted to a mesenchymal phenotype after 3 weeks in culture. In contrast, GLUT1-negative endothelial cells exhibited a stable endothelial phenotype in vitro. GLUT1-selected cells were clonogenic when plated as single cells and could be induced to redifferentiate into endothelial cells, or into pericytes/smooth muscle cells or into adipocytes, indicating a stem cell-like phenotype. These data demonstrate that, although they appear and function in the tumor as bona fide endothelial cells, the GLUT1-positive endothelial cells display properties of facultative stem cells. Pretreatment with rapamycin for 4 days significantly slowed proliferation of GLUT1-selected cells, whereas propranolol pretreatment had no effect. These results reveal for the first time the facultative nature of GLUT1-positive endothelial cells in IH. © 2014 AlphaMed Press.

  10. Vascular endothelial growth factor, lipoporotein-associated phospholipase A2, sP-selectin and antiphospholipid antibodies, biological markers with prognostic value in pulmonary hypertension associated with chronic obstructive pulmonary disease and systemic lupus erithematosus.

    PubMed

    Tanaseanu, C; Tudor, S; Tamsulea, I; Marta, D; Manea, G; Moldoveanu, Elena

    2007-04-26

    Pulmonary arterial hypertension (PH) is a progressive disease with a poor prognosis that ultimately leads to right ventricular failure and death. The pathogenesis of severe PH seems to be related to inflammatory responses and coagulation disturbances. Many diseases can develop PH in their course, thus aggravating their outcome. The objective was to investigate the values of vascular endothelial growth factor (VEGF), sP-selectin, lipoprotein-associated phospholipase A2 (PLA2-LDL), antiphospholipid antibodies (APLA) and their relation with PH, in systemic lupus erythematosus (SLE) and chronic obstructive pulmonary disease (COPD), two conditions in which the occurrence of PH is frequent. Prospective clinical study. A University Department of Internal Medicine, a National Institute of Research. 30 SLE patients (15 patients without PH (group I) and 15 patients with PH group II)), 30 patients with COPD (15 patients without PH (group III) and 15 patients with PH (group IV)) and 10 healthy controls, selected by clinical, immunological, echocardiographical criteria and pulmonary functional tests. VEGF, sP-selectin and PLA2-LDL level in plasma and presence of antiphospholipids antibodies (lupus anticoagulant, anticardiolipin and anti beta2 GPI) in plasma. - In patients with PH, the values of VEGF were significantly increased [group II (1023.1) and IV (904.3)] compared with group I (744.2), III (356.4), and controls (330.3). The values of sP-selectin in group II (9.7), and IV (10.4) were also increased compared with controls (6). APLA were present in all patients in group II (100%), and in 8 patients in group IV (53%), while in the other groups the frequency was low (33% group I and 13% group III). PLA2-LDL activity was higher in group II (429.1) and group IV (394.5) than in group I (317.8), group III (343.2) and controls (256.3). PH is a severe complication in COPD and SLE. The increased values of VEGF, PLA2-LDL and P-selectin in patients with long standing PH are related to

  11. Matrix Gla protein regulates differentiation of endothelial cells derived from mouse embryonic stem cells.

    PubMed

    Yao, Jiayi; Guihard, Pierre J; Blazquez-Medela, Ana M; Guo, Yina; Liu, Ting; Boström, Kristina I; Yao, Yucheng

    2016-01-01

    Matrix Gla protein (MGP) is an antagonist of bone morphogenetic proteins and expressed in vascular endothelial cells. Lack of MGP causes vascular abnormalities in multiple organs in mice. The objective of this study is to define the role of MGP in early endothelial differentiation. We find that expression of endothelial markers is highly induced in Mgp null organs, which, in wild type, contain high MGP expression. Furthermore, Mgp null embryonic stem cells express higher levels of endothelial markers than wild-type controls and an abnormal temporal pattern of expression. We also find that the Mgp-deficient endothelial cells adopt characteristics of mesenchymal stem cells. We conclude that loss of MGP causes dysregulation of early endothelial differentiation.

  12. Topography of Lymphatic Markers in Human Iris and Ciliary Body.

    PubMed

    Kaser-Eichberger, Alexandra; Schrödl, Falk; Trost, Andrea; Strohmaier, Clemens; Bogner, Barbara; Runge, Christian; Motloch, Karolina; Bruckner, Daniela; Laimer, Martin; Schlereth, Simona L; Heindl, Ludwig M; Reitsamer, Herbert A

    2015-07-01

    Reports of lymphatics in the anterior human uvea are contradictory. This might be caused due to a certain topography, which has not been considered yet. Therefore, here we systematically analyze iris and adjacent ciliary body with immunohistochemistry by combining various lymphatic markers. Human iris and ciliary body were obtained from cornea donors and prepared for cryosectioning. Cross sections of tissue blocks at 12/3/6/9 o'clock position and at corresponding intersections (1:30/4:30/7:30/10:30) were processed for immunohistochemistry of LYVE-1, PDPN, PROX1, FOXC2, VEGFR3, and CCL21, and when necessary, these lymphatic markers were combined with CD31, α-smooth muscle-actin, CD68, and 4',6-diamidino-2 phenylindole dihydrochloride (DAPI). Double, triple, and quadruple marker combinations were documented using confocal microscopy. Numerous podoplanin+ cells were mainly located at the anterior border of the iris while LYVE-1+ cells were distributed throughout the nonpigmented part. Both cell populations were PROX1/FOXC2/CCL21/VEGFR3-. Blood vessels, iris smooth muscles, and individual cells were VEGFR3+. While PDPN+ cells were rarely detected posteriorly of the iris root, many LYVE-1+ cells were present within the ciliary body muscle and villi. Within the muscle, occasionally PDPN+ vessel-like structures were detectable, but these were never colocalized with LYVE-1. Similar vessel-like structures were VEGFR3+/PROX1-/CCL21-, but CD31+. Further, ciliary muscle fibers and ciliary epithelium were immunoreactive for VEGFR3/CCL21, but were LYVE-1/PDPN-. A certain topography of structures at the various uvea-positions investigated was not obvious. The majority of LYVE-1+ cells displayed immunoreactivity for CD68. Lymphatic vessels colocalizing for at least two lymphatic markers were not detectable. Therefore, if present, putative lymphatic channels of the anterior uvea might display a different marker panel than generally presumed.

  13. Adult cutaneous hemangiomas are composed of nonreplicating endothelial cells.

    PubMed

    Tuder, R M; Young, R; Karasek, M; Bensch, K

    1987-12-01

    Thirty-four human "cherry" dermal hemangiomas were studied by electron microscopy, immunohistochemistry, and cell culture to assess the neoplastic nature of these lesions. Electron microscopy of nine hemangiomas revealed a pronounced thickening of the basement membrane (0.6 to 14 micron) in 93% of the total 158 vascular structures examined within the lesions. This increase was caused mainly by multiple layers of basal lamina, which were irregular in outline and frequently associated with pericytes. Basement membrane changes were present both in the periphery of the hemangiomas, as well as in the center of the lesions. Immature vessels could not be identified and mitoses were absent in all endothelial cells. Using an immunohistochemical marker (Ki67) specific for proliferating cells in G2 and S phases, positive staining was not found in the endothelial cells lining the hemangiomatous vessels, whereas basal epidermal keratinocytes in the same preparations and cultured microvascular endothelial cells expressed the antigen. Endothelial cells of nine hemangiomas did not stain with an activation-related antibody (E12) specific for endothelial cells. When endothelial cells from 14 hemangiomas were isolated and cultured under conditions that support the growth of normal human skin microvascular endothelial cells, the cells of hemangiomatous origin failed to grow. We conclude that the adult hemangiomas may not be true neoplasms, but a tissue overgrowth composed of mature vessels resembling dermal venules, lined by endothelial cells with virtually no turnover.

  14. [Research and clinical applications regarding endothelial progenitor cell transplantation].

    PubMed

    Tan, Kefang; Sun, Xuan

    2014-11-01

    Endothelial injury or dysfunction leads to multiple cardiovascular diseases, such as atherosclerosis, myocardial infarction, stroke, hypertension and peripheral vascular disease. Endothelial progenitor cells (EPCs) are precursor cells of endothelial cells, including the early endothelial progenitor cells and the late endothelial progenitor cells. These two EPC types have different function and surface markers. EPC in this article mainly means late endothelial progenitors which could grow into endothelial cloning and form vessels in vivo. Late EPCs can express CD133, CD31, KDR, CD144, CD34 etc, take in low density lipoprotein, bind with ulex europaeus lectin 1 and form blood vessels in vitro and in vivo. EPCs not only participate in new blood vessels formation, but also are closely related to the repair of damaged endothelium. Many studies confirm that the transplanted EPCs are able to be mobilized to vascular injury location and repair the damaged endothelial cells thus promote new blood vessel formation, which provides a promising strategy for the treatment of cardiovascular diseases and ischemic diseases.

  15. Novel markers of endothelial dysfunction and inflammation in Behçet's disease patients with ocular involvement: epicardial fat thickness, carotid intima media thickness, serum ADMA level, and neutrophil-to-lymphocyte ratio.

    PubMed

    Yuksel, Murat; Yildiz, Abdulkadir; Oylumlu, Mustafa; Turkcu, Fatih Mehmet; Bilik, Mehmet Zihni; Ekinci, Aysun; Elbey, Bilal; Tekbas, Ebru; Alan, Sait

    2016-03-01

    The etiology of Behçet's disease (BD) has not been fully elucidated. However, immunological and environmental factors, endothelial dysfunction (ED), and genetic susceptibility have been proposed to play a role. In this study, we aimed to evaluate epicardial fat thickness (EFT) together with serum asymmetric dimethylarginine (ADMA), carotid intima media thickness (CIMT), and neutrophil-to-lymphocyte ratio (NLR) in BD patients with ocular involvement. Thirty-six ocular BD patients (17 active and 19 inactive ocular involvement), and 35 age and sex-matched healthy controls were enrolled to this cross-sectional study. All patients underwent examinations with transthoracic echocardiography and carotid Doppler ultrasound. Serum ADMA levels, CIMT, EFT, and NLR were compared between groups, and their association with disease activity was evaluated. Behçet's disease patients had higher WBC counts, neutrophil counts, NLR, CIMT, EFT values, and serum ADMA levels than do healthy controls. The other biochemical, hematological, and echocardiographic parameters were comparable between the two groups. Behçet's disease duration was positively correlated with EFT and CIMT. Multivariate logistic regression analysis revealed that increased serum ADMA concentration and CIMT are independently associated with BD. Neutrophil counts, NLR, and serum ADMA level were higher, and lymphocyte count was lower in patients with active ocular BD compared to those of inactive ocular BD group. Carotid intima media thickness, serum ADMA level, EFT, and NLR were increased in ocular BD patients compared to healthy subjects. In addition, both serum ADMA level and NLR were associated with disease activity of ocular involvement. Increase in disease duration was associated with increase in CIMT and EFT which suggests that anatomical changes occur in time during the disease course. Increased CIMT, serum ADMA level, EFT, and NLR may provide new clues about the role of ED and inflammation in the

  16. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.

    PubMed

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy; Tan, Wei

    2014-09-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.

  17. Endothelial Activation and Repair During Hantavirus Infection: Association with Disease Outcome

    PubMed Central

    Connolly-Andersen, Anne-Marie; Thunberg, Therese; Ahlm, Clas

    2014-01-01

    Background.  Endothelial activation and dysfunction play a central role in the pathogenesis of sepsis and viral hemorrhagic fevers. Hantaviral disease is a viral hemorrhagic fever and is characterized by capillary dysfunction, although the underlying mechanisms for hantaviral disease are not fully elucidated. Methods.  The temporal course of endothelial activation and repair were analyzed during Puumala hantavirus infection and associated with disease outcome and a marker for hypoxia, insulin-like growth factor binding protein 1 (IGFBP-1). The following endothelial activation markers were studied: endothelial glycocalyx degradation (syndecan-1) and leukocyte adhesion molecules (soluble vascular cellular adhesion molecule 1, intercellular adhesion molecule 1, and endothelial selectin). Cytokines associated with vascular repair were also analyzed (vascular endothelial growth factor, erythropoietin, angiopoietin, and stromal cell-derived factor 1). Results.  Most of the markers we studied were highest during the earliest phase of hantaviral disease and associated with clinical and laboratory surrogate markers for disease outcome. In particular, the marker for glycocalyx degradation, syndecan-1, was significantly associated with levels of thrombocytes, albumin, IGFBP-1, decreased blood pressure, and disease severity. Conclusions.  Hantaviral disease outcome was associated with endothelial dysfunction. Consequently, the endothelium warrants further investigation when designing future medical interventions. PMID:25734100

  18. Glucose transporter 1-positive endothelial cells in infantile hemangioma exhibit features of facultative stem cells

    PubMed Central

    Huang, Lan; Nakayama, Hironao; Klagsbrun, Michael; Mulliken, John B.; Bischoff, Joyce

    2014-01-01

    Endothelial glucose transporter 1 (GLUT1) is a definitive and diagnostic marker for infantile hemangioma (IH), a vascular tumor of infancy. To date, GLUT1-positive endothelial cells in IH have not been quantified nor directly isolated and studied. We isolated GLUT1-positive and GLUT1-negative endothelial cells from IH specimens and characterized their proliferation, differentiation and response to propranolol, a first-line therapy for IH, and to rapamycin, an mTOR pathway inhibitor used to treat an increasingly wide array of proliferative disorders. Although freshly isolated GLUT1-positive cells, selected using anti-GLUT1 magnetic beads, expressed endothelial markers CD31, VE-Cadherin and VEGFR2, they converted to a mesenchymal phenotype after three weeks in culture. In contrast, GLUT1-negative endothelial cells exhibited a stable endothelial phenotype in vitro. GLUT1-selected cells were clonogenic when plated as single cells and could be induced to re-differentiate into endothelial cells, or into pericyte/smooth muscle cells or into adipocytes, indicating a stem cell-like phenotype. These data demonstrate that, although they appear and function in the tumor as bona fide endothelial cells, the GLUT1-positive endothelial cells display properties of facultative stem cells. Pretreatment with rapamycin for 4 days significantly slowed proliferation of GLUT1-selected cells, whereas propranolol pretreatment had no effect. These results reveal for the first time the facultative nature of GLUT1-positive endothelial cells in infantile hemangioma. PMID:25187207

  19. HDL and endothelial protection

    PubMed Central

    Tran-Dinh, A; Diallo, D; Delbosc, S; Varela-Perez, L Maria; Dang, QB; Lapergue, B; Burillo, E; Michel, JB; Levoye, A; Martin-Ventura, JL; Meilhac, O

    2013-01-01

    High-density lipoproteins (HDLs) represent a family of particles characterized by the presence of apolipoprotein A-I (apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver. In addition to this function, HDLs display pleiotropic effects including antioxidant, anti-apoptotic, anti-inflammatory, anti-thrombotic or anti-proteolytic properties that account for their protective action on endothelial cells. Vasodilatation via production of nitric oxide is also a hallmark of HDL action on endothelial cells. Endothelial cells express receptors for apoA-I and HDLs that mediate intracellular signalling and potentially participate in the internalization of these particles. In this review, we will detail the different effects of HDLs on the endothelium in normal and pathological conditions with a particular focus on the potential use of HDL therapy to restore endothelial function and integrity. PMID:23488589

  20. Endothelial dysfunction in adults with obstructive sleep apnea.

    PubMed

    Lurie, Alain

    2011-01-01

    Vascular endothelial dysfunction refers to a loss of normal homeostatic functions in the blood vessels. It is characterized by reduced vasodilation and enhanced vasoconstriction functions and chronic prothrombotic and inflammatory activity. There is convincing evidence for endothelial dysfunction in obstructive sleep apnea (OSA): OSA is associated with alterations in vascular structures and their elastic properties, increased circulating cell-derived microparticles, reduced endothelial repair capacity, and vascular reactivity. These alterations may be related to the reduced availability of nitric oxide, which has major vasoprotective effects including vasodilation, inhibition of platelet adhesion and aggregation, inhibition of leukocyte-endothelial adhesion and inhibition of smooth muscle cell proliferation. It is unknown whether endothelial dysfunction in OSA is due to alterations in vasoconstriction mechanisms related to angiotensin II or endothelin 1. In OSA, endothelial dysfunction may be related to chronic intermittent hypoxia and to sleep loss and fragmentation. These conditions may increase the levels of various markers of inflammation and oxidative stress, as well as those of increased procoagulant and thrombotic activity. In addition, they may produce an imbalance of vasomotor function. Endothelial dysfunction contributes to the development of atherosclerosis and cardiovascular disorders associated with OSA. However, other diseases that are also associated with endothelial dysfunction are OSA comorbidities, e.g. obesity, insulin resistance, smoking habits and cardiovascular diseases such as hypertension and coronary artery disease. This makes it difficult to demonstrate a causal link between OSA and endothelial dysfunction; nevertheless, evidence for such a link has been produced by therapeutic studies. The administration of continuous positive airway pressure may reverse changes associated with endothelial dysfunction and, therefore, may decrease the risk

  1. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells.

    PubMed

    Tancharoen, Waleephan; Aungsuchawan, Sirinda; Pothacharoen, Peraphan; Markmee, Runchana; Narakornsak, Suteera; Kieodee, Junjira; Boonma, Nonglak; Tasuya, Witoon

    2017-03-01

    Endothelial dysfunction is a principle feature of vascular-related disease. Endothelial cells have been acquired for the purposes of the restoration of damaged tissue in therapeutic angiogenesis. However, their use is limited by expansion capacity and the small amount of cells that are obtained. Human amniotic fluid mesenchymal stem cells (hAF-MSCs) are considered an important source for vascular tissue engineering. In this study, hAF-MSCs were characterized and then induced in order to differentiate into the endothelial-like cells. Human amniotic fluid cells (hAFCs) were obtained from amniocentesis at the second trimester of gestation. The cells were characterized as mesenchymal stem cells by flow cytometry. The results showed that the cells were positive for mesenchymal stem cell markers CD44, CD73, CD90 and HLA-ABC, and negative for CD31, Amniotic fluid stem cells marker: CD117, anti-human fibroblasts, HLA-DR and hematopoietic differentiation markers CD34 and CD45. The hAF-MSCs were differentiated into endothelial cells under the induction of vascular endothelial growth factor (VEGF) and analyzed for the expression of the endothelial-specific markers and function. The expression of the endothelial-specific markers was determined by reverse transcriptase-quantitative PCR (RT-qPCR), while immunofluorescent analysis demonstrated that the induced hAF-MSCs expressed von Willebrand factor (vWF), vascular endothelial growth factor receptor 2 (VEGFR2), CD31 and endothelial nitric oxide synthase (eNOS). The network formation assay showed that the induced hAF-MSCs formed partial networks. All results indicated that hAF-MSCs have the potential to be differentiated into endothelial-like cells, while human amniotic fluid might be a suitable source of MSCs for vascularized tissue engineering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Biomarkers of endothelial activation/dysfunction in infectious diseases

    PubMed Central

    Page, Andrea V; Liles, W Conrad

    2013-01-01

    Endothelial dysfunction contributes to the pathogenesis of a variety of potentially serious infectious diseases and syndromes, including sepsis and septic shock, hemolytic-uremic syndrome, severe malaria, and dengue hemorrhagic fever. Because endothelial activation often precedes overt endothelial dysfunction, biomarkers of the activated endothelium in serum and/or plasma may be detectable before classically recognized markers of disease, and therefore, may be clinically useful as biomarkers of disease severity or prognosis in systemic infectious diseases. In this review, the current status of mediators of endothelial cell function (angiopoietins-1 and -2), components of the coagulation pathway (von Willebrand Factor, ADAMTS13, and thrombomodulin), soluble cell-surface adhesion molecules (soluble E-selectin, sICAM-1, and sVCAM-1), and regulators of vascular tone and permeability (VEGF and sFlt-1) as biomarkers in severe infectious diseases is discussed in the context of sepsis, E. coli O157:H7 infection, malaria, and dengue virus infection. PMID:23669075

  3. New methods to evaluate endothelial function: A search for a marker of nitric oxide (NO) in vivo: re-evaluation of NOx in plasma and red blood cells and a trial to detect nitrosothiols.

    PubMed

    Ishibashi, Takaharu; Yoshida, Junko; Nishio, Matomo

    2003-12-01

    Although plasma NOx (NO(2)(-) and NO(3)(-)) has been used as an index of nitric oxide (NO) formation in vivo, many unreasonable results appeared even after active elimination of NOx contamination from laboratory ware. For example, plasma NOx concentrations did not increase during vasodilation mediated by the NO/cGMP pathway or after organ perfusion. A possible shift of NOx from plasma to erythrocytes (RBCs) as a cause of these phenomena has been excluded, leaving the destination of NOx (after leaving plasma) unknown. Kinetic analyses have revealed that steady state NOx concentrations in plasma and whole blood did not correlate with the NOx formation rate, but rather with the NOx elimination rate. Therefore, the supposition that the NO status is directly reflected by plasma NOx concentrations appears untenable. As nitrosothiols (R-SNOs), possible carriers of NO bioactivity, have been flagged as alternative indices of NO status in vivo, efforts have been made to detect these substances. When interference by ultrafiltration was eliminated, low molecular weight R-SNOs such as nitrosocystein and nitrosogluthathione were undetectable. However, a high-molecular weight R-SNO, nitrosoalbumin, was detected in human blood. Further research is required into the significance and practical use of nitrosoalbumin as a marker of NO in vivo.

  4. Existence of Corneal Endothelial Slow-Cycling Cells

    PubMed Central

    Espana, Edgar M.; Sun, Mei; Birk, David E.

    2015-01-01

    Purpose. To demonstrate the presence and location of corneal endothelial progenitor cells. Methods. Progenitor cell markers nestin, leucine-rich repeat-containing G-protein–coupled receptor 5, Sox9, and nerve growth factor receptor p75, as well as proliferation marker Ki-67, were examined on postnatal day (P)3, P30, and P90 corneas using immunofluorescence microscopy. Mice (P3) were pulsed with 5-bromo-2′-deoxyuridine (BrdU) and chased. Results. Cell proliferation was observed in all layers of P3 corneas. No posterior stromal cell proliferation was noted in P30 corneas. Progenitor cell markers were expressed in the P3 cornea, but were downregulated during maturation with minimal or no expression in P90 central corneas. In contrast, cells expressing progenitor markers were located exclusively at the corneal periphery at P90. Clusters of cells reactive for progenitor markers were in the endothelial and subendothelial space in the P90 peripheral cornea. Reactivity against BrdU was localized to the central and peripheral cornea at 1 week, and to the extreme periphery 3 weeks following a BrdU pulse. Cells reactive for both BrdU and progenitor markers were localized to the peripheral endothelium. At 3 weeks, cells reactive for BrdU and the progenitor markers were localized in the peripheral endothelium. Approximately, 20% to 45% of the progenitor marker positive cells also were labeled with BrdU. Conclusions. During development, the murine corneal endothelium is composed of proliferating cells expressing progenitor markers. In contrast, in the mature endothelium slow-cycling cells, cells expressing progenitor markers and a subpopulation of slow-cycling cells expressing progenitor makers are restricted to the endothelial periphery. PMID:26066751

  5. Assessment of Endothelial Dysfunction in Childhood Obesity and Clinical Use

    PubMed Central

    Hoymans, Vicky Y.; Van Craenenbroeck, Amaryllis H.; Vissers, Dirk K.; Vrints, Christiaan J.; Conraads, Viviane M.

    2013-01-01

    The association of obesity with noncommunicable diseases, such as cardiovascular complications and diabetes, is considered a major threat to the management of health care worldwide. Epidemiological findings show that childhood obesity is rapidly rising in Western society, as well as in developing countries. This pandemic is not without consequences and can affect the risk of future cardiovascular disease in these children. Childhood obesity is associated with endothelial dysfunction, the first yet still reversible step towards atherosclerosis. Advanced research techniques have added further insight on how childhood obesity and associated comorbidities lead to endothelial dysfunction. Techniques used to measure endothelial function were further brought to perfection, and novel biomarkers, including endothelial progenitor cells, were discovered. The aim of this paper is to provide a critical overview on both in vivo as well as in vitro markers for endothelial integrity. Additionally, an in-depth description of the mechanisms that disrupt the delicate balance between endothelial damage and repair will be given. Finally, the effects of lifestyle interventions and pharmacotherapy on endothelial dysfunction will be reviewed. PMID:23691262

  6. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  7. Grave Markers.

    ERIC Educational Resources Information Center

    DeMuro, Ted

    1985-01-01

    Junior high school students studied the cultural uses, symbolic meanings, and general physical forms of tombs and tombstones and then used basic slab building techniques to construct large clay grave markers. (RM)

  8. Bone Markers

    MedlinePlus

    ... from the amino terminal end of the protein matrix; another marker used to monitor therapy. Deoxypyridinoline (DPD) – a collagen breakdown product with a ring structure. Pyridinium Crosslinks – a group of collagen breakdown products ...

  9. Stress-Induced Premature Senescence of Endothelial and Endothelial Progenitor Cells

    PubMed Central

    Goligorsky, M.S.; Hirschi, K.

    2016-01-01

    This brief overview of premature senescence of dysfunctional endothelial and endothelial progenitor cells provides information on endothelial cell differentiation and specialization, their ontogeny, and controversies related to endothelial stem and progenitor cells. Stressors responsible for the dysfunction of endothelial and endothelial progenitor cells, as well as cellular mechanisms and consequences of endothelial cell dysfunction are presented. Metabolic signatures of dysfunctional endothelial cells and senescence pathways are described. Emerging strategies to rejuvenate endothelial and endothelial progenitor cells conclude the review. PMID:27451101

  10. CD144, CD146 and VEGFR-2 properly identify circulating endothelial cell

    PubMed Central

    Flores-Nascimento, Mariane Cristina; Alessio, Aline Morandi; de Andrade Orsi, Fernanda Loureiro; Annichino-Bizzacchi, Joyce Maria

    2015-01-01

    Studies evaluating circulating endothelial cells by flow cytometry are faced by a lack of consensus about the best combination of monoclonal antibodies to be used. The rarity of these cells in peripheral blood, which represent 0.01% of mononuclear cells, drastically increases this challenge. Objective The aim of this study is to suggest some combinations of markers that would safely and properly identify these cells. Methods Flow cytometry analysis of circulating endothelial cells was performed applying three different panels composed of different combinations of the CD144, CD146, CD31, CD133, CD45 and anti-Vascular endothelial growth factor receptor-2 antibodies. Results In spite of the rarity of the events, they were detectable and presented similar inter-person numbers of circulating endothelial cells. Conclusion The combination of markers successfully identified the circulating endothelial cells in healthy individuals, with the use of three different panels confirming the obtained data as reliable. PMID:25818819

  11. Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Elhalis, Hussain; Azizi, Behrooz; Jurkunas, Ula V.

    2011-01-01

    Fuchs endothelial corneal dystrophy (FECD) is characterized by progressive loss of corneal endothelial cells, thickening of Descement’s membrane and deposition of extracellular matrix in the form of guttae. When the number of endothelial cells becomes critically low, the cornea swells and causes loss of vision. The clinical course of FECD usually spans 10–20 years. Corneal transplantation is currently the only modality used to restore vision. Over the last several decades genetic studies have detected several genes, as well as areas of chromosomal loci associated with the disease. Proteomic studies have given rise to several hypotheses regarding the pathogenesis of FECD. This review expands upon the recent findings from proteomic and genetic studies and builds upon recent advances in understanding the causes of this common corneal disorder. PMID:20964980

  12. High glucose induced endothelial to mesenchymal transition in human umbilical vein endothelial cell.

    PubMed

    Yu, Chun-Hong; Suriguga; Gong, Meng; Liu, Wen-Juan; Cui, Ning-Xuan; Wang, Ying; Du, Xin; Yi, Zong-Chun

    2017-06-01

    Studies have shown that endothelial-to-mesenchymal transition (EndMT) could contribute to the progression of diabetic nephropathy, diabetic renal fibrosis, and cardiac fibrosis. The aim of this study was to investigate the influence of high glucose and related mechanism of MAPK inhibitor or specific antioxidant on the EndMT. In vitro human umbilical vein endothelial cells (HUVEC) were cultured with 11mM, 30mM, 60mM and 120mM glucose for 0, 24, 48, 72 and 168h. Endothelial cell morphology was observed with microscope, and RT-PCR was used to detect mRNA expression of endothelial markers VE-cadherin and CD31, mesenchymal markers α-SMA and collagen I, and transforming growth factor TGF-β1. Immunofluorescence staining was performed to detect the expression of CD31 and α-SMA. The concentration of TGF-β1 in the supernatant was detected by ELISA. ERK1/2 phosphorylation level was detected by Western blot analysis. High glucose induced EndMT and increased the TGF-β1 level in HUVEC cells. Cells in high glucose for 7 days showed a significant decrease in mRNA expression of CD31 and VE-cadherin, and a significant increase in that of α-SMA and collagen I, while lost CD31 staining and acquired α-SMA staining. ERK signaling pathway blocker PD98059 significantly attenuated the high glucose-induced increase in the ERK1/2 phosphorylation level. PD98059 and NAC both inhibited high glucose-induced TGF-β1 expression and attenuated EndMT marker protein synthesis. High glucose could induce HUVEC cells to undergo EndMT. NAC and ERK signaling pathway may play important role in the regulation of the TGF-β1 biosynthesis during high glucose-induced EndMT. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Circulating endothelial progenitor cells in obese children and adolescents.

    PubMed

    Pires, António; Martins, Paula; Paiva, Artur; Pereira, Ana Margarida; Marques, Margarida; Castela, Eduardo; Sena, Cristina; Seiça, Raquel

    2015-01-01

    This study aimed to investigate the relationship between circulating endothelial progenitor cell count and endothelial activation in a pediatric population with obesity. Observational and transversal study, including 120 children and adolescents with primary obesity of both sexes, aged 6-17 years, who were recruited at this Cardiovascular Risk Clinic. The control group was made up of 41 children and adolescents with normal body mass index. The variables analyzed were: age, gender, body mass index, systolic and diastolic blood pressure, high-sensitivity C-reactive protein, lipid profile, leptin, adiponectin, homeostasis model assessment-insulin resistance, monocyte chemoattractant protein-1, E-selectin, asymmetric dimethylarginine and circulating progenitor endothelial cell count. Insulin resistance was correlated to asymmetric dimethylarginine (ρ=0.340; p=0.003), which was directly, but weakly correlated to E-selectin (ρ=0.252; p=0.046). High sensitivity C-reactive protein was not found to be correlated to markers of endothelial activation. Systolic blood pressure was directly correlated to body mass index (ρ=0.471; p<0.001) and the homeostasis model assessment-insulin resistance (ρ=0.230; p=0.012), and inversely correlated to adiponectin (ρ=-0.331; p<0.001) and high-density lipoprotein cholesterol (ρ=-0.319; p<0.001). Circulating endothelial progenitor cell count was directly, but weakly correlated, to body mass index (r=0.211; p=0.016), leptin (ρ=0.245; p=0.006), triglyceride levels (r=0.241; p=0.031), and E-selectin (ρ=0.297; p=0.004). Circulating endothelial progenitor cell count is elevated in obese children and adolescents with evidence of endothelial activation, suggesting that, during infancy, endothelial repairing mechanisms are present in the context of endothelial activation. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  14. Evaluation of endothelial cells differentiated from amniotic fluid-derived stem cells.

    PubMed

    Benavides, Omar M; Petsche, Jennifer J; Moise, Kenneth J; Johnson, Anthony; Jacot, Jeffrey G

    2012-06-01

    Amniotic fluid holds great promise as a stem cell source, especially in neonatal applications where autologous cells can be isolated and used. This study examined chemical-mediated differentiation of amniotic fluid-derived stem cells (AFSC) into endothelial cells and verified the function of AFSC-derived endothelial cells (AFSC-EC). AFSC were isolated from amniotic fluid obtained from second trimester amnioreduction as part of therapeutic intervention from pregnancies affected with twin-twin transfusion syndrome. Undifferentiated AFSC were of normal karyotype with a subpopulation of cells positive for the embryonic stem cell marker SSEA4, hematopoietic stem cell marker c-kit, and mesenchymal stem cell markers CD29, CD44, CD73, CD90, and CD105. Additionally, these cells were negative for the endothelial marker CD31 and hematopoietic differentiation marker CD45. AFSC were cultured in endothelial growth media with concentrations of vascular endothelial growth factor (VEGF) ranging from 1 to 100 ng/mL. After 2 weeks, AFSC-EC expressed von Willebrand factor, endothelial nitric oxide synthase, CD31, VE-cadherin, and VEGF receptor 2. Additionally, the percentage of cells expressing CD31 was positively correlated with VEGF concentration up to 50 ng/mL, with no increase at higher concentrations. AFSC-EC showed a decrease in stem cells markers c-kit and SSEA4 and were morphologically similar to human umbilical vein endothelial cells (HUVEC). In functional assays, AFSC-EC formed networks and metabolized acetylated low-density lipoprotein, also characteristic of HUVEC. Nitrate levels for AFSC-EC, an indirect measure of nitric oxide synthesis, were significantly higher than undifferentiated controls and significantly lower than HUVEC. These results indicate that AFSC can differentiate into functional endothelial-like cells and may have the potential to provide vascularization for constructs used in regenerative medicine strategies.

  15. Secondhand smoke exposure and endothelial stress in children and adolescents.

    PubMed

    Groner, Judith A; Huang, Hong; Nagaraja, Haikady; Kuck, Jennifer; Bauer, John Anthony

    2015-01-01

    Links between secondhand smoke exposure and cardiovascular disease in adults are well established. Little is known about the impact of this exposure on cardiovascular status during childhood. The purpose of this study was to investigate relationships between secondhand smoke exposure in children and adolescents and cardiovascular disease risk--systemic inflammation, endothelial stress, and endothelial repair. A total of 145 subjects, aged 9 to 18 years, were studied. Tobacco smoke exposure was determined by hair nicotine level. Cardiovascular risk was assessed by markers of systemic inflammation (C-reactive protein [CRP] and adiponectin); by soluble intercellular adhesion molecule 1 (s-ICAM1), which measures endothelial activation after surface vascular injury; and by endothelial repair. This was measured by prevalence of endothelial progenitor cells (EPCs), which are bone marrow-derived cells that home preferentially to sites of vascular damage. Hair nicotine was directly correlated with s-ICAM1 (r = 0.4090, P < .0001) and negatively correlated with EPC prevalence (r = -0.2002, P = .0195). There was no relationship between hair nicotine and CRP, and a trend toward a weak relationship with adiponectin. Hair nicotine and body mass index were independent variables in a multivariate model predicting s-ICAM1; hair nicotine was the only significant variable in a model predicting EPC prevalence. Secondhand smoke exposure during childhood and adolescence is detrimental to vascular health because s-ICAM1 is a marker for endothelial activation and stress after vascular surface injury, and EPCs contribute to vascular repair. The fact that body mass index is also a factor in the model predicting s-ICAM1 is concerning, in that 2 risk factors may both contribute to endothelial stress. Copyright © 2015 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  16. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas

    PubMed Central

    Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  17. ROCK inhibitor converts corneal endothelial cells into a phenotype capable of regenerating in vivo endothelial tissue.

    PubMed

    Okumura, Naoki; Koizumi, Noriko; Ueno, Morio; Sakamoto, Yuji; Takahashi, Hiroaki; Tsuchiya, Hideaki; Hamuro, Junji; Kinoshita, Shigeru

    2012-07-01

    Corneal endothelial dysfunction accompanied by visual disturbance is a primary indication for corneal transplantation. We previously reported that the adhesion of corneal endothelial cells (CECs) to a substrate was enhanced by the selective ROCK inhibitor Y-27632. It is hypothesized that the inhibition of ROCK signaling may manipulate cell adhesion properties, thus enabling the transplantation of cultivated CECs as a form of regenerative medicine. In the present study, using a rabbit corneal endothelial dysfunction model, the transplantation of CECs in combination with Y-27632 successfully achieved the recovery of corneal transparency. Complications related to cell injection therapy, such as the abnormal deposition of the injected cells as well as the elevation of intraocular pressure, were not observed. Reconstructed corneal endothelium with Y-27632 exhibited a monolayer hexagonal cell shape with a normal expression of function-related markers, such as ZO-1, and Na(+)/K(+)-ATPase, whereas reconstruction without Y-27632 exhibited a stratified fibroblastic phenotype without the expression of markers. Moreover, transplantation of CECs in primates in the presence of the ROCK inhibitor also achieved the recovery of long-term corneal transparency with a monolayer hexagonal cell phenotype at a high cell density. Taken together, these results suggest that the selective ROCK inhibitor Y-27632 enables cultivated CEC-based therapy and that the modulation of Rho-ROCK signaling activity serves to enhance cell engraftment for cell-based regenerative medicine. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Increased endothelial microparticles in obese and overweight children.

    PubMed

    Gündüz, Zübeyde; Dursun, İsmail; Tülpar, Sebahat; Baştuğ, Funda; Baykan, Ali; Yıkılmaz, Ali; Patıroğlu, Türkan; Poyrazoglu, Hakan M; Akın, Leyla; Yel, Sibel; Düşünsel, Ruhan

    2012-01-01

    Obesity in children increases the risk of atherosclerosis. Endothelial dysfunction is an important factor in the pathogenesis of atherosclerosis, and endothelial microparticles (EMPs) are considered as markers of endothelial dysfunction. In this study, we aimed to evaluate circulating EMPs in obese and overweight children and to disclose the measure of obesity with the strongest relation with circulating microparticles and carotid atherosclerosis. This prospective study included 55 obese and overweight children and 23 healthy controls. Insulin resistance was studied. Both in vivo and in vitro human umbilical vein endothelial cell evaluations were used for the study. Circulating EMPs (CD144 and CD146) were measured by flow cytometry. The carotid artery intima-media thickness (cIMT) and left ventricular mass index (LVMI) were measured using ultrasound and echocardiography, respectively. Study groups were compared for anthropometric measurement, insulin resistance, circulating EMP, cIMT, and LVMI. The relationship among overweight, obesity, and circulating EMPs were investigated. Blood pressure, CD144+EMP levels, and LVMI were statistically higher in the patients group than in the control group. The multiple logistic regression analysis and the backward elimination method showed that CD144+EMP and systolic blood pressure had a linear relationship with overweight and obesity. Our results suggest that endothelial damage starts in the early stage of childhood obesity and that obese and overweight children have increased circulating CD144+EMPs, showing that endothelial dysfunction and increased CD144+EMPs may be related to obesity.

  19. Asymmetric Dimethylarginine, Endothelial Dysfunction and Renal Disease

    PubMed Central

    Aldámiz-Echevarría, Luis; Andrade, Fernando

    2012-01-01

    l-Arginine (Arg) is oxidized to l-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review. PMID:23109853

  20. Endothelial microparticles carrying hedgehog-interacting protein induce continuous endothelial damage in the pathogenesis of acute graft-versus-host disease.

    PubMed

    Nie, Di-Min; Wu, Qiu-Ling; Zheng, Peng; Chen, Ping; Zhang, Ran; Li, Bei-Bei; Fang, Jun; Xia, Ling-Hui; Hong, Mei

    2016-05-15

    Accumulating evidence suggests that endothelial microparticles (EMPs), a marker of endothelial damage, are elevated in acute graft-versus-host disease (aGVHD), and that endothelial damage is implicated in the pathogenesis of aGVHD, but the mechanisms remain elusive. In this study, we detected the plasma EMP levels and endothelial damage in patients and mice with aGVHD in vivo and then examined the effects of EMPs derived from injured endothelial cells (ECs) on endothelial damage and the role of hedgehog-interacting protein (HHIP) carried by EMPs in these effects in vitro. Our results showed that EMPs were persistently increased in the early posttransplantation phase in patients and mice with aGVHD. Meanwhile, endothelial damage was continuous in aGVHD mice, but was temporary in non-aGVHD mice after transplantation. In vitro, EMPs induced endothelial damage, including increased EC apoptosis, enhanced reactive oxygen species, decreased nitric oxide production and impaired angiogenic activity. Enhanced expression of HHIP, an antagonist for the Sonic hedgehog (SHH) signaling pathway, was observed in patients and mice with aGVHD and EMPs from injured ECs. The endothelial damage induced by EMPs was reversed when the HHIP incorporated into EMPs was silenced with an HHIP small interfering RNA or inhibited with the SHH pathway agonist, Smoothened agonist. This work supports a feasible vicious cycle in which EMPs generated during endothelial injury, in turn, aggravate endothelial damage by carrying HHIP into target ECs, contributing to the continuously deteriorating endothelial damage in the development of aGVHD. EMPs harboring HHIP would represent a potential therapeutic target for aGVHD. Copyright © 2016 the American Physiological Society.

  1. Method for in vitro differentiation of bone marrow mesenchymal stem cells into endothelial progenitor cells and vascular endothelial cells

    PubMed Central

    Wang, Qihong; Zhang, Weifeng; He, Guifen; Sha, Huifang; Quan, Zhe

    2016-01-01

    Vascular development is a regulated process and is dependent on the participation and differentiation of many cell types including the proliferation and migration of vascular endothelial cells and differentiation of endothelial progenitor cells (EPCs) to mesodermal precursor cells. Thus, reconstitution of this process in vitro necessitates providing ambient conditions for generating and culturing EPCs in vitro and differentiating them to vascular endothelial cells. In the present study, we developed methods to differentiate bone marrow mesenchymal stem cells (MSC) into EPCs and to vascular endothelial cells. Bone marrow MSC from canines and human sources were differentiated in vitro in to EPCs. These EPCs were able to express a variety of endothelial markers following 7 days in culture. Further culturing led to the appearance of an increased number and proportion of endothelial cells. These cells were stable even after 30 generations in culture. There was a gradual loss of CD31 and increased expression of factor VIII, VEGFR and CD133. VEGF being highly angiogenic, helps in the vascular development. These results provide the basis for the possible development of vasculature in vitro conditions for biomedical applications and in vivo for organ/tissue reconstruction therapies. PMID:27878275

  2. [Transplantation of corneal endothelial cells].

    PubMed

    Amano, Shiro

    2002-12-01

    endothelial cells. Cultured rabbit corneal endothelial cells that endocytosed iron were injected into the anterior chamber of rabbits whose corneal endothelium was cryo-injured, and were pulled to Descemet's membrane by putting a magnet on the eyelid. In these rabbits, corneal edema decreased more quickly than in the control group and no intraocular pressure rise was observed during 8 weeks after the operation, suggesting that the direct delivery of cultured HCECs into the anterior chamber can be an alternative method of choice. The following obstacles should be addressed to make the transplantation of cultured corneal endothelial cells clinically applicable. 1. To reconstruct a cornea that is the same as or superior to the normal cornea, more innovation is necessary in the method of culturing and seeding HCECs. We should consider utilizing HCECs obtained from fetuses after clearing ethical issues. Moreover, we need to develop a method to enhance the cell density and the cell functions. 2. Porcine corneal stroma is promising as a carrier of HCECs instead of human corneal stroma, which is in very limited supply. The usefulness of porcine corneal stroma acellularized to prevent retrovirus infection should be evaluated. 3. To make the self immature cells applicable to corneal transplantation, we should elucidate the corneal endothelial cell specific markers and the factors that are necessary to induce self immature cells to become corneal endothelial cells. 4. The direct delivery of cultured HCECs into the anterior chamber can be an alternative method of choice when its long-term safety is confirmed.

  3. Intradialytic hypertension and its association with endothelial cell dysfunction.

    PubMed

    Inrig, Jula K; Van Buren, Peter; Kim, Catherine; Vongpatanasin, Wanpen; Povsic, Thomas J; Toto, Robert D

    2011-08-01

    Intradialytic hypertension is associated with adverse outcomes, yet the mechanism is uncertain. Patients with intradialytic hypertension exhibit imbalances in endothelial-derived vasoregulators nitric oxide and endothelin-1, indirectly suggesting endothelial cell dysfunction. We hypothesized that intradialytic hypertension is associated in vivo with endothelial cell dysfunction, a novel predictor of adverse cardiovascular outcomes. We performed a case-control cohort study including 25 hemodialysis (HD) subjects without (controls) and 25 with intradialytic hypertension (an increase in systolic BP pre- to postdialysis ≥10 mmHg ≥4/6 consecutive HD sessions). The primary outcome was peripheral blood endothelial progenitor cells (EPCs) assessed by aldehyde dehydrogenase activity (ALDH(br)) and cell surface marker expression (CD34(+)CD133(+)). We also assessed endothelial function by ultrasonographic measurement of brachial artery flow-mediated vasodilation (FMD) normalized for shear stress. Parametric and nonparametric t tests were used to compare EPCs, FMD, and BP. Baseline characteristics and comorbidities were similar between groups. Compared with controls, 2-week average predialysis systolic BP was lower among subjects with intradialytic hypertension (144.0 versus 155.5 mmHg), but postdialysis systolic BP was significantly higher (159.0 versus 128.1 mmHg). Endothelial cell function was impaired among subjects with intradialytic hypertension as measured by decreased median ALDH(br) cells and decreased CD34(+)CD133(+) cells (ALDH(br), 0.034% versus 0.053%; CD34(+)CD133(+), 0.033% versus 0.059%). FMD was lower among subjects with intradialytic hypertension (1.03% versus 1.67%). Intradialytic hypertension is associated with endothelial cell dysfunction. We propose that endothelial cell dysfunction may partially explain the higher event rates observed in these patients.

  4. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence

    PubMed Central

    Sabatier, F; Camoin-Jau, L; Anfosso, F; Sampol, J; Dignat-George, F

    2009-01-01

    Abstract The balance between lesion and regeneration of the endothelium is critical for the maintenance of vessel integrity. Exposure to cardiovascular risk factors (CRF) alters the regulatory functions of the endothelium that progresses from a quiescent state to activation, apoptosis and death. In the last 10 years, identification of circulating endothelial cells (CEC) and endothelial-derived microparticles (EMP) in the circulation has raised considerable interest as non-invasive markers of vascular dysfunction. Indeed, these endothelial-derived biomarkers were associated with most of the CRFs, were indicative of a poor clinical outcome in atherothrombotic disorders and correlated with established parameters of endothelial dysfunction. CEC and EMP also behave as potential pathogenic vectors able to accelerate endothelial dysfunction and promote disease progression. The endothelial response to injury has been enlarged by the discovery of a powerful physiological repair process based on the recruitment of circulating endothelial progenitor cells (EPC) from the bone marrow. Recent studies indicate that reduction of EPC number and function by CRF plays a critical role in the progression of cardiovascular diseases. This EPC-mediated repair to injury response can be integrated into a clinical endothelial phenotype defining the ‘vascular competence’ of each individual. In the future, provided that standardization of available methodologies could be achieved, multimarker strategies combining CEC, EMP and EPC levels as integrative markers of ‘vascular competence’ may offer new perspectives to assess vascular risk and to monitor treatment efficacy. PMID:19379144

  5. Methylglyoxal promotes oxidative stress and endothelial dysfunction.

    PubMed

    Sena, Cristina M; Matafome, Paulo; Crisóstomo, Joana; Rodrigues, Lisa; Fernandes, Rosa; Pereira, Paulo; Seiça, Raquel M

    2012-05-01

    Modern diets can cause modern diseases. Research has linked a metabolite of sugar, methylglyoxal (MG), to the development of diabetic complications, but the exact mechanism has not been fully elucidated. The present study was designed to investigate whether MG could directly influence endothelial function, oxidative stress and inflammation in Wistar and Goto-Kakizaki (GK) rats, an animal model of type 2 diabetes. Wistar and GK rats treated with MG in the drinking water for 3 months were compared with the respective control rats. The effects of MG were investigated on NO-dependent vasorelaxation in isolated rat aortic arteries from the different groups. Insulin resistance, NO bioavailability, glycation, a pro-inflammatory biomarker monocyte chemoattractant protein-1 (MCP-1) and vascular oxidative stress were also evaluated. Methylglyoxal treated Wistar rats significantly reduced the efficacy of NO-dependent vasorelaxation (p<0.001). This impairment was accompanied by a three fold increase in the oxidative stress marker nitrotyrosine. Advanced glycation endproducts (AGEs) formation was significantly increased as well as MCP-1 and the expression of the receptor for AGEs (RAGE). NO bioavailability was significantly attenuated and accompanied by an increase in superoxide anion immunofluorescence. Methylglyoxal treated GK rats significantly aggravated endothelial dysfunction, oxidative stress, AGEs accumulation and diminished NO bioavailability when compared with control GK rats. These results indicate that methylglyoxal induced endothelial dysfunction in normal Wistar rats and aggravated the endothelial dysfunction present in GK rats. The mechanism is at least in part by increasing oxidative stress and/or AGEs formation with a concomitant increment of inflammation and a decrement in NO bioavailability. The present study provides further evidence for methylglyoxal as one of the causative factors in the pathogenesis of atherosclerosis and development of macrovascular

  6. Increased circulating inflammatory endothelial cells in blacks with essential hypertension.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Woollard, John R; Herrmann, Sandra M; Gloviczki, Monika L; Saad, Ahmed; Juncos, Luis A; Calhoun, David A; Rule, Andrew D; Lerman, Amir; Textor, Stephen C; Lerman, Lilach O

    2013-09-01

    Morbidity and mortality attributable to hypertension are higher in black essential hypertensive (EH) compared with white EH patients, possibly related to differential effects on vascular injury and repair. Although circulating endothelial progenitor cells (EPCs) preserve endothelial integrity, inflammatory endothelial cells (IECs) detach from sites of injury and represent markers of vascular damage. We hypothesized that blood levels of IECs and inflammatory markers would be higher in black EH compared with white EH patients. Inferior vena cava and renal vein levels of CD34+/KDR+ (EPC) and VAP-1+ (IEC) cells were measured by fluorescence-activated cell sorting in white EH and black EH patients under fixed sodium intake and blockade of the renin-angiotensin system, and compared with systemic levels in normotensive control subjects (n=19 each). Renal vein and inferior vena cava levels of inflammatory cytokines and EPC homing factors were measured by Luminex. Blood pressure, serum creatinine, lipids, and antihypertensive medications did not differ between white and black EH patients, and EPC levels were decreased in both. Circulating IEC levels were elevated in black EH patients, and inversely correlated with EPC levels (R(2)=0.58; P=0.0001). Systemic levels of inflammatory cytokines and EPC homing factors were higher in black EH compared with white EH patients, and correlated directly with IECs. Renal vein inflammatory cytokines, EPCs, and IECs did not differ from their circulating levels. Most IECs expressed endothelial markers, fewer expressed progenitor cell markers, but none showed lymphocyte or phagocytic cell markers. Thus, increased release of cytokines and IECs in black EH patients may impair EPC reparative capacity and aggravate vascular damage, and accelerate hypertension-related complications.

  7. Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain neurovasculature

    PubMed Central

    2013-01-01

    Background Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature. Methods We assessed the protein levels of lymphatic vessel endothelial hyaluronan receptor and podoplanin, which are specific to the lymphatic system and prospero-homeobox protein-1, angiopoietin-2, vascular endothelial growth factor-D, vascular endothelial growth factor receptor-3, which are expressed by both lymphatic endothelium and neurons. Levels of these proteins were measured in postmortem brains and sera from MS patients, in the myelin proteolipid protein (PLP)-induced EAE and Theiler’s murine encephalomyelitis virus (TMEV) induced demyelinating disease (TMEV-IDD) mouse models and in cell culture models of inflamed neurovasculature. Results and conclusions Intense staining for LYVE-1 was found in neurons of a subset of MS patients using immunohistochemical approaches. The lymphatic protein, podoplanin, was highly expressed in perivascular inflammatory lesions indicating signaling cross-talks between inflamed brain vasculature and lymphatic proteins in MS. The profiles of these proteins in MS patient sera discriminated between relapsing remitting MS from secondary progressive MS and normal patients. The in vivo findings were confirmed in the in vitro cell culture models of neuroinflammation. PMID:24124909

  8. Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain neurovasculature.

    PubMed

    Chaitanya, Ganta Vijay; Omura, Seiichi; Sato, Fumitaka; Martinez, Nicholas E; Minagar, Alireza; Ramanathan, Murali; Guttman, Bianca Weinstock; Zivadinov, Robert; Tsunoda, Ikuo; Alexander, Jonathan S

    2013-10-14

    Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature. We assessed the protein levels of lymphatic vessel endothelial hyaluronan receptor and podoplanin, which are specific to the lymphatic system and prospero-homeobox protein-1, angiopoietin-2, vascular endothelial growth factor-D, vascular endothelial growth factor receptor-3, which are expressed by both lymphatic endothelium and neurons. Levels of these proteins were measured in postmortem brains and sera from MS patients, in the myelin proteolipid protein (PLP)-induced EAE and Theiler's murine encephalomyelitis virus (TMEV) induced demyelinating disease (TMEV-IDD) mouse models and in cell culture models of inflamed neurovasculature. Intense staining for LYVE-1 was found in neurons of a subset of MS patients using immunohistochemical approaches. The lymphatic protein, podoplanin, was highly expressed in perivascular inflammatory lesions indicating signaling cross-talks between inflamed brain vasculature and lymphatic proteins in MS. The profiles of these proteins in MS patient sera discriminated between relapsing remitting MS from secondary progressive MS and normal patients. The in vivo findings were confirmed in the in vitro cell culture models of neuroinflammation.

  9. Tumor endothelial cells express high pentraxin 3 levels.

    PubMed

    Hida, Kyoko; Maishi, Nako; Kawamoto, Taisuke; Akiyama, Kosuke; Ohga, Noritaka; Hida, Yasuhiro; Yamada, Kenji; Hojo, Takayuki; Kikuchi, Hiroshi; Sato, Masumi; Torii, Chisaho; Shinohara, Nobuo; Shindoh, Masanobu

    2016-12-01

    It has been described that tumor progression has many similarities to inflammation and wound healing in terms of the signaling processes involved. Among biological responses, angiogenesis, which is necessary for tumor progression and metastasis, is a common hallmark; therefore, tumor blood vessels have been considered as important therapeutic targets in anticancer therapy. We focused on pentraxin 3 (PTX3), which is a marker of cancer-related inflammation, but we found no reports on its expression and function in tumor blood vessels. Here we showed that PTX3 is expressed in mouse and human tumor blood vessels based on immunohistochemical analysis. We found that PTX3 is upregulated in primary mouse and human tumor endothelial cells compared to normal endothelial cells. We also showed that PTX3 plays an important role in the proliferation of the tumor endothelial cells. These results suggest that PTX3 is an important target for antiangiogenic therapy.

  10. Cell trafficking of endothelial progenitor cells in tumor progression.

    PubMed

    de la Puente, Pilar; Muz, Barbara; Azab, Feda; Azab, Abdel Kareem

    2013-07-01

    Blood vessel formation plays an essential role in many physiologic and pathologic processes, including normal tissue growth and healing, as well as tumor progression. Endothelial progenitor cells (EPC) are a subtype of stem cells with high proliferative potential that are capable of differentiating into mature endothelial cells, thus contributing to neovascularization in tumors. In response to tumor-secreted cytokines, EPCs mobilize from the bone marrow to the peripheral blood, home to the tumor site, and differentiate to mature endothelial cells and secrete proangiogenic factors to facilitate vascularization of tumors. In this review, we summarize the expression of surface markers, cytokines, receptors, adhesion molecules, proteases, and cell signaling mechanisms involved in the different steps (mobilization, homing, and differentiation) of EPC trafficking from the bone marrow to the tumor site. Understanding the biologic mechanisms of EPC cell trafficking opens a window for new therapeutic targets in cancer.

  11. Endothelial cells and human cerebral small vessel disease.

    PubMed

    Hainsworth, Atticus H; Oommen, Asho T; Bridges, Leslie R

    2015-01-01

    Brain endothelial cells have unique properties in terms of barrier function, local molecular signaling, regulation of local cerebral blood flow (CBF) and interactions with other members of the neurovascular unit. In cerebral small vessel disease (arteriolosclerosis; SVD), the endothelial cells in small arteries survive, even when mural pathology is advanced and myocytes are severely depleted. Here, we review aspects of altered endothelial functions that have been implicated in SVD: local CBF dysregulation, endothelial activation and blood-brain barrier (BBB) dysfunction. Reduced CBF is reported in the diffuse white matter lesions that are a neuroradiological signature of SVD. This may reflect an underlying deficit in local CBF regulation (possibly via the nitric oxide/cGMP signaling pathway). While many laboratories have observed an association of symptomatic SVD with serum markers of endothelial activation, it is apparent that the origin of these circulating markers need not be brain endothelium. Our own neuropathology studies did not confirm local endothelial activation in small vessels exhibiting SVD. Local BBB failure has been proposed as a cause of SVD and associated parenchymal lesions. Some groups find that computational analyses of magnetic resonance imaging (MRI) scans, following systemic injection of a gadolinium-based contrast agent, suggest that extravasation into brain parenchyma is heightened in people with SVD. Our recent histochemical studies of donated brain tissue, using immunolabeling for large plasma proteins [fibrinogen, immunoglobulin G (IgG)], do not support an association of SVD with recent plasma protein extravasation. It is possible that a trigger leakage episode, or a size-selective loosening of the BBB, participates in SVD pathology.

  12. Obesity-induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury.

    PubMed

    Shah, Dilip; Romero, Freddy; Guo, Zhi; Sun, Jianxin; Li, Jonathan; Kallen, Caleb B; Naik, Ulhas P; Summer, Ross

    2017-03-09

    Obesity is a significant risk factor for the acute respiratory distress syndrome (ARDS). The mechanisms underlying this association are unknown. We recently showed that diet-induced obese (DIO) mice exhibit pulmonary vascular endothelial dysfunction which is associated with enhanced susceptibility to lipopolysaccharide (LPS)-induced lung injury. Here, we demonstrate that lung endothelial dysfunction in DIO mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins including PERK, IREα and ATF6, in whole lung and in lung endothelial cells isolated from DIO mice. Further, we found that lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of DIO mice. Similar changes were observed in lung endothelial cells and in whole lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation; indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-PBA, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in DIO mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the endoplasmic reticulum of pulmonary endothelial cells might protect against ARDS in obese individuals.

  13. Lymphatic Endothelial Cells Produce M-CSF, Causing Massive Bone Loss in Mice.

    PubMed

    Wang, Wensheng; Wang, Hua; Zhou, Xichao; Li, Xing; Sun, Wen; Dellinger, Michael; Boyce, Brendan F; Xing, Lianping

    2017-01-04

    Gorham-Stout disease (GSD) is a rare bone disorder characterized by aggressive osteolysis associated with lymphatic vessel invasion within bone marrow cavities. The etiology of GSD is not known, and there is no effective therapy or animal model for the disease. Here, we investigated if lymphatic endothelial cells (LECs) affect osteoclasts (OCs) to cause a GSD osteolytic phenotype in mice. We examined the effect of a mouse LEC line on osteoclastogenesis in co-cultures. LECs significantly increased receptor activator of NF-κB ligand (RANKL)-mediated OC formation and bone resorption. LECs expressed high levels of macrophage colony-stimulating factor (M-CSF), but not RANKL, interleukin-6 (IL-6), and tumor necrosis factor (TNF). LEC-mediated OC formation and bone resorption were blocked by an M-CSF neutralizing antibody or Ki20227, an inhibitor of the M-CSF receptor, c-Fms. We injected LECs into the tibias of wild-type (WT) mice and observed massive osteolysis on X-ray and micro-CT scans. Histology showed that LEC-injected tibias had significant trabecular and cortical bone loss and increased OC numbers. M-CSF protein levels were significantly higher in serum and bone marrow plasma of mice given intra-tibial LEC injections. Immunofluorescence staining showed extensive replacement of bone and marrow by podoplanin+ LECs. Treatment of LEC-injected mice with Ki20227 significantly decreased tibial bone destruction. In addition, lymphatic vessels in a GSD bone sample were stained positively for M-CSF. Thus, LECs cause bone destruction in vivo in mice by secreting M-CSF, which promotes OC formation and activation. Blocking M-CSF signaling may represent a new therapeutic approach for treatment of patients with GSD. Furthermore, tibial injection of LECs is a useful mouse model to study GSD. © 2017 American Society for Bone and Mineral Research.

  14. Endothelial RIG-I activation impairs endothelial function

    SciTech Connect

    Asdonk, Tobias; Nickenig, Georg; Zimmer, Sebastian

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  15. Epigallocatechin gallate inhibits endothelial exocytosis.

    PubMed

    Yamakuchi, Munekazu; Bao, Clare; Ferlito, Marcella; Lowenstein, Charles J

    2008-07-01

    Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.

  16. Mifepristone-exposured human endometrial endothelial cells in vitro.

    PubMed

    Helmestam, Malin; Lindgren, Karin Elvine; Stavreus-Evers, Anneli; Olovsson, Matts

    2014-03-01

    The antiprogestin mifepristone has been used for more than 20 years as a medical alternative for early pregnancy termination. After mifepristone administration, significant changes have been observed in the endometrial vessels, with cell injury and cell death in capillary endothelial cells. In this study, the effect of mifepristone on human endometrial endothelial cells (HEECs) in vitro was evaluated using proliferation and viability assays, quantitative polymerase chain reaction of markers important for the regulation of angiogenesis, and by tube formation assay. There were no detectable effects of mifepristone on HEECs messenger RNA expression of the studied markers. Exposure to mifepristone did not alter tube formation. However, mifepristone exposure to HEECs cocultured with endometrial stromal cells significantly reduced the activity in the tube formation assay compared with mifepristone exposure of HEECs in monoculture. This implies that mifepristone causes changes in HEEC-associated angiogenic activity and that this effect is mediated through stromal cells via paracrine mechanisms.

  17. Mifepristone-Exposured Human Endometrial Endothelial Cells In Vitro

    PubMed Central

    Lindgren, Karin Elvine; Stavreus-Evers, Anneli; Olovsson, Matts

    2014-01-01

    The antiprogestin mifepristone has been used for more than 20 years as a medical alternative for early pregnancy termination. After mifepristone administration, significant changes have been observed in the endometrial vessels, with cell injury and cell death in capillary endothelial cells. In this study, the effect of mifepristone on human endometrial endothelial cells (HEECs) in vitro was evaluated using proliferation and viability assays, quantitative polymerase chain reaction of markers important for the regulation of angiogenesis, and by tube formation assay. There were no detectable effects of mifepristone on HEECs messenger RNA expression of the studied markers. Exposure to mifepristone did not alter tube formation. However, mifepristone exposure to HEECs cocultured with endometrial stromal cells significantly reduced the activity in the tube formation assay compared with mifepristone exposure of HEECs in monoculture. This implies that mifepristone causes changes in HEEC-associated angiogenic activity and that this effect is mediated through stromal cells via paracrine mechanisms. PMID:23885098

  18. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model.

    PubMed

    Neuhaus, Winfried; Samwer, Fabian; Kunzmann, Steffen; Muellenbach, Ralf M; Wirth, Michael; Speer, Christian P; Roewer, Norbert; Förster, Carola Y

    2012-11-01

    The blood-air barrier in the lung consists of the alveolar epithelium, the underlying capillary endothelium, their basement membranes and the interstitial space between the cell layers. Little is known about the interactions between the alveolar and the blood compartment. The aim of the present study was to gain first insights into the possible interplay between these two neighbored cell layers. We established an in vitro Transwell model of the alveolar epithelium based on human cell line H441 and investigated the influence of conditioned medium obtained from human lung endothelial cell line HPMEC-ST1.6R on the barrier properties of the H441 layers. As control for tissue specificity H441 layers were exposed to conditioned medium from human brain endothelial cell line hCMEC/D3. Addition of dexamethasone was necessary to obtain stable H441 cell layers. Moreover, dexamethasone increased expression of cell type I markers (caveolin-1, RAGE) and cell type II marker SP-B, whereas decreased the transepithelial electrical resistance (TEER) in a concentration dependent manner. Soluble factors obtained from the lung endothelial cell line increased the barrier significantly proven by TEER values and fluorescein permeability on the functional level and by the differential expression of tight junctional proteins on the molecular level. In contrast to this, soluble factors derived from brain endothelial cells weakened the barrier significantly. In conclusion, soluble factors from lung endothelial cells can strengthen the alveolar epithelium barrier in vitro, which suggests communication between endothelial and epithelial cells regulating the integrity of the blood-air barrier.

  19. The Endothelial Glycocalyx: New Diagnostic and Therapeutic Approaches in Sepsis

    PubMed Central

    Koczera, Patrick

    2016-01-01

    Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The endothelial glycocalyx is one of the earliest sites involved during sepsis. This fragile layer is a complex network of cell-bound proteoglycans, glycosaminoglycan side chains, and sialoproteins lining the luminal side of endothelial cells with a thickness of about 1 to 3 μm. Sepsis-associated alterations of its structure affect endothelial permeability and result in the liberation of endogenous damage-associated molecular patterns (DAMPs). Once liberated in the circulatory system, DAMPs trigger the devastating consequences of the proinflammatory cascades in sepsis and septic shock. In this way, the injury to the glycocalyx with the consecutive release of DAMPs contributes to a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and septic cardiomyopathy. Moreover, the extent of glycocalyx degradation serves as a marker of endothelial dysfunction and sepsis severity. In this review, we highlight the crucial role of the glycocalyx in sepsis as a diagnostic tool and discuss the potential of members of the endothelial glycocalyx serving as hopeful therapeutic targets in sepsis-associated multiple organ failures. PMID:27699168

  20. Endothelial dysfunction and tendinopathy: how far have we come?

    PubMed

    Papalia, R; Moro, L; Franceschi, F; Albo, E; D'Adamio, S; Di Martino, A; Vadalà, G; Faldini, C; Denaro, V

    2013-12-01

    Symptomatic tendon tears are one of the most important causes of pain and joint dysfunction. Among the intrinsic causes, vascularization recently gained a major role. Endothelial function is indeed a key factor, as well as vascular tone and thrombotic factors, in the regulation of vascular homeostasis and the composition of vascular wall. In this review, we studied systematically whether there is a relationship between endothelial dysfunction and tendinopathy. A literature search was performed using the isolated or combined keywords endothelial dysfunction and tendon,' 'nitric oxide (NO) and tendinopathy,' and 'endothelial dysfunction in tendon healing.' We identified 21 published studies. Of the selected studies, 9 were in vivo studies, 2 focusing on animals and 7 on humans, while 12 reported about in vitro evaluations, where 7 were carried out on humans and 5 on animals. The evidence about a direct relationship between tendinopathy and endothelial dysfunction is still poor. As recent studies have shown, there is no significant improvement in clinical and functional assessments after treatment with NO in patients suffering from tendinopathy in different locations. No significant differences were identified in the outcomes reported for experiment group when compared with controls treated with conventional surgical procedures or rehabilitation programs. Nitric oxide could be a marker to quantify the response of the endothelium to mechanical stress or hypoxia indicating the final balance between vasodilatating and vasoconstricting factors and their effects, but more ad stronger evidence is still needed to fully support this practice.

  1. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction.

    PubMed

    Giannotti, Giovanna; Doerries, Carola; Mocharla, Pavani S; Mueller, Maja F; Bahlmann, Ferdinand H; Horvàth, Tibor; Jiang, Hong; Sorrentino, Sajoscha A; Steenken, Nora; Manes, Costantina; Marzilli, Mario; Rudolph, K Lenhard; Lüscher, Thomas F; Drexler, Helmut; Landmesser, Ulf

    2010-06-01

    Prehypertension is a highly frequent condition associated with an increased cardiovascular risk. Endothelial dysfunction is thought to promote the development of hypertension and vascular disease; however, underlying mechanisms remain to be further determined. The present study characterizes for the first time the in vivo endothelial repair capacity of early endothelial progenitor cells (EPCs) in patients with prehypertension/hypertension and examines its relation with endothelial function. Early EPCs were isolated from healthy subjects and newly diagnosed prehypertensive and hypertensive patients (n=52). In vivo endothelial repair capacity of EPCs was examined by transplantation into a nude mouse carotid injury model. EPC senescence was determined (RT-PCR of telomere length). NO and superoxide production of EPCs were measured using electron spin resonance spectroscopy analysis. CD34(+)/KDR(+) mononuclear cells and circulating endothelial microparticles were examined by fluorescence-activated cell sorter analysis. Endothelium-dependent and -independent vasodilations were determined by high-resolution ultrasound. In vivo endothelial repair capacity of EPCs was substantially impaired in prehypertensive/hypertensive patients as compared with healthy subjects (re-endothelialized area: 15+/-3%/13+/-2% versus 28+/-3%; P<0.05 versus healthy subjects). Senescence of EPCs in prehypertension/hypertension was substantially increased, and NO production was markedly reduced. Moreover, reduced endothelial repair capacity of early EPCs was significantly related to an accelerated senescence of early EPCs and impaired endothelial function. The present study demonstrates for the first time that in vivo endothelial repair capacity of early EPCs is reduced in patients with prehypertension and hypertension, is related to EPC senescence and impaired endothelial function, and likely represents an early event in the development of hypertension.

  2. Detection of early endothelial damage in patients with Raynaud's phenomenon.

    PubMed

    Gualtierotti, Roberta; Ingegnoli, Francesca; Griffini, Samantha; Grovetti, Elena; Borghi, Maria Orietta; Bucciarelli, Paolo; Meroni, Pier Luigi; Cugno, Massimo

    2017-09-01

    Raynaud's phenomenon (RP) can be the first manifestation of systemic sclerosis (SSc) or other connective tissue diseases (CTDs), often preceding an overt disease by years. It is not known if markers of endothelial damage are detectable in those RP patients who subsequently develop a CTD. We studied 82 RP patients at their first evaluation to correlate the levels of endothelial markers with the subsequent development of an overt disease 36months later. We measured plasma levels of tissue-type plasminogen activator (t-PA) and von Willebrand factor (vWF), two markers of endothelial damage, and interleukin-6 (IL-6), a pro-inflammatory cytokine. Thirty sex- and age-matched healthy subjects (HS) served as controls. At baseline, 67 patients showed capillaroscopic normal pattern (CNP) and 15 patients, of which 11 were very early SSc, had capillaroscopic scleroderma pattern (CSP). Plasma levels of t-PA, vWF and IL-6 were higher in patients with CNP (p=0.0001) than in HS and even much higher in patients with CSP (p=0.0001). In patients with CNP and RP of recent onset (<18months), vWF plasma levels were higher when autoantibodies were present (p=0.020). After 36months, among 48 RP patients with CNP who remained in follow-up, 24 were diagnosed as primary and 24 as secondary RP. In secondary RP, basal levels of t-PA, IL-6 and particularly vWF were higher than in primary RP (p=0.005, p=0.004, p=0.0001 respectively) and HS (p=0.0001 for all). Our findings indicate that markers of endothelial damage are elevated in RP patients who subsequently develop SSc or other CTDs, even in the absence of capillaroscopic abnormalities. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Origins of circulating endothelial cells and endothelial outgrowth from blood

    PubMed Central

    Lin, Yi; Weisdorf, Daniel J.; Solovey, Anna; Hebbel, Robert P.

    2000-01-01

    Normal adults have a small number of circulating endothelial cells (CEC) in peripheral blood, and endothelial outgrowth has been observed from cultures of blood. In this study we seek insight into the origins of CEC and endothelial outgrowth from cultures of blood. Fluorescence in situ hybridization analysis of blood samples from bone marrow transplant recipients who had received gender-mismatched transplants 5–20 months earlier showed that most CEC in fresh blood had recipient genotype. Endothelial outgrowth from the same blood samples after 9 days in culture (5-fold expansion) was still predominantly of the recipient genotype. In contrast, endothelial outgrowth after ∼1 month (102-fold expansion) was mostly of donor genotype. Thus, recipient-genotype endothelial cells expanded only ∼20-fold over this period, whereas donor-genotype endothelial cells expanded ∼1000-fold. These data suggest that most CEC in fresh blood originate from vessel walls and have limited growth capability. Conversely, the data indicate that outgrowth of endothelial cells from cultures of blood is mostly derived from transplantable marrow-derived cells. Because these cells have more delayed outgrowth but a greater proliferative rate, our data suggest that they are derived from circulating angioblasts. PMID:10619863

  4. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  5. Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms

    PubMed Central

    Malashicheva, Anna; Kostina, Daria; Kostina, Aleksandra; Irtyuga, Olga; Voronkina, Irina; Smagina, Larisa; Ignatieva, Elena; Gavriliuk, Natalia; Uspensky, Vladimir; Moiseeva, Olga; Vaage, Jarle; Kostareva, Anna

    2016-01-01

    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis. PMID:26904289

  6. Phenotypic and Functional Changes of Endothelial and Smooth Muscle Cells in Thoracic Aortic Aneurysms.

    PubMed

    Malashicheva, Anna; Kostina, Daria; Kostina, Aleksandra; Irtyuga, Olga; Voronkina, Irina; Smagina, Larisa; Ignatieva, Elena; Gavriliuk, Natalia; Uspensky, Vladimir; Moiseeva, Olga; Vaage, Jarle; Kostareva, Anna

    2016-01-01

    Thoracic aortic aneurysm develops as a result of complex series of events that alter the cellular structure and the composition of the extracellular matrix of the aortic wall. The purpose of the present work was to study the cellular functions of endothelial and smooth muscle cells from the patients with aneurysms of the thoracic aorta. We studied endothelial and smooth muscle cells from aneurysms in patients with bicuspid aortic valve and with tricuspid aortic valve. The expression of key markers of endothelial (CD31, vWF, and VE-cadherin) and smooth muscle (SMA, SM22α, calponin, and vimentin) cells as well extracellular matrix and MMP activity was studied as well as and apoptosis and cell proliferation. Expression of functional markers of endothelial and smooth muscle cells was reduced in patient cells. Cellular proliferation, migration, and synthesis of extracellular matrix proteins are attenuated in the cells of the patients. We show for the first time that aortic endothelial cell phenotype is changed in the thoracic aortic aneurysms compared to normal aortic wall. In conclusion both endothelial and smooth muscle cells from aneurysms of the ascending aorta have downregulated specific cellular markers and altered functional properties, such as growth rate, apoptosis induction, and extracellular matrix synthesis.

  7. Methodological issues in the assessment of skin microvascular endothelial function in humans.

    PubMed

    Cracowski, Jean-Luc; Minson, Christopher T; Salvat-Melis, Muriel; Halliwill, John R

    2006-09-01

    The study of microvascular function can be performed in humans using laser Doppler flowmetry of the skin. This technology lends itself to a wide range of applications for studying the endothelial function of skin blood vessels. We review the advantages and limitations of postocclusive hyperemia, local thermal hyperemia, acetylcholine iontophoresis, flowmotion and association with microdialysis as tools with which to investigate skin microvascular endothelial function in humans. Postocclusive hyperemia, thermal hyperemia and acetylcholine iontophoresis provide integrated indexes of microvascular function rather than specific endothelial markers. However, they are valuable tools and can be used as surrogate endpoints in clinical trials in which the assessment of microvascular function in humans is required.

  8. Characterization and comparison of embryonic stem cell-derived KDR+ cells with endothelial cells.

    PubMed

    Sun, Xuan; Cheng, Lamei; Duan, Huaxin; Lin, Ge; Lu, Guangxiu

    2012-09-01

    Growing interest in utilizing endothelial cells (ECs) for therapeutic purposes has led to the exploration of human embryonic stem cells (hESCs) as a potential source for endothelial progenitors. In this study, ECs were induced from hESC lines and their biological characteristics were analyzed and compared with both cord blood endothelial progenitor cells (CBEPCs) and human umbilical vein endothelial cells (HUVECs) in vitro. The results showed that isolated embryonic KDR+ cells (EC-KDR+) display characteristics that were similar to CBEPCs and HUVECs. EC-KDR+, CBEPCs and HUVECs all expressed CD31 and CD144, incorporated DiI-Ac-LDL, bound UEA1 lectin, and were able to form tube-like structures on Matrigel. Compared with CBEPCs and HUVECs, the expression level of endothelial progenitor cell markers such as CD133 and KDR in EC-KDR+ was significantly higher, while the mature endothelial marker vWF was lowly expressed in EC-KDR+. In summary, the study showed that EC-KDR+ are primitive endothelial-like progenitors and might be a potential source for therapeutic vascular regeneration and tissue engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation

    PubMed Central

    McCabe, Kathryn L.; Kunzevitzky, Noelia J.; Chiswell, Brian P.; Xia, Xin; Goldberg, Jeffrey L.; Lanza, Robert

    2015-01-01

    Aim To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. Materials and Methods Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression. Results hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPaseα1 (ATPA1) on the apical surface in monolayer culture, and produced the key proteins of Descemet’s membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. Conclusion hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium. PMID:26689688

  10. Effects of ethanol on the properties of platelets and endothelial cells in model experiments.

    PubMed

    Stach, Ksenija; Kälsch, Anna-Isabelle; Weiß, Christel; Elmas, Elif; Borggrefe, Martin; Kälsch, Thorsten

    2012-06-26

    To investigate effects of ethanol on activity markers of atherosclerosis in an in vitro endothelial cell model. After 24 h incubation with ethanol (0.0095%), human umbilical vein endothelial cells were stimulated for 1 h with lipopolysaccharide, and were then incubated in direct contact with activated platelets. Following this incubation, the expression of CD40L and CD62P on platelets, and the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), urokinase plasminogen activator receptor (uPAR), and membrane-type 1 matrix metalloproteinase (MT1-MMP) on endothelial cells were measured by flow cytometry. The increased expression of VCAM-1 and uPAR on endothelial cells by proinflammatory stimulation with activated platelets was significantly reduced through pre-incubation with ethanol (P < 0.05). Furthermore, platelets in direct contact with ethanol and with endothelial cells pre-incubated in ethanol showed a significant reduction in their CD40L expression (P < 0.05). Ethanol had no significant effect on ICAM-1 and MT1-MMP expression on endothelial cells. Ethanol directly attenuates platelet activation and has significant endothelial cell-mediated effects on selected markers of atherosclerosis in vitro. These findings underline possible protective effects of ethanol on atherosclerosis.

  11. Interaction of recombinant octameric hemoglobin with endothelial cells.

    PubMed

    Gaucher, Caroline; Domingues-Hamdi, Élisa; Prin-Mathieu, Christine; Menu, Patrick; Baudin-Creuza, Véronique

    2015-02-01

    Hemoglobin-based oxygen carriers (HBOCs) may generate oxidative stress, vasoconstriction and inflammation. To reduce these undesirable vasoactive properties, we increased hemoglobin (Hb) molecular size by genetic engineering with octameric Hb, recombinant (r) HbβG83C. We investigate the potential side effects of rHbβG83C on endothelial cells. The rHbβG83C has no impact on cell viability, and induces a huge repression of endothelial nitric oxide synthase gene transcription, a marker of vasomotion. No induction of Intermolecular-Adhesion Molecule 1 and E-selectin (inflammatory markers) transcription was seen. In the presence of rHbβG83C, the transcription of heme oxygenase-1 (oxidative stress marker) is weakly increased compared to the two other HBOCs (references) or Voluven (control). This genetically engineered octameric Hb, based on a human Hb βG83C mutant, leads to little impact at the level of endothelial cell inflammatory response and thus appears as an interesting molecule for HBOC development.

  12. Organic nitrates differentially modulate circulating endothelial progenitor cells and endothelial function in patients with symptomatic coronary artery disease.

    PubMed

    Thum, Thomas; Wiebking, Volker; Ertl, Georg; Bauersachs, Johann

    2011-08-15

    Symptomatic coronary artery disease (CAD) is usually treated with organic nitrates. Endothelial progenitor cells (EPCs) are a circulating cell population participating in vascular homeostasis in a nitric oxide-dependent manner. We investigated the effects of the nitric oxide donors isosorbide dinitrate (ISDN) and pentaerythritol tetranitrate (PETN) on EPC and endothelial function in patients with symptomatic CAD. We randomized 36 patients with angiographically proven CAD to treatment with either ISDN (40 mg retarded release orally two times per day; n = 18) or PETN (80 mg orally two times per day; n = 18) for 14 days (clinical trial number: NCT01030367). PETN treatment substantially increased numbers of circulating CD34(+)/KDR(+) EPCs (p = 0.02), whereas no effects were observed in patients treated with ISDN. EPC function assessed by formation of endothelial colonies was enhanced by twofold (p = 0.04) in patients treated with PETN. No changes were observed after ISDN treatment. Endothelial function, assessed by peripheral arterial tonometry, remained unchanged during PETN treatment, but was significantly impaired in patients treated with ISDN. Treatment of symptomatic CAD patients with PETN for 14 days significantly increased levels of circulating EPC and improved markers for EPC function, whereas ISDN was without effects on EPCs and worsened endothelial function.

  13. STUDIES ON ENDOTHELIAL REACTIONS

    PubMed Central

    Foot, Nathan Chandler

    1920-01-01

    1. The injection of a colloidal suspension, or sol, of carbon into the veins of a living animal, as recommended by McJunkin, furnishes an apparently reliable means of tracing the so called epithelioid cell of the pulmonary tubercle from its origin in the vascular endothelium to the lesion. 2. Experimental tubercles are formed in the lung, as in the liver, primarily by cells originating in the capillary endothelium. These cells are probably present in small numbers in the normal lung, lying free both in the alveolar wall and the air vesicles. In response to infection they proliferate in the capillary walls in the vicinity of the invading organisms, migrate in steadily increasing numbers, and, arriving at the site of the infection, further multiply and to some extent fuse to form the syncytia known as giant cells. 3. The epithelial cell takes no active part in the process; its proliferation tends to repair denuded surfaces and is regenerative rather than combative or phagocytic in nature. This cell is free from carbon and stains only diffusely with carmine, in contradistinction to the endothelial cell which readily takes up both pigments in granular form. 4. The cells of endothelial origin not only phagocytose tubercle bacilli, but carry them into the tissues, for example into lymph nodes, by way of the lymphatics, or into other lung lobules by way of the air passages, in which they are readily demonstrable. PMID:19868459

  14. Endothelial to mesenchymal transition contributes to arsenic-trioxide-induced cardiac fibrosis

    PubMed Central

    Zhang, Yong; Wu, Xianxian; Li, Yang; Zhang, Haiying; Li, Zhange; Zhang, Ying; Zhang, Longyin; Ju, Jiaming; Liu, Xin; Chen, Xiaohui; Glybochko, Peter V.; Nikolenko, Vladimir; Kopylov, Philipp; Xu, Chaoqian; Yang, Baofeng

    2016-01-01

    Emerging evidence has suggested the critical role of endothelial to mesenchymal transition (EndMT) in fibrotic diseases. The present study was designed to examine whether EndMT is involved in arsenic trioxide (As2O3)-induced cardiac fibrosis and to explore the underlying mechanisms. Cardiac dysfunction was observed in rats after exposure to As2O3 for 15 days using echocardiography, and the deposition of collagen was detected by Masson’s trichrome staining and electron microscope. EndMT was indicated by the loss of endothelial cell markers (VE-cadherin and CD31) and the acquisition of mesenchymal cell markers (α-SMA and FSP1) determined by RT-PCR at the mRNA level and Western blot and immunofluorescence analysis at the protein level. In the in-vitro experiments, endothelial cells acquired a spindle-shaped morphology accompanying downregulation of the endothelial cell markers and upregulation of the mesenchymal cell markers when exposed to As2O3. As2O3 activated the AKT/GSK-3β/Snail signaling pathway, and blocking this pathway with PI3K inhibitor (LY294002) abolished EndMT in As2O3-treated endothelial cells. Our results highlight that As2O3 is an EndMT-promoting factor during cardiac fibrosis, suggesting that targeting EndMT is beneficial for preventing As2O3-induced cardiac toxicity. PMID:27671604

  15. Atherosclerosis- and age-related multinucleated variant endothelial cells in primary culture from human aorta.

    PubMed Central

    Tokunaga, O.; Fan, J. L.; Watanabe, T.

    1989-01-01

    Endothelial cells were cultured from human aortas and inferior venae cavae of autopsied subjects ranging in age from infancy to 85 years. Endothelial cells in 32 of more than 100 attempted cultures were pure enough for evaluation. Emerged endothelial cells in primary culture were classified into two types: typical endothelium and variant endothelium. Typical endothelial cells were small, round to polygonal shaped, and were arranged uniformly. Their diameter ranged from 50 to 70 microns. Variant endothelial cells were larger, ranging from 100 to 200 microns in diameter, and giant endothelial cells measuring more than 250 microns in diameter were scattered among them. Variant endothelial cells were usually multinucleated and possessed endothelium-specific markers of vWF and Weibel-Palade bodies. No incorporation of [3H]thymidine was found in the nuclei of cultured variant endothelial cells. Although most cultured endothelial cells were of the typical type, variant endothelial cells were interspersed throughout the culture. The ratio of variant endothelial cells to typical cells correlated well with the severity of atherosclerosis, but less so with aging. The number of variant endothelial cells in cultures from inferior venae cavae was slight and constant throughout all age groups. The presence of multinucleated endothelial cells in in vivo aortas was confirmed by both scanning and transmission electron microscopy. They sometimes existed in colonies in the aortas from elderly subjects with intimal-thickened or advanced atherosclerotic lesions. These results indicate that variant endothelial cells were present in vivo and their ratio in primary culture reflected the in vivo population. It is likely that these cells were formed by adhesion of adjacent typical endothelial cells and that this process was affected more by atherosclerosis than by aging. Although it is not clear if the multinucleated variant cells were formed before the formation of atherosclerotic plaque or

  16. Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells.

    PubMed

    Moussa, Mouhamed Djahoum; Santonocito, Cristina; Fagnoul, David; Donadello, Katia; Pradier, Olivier; Gaussem, Pascale; De Backer, Daniel; Vincent, Jean-Louis

    2015-02-01

    Endothelial cell activation and dysfunction are involved in the pathophysiology of ARDS. Circulating endothelial cells (CECs) may be a useful marker of endothelial dysfunction and damage but have been poorly studied in ARDS. We hypothesized that the CEC count may be elevated in patients with sepsis-related ARDS compared to those with sepsis without ARDS. ARDS was defined according to the Berlin consensus definition. The study population included 17 patients with moderate or severe ARDS, 9 with mild ARDS, 13 with sepsis and no ARDS, 13 non-septic patients, and 12 healthy volunteers. Demographic, hemodynamic, and prognostic variables, including PaO(2)/FiO(2) ratio, 28-day survival, blood lactate, APACHE II, and SOFA score, were recorded. CECs were counted in arterial blood samples using the reference CD146 antibody-based immunomagnetic isolation and UEA1-FITC staining method. Measurements were performed 12-24 h after diagnosis of ARDS and repeated daily for 3 days. The median day-1 CEC count was significantly higher in patients with moderate or severe ARDS than in mild ARDS or septic-control patients [27.2 (18.3-49.4) vs. 17.4 (11-24.5) cells/ml (p < 0.034), and 18.4 (9.1-31) cells/ml (p < 0.035), respectively]. All septic patients (with or without ARDS) had higher day-1 CEC counts than the non-septic patients [19.6 (14.2-30.6) vs. 10.8 (5.7-13.2) cells/ml, p = 0.002]. The day-1 CEC count was significantly higher in ARDS patients than in other critically ill patients, and in moderate or severe ARDS patients compared to those with milder disease, making it a potentially useful marker of ARDS severity.

  17. Human Bone Derived Collagen for the Development of an Artificial Corneal Endothelial Graft. In Vivo Results in a Rabbit Model

    PubMed Central

    Vázquez, Natalia; Chacón, Manuel; Rodríguez-Barrientos, Carlos A.; Merayo-Lloves, Jesús; Naveiras, Miguel; Baamonde, Begoña; Alfonso, Jose F.; Zambrano-Andazol, Iriana; Riestra, Ana C.; Meana, Álvaro

    2016-01-01

    Corneal keratoplasty (penetrating or lamellar) using cadaveric human tissue, is nowadays the main treatment for corneal endotelial dysfunctions. However, there is a worldwide shortage of donor corneas available for transplantation and about 53% of the world’s population have no access to corneal transplantation. Generating a complete cornea by tissue engineering is still a tough goal, but an endothelial lamellar graft might be an easier task. In this study, we developed a tissue engineered corneal endothelium by culturing human corneal endothelial cells on a human purified type I collagen membrane. Human corneal endothelial cells were cultured from corneal rims after corneal penetrating keratoplasty and type I collagen was isolated from remnant cancellous bone chips. Isolated type I collagen was analyzed by western blot, liquid chromatography -mass spectrometry and quantified using the exponentially modified protein abundance index. Later on, collagen solution was casted at room temperature obtaining an optically transparent and mechanically manageable membrane that supports the growth of human and rabbit corneal endothelial cells which expressed characteristic markers of corneal endothelium: zonula ocluddens-1 and Na+/K+ ATPase. To evaluate the therapeutic efficiency of our artificial endothelial grafts, human purified type I collagen membranes cultured with rabbit corneal endothelial cells were transplanted in New Zealand white rabbits that were kept under a minimal immunosuppression regimen. Transplanted corneas maintained transparency for as long as 6 weeks without obvious edema or immune rejection and maintaining the same endothelial markers that in a healthy cornea. In conclusion, it is possible to develop an artificial human corneal endothelial graft using remnant tissues that are not employed in transplant procedures. This artificial endothelial graft can restore the integrality of corneal endothelium in an experimental model of endothelial dysfunction

  18. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord.

    PubMed

    Li, Yu-Qing; Chen, Paul; Jain, Vipan; Reilly, Raymond M; Wong, C Shun

    2004-02-01

    Using a rat spinal cord model, this study was designed to characterize radiation-induced vascular endothelial cell loss and its relationship to early blood-brain barrier disruption in the central nervous system. Adult rats were given a single dose of 0, 2, 8, 19.5, 22, 30 or 50 Gy to the cervical spinal cord. At various times up to 2 weeks after irradiation, the spinal cord was processed for histological and immunohistochemical analysis. Radiation-induced apoptosis was assessed by morphology and TdT-mediated dUTP nick end labeling combined with immunohistochemical markers for endothelial and glial cells. Image analysis was performed to determine endothelial cell and microvessel density using immunohistochemistry with endothelial markers, namely endothelial barrier antigen, glucose transporter isoform 1, laminin and zonula occludens 1. Blood-spinal cord barrier permeability was assessed using immunohistochemistry for albumin and (99m)Tc-diethylenetriamine pentaacetic acid as a vascular tracer. Endothelial cell proliferation was assessed using in vivo BrdU labeling. During the first 24 h after irradiation, apoptotic endothelial cells were observed in the rat spinal cord. The decrease in endothelial cell density at 24 h after irradiation was associated with an increase in albumin immunostaining around microvessels. The decrease in the number of endothelial cells persisted for 7 days and recovery of endothelial density was apparent by day 14. A similar pattern of blood-spinal cord barrier disruption and recovery of permeability was observed over the 2 weeks, and an increase in BrdU-labeled endothelial cells was seen at day 3. These results are consistent with an association between endothelial cell death and acute blood-spinal cord barrier disruption in the rat spinal cord after irradiation.

  19. Na(+), K(+)-ATPase dysfunction causes cerebrovascular endothelial cell degeneration in rat prefrontal cortex slice cultures.

    PubMed

    Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Katsuki, Hiroshi

    2016-08-01

    Cerebrovascular endothelial cell dysfunction resulting in imbalance of cerebral blood flow contributes to the onset of psychiatric disorders such as depression, schizophrenia and bipolar disorder. Although decrease in Na(+), K(+)-ATPase activity has been reported in the patients with schizophrenia and bipolar disorder, the contribution of Na(+), K(+)-ATPase to endothelial cell dysfunction remains poorly understood. Here, by using rat neonatal prefrontal cortex slice cultures, we demonstrated that pharmacological inhibition of Na(+), K(+)-ATPase by ouabain induced endothelial cell injury. Treatment with ouabain significantly decreased immunoreactive area of rat endothelial cell antigen-1 (RECA-1), a marker of endothelial cells, in a time-dependent manner. Ouabain also decreased Bcl-2/Bax ratio and phosphorylation level of glycogen synthase kinase 3β (GSK3β) (Ser9), which were prevented by lithium carbonate. On the other hand, ouabain-induced endothelial cell injury was exacerbated by concomitant treatment with LY294002, an inhibitor of phosphoinositide 3- (PI3-) kinase. We also found that xestospongin C, an inhibitor of inositol triphosphate (IP3) receptor, but not SEA0400, an inhibitor of Na(+), Ca(2+) exchanger (NCX), protected endothelial cells from cytotoxicity of ouabain. These results suggest that cerebrovascular endothelial cell degeneration induced by Na(+), K(+)-ATPase inhibition resulting in Ca(2+) release from endoplasmic reticulum (ER) and activation of GSK3β signaling underlies pathogenesis of these psychiatric disorders.

  20. Biological behaviour and role of endothelial progenitor cells in vascular diseases.

    PubMed

    Zhang, Qiu-hua; She, Ming-peng

    2007-12-20

    To review the biological behaviour of endothelial progenitor cells and their role in vascular diseases. Data sources The data used in this review were mainly from Medline and PubMed for relevant English language articles published from 1985 to March 2007. The search term was "endothelial progenitor cells". Study selection Articles about the biological behaviour of endothelial progenitor cells and their roles in the pathogenesis of vascular diseases such as atherogenesis were used. Progenitor cells in bone marrow, peripheral blood and adventitia can differentiate into mature endothelial cells (ECs). The progenitor cells, which express certain surface markers including AC133, CD34 and KDR, enable restoration of the microcirculation and ECs when injury or ischaemia occurs. Endothelial progenitor cells used in experimental models and clinical trials for ischaemic syndromes could restore endothelial integrity and inhibit neointima development. Moreover, their number and functional properties are influenced by certain cytokines and atherosclerotic risk factors. Impairment of the progenitor cells might limit the regenerative capacity, even lead to the development of atherosclerosis or other vascular diseases. Endothelial progenitor cells have a particular role in prevention and treatment of certain cardiovascular diseases. However, many challenges remain in understanding differentiation of endothelial progenitor cells, their mobilization and revascularization.

  1. Endothelial cell permeability to water and antipyrine

    SciTech Connect

    Garrick, R.A.

    1986-03-05

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water (/sup 3/HHO) and /sup 14/C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for /sup 3/HHO through the packed cells (D), the intracellular material (D/sub 2/), and the extracellular material (D/sub 1/) were 0.682, 0.932 and 2.45 x 10/sup -5/ cm/sup 2/ s/sup -1/ and for AP were 0.273, 0.355 and 1.13 x 10/sup -5/ cm/sup 2/ s/sup -1/ respectively. The permeability coefficient calculated by the series-parallel pathway model for /sup 3/HHO was higher than that for AP and for both /sup 3/HHO and AP were lower than those calculated for isolated lung cells and erythrocytes.

  2. Circulating endothelial microparticles in female migraineurs with aura.

    PubMed

    Liman, Thomas G; Bachelier-Walenta, Katrin; Neeb, Lars; Rosinski, Jana; Reuter, Uwe; Böhm, Michael; Endres, Matthias

    2015-02-01

    Endothelial microparticles (EMPs) are vesicles that are released from activated endothelial cells and serve as a surrogate for endothelial dysfunction (ED). ED may be involved in migraine pathophysiology and contribute to the increased risk of ischemic stroke, particularly in female migraineurs with aura (MA). We sought to determine whether EMPs are elevated in women with MA. In this case-control study, EMPs were detected by analysing surface markers using fluorescence-activated cell sorting (FACS). Surface markers were measured covering the main cell lines relevant in cardiovascular disease like endothelial cells, platelets, monocytes and leucocytes. Microparticles (MPs) were identified in correlation to calibration by 1 -µm calibrator beads (Beckman Coulter). Arterial stiffness was assessed using fingertip tonometry and the heart rate-adjusted augmentation index (AI). We included 29 patients with MA and 29 matched controls. MA patients had significantly higher EMPs (CD62E(+)AnnexinV(+): 5142/µl vs 1535/µl; p < 0.001; CD144(+)AnnexinV(+): 6683/µl vs 3107/µl; p < 0.001), monocytic (CD14(+)AnnexinV(+) 6378 vs 3161; p < 0.001), and platelet MPs (CD62P(+)CD42b(+)AnnexinV(+) 5450 vs 3204; p < 0.001). Activated EMPs (CD62E(+)AnnexinV(+)) correlated with heart-rate adjusted AI (r = 0.46; p < 001). EMP levels are significantly elevated in women with MA and correlated with increased AI. Our findings suggest that endothelial activation is present in women with MA. This might contribute to higher stroke risk in MA. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Mechanisms of tubulogenesis and endothelial phenotype expression by MSCs.

    PubMed

    Rytlewski, Julie A; Alejandra Aldon, M; Lewis, Evan W; Suggs, Laura J

    2015-05-01

    Stem cell-based therapies are a promising new avenue for treating ischemic disease and chronic wounds. Mesenchymal stem cells (MSCs) have a proven ability to augment the neovascularization processes necessary for wound healing and are widely popular as an autologous source of progenitor cells. Our lab has previously reported on PEGylated fibrin as a unique hydrogel that promotes spontaneous tubulogenesis of encapsulated MSCs without exogenous factors. However, the mechanisms underlying this process have remained unknown. To better understand the therapeutic value of PEGylated fibrin delivery of MSCs, we sought to clarify the relationship between biomaterial properties and cell behavior. Here we find that fibrin PEGylation does not dramatically alter the macroscopic mechanical properties of the fibrin-based matrix (less than 10% difference). It does, however, dramatically reduce the rate of diffusion through the gel matrix. PEGylated fibrin enhances the tubulogenic growth of encapsulated MSCs demonstrating fluid-filled lumens by interconnected MSCs. Image analysis gave a value of 4320 ± 1770 μm total network length versus 618 ± 443 μm for unmodified fibrin. PEGylation promotes the endothelial phenotype of encapsulated MSCs--compared to unmodified fibrin--as evidenced by higher levels of endothelial markers (von Willebrand factor, 2.2-fold; vascular endothelial cadherin, 1.8-fold) and vascular endothelial growth factor (VEGF, up to 1.8-fold). Prospective analysis of underlying molecular pathways demonstrated that this endothelial-like MSC behavior is sensitively modulated by hypoxic stress, but not VEGF supplementation as evidenced by a significant increase in VEGF and MMP-2 secretion per cell under hypoxia. Further gain-of-function studies under hypoxic stress demonstrated that hypoxia culture of MSCs in unmodified fibrin could increase both vWF and VE-cadherin levels to values that were not significantly different than cells cultured in PEGylated fibrin. This

  4. Endothelial dysfunction in morbid obesity.

    PubMed

    Mauricio, Maria Dolores; Aldasoro, Martin; Ortega, Joaquin; Vila, José María

    2013-01-01

    Morbid obesity is a chronic multifunctional disease characterized by an accumulation of fat. Epidemiological studies have shown that obesity is associated with cardiovascular and metabolic disorders. Endothelial dysfunction, as defined by an imbalance between relaxing and contractile endothelial factors, plays a central role in the pathogenesis of these cardiometabolic diseases. Diminished bioavailability of nitric oxide (NO) contributes to endothelial dysfunction and impairs endothelium- dependent vasodilatation. But this is not the only mechanism that drives to endothelial dysfunction. Obesity has been associated with a chronic inflammatory process, atherosclerosis, and oxidative stress. Moreover levels of asymmetrical dimethyl-L-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are elevated in obesity. On the other hand, increasing prostanoid-dependent vasoconstriction and decreasing vasodilator prostanoids also lead to endothelial dysfunction in obesity. Other mechanisms related to endothelin-1 (ET-1) or endothelium derived hyperpolarizing factor (EDHF) have been proposed. Bariatric surgery (BS) is a safe and effective means to achieve significant weight loss, but its use is limited only to patients with severe obesity including morbid obesity. BS also proved efficient in endothelial dysfunction reduction improving cardiovascular and metabolic comorbidities associated with morbid obesity such as diabetes, coronary artery disease, nonalcoholic fatty liver disease and cancer. This review will provide a brief overview of the mechanisms that link obesity with endothelial dysfunction, and how weight loss is a cornerstone treatment for cardiovascular comorbidities obesity-related. A better understanding of the mechanisms of obesity-induced endothelial dysfunction may help develop new therapeutic strategies to reduce cardiovascular morbidity and mortality.

  5. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury

    PubMed Central

    Friedrich, Jessica L.; Spahic, Jasmina; Knipe, Nicole; Mang, Henry; Leonard, Ellen C.; Changizi-Ashtiyani, Saeed; Bacallao, Robert L.; Molitoris, Bruce A.; Sutton, Timothy A.

    2011-01-01

    Acute kidney injury induces the loss of renal microvessels, but the fate of endothelial cells and the mechanism of potential vascular endothelial growth factor (VEGF)-mediated protection is unknown. Cumulative cell proliferation was analyzed in the kidney of Sprague-Dawley rats following ischemia-reperfusion (I/R) injury by repetitive administration of BrdU (twice daily) and colocalization in endothelial cells with CD31 or cablin. Proliferating endothelial cells were undetectable for up to 2 days following I/R and accounted for only ∼1% of BrdU-positive cells after 7 days. VEGF-121 preserved vascular loss following I/R but did not affect proliferation of endothelial, perivascular cells or tubular cells. Endothelial mesenchymal transition states were identified by localizing endothelial markers (CD31, cablin, or infused tomato lectin) with the fibroblast marker S100A4. Such structures were prominent within 6 h and sustained for at least 7 days following I/R. A Tie-2-cre transgenic crossed with a yellow fluorescent protein (YFP) reporter mouse was used to trace the fate of endothelial cells and demonstrated interstititial expansion of YFP-positive cells colocalizing with S100A4 and smooth muscle actin following I/R. The interstitial expansion of YFP cells was attenuated by VEGF-121. Multiphoton imaging of transgenic mice revealed the alteration of YFP-positive vascular cells associated with blood vessels characterized by limited perfusion in vivo. Taken together, these data indicate that vascular dropout post-AKI results from endothelial phenotypic transition combined with an impaired regenerative capacity, which may contribute to progressive chronic kidney disease. PMID:21123492

  6. Evidence of endothelial cell migration after descemet membrane endothelial keratoplasty.

    PubMed

    Jacobi, Christina; Zhivov, Andrey; Korbmacher, Judit; Falke, Karen; Guthoff, Rudolf; Schlötzer-Schrehardt, Ursula; Cursiefen, Claus; Kruse, Friedrich E

    2011-10-01

    To investigate the hypothesis that adult corneal endothelial cells can migrate after Descemet membrane endothelial keratoplasty (DMEK). Prospective observational study. Five patients with Fuchs endothelial dystrophy were examined 1 year after uneventful DMEK. These patients had been selected on the basis of slightly decentered grafts and/or large descemetorrhexis showing areas of denuded corneal stroma, which were covered by neither the patients' Descemet membrane (DM) nor the graft. These areas were investigated by in vivo confocal laser scanning microscopy using a specially designed Heidelberg Retina Tomograph II and Rostock cornea module equipped with custom-made software. Source data (frame rate 30 Hz, 384 × 384 pixels, 400 × 400 μm) were used to create large-scale maps of the scanned area in automatic real-time composite mode. In each case an on-line mapping with maximum size up to 3.2 × 3.2 mm (3072 × 3072 pixels) was performed. Corneal stroma overlying areas devoid of DM was transparent. In vivo confocal laser scanning microscopy of stroma devoid of DM revealed a monolayer of endothelial cells in all patients observed. The morphologic pattern of these cells was similar to that of endothelial cells on DM grafts but different from the morphology of the patients' own endothelium, suggesting migration of donor endothelial cells from DMEK grafts. The results strongly support the hypothesis that adult corneal endothelial cells are able to migrate in the human eye. Furthermore, we provide evidence to support the hypothesis that grafted endothelium migrates onto the host tissue, repopulating the corneal stroma with a regular endothelial phenotype. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Glucose and angiotensin II-derived endothelial extracellular vesicles regulate endothelial dysfunction via ERK1/2 activation.

    PubMed

    Taguchi, Kumiko; Hida, Mari; Narimatsu, Haruka; Matsumoto, Takayuki; Kobayashi, Tsuneo

    2017-02-01

    In various diseases, including diabetes, extracellular vesicles (EVs) have been detected in circulation and tissues. EVs are small membrane vesicles released from various cell types under varying conditions. Recently, endothelial cell-derived EVs (EEVs) were identified as a marker of endothelial dysfunction in diabetes, but the ensuing mechanisms remain poorly understood. In this study, we dissected the ensuing pathways with respect to nitric oxide (NO) production under the condition of type 2 diabetes. Human umbilical vein endothelial cells (HUVECs) were stimulated with glucose alone and with glucose in combination with angiotensin II (Ang II) for 48 h. In supernatants from glucose + Ang II-stimulated HUVECs, release of EEVs was assessed using Western blotting with an anti-CD144 antibody. EEV release was significantly increased after stimulation of HUVECs, and high glucose + Ang II-derived EEVs impaired ACh-induced vascular relaxation responses and NO production in mice aortic rings. Furthermore, high glucose + Ang II-derived EEVs induced ERK1/2 signalling and decreased endothelial NO synthase (eNOS) protein expression in mice aortas. Furthermore, in the presence of the MEK/ERK1/2 inhibitor PD98059, high glucose plus Ang II treatment stimulated EEVs in HUVECs and those EEVs prevented the impairments of ACh-induced relaxation and NO production in mice aortas. These data strongly indicate that high glucose and Ang II directly affect endothelial cells and the production of EEVs; the resultant EEVs aggravate endothelial dysfunction by regulating eNOS protein levels and ERK1/2 signalling in mice aortas.

  8. Decellularized extracellular matrix of human umbilical vein endothelial cells promotes endothelial differentiation of stem cells from exfoliated deciduous teeth.

    PubMed

    Gong, Ting; Heng, Boon Chin; Xu, Jianguang; Zhu, Shaoyue; Yuan, Changyong; Lo, Edward Chin Man; Zhang, Chengfei

    2017-04-01

    Dental stem cells can serve as a potential source of functional endothelial cells for tissue engineering applications, but the endothelial-lineage differentiation efficiency is rather low even with growth factors and mechanical stimuli, which greatly limits their clinical applications. This is partly due to the deficiency of standard two-dimensional (2-D) culture systems, which is unable to recapitulate the three-dimensional (3-D) in vivo milieu that is rich in extracellular matrix. Hence, we extracted decellularized extracellular matrix from human umbilical vein endothelial cells (HUVECs-DECM) to provide a bioactive substratum conducive to the endothelial differentiation of dental stem cells. Compared to cells plated on tissue culture polystyrene (TCP), stem cells from exfoliated deciduous teeth (SHED) cultured on the HUVECs-DECM demonstrated more regular arrangement and elongated morphology. HUVECs-DECM significantly enhanced the rapid adhesion and proliferation rates of SHED, as demonstrated by WST-8 assay and immunocytochemistry indicating higher expression levels of vinculin by newly adherent SHED on HUVECs-DECM versus TCP. In addition, there was twofold to fivefold higher mRNA expression levels of endothelial-specific markers CD31 and VEGFR-2 in SHED after seven days of culture on DECM versus TCP. Functional testing with in vitro matrigel angiogenesis assay identified more capillary-like structure formation with significantly higher tubule length in SHED induced by DECM versus TCP. Hence, the results of this study provide a better understanding of the unique characteristics of cell-specific ECM and demonstrated the potential use of HUVECs-DECM as a culture substratum conducive for stimulating the endothelial differentiation of SHED for therapeutic angiogenic applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1083-1093, 2017.

  9. Postpartum alterations in circulating endothelial progenitor cells in women with a history of pre-eclampsia.

    PubMed

    Murphy, Malia S Q; Casselman, Richard C; Smith, Graeme N

    2013-07-01

    To characterize persistent postpartum maternal endothelial dysfunction following pre-eclampsia (PE) through the assessment of endothelial progenitor cells as markers of endothelial reparative capacity. Maternal circulating endothelial progenitor cells were measured at 2months and 6months postpartum in women who had recently experienced PE pregnancies (n=17). Normotensive controls (n=13) with uncomplicated pregnancies served for comparison at the same time points. Progenitor cells were measured by flow cytometry and by colony forming units. Maternal cardiovascular risk was measured at 6months postpartum. Levels of maternal circulating endothelial progenitor cells and cardiovascular risk in the early postpartum period of uncomplicated and PE pregnancies. CD34+VEGFR-2+ and CD133+VEGFR-2+ cells were elevated in PE subjects at 2months postpartum compared to healthy control subjects, although reduced by 6months postpartum. PE was associated with reduced colony forming units at 2 and 6months postpartum. Cardiovascular risk scores were increased in PE compared to normotensive controls. We have demonstrated that there is a physiological alteration in the number and function of circulating progenitor cells following PE pregnancies. Furthermore, this population of women exhibited elevated cardiovascular risk profiles compared to those with uncomplicated pregnancies. Pregnancy and the development of PE identify an early window for cardiovascular risk screening in women. Cellular markers of vascular health offer an approach to the investigation of postpartum endothelial dysfunction. Copyright © 2013 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  10. Human microvascular lymphatic and blood endothelial cells produce fibrillin: deposition patterns and quantitative analysis.

    PubMed

    Rossi, Antonella; Gabbrielli, Erica; Villano, Marilisa; Messina, Mario; Ferrara, Francesco; Weber, Elisabetta

    2010-12-01

    Fibrillin microfibrils constitute a scaffold for elastin deposition in the wall of arteries and form the anchoring filaments that connect the lymphatic endothelium to surrounding elastic fibers. We previously reported that fibrillin is deposited in a honeycomb pattern in bovine arterial endothelial cells, which also deposit microfibril-associated glycoprotein (MAGP)-1, whereas thoracic duct endothelial cells form an irregular web. The present immunohistochemical study was designed to verify whether lymphatic and blood human dermal microvascular endothelial cells (HDMECs) isolated from human foreskin by the sequential use of a pan-endothelial marker, CD31, and the lymphatic specific marker, D2-40, deposit fibrillin and MAGP-1. In both cell types, fibrillin and MAGP-1 co-localized and were deposited with different patterns of increasing complexity co-existing in the same culture. Fibrillin microfibrils formed a wide-mesh honeycomb leaving fibrillin-free spaces that were gradually filled. This modality of fibrillin deposition, similar to that of bovine large artery endothelial cells, was basically the same in blood and lymphatic HDMECs. In some lymphatic HDMECs, fibrillin was initially deposited as uniformly scattered short fibrillin strands probably as a result of anchoring filaments carried over from the vessels of origin. Our findings show that blood and lymphatic endothelial cells participate in fibrillin deposition in human skin.

  11. Examining Endothelial Function and Platelet Reactivity in Patients with Depression before and after SSRI Therapy

    PubMed Central

    Dawood, Tye; Barton, David A.; Lambert, Elisabeth A.; Eikelis, Nina; Lambert, Gavin W.

    2016-01-01

    Although it is recognized that patients with major depressive disorder (MDD) are at increased risk of developing cardiovascular disease (CVD) the mechanisms responsible remain unknown. Endothelial dysfunction is one of the first signs of CVD. Using two techniques, flow-mediated dilatation in response to reactive hyperemia and laser Doppler velocimetry with iontophoresis, we examined endothelial function in the forearm before and after serotonin-specific reuptake inhibitor (SSRI) treatment in 31 patients with MDD. Measurement of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, soluble P-selectin, and noradrenaline in plasma was also performed. Prior to treatment, markers of endothelial and vascular function and platelet reactivity were within the normal range. Following SSRI therapy (95 ± 5 days) symptoms of depression were reduced (paired difference between pre- and post-treatment Hamilton rating −18 ± 1, P < 0.001) with 19 patients recovered and 4 remitted. There occurred no significant change in markers of endothelial or vascular function following SSRI therapy. The improvement in Hamilton depression rating in response to therapy could be independently predicted by the baseline arterial plasma noradrenaline concentration (r2 = 0.36, P = 0.003). In this cohort of patients with MDD, SSRI therapy did not influence endothelial function or markers of vascular or platelet reactivity. Patient response to SSRI therapy could be predicted by the initial circulating level of noradrenaline, with noradrenaline levels being lower in responders. PMID:26924994

  12. Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection.

    PubMed

    Kinnecom, Katie; Pachter, Joel S

    2005-12-01

    Laser capture microdissection (LCM) of the major cell types comprising brain microvessels offers a powerful technology to explore the molecular basis of the blood-brain barrier in health and disease. However, the ability to selectively retrieve endothelial or perivascular cells, without cross-contamination from the other, has proven difficult. Additionally, histochemical methods previously described for use with LCM have not allowed for identification of all the different size branches of the microvascular tree. Here, we describe a double immunostaining method, combining bright-field and fluorescence microscopy, and using an extensive dehydration with xylene, to clearly identify and spatially resolve endothelial from perivascular cells within all size microvascular branches in frozen brain sections. LCM of these sections, coupled with RNA analysis by reverse-transcription polymerase chain reaction, revealed that captured endothelial cells show endothelial markers but no detectable markers for astrocytes or smooth muscle cells/pericytes. Conversely, captured astrocytes or smooth muscle cells/pericytes demonstrate their respective markers, but not those of endothelial cells. This approach has applicability to microarray analysis, thereby enabling global gene profiling of the different cell types along the entirety of the brain microvascular tree.

  13. Isolated tumor endothelial cells maintain specific character during long-term culture

    SciTech Connect

    Matsuda, Kohei; Ohga, Noritaka; Hida, Yasuhiro; Muraki, Chikara; Tsuchiya, Kunihiko; Kurosu, Takuro; Akino, Tomoshige; Shih, Shou-Ching; and others

    2010-04-16

    Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.

  14. Laser-induced endothelial cell activation supports fibrin formation

    PubMed Central

    Atkinson, Ben T.; Jasuja, Reema; Chen, Vivien M.; Nandivada, Prathima; Furie, Bruce

    2010-01-01

    Laser-induced vessel wall injury leads to rapid thrombus formation in an animal thrombosis model. The target of laser injury is the endothelium. We monitored calcium mobilization to assess activation of the laser-targeted cells. Infusion of Fluo-4 AM, a calcium-sensitive fluorochrome, into the mouse circulation resulted in dye uptake in the endothelium and circulating hematopoietic cells. Laser injury in mice treated with eptifibatide to inhibit platelet accumulation resulted in rapid calcium mobilization within the endothelium. Calcium mobilization correlated with the secretion of lysosomal-associated membrane protein 1, a marker of endothelium activation. In the absence of eptifibatide, endothelium activation preceded platelet accumu-lation. Laser activation of human umbilical vein endothelial cells loaded with Fluo-4 resulted in a rapid increase in calcium mobilization associated cell fluorescence similar to that induced by adenosine diphosphate (10μM) or thrombin (1 U/mL). Laser activation of human umbilical vein endothelial cells in the presence of corn trypsin inhibitor treated human plasma devoid of platelets and cell microparticles led to fibrin for-mation that was inhibited by an inhibitory monoclonal anti–tissue factor antibody. Thus laser injury leads to rapid endothelial cell activation. The laser activated endothelial cells can support formation of tenase and prothrombinase and may be a source of activated tissue factor as well. PMID:20675401

  15. Evolution of Neuronal and Endothelial Transcriptomes in Primates

    PubMed Central

    Giger, Thomas; Khaitovich, Philipp; Somel, Mehmet; Lorenc, Anna; Lizano, Esther; Harris, Laura W.; Ryan, Margaret M.; Lan, Martin; Wayland, Matthew T.; Bahn, Sabine; Pääbo, Svante

    2010-01-01

    The study of gene expression evolution in vertebrates has hitherto focused on the analysis of transcriptomes in tissues of different species. However, because a tissue is made up of different cell types, and cell types differ with respect to their transcriptomes, the analysis of tissues offers a composite picture of transcriptome evolution. The isolation of individual cells from tissue sections opens up the opportunity to study gene expression evolution at the cell type level. We have stained neurons and endothelial cells in human brains by antibodies against cell type-specific marker proteins, isolated the cells using laser capture microdissection, and identified genes preferentially expressed in the two cell types. We analyze these two classes of genes with respect to their expression in 62 different human tissues, with respect to their expression in 44 human “postmortem” brains from different developmental stages and with respect to between-species brain expression differences. We find that genes preferentially expressed in neurons differ less across tissues and developmental stages than genes preferentially expressed in endothelial cells. We also observe less expression differences within primate species for neuronal transcriptomes. In stark contrast, we see more gene expression differences between humans, chimpanzees, and rhesus macaques relative to within-species differences in genes expressed preferentially in neurons than in genes expressed in endothelial cells. This suggests that neuronal and endothelial transcriptomes evolve at different rates within brain tissue. PMID:20624733

  16. Solid tumor therapy by selectively targeting stromal endothelial cells

    PubMed Central

    Liu, Shihui; Liu, Jie; Ma, Qian; Cao, Liu; Fattah, Rasem J.; Yu, Zuxi; Bugge, Thomas H.; Finkel, Toren; Leppla, Stephen H.

    2016-01-01

    Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors. PMID:27357689

  17. Solid tumor therapy by selectively targeting stromal endothelial cells.

    PubMed

    Liu, Shihui; Liu, Jie; Ma, Qian; Cao, Liu; Fattah, Rasem J; Yu, Zuxi; Bugge, Thomas H; Finkel, Toren; Leppla, Stephen H

    2016-07-12

    Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors.

  18. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2.

    PubMed

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe

    2014-09-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases.

  19. Endotoxin-Induced Endothelial Fibrosis Is Dependent on Expression of Transforming Growth Factors β1 and β2

    PubMed Central

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio

    2014-01-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972

  20. Three specific antigens to isolate endothelial progenitor cells from human liposuction material.

    PubMed

    Hager, Gudrun; Holnthoner, Wolfgang; Wolbank, Susanne; Husa, Anna-Maria; Godthardt, Kathrin; Redl, Heinz; Gabriel, Christian

    2013-11-01

    Human endothelial progenitor cells (EPC) play an important role in regenerative medicine and contribute to neovascularization on vessel injury. They are usually enriched from peripheral blood, cord blood and bone marrow. In human fat tissue, EPC are rare and their isolation remains a challenge. Fat tissue was prepared by collagenase digestion, and the expression of specific marker proteins was evaluated by flow cytometry in the stromal vascular fraction (SVF). For enrichment, magnetic cell sorting was performed with the use of CD133 microbeads and EPC were cultured until colonies appeared. A second purification was performed with CD34; additional isolation steps were performed with the use of a combination of CD34 and CD31 microbeads. Enriched cells were investigated by flow cytometry for the expression of endothelial specific markers, by Matrigel assay and by the uptake of acetylated low-density lipoprotein. The expression pattern confirmed the heterogeneous nature of the SVF, with rare numbers of CD133+ detectable. EPC gained from the SVF by magnetic enrichment showed cobblestone morphology of outgrowth endothelial cells and expressed the specific markers CD31, CD144, vascular endothelial growth factor (VEGF)R2, CD146, CD73 and CD105. Functional integrity was confirmed by uptake of acetylated low-density lipoprotein and the formation of tube-like structures on Matrigel. Rare EPC can be enriched from human fat tissue by magnetic cell sorting with the use of a combination of microbeads directed against CD133, an early EPC marker, CD34, a stem cell marker, and CD31, a typical marker for endothelial cells. In culture, they differentiate into EC and hence could have the potential to contribute to neovascularization in regenerative medicine. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  1. [The impact of detecting endothelial dysfunction in atherosclerosis: Role of positron emission tomography (PET)].

    PubMed

    Alexánderson-Rosas, Erick; Calleja-Torres, Rodrigo; Martínez-García, Alfonso; Lamothe-Molina, Pedro Alberto; Ochoa-López, Juan Manuel; Meléndez, Gabriela; Kimura-Hayama, Eric; Meave-González, Aloha

    2010-01-01

    The endothelium plays an important role in the regulation of the intracellular fluid, vascular permeability, and modulation of vascular focal tone and angiogenesis. Endothelial dysfunction is manifested by the loss of the endothelium ability to modulate physiology changes in its vascular bed, and actually it is considered a prognostic marker of coronary artery disease. The relevance of assessing endothelial dysfunction relies in that it has been observed in different pathologies like DM, dyslipidemia, hypertension, tabaquism and in immunologic diseases like antiphospholipid syndrome and systemic lupus. PET is a non invasive method that allows the absolute quantification of myocardial blood flow during rest, stress and adrenergic stimulation, which allows to asses endothelial function. Therefore PET is a useful diagnostic technique to identify patients with endothelial dysfunction, and in the assessment of its response to administered therapy, allowing an optimal control and prevention of secondary adverse events of these diseases.

  2. The effect of moesin overexpression on ageing of human dermal microvascular endothelial cells.

    PubMed

    Lee, Ju Hee; Hong, In Ae; Oh, Sang Ho; Kwon, Yeon Sook; Cho, Soo Hyun; Lee, Kwang Hoon

    2009-11-01

    Senescence of microvascular endothelial cells is known to play an important role in the pathophysiology of vascular diseases related to ageing, but the accurate mechanism or related genes are not known. Moesin, a cytoskeletal protein and the most potent candidate as an ageing-related protein, showed obvious changes in expression when compared before and after ageing. In this study, a lentivirus was used to overexpress moesin in endothelial cells. The expression of cell cycle mediators such as p16, cyclin D1 and cdk4, which can be the markers of ageing, was compared by RNA and was shown to be suppressed in moesin overexpressed endothelial cells. In conclusion, it can be said that the expression of moesin delays senescence of human dermal microvascular endothelial cells and this fundamental discovery can be used as a basis for understanding the mechanism of ageing and age-related diseases.

  3. Expression of parathyroid-specific genes in vascular endothelial progenitors of normal and tumoral parathyroid glands.

    PubMed

    Corbetta, Sabrina; Belicchi, Marzia; Pisati, Federica; Meregalli, Mirella; Eller-Vainicher, Cristina; Vicentini, Leonardo; Beck-Peccoz, Paolo; Spada, Anna; Torrente, Yvan

    2009-09-01

    Parathyroid tissue is able to spontaneously induce angiogenesis, proliferate, and secrete parathyroid hormone when autotransplanted in patients undergoing total parathyroidectomy. Angiogenesis is also involved in parathyroid tumorigenesis. Here we investigated the anatomical and molecular relationship between endothelial and parathyroid cells within human parathyroid glands. Immunohistochemistry for CD34 antigen identified two subpopulations in normal and tumoral parathyroid glands: one constituted by cells lining small vessels that displayed endothelial antigens (factor VIII, isolectin, laminin, CD146) and the other constituted of single cells scattered throughout the parenchyma that did not express endothelial markers. These parathyroid-derived CD34(+) cells were negative for the hematopoietic and mesenchymal markers CD45, Thy-1/CD90, CD105, and CD117/c-kit; however, a subset of CD34(+) cells co-expressed the parathyroid specific genes glial cell missing B, parathyroid hormone, and calcium sensing receptor. When cultured, these cells released significant amount of parathyroid hormone. Parathyroid-derived CD34(+) cells, but not CD34(-) cells, proliferated slowly and differentiated into mature endothelial cells. CD34(+) cells from parathyroid tumors differed from those derived from normal parathyroid glands as: 1) they were more abundant and mainly scattered throughout the parenchyma; 2) they rarely co-expressed CD146; and 3) a fraction co-expressed nestin. In conclusion, we identified cells expressing endothelial and parathyroid markers in human adult parathyroid glands. These parathyroid/endothelial cells were more abundant and less committed in parathyroid tumors compared with normal glands, showing features of endothelial progenitors, which suggests that they might be involved in parathyroid tumorigenesis.

  4. Liraglutide ameliorates palmitate-induced endothelial dysfunction through activating AMPK and reversing leptin resistance.

    PubMed

    Li, Nana; Zhao, Yihe; Yue, Yingying; Chen, Liming; Yao, Zhi; Niu, Wenyan

    2016-09-09

    Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, is an antidiabetic drug. It has been shown to improve endothelial dysfunction, but the mechanism remains somewhat unclear. Leptin can also improve endothelial function. Cardiovascular disease (CVD) is linked to hyperleptinemia, and leptin resistance, how liraglutide influences the effect of leptin on endothelial function, is never reported. We used palmitic acid (PA) to mimic hyperlipidemia in endothelial cells to explore the cardio-protective mechanism of liraglutide and its impact on the role of leptin. Human umbilical vein endothelial cells (HUVECs) were incubated with PA for 16 h and then were treated with liraglutide for 30 min. PA elevated not only phosphorylation of JNK and IKKα/β, but also the expression of IL-6 in HUVECs. These effects of PA were reversed by liraglutide. In addition, liraglutide increased phosphorylation of eNOS, AMPK, and the release of NO but had no effect on PKC phosphorylation. In addition, leptin elevated eNOS phosphorylation but was abrogated by PA. However, in the presence of liraglutide, leptin regained its function of elevating eNOS phosphorylation. Last, we found that liraglutide inhibited PA-elevated SOCS3, which is a marker of leptin resistance. GLP-1 impairs endothelial inflammatory signals, improves endothelial function, and reverses leptin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes

    PubMed Central

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-01-01

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  6. Endothelial Differentiation of Adipose-Derived Stem Cells from Elderly Patients with Cardiovascular Disease

    PubMed Central

    Zhang, Ping; Moudgill, Neil; Hager, Eric; Tarola, Nicolas; DiMatteo, Christopher; McIlhenny, Stephen; Tulenko, Thomas

    2011-01-01

    Adipose-derived stem cells (ASCs) possess significant therapeutic potential for tissue engineering and regeneration. This study investigates the endothelial differentiation and functional capacity of ASCs isolated from elderly patients. Isolation of ASCs from 53 patients (50–89 years) revealed that advanced age or comorbidity did not negatively impact stem cell harvest; rather, higher numbers were observed in older donors (>70 years) than in younger. ASCs cultured in endothelial growth medium-2 for up to 3 weeks formed cords upon Matrigel and demonstrated acetylated-low-density lipoprotein and lectin uptake. Further stimulation with vascular endothelial growth factor and shear stress upregulated endothelial cell-specific markers (CD31, von Willebrand factor, endothelial nitric oxide synthase, and VE-cadherin). Inhibition of the PI3K but not mitogen-activated protein kinase pathway blocked the observed endothelial differentiation. Shear stress promoted an anti-thrombogenic phenotype as demonstrated by production of tissue-plasminogen activator and nitric oxide, and inhibition of plasminogen activator inhibitor-1. Shear stress augmented integrin α5β1 expression and subsequently increased attachment of differentiated ASCs to basement membrane components. Finally, ASCs seeded onto a decellularized vein graft resisted detachment despite application of shear force up to 9 dynes. These results suggest that (1) advanced age and comorbidity do not negatively impact isolation of ASCs, and (2) these stem cells retain significant capacity to acquire key endothelial cell traits throughout life. As such, adipose tissue is a practical source of autologous stem cells for vascular tissue engineering. PMID:20879833

  7. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta

    PubMed Central

    Leclercq, Anne; Veillat, Véronique; Loriot, Sandrine; Spuul, Pirjo; Madonna, Francesco; Roques, Xavier; Génot, Elisabeth

    2015-01-01

    Background Aortic diseases are diverse and involve a multiplicity of biological systems in the vascular wall. Aortic dissection, which is usually preceded by aortic aneurysm, is a leading cause of morbidity and mortality in modern societies. Although the endothelium is now known to play an important role in vascular diseases, its contribution to aneurysmal aortic lesions remains largely unknown. The aim of this study was to define a reliable methodology for the isolation of aortic intimal and adventitial endothelial cells in order to throw light on issues relevant to endothelial cell biology in aneurysmal diseases. Methodology/Principal Findings We set up protocols to isolate endothelial cells from both the intima and the adventitia of human aneurysmal aortic vessel segments. Throughout the procedure, analysis of cell morphology and endothelial markers allowed us to select an endothelial fraction which after two rounds of expansion yielded a population of >90% pure endothelial cells. These cells have the features and functionalities of freshly isolated cells and can be used for biochemical studies. The technique was successfully used for aortic vessel segments of 20 patients and 3 healthy donors. Conclusions/Significance This simple and highly reproducible method allows the simultaneous preparation of reasonably pure primary cultures of intimal and adventitial human endothelial cells, thus providing a reliable source for investigating their biology and involvement in both thoracic aneurysms and other aortic diseases. PMID:26599408

  8. Endothelial Cells from Bovine Adrenal Medulla Develop Capillary-Like Growth Patterns in Culture

    NASA Astrophysics Data System (ADS)

    Banerjee, Dipak K.; Ornberg, Richard L.; Youdim, Moussa B. H.; Heldman, Eli; Pollard, Harvey B.

    1985-07-01

    The endocrine barrier between chromaffin cells and the blood stream in the adrenal medulla is made of capillary endothelial cells. We have now succeeded in isolating endothelial cells from adrenal medullary tissue, which are probably derived from this barrier. These cells grow on plastic surfaces in the absence of special growth factors or collagen overlays and differentiate into organized structures quite similar to true capillaries. The cells contain factor VIII:R, a marker for endothelial cells, and form intercellular junctions characteristic of capillary endothelial cells. They also synthesize and secrete basal lamina structures and engage in transcytosis, a characteristic ultrastructural and functional combination of exocytosis and endocytosis across the thin endothelial cell processes. These endothelial cells can take up and deaminate catecholamines by A-type monoamine oxidase, an enzyme functionally distinct from the B-type monoamine oxidase found in chromaffin cells. These data indicate that the chromaffin cell and its endothelial cell neighbor may constitute the functional unit of catecholamine metabolism in the adrenal medulla.

  9. Endothelial function in youth: A biomarker modulated by adiposity-related insulin resistance

    USDA-ARS?s Scientific Manuscript database

    To investigate the physical and metabolic determinants of endothelial dysfunction, an early marker of subclinical atherosclerosis, in normal weight and overweight adolescents with and without type 2 diabetes mellitus. A cross-sectional study of 81 adolescents: 21 normal weight, 25 overweight with no...

  10. Endothelial-regenerating cells: an expanding universe.

    PubMed

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  11. Retinal endothelial cell apoptosis stimulates recruitment of endothelial progenitor cells.

    PubMed

    Bhatwadekar, Ashay D; Glenn, Josephine V; Curtis, Tim M; Grant, Maria B; Stitt, Alan W; Gardiner, Tom A

    2009-10-01

    Bone marrow-derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05-0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-alpha when compared to control medium; SDF-1 remained unchanged. The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment.

  12. Kalirin and CHD7: novel endothelial dysfunction indicators in circulating extracellular vesicles from hypertensive patients with albuminuria

    PubMed Central

    de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.

    2017-01-01

    Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519

  13. Inflammation but Not Endothelial Dysfunction Is Associated with the Severity of Coronary Artery Disease in Dyslipidemic Subjects

    PubMed Central

    Rueda-Clausen, Christian F.; López-Jaramillo, Patricio; Luengas, Carlos; Oubiña, Maria del Pilar; Cachofeiro, Victoria; Lahera, Vicente

    2009-01-01

    Introduction. Endothelial dysfunction and inflammation play a key role in the development of atherosclerosis. The present study evaluated endothelial function, inflammatory parameters, and carotid intima-media thickness (IMT) in dyslipidemic patients with or without coronary artery disease (CAD). Methods. Metabolic profile and inflammatory parameters were determined in dyslipidemic patients with (+CAD, n = 33) and without (−CAD, n = 69) symptomatic CAD. Endothelial function was evaluated by flow mediated dilatation (FMD) and plasma concentration of nitrites and nitrates. Carotid IMT was measured by ultrasound. Results. No significant differences were observed in anthropometric hemodynamic or metabolic parameters between the groups. After adjusting by age and medication usage, some inflammatory markers were significantly higher in +CAD; however no significant differences in FMD or plasma levels of nitrites were observed. Conclusions. In subjects with dyslipidemia, the presence of CAD is associated with an elevation of certain inflammatory markers and carotid IMT but not with further endothelial dysfunction. PMID:19584917

  14. CD133 positive progenitor endothelial cell lines from human cord blood.

    PubMed

    Paprocka, Maria; Krawczenko, Agnieszka; Dus, Danuta; Kantor, Aneta; Carreau, Aude; Grillon, Catherine; Kieda, Claudine

    2011-08-01

    Endothelial progenitor cells (EPCs) modulate postnatal vascularization and contribute to vessel regeneration in adults. Stem cells and progenitor cells were found in umbilical cord blood, bone marrow, and mobilized peripheral blood cells, from where they were isolated and cultured. However, the yield of progenitor cells is usually not sufficient for clinical application and the quality of progenitor cells varies. The aim of the study was the immortalization of early progenitor cells with high proliferative potential, capable to differentiate to EPCs and, further, toward endothelial cells. Two cell lines, namely HEPC-CB.1 and HEPC-CB.2 (human endothelial progenitor cells-cord blood) were isolated. As assessed by specific antibody labeling and flow cytometric analysis, they express a panel of stem cell markers: CD133, CD13, CD271, CD90 and also endothelial cell markers: CD202b, CD309 (VEGFR2), CD146, CD105, and CD143 but they do not present markers of finally differentiated endothelial cells: CD31, vWf, nor CD45 which is a specific hematopoietic cell marker. Using the multiplex Cytometric Bead Assay, the simultaneous production of proangiogenic cytokines IL8, angiogenin, and VEGF was demonstrated in normoxia and was shown to be increased by hypoxia. Both cell lines, similarly as mature endothelial cells, underwent in vitro pre-angiogenic process, formed pseudovessel structures and present an accelerated angiogenesis in hypoxic conditions. To date, these are the first CD133 positive established cell lines from human cord blood cells. Copyright © 2011 International Society for Advancement of Cytometry.

  15. Mitochondrial mechanisms of endothelial dysfunction.

    PubMed

    Szewczyk, Adam; Jarmuszkiewicz, Wieslawa; Koziel, Agnieszka; Sobieraj, Izabela; Nobik, Wioletta; Lukasiak, Agnieszka; Skup, Agata; Bednarczyk, Piotr; Drabarek, Beata; Dymkowska, Dorota; Wrzosek, Antoni; Zablocki, Krzysztof

    2015-08-01

    Endothelial cells play an important physiological role in vascular homeostasis. They are also the first barrier that separates blood from deeper layers of blood vessels and extravascular tissues. Thus, they are exposed to various physiological blood components as well as challenged by pathological stimuli, which may exert harmful effects on the vascular system by stimulation of excessive generation of reactive oxygen species (ROS). The major sources of ROS are NADPH oxidase and mitochondrial respiratory chain complexes. Modulation of mitochondrial energy metabolism in endothelial cells is thought to be a promising target for therapy in various cardiovascular diseases. Uncoupling protein 2 (UCP2) is a regulator of mitochondrial ROS generation and can antagonise oxidative stress-induced endothelial dysfunction. Several studies have revealed the important role of UCP2 in hyperglycaemia-induced modifications of mitochondrial function in endothelial cells. Additionally, potassium fluxes through the inner mitochondrial membrane, which are involved in ROS synthesis, affect the mitochondrial volume and change both the mitochondrial membrane potential and the transport of calcium into the mitochondria. In this review, we concentrate on the mitochondrial role in the cytoprotection phenomena of endothelial cells. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Radial keratotomy associated endothelial degeneration

    PubMed Central

    Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon

    2012-01-01

    Purpose To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Methods Retrospective case series were used. Results Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38–72 years), averaging 18.7 years (range: 11–33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch’s Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet’s stripping automated endothelial keratoplasty (DSAEK) in the other eye. Conclusions RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch’s dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration. PMID:22347792

  17. Radial keratotomy associated endothelial degeneration.

    PubMed

    Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon

    2012-01-01

    To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Retrospective case series were used. Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38-72 years), averaging 18.7 years (range: 11-33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch's Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet's stripping automated endothelial keratoplasty (DSAEK) in the other eye. RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch's dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration.

  18. Obesity, inflammation and endothelial dysfunction.

    PubMed

    Iantorno, M; Campia, U; Di Daniele, N; Nistico, S; Forleo, G B; Cardillo, C; Tesauro, M

    2014-01-01

    Cardiovascular disease is the leading cause of morbidity and mortality in obese individuals. Obesity dramatically increases the risk of development of metabolic and cardiovascular disease. This risk appears to originate from disruption in adipose tissue function leading to a chronic inflammatory state and to dysregulation of the endocrine and paracrine actions of adipocyte-derived factors. These, in turn, impair vascular homeostasis and lead to endothelial dysfunction. An altered endothelial cell phenotype and endothelial dysfunction are common among all obesity-related complications. A crucial aspect of endothelial dysfunction is reduced nitric oxide (NO) bioavailability. A systemic pro-inflammatory state in combination with hyperglycemia, insulin resistance, oxidative stress and activation of the renin angiotensin system are systemic disturbances in obese individuals that contribute independently and synergistically to decreasing NO bioavailability. On the other hand, pro-inflammatory cytokines are locally produced by perivascular fat and act through a paracrine mechanism to independently contribute to endothelial dysfunction and smooth muscle cell dysfunction and to the pathogenesis of vascular disease in obese individuals. The promising discovery that obesity-induced vascular dysfunction is, at least in part, reversible, with weight loss strategies and drugs that promote vascular health, has not been sufficiently proved to prevent the cardiovascular complication of obesity on a large scale. In this review we discuss the pathophysiological mechanisms underlying inflammation and vascular damage in obese patients.

  19. WIPP marker development

    SciTech Connect

    1994-04-01

    This article discusses the development of permanent, passive markers for the Waste Isolation Pilot Plant (WIPP) and presents some preliminary concepts in drawings and a table of components for the markers. The panel, convened by Sandia National Laboratories, was charged with developing design characteristics for permanent markers and judging the efficacy of markers in deterring inadvertent human intrusion. 6 figs., 2 tabs.

  20. Circulating Endothelial Cells and Arterial Endothelial Mitosis in Anaphylactic Shock

    PubMed Central

    Wright, H. Payling; Giacometti, N. J.

    1972-01-01

    Sensitized guinea-pigs received a shocking dose of ovalbumin. Within 8 min endothelial cells ranging in numbers between 24·0 and 13·88/1000 leukocytes were recovered from the peripheral blood. Control animals had counts between 0·00 and 4·40. Subsequent injection of T-3H and autoradiographic study of Hautchen preparations of aortic endothelium showed a 3-fold increase in mitosis in the shocked animals when compared with controls. The increase in mitosis represents the repair process following endothelial distruction caused by anaphylactic shock. ImagesFigs. 1-2 PMID:5014238

  1. Endothelial GATA-6 deficiency promotes pulmonary arterial hypertension.

    PubMed

    Ghatnekar, Angela; Chrobak, Izabela; Reese, Charlie; Stawski, Lukasz; Seta, Francesca; Wirrig, Elaine; Paez-Cortez, Jesus; Markiewicz, Margaret; Asano, Yoshihide; Harley, Russell; Silver, Richard; Feghali-Bostwick, Carol; Trojanowska, Maria

    2013-06-01

    Pulmonary arterial hypertension (PAH) is a chronic and progressive disease characterized by pulmonary vasculopathy with elevation of pulmonary artery pressure, often culminating in right ventricular failure. GATA-6, a member of the GATA family of zinc-finger transcription factors, is highly expressed in quiescent vasculature and is frequently lost during vascular injury. We hypothesized that endothelial GATA-6 may play a critical role in the molecular mechanisms underlying endothelial cell (EC) dysfunction in PAH. Here we report that GATA-6 is markedly reduced in pulmonary ECs lining both occluded and nonoccluded vessels in patients with idiopathic and systemic sclerosis-associated PAH. GATA-6 transcripts are also rapidly decreased in rodent PAH models. Endothelial GATA-6 is a direct transcriptional regulator of genes controlling vascular tone [endothelin-1, endothelin-1 receptor type A, and endothelial nitric oxide synthase (eNOS)], pro-inflammatory genes, CX3CL1 (fractalkine), 5-lipoxygenease-activating protein, and markers of vascular remodeling, including PAI-1 and RhoB. Mice with the genetic deletion of GATA-6 in ECs (Gata6-KO) spontaneously develop elevated pulmonary artery pressure and increased vessel muscularization, and these features are further exacerbated in response to hypoxia. Furthermore, innate immune cells including macrophages (CD11b(+)/F4/80(+)), granulocytes (Ly6G(+)/CD45(+)), and dendritic cells (CD11b(+)/CD11c(+)) are significantly increased in normoxic Gata6-KO mice. Together, our findings suggest a critical role of endothelial GATA-6 deficiency in development and disease progression in PAH.

  2. Proliferation status defines functional properties of endothelial cells.

    PubMed

    Lipps, Christoph; Badar, Muhammad; Butueva, Milada; Dubich, Tatyana; Singh, Vivek Vikram; Rau, Sophie; Weber, Axel; Kracht, Michael; Köster, Mario; May, Tobias; Schulz, Thomas F; Hauser, Hansjörg; Wirth, Dagmar

    2017-04-01

    Homeostasis of solid tissue is characterized by a low proliferative activity of differentiated cells while special conditions like tissue damage induce regeneration and proliferation. For some cell types it has been shown that various tissue-specific functions are missing in the proliferating state, raising the possibility that their proliferation is not compatible with a fully differentiated state. While endothelial cells are important players in regenerating tissue as well as in the vascularization of tumors, the impact of proliferation on their features remains elusive. To examine cell features in dependence of proliferation, we established human endothelial cell lines in which proliferation is tightly controlled by a doxycycline-dependent, synthetic regulatory unit. We observed that uptake of macromolecules and establishment of cell-cell contacts was more pronounced in the growth-arrested state. Tube-like structures were formed in vitro in both proliferating and non-proliferating conditions. However, functional vessel formation upon transplantation into immune-compromised mice was restricted to the proliferative state. Kaposi's sarcoma-associated herpes virus (KSHV) infection resulted in reduced expression of endothelial markers. Upon transplantation of infected cells, drastic differences were observed: proliferation arrested cells acquired a high migratory activity while the proliferating counterparts established a tumor-like phenotype, similar to Kaposi Sarcoma lesions. The study gives evidence that proliferation governs endothelial functions. This suggests that several endothelial functions are differentially expressed during angiogenesis. Moreover, since proliferation defines the functional properties of cells upon infection with KSHV, this process crucially affects the fate of virus-infected cells.

  3. Identification of novel targets for antiangiogenic therapy by comparing the gene expressions of tumor and normal endothelial cells

    PubMed Central

    Otsubo, Tsuguteru; Hida, Yasuhiro; Ohga, Noritaka; Sato, Hideshi; Kai, Toshihiro; Matsuki, Yasushi; Takasu, Hideo; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Nonomura, Katsuya; Hida, Kyoko

    2014-01-01

    Targeting tumor angiogenesis is an established strategy for cancer therapy. Because angiogenesis is not limited to pathological conditions such as cancer, molecular markers that can distinguish between physiological and pathological angiogenesis are required to develop more effective and safer approaches for cancer treatment. To identify such molecules, we determined the gene expression profiles of murine tumor endothelial cells (mTEC) and murine normal endothelial cells using DNA microarray analysis followed by quantitative reverse transcription–polymerase chain reaction analysis. We identified 131 genes that were differentially upregulated in mTEC. Functional analysis using siRNA-mediated gene silencing revealed five novel tumor endothelial cell markers that were involved in the proliferation or migration of mTEC. The expression of DEF6 and TMEM176B was upregulated in tumor vessels of human renal cell carcinoma specimens, suggesting that they are potential targets for antiangiogenic intervention for renal cell carcinoma. Comparative gene expression analysis revealed molecular differences between tumor endothelial cells and normal endothelial cells and identified novel tumor endothelial cell markers that may be exploited to target tumor angiogenesis for cancer treatment. PMID:24602018

  4. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    SciTech Connect

    Mathieu, Celine . E-mail: marc-andre.mouthon@cea.fr

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelial cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.

  5. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells

    PubMed Central

    Li, Qiming; Xia, Shudong; Fang, Hanyun; Pan, Jiansheng; Jia, Yinfeng; Deng, Gang

    2017-01-01

    Stem/progenitor cells serve an important role in the process of blood vessel repair. However, the mechanism of vascular repair mediated by C-X-C chemokine receptor type 4-positive (CXCR4+) bone marrow-derived mesenchymal stem cells (BMSCs) following myocardial infarction remains unclear. The aim of the present study was to investigate the effects of vascular endothelial growth factor (VEGF) on vessel endothelial differentiation from BMSCs. CXCR4+ BMSCs were isolated from the femoral bone marrow of 2-month-old mice and the cells were treated with VEGF. Expression of endothelial cell markers and the functional properties were assessed by reverse transcription-quantitative polymerase chain reaction, flow cytometry and vascular formation analyses. The results indicated that the CXCR4+ BMSCs from femoral bone marrow cells expressed putative cell surface markers of mesenchymal stem cells. Treatment with VEGF induced platelet/endothelial cell adhesion molecule-1 (PECAM-1) and von Willebrand factor (vWF) expression at the transcriptional and translational levels, compared with untreated controls. Moreover, VEGF treatment induced CXCR4+ BMSCs to form hollow tube-like structures on Matrigel, suggesting that the differentiated endothelial cells had the functional properties of blood vessels. The results demonstrate that the CXCR4+ BMSCs were able to differentiate into vessel endothelial cells following VEGF treatment. For cell transplantation in vascular disease, it may be concluded that CXCR4+ BMSCs are a novel source of endothelial progenitor cells with high potential for application in vascular repair. PMID:28352314

  6. Tetrahydrocurcumin Ameliorates Homocysteine Mediated Mitochondrial Remodeling in Brain Endothelial Cells.

    PubMed

    Vacek, Jonathan C; Behera, Jyotirmaya; George, Akash K; Kamat, Pradip K; Kalani, Anuradha; Tyagi, Neetu

    2017-08-18

    Homocysteine (Hcy) causes endothelial dysfunction by inducing oxidative stress in most neurodegenerative disorders. This dysfunction is highly correlated with mitochondrial dynamics such as fusion and fission. However, there are no strategies to prevent Hcy induced mitochondrial remodeling. Tetrahydrocurcumin (THC) is an anti-inflammatory and anti-oxidant compound. We hypothesized that THC may ameliorates Hcy induced mitochondria remodeling in mouse brain endothelial cells (bEnd3) cells. bEnd3 cells were exposed to Hcy treatment in the presence or absence of THC. Cell viability and autophagic cell death were measured with MTT and MDC staining assay. Reactive oxygen species (ROS) production was determined using DCFH-DA staining by confocal microscopy. Autophagy flux was assessed using a conventional GFP-microtubule-associated protein 1 light chain 3 (LC3) dot assay. Interaction of phagophore marker LC-3 with mitochondrial receptor NIX was observed by confocal imaging. Mitochondrial fusion and fission were evaluated by western blot and RT-PCR. Our results demonstrated that Hcy resulted in cell toxicity in a dose-dependent manner and supplementation of THC prevented the detrimental effects of Hcy on cell survival. Furthermore, Hcy also upregulated of fission marker (DRP-1), fusion markers (Mfn2) and autophagy marker (LC-3). Finally, we observed that Hcy activated mitochondrial specific phagophore marker (LC-3) was co-localized with the mitochondrial receptor NIX, as viewed by confocal microscopy. Pretreatment of bEnd3 with THC (15µM) ameliorated Hcy induced oxidative damage, mitochondrial fission/fusion, and mitophagy. Our studies strongly suggest that THC has beneficial effects on mitochondrial remodeling and could be developed as a potential therapeutic agent against hyperhomocysteinemia (HHcy) induced mitochondrial dysfunction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Instruction of Circulating Endothelial Progenitors In Vitro towards Specialized Blood-Brain Barrier and Arterial Phenotypes

    PubMed Central

    Ponio, Julie Boyer-Di; El-Ayoubi, Fida; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Driancourt, Catherine; Godet, Maeva; Perrière, Nicolas; Guillevic, Oriane; Couraud, Pierre Olivier; Uzan, Georges

    2014-01-01

    Objective The vascular system is adapted to specific functions in different tissues and organs. Vascular endothelial cells are important elements of this adaptation, leading to the concept of ‘specialized endothelial cells’. The phenotype of these cells is highly dependent on their specific microenvironment and when isolated and cultured, they lose their specific features after few passages, making models using such cells poorly predictive and irreproducible. We propose a new source of specialized endothelial cells based on cord blood circulating endothelial progenitors (EPCs). As prototype examples, we evaluated the capacity of EPCs to acquire properties characteristic of cerebral microvascular endothelial cells (blood-brain barrier (BBB)) or of arterial endothelial cells, in specific inducing culture conditions. Approach and Results First, we demonstrated that EPC-derived endothelial cells (EPDCs) co-cultured with astrocytes acquired several BBB phenotypic characteristics, such as restricted paracellular diffusion of hydrophilic solutes and the expression of tight junction proteins. Second, we observed that culture of the same EPDCs in a high concentration of VEGF resulted, through activation of Notch signaling, in an increase of expression of most arterial endothelial markers. Conclusions We have thus demonstrated that in vitro culture of early passage human cord blood EPDCs under specific conditions can induce phenotypic changes towards BBB or arterial phenotypes, indicating that these EPDCs maintain enough plasticity to acquire characteristics of a variety of specialized phenotypes. We propose that this property of EPDCs might be exploited for producing specialized endothelial cells in culture to be used for drug testing and predictive in vitro assays. PMID:24392113

  8. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology.

    PubMed

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje; van Rooijen, Karlijn L; Dijstelbloem, Hilde M; Rasmussen, Jan T; de Vooght, Karen M K; Schiffelers, Raymond M; Gaillard, Carlo A J M; van Solinge, Wouter W

    2012-04-01

    Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and α(v)-integrin. Phagocytosis via the phosphatidylserine-lactadherin-α(v)-integrin pathway is the acknowledged route for removal of apoptotic innate cells by phagocytes. Endothelial cell phagocytosis of red blood cells was further explored using a more (patho)physiological approach. Red blood cells were exposed to oxidative stress, induced by tert-butyl hydroperoxide. After opsonization with lactadherin, red blood cells were incubated with endothelial cells to study erythrophagocytosis and examine cytotoxicity. Red blood cells exposed to oxidative stress show alterations such as phosphatidylserine exposure and loss of deformability. When incubated with endothelial cells, marked erythrophagocytosis occurred in the presence of lactadherin under both static and flow conditions. As a consequence, intracellular organization was disturbed and endothelial cells were seen to change shape ('rounding up'). Increased expression of apoptotic markers indicated that marked erythrophagocytosis has cytotoxic effects. Activated endothelial cells show significant phagocytosis of phosphatidylserine-exposing and rigid red blood cells under both static and flow conditions. This results in a certain degree of cytotoxicity. We postulate that activated endothelial cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell

  9. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    PubMed Central

    Fens, Marcel H.A.M.; van Wijk, Richard; Andringa, Grietje; van Rooijen, Karlijn L.; Dijstelbloem, Hilde M.; Rasmussen, Jan T.; de Vooght, Karen M.K.; Schiffelers, Raymond M.; Gaillard, Carlo A.J.M.; van Solinge, Wouter W.

    2012-01-01

    Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and αv-integrin. Phagocytosis via the phosphatidylserine-lactadherin-αv-integrin pathway is the acknowledged route for removal of apoptotic innate cells by phagocytes. Design and Methods Endothelial cell phagocytosis of red blood cells was further explored using a more (patho)physiological approach. Red blood cells were exposed to oxidative stress, induced by tert-butyl hydroperoxide. After opsonization with lactadherin, red blood cells were incubated with endothelial cells to study erythrophagocytosis and examine cytotoxicity. Results Red blood cells exposed to oxidative stress show alterations such as phosphatidylserine exposure and loss of deformability. When incubated with endothelial cells, marked erythrophagocytosis occurred in the presence of lactadherin under both static and flow conditions. As a consequence, intracellular organization was disturbed and endothelial cells were seen to change shape (‘rounding up’). Increased expression of apoptotic markers indicated that marked erythrophagocytosis has cytotoxic effects. Conclusions Activated endothelial cells show significant phagocytosis of phosphatidylserine-exposing and rigid red blood cells under both static and flow conditions. This results in a certain degree of cytotoxicity. We postulate that activated endothelial cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to

  10. Increased lymphatic vessels in patients with encapsulating peritoneal sclerosis.

    PubMed

    Yaginuma, Tatsuhiro; Yamamoto, Izumi; Yamamoto, Hiroyasu; Mitome, Jun; Tanno, Yudo; Yokoyama, Keitaro; Hayashi, Takenori; Kobayashi, Tetsuya; Watanabe, Michiaki; Yamaguchi, Yutaka; Hosoya, Tatsuo

    2012-01-01

    The angiogenic response is partly involved in the progression of encapsulating peritoneal sclerosis (EPS). However, the details of the angiogenic response, especially for lymphatic vessels in patients with EPS, remain unclear. In addition, because of technical limitations, morphology studies reported to date have examined only the parietal peritoneum. The morphologies of parietal and visceral lymphatic vessels in patients with EPS both need to be analyzed. We examined peritoneal samples from 18 patients with EPS who underwent enterolysis of the visceral peritoneum and compared them with samples from 17 autopsy cases (controls). To examine the angiogenic response, we performed immunohistochemistry for the endothelial markers CD34 (blood vessels) and podoplanin (lymphatic vessels) and for the cell proliferation marker Ki-67. Immunogold electron microscopy analysis for podoplanin was also performed. In 7 of 18 cases, we compared differences in the angiogenic response of the parietal and visceral peritoneal membranes. Angiogenic responses were more frequent in the compact zone than in regenerated layers. The number of capillaries positive for anti-CD34 and anti-podoplanin monoclonal antibodies per unit area of visceral peritoneal tissue was, respectively, 41.1 ± 29.3/mm(2) in EPS patients and 2.7 ± 4.4/mm(2) in controls (p ≤ 0.01) and 48.1 ± 43.9/mm(2) in EPS patients and 4.1 ± 5.4/mm(2) in controls (p ≤ 0.01). The percentage of capillaries positive for anti-Ki-67, CD34, and podoplanin was 4.6% in EPS patients (p ≤ 0.01) and 0.8% in controls (p = 0.09). The immunogold electron microscopy analysis revealed that podoplanin was localized to endothelial cells with anchoring filaments, a specific feature of lymphatic vessels. Furthermore, compared with parietal peritoneal membrane, visceral peritoneal membrane had a more prominent podoplanin-positive capillary profile, but not a prominent CD34-positive capillary profile. In addition, fibroblast-like cells double

  11. Genetic Regulation of Endothelial Vasomotor Function

    PubMed Central

    Kim, Seung Kyum; Massett, Michael P.

    2016-01-01

    The endothelium plays an important role in the regulation of vasomotor tone and the maintenance of vascular integrity. Endothelial dysfunction, i.e., impaired endothelial dependent dilation, is a fundamental component of the pathogenesis of cardiovascular disease. Although endothelial dysfunction is associated with a number of card