Science.gov

Sample records for endothelial marker podoplanin

  1. Podoplanin (D2-40) is a reliable marker of urinary bladder myofibroblasts (telocytes).

    PubMed

    Povýšil, C; Kaňa, M; Zámečník, L; Vaľová, Z; Hanuš, T

    2014-01-01

    Podoplanin, D2-40, has been described in a variety of normal and neoplastic tissues. It is often used for highlighting lymphatics. We evaluated the expression of podoplanin in α-smooth muscle actinpositive myofibroblasts producing the suburothelial layer in tunica propria of the urinary bladder that have some similar features with telocytes. Our results showed that these cells demonstrate distinct D2-40 immunoreactivity from telocytes occurring in the renal pelvis and ureter. We observed positive reaction not only in bioptic specimens from women with interstitial cystitis, but also in a control group of women and men treated for pathological bladder lesion different from interstitial cystitis. It is interesting that identical staining reaction was observed in the ureters only exceptionally. In addition, we examined samples from myofibroblastic tumoriform lesions of soft tissue such as nodular fascitis and fibromatosis (desmoid) and we obtained negative results. It means that the so-called myofibroblasts of urinary bladder tunica propria have a unique immunophenotype that has probably not been described until now. Our findings suggest that D2-40 can be used as a complementary immunostainer to α-smooth muscle actin on urinary bladder biopsies from patients with interstitial cystitis. The role of D2-40 as an immunohistochemical marker is still being investigated. PMID:25629270

  2. Platelets Regulate the Migration of Keratinocytes via Podoplanin/CLEC-2 Signaling during Cutaneous Wound Healing in Mice.

    PubMed

    Asai, Jun; Hirakawa, Satoshi; Sakabe, Jun-ichi; Kishida, Tsunao; Wada, Makoto; Nakamura, Naomi; Takenaka, Hideya; Mazda, Osam; Urano, Tetsumei; Suzuki-Inoue, Katsue; Tokura, Yoshiki; Katoh, Norito

    2016-01-01

    Podoplanin is an endogenous ligand for C-type lectin-like receptor 2 (CLEC-2), which is expressed on platelets. Recent evidence indicates that this specific marker of lymphatic endothelial cells is also expressed by keratinocytes at the edge of wounds. However, whether podoplanin or platelets play a role in keratinocyte activity during wound healing remains unknown. We evaluated the effect of podoplanin expression levels on keratinocyte motility using cultured primary normal human epidermal keratinocytes (NHEKs). Down-regulation of podoplanin in NHEKs via transfection with podoplanin siRNA inhibited their migration, indicating that podoplanin plays a mandatory role in this process. In addition, down-regulation of podoplanin was correlated with up-regulation of E-cadherin, suggesting that podoplanin-mediated stimulation of keratinocyte migration is associated with a loss of E-cadherin. Both the addition of platelets and treatment with CLEC-2 inhibited the migration of NHEKs. The down-regulation of RhoA activity and the up-regulation of E-cadherin in keratinocytes were also induced by CLEC-2. In conclusion, these results suggest that podoplanin/CLEC-2 signaling regulates keratinocyte migration via modulating E-cadherin expression through RhoA signaling. Altering the regulation of keratinocyte migration by podoplanin might be a novel therapeutic approach to improve wound healing. PMID:26597882

  3. D2-40/podoplanin expression in the human placenta.

    PubMed

    Wang, Y; Sun, J; Gu, Y; Zhao, S; Groome, L J; Alexander, J S

    2011-01-01

    Placental tissue expresses many lymphatic markers. The current study was undertaken to examine if D2-40/podoplanin, a lymphatic endothelial marker, was expressed in the human placenta, and how it is altered developmentally and pathologically. We examined D2-40/podoplanin and VEGFR-3 expressions in placentas from normotensive pregnancies at different gestational ages and in placentas from women with clinically defined preeclampsia. D2-40 expression in systemic lymphatic vessel endothelium served as a positive control. Protein expression for D2-40, VEGFR-3, and β-actin was determined by Western blot in placentas from normotensive (n = 6) and preeclamptic (n = 5) pregnancies. Our results show that D2-40/podoplanin was strongly expressed in the placenta, mainly as a network plexus pattern in the villous stroma throughout gestation. CD31 was limited to villous core fetal vessel endothelium and VEGFR-3 was found in both villous core fetal vessel endothelium and trophoblasts. D2-40/podoplanin expression was significantly decreased, and VEGFR-3 significantly increased in preeclamptic placental tissues compared to normotensive placental controls. Placental villous stroma is a reticular-like structure, and the localization of D2-40 to the stroma suggests that a lymphatic-like conductive network may exist in the human placenta. D2-40/podoplanin is an O-linked sialoglycoprotein. Although little is known regarding biological functions of sialylated glycoproteins within the placenta, placental D2-40/podoplanin may support fetal vessel angiogenesis during placenta development and reduced D2-40/podoplanin expression in preeclamptic placenta may contribute to altered interstitial fluid homeostasis and impaired angiogenesis in this pregnancy disorder.

  4. A Cancer-specific Monoclonal Antibody Recognizes the Aberrantly Glycosylated Podoplanin

    PubMed Central

    Kato, Yukinari; Kaneko, Mika Kato

    2014-01-01

    Podoplanin (PDPN/Aggrus/T1α), a platelet aggregation-inducing mucin-like sialoglycoprotein, is highly expressed in many cancers and normal tissues. A neutralizing monoclonal antibody (mAb; NZ-1) can block the association between podoplanin and C-type lectin-like receptor-2 (CLEC-2) and inhibit podoplanin-induced cancer metastasis, but NZ-1 reacts with podoplanin-expressing normal cells such as lymphatic endothelial cells. In this study, we established a cancer-specific mAb (CasMab) against human podoplanin. Aberrantly glycosylated podoplanin including keratan sulfate or aberrant sialylation, which was expressed in LN229 glioblastoma cells, was used as an immunogen. The newly established LpMab-2 mAb recognized both an aberrant O-glycosylation and a Thr55-Leu64 peptide from human podoplanin. Because LpMab-2 reacted with podoplanin-expressing cancer cells but not with normal cells, as shown by flow cytometry and immunohistochemistry, it is an anti-podoplanin CasMab that is expected to be useful for molecular targeting therapy against podoplanin-expressing cancers. PMID:25080943

  5. A microarray analysis of two distinct lymphatic endothelial cell populations.

    PubMed

    Schweighofer, Bernhard; Rohringer, Sabrina; Pröll, Johannes; Holnthoner, Wolfgang

    2015-06-01

    We have recently identified lymphatic endothelial cells (LECs) to form two morphologically different populations, exhibiting significantly different surface protein expression levels of podoplanin, a major surface marker for this cell type. In vitro shockwave treatment (IVSWT) of LECs resulted in enrichment of the podoplanin(high) cell population and was accompanied by markedly increased cell proliferation, as well as 2D and 3D migration. Gene expression profiles of these distinct populations were established using Affymetrix microarray analyses. Here we provide additional details about our dataset (NCBI GEO accession number GSE62510) and describe how we analyzed the data to identify differently expressed genes in these two LEC populations.

  6. Immunohistochemical localization of endothelial cell markers in solitary fibrous tumor.

    PubMed

    Sawada, Namie; Ishiwata, Toshiyuki; Naito, Zenya; Maeda, Shotaro; Sugisaki, Yuichi; Asano, Goro

    2002-12-01

    Solitary fibrous tumor (SFT) is an uncommon tumor first reported in the pleura, but recently described in other tissues. CD34, which is expressed in hematopoietic stem cells, endothelial progenitor cells and vascular endothelial cells, is observed in most SFT and some investigators believe that its expression is a definitive marker of this tumor. In the present study, the expression of vascular endothelial cell markers, such as vascular endothelial growth factor receptor (VEGFR)-1 (flt-1), VEGFR-2 (flk-1/KDR), Tie-2 and c-Met, was examined in SFT to clarify the relationship between SFT and endothelial cells. By immunohistochemical staining of tumor cells from 26 patients, VEGFR-1 was detected in 24 (92%), VEGFR-2 in five (19%), Tie-2 in 14 (54%), and c-Met, a specific receptor of hepatocyte growth factor (HGF) in 23 patients (88%). Furthermore, VEGFR-3 (flt-4) immunoreactivity was detected in eight of 26 patients (31%). In contrast, VEGF, VEGF-C and HGF, which are ligands for the receptors, were not localized in the SFT cells. These findings indicate that most SFT may closely relate to vascular or lymphatic endothelial cells and the endothelial growth factors may contribute to the growth of SFT in a paracrine manner.

  7. High expression of podoplanin in squamous cell carcinoma of the tongue occurs predominantly in patients ≤40 years but does not correlate with tumour spread.

    PubMed

    Sgaramella, Nicola; Lindell Jonsson, Eva; Boldrup, Linda; Califano, Luigi; Coates, Philip J; Tartaro, Gianpaolo; Lo Muzio, Lorenzo; Fåhraeus, Robin; Colella, Giuseppe; Dell'Aversana Orabona, Giovanni; Loljung, Lotta; Santagata, Mario; Rossiello, Riccardo; Wilms, Torben; Danielsson, Karin; Laurell, Göran; Nylander, Karin

    2016-01-01

    More than 30% of patients with squamous cell carcinoma (SCC) of the mobile tongue have clinically undetectable lymph node metastasis. Tumour cells can spread as single cells or collectively. A protein known to play a role in both processes is podoplanin, which is expressed in endothelial cells not only in lymph vessels but also in some aggressive tumours with high invasive and metastatic potential. Here we studied samples from 129 patients with primary SCC of the tongue for expression of podoplanin using immunohistochemistry. mRNA levels were analysed in another 27 cases of tongue SCC with adjacent clinically tumour-free tongue tissue and 14 tongue samples from healthy donors. Higher levels of podoplanin were seen in tumours compared to both normal tongue and clinically normal tongue in the tumour vicinity. No association was found between levels of podoplanin, presence of lymph node metastases or other clinical factors. Patients aged 40 or less were more likely to express high levels of podoplanin protein compared to older patients (p = 0.027). We conclude that levels of podoplanin in primary tongue SCCs are not associated with lymph node metastases. However, tongue SCCs arising in young patients (≤40 years of age) are more likely to express high levels of podoplanin than tongue SCCs that arise in the more elderly. The data suggest that podoplanin has a distinctive role in young patients, who are known to have a poor prognosis: these patients may, therefore, benefit from podoplanin inhibitory therapies.

  8. High expression of podoplanin in squamous cell carcinoma of the tongue occurs predominantly in patients ≤40 years but does not correlate with tumour spread

    PubMed Central

    Lindell Jonsson, Eva; Boldrup, Linda; Califano, Luigi; Coates, Philip J; Tartaro, Gianpaolo; Lo Muzio, Lorenzo; Fåhraeus, Robin; Colella, Giuseppe; Dell'Aversana Orabona, Giovanni; Loljung, Lotta; Santagata, Mario; Rossiello, Riccardo; Wilms, Torben; Danielsson, Karin; Laurell, Göran

    2015-01-01

    Abstract More than 30% of patients with squamous cell carcinoma (SCC) of the mobile tongue have clinically undetectable lymph node metastasis. Tumour cells can spread as single cells or collectively. A protein known to play a role in both processes is podoplanin, which is expressed in endothelial cells not only in lymph vessels but also in some aggressive tumours with high invasive and metastatic potential. Here we studied samples from 129 patients with primary SCC of the tongue for expression of podoplanin using immunohistochemistry. mRNA levels were analysed in another 27 cases of tongue SCC with adjacent clinically tumour‐free tongue tissue and 14 tongue samples from healthy donors. Higher levels of podoplanin were seen in tumours compared to both normal tongue and clinically normal tongue in the tumour vicinity. No association was found between levels of podoplanin, presence of lymph node metastases or other clinical factors. Patients aged 40 or less were more likely to express high levels of podoplanin protein compared to older patients (p = 0.027). We conclude that levels of podoplanin in primary tongue SCCs are not associated with lymph node metastases. However, tongue SCCs arising in young patients (≤40 years of age) are more likely to express high levels of podoplanin than tongue SCCs that arise in the more elderly. The data suggest that podoplanin has a distinctive role in young patients, who are known to have a poor prognosis: these patients may, therefore, benefit from podoplanin inhibitory therapies. PMID:27499910

  9. High expression of podoplanin in squamous cell carcinoma of the tongue occurs predominantly in patients ≤40 years but does not correlate with tumour spread.

    PubMed

    Sgaramella, Nicola; Lindell Jonsson, Eva; Boldrup, Linda; Califano, Luigi; Coates, Philip J; Tartaro, Gianpaolo; Lo Muzio, Lorenzo; Fåhraeus, Robin; Colella, Giuseppe; Dell'Aversana Orabona, Giovanni; Loljung, Lotta; Santagata, Mario; Rossiello, Riccardo; Wilms, Torben; Danielsson, Karin; Laurell, Göran; Nylander, Karin

    2016-01-01

    More than 30% of patients with squamous cell carcinoma (SCC) of the mobile tongue have clinically undetectable lymph node metastasis. Tumour cells can spread as single cells or collectively. A protein known to play a role in both processes is podoplanin, which is expressed in endothelial cells not only in lymph vessels but also in some aggressive tumours with high invasive and metastatic potential. Here we studied samples from 129 patients with primary SCC of the tongue for expression of podoplanin using immunohistochemistry. mRNA levels were analysed in another 27 cases of tongue SCC with adjacent clinically tumour-free tongue tissue and 14 tongue samples from healthy donors. Higher levels of podoplanin were seen in tumours compared to both normal tongue and clinically normal tongue in the tumour vicinity. No association was found between levels of podoplanin, presence of lymph node metastases or other clinical factors. Patients aged 40 or less were more likely to express high levels of podoplanin protein compared to older patients (p = 0.027). We conclude that levels of podoplanin in primary tongue SCCs are not associated with lymph node metastases. However, tongue SCCs arising in young patients (≤40 years of age) are more likely to express high levels of podoplanin than tongue SCCs that arise in the more elderly. The data suggest that podoplanin has a distinctive role in young patients, who are known to have a poor prognosis: these patients may, therefore, benefit from podoplanin inhibitory therapies. PMID:27499910

  10. Obstructive Sleep Apnoea Syndrome, Endothelial Function and Markers of Endothelialization. Changes after CPAP

    PubMed Central

    Sanchez Armengol, Angeles; Moreno-Luna, Rafael; Caballero-Eraso, Candela; Macher, Hada C.; Villar, Jose; Merino, Ana M; Castell, Javier; Capote, Francisco; Stiefel, Pablo

    2015-01-01

    Study objectives This study tries to assess the endothelial function in vivo using flow-mediated dilatation (FMD) and several biomarkers of endothelium formation/restoration and damage in patients with obstructive sleep apnoea (OSA) syndrome at baseline and after three months with CPAP therapy. Design Observational study, before and after CPAP therapy. Setting and Patients We studied 30 patients with apnoea/hypopnoea index (AHI) >15/h that were compared with themselves after three months of CPAP therapy. FMD was assessed non-invasively in vivo using the Laser-Doppler flowmetry. Circulating cell-free DNA (cf-DNA) and microparticles (MPs) were measured as markers of endothelial damage and the vascular endothelial growth factor (VEGF) was determined as a marker of endothelial restoration process. Measurements and results After three month with CPAP, FMD significantly increased (1072.26 ± 483.21 vs. 1604.38 ± 915.69 PU, p< 0.005) cf-DNA and MPs significantly decreased (187.93 ± 115.81 vs. 121.28 ± 78.98 pg/ml, p<0.01, and 69.60 ± 62.60 vs. 39.82 ± 22.14 U/μL, p<0.05, respectively) and VEGF levels increased (585.02 ± 246.06 vs. 641.11 ± 212.69 pg/ml, p<0.05). These changes were higher in patients with more severe disease. There was a relationship between markers of damage (r = -0.53, p<0.005) but not between markers of damage and restoration, thus suggesting that both types of markers should be measured together. Conclusions CPAP therapy improves FMD. This improvement may be related to an increase of endothelial restoration process and a decrease of endothelial damage. PMID:25815511

  11. Microvesicles: potential markers and mediators of endothelial dysfunction

    PubMed Central

    Liu, Ming-Lin; Williams, Kevin Jon

    2016-01-01

    Purpose of review Microvesicles (MVs, also known as microparticles) are small membranous structures that are released from platelets and cells upon activation or during apoptosis. Microvesicles have been found in blood, urine, synovial fluid, extracellular spaces of solid organs, atherosclerotic plaques, tumors, and elsewhere. Here, we focus on new clinical and basic work that implicates MVs as markers and mediators of endothelial dysfunction and hence novel contributors to cardiovascular and other diseases. Recent findings Advances in the detection of MVs and the use of cell type-specific markers to determine their origin have allowed studies that associated plasma concentrations of specific MVs with major types of endothelial dysfunction – namely, inappropriate or maladaptive vascular tone, leukocyte recruitment, and thrombosis. Recent investigations have highlighted microvesicular transport of key biologically active molecules besides tissue factor, such as ligands for pattern-recognition receptors, elements of the inflammasome, and morphogens. Microvesicles generated from human cells under different pathologic circumstances, e.g., during cholesterol loading or exposure to endotoxin, carry different subsets of these molecules and thereby alter endothelial function through several distinct, well-characterized molecular pathways. Summary Clinical and basic studies indicate that MVs may be novel markers and mediators of endothelial dysfunction. This work has advanced our understanding of the development of cardiovascular and other diseases. Opportunites and obstacles to clinical applications are discussed. PMID:22248645

  12. Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin.

    PubMed

    Cueni, Leah N; Chen, Lu; Zhang, Hui; Marino, Daniela; Huggenberger, Reto; Alitalo, Annamari; Bianchi, Roberta; Detmar, Michael

    2010-11-18

    Podoplanin is a small transmembrane protein required for development and function of the lymphatic vascular system. To investigate the effects of interfering with its function, we produced an Fc fusion protein of its ectodomain. We found that podoplanin-Fc inhibited several functions of cultured lymphatic endothelial cells and also specifically suppressed lymphatic vessel growth, but not blood vessel growth, in mouse embryoid bodies in vitro and in mouse corneas in vivo. Using a keratin 14 expression cassette, we created transgenic mice that overexpressed podoplanin-Fc in the skin. No obvious outward phenotype was identified in these mice, but surprisingly, podoplanin-Fc-although produced specifically in the skin-entered the blood circulation and induced disseminated intravascular coagulation, characterized by microthrombi in most organs and by thrombocytopenia, occasionally leading to fatal hemorrhage. These findings reveal an important role of podoplanin in lymphatic vessel formation and indicate the potential of podoplanin-Fc as an inhibitor of lymphangiogenesis. These results also demonstrate the ability of podoplanin to induce platelet aggregation in vivo, which likely represents a major function of lymphatic endothelium. Finally, keratin 14 podoplanin-Fc mice represent a novel genetic animal model of disseminated intravascular coagulation.

  13. Podoplanin - a small glycoprotein with many faces

    PubMed Central

    Ugorski, Maciej; Dziegiel, Piotr; Suchanski, Jaroslaw

    2016-01-01

    Podoplanin is a small membrane glycoprotein with a large number of O-glycoside chains and therefore it belongs to mucin-type proteins. It can be found on the surface of many types of normal cells originating from various germ layers. It is present primarily on the endothelium of lymphatic vessels, type I pneumocytes and glomerular podocytes. Increased levels of podoplanin or its neo-expression have been found in numerous types of human carcinomas, but it is especially common in squamous cell carcinomas, such as cervical, larynx, oral cavity, skin and lung cancer. This small sialomucin is also seen on the surface of cancer-associated fibroblasts (CAFs) in lung adenocarcinomas, as well as in breast and pancreatic tumors. In most cancers, a high level of podoplanin expression, both in cancer cells, as well as in CAFs, is correlated with an increased incidence of metastasis to lymph nodes and shorter survival time of patients. Little is known about the biological role of podoplanin, however research carried out on mice with a knock-out gene of this glycoprotein shows that the presence of podoplanin determines normal development of lungs, the lymphatic system and heart. Podoplanin on cancer cells and CAFs seems to play an important role in the development and progression of various cancers. However, its role in these processes is both unclear and controversial. In this review, the role of podoplanin in both physiological processes and carcinogenesis is discussed. PMID:27186410

  14. Podoplanin - a small glycoprotein with many faces.

    PubMed

    Ugorski, Maciej; Dziegiel, Piotr; Suchanski, Jaroslaw

    2016-01-01

    Podoplanin is a small membrane glycoprotein with a large number of O-glycoside chains and therefore it belongs to mucin-type proteins. It can be found on the surface of many types of normal cells originating from various germ layers. It is present primarily on the endothelium of lymphatic vessels, type I pneumocytes and glomerular podocytes. Increased levels of podoplanin or its neo-expression have been found in numerous types of human carcinomas, but it is especially common in squamous cell carcinomas, such as cervical, larynx, oral cavity, skin and lung cancer. This small sialomucin is also seen on the surface of cancer-associated fibroblasts (CAFs) in lung adenocarcinomas, as well as in breast and pancreatic tumors. In most cancers, a high level of podoplanin expression, both in cancer cells, as well as in CAFs, is correlated with an increased incidence of metastasis to lymph nodes and shorter survival time of patients. Little is known about the biological role of podoplanin, however research carried out on mice with a knock-out gene of this glycoprotein shows that the presence of podoplanin determines normal development of lungs, the lymphatic system and heart. Podoplanin on cancer cells and CAFs seems to play an important role in the development and progression of various cancers. However, its role in these processes is both unclear and controversial. In this review, the role of podoplanin in both physiological processes and carcinogenesis is discussed. PMID:27186410

  15. Low podoplanin expression in pretreatment biopsy material predicts poor prognosis in advanced-stage squamous cell carcinoma of the uterine cervix treated by primary radiation.

    PubMed

    Dumoff, Kimberly L; Chu, Christina S; Harris, Eleanor E; Holtz, David; Xu, Xiaowei; Zhang, Paul J; Acs, Geza

    2006-05-01

    Lymphatic invasion and nodal metastasis are predictors of poor outcome in cervix carcinoma. We have recently found that low podoplanin immunoreactivity in cervix carcinoma correlated with the presence of lymphatic invasion and nodal metastasis. In the current study, we examined whether podoplanin expression in pretreatment cervical biopsies can predict the presence lymphatic invasion, nodal metastasis, and outcome in advanced-stage tumors treated by nonsurgical means. Podoplanin expression was analyzed by immunohistochemistry in 48 cervical biopsies and corresponding hysterectomy specimens of early-stage invasive squamous cell carcinoma and in 74 pretreatment biopsies from advanced-stage tumors treated with primary radiation. We found a highly significant correlation between podoplanin expression obtained in biopsy and corresponding hysterectomy materials (r = 0.8962, P < 0.0001). Low podoplanin expression showed a significant correlation with lymphatic invasion (P < 0.0001) and nodal metastasis (P = 0.0058). Low podoplanin expression in pretreatment biopsy material showed a significant correlation with poor disease-free (P = 0.0009) and overall (P = 0.0002) survival in advanced-stage tumors. Our results suggest that in advanced-stage cervix carcinomas treated by radiation, when traditional prognostic indicators are not available and treatment decisions are based on biopsy material and clinical staging parameters, examination of podoplanin expression in pretreatment biopsy material may be a useful marker to predict lymphatic metastasis and patient outcome. Prospective studies involving larger numbers of patients are needed to further evaluate the clinical utility of examination of podoplanin expression in patients with cervix carcinoma.

  16. Endothelial cell markers reflecting endothelial cell dysfunction in patients with mixed connective tissue disease

    PubMed Central

    2010-01-01

    Introduction The aim of the present study was to investigate the association between cardiovascular risk factors and endothelial dysfunction in patients with mixed connective tissue disease (MCTD) and to determine which biomarkers are associated with atherosclerotic complications, such as cardiovascular disease. Methods Fifty MCTD patients and 38 healthy age-matched and sex-matched controls were enrolled in this study. In order to describe endothelial dysfunction, we assessed flow-mediated dilation (FMD), nitrate-mediated dilation (NMD) and carotid artery intima-media thickness (IMT). We investigated FMD of the brachial artery after reactive hyperemia and NMD after sublingual nitroglycerin administration, while the IMT of the common carotid artery was determined by ultrasound. Anti-U1 ribonucleoprotein (anti-U1RNP) antibodies, anti-cardiolipin (anti-CL) antibodies, anti-endothelial cell antibody (AECA) and endothelial cell markers, such as soluble thrombomodulin (TM) and von Willebrand factor antigen (vWFAg), were assessed. Results The endothelium-dependent vasodilation (FMD) was significantly impaired in patients with MCTD, as compared with controls (%FMD: 4.7 ± 4.2% vs. 8.7 ± 5.0%; P < 0.001), while the percentage NMD did not differ (%NMD: 14.3 ± 6.6% vs. 17.1 ± 6.7%; P = 0.073). Mean carotid IMT values were higher in patients than in controls (IMT: MCTD, 0.64 ± 0.13 mm vs. controls, 0.53 ± 0.14 mm; P < 0.001). FMD negatively correlated with disease duration, the levels of apolipoprotein A1, the paraoxonase-1 activity, and systolic blood pressure in MCTD patients. The percentage FMD was significantly lower in MCTD patients with cardiovascular diseases (CVD), than in those without CVD (%FMD: 3.5 ± 2.9 vs. 5.8 ± 4.8, P < 0.0002), while percentage NMD did not differ between patients with and without CVDs. Serum levels of autoantibodies (anti-U1RNP, AECA and anti-CL) were significantly higher in MCTD patients and differed between MCTD patients with and

  17. Dimer conformation of soluble PECAM-1, an endothelial marker.

    PubMed

    Jiang, Longguang; Lin, Lin; Li, Rui; Yuan, Cai; Xu, Mingming; Huang, Joy H; Huang, Mingdong

    2016-08-01

    Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell surface receptor widely distributed on endothelium and hematopoietic-derived cells, and maintain the integrity of the blood vessels. PECAM-1 is widely recognized as an endothelial cell marker. The homophilic interaction through its extracellular domain of PECAM-1 (soluble PECAM-1, or sPECAM-1) is important to its functions. However, structural details for such dimerization are not fully understood. Here we report the production of recombinant sPECAM-1 in large quantity by Drosophila expression system and the small-angle X-ray diffraction (SAXS) study. The recombinant sPECAM-1 was found to form one population of dimer, but not oligomer, and was able to bind to heparin immobilized on a chip in surface plasmon resonance imaging (SPRi) binding experiments. The results of SAXS demonstrated that sPECAM-1 formed a symmetric homodimer of Ω-shape in solution, and each protomer adopted an extended conformation. The dimer is mediated through the intermolecular interactions through the first N-terminal domain (D1) of sPECAM-1. This model provides new structural information for its homophilic interaction mechanism. PMID:27270333

  18. Podoplanin-mediated TGF-β-induced epithelial-mesenchymal transition and its correlation with bHLH transcription factor DEC in TE-11 cells.

    PubMed

    Wu, Yunyan; Liu, Qiang; Yan, Xu; Kato, Yukio; Tanaka, Makiko; Inokuchi, Sadaki; Yoshizawa, Tadashi; Morohashi, Satoko; Kijima, Hiroshi

    2016-06-01

    Podoplanin is reported involved in the collective cell invasion, another tumor invasion style which is distinct from the single cell invasion, so-called epithelial-mesenchymal transition (EMT). In this study, we investigated the correlation between podoplanin and EMT-related markers in esophageal squamous cell carcinoma (ESCC), and evaluated its linkage with the basic helix-loop-helix (bHLH) transcription factor differentiated embryonic chondrocyte (DEC) 1 and DEC2. Three ESCC cell lines and human squamous cell carcinoma A431 cells were subjected to western blot analyses for podoplanin and EMT markers, as well as the expression of DEC1 and DEC2. By RT-qPCR and western blotting, we found that TGF-β increased the expression of podoplanin and mensenchymal markers (e.g., N-cadherin and vimentin), while decreased the expression of epithelial markers (e.g., Claudin-4 and E-cadherin), accompanied by Smad2 phosphorylation and slug activation. Moreover, TGF-β has different effects on the expression of DEC1 and DEC2, that is, it upregulates DEC1, but downregulates DEC2. Capability of cell proliferation, invasion and migration were further analyzed using CCK-8 assay, Matrigel-invasion assay, and the wound-healing assay, respectively. The proliferation, invasion and migration ability were significantly lost in podoplanin-knockdown cells when compared with the scrambled siRNA group. In addition to these changes, the expression of Claudin-4, but not that of Claudin-1 or E-cadherin, was induced by the siRNA against podoplanin. On the contrary, overexpression of DEC1 and DEC2 exhibits opposite effects on podoplanin, but only slight effect on Claudin-4 was detected. These data indicated that podoplanin is significantly associated with EMT of TE-11 cells, and may be directly or indirectly regulated by bHLH transcription factors DEC1 and DEC2.

  19. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature.

    PubMed

    Facciponte, John G; Ugel, Stefano; De Sanctis, Francesco; Li, Chunsheng; Wang, Liping; Nair, Gautham; Sehgal, Sandy; Raj, Arjun; Matthaiou, Efthymia; Coukos, George; Facciabene, Andrea

    2014-04-01

    Tumor endothelial marker 1 (TEM1; also known as endosialin or CD248) is a protein found on tumor vasculature and in tumor stroma. Here, we tested whether TEM1 has potential as a therapeutic target for cancer immunotherapy by immunizing immunocompetent mice with Tem1 cDNA fused to the minimal domain of the C fragment of tetanus toxoid (referred to herein as Tem1-TT vaccine). Tem1-TT vaccination elicited CD8+ and/or CD4+ T cell responses against immunodominant TEM1 protein sequences. Prophylactic immunization of animals with Tem1-TT prevented or delayed tumor formation in several murine tumor models. Therapeutic vaccination of tumor-bearing mice reduced tumor vascularity, increased infiltration of CD3+ T cells into the tumor, and controlled progression of established tumors. Tem1-TT vaccination also elicited CD8+ cytotoxic T cell responses against murine tumor-specific antigens. Effective Tem1-TT vaccination did not affect angiogenesis-dependent physiological processes, including wound healing and reproduction. Based on these data and the widespread expression of TEM1 on the vasculature of different tumor types, we conclude that targeting TEM1 has therapeutic potential in cancer immunotherapy.

  20. Platelet Adhesion to Podoplanin Under Flow is Mediated by the Receptor CLEC-2 and Stabilised by Src/Syk-Dependent Platelet Signalling

    PubMed Central

    Pollitt, Alice Y.; Lowe, Kate; Latif, Arusa; Nash, Gerard B.

    2015-01-01

    Summary Platelet-specific deletion of CLEC-2, which signals through Src and Syk kinases, or global deletion of its ligand podoplanin results in blood-filled lymphatics during mouse development. Platelet-specific Syk deficiency phenocopies this defect, indicating that platelet activation is required for lymphatic development. In the present study, we investigated whether CLEC-2-podoplanin interactions could support platelet arrest from blood flow and whether platelet signalling is required for stable platelet adhesion to lymphatic endothelial cells (LECs) and recombinant podoplanin under flow. Perfusion of human or mouse blood over human LEC monolayers led to platelet adhesion and aggregation. Following αIIbβ3 blockade, individual platelets still adhered. Platelet binding occurred at venous but not arterial shear rates. There was no adhesion using CLEC-2-deficient blood or to vascular endothelial cells (which lack podoplanin). Perfusion of human blood over human Fc-podoplanin (hFcPDPN) in the presence of monoclonal antibody IV.3 to block FcγRIIA receptors led to platelet arrest at similar shear rates to those used on LECs. Src and Syk inhibitors significantly reduced global adhesion of human or mouse platelets to LECs and hFcPDPN. A similar result was seen using Syk-deficient mouse platelets. Reduced platelet adhesion was due to a decrease in the stability of binding. In conclusion, our data reveal that CLEC-2 is an adhesive receptor that supports platelet arrest to podoplanin under venous shear. Src/Syk-dependent signalling stabilises platelet adhesion to podoplanin, providing a possible molecular mechanism contributing to the lymphatic defects of Syk-deficient mice. PMID:25694214

  1. Tumor Endothelial Marker Imaging in Melanomas Using Dual-Tracer Fluorescence Molecular Imaging

    PubMed Central

    Tichauer, Kenneth M.; Deharvengt, Sophie J.; Samkoe, Kimberley S.; Gunn, Jason R.; Bosenberg, Marcus W.; Turk, Mary-Jo; Hasan, Tayyaba; Stan, Radu V.; Pogue, Brian W.

    2014-01-01

    Purpose Cancer-specific endothelial markers available for intravascular binding are promising targets for new molecular therapies. In this study, a molecular imaging approach of quantifying endothelial marker concentrations (EMCI) is developed and tested in highly light-absorbing melanomas. The approach involves injection of targeted imaging tracer in conjunction with an untargeted tracer, which is used to account for nonspecific uptake and tissue optical property effects on measured targeted tracer concentrations. Procedures Theoretical simulations and a mouse melanoma model experiment were used to test out the EMCI approach. The tracers used in the melanoma experiments were fluorescently labeled anti-Plvap/PV1 antibody (plasmalemma vesicle associated protein Plvap/PV1 is a transmembrane protein marker exposed on the luminal surface of endothelial cells in tumor vasculature) and a fluorescent isotype control antibody, the uptakes of which were measured on a planar fluorescence imaging system. Results The EMCI model was found to be robust to experimental noise under reversible and irreversible binding conditions and was capable of predicting expected overexpression of PV1 in melanomas compared to healthy skin despite a 5-time higher measured fluorescence in healthy skin compared to melanoma: attributable to substantial light attenuation from melanin in the tumors. Conclusions This study demonstrates the potential of EMCI to quantify endothelial marker concentrations in vivo, an accomplishment that is currently unavailable through any other methods, either in vivo or ex vivo. PMID:24217944

  2. Urine albumin to creatinine ratio: A marker of early endothelial dysfunction in youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The urine albumin-to-creatinine ratio (UACR) is a useful predictor of cardiovascular (CV) events in adults. Its relationship to vascular function in children is not clear. We investigated whether UACR was related to insulin resistance and endothelial function, a marker of subclinical atherosclerosis...

  3. Glutamate dependent NMDA receptor 2D is a novel angiogenic tumour endothelial marker in colorectal cancer

    PubMed Central

    Ward, Stephen; Heath, Victoria L.; Ismail, Tariq; Bicknell, Roy

    2016-01-01

    Current vascular-targeted therapies in colorectal cancer (CRC) have shown limited benefit. The lack of novel, specific treatment in CRC has been hampered by a dearth of specific endothelial markers. Microarray comparison of endothelial gene expression in patient-matched CRC and normal colon identified a panel of putative colorectal tumour endothelial markers. Of these the glutamate dependent NMDA receptor GRIN2D emerged as the most interesting target. GRIN2D expression was shown to be specific to colorectal cancer vessels by RTqPCR and IHC analysis. Its expression was additionally shown be predictive of improved survival in CRC. Targeted knockdown studies in vitro demonstrated a role for GRIN2D in endothelial function and angiogenesis. This effect was also shown in vivo as vaccination against the extracellular region of GRIN2D resulted in reduced vascularisation in the subcutaneous sponge angiogenesis assay. The utility of immunologically targeting GRIN2D in CRC was demonstrated by the vaccination approach inhibiting murine CRC tumour growth and vascularisation. GRIN2D represents a promising target for the future treatment of CRC. PMID:26943033

  4. Selective targeting of liver cancer with the endothelial marker CD146

    PubMed Central

    Thomann, Stefan; Longerich, Thomas; Bazhin, Alexandr V.; Mier, Walter; Schemmer, Peter; Ryschich, Eduard

    2014-01-01

    Hepatocellular carcinomas are well-vascularized tumors; the endothelial cells in these tumors have a specific phenotype. Our aim was to develop a new approach for tumor-specific drug delivery with monoclonal antibody targeting of endothelial ligands. CD146, a molecule expressed on the endothelial surface of hepatocellular carcinoma, was identified as a promising candidate for targeting. In the present study, endothelial cells immediately captured circulating anti-CD146 (ME-9F1) antibody, while antibody binding in tumors was significantly higher than in hepatic endothelium. Macroscopically, after intravenous injection, there were no differences in the mean accumulation of anti-CD146 antibody in tumor compared to liver tissue, due to a compensating higher blood vessel density in the liver tissue. Additional blockade of nontumoral epitopes and intra-arterial administration, improved selective antibody capture in the tumor microvasculature and largely prevented antibody distribution in the lung and liver. The potential practical use of this approach was demonstrated by imaging of radionuclide-labeled ME-9F1 antibody, which showed excellent tumor-selective uptake. Our results provide a promising principle for the use of endothelial markers for intratumoral drug delivery. Tumor endothelium–based access might offer new opportunities for the imaging and therapy of hepatocellular carcinoma and other liver malignancies. PMID:25238265

  5. Comparison of Endothelial Cell Phenotypic Markers of Late-Outgrowth Endothelial Progenitor Cells Isolated from Patients with Coronary Artery Disease and Healthy Volunteers

    PubMed Central

    Stroncek, John D.; Grant, Bryan S.; Brown, Melissa A.; Povsic, Thomas J.; Truskey, George A.

    2009-01-01

    The lack of easily isolated autologous endothelial cell (EC) sources is one of the major challenges with vascular tissue engineering interventions. This article examines the isolation and expansion of late-outgrowth endothelial progenitor cells (EPCs) from 50-mL samples of peripheral blood drawn from patients with significant coronary artery disease (CAD) and healthy young adult volunteers. In cases in which late-outgrowth EPCs were successfully isolated, the cells were assayed in vitro for their expression of EC markers, proliferation potential and ability to endothelialize synthetic materials, form new blood vessels, and produce nitric oxide. Late-outgrowth EPCs from patients with CAD and healthy volunteers exhibited critical EC markers and morphological characteristics that were analogous to a control population of human aortic ECs. To our knowledge, this is the first study to examine the suitability of late-outgrowth EPCs from patients with CAD for autologous endothelialization applications. PMID:19435420

  6. ERG is a novel and reliable marker for endothelial cells in central nervous system tumors.

    PubMed

    Haber, Matthew A; Iranmahboob, Amir; Thomas, Cheddhi; Liu, Mengling; Najjar, Amanda; Zagzag, David

    2015-01-01

    ETS-related gene (ERG) is a transcription factor that has been linked to angiogenesis. Very little research has been done to assess ERG expression in central nervous system (CNS) tumors. We evaluated 57 CNS tumors, including glioblastomas (GBMs) and hemangioblastomas (HBs), as well as two arteriovenous malformations and four samples of normal brain tissue with immunohistochemistry using a specific ERG rabbit monoclonal antibody. In addition, immunostains for CD31, CD34, and α-smooth muscle actin (α-SMA) were performed on all samples. CD31 demonstrated variable and sometimes weak immunoreactivity for endothelial cells. Furthermore, in 1 case of a GBM, CD34 stained not only endothelial cells, but also tumor cells. In contrast, we observed that ERG was only expressed in the nuclei of endothelial cells, for example, in the hyperplastic vascular complexes that comprise the glomeruloid microvascular proliferation seen in GBMs. Conversely, α-SMA immunoreactivity was identified in the abluminal cells of these hyperplastic vessels. Quantitative evaluation with automated methodology and custom Matlab 2008b software was used to calculate percent staining of ERG in each case. We observed significantly higher quantitative expression of ERG in HBs than in other CNS tumors. Our results show that ERG is a novel, reliable, and specific marker for endothelial cells within CNS tumors that can be used to better study the process of neovascularization.

  7. ERG is a novel and reliable marker for endothelial cells in central nervous system tumors.

    PubMed

    Haber, Matthew A; Iranmahboob, Amir; Thomas, Cheddhi; Liu, Mengling; Najjar, Amanda; Zagzag, David

    2015-01-01

    ETS-related gene (ERG) is a transcription factor that has been linked to angiogenesis. Very little research has been done to assess ERG expression in central nervous system (CNS) tumors. We evaluated 57 CNS tumors, including glioblastomas (GBMs) and hemangioblastomas (HBs), as well as two arteriovenous malformations and four samples of normal brain tissue with immunohistochemistry using a specific ERG rabbit monoclonal antibody. In addition, immunostains for CD31, CD34, and α-smooth muscle actin (α-SMA) were performed on all samples. CD31 demonstrated variable and sometimes weak immunoreactivity for endothelial cells. Furthermore, in 1 case of a GBM, CD34 stained not only endothelial cells, but also tumor cells. In contrast, we observed that ERG was only expressed in the nuclei of endothelial cells, for example, in the hyperplastic vascular complexes that comprise the glomeruloid microvascular proliferation seen in GBMs. Conversely, α-SMA immunoreactivity was identified in the abluminal cells of these hyperplastic vessels. Quantitative evaluation with automated methodology and custom Matlab 2008b software was used to calculate percent staining of ERG in each case. We observed significantly higher quantitative expression of ERG in HBs than in other CNS tumors. Our results show that ERG is a novel, reliable, and specific marker for endothelial cells within CNS tumors that can be used to better study the process of neovascularization. PMID:25881913

  8. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    PubMed

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.

  9. Discovery of molecular markers to discriminate corneal endothelial cells in the human body.

    PubMed

    Yoshihara, Masahito; Ohmiya, Hiroko; Hara, Susumu; Kawasaki, Satoshi; Hayashizaki, Yoshihide; Itoh, Masayoshi; Kawaji, Hideya; Tsujikawa, Motokazu; Nishida, Kohji

    2015-01-01

    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro. PMID:25807145

  10. Fibroblast-Endothelial Partners for Vascularization Strategies in Tissue Engineering

    PubMed Central

    Costa-Almeida, Raquel; Gomez-Lazaro, Maria; Ramalho, Carla; Soares, Raquel; Guerreiro, Susana G.

    2015-01-01

    Cell-based approaches have emerged as a promising therapy to achieve successful vascularization in tissue engineering. Since fibroblasts activation and migration is required for physiological events relying on angiogenesis, we hypothesize herein that different fibroblasts exhibit distinct capacity to promote capillary-like structures assembly, by mature and progenitor endothelial cells (ECs). Outgrowth endothelial cells (OECs) were isolated from human umbilical cord blood samples and characterized by immunofluorescence and imaging flow cytometry for endothelial markers. Coculture systems were established using either human umbilical vein ECs (HUVECs) or OECs with fibroblasts, being evaluated at 7, 14, and 21 days of culture. Two types of human dermal fibroblasts (HDF) were used, namely neonatal human foreskin fibroblasts-1 (HFF-1) and juvenile HDF. OECs expressed EC markers and formed capillary-like structures. HFF-1 exhibited higher expression of transglutaminase-2, while HDF exhibited a higher expression of α-smooth muscle actin (α-SMA) and podoplanin, which were not observed for HFF-1. Formation of capillary-like structures was only observed in cocultures with HDF and not with HFF-1. No significant differences were found between HDF and OECs or HUVECs cocultures. These findings suggest that HDF is a preferential cell source for promoting vascularization, either using mature or progenitor ECs, probably due to their higher expression of α-SMA and podoplanin, and increased synthesis of extracellular matrix. This work opens new research possibilities regarding the use of specific fibroblast populations cocultured with ECs, as efficient partners for vascular development in regenerative medicine strategies. PMID:25340984

  11. Immunohistochemical Expression of VEGF and Podoplanin in Uterine Cervical Squamous Intraepithelial Lesions

    PubMed Central

    Belfort-Mattos, Patrícia Napoli; Focchi, Gustavo Rubino de Azevedo; Ribalta, Julisa Chamorro Lascasas; Megale De Lima, Tatiana; Nogueira Carvalho, Carmen Regina; Kesselring Tso, Fernanda; De Góis Speck, Neila Maria

    2016-01-01

    VEGF and podoplanin (PDPN) have been identified as angiogenesis and/or lymphangiogenesis regulators and might be essential to restrict tumor growth, progression, and metastasis. In the present study, we evaluate the association between the expression of these markers and CIN grade. Immunohistochemistry was performed in 234 uterine cervical samples using conventional histologic sections or TMA with the monoclonal antibodies to VEGF (C-1 clone) and podoplanin (D2-40 clone). Positive-staining rates of VEGF in 191 CIN specimens were significantly associated with histological grade (P < 0.001). Negative and/or focal immunostaining for PDPN were more frequent in CIN 3 (P = 0.016). We found that patients with CIN 3 more frequently had strong and more diffuse staining for VEGF and diminished staining for PDPN (P = 0.018). Strong and more diffuse VEGF immunoexpressions in CIN 2 and CIN 3 were detected when compared to CIN 1. Negative and/or focal PDPN immunoexpression appear to be more frequent in CIN 3. Moderate to strong VEGF expression may be a tendency among patients with high-grade lesions and diminished PDPN expression. PMID:27313335

  12. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation

    SciTech Connect

    Vallon, Mario; Rohde, Franziska; Janssen, Klaus-Peter; Essler, Markus

    2010-02-01

    Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile, an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.

  13. Candidate Genes for Respiratory Disease Associated with Markers of Inflammation and Endothelial Dysfunction in Elderly Men

    PubMed Central

    Wilker, Elissa H.; Alexeeff, Stacey E.; Poon, Audrey; Litonjua, Augusto A.; Sparrow, David; Vokonas, Pantel S.; Mittleman, Murray A.; Schwartz, Joel

    2010-01-01

    Background Inflammation and endothelial dysfunction are important risk factors for cardiovascular disease (CVD). We hypothesized that candidate genes selected for a study of asthma and chronic obstructive pulmonary disorder (COPD) are associated with markers of systemic inflammation and endothelial dysfunction in an aging population. Methods Plasma levels of circulating C-reactive protein (CRP), fibrinogen, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were obtained from 679 elderly male participants in the Normative Aging Study. Blood samples were analyzed for 202 SNPs in 25 candidate genes and included both haplotype tagSNPs and functional SNPs based on literature review. Data were stratified into discovery and replication cohorts for 2-stage analysis. In the discovery cohort, the relationship between biomarker level and genotype was analyzed using linear mixed effects with random intercepts for each subject and models were adjusted for age and BMI. A positive outcome in the discovery cohort was defined as a p-value <0.1 for the SNP. SNPs that met this criterion were analyzed in the replication cohort and confirmed for those which met a criterion of significance (p<0.025). Results In our analyses, SNPs in the CRHR1, ITPR2, and VDR genes met criteria of significant effects. Conclusions Our results suggest that genes thought to play a role in the pathogenesis of asthma and COPD may influence levels of serum markers of inflammation and endothelial dysfunction via novel SNP associations which have not previously been associated with cardiovascular disease. PMID:19409562

  14. Tumor Endothelial Marker 8 Amplifies Canonical Wnt Signaling in Blood Vessels

    PubMed Central

    Verma, Kiran; Gu, Jingsheng; Werner, Erica

    2011-01-01

    Tumor Endothelial Marker 8/Anthrax Toxin Receptor 1 (TEM8/ANTXR1) expression is induced in the vascular compartment of multiple tumors and therefore, is a candidate molecule to target tumor therapies. This cell surface molecule mediates anthrax toxin internalization, however, its physiological function in blood vessels remains largely unknown. We identified the chicken chorioallantoic membrane (CAM) as a model system to study the endogenous function of TEM8 in blood vessels as we found that TEM8 expression was induced transiently between day 10 and 12 of embryonic development, when the vascular tree is undergoing final development and growth. We used the cell-binding component of anthrax toxin, Protective Antigen (PA), to engage endogenous TEM8 receptors and evaluate the effects of PA-TEM8 complexes on vascular development. PA applied at the time of highest TEM8 expression reduced vascular density and disrupted hierarchical branching as revealed by quantitative morphometric analysis of the vascular tree after 48h. PA-dependent reduced branching phenotype was partially mimicked by Wnt3a application and ameliorated by the Wnt antagonist, Dikkopf-1. These results implicate TEM8 expression in endothelial cells in regulating the canonical Wnt signaling pathway at this day of CAM development. Consistent with this model, PA increased beta catenin levels acutely in CAM blood vessels in vivo and in TEM8 transfected primary human endothelial cells in vitro. TEM8 expression in Hek293 cells, which neither express endogenous PA-binding receptors nor Wnt ligands, stabilized beta catenin levels and amplified beta catenin-dependent transcriptional activity induced by Wnt3a. This agonistic function is supported by findings in the CAM, where the increase in TEM8 expression from day 10 to day 12 and PA application correlated with Axin 2 induction, a universal reporter gene for canonical Wnt signaling. We postulate that the developmentally controlled expression of TEM8 modulates

  15. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells.

    PubMed

    Chen, Yinyin; Huang, Kevin; Nakatsu, Martin N; Xue, Zhigang; Deng, Sophie X; Fan, Guoping

    2013-04-01

    The corneal endothelium is composed of a monolayer of corneal endothelial cells (CECs), which is essential for maintaining corneal transparency. To better characterize CECs in different developmental stages, we profiled mRNA transcriptomes in human fetal and adult corneal endothelium with the goal to identify novel molecular markers in these cells. By comparing CECs with 12 other tissue types, we identified 245 and 284 signature genes that are highly expressed in fetal and adult CECs, respectively. Functionally, these genes are enriched in pathways characteristic of CECs, including inorganic anion transmembrane transporter, extracellular matrix structural constituent and cyclin-dependent protein kinase inhibitor activity. Importantly, several of these genes are disease target genes in hereditary corneal dystrophies, consistent with their functional significance in CEC physiology. We also identified stage-specific markers associated with CEC development, such as specific members in the transforming growth factor beta and Wnt signaling pathways only expressed in fetal, but not in adult CECs. Lastly, by the immunohistochemistry of ocular tissues, we demonstrated the unique protein localization for Wnt5a, S100A4, S100A6 and IER3, the four novel markers for fetal and adult CECs. The identification of a new panel of stage-specific markers for CECs would be very useful for characterizing CECs derived from stem cells or ex vivo expansion for cell replacement therapy. PMID:23257286

  16. Endothelial cell labeling with indium-111-oxine as a marker of cell attachment to bioprosthetic surfaces

    SciTech Connect

    Sharefkin, J.B.; Lather, C.; Smith, M.; Rich, N.M.

    1983-03-01

    Canine vascular endothelium labeled with indium-111-oxine was used as a marker of cell attachment to vascular prosthetic surfaces with complex textures. Primarily cultured and freshly harvested endothelial cells both took up the label rapidly. An average of 72% of a 32 micro Ci labeling dose was taken up by 1.5 X 10(6) cells in 10 min in serum-free medium. Over 95% of freshly labeled cells were viable by trypan blue tests and only 5% of the label was released after 1 h incubations at 37 degrees C. Labeled and unlabeled cells had similar rates of attachment to plastic dishes. Scanning electron microscopic studies showed that labeled cells retained their ability to spread on tissue culture dishes even at low (1%) serum levels. Labeled endothelial cells seeded onto Dacron or expanded polytetrafluoroethylene vascular prostheses by methods used in current surgical models could be identified by autoradiography of microscopic sections of the prostheses, and the efficiency of cell attachment to the prosthesis could be measured by gamma counting. Indium-111 labeling affords a simple and rapid way to measure initial cell attachment to, and distribution on, vascular prosthetic materials. The method could also allow measurement of early cell loss from a flow surface in vivo by using external gamma imaging.

  17. Effect of cholesterol lowering treatment on plasma markers of endothelial dysfunction in chronic kidney disease.

    PubMed

    Zinellu, Angelo; Sotgia, Salvatore; Mangoni, Arduino A; Sotgiu, Elisabetta; Ena, Sara; Satta, Andrea E; Carru, Ciriaco

    2016-09-10

    The elevated cardiovascular morbidity and mortality in chronic kidney disease (CKD) is linked with endothelial dysfunction secondary to the pro-inflammatory and pro-oxidative state typical of this pathology. In consideration of the well-known pleiotropic effect of statins, we investigated the effect of cholesterol lowering treatment on endothelial dysfunction markers (MED), asymmetric dimethylarginine (ADMA), vascular cell (VCAM) and intercellular (ICAM) adhesion molecule. Plasma MED concentrations, inflammation and oxidative stress indices [Kynurenine/Tryptophan (Kyn/Trp) ratio, malondialdehyde (MDA) and allantoin/uric acid (All/UA) ratio] were measured in 30 CKD patients randomized to three cholesterol lowering regimens for 12 months (simvastatin 40mg/day, ezetimibe/simvastatin 10/20mg/day, or ezetimibe/simvastatin 10/40mg/day). Treatment significantly reduced ADMA concentrations in all patients [0.694μmol/L (0.606-0.761) at baseline vs. 0.622μmol/L (0.563-0.681) after treatment, p<0.001]. ADMA reduction was paralleled by a significant decrease of MDA, All/AU ratio and Kyn/Trp ratio, but not VCAM and ICAM plasma concentrations. Cholesterol lowering treatment was associated with a significant reduction in plasma ADMA concentrations in CKD patients. This might be mediated by reduced oxidative stress and inflammation.

  18. The effects of endothelial lipase gene (LIPG) variants on inflammation marker levels and atherosclerosis development.

    PubMed

    Dalan, Altay Burak; Toptaş, Bahar; Buğra, Zehra; Polat, Nihat; Yılmaz-Aydoğan, Hülya; Çimen, Arif; Isbir, Turgay

    2013-08-01

    Atherosclerosis is a major pathological process related with several important adverse vascular events including coronary artery disease, stroke, and peripheral arterial disease. Endothelial lipase is an enzyme the activity of which affects all of lipoproteins, whereas HDL is the main substrate. The purpose of our study was to investigate the effects of endothelial lipase gene polymorphism and inflammation markers (CRP, IL-1β, IL-6, IL-8 and TNF-α) in the atherosclerosis. 104 patients with atherosclerosis and 76 healthy individuals were included in the study. LIPG -584C/T polymorphism gene polymorphisms were assessed with PCR-RFLP method. The serum CRP levels were measured by turbidimetric method using a biochemistry autoanalyzer, whereas serum IL-1β, IL-6, IL-8, TNF-α levels were determined by enzyme-linked immunosorbent assay. In this study, we found that the frequencies of TC genotype are more prevalent in patients than controls. We found a statistically significant difference of IL-6 levels between patient and control group. Our findings suggest that T allele might play a potential role in the susceptibility to atherogenesis in the Turkish population. PMID:23673478

  19. Circadian Variability of Fibrinolytic Markers and Endothelial Function in Patients with Obstructive Sleep Apnea

    PubMed Central

    Bagai, Kanika; Muldowney, James A. S.; Song, Yanna; Wang, Lily; Bagai, Jayant; Artibee, Kay J.; Vaughan, Douglas E.; Malow, Beth A.

    2014-01-01

    Study Objectives: Obstructive sleep apnea (OSA) is strongly associated with cardiovascular disease, including stroke and acute coronary syndromes. Plasminogen activator inhibitor-1 (PAI-1), the principal inhibitor of tissue-type plasminogen activator (t-PA), has a pronounced circadian rhythm and is elevated in both OSA and cardiovascular disease and may be an important link between the two conditions. Endothelial dysfunction is one of the underlying pathophysiological mechanisms of cardiovascular disease, and may be altered in OSA. Our primary aim was to compare circadian variability of PAI-1 and t-PA in patients with OSA and normal controls by determining the amplitude (peak level) and mesor (rhythm adjusted mean) of PAI-1 and t-PA in serial blood samples over a 24-h period. The secondary aim was to measure markers of endothelial function (brachial and radial artery flow) in patients with OSA compared with normal controls. Setting: Cross-sectional cohort study. Patients or Participants: Subjects age 18 y or older, with a body mass index of 25-45 kg/m2, with or without evidence of untreated OSA. Interventions: Plasma samples were collected every 2 h, in OSA patients and matched controls, over a 24-h period. PAI-1 and t-PA antigen and activity were measured. The presence or absence of OSA (apnea-hypopnea index of 5 or greater) was confirmed by overnight polysomnography. Endothelial function was measured via brachial artery flow mediated vasodilatation and computerized arterial pulse waveform analysis. Measurements and Results: The rhythm-adjusted mean levels of PAI-1 antigen levels in the OSA group (21.8 ng/mL, 95% confidence level [CI], 18 to 25.7) were significantly higher as compared to the non-OSA group (16 ng/mL, 95% CI, 12.2 to 19.8; P = 0.03). The rhythm-adjusted mean levels of PAI-1 activity levels in the OSA group (23.9 IU/mL, 95% CI, 21.4 to 26.5) were also significantly higher than in the non-OSA group (17.2 IU/ mL, 95% CI, 14.6 to 19.9; P < 0.001).There

  20. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome

    PubMed Central

    Rizza, Stefano; Muniyappa, Ranganath; Iantorno, Micaela; Kim, Jeong-a; Chen, Hui; Pullikotil, Philomena; Senese, Nicoletta; Tesauro, Manfredi; Lauro, Davide; Cardillo, Carmine

    2011-01-01

    Context: Hesperidin, a citrus flavonoid, and its metabolite hesperetin may have vascular actions relevant to their health benefits. Molecular and physiological mechanisms of hesperetin actions are unknown. Objective: We tested whether hesperetin stimulates production of nitric oxide (NO) from vascular endothelium and evaluated endothelial function in subjects with metabolic syndrome on oral hesperidin therapy. Design, Setting, and Interventions: Cellular mechanisms of action of hesperetin were evaluated in bovine aortic endothelial cells (BAEC) in primary culture. A randomized, placebo-controlled, double-blind, crossover trial examined whether oral hesperidin administration (500 mg once daily for 3 wk) improves endothelial function in individuals with metabolic syndrome (n = 24). Main Outcome Measure: We measured the difference in brachial artery flow-mediated dilation between placebo and hesperidin treatment periods. Results: Treatment of BAEC with hesperetin acutely stimulated phosphorylation of Src, Akt, AMP kinase, and endothelial NO synthase to produce NO; this required generation of H2O2. Increased adhesion of monocytes to BAEC and expression of vascular cell adhesion molecule-1 in response to TNF-α treatment was reduced by pretreatment with hesperetin. In the clinical study, when compared with placebo, hesperidin treatment increased flow-mediated dilation (10.26 ± 1.19 vs. 7.78 ± 0.76%; P = 0.02) and reduced concentrations of circulating inflammatory biomarkers (high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin). Conclusions: Novel mechanisms for hesperetin action in endothelial cells inform effects of oral hesperidin treatment to improve endothelial dysfunction and reduce circulating markers of inflammation in our exploratory clinical trial. Hesperetin has vasculoprotective actions that may explain beneficial cardiovascular effects of citrus consumption. PMID:21346065

  1. Long-term Exposure to Air Pollution and Markers of Inflammation, Coagulation, and Endothelial Activation

    PubMed Central

    Hajat, Anjum; Allison, Matthew; Diez-Roux, Ana V.; Jenny, Nancy Swords; Jorgensen, Neal W.; Szpiro, Adam A.; Vedal, Sverre; Kaufman, Joel D.

    2015-01-01

    Background Air pollution is associated with cardiovascular disease, and systemic inflammation may mediate this effect. We assessed associations between long- and short-term concentrations of air pollution and markers of inflammation, coagulation, and endothelial activation. Methods We studied participants from the Multi-Ethnic Study of Atherosclerosis from 2000 to 2012 with repeat measures of serum C-reactive protein (CRP), interleukin-6 (IL-6), fibrinogen, D-dimer, soluble E-selectin, and soluble Intercellular Adhesion Molecule-1. Annual average concentrations of ambient fine particulate matter (PM2.5), individual-level ambient PM2.5 (integrating indoor concentrations and time–location data), oxides of nitrogen (NOx), nitrogen dioxide (NO2), and black carbon were evaluated. Short-term concentrations of PM2.5 reflected the day of blood draw, day prior, and averages of prior 2-, 3-, 4-, and 5-day periods. Random-effects models were used for long-term exposures and fixed effects for short-term exposures. The sample size was between 9,000 and 10,000 observations for CRP, IL-6, fibrinogen, and D-dimer; approximately 2,100 for E-selectin; and 3,300 for soluble Intercellular Adhesion Molecule-1. Results After controlling for confounders, 5 µg/m3 increase in long-term ambient PM2.5 was associated with 6% higher IL-6 (95% confidence interval = 2%, 9%), and 40 parts per billion increase in long-term NOx was associated with 7% (95% confidence interval = 2%, 13%) higher level of D-dimer. PM2.5 measured at day of blood draw was associated with CRP, fibrinogen, and E-selectin. There were no other positive associations between blood markers and short- or long-term air pollution. Conclusions These data are consistent with the hypothesis that long-term exposure to air pollution is related to some markers of inflammation and fibrinolysis. PMID:25710246

  2. Monoclonal Antibody against Angiotensin-Converting Enzyme: Its Use as a Marker for Murine, Bovine, and Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Auerbach, R.; Alby, L.; Grieves, J.; Joseph, J.; Lindgren, C.; Morrissey, L. W.; Sidky, Y. A.; Tu, M.; Watt, S. L.

    1982-12-01

    A monoclonal antibody has been prepared against rat angiotensin-converting enzyme (ACE). By selection for antibody binding to endothelial cells of bovine rather than rat origin we have obtained a reagent that has broad cross-species binding properties and that can at the same time serve as a useful marker for the surface of endothelial cells. The IgM-producing clone that we have established, α -ACE 3.1.1, has been grown in ascites form to yield ascites fluid that binds selectively to immobilized ACE at a >1:10,000 dilution. By use of enzyme-linked immunosorbent assays, immunofluorescence histology, and flow cytometry, we have demonstrated the presence of ACE on endothelial cells of murine, bovine, and human origin. By means of a fluorescence-activated cell sorter (FACS-IV) we have been able to selectively isolate viable endothelial cells from a mixture of endothelial cells and fibroblasts. We believe the antibody will be useful not only for the selection and in vitro cultivation of endothelial cells but also as a tool for the identification and pharmacological study of ACE.

  3. Early endothelial dysfunction as a marker of vasculogenic erectile dysfunction in young habitual cannabis users.

    PubMed

    Aversa, A; Rossi, F; Francomano, D; Bruzziches, R; Bertone, C; Santiemma, V; Spera, G

    2008-01-01

    Aim of the study was to evaluate whether endothelial dysfunction is a marker of erectile dysfunction (ED) in recreational drug abuse. Sixty-four non-consecutive men complaining of ED from at least 3 months were included. All patients underwent detailed history about recreational drug abuse and were then submitted to dynamic penile duplex ultrasound (PDU). According to pharmaco-stimulated peak systolic velocity (PSV) cutoff at 35 cm s(-1), patients were divided into two groups: organic (O; n=30) and non-organic (NO; n=34) ED. All subjects and 7 healthy age-matched subjects as controls, underwent veno-occlusive plethysmography (VOP) for the evaluation of endothelium-dependent dilatation of brachial arteries. Blood pressure, total and free testosterone, prolactin, estradiol, low-density lipoprotein and high-density lipoprotein cholesterol were also evaluated; patients were classified with regard to insulin resistance through the HOMA-IR index. Cannabis smoking was more frequent in O-ED vs NO-ED (78% vs 3%, P<0.001) in the absence of any concomitant risk factor or comorbidity for ED. VOP studies revealed impaired endothelium-dependent vasodilatation in O-ED but not in NO-ED and controls (12+/-6 vs 32+/-4 and 34+/-5 ml min(-1), respectively; P=0.003). Overall patients showed a direct relationship between HOMA-IR and PSV (r(2)=0.47, P<0.0001), which was maintained in men with organic ED (r(2)=0.62, P<0.0001). In cannabis consumers, a direct relationship between HOMA-IR and VOP was also found (r(2)=0.74, P<0.0001). Receiver-operating characteristic (ROC) curve analysis revealed that VOP values below 17.22 ml min(-1) were suggestive for vasculogenic ED. We conclude that early endothelial damage may be induced by chronic cannabis use (and endocannabinoid system activation); insulin resistance may be the hallmark of early endothelial dysfunction and may concur to determine vascular ED in the absence of obesity. Further studies are warranted to establish a direct relationship

  4. Prognostic Significance of Circulating and Endothelial Progenitor Cell Markers in Type 2 Diabetic Foot

    PubMed Central

    Sambataro, Maria; Seganfreddo, Elena; Canal, Fabio; Furlan, Anna; del Pup, Laura; Niero, Monia; Paccagnella, Agostino; Gherlinzoni, Filippo; dei Tos, Angelo Paolo

    2014-01-01

    Objective. We studied circulating precursor cells (CPC) in type 2 diabetes mellitus (T2DM) with neuropathic foot lesions with or without critical limb ischemia and relationships between endothelial precursor cells (EPC) and peripheral neuropathy. Methods and Subjects. We measured peripheral blood CD34, CD133, and CD45 markers for CPC and KDR, CD31 markers for EPC by citofluorimetry and systemic neural nociceptor CGRP (calcitonin gene related protein) by ELISA in 8 healthy controls (C) and 62 T2DM patients: 14 with neuropathy (N), 20 with neuropathic foot lesions (N1), and 28 with neuroischemic recent revascularized (N2) foot lesions. Timing of lesions was: acute (until 6 weeks), healed, and not healed. Results. CD34+ and CD133+ were reduced in N, N1, and N2 versus C, and CD34+ were lower in N2 versus N1 (P = 0.03). In N2 CD34+KDR+ remain elevated in healed versus chronic lesions and, in N1 CD133+31+ were elevated in acute lesions. CGRP was reduced in N2 and N1 versus C (P < 0.04 versus C 26 ± 2 pg/mL). CD34+KDR+ correlated in N2 with oximetry and negatively in N1 with CGRP. Conclusions. CD34+ CPC are reduced in diabetes with advanced complications and diabetic foot. CD34+KDR+ and CD31+133+ EPC differentiation could have a prognostic and therapeutic significance in the healing process of neuropathic and neuroischemic lesions. PMID:24624298

  5. Relation between Endothelial Nitric Oxide Synthase Genotypes and Oxidative Stress Markers in Larynx Cancer.

    PubMed

    Yanar, K; Çakatay, U; Aydın, S; Verim, A; Atukeren, P; Özkan, N E; Karatoprak, K; Cebe, T; Turan, S; Ozkök, E; Korkmaz, G; Cacına, C; Küçükhüseyin, O; Yaylım, İ

    2016-01-01

    Nitric oxide synthase (eNOS/NOS3) is responsible for the endothelial synthesis of nitric oxide (NO(•)). G894T polymorphism leads to the amino acid substitution from Glu298Asp that causes lower NOS3 activity and basal NO(•) production in NOS3 894T (298Asp) allele carriers compared with the GG homozygotes. NO(•) acts as an antioxidant protecting against Fenton's reaction which generates highly reactive hydroxyl radicals. Allelic variation of NOS3 may influence an individual's risk of laryngeal cancer (LC). In the current study we have examined the possible relationship between NOS3 G894T genotypes and various systemic oxidative damage markers such as protein carbonyl, advanced oxidation protein products, Cu, Zn-superoxide dismutase, thiol group fractions, and lipid hydroperoxides in LC patients. Genotyping was carried out by PCR-RFLP. In LC patients with TT genotype, Cu, Zn-superoxide dismutase activities and nonprotein thiol levels were significantly higher than the controls. In patients with GT and GG genotype, high levels of lipid hydroperoxides showed statistical significance when compared to controls. Our results indicate a potential relationship among G894T polymorphism of NOS3, and impaired redox homeostasis. Further studies are required to determine the role of NOS3 gene polymorphism and impaired plasma redox homeostasis. PMID:26682008

  6. Relation between Endothelial Nitric Oxide Synthase Genotypes and Oxidative Stress Markers in Larynx Cancer

    PubMed Central

    Yanar, K.; Çakatay, U.; Aydın, S.; Verim, A.; Atukeren, P.; Özkan, N. E.; Karatoprak, K.; Cebe, T.; Turan, S.; Ozkök, E.; Korkmaz, G.; Cacına, C.; Küçükhüseyin, O.; Yaylım, İ.

    2016-01-01

    Nitric oxide synthase (eNOS/NOS3) is responsible for the endothelial synthesis of nitric oxide (NO•). G894T polymorphism leads to the amino acid substitution from Glu298Asp that causes lower NOS3 activity and basal NO• production in NOS3 894T (298Asp) allele carriers compared with the GG homozygotes. NO• acts as an antioxidant protecting against Fenton's reaction which generates highly reactive hydroxyl radicals. Allelic variation of NOS3 may influence an individual's risk of laryngeal cancer (LC). In the current study we have examined the possible relationship between NOS3 G894T genotypes and various systemic oxidative damage markers such as protein carbonyl, advanced oxidation protein products, Cu, Zn-superoxide dismutase, thiol group fractions, and lipid hydroperoxides in LC patients. Genotyping was carried out by PCR-RFLP. In LC patients with TT genotype, Cu, Zn-superoxide dismutase activities and nonprotein thiol levels were significantly higher than the controls. In patients with GT and GG genotype, high levels of lipid hydroperoxides showed statistical significance when compared to controls. Our results indicate a potential relationship among G894T polymorphism of NOS3, and impaired redox homeostasis. Further studies are required to determine the role of NOS3 gene polymorphism and impaired plasma redox homeostasis. PMID:26682008

  7. Carotid Endothelial VCAM-1 Is an Early Marker of Carotid Atherosclerosis and Predicts Coronary Artery Disease in Swine

    PubMed Central

    Masseau, I.; Bowles, D. K.

    2015-01-01

    Objective The aim was to determine if endothelial VCAM-1 (eVCAM-1) expression in the common carotid artery (CCA) would correlate with predictive markers of atherosclerotic disease, would precede reduction of markers of endothelial cell function and would predict coronary artery disease (CAD). Methods and results Carotid arterial segments (bifurcation, proximal and distal CCA) were harvested from 14 and 24 month-old male castrated familial hypercholesterolemic (FH) swine, a model of spontaneous atherosclerosis. Quantification of local expression of eVCAM-1, intimal macrophage accumulation, oxidative stress, intima-media (I/M) ratio, intima-media thickness (IMT), endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) in selected regions of the carotids revealed a relationship between local inflammation and atheroscle-rotic plaque progression. Importantly, inflammation was not uniform throughout the CCA. Endo-thelial VCAM-1 expression was the greatest at the bifurcation and increased with age. Finally, eV-CAM-1 best estimated the severity of CAD compared to blood levels of glucose, hypercholestero-lemia, carotid IMT, and p-eNOS. Conclusion Our data suggested that eVCAM-1 was closely associated with atherosclerotic plaque progression and preceded impairment of EDD. Thus, this study supported the use of carotid VCAM-1 targeting agents to estimate the severity of CAD. PMID:26702331

  8. Effects of the contraceptive skin patch and subdermal contraceptive implant on markers of endothelial cell activation and inflammation.

    PubMed

    Hernandez-Juarez, Jesus; Sanchez-Serrano, Juan Carlos; Moreno-Hernandez, Manuel; Alvarado-Moreno, Jose Antonio; Hernandez-Lopez, Jose Rubicel; Isordia-Salas, Irma; Majluf-Cruz, Abraham

    2015-07-01

    Changes in blood coagulation factors may partially explain the association between hormonal contraceptives and thrombosis. Therefore, the likely effects of the contraceptive skin patch and subdermal contraceptive implant on levels of inflammatory markers and endothelial activation were analyzed. This was an observational, prospective, longitudinal, nonrandomized study composed of 80 women between 18 and 35 years of age who made the decision to use the contraceptive skin patch or subdermal contraceptive implant. vascular cell adhesion molecule-1 (VCAM-1), endothelial cell leukocyte adhesion molecule-1 (ELAM-1), von Willebrand factor (VWF), and plasminogen activator inhibitor type 1(PAI-1) as well as high-sensitivity C-reactive protein (hsCRP) were assayed before and after 4 months of use of the contraceptive method. VCAM-1, VWF, and PAI-1 remained unchanged in the contraceptive skin patch group; however, a significant increase in hsCRP (0.29-0.50 mg/dL; P =.012) and a significant decrease in ELAM-1 (44-25 ng/mL; P =.022) were observed. A significant diminution in VCAM-1 (463-362 ng/mL; P =.022) was also found in the subdermal contraceptive implant group. Our results strongly suggest that these contraceptive methods do not induce endothelial activation after 4 months of use. Increase in hsCRP levels was unrelated to changes in markers of endothelial activation.

  9. Circulating Inflammatory and Endothelial Markers and Risk of Hypertension in White and Black Postmenopausal Women

    PubMed Central

    Wang, Lu; Manson, JoAnn E.; Gaziano, J. Michael; Liu, Simin; Cochrane, Barbara; Cook, Nancy R.; Ridker, Paul M.; Rifai, Nader; Sesso, Howard D.

    2011-01-01

    Background Systemic inflammation and endothelial activation are implicated in the development of hypertension. However, epidemiologic studies have yet to compare multiple corresponding biomarkers in relation to risk of hypertension, particularly in multiethnic populations. Methods We identified 800 cases of incident hypertension and 800 matched controls with equal numbers of White and Black women in a nested case-control study within the Women’s Health Initiative Observational Study. We measured markers of inflammation (high-sensitivity C-reactive protein [hsCRP], interleukin-6 [IL-6], interleukin-1β [IL-1β], tumor necrosis factor receptor 2 [TNF-r2]) and endothelial activation (soluble intercellular adhesion molecule-1 [sICAM-1]) in baseline blood samples. Results Before adjustment for measures of adiposity, higher hsCRP and IL-6 were associated with increased risk of hypertension in both White and Black women, higher TNF-r2 was associated with increased risk of hypertension only in Black women, and IL-1β and sICAM-1 were unassociated with risk of hypertension. All the positive associations were attenuated after adjustment for body mass index. The resulting multivariable-adjusted relative risks (95% CI) of hypertension comparing the highest versus lowest quartile were 1.52 (0.94–2.48) and 1.23 (0.76–1.97) for hsCRP and IL-6 in White women, and 1.30 (0.81–2.07), 1.58 (0.96–2.59), and 1.49 (0.94–2.36) for hsCRP, IL-6, and TNF-r2 in Black women. The results after adjustment for waist circumference were similar. Conclusions After adjustment for measures of adiposity, there was no significant association of hsCRP, IL-6, IL-1β, TNF-r2, and sICAM-1 with incident hypertension in either White or Black women. The interrelationships between inflammation and adiposity in development of hypertension need further investigation. PMID:21398601

  10. Endothelial Markers May Link Kidney Function to Cardiovascular Events in Type 2 Diabetes

    PubMed Central

    Maier, Christina; Clodi, Martin; Neuhold, Stephanie; Resl, Michael; Elhenicky, Marie; Prager, Rudolf; Moertl, Deddo; Strunk, Guido; Luger, Anton; Struck, Joachim; Pacher, Richard; Hülsmann, Martin

    2009-01-01

    OBJECTIVE The increased cardiovascular risk in diabetes has been linked to endothelial and renal dysfunction. The aim of this study was to investigate the role of stable fragments of the precursors of adrenomedullin, endothelin-1, vasopressin, and atrial natriuretic peptide in progression of cardiovascular disease in patients with diabetes. RESEARCH DESIGN AND METHODS This was a prospective, observational study design with a composite end point (death or unexpected admission to hospital due to a cardiovascular event) on 781 patients with type 2 diabetes (54 events, median duration of observation 15 months). The four stable precursor peptides midregional adrenomedullin (MR-proADM), midregional proatrial natriuretic peptide (MR-proANP), COOH-terminal proendothelin-1 (CT-proET-1), and COOH-terminal provasopressin or copeptin (CT-proAVP) were determined at baseline, and their association to renal function and cardiovascular events was studied using stepwise linear and Cox logistic regression analysis and receiver operating characteristic analysis, respectively. RESULTS MR-proADM, CT-proET-1, CT-proAVP, and MR-proANP were all elevated in patients with future cardiovascular events and independently correlated to serum creatinine. MR-proADM and MR-proANP were significant predictors of a future cardiovascular event, with MR-proANP being the stronger (area under the curve 0.802 ± 0.034, sensitivity 0.833, specificity 0.576, positive predictive value 0.132, and negative predictive value 0.978 with a cutoff value of 75 pmol/l). CONCLUSIONS The four serum markers of vasoactive and natriuretic peptides are related to both kidney function and cardiovascular events, thus linking two major complications of diabetes, diabetic nephropathy and cardiovascular disease. PMID:19564455

  11. Effect of repetitive SCUBA diving on humoral markers of endothelial and central nervous system integrity.

    PubMed

    Bilopavlovic, Nada; Marinovic, Jasna; Ljubkovic, Marko; Obad, Ante; Zanchi, Jaksa; Pollock, Neal W; Denoble, Petar; Dujic, Zeljko

    2013-07-01

    During SCUBA diving decompression, there is a significant gas bubble production in systemic veins, with rather frequent bubble crossover to arterial side even in asymptomatic divers. The aim of the current study was to investigate potential changes in humoral markers of endothelial and brain damage (endothelin-1, neuron-specific enolase and S-100β) after repetitive SCUBA diving with concomitant assessment of venous gas bubble production and subsequent arterialization. Sixteen male divers performed four open-water no-decompression dives to 18 msw (meters of sea water) lasting 49 min in consecutive days during which they performed moderate-level exercise. Before and after dives 1 and 4 blood was drawn, and bubble production and potential arterialization were echocardiographically evaluated. In addition, a control dive to 5 msw was performed with same duration, water temperature and exercise load. SCUBA diving to 18 msw caused significant bubble production with arterializations in six divers after dive 1 and in four divers after dive 4. Blood levels of endothelin-1 and neuron-specific enolase did not change after diving, but levels of S-100β were significantly elevated after both dives to 18 msw and a control dive. Creatine kinase activity following a control dive was also significantly increased. Although serum S-100β levels were increased after diving, concomitant increase of creatine kinase during control, almost bubble-free, dive suggests the extracranial release of S-100β, most likely from skeletal muscles. Therefore, despite the significant bubble production and sporadic arterialization after open-water dives to 18 msw, the current study found no signs of damage to neurons or the blood-brain barrier.

  12. Soya isoflavone-enriched cereal bars affect markers of endothelial function in postmenopausal women.

    PubMed

    Hallund, J; Bügel, S; Tholstrup, T; Ferrari, M; Talbot, D; Hall, W L; Reimann, M; Williams, C M; Wiinberg, N

    2006-06-01

    Soya isoflavones are thought to be cardioprotective due to their structural similarity to oestrogen. In order to investigate the effect of soya isoflavones on markers of endothelial function we conducted a randomised, double-blind, placebo-controlled, cross-over study with thirty healthy postmenopausal women. The women consumed cereal bars, with or without soya isoflavones (50 mg/d), for 8 weeks, separated by an 8-week washout period. Systemic arterial compliance (SAC), isobaric arterial compliance (IAC), flow-mediated endothelium-dependent vasodilation (FMD) and nitroglycerine-mediated endothelium-independent vasodilation (NMD) were measured at the beginning of the study and after each intervention period. Blood pressure (BP) and plasma concentrations of nitrite and nitrate (NOx) and endothelin-1 (ET-1) were measured at the beginning and end of each intervention period. NMD was 13.4 (SEM 2.0)% at baseline and 15.5 (SEM 1.1) % after isoflavone treatment compared with 12.4 (SEM 1.0)% after placebo treatment (P=0.03). NOx increased from 27.7 (SEM 2.7) to 31.1 (SEM 3.2) microM after isoflavones treatment compared with 25.4 (SEM 1.5) to 20.4 (SEM 1.1) microM after placebo treatment (P=0.003) and a significant increase in the NOx:ET-1 ratio (P=0.005) was observed after the isoflavone treatment compared with placebo. A significant difference in SAC after the isoflavone and placebo treatment was observed (P=0.04). No significant difference was found in FMD, IAC, BP and ET-1. In conclusion, 8 weeks' consumption of cereals bars enriched with 50 mg soya isoflavones/d increased plasma NOx concentrations and improved endothelium-independent vasodilation in healthy postmenopausal women. PMID:16768834

  13. Effects of a Physical Activity Program on Markers of Endothelial Dysfunction, Oxidative Stress, and Metabolic Status in Adolescents with Metabolic Syndrome

    PubMed Central

    Camarillo-Romero, Eneida; Dominguez-Garcia, Ma Victoria; Amaya-Chavez, Araceli; Camarillo-Romero, Maria del Socorro; Talavera-Piña, Juan; Huitron-Bravo, Gerardo; Majluf-Cruz, Abraham

    2012-01-01

    The metabolic syndrome (MetS) is a precursor of diabetes. Physical activity (PA) improves endothelial dysfunction and may benefit patients with MetS. Aims. To evaluate the effect of a physical activity (PA) program on markers of endothelial dysfunction and oxidative stress in adolescents with (MetS). Methods. We carried out a cohort study of 38 adolescents with and without MetS (18 females and 20 males). All participants completed a 3-month PA program. All variables of the MetS as well as markers of endothelial dysfunction and oxidative stress tests were evaluated. Results. Females with and without MetS showed significant differences for almost all components of the MetS, whereas males were significantly different in half of the components. After the PA program, components of the MetS were not different from baseline values except for HDL-C levels. Some baseline endothelial dysfunction markers were significantly different among adolescents with and without MetS; however, after the PA program, most of these markers significantly improved in subjects with and without MetS. Conclusion. PA improves the markers of endothelial dysfunction in adolescents with MetS although other changes in the components of the MetS were not observed. Perhaps the benefits of PA on all components of MetS would appear after a PA program with a longer duration. PMID:22888450

  14. Effects of breed, gender, exercise and white-coat effect on markers of endothelial function in dogs.

    PubMed

    Moesgaard, S G; Holte, A V; Mogensen, T; Mølbak, J; Kristensen, A T; Jensen, A L; Teerlink, T; Reynolds, A J; Olsen, L H

    2007-06-01

    This study examines how systemic biomarkers of endothelial function and nitric oxide metabolism are affected by exercise in dogs. Furthermore, breed variation and white-coat effect have been tested by sampling three different dog breeds both in their home and in a clinical setting. Short-term exercise increased plasma nitrate and nitrite (NOx) and von Willebrand factor (vWf). There was significant difference between Pointers and the small dog breeds Cairn Terriers and Cavalier King Charles Spaniels in the general plasma levels of vWf and asymmetric dimethylarginine (ADMA). NOx and vWf were significantly higher when the sample was taken in the laboratory cf. at home, whereas ADMA and L-arginine were significantly lower. In conclusion, both short-term exercise and white-coat effect influence several plasma markers of endothelial function depending also on the breed and gender of the dogs. These findings should be considered in future studies concerning endothelial function in dogs. PMID:17092526

  15. Effects of Olive Oil on Markers of Inflammation and Endothelial Function—A Systematic Review and Meta-Analysis

    PubMed Central

    Schwingshackl, Lukas; Christoph, Marina; Hoffmann, Georg

    2015-01-01

    The aim of the present systematic review was to synthesize data from randomized controlled trials investigating the effects of olive oil on markers of inflammation or endothelial function. Literature search in electronic databases Cochrane Trial Register, EMBASE, and MEDLINE was performed. Thirty studies enrolling 3106 participants fulfilled the selection criteria. Pooled effects of different interventions were assessed as mean difference using a random effects model. Olive oil interventions (with daily consumption ranging approximately between 1 mg and 50 mg) resulted in a significantly more pronounced decrease in C-reactive protein (mean difference: −0.64 mg/L, (95% confidence interval (CI) −0.96 to −0.31), p < 0.0001, n = 15 trials) and interleukin-6 (mean difference: −0.29 (95% CI −0.7 to −0.02), p < 0.04, n = 7 trials) as compared to controls, respectively. Values of flow-mediated dilatation (given as absolute percentage) were significantly more increased in individuals subjected to olive oil interventions (mean difference: 0.76% (95% CI 0.27 to 1.24), p < 0.002, n = 8 trials). These results provide evidence that olive oil might exert beneficial effects on endothelial function as well as markers of inflammation and endothelial function, thus representing a key ingredient contributing to the cardiovascular-protective effects of a Mediterranean diet. However, due to the heterogeneous study designs (e.g., olive oil given as a supplement or as part of dietary pattern, variations in control diets), a conservative interpretation of the results is necessary. PMID:26378571

  16. Podoplanin-mediated cell adhesion through extracellular matrix in oral squamous cell carcinoma.

    PubMed

    Tsuneki, Masayuki; Yamazaki, Manabu; Maruyama, Satoshi; Cheng, Jun; Saku, Takashi

    2013-08-01

    Podoplanin (PDPN), one of the representative mucin-like type-I transmembrane glycoproteins specific to lymphatic endothelial cells, is expressed in various cancers including squamous cell carcinoma (SCC). On the basis of our previous studies, we have developed the hypothesis that PDPN functions in association with the extracellular matrix (ECM) from the cell surface side. The aim of this study was to elucidate the molecular role of PDPN in terms of cell adhesion, proliferation, and migration in oral SCC cells. Forty-four surgical specimens of oral SCC were used for immunohistochemistry for PDPN, and the expression profiles were correlated with their clinicopathological properties. Using ZK-1, a human oral SCC cell system, and five other cell systems, we examined PDPN expression levels by immunofluorescence, western blotting, and real-time PCR. The effects of transient PDPN knockdown by siRNA in ZK-1 were determined for cellular functions in terms of cell proliferation, adhesion, migration, and invasion in association with CD44 and hyaluronan. Cases without PDPN-positive cells were histopathologically classified as less-differentiated SCC, and SCC cells without PDPN more frequently invaded lymphatics. Adhesive properties of ZK-1 were significantly inhibited by siRNA, and PDPN was shown to collaborate with CD44 in cell adhesion to tether SCC cells with hyaluronan-rich ECM of the narrow intercellular space as well as with the stromal ECM. There was no siRNA effect in migration. We have demonstrated the primary function of PDPN in cell adhesion to ECM, which is to secondarily promote oral SCC cell proliferation.

  17. Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis

    PubMed Central

    Sekiguchi, Takaya; Takemoto, Ai; Takagi, Satoshi; Takatori, Kazuki; Sato, Shigeo; Takami, Miho; Fujita, Naoya

    2016-01-01

    Podoplanin/Aggrus is a sialoglycoprotein expressed in various cancers. We previously identified podoplanin as a key factor in tumor-induced platelet aggregation. Podoplanin-mediated platelet aggregation enhances tumor growth and metastasis by secreting growth factors and by forming tumor emboli in the microvasculature. Thus, precise analysis of the mechanisms of podoplanin-mediated platelet aggregation is critical for developing anti-tumor therapies. Here we report the discovery of a novel platelet aggregation-inducing domain, PLAG4 (81-EDLPT-85). PLAG4 has high homology to the previously reported PLAG3 and contributes to the binding of its platelet receptor CLEC-2. Mutant analyses indicated that PLAG4 exhibits a predominant platelet-aggregating function relative to PLAG3 and that conserved Glu81/Asp82/Thr85 residues in PLAG4 are indispensable for CLEC-2 binding. By establishing anti-PLAG4-neutralizing monoclonal antibodies, we confirmed its role in CLEC-2 binding, platelet aggregation, and tumor emboli formation. Our results suggest the requirement of simultaneous inhibition of PLAG3/4 for complete suppression of podoplanin-mediated tumor growth and metastasis. PMID:26684030

  18. Podoplanin associates with adverse postoperative prognosis of patients with clear cell renal cell carcinoma.

    PubMed

    Xia, Yu; Liu, Li; Xiong, Ying; Bai, Qi; Wang, Jiajun; Xi, Wei; Qu, Yang; Xu, Jiejie; Guo, Jianming

    2016-09-01

    Podoplanin, a transmembrane sialomucin-like glycoprotein, was recently shown to be involved in tumor progression and metastasis, and its potential role in facilitating platelet-based tumor embolization and promigratory phenotype of cancer cells was also demonstrated. In this study, we assessed the clinical significance of tumoral podoplanin expression in 295 patients with clear cell renal cell carcinoma (ccRCC) through immunohistochemistry on tissue microarrays and analyzing the staining intensity. Univariate analysis suggested an adverse prognostic effect of high tumoral podoplanin expression on patients' overall survival (OS) and recurrence-free survival (RFS) (P < 0.001 for both). In the multivariate analysis, high tumoral podoplanin expression (using staining intensity as either a continuous or dichotomous variable) was still an independent adverse prognostic factor for patient survival (OS, P < 0.001, RFS, P < 0.001 for continuous; OS, P < 0.001, RFS, P = 0.002 for dichotomous). Moreover, stratified analysis identified a higher prognostic power in the intermediate/high risk patient groups. After utilizing those parameters in the validated multivariate analysis, two nomograms were constructed to predict ccRCC patients' OS and RFS (c-index 0.815 and 0.805, respectively), and performed better than existing integrated models (P < 0.001 for all comparisons). In conclusion, high tumoral podoplanin expression could independently predict an adverse clinical outcome for ccRCC patients, and it might be useful in future for clinical decision-making and therapeutic developments. PMID:27389969

  19. Podoplanin and CLEC-2 drive cerebrovascular patterning and integrity during development

    PubMed Central

    Lowe, Kate L.; Finney, Brenda A.; Deppermann, Carsten; Hägerling, René; Gazit, Salomé L.; Frampton, Jon; Buckley, Christopher; Camerer, Eric; Nieswandt, Bernhard; Kiefer, Friedemann

    2015-01-01

    Mice with a constitutive or platelet-specific deletion of the C-type-lectin-like receptor (CLEC-2) exhibit hemorrhaging in the brain at mid-gestation. We sought to investigate the basis of this defect, hypothesizing that it is mediated by the loss of CLEC-2 activation by its endogenous ligand, podoplanin, which is expressed on the developing neural tube. To induce deletion of podoplanin at the 2-cell stage, we generated a podoplaninfl/fl mouse crossed to a PGK-Cre mouse. Using 3-dimensional light-sheet microscopy, we observed cerebral vessels were tortuous and aberrantly patterned at embryonic (E) day 10.5 in podoplanin- and CLEC-2-deficient mice, preceding the formation of large hemorrhages throughout the fore-, mid-, and hindbrain by E11.5. Immunofluorescence and electron microscopy revealed defective pericyte recruitment and misconnections between the endothelium of developing blood vessels and surrounding pericytes and neuro-epithelial cells. Nestin-Cre-driven deletion of podoplanin on neural progenitors also caused widespread cerebral hemorrhaging. Hemorrhaging was also seen in the ventricles of embryos deficient in the platelet integrin subunit glycoprotein IIb or in embryos in which platelet α-granule and dense granule secretion is abolished. We propose a novel role for podoplanin on the neuro-epithelium, which interacts with CLEC-2 on platelets, mediating platelet adhesion, aggregation, and secretion to guide the maturation and integrity of the developing vasculature and prevent hemorrhage. PMID:25908104

  20. Co-culture with podoplanin+ cells protects leukemic blast cells with leukemia-associated antigens in the tumor microenvironment

    PubMed Central

    LEE, JI YOON; HAN, A-REUM; LEE, SUNG-EUN; MIN, WOO-SUNG; KIM, HEE-JE

    2016-01-01

    Podoplanin+ cells are indispensable in the tumor microenvironment. Increasing evidence suggests that podoplanin may support the growth and metastasis of solid tumors; however, to the best of our knowledge no studies have determined whether or not podoplanin serves a supportive role in acute myeloid leukemia (AML). The effects of co-culture with podoplanin+ cells on the cellular activities of the leukemic cells, such as apoptosis and cell proliferation, in addition to the expression of podoplanin in leukemic cells, were investigated. Due to the fact that genetic abnormalities are the primary cause of leukemogenesis, the overexpression of the fibromyalgia-like tyrosine kinase-3 gene in colony forming units was also examined following cell sorting. Podoplanin+ cells were found to play a protective role against apoptosis in leukemic cells and to promote cell proliferation. Tumor-associated antigens, including Wilms' tumor gene 1 and survivin, were increased when leukemic cells were co-cultured with podoplanin+ cells. In combination, the present results also suggest that podoplanin+ cells can function as stromal cells for blast cell retention in the AML tumor microenvironment. PMID:27035421

  1. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  2. Cell adhesion molecules as a marker reflecting the reduction of endothelial activation induced by glucocorticoids.

    PubMed

    Leone, Marc; Boutière-Albanèse, Brigitte; Valette, Sarah; Camoin-Jau, Laurence; Barrau, Karine; Albanèse, Jacques; Martin, Claude; Dignat-George, Françoise

    2004-04-01

    In vitro, steroids down-regulate the expression of cell adhesion molecules (CAMs) in endothelial cells stimulated by lipopolysaccharide. Low-dose hydrocortisone is a new treatment of patients with septic shock, a state that is characterized by an endothelial injury. The aim of the present study was to investigate whether the plasma levels of soluble CAMs, reflecting in vivo endothelial activation, could be modulated in patients with septic shock treated by hydrocortisone. This was a prospective and observational study conducted in the intensive care unit at a university hospital. The subjects included 40 patients with septic shock (American College of Chest Physicians Consensus Conference/Society of Critical Care Medicine definition); 45 healthy blood donors served as controls. The patients receiving the standard care ("reference group") during the first 6 months were compared with the patients receiving the hydrocortisone therapy ("hydrocortisone group") for the next 6 months. Measurements of sCAMs were performed on days 1 and 3 of the disease. On day 1, sE-selectin, sP-selectin, sVCAM-1, and sICAM-1 were significantly elevated in patients with septic shock compared with healthy donors. sE-selectin levels significantly decreased between days 1 and 3 in the "hydrocortisone group," whereas there was no significant change in the "reference group". Surprisingly, sICAM-1 levels significantly increased between days 1 and 3 only in patients treated by hydrocortisone. No significant changes were observed for sP-selectin and sVCAM-1 levels in the two groups. In patients with septic shock, glucocorticoids differently affected the pattern of evolution of sCAMs, with sE-selectin being decreased and sICAM-1 being increased. Expression of sP-selectin and sVCAM-1 was not affected.

  3. Lectins as markers of endothelial cells: comparative study between human and animal cells.

    PubMed

    Roussel, F; Dalion, J

    1988-04-01

    Vascular endothelial cells were labelled with 10 vegetal lectins and 3 more monoclonal antibodies antiblood group ABO substances, in major organs of 14 common laboratory animals. After fixation in PLPa and paraffin embedding, cells were examined to determine their likeness to human cells. The most interesting reactive used was EEA, whose positivity defines upper mammalians. Blood B substance positivity and CSA negativity defines primates among which man is unique and defined by UEA I positivity and variability in ABO substance. CSA positivity defines non-primate upper mammalians. Rodents and birds were negative with all reactives tested. From the histochemical point of view, the animals closest to humans are monkeys, followed by swine and oxen, then by cat and dog and lastly by sheep. Rodents appear unrelated to humans in this system.

  4. Markers of Endothelial Dysfunction, Coagulation and Tissue Fibrosis Independently Predict Venous Thromboembolism in HIV

    PubMed Central

    MUSSELWHITE, Laura W.; SHEIKH, Virginia; NORTON, Thomas D.; RUPERT, Adam; PORTER, Brian O.; PENZAK, Scott R.; SKINNER, Jeff; MICAN, JoAnn M.; HADIGAN, Colleen; SERETI, Irini

    2015-01-01

    Objective HIV infection is associated with coagulation abnormalities and significantly increased risk of venous thrombosis. It has been shown that higher plasma levels of coagulation and inflammatory biomarkers predicted mortality in HIV. We investigated the relationship between venous thrombosis and HIV-related characteristics, traditional risk factors of hypercoagulability and pre-event levels of biomarkers. Design A retrospective case-control study of 23 HIV-infected individuals who experienced an incident venous thromboembolic (VTE) event while enrolled in National Institutes of Health studies from 1995–2010 and 69 age and sex-matched HIV-infected individuals without known VTE. Methods Biomarkers of inflammation, endothelial dysfunction, coagulation, tissue fibrosis, and cytomegalovirus (CMV) reactivation were assessed by ELISA-based assays and PCR using plasma obtained prior to the event. Results VTE events were related to nadir CD4 count, lifetime history of multiple opportunistic infections, CMV disease, CMV viremia, immunological AIDS, active infection and provocation (i.e. recent hospitalization, surgery or trauma). VTE events were independently associated with increased plasma levels of P-selectin, P=0.002; D-dimer, P=0.01; and hyaluronic acid, P=0.009 in a multivariate analysis. No significant differences in antiretroviral or interleukin 2 exposures, plasma HIV viremia, or other traditional risk factors were observed. Conclusion Severe immunodeficiency, active infection and provocation are associated with venous thromboembolic disease in HIV. Biomarkers of endothelial dysfunction, coagulation and tissue fibrosis may help identify HIV-infected patients at elevated risk of VTE. PMID:21412059

  5. Effects of Complementary Creatine Monohydrate and Physical Training on Inflammatory and Endothelial Dysfunction Markers Among Heart Failure Patients

    PubMed Central

    Hemati, Farajollah; Rahmani, Asghar; Asadollahi, Khairollah; Soleimannejad, Koroush; Khalighi, Zahra

    2016-01-01

    Background: Previous studies have reported endothelial dysfunction and inflammatory cytokine in heart failure patients (HF). Objectives: The purpose of this study was to determine the effects of creatine monohydrate and exercise on inflammatory and endothelial dysfunction markers among HF patients. Patients and Methods: One hundred patients were prospectively randomized into two groups: Intervention group which received 5 grams/day creatine monohydrate and exercised for 8 weeks; and control group which did not receive any interventions. Interleukine-6 (IL-6), high sensitivity C reactive protein (hs-CRP), P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) were measured at the start and end of the study for both groups. Results: In total, 100 patients including 50 controls and 50 intervention group (54% male, mean EF of 34.2 ± 10.5% and 52% male, mean EF of 35.6 ± 12.7%, respectively) were analyzed. The serum levels of hs-CRP and IL-6 increased at the end of the study in the control group compared to the baseline, (7.5 ± 1.5 mg/L vs. 6.9 ± 1.3 mg/L, P < 0.05 and 3.0 ± 0.75 ng/L vs. 2.55 ± 0.9 ng/L, P < 0.05, respectively). However, compared to the baseline, the level of both markers decreased at the end of the study in the intervention group (6.3 ± 1.6 mg/L vs.7.5 ± 1.5 mg/L, P < 0.05 and 2.1 ± 0.8 ng/L vs.2.5 ± 0.5 ng/L, P < 0.05). Also, P-selectin and ICAM-1 levels increased at the end of study (56.9 ± 1.8 ng/L vs. 51.9 ± 1.5 ng/L, P < 0.05 and 368.1 ± 25.4 µg/L vs. 353.1 ± 10.4 µg/L, P < 0.05 respectively). Inversely, the levels of these markers decreased in the intervention group, at the end of study (49.7 ± 1.9 ng/l vs. 51.4 ± 2.1 ng/l, P < 0.05 and 342.7 ± 16.5 µg/l vs. 350.4 ± 14.7 µg/l, P < 0.05, respectively). VCAM-1 level was not decreased significantly at the end of the study in the intervention group (570.5 ± 78.4 µg/L vs. 575.3 ± 86.5 µg/L, P > 0.05). Conclusions: Combination

  6. A novel bacterial artificial chromosome-transgenic podoplanin-cre mouse targets lymphoid organ stromal cells in vivo.

    PubMed

    Onder, Lucas; Scandella, Elke; Chai, Qian; Firner, Sonja; Mayer, Christian T; Sparwasser, Tim; Thiel, Volker; Rülicke, Thomas; Ludewig, Burkhard

    2011-01-01

    Stromal cells provide the structural foundation of secondary lymphoid organs (SLOs), and regulate leukocyte access and cell migration within the different compartments of spleen and lymph nodes (LNs). Furthermore, several stromal cell subsets have been implied in shaping of T cell responses through direct presentation of antigen. Despite significant gain of knowledge on the biology of different SLO-resident stromal cell subsets, their molecular and functional characterization has remained incomplete. To address this need, we have generated a bacterial artificial chromosome-transgenic mouse model that utilizes the podoplanin (pdpn) promoter to express the Cre-recombinase exclusively in stromal cells of SLOs. The characterization of the Pdpn-Cre mouse revealed transgene expression in subsets of fibroblastic reticular cells and lymphatic endothelial cells in LNs. Furthermore, the transgene facilitated the identification of a novel splenic perivascular stromal cell subpopulation that forms web-like structures around central arterioles. Assessment of the in vivo antigen expression in the genetically tagged stromal cells in Pdpn-Cre mice revealed activation of both MHC I and II-restricted TCR transgenic T cells. Taken together, stromal pdpn-Cre expression is well-suited to characterize the phenotype and to dissect the function of lymphoid organ stromal cells.

  7. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3

    PubMed Central

    Chen, Wei-Sheng; Cao, Zhiyi; Sugaya, Satoshi; Lopez, Maria J.; Sendra, Victor G.; Laver, Nora; Leffler, Hakon; Nilsson, Ulf J.; Fu, Jianxin; Song, Jianhua; Xia, Lijun; Hamrah, Pedram; Panjwani, Noorjahan

    2016-01-01

    Lymphangiogenesis plays a pivotal role in diverse pathological conditions. Here, we demonstrate that a carbohydrate-binding protein, galectin-8, promotes pathological lymphangiogenesis. Galectin-8 is markedly upregulated in inflamed human and mouse corneas, and galectin-8 inhibitors reduce inflammatory lymphangiogenesis. In the mouse model of corneal allogeneic transplantation, galectin-8-induced lymphangiogenesis is associated with an increased rate of corneal graft rejection. Further, in the murine model of herpes simplex virus keratitis, corneal pathology and lymphangiogenesis are ameliorated in Lgals8−/− mice. Mechanistically, VEGF-C-induced lymphangiogenesis is significantly reduced in the Lgals8−/− and Pdpn−/− mice; likewise, galectin-8-induced lymphangiogenesis is reduced in Pdpn−/− mice. Interestingly, knockdown of VEGFR-3 does not affect galectin-8-mediated lymphatic endothelial cell (LEC) sprouting. Instead, inhibiting integrins α1β1 and α5β1 curtails both galectin-8- and VEGF-C-mediated LEC sprouting. Together, this study uncovers a unique molecular mechanism of lymphangiogenesis in which galectin-8-dependent crosstalk among VEGF-C, podoplanin and integrin pathways plays a key role. PMID:27066737

  8. Absence of Nkx2-3 homeodomain transcription factor induces the formation of LYVE-1-positive endothelial cysts without lymphatic commitment in the spleen.

    PubMed

    Kellermayer, Zoltán; Lábadi, Arpád; Czömpöly, Tamás; Arnold, Hans-Henning; Balogh, Péter

    2011-07-01

    In contrast to peripheral lymph nodes possessing lymphatic and blood vasculature, the spleen in both humans and rodents is largely devoid of functioning lymphatic capillaries. Here it is reported that in mice lacking homeodomain transcription factor Nkx2-3, the spleen contains an extensive network of lymphocyte-filled sacs lined by cells expressing LYVE-1 antigen, a marker associated with lymphatic endothelium cells (LECs). Real-time quantitative PCR analyses of Nkx2-3 mutant spleen revealed a substantial increase of LYVE-1 and podoplanin mRNA levels, without the parallel increase of mRNA for VEGFR-3 (vascular endothelial growth factor receptor Type 3) and Prox1 (Prospero homeobobox protein 1), two markers specific for LECs. Although these structures express VEGFR-2/flk-1, they lack Prox1 protein, indicating their non-LEC endothelial origin. The LYVE-1(+) structures are bordered with ER-TR7(+) fibroblastic reticular cells with small clusters of macrophages expressing MARCO and sialoadhesin. Short-term cell-tracing studies using labeled lymphocytes indicate that these LYVE-1(+) cysts are largely excluded from the systemic circulation. Cells expressing LYVE-1 glycoprotein as putative precursors for such structures are detectable in the spleen of late-stage embryos, and the formation of LYVE-1(+) structures is independent from the activity of lymphotoxin β-receptor. Thus the splenic vascular defects in Nkx2-3 deficiency include the generation of LYVE-1(+) cysts, comprised of endothelial cells without being committed along the LEC lineage.

  9. Effects of adenoidectomy on markers of endothelial function and inflammation in normal-weight and overweight prepubescent children with sleep apnea

    PubMed Central

    Kelishadi, Roya; Nilforoushan, Neshat; Okhovat, Ahmadreza; Amra, Babak; Poursafa, Parinaz; Rogha, Mehrdad

    2011-01-01

    BACKGROUND: This trial study aimed to assess the effects of adenoidectomy on the markers of endothelial function and inflammation in normal-weight and overweight prepubescent children with obstructive sleep apnea (OSA). METHODS: This trial study was conducted in Isfahan, Iran in 2009. The study population was comprised of 90 prepubescent children (45 normal-weight and 45 overweight children), aged between 4-10 years old, who volunteered for adenoidectomy and had OSA documented by validated questionnaire. The assessment included filling questionnaire, physical examination, and laboratory tests; it was conducted before the surgery and was repeated two weeks and six months after the surgery. RESULTS: Out of the 90 children evaluated, 83 completed the 2-week evaluation and 72 patients continued with the study for the 6-month follow up. Markers of endothelial function, i.e., serum adhesion molecules including endothelial leukocyte adhesion molecule (E-selectin), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (sVCAM-1), and the markers of inflammation, i.e., interleukin-6, and high-sensitive C-reactive protein (hsCRP) decreased significantly in both normal-weight and overweight children after both two weeks and six months. After six months, the total and LDL-cholesterol showed a significant decrease in the overweight children. CONCLUSIONS: The findings of the study demonstrated that irrespective of the weight status, children with OSA had increased levels of the endothelial function and inflammation markers, which improved after OSA treatment by adenoidectomy. This might be a form of confirmatory evidence on the onset of atherogenesis from the early stages of the life, and the role of inflammation in the process. The reversibility of endothelial dysfunction after improvement of OSA underscores the importance of primordial and primary prevention of chronic diseases from the early stages of the life. PMID:22247723

  10. Venous Endothelial Marker COUP-TFII Regulates the Distinct Pathologic Potentials of Adult Arteries and Veins.

    PubMed

    Cui, Xiaofeng; Lu, Yao Wei; Lee, Vivian; Kim, Diana; Dorsey, Taylor; Wang, Qingjie; Lee, Young; Vincent, Peter; Schwarz, John; Dai, Guohao

    2015-11-05

    Arteries and veins have very different susceptibility to certain vascular diseases such as atherosclerosis and vascular calcification. The molecular mechanisms of these differences are not fully understood. In this study, we discovered that COUP-TFII, a transcription factor critical for establishing the venous identity during embryonic vascular development, also regulates the pathophysiological functions of adult blood vessels, especially those directly related to vascular diseases. Specifically, we found that suppression of COUP-TFII in venous ECs switched its phenotype toward pro-atherogenic by up-regulating the expression of inflammatory genes and down-regulating anti-thrombotic genes. ECs with COUP-TFII knockdown also readily undergo endothelial-to-mesenchymal transition (EndoMT) and subsequent osteogenic differentiation with dramatically increased osteogenic transcriptional program and calcium deposition. Consistently, over-expression of COUP-TFII led to the completely opposite effects. In vivo validation of these pro-atherogenic and osteogenic genes also demonstrates a broad consistent differential expression pattern in mouse aorta vs. vena cava ECs, which cannot be explained by the difference in hemodynamic flow. These data reveal phenotypic modulation by different levels of COUP-TFII in arterial and venous ECs, and suggest COUP-TFII may play an important role in the different susceptibilities of arteries and veins to vascular diseases such as atherosclerosis and vascular calcification.

  11. Markers of Endothelial-to-Mesenchymal Transition: Evidence for Antibody-Endothelium Interaction during Antibody-Mediated Rejection in Kidney Recipients.

    PubMed

    Xu-Dubois, Yi-Chun; Peltier, Julie; Brocheriou, Isabelle; Suberbielle-Boissel, Caroline; Djamali, Arjang; Reese, Shannon; Mooney, Nuala; Keuylian, Zela; Lion, Julien; Ouali, Nacéra; Levy, Pierre P; Jouanneau, Chantal; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    Antibody-mediated rejection (ABMR) is a leading cause of allograft loss. Treatment efficacy depends on accurate diagnosis at an early stage. However, sensitive and reliable markers of antibody-endothelium interaction during ABMR are not available for routine use. Using immunohistochemistry, we retrospectively studied the diagnostic value of three markers of endothelial-to-mesenchymal transition (EndMT), fascin1, vimentin, and heat shock protein 47, for ABMR in 53 renal transplant biopsy specimens, including 20 ABMR specimens, 24 cell-mediated rejection specimens, and nine normal grafts. We validated our results in an independent set of 74 unselected biopsy specimens. Endothelial cells of the peritubular capillaries in grafts with ABMR expressed fascin1, vimentin, and heat shock protein 47 strongly, whereas those from normal renal grafts did not. The level of EndMT marker expression was significantly associated with current ABMR criteria, including capillaritis, glomerulitis, peritubular capillary C4d deposition, and donor-specific antibodies. These markers allowed us to identify C4d-negative ABMR and to predict late occurrence of disease. EndMT markers were more specific than capillaritis for the diagnosis and prognosis of ABMR and predicted late (up to 4 years after biopsy) renal graft dysfunction and proteinuria. In the independent set of 74 renal graft biopsy specimens, the EndMT markers for the diagnosis of ABMR had a sensitivity of 100% and a specificity of 85%. Fascin1 expression in peritubular capillaries was also induced in a rat model of ABMR. In conclusion, EndMT markers are a sensitive and reliable diagnostic tool for detecting endothelial activation during ABMR and predicting late loss of allograft function.

  12. Markers of Endothelial-to-Mesenchymal Transition: Evidence for Antibody-Endothelium Interaction during Antibody-Mediated Rejection in Kidney Recipients.

    PubMed

    Xu-Dubois, Yi-Chun; Peltier, Julie; Brocheriou, Isabelle; Suberbielle-Boissel, Caroline; Djamali, Arjang; Reese, Shannon; Mooney, Nuala; Keuylian, Zela; Lion, Julien; Ouali, Nacéra; Levy, Pierre P; Jouanneau, Chantal; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    Antibody-mediated rejection (ABMR) is a leading cause of allograft loss. Treatment efficacy depends on accurate diagnosis at an early stage. However, sensitive and reliable markers of antibody-endothelium interaction during ABMR are not available for routine use. Using immunohistochemistry, we retrospectively studied the diagnostic value of three markers of endothelial-to-mesenchymal transition (EndMT), fascin1, vimentin, and heat shock protein 47, for ABMR in 53 renal transplant biopsy specimens, including 20 ABMR specimens, 24 cell-mediated rejection specimens, and nine normal grafts. We validated our results in an independent set of 74 unselected biopsy specimens. Endothelial cells of the peritubular capillaries in grafts with ABMR expressed fascin1, vimentin, and heat shock protein 47 strongly, whereas those from normal renal grafts did not. The level of EndMT marker expression was significantly associated with current ABMR criteria, including capillaritis, glomerulitis, peritubular capillary C4d deposition, and donor-specific antibodies. These markers allowed us to identify C4d-negative ABMR and to predict late occurrence of disease. EndMT markers were more specific than capillaritis for the diagnosis and prognosis of ABMR and predicted late (up to 4 years after biopsy) renal graft dysfunction and proteinuria. In the independent set of 74 renal graft biopsy specimens, the EndMT markers for the diagnosis of ABMR had a sensitivity of 100% and a specificity of 85%. Fascin1 expression in peritubular capillaries was also induced in a rat model of ABMR. In conclusion, EndMT markers are a sensitive and reliable diagnostic tool for detecting endothelial activation during ABMR and predicting late loss of allograft function. PMID:25995444

  13. Vascular endothelial growth factor as a predictive marker for POEMS syndrome treatment response: retrospective cohort study

    PubMed Central

    Misawa, S; Sato, Y; Katayama, K; Hanaoka, H; Sawai, S; Beppu, M; Nomura, F; Shibuya, K; Sekiguchi, Y; Iwai, Y; Watanabe, K; Amino, H; Ohwada, C; Takeuchi, M; Sakaida, E; Nakaseko, C; Kuwabara, S

    2015-01-01

    Objective POEMS (polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes) syndrome is a rare multisystem disease characterised by plasma cell dyscrasia and overproduction of vascular endothelial growth factor (VEGF). VEGF is assumed to be useful in monitoring disease activity, because VEGF levels usually decrease after treatment. However, there is no study to investigate whether the extent of decrease in VEGF correlates with clinical outcome. We tested the predictive efficacy of serum VEGF levels in POEMS syndrome. Method This was an institutional review board approved retrospective observational cohort study of 20 patients with POEMS monitored regularly for more than 12 months (median follow-up, 87 months) after treatment onset using our prospectively accumulated database of POEMS from 1999 to 2015. Patients were treated by autologous peripheral blood stem cell transplantation or thalidomide administration. Serum VEGF was measured by ELISA. Outcome measures included clinical and laboratory findings and relapse-free survival. Results Serum VEGF levels decreased rapidly after treatment, and stabilised by 6 months post treatment. Patients with normalised serum VEGF levels (<1040 pg/mL) at 6 months showed prolonged relapse-free survival (HR=12.81, 95% CI 2.691 to 90.96; p=0.0001) and greater later clinical improvement. The rate of serum VEGF reduction over the first 6 months post treatment correlated with increased grip strength, serum albumin levels, and compound muscle action potential amplitudes at 12 months. Conclusions Serum VEGF level at 6 months post treatment is a predicative biomarker for disease activity and prognosis in POEMS syndrome. Serum VEGF could be used as a surrogate endpoint for relapse-free survival or clinical or laboratory improvement of POEMS syndrome for clinical trials. PMID:26560063

  14. The role of the graft endothelium in transplant rejection: evidence that endothelial activation may serve as a clinical marker for the development of chronic rejection.

    PubMed

    Denton, M D; Davis, S F; Baum, M A; Melter, M; Reinders, M E; Exeni, A; Samsonov, D V; Fang, J; Ganz, P; Briscoe, D M

    2000-11-01

    In this review, we discuss the role of the allograft endothelium in the recruitment and activation of leukocytes during acute and chronic rejection. We discuss associations among endothelial activation responses, the expression of adhesion molecules, chemokines and chemokine receptors, and rejection; and we propose that endothelial vascular cellular adhesion molecule-1 (VCAM-1) may be used as a surrogate marker of acute rejection and allograft vasculopathy. In addition, we describe potential mechanistic interpretations of persistent endothelial cell (EC) expression of major histocompatibility complex (MHC) class II molecules in allorecognition. The graft endothelium may provide an antigen-specific signal to transmigrating, previously activated, T cells and may induce B7 expression on locally transmigrating leukocytes to promote costimulation. Taken together, these functions of the EC provide it with a potent regulatory role in rejection and in the maintenance of T-cell activation via the direct and/or the indirect pathways of allorecognition.

  15. Development of Blood and Lymphatic Endothelial Cells in Embryonic and Fetal Human Skin.

    PubMed

    Schuster, Christopher; Mildner, Michael; Botta, Albert; Nemec, Lucas; Rogojanu, Radu; Beer, Lucian; Fiala, Christian; Eppel, Wolfgang; Bauer, Wolfgang; Petzelbauer, Peter; Elbe-Bürger, Adelheid

    2015-09-01

    Blood and lymphatic vessels provide nutrients for the skin and fulfill important homeostatic functions, such as the regulation of immunologic processes. In this study, we investigated the development of blood and lymphatic endothelial cells in prenatal human skin in situ using multicolor immunofluorescence and analyzed angiogenic molecules by protein arrays of lysates and cell culture supernatants. We found that at 8 to 10 weeks of estimated gestational age, CD144(+) vessels predominantly express the venous endothelial cell marker PAL-E, whereas CD144(+)PAL-E(-) vessels compatible with arteries only appear at the end of the first trimester. Lymphatic progenitor cells at 8 weeks of estimated gestational age express CD31, CD144, Prox1, and temporary PAL-E. At that developmental stage not all lymphatic progenitor cells express podoplanin or Lyve-1, which are acquired with advancing gestational age in a stepwise fashion. Already in second-trimester human skin, the phenotype of blood and lymphatic vessels roughly resembles the one in adult skin. The expression pattern of angiogenic molecules in lysates and cell culture supernatants of prenatal skin did not reveal the expected bent to proangiogenic molecules, indicating a complex regulation of angiogenesis during ontogeny. In summary, this study provides enticing new insights into the development and phenotypic characteristics of the vascular system in human prenatal skin.

  16. Effects of aerobic interval training and continuous training on cellular markers of endothelial integrity in coronary artery disease: a SAINTEX-CAD substudy.

    PubMed

    Van Craenenbroeck, Emeline M; Frederix, Geert; Pattyn, Nele; Beckers, Paul; Van Craenenbroeck, Amaryllis H; Gevaert, Andreas; Possemiers, Nadine; Cornelissen, Veronique; Goetschalckx, Kaatje; Vrints, Christiaan J; Vanhees, Luc; Hoymans, Vicky Y

    2015-12-01

    In this large multicenter trial, we aimed to assess the effect of aerobic exercise training in stable coronary artery disease (CAD) patients on cellular markers of endothelial integrity and to examine their relation with improvement of endothelial function. Two-hundred CAD patients (left ventricular ejection fraction > 40%, 90% male, mean age 58.4 ± 9.1 yr) were randomized on a 1:1 base to a supervised 12-wk rehabilitation program of either aerobic interval training or aerobic continuous training on a bicycle. At baseline and after 12 wk, numbers of circulating CD34(+)/KDR(+)/CD45dim endothelial progenitor cells (EPCs), CD31(+)/CD3(+)/CXCR4(+) angiogenic T cells, and CD31(+)/CD42b(-) endothelial microparticles (EMPs) were analyzed by flow cytometry. Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery. After 12 wk of aerobic interval training or aerobic continuous training, numbers of circulating EPCs, angiogenic T cells, and EMPs were comparable with baseline levels. Whereas improvement in peak oxygen consumption was correlated to improvement in FMD (Pearson r = 0.17, P = 0.035), a direct correlation of baseline or posttraining EPCs, angiogenic T cells, and EMP levels with FMD was absent. Baseline EMPs related inversely to the magnitude of the increases in peak oxygen consumption (Spearman rho = -0.245, P = 0.027) and FMD (Spearman rho = -0.374, P = 0.001) following exercise training. In conclusion, endothelial function improvement in response to exercise training in patients with CAD did not relate to altered levels of EPCs and angiogenic T cells and/or a diminished shedding of EMPs into the circulation. EMP flow cytometry may be predictive of the increase in aerobic capacity and endothelial function.

  17. Effects of aerobic interval training and continuous training on cellular markers of endothelial integrity in coronary artery disease: a SAINTEX-CAD substudy.

    PubMed

    Van Craenenbroeck, Emeline M; Frederix, Geert; Pattyn, Nele; Beckers, Paul; Van Craenenbroeck, Amaryllis H; Gevaert, Andreas; Possemiers, Nadine; Cornelissen, Veronique; Goetschalckx, Kaatje; Vrints, Christiaan J; Vanhees, Luc; Hoymans, Vicky Y

    2015-12-01

    In this large multicenter trial, we aimed to assess the effect of aerobic exercise training in stable coronary artery disease (CAD) patients on cellular markers of endothelial integrity and to examine their relation with improvement of endothelial function. Two-hundred CAD patients (left ventricular ejection fraction > 40%, 90% male, mean age 58.4 ± 9.1 yr) were randomized on a 1:1 base to a supervised 12-wk rehabilitation program of either aerobic interval training or aerobic continuous training on a bicycle. At baseline and after 12 wk, numbers of circulating CD34(+)/KDR(+)/CD45dim endothelial progenitor cells (EPCs), CD31(+)/CD3(+)/CXCR4(+) angiogenic T cells, and CD31(+)/CD42b(-) endothelial microparticles (EMPs) were analyzed by flow cytometry. Endothelial function was assessed by flow-mediated dilation (FMD) of the brachial artery. After 12 wk of aerobic interval training or aerobic continuous training, numbers of circulating EPCs, angiogenic T cells, and EMPs were comparable with baseline levels. Whereas improvement in peak oxygen consumption was correlated to improvement in FMD (Pearson r = 0.17, P = 0.035), a direct correlation of baseline or posttraining EPCs, angiogenic T cells, and EMP levels with FMD was absent. Baseline EMPs related inversely to the magnitude of the increases in peak oxygen consumption (Spearman rho = -0.245, P = 0.027) and FMD (Spearman rho = -0.374, P = 0.001) following exercise training. In conclusion, endothelial function improvement in response to exercise training in patients with CAD did not relate to altered levels of EPCs and angiogenic T cells and/or a diminished shedding of EMPs into the circulation. EMP flow cytometry may be predictive of the increase in aerobic capacity and endothelial function. PMID:26453327

  18. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes.

    PubMed

    Lanzinger, Stefanie; Breitner, Susanne; Neas, Lucas; Cascio, Wayne; Diaz-Sanchez, David; Hinderliter, Alan; Peters, Annette; Devlin, Robert B; Schneider, Alexandra

    2014-10-01

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investigate short-term effects of temperature and ozone on endothelial function in individuals having diabetes. Moreover, we investigated interactive effects between air temperature and air pollution on markers of endothelial function. Between November 2004 and December 2005 flow-mediated dilatation (FMD), nitroglycerin-mediated dilatation (NTGMD) and several blood markers representing endothelial function were measured using brachial artery ultrasound on four consecutive days in 22 individuals with type-2 diabetes mellitus in Chapel Hill, North Carolina (USA). Daily measurements of meteorological parameters, ozone and particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) were obtained from fixed monitoring sites. We used additive mixed-models adjusting for time trend, day of the week, relative humidity and barometric pressure to assess temperature and ozone associations with endothelial function. A 1 °C decrease in the 24-h temperature average was associated with a decrease in mean FMD on the same day (-2.2% (95%-confidence interval:[-4.7;0.3%])) and with a delay of one and four days. A temperature decrement also led to an immediate (-1.7%[-3.3;-0.04]) decrease in NTGMD. Moreover, we observed an immediate (-14.6%[-26.3;-2.9%]) and a one day delayed (-13.5%[-27.0; 0.04%]) decrease in FMD in association with a 0.01 ppm increase in the maximum 8-h moving average of ozone. Temperature effects on FMD strengthened when PM2.5 and ozone concentrations were high. The associations were similar during winter and summer. We detected an association between temperature decreases and ozone increases on endothelial dysfunction in individuals having diabetes. We conclude that endothelial dysfunction

  19. Co-Expression of Bmi-1 and Podoplanin Predicts Overall Survival in Patients With Squamous Cell Carcinoma of the Head and Neck Treated With Radio(chemo)therapy

    SciTech Connect

    Vormittag, Laurenz; Thurnher, Dietmar; Geleff, Silvana; Pammer, Johannes; Heiduschka, Gregor; Brunner, Markus; Grasl, Matthaeus Ch.; Erovic, Boban M.

    2009-03-01

    Purpose: This study was conducted to determine the expression of Bmi-1 and podoplanin in healthy oral mucosa and in untreated tumor tissues samples of patients with squamous cell carcinomas of the head and neck. All patients were treated by primary radio(chemo)therapy. Methods and Materials: The expression of Bmi-1 and podoplanin was immunohistochemically evaluated in 12 normal oral mucosa and 63 tumor specimens and correlated with patients' clinical data. Results: In healthy mucosa expression of Bmi-1 and podoplanin was restricted to the basal cell layer. Expression of both proteins was found in 79% and 86% of our tumor samples, respectively. In 17 and 8 samples, Bmi-1 and podoplanin were co-expressed at the invasive border or diffuse in the bulk of the tumor, respectively. Univariate analysis showed that the co-expression of Bmi-1 and podoplanin correlated to decreased overall survival (p = 0.044). Moreover, multivariate testing identified high expression of podoplanin (p = 0.044), co-expression of Bmi-1 and podoplanin (p = 0.007) and lack of response to therapy (p < 0.0001) as predictors of shortened overall survival in patients treated with primary radio(chemo)therapy. Conclusions: Bmi-1 and podoplanin are expressed at the invasive front of squamous cell carcinomas of the head and neck. Co-expression of Bmi-1 and podoplanin predicts significantly overall survival of patients treated with primary radio(chemo)therapy.

  20. Overweight across the life course and adipokines, inflammatory and endothelial markers at age 60–64 years: evidence from the 1946 birth cohort

    PubMed Central

    Murray, E T; Hardy, R; Hughes, A; Wills, A; Sattar, N; Deanfield, J; Kuh, D; Whincup, P

    2015-01-01

    Background/Objectives: There is growing evidence that early development of obesity increases cardiovascular risk later in life, but less is known about whether there are effects of long-term excess body weight on the biological drivers associated with the atherosclerotic pathway, particularly adipokines, inflammatory and endothelial markers. This paper therefore investigates the influence of overweight across the life course on levels of these markers at retirement age. Subjects/Methods: Data from the Medical Research Council National Survey of Health and Development (n=1784) were used to examine the associations between overweight status at 2, 4, 6, 7, 11, 15, 20, 26, 36, 43, 53 and 60–64 years (body mass index (BMI)⩾25 kg m−2 for adult ages and gender-specific cut-points for childhood ages equivalent to BMI⩾25 kg m−2) and measurements of adipokines (leptin and adiponectin), inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6)) and endothelial markers (E-selectin, tissue plasminogen activator (t-PA) and von Willebrand factor) at 60–64 years. In addition, the fit of different life course models (sensitive periods/accumulation) were compared using partial F-tests. Results: In age- and sex-adjusted models, overweight at 11 years and onwards was associated with higher leptin, CRP and IL-6 and lower adiponectin; overweight at 15 years and onwards was associated with higher E-selectin and t-PA. Associations between overweight at all ages earlier than 60–64 with leptin, adiponectin, CRP and IL-6 were reduced but remained apparent after adjustment for overweight at 60–64 years; whereas those with E-selectin and t-PA were entirely explained. An accumulation model best described the associations between overweight across the life course with adipokines and inflammatory markers, whereas for the endothelial markers, the sensitive period model for 60–64 years provided a slightly better fit than the accumulation model. Conclusions

  1. Markers

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  2. Endovascular treatment of chronic cerebro spinal venous insufficiency in patients with multiple sclerosis modifies circulating markers of endothelial dysfunction and coagulation activation: a prospective study.

    PubMed

    Napolitano, Mariasanta; Bruno, Aldo; Mastrangelo, Diego; De Vizia, Marcella; Bernardo, Benedetto; Rosa, Buonagura; De Lucia, Domenico

    2014-10-01

    We performed a monocentric observational prospective study to evaluate coagulation activation and endothelial dysfunction parameters in patients with multiple sclerosis undergoing endovascular treatment for cerebro-spinal-venous insufficiency. Between February 2011 and July 2012, 144 endovascular procedures in 110 patients with multiple sclerosis and chronical cerebro-spinal venous insufficiency were performed and they were prospectively analyzed. Each patient was included in the study according to previously published criteria, assessed by the investigators before enrollment. Endothelial dysfunction and coagulation activation parameters were determined before the procedure and during follow-up at 1, 3, 6, 9, 12, 15 and 18 months after treatment, respectively. After the endovascular procedure, patients were treated with standard therapies, with the addition of mesoglycan. Fifty-five percent of patients experienced a favorable outcome of multiple sclerosis within 1 month after treatment, 25% regressed in the following 3 months, 24.9% did not experience any benefit. In only 0.1% patients, acute recurrence was observed and it was treated with high-dose immunosuppressive therapy. No major complications were observed. Coagulation activation and endothelial dysfunction parameters were shown to be reduced at 1 month and stable up to 12-month follow-up, and they were furthermore associated with a good clinical outcome. Endovascular procedures performed by a qualified staff are well tolerated; they can be associated with other currently adopted treatments. Correlations between inflammation, coagulation activation and neurodegenerative disorders are here supported by the observed variations in plasma levels of markers of coagulation activation and endothelial dysfunction.

  3. Elevated Serum Macrophage Migration Inhibitory Factor (MIF) Concentrations in Chronic Kidney Disease (CKD) Are Associated with Markers of Oxidative Stress and Endothelial Activation

    PubMed Central

    Bruchfeld, Annette; Carrero, Juan J; Qureshi, Abdul R; Lindholm, Bengt; Barany, Peter; Heimburger, Olof; Hu, Maowen; Lin, Xinchun; Stenvinkel, Peter; Miller, Edmund J

    2009-01-01

    Chronic kidney disease (CKD) carries an increased risk of cardiovascular disease (CVD). Macrophage migration inhibiting factor (MIF) is a proinflammatory cytokine implicated in the pathogenesis of sepsis, autoimmune disease, atherogenesis, and plaque instability, and is a known cardiac depressant. This post-hoc, cross-sectional study examined whether MIF serum concentrations are elevated in CKD patients. Our study included CKD 3–5 patients with moderate to severe renal dysfunction (n = 257) (mean age SD; 55 ± 12 years) and 53 controls (60 ± 12 years). Serum MIF concentrations, measured by enzyme-linked immunosorbent assay (ELISA), were studied in relation to glomerular filtration rate (GFR), presence of CVD, outcome and inflammatory and oxidative stress markers. MIF was significantly elevated in CKD patients compared with controls (CKD: median 676 [range 118–8275 pg/mL] controls: 433 [142–4707] pg/mL; P = 0.008). MIF was also associated with 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels (rho = 0.26; P = 0.001), a marker of oxidative stress, and ICAM-1 levels (rho = 0.14; P = 0.02), a marker of endothelial activation. However, the elevated MIF concentrations were neither correlated with glomerular filtration rate (GFR) nor inflammatory markers such as CRP, IL-6, and TNF. When combining MIF and IL-6 as a marker of inflammation, a significant increase in risk for CVD was found, but when analyzing all-cause mortality, this did not differ significantly with regard to mortality from inflamed patients with low MIF levels. The data suggest that increased serum MIF levels found in CKD is not caused primarily by poor renal function, but is associated with markers of oxidative stress and endothelial activation and may play a role in vascular disease associated with CKD. PMID:19081768

  4. Evaluation of the effect of wheat aleurone-rich foods on markers of antioxidant status, inflammation and endothelial function in apparently healthy men and women.

    PubMed

    Price, Ruth K; Wallace, Julie M W; Hamill, Lesley L; Keaveney, Edel M; Strain, J J; Parker, Michael J; Welch, Robert W

    2012-11-14

    Observational data show an inverse association between the consumption of whole-grain foods, and inflammation and related diseases. Although the underlying mechanisms are unclear, whole grains, and in particular the aleurone layer, contain a wide range of components with putative antioxidant and anti-inflammatory effects. We evaluated the effects of a diet high in wheat aleurone on plasma antioxidants status, markers of inflammation and endothelial function. In this parallel, participant-blinded intervention, seventy-nine healthy, older, overweight participants (45-65 years, BMI>25 kg/m²) incorporated either aleurone-rich cereal products (27 g aleurone/d), or control products balanced for fibre and macronutrients, into their habitual diets for 4 weeks. Fasting blood samples were taken at baseline and on day 29. Results showed that, compared to control, consumption of aleurone-rich products provided substantial amounts of micronutrients and phytochemicals which may function as antioxidants. Additionally, incorporating these products into a habitual diet resulted in significantly lower plasma concentrations of the inflammatory marker, C-reactive protein (P = 0·035), which is an independent risk factor for CVD. However, no changes were observed in other markers of inflammation, antioxidant status or endothelial function. These results provide a possible mechanism underlying the beneficial effects of longer-term whole-grain intake. However, it is unclear whether this effect is owing to a specific component, or a combination of components in wheat aleurone.

  5. Markers of endothelial cell activation and immune activation are increased in patients with severe leptospirosis and associated with disease severity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: Previous studies concluded that haemorrhage is one of the most accurate prognostic factors of mortality in leptospirosis. Therefore, endothelial cell activation was investigated in relation to disease severity in severe leptospirosis. Methods: Prospective cohort study of severe leptospi...

  6. Expression of Molecular Markers of Angiogenesis, Lymphangiogenesis, and Proliferation Depending on the Stage of Skin Melanoma.

    PubMed

    Bgatova, N P; Lomakin, A I; Fursov, S A; Kachesov, I V; Chepko, S A; Isakova, N B; Borodin, Yu I; Voytsitsky, V E; Konenkov, V I

    2016-08-01

    The expression of molecular markers characterizing activity of the tumor process and metastases (proliferation marker Ki-67, angiogenesis marker CD34, and lymphangiogenesis markers podoplanin and LYVE-1) was assessed by immunohictochemical method in the primary tumor specimens collected during surgery for cutaneous melanoma (40 patients). Proliferative activity of the tumor tissue and volume density of peritumoral blood and lymph vessels increased with increasing tumor malignancy, which could indicate the risk of metastases. PMID:27590758

  7. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    PubMed Central

    Li, Ting; Lu, Xinshan; Sun, Yanfei; Yang, Xingbin

    2016-01-01

    Background Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO) level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34) showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58), which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet. Conclusions The intake of

  8. Use of tritiated thymidine as a marker to compare the effects of matrix proteins on adult human vascular endothelial cell attachment: implications for seeding of vascular prostheses

    SciTech Connect

    Hasson, J.E.; Wiebe, D.H.; Sharefkin, J.B.; D'Amore, P.A.; Abbott, W.M.

    1986-11-01

    We have developed a technique to measure attachment of adult human vascular endothelial cells to test surfaces with tritiated thymidine used as a marker. With this technique, we measured attachment of adult human vascular endothelial cells to a series of extracellular matrix proteins, including fibronectin-coated (10 micrograms/cm/sup 2/), laminin-coated (10 micrograms/cm/sup 2/), and collagen-coated (1% gelatin) surfaces because of the role of these proteins in promoting cell attachment and growth. For a typical experiment, in the presence of serum, initial attachment (at 1 hour) was greatest on fibronectin-coated (63%) and gelatin-coated (60%) tissue culture plastic (polystyrene) and was least on laminin-coated (28%) or untreated polystyrene (18%). The data suggest that fibronectin, either alone, or with a more complex combination of extracellular components may need to be present on prosthetic surfaces to produce maximal cell attachment and subsequent growth to confluence in vivo. The described method of measuring attachment is independent of surface properties, ensures complete recovery of cells, and will allow systematic exploration of those properties that best support human endothelial cell attachment to vascular prosthetic surfaces.

  9. Dietary proteins improve endothelial function under fasting conditions but not in the postprandial state, with no effects on markers of low-grade inflammation.

    PubMed

    Teunissen-Beekman, Karianna F M; Dopheide, Janneke; Geleijnse, Johanna M; Bakker, Stephan J L; Brink, Elizabeth J; de Leeuw, Peter W; Schalkwijk, Casper G; van Baak, Marleen A

    2015-12-14

    Endothelial dysfunction (ED) and low-grade inflammation (LGI) have a role in the development of CVD. The two studies reported here explored the effects of dietary proteins and carbohydrates on markers of ED and LGI in overweight/obese individuals with untreated elevated blood pressure. In the first study, fifty-two participants consumed a protein mix or maltodextrin (3×20 g/d) for 4 weeks. Fasting levels and 12 h postprandial responses of markers of ED (soluble intercellular adhesion molecule 1 (sICAM), soluble vascular cell adhesion molecule 1 (sVCAM), soluble endothelial selectin and von Willebrand factor) and markers of LGI (serum amyloid A, C-reactive protein and sICAM) were evaluated before and after intervention. Biomarkers were also combined into mean Z-scores of ED and LGI. The second study compared 4 h postprandial responses of ED and LGI markers in forty-eight participants after ingestion of 0·6 g/kg pea protein, milk protein and egg-white protein. In addition, postprandial responses after maltodextrin intake were compared with a protein mix and sucrose. The first study showed significantly lower fasting ED Z-scores and sICAM after 4 weeks on the high-protein diet (P≤0·02). The postprandial studies found no clear differences of ED and LGI between test meals. However, postprandial sVCAM decreased more after the protein mix compared with maltodextrin in both studies (P≤0·04). In conclusion, dietary protein is beneficial for fasting ED, but not for fasting LGI, after 4 weeks of supplementation. On the basis of Z-scores, postprandial ED and LGI were not differentially affected by protein sources or carbohydrates.

  10. Podoplanin is a component of extracellular vesicles that reprograms cell-derived exosomal proteins and modulates lymphatic vessel formation

    PubMed Central

    Andrés, Germán; Gopal, Shashi K.; Martín-Villar, Ester; Renart, Jaime; Simpson, Richard J.; Quintanilla, Miguel

    2016-01-01

    Podoplanin (PDPN) is a transmembrane glycoprotein that plays crucial roles in embryonic development, the immune response, and malignant progression. Here, we report that cells ectopically or endogenously expressing PDPN release extracellular vesicles (EVs) that contain PDPN mRNA and protein. PDPN incorporates into membrane shed microvesicles (MVs) and endosomal-derived exosomes (EXOs), where it was found to colocalize with the canonical EV marker CD63 by immunoelectron microscopy. We have previously found that expression of PDPN in MDCK cells induces an epithelial-mesenchymal transition (EMT). Proteomic profiling of MDCK-PDPN cells compared to control cells shows that PDPN-induced EMT is associated with upregulation of oncogenic proteins and diminished expression of tumor suppressors. Proteomic analysis of exosomes reveals that MDCK-PDPN EXOs were enriched in protein cargos involved in cell adhesion, cytoskeletal remodeling, signal transduction and, importantly, intracellular trafficking and EV biogenesis. Indeed, expression of PDPN in MDCK cells stimulated both EXO and MV production, while knockdown of endogenous PDPN in human HN5 squamous carcinoma cells reduced EXO production and inhibited tumorigenesis. EXOs released from MDCK-PDPN and control cells both stimulated in vitro angiogenesis, but only EXOs containing PDPN were shown to promote lymphatic vessel formation. This effect was mediated by PDPN on the surface of EXOs, as demonstrated by a neutralizing specific monoclonal antibody. These results contribute to our understanding of PDPN-induced EMT in association to tumor progression, and suggest an important role for PDPN in EV biogenesis and/or release and for PDPN-EXOs in modulating lymphangiogenesis. PMID:26893367

  11. Podoplanin expression in tumor-free resection margins of oral squamous cell carcinomas: an immunohistochemical and fractal analysis study.

    PubMed

    Margaritescu, C; Raica, M; Pirici, D; Simionescu, C; Mogoanta, L; Stinga, A C; Stinga, A S; Ribatti, D

    2010-06-01

    Podoplanin is involved in tumorigenesis and cancer progression in head and neck malignancies and its expression is not restricted to lymphatic vessel endothelium. The aim of this study was to establish podoplanin expression in the tumor-free resection margins of oral squamous cell carcinomas (OSCCs) and to evaluate the geometric complexity of the lymphatic vessels in oral mucosa by utilizing fractal analysis. As concerns the podoplanin expression in noncancerous tissue, forty tumor-free resection margins from OSCCs were investigated utilizing immunohistochemistry for D2-40 antibody and image densitometry analysis. Podoplanin expression was extremely low in basal cells, especially in resection margins of OSCCs developed in the lower lip regions. However, a highly variable D2-40 expression in tumor-free resection margins associated with hyperplastic or dysplastic lesions was identified. Moreover, podoplanin expression also extended to the basal layer of the lower lip skin appendages, the myoepithelial cells of acini and ducts of minor salivary glands, and other structures from the oral cavity. As concerns the study of the density and complexity of oral lymphatic vessels architecture by means of immunohistochemistry (D2-40, CD31 and Ki-67 antibodies) and fractal analysis, we demonstrated that in normal oral mucosa the geometry of the lymphatic vessels was less complex at the level of the lower lip compared to the anterior part of the oral floor mucosa or the tongue. A comparative analysis between the normal and pathological aspects revealed statistically significant differences between the fractal dimension (FD) of the vessels' outline, especially in the tongue. Fractal analysis proved an increasing lymphatic network complexity from normal to premalignant oral mucosal lesions, providing additional prognostic information in oral malignant tumors. PMID:20376776

  12. Physical exercise, fitness and dietary pattern and their relationship with circadian blood pressure pattern, augmentation index and endothelial dysfunction biological markers: EVIDENT study protocol

    PubMed Central

    2010-01-01

    Background Healthy lifestyles may help to delay arterial aging. The purpose of this study is to analyze the relationship of physical activity and dietary pattern to the circadian pattern of blood pressure, central and peripheral blood pressure, pulse wave velocity, carotid intima-media thickness and biological markers of endothelial dysfunction in active and sedentary individuals without arteriosclerotic disease. Methods/Design Design: A cross-sectional multicenter study with six research groups. Subjects: From subjects of the PEPAF project cohort, in which 1,163 who were sedentary became active, 1,942 were sedentary and 2,346 were active. By stratified random sampling, 1,500 subjects will be included, 250 in each group. Primary measurements: We will evaluate height, weight, abdominal circumference, clinical and ambulatory blood pressure with the Radial Pulse Wave Acquisition Device (BPro), central blood pressure and augmentation index with Pulse Wave Application Software (A-Pulse) and SphymgoCor System Px (Pulse Wave Analysis), pulse wave velocity (PWV) with SphymgoCor System Px (Pulse Wave Velocity), nutritional pattern with a food intake frequency questionnaire, physical activity with the 7-day PAR questionnaire and accelerometer (Actigraph GT3X), physical fitness with the cycle ergometer (PWC-170), carotid intima-media thickness by ultrasound (Micromax), and endothelial dysfunction biological markers (endoglin and osteoprotegerin). Discussion Determining that sustained physical activity and the change from sedentary to active as well as a healthy diet improve circadian pattern, arterial elasticity and carotid intima-media thickness may help to propose lifestyle intervention programs. These interventions could improve the cardiovascular risk profile in some parameters not routinely assessed with traditional risk scales. From the results of this study, interventional approaches could be obtained to delay vascular aging that combine physical exercise and diet

  13. [Endothelial dysfunction as a marker of vascular aging syndrome on the background of hypertension, coronary heart disease, gout and obesity].

    PubMed

    Vatseba, M O

    2013-09-01

    Under observation were 40 hypertensive patients with coronary heart disease, gout and obesity I and II degree. Patients with hypertension in combination with coronary heart disease, gout and obesity, syndrome of early vascular aging is shown by increased stiffness of arteries, increased peak systolic flow velocity, pulse blood presure, the thickness of the intima-media complex, higher level endotelinemia and reduced endothelial vasodilation. Obtained evidence that losartan in complex combination with basic therapy and metamaks in complex combination with basic therapy positively affect the elastic properties of blood vessels and slow the progression of early vascular aging syndrome.

  14. The CLEC-2–podoplanin axis controls fibroblastic reticular cell contractility and lymph node microarchitecture

    PubMed Central

    Astarita, Jillian L.; Cremasco, Viviana; Fu, Jianxin; Darnell, Max C.; Peck, James R.; Nieves-Bonilla, Janice M.; Song, Kai; Woodruff, Matthew C.; Gogineni, Alvin; Onder, Lucas; Ludewig, Burkhard; Weimer, Robby M.; Carroll, Michael C.; Mooney, David J.; Xia, Lijun; Turley, Shannon J.

    2014-01-01

    In lymph nodes, fibroblastic reticular cells (FRCs) form a collagen-based reticular network that supports migratory dendritic cells (DCs) and T cells and transports lymph. A hallmark of FRCs is their propensity to contract collagen, yet this function is poorly understood. Here, we demonstrate that podoplanin (PDPN) regulated actomyosin contractility in FRCs. Under resting conditions, when FRCs are unlikely to encounter mature DCs expressing the PDPN receptor, CLEC-2, PDPN endowed FRCs with contractile function and exerted tension within the reticulum. Upon inflammation, CLEC-2 on mature DCs potently attenuated PDPN-mediated contractility, resulting in FRC relaxation and reduced tissue stiffness. Disrupting PDPN function altered the homeostasis and spacing of FRCs and T cells, resulting in an expanded reticular network and enhanced immunity. PMID:25347465

  15. Podoplanin immunopositive lymphatic vessels at the implant interface in a rat model of osteoporotic fractures.

    PubMed

    Lips, Katrin Susanne; Kauschke, Vivien; Hartmann, Sonja; Thormann, Ulrich; Ray, Seemun; Kampschulte, Marian; Langheinrich, Alexander; Schumacher, Matthias; Gelinsky, Michael; Heinemann, Sascha; Hanke, Thomas; Kautz, Armin R; Schnabelrauch, Matthias; Schnettler, Reinhard; Heiss, Christian; Alt, Volker; Kilian, Olaf

    2013-01-01

    Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages

  16. Podoplanin Immunopositive Lymphatic Vessels at the Implant Interface in a Rat Model of Osteoporotic Fractures

    PubMed Central

    Lips, Katrin Susanne; Kauschke, Vivien; Hartmann, Sonja; Thormann, Ulrich; Ray, Seemun; Kampschulte, Marian; Langheinrich, Alexander; Schumacher, Matthias; Gelinsky, Michael; Heinemann, Sascha; Hanke, Thomas; Kautz, Armin R.; Schnabelrauch, Matthias; Schnettler, Reinhard; Heiss, Christian; Alt, Volker; Kilian, Olaf

    2013-01-01

    Insertion of bone substitution materials accelerates healing of osteoporotic fractures. Biodegradable materials are preferred for application in osteoporotic patients to avoid a second surgery for implant replacement. Degraded implant fragments are often absorbed by macrophages that are removed from the fracture side via passage through veins or lymphatic vessels. We investigated if lymphatic vessels occur in osteoporotic bone defects and whether they are regulated by the use of different materials. To address this issue osteoporosis was induced in rats using the classical method of bilateral ovariectomy and additional calcium and vitamin deficient diet. In addition, wedge-shaped defects of 3, 4, or 5 mm were generated in the distal metaphyseal area of femur via osteotomy. The 4 mm defects were subsequently used for implantation studies where bone substitution materials of calcium phosphate cement, composites of collagen and silica, and iron foams with interconnecting pores were inserted. Different materials were partly additionally functionalized by strontium or bisphosphonate whose positive effects in osteoporosis treatment are well known. The lymphatic vessels were identified by immunohistochemistry using an antibody against podoplanin. Podoplanin immunopositive lymphatic vessels were detected in the granulation tissue filling the fracture gap, surrounding the implant and growing into the iron foam through its interconnected pores. Significant more lymphatic capillaries were counted at the implant interface of composite, strontium and bisphosphonate functionalized iron foam. A significant increase was also observed in the number of lymphatics situated in the pores of strontium coated iron foam. In conclusion, our results indicate the occurrence of lymphatic vessels in osteoporotic bone. Our results show that lymphatic vessels are localized at the implant interface and in the fracture gap where they might be involved in the removal of lymphocytes, macrophages

  17. Effects of low-fat dairy consumption on markers of low-grade systemic inflammation and endothelial function in overweight and obese subjects: an intervention study.

    PubMed

    van Meijl, Leonie E C; Mensink, Ronald P

    2010-11-01

    Although increased concentrations of plasma inflammatory markers are not one of the criteria to diagnose the metabolic syndrome, low-grade systemic inflammation is receiving large attention as a metabolic syndrome component and cardiovascular risk factor. As several epidemiological studies have suggested a negative relationship between low-fat dairy consumption and the metabolic syndrome, we decided to investigate the effects of low-fat dairy consumption on inflammatory markers and adhesion molecules in overweight and obese subjects in an intervention study. Thirty-five healthy subjects (BMI>27 kg/m²) consumed, in a random order, low-fat dairy products (500 ml low-fat milk and 150 g low-fat yogurt) or carbohydrate-rich control products (600 ml fruit juice and three fruit biscuits) daily for 8 weeks. Plasma concentrations of TNF-α were decreased by 0.16 (SD 0.50) pg/ml (P = 0.070), and soluble TNF-α receptor-1 (s-TNFR-1) was increased by 110.0 (SD 338.4) pg/ml (P = 0.062) after the low-fat dairy period than after the control period. s-TNFR-2 was increased by 227.0 (SD 449.0) pg/ml (P = 0.020) by the dairy intervention. As a result, the TNF-α index, defined as the TNF-α:s-TNFR-2 ratio, was decreased by 0.000053 (SD 0.00012) (P = 0.015) after the dairy diet consumption. Low-fat dairy consumption had no effect on IL-6, monocyte chemoattractant protein-1, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 concentrations. The present results indicate that in overweight and obese subjects, low-fat dairy consumption for 8 weeks may increase concentrations of s-TNFR compared with carbohydrate-rich product consumption, but that it has no effects on other markers of chronic inflammation and endothelial function.

  18. Association of Urinary N-Domain Angiotensin I-Converting Enzyme with Plasma Inflammatory Markers and Endothelial Function

    PubMed Central

    Fernandes, Fernanda B; Plavnik, Frida L; Teixeira, Andressa MS; Christofalo, Dejaldo MJ; Ajzen, Sergio A; Higa, Elisa MS; Ronchi, Fernanda A; Sesso, Ricardo CC; Casarini, Dulce E

    2008-01-01

    The aim of this study was to investigate the association between urinary 90 kDa N-domain Angiotensin I-converting enzyme (ACE) form with C-reactive protein (CRP) and homocysteine plasma levels (Hcy), urinary nitric oxide (NOu), and endothelial function (EF) in normotensive subjects. Forty healthy subjects were evaluated through brachial Doppler US to test the response to reactive hyperemia and a panel of blood tests to determine CRP and Hcy levels, NOu, and urinary ACE. They were divided into groups according to the presence (ACE90+) or absence (ACE90–) of the 90 kDa ACE, the presence (FH+) or absence (FH–) of family history of hypertension, and the presence or absence of these two variables FH+/ACE90+ and FH–/ACE90–. We found an impaired endothelial dilatation in subjects who presented the 90 kDa N-domain ACE as follows: 11.4% ± 5.3% in ACE90+ compared with 17.6% ± 7.1% in ACE90– group and 12.4% ± 5.6% in FH+/ACE90+ compared with 17.7% ± 6.2% in FH–/ACE90– group, P < 0.05. Hcy and CRP levels were statistically significantly lower in FH+/ACE90+ than in FH–/ACE90– group, as follows: 10.0 ± 2.3 μM compared with 12.7 ± 1.5 μM, and 1.3 ± 1.8 mg/L compared with 3.6 ± 2.0 mg/L, respectively. A correlation between flow-mediated dilatation (FMD) and CRP, Hcy, and NOu levels was not found. Our study suggests a reduction in the basal NO production confirmed by NOu analysis in subjects with the 90 kDa N-domain ACE isoform alone or associated with a family history of hypertension. Our data suggest that the presence of the 90 kDa N-domain ACE itself may have a negative impact on flow-mediated dilatation stimulated by reactive hyperemia. PMID:18475311

  19. Association of urinary N-domain Angiotensin I-converting enzyme with plasma inflammatory markers and endothelial function.

    PubMed

    Fernandes, Fernanda B; Plavnik, Frida L; Teixeira, Andressa Ms; Christofalo, Dejaldo Mj; Ajzen, Sergio A; Higa, Elisa Ms; Ronchi, Fernanda A; Sesso, Ricardo Cc; Casarini, Dulce E

    2008-01-01

    The aim of this study was to investigate the association between urinary 90 kDa N-domain Angiotensin I-converting enzyme (ACE) form with C-reactive protein (CRP) and homocysteine plasma levels (Hcy), urinary nitric oxide (NOu), and endothelial function (EF) in normotensive subjects. Forty healthy subjects were evaluated through brachial Doppler US to test the response to reactive hyperemia and a panel of blood tests to determine CRP and Hcy levels, NOu, and urinary ACE. They were divided into groups according to the presence (ACE90+) or absence (ACE90-) of the 90 kDa ACE, the presence (FH+) or absence (FH-) of family history of hypertension, and the presence or absence of these two variables FH+/ACE90+ and FH-/ACE90-. We found an impaired endothelial dilatation in subjects who presented the 90 kDa N-domain ACE as follows: 11.4% +/- 5.3% in ACE90+ compared with 17.6% +/- 7.1% in ACE90- group and 12.4% +/- 5.6% in FH+/ACE90+ compared with 17.7% +/- 6.2% in FH-/ACE90- group, P < 0.05. Hcy and CRP levels were statistically significantly lower in FH+/ACE90+ than in FH-/ACE90- group, as follows: 10.0 +/- 2.3 microM compared with 12.7 +/- 1.5 microM, and 1.3 +/- 1.8 mg/L compared with 3.6 +/- 2.0 mg/L, respectively. A correlation between flow-mediated dilatation (FMD) and CRP, Hcy, and NOu levels was not found. Our study suggests a reduction in the basal NO production confirmed by NOu analysis in subjects with the 90 kDa N-domain ACE isoform alone or associated with a family history of hypertension. Our data suggest that the presence of the 90 kDa N-domain ACE itself may have a negative impact on flow-mediated dilatation stimulated by reactive hyperemia. PMID:18475311

  20. Dietary patterns are associated with biochemical markers of inflammation and endothelial activation in the Multi-Ethnic Study of Atherosclerosis (MESA)2

    PubMed Central

    Nettleton, Jennifer A; Steffen, Lyn M; Mayer-Davis, Elizabeth J; Jenny, Nancy S; Jiang, Rui; Herrington, David M; Jacobs, David R

    2010-01-01

    Background Dietary patterns may influence cardiovascular disease risk through effects on inflammation and endothelial activation. Objective We examined relations between dietary patterns and markers of inflammation and endothelial activation. Design At baseline, diet (food-frequency questionnaire) and concentrations of C-reactive protein (CRP), interleukin 6 (IL-6), homocysteine, soluble intercellular adhesion molecule-1 (sICAM-1), and soluble E selectin were assessed in 5089 nondiabetic participants in the Multi-Ethnic Study of Atherosclerosis. Results Four dietary patterns were derived by using factor analysis. The fats and processed meats pattern (fats, oils, processed meats, fried potatoes, salty snacks, and desserts) was positively associated with CRP (P for trend < 0.001), IL-6 (P for trend < 0.001), and homocysteine (P for trend = 0.002). The beans, tomatoes, and refined grains pattern (beans, tomatoes, refined grains, and high-fat dairy products) was positively related to sICAM-1 (P for trend = 0.007). In contrast, the whole grains and fruit pattern (whole grains, fruit, nuts, and green leafy vegetables) was inversely associated with CRP, IL-6, homocysteine (P for trend ≤ 0.001), and sICAM-1 (P for trend = 0.034), and the vegetables and fish pattern (fish and dark-yellow, cruciferous, and other vegetables) was inversely related to IL-6 (P for trend = 0.009). CRP, IL-6, and homocysteine relations across the fats and processed meats and whole grains and fruit patterns were independent of demographics and lifestyle factors and were not modified by race-ethnicity. CRP and homocysteine relations were independent of waist circumference. Conclusions These results corroborate previous findings that empirically derived dietary patterns are associated with inflammation and show that these relations in an ethnically diverse population with unique dietary habits are similar to findings in more homogeneous populations. PMID:16762949

  1. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    EPA Science Inventory

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  2. A randomized cross-over study of inhalation of diesel exhaust, hematological indices, and endothelial markers in humans

    PubMed Central

    2013-01-01

    Background Exposure to traffic-related air pollution (TRAP) is considered a trigger for acute cardiovascular events. Diesel Exhaust (DE) is a major contributor to TRAP in the world. We evaluated the effect of DE inhalation on circulating blood cell populations, hematological indices, and systemic inflammatory cytokines in humans using a specialized facility. Methods In a randomized double-blind crossover study balanced to order, 17 metabolic syndrome (MetS) and 15 healthy subjects inhaled filtered air (FA) or DE exposure in two-hour sessions on different days with a minimum 2-week washout period. We collected blood pre-exposure, 7, and 22 hours after exposure initiation and measured the complete blood count and differential. We performed multiplex cytokine assay to measure the changes in the systemic inflammatory cytokines, and endothelial adhesion molecules (n=15). A paired analysis compared the effect of DE and FA exposures for the change from pre-exposure to the subsequent time points. Results A significant increase in the hematocrit was noted 7 hrs after DE [1.4% (95% CI: 0.9 to 1.9%)] compared to FA exposure [0.5% (95% CI: -0.09 to 1.0%); p=0.008. The hemoglobin levels increased non-significantly at 7 hrs post DE [0.3 gm/dL (95% CI: 0.2 to 0.5 gm/dL)] versus FA exposure [0.2 gm/dL (95% CI: 0 to 0.3 gm/dL)]; p=0.06. Furthermore, the platelet count increased 22 hrs after DE exposure in healthy, but not in MetS subjects [DE: 16.6 (95% CI: 10.2 to 23) thousand platelets/mL versus [FA: 3.4 (95% CI: -9.5 to 16.3) thousand platelets/mL)]; p=0.04. No DE effect was observed for WBC, neutrophils, lymphocytes or erythrocytes. Using the multiplex assay, small borderline significant increases in matrix metalloproteinase-9, interleukins (IL)-1beta, 6 and 10 occurred 7 hrs post exposure initiation, whereas E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule -1, and myeloperoxidase 22 hrs post exposure. Conclusions Our results suggest that short

  3. Detection of Autoantibodies to Vascular Endothelial Growth Factor Receptor-3 in Bile Duct Ligated Rats and Correlations with a Panel of Traditional Markers of Liver Diseases.

    PubMed

    Duval, Florent; Cruz-Vega, Delia Elva; González-Gamboa, Ivonne; González-Garza, María Teresa; Ponz, Fernando; Sánchez, Flora; Alarcón-Galván, Gabriela; Moreno-Cuevas, Jorge E

    2016-01-01

    There is a need for new noninvasive biomarkers (NIBMs) able to assess cholestasis and fibrosis in chronic cholestatic liver diseases (CCLDs). Tumorigenesis can arise from CCLDs. Therefore, autoantibodies to tumor-associated antigens (TAA) may be early produced in response to abnormal self-antigen expression caused by cholestatic injury. Vascular endothelial growth factor receptor-3 (VEGFR-3) has TAA potential since it is involved in cholangiocytes and lymphatic vessels proliferations during CCLDs. This study aims to detect autoantibodies directed at VEGFR-3 during bile duct ligation- (BDL-) induced cholestatic injury in rat sera and investigate whether they could be associated with traditional markers of liver damage, cholestasis, and fibrosis. An ELISA was performed to detect anti-VEGFR-3 autoantibodies in sera of rats with different degree of liver injury and results were correlated with aminotransferases, total bilirubin, and the relative fibrotic area. Mean absorbances of anti-VEGFR-3 autoantibodies were significantly increased from week one to week five after BDL. The highest correlation was observed with total bilirubin (R (2) = 0.8450, P = 3.04e - 12). In conclusion, anti-VEGFR-3 autoantibodies are early produced during BDL-induced cholestatic injury, and they are closely related to cholestasis, suggesting the potential of anti-VEGFR-3 autoantibodies as NIBMs of cholestasis in CCLDs and justifying the need for further investigations in patients with CCLD. PMID:27212785

  4. Detection of Autoantibodies to Vascular Endothelial Growth Factor Receptor-3 in Bile Duct Ligated Rats and Correlations with a Panel of Traditional Markers of Liver Diseases

    PubMed Central

    Duval, Florent; Cruz-Vega, Delia Elva; González-Gamboa, Ivonne; González-Garza, María Teresa; Ponz, Fernando; Sánchez, Flora; Alarcón-Galván, Gabriela; Moreno-Cuevas, Jorge E.

    2016-01-01

    There is a need for new noninvasive biomarkers (NIBMs) able to assess cholestasis and fibrosis in chronic cholestatic liver diseases (CCLDs). Tumorigenesis can arise from CCLDs. Therefore, autoantibodies to tumor-associated antigens (TAA) may be early produced in response to abnormal self-antigen expression caused by cholestatic injury. Vascular endothelial growth factor receptor-3 (VEGFR-3) has TAA potential since it is involved in cholangiocytes and lymphatic vessels proliferations during CCLDs. This study aims to detect autoantibodies directed at VEGFR-3 during bile duct ligation- (BDL-) induced cholestatic injury in rat sera and investigate whether they could be associated with traditional markers of liver damage, cholestasis, and fibrosis. An ELISA was performed to detect anti-VEGFR-3 autoantibodies in sera of rats with different degree of liver injury and results were correlated with aminotransferases, total bilirubin, and the relative fibrotic area. Mean absorbances of anti-VEGFR-3 autoantibodies were significantly increased from week one to week five after BDL. The highest correlation was observed with total bilirubin (R2 = 0.8450, P = 3.04e − 12). In conclusion, anti-VEGFR-3 autoantibodies are early produced during BDL-induced cholestatic injury, and they are closely related to cholestasis, suggesting the potential of anti-VEGFR-3 autoantibodies as NIBMs of cholestasis in CCLDs and justifying the need for further investigations in patients with CCLD. PMID:27212785

  5. Detection of Autoantibodies to Vascular Endothelial Growth Factor Receptor-3 in Bile Duct Ligated Rats and Correlations with a Panel of Traditional Markers of Liver Diseases.

    PubMed

    Duval, Florent; Cruz-Vega, Delia Elva; González-Gamboa, Ivonne; González-Garza, María Teresa; Ponz, Fernando; Sánchez, Flora; Alarcón-Galván, Gabriela; Moreno-Cuevas, Jorge E

    2016-01-01

    There is a need for new noninvasive biomarkers (NIBMs) able to assess cholestasis and fibrosis in chronic cholestatic liver diseases (CCLDs). Tumorigenesis can arise from CCLDs. Therefore, autoantibodies to tumor-associated antigens (TAA) may be early produced in response to abnormal self-antigen expression caused by cholestatic injury. Vascular endothelial growth factor receptor-3 (VEGFR-3) has TAA potential since it is involved in cholangiocytes and lymphatic vessels proliferations during CCLDs. This study aims to detect autoantibodies directed at VEGFR-3 during bile duct ligation- (BDL-) induced cholestatic injury in rat sera and investigate whether they could be associated with traditional markers of liver damage, cholestasis, and fibrosis. An ELISA was performed to detect anti-VEGFR-3 autoantibodies in sera of rats with different degree of liver injury and results were correlated with aminotransferases, total bilirubin, and the relative fibrotic area. Mean absorbances of anti-VEGFR-3 autoantibodies were significantly increased from week one to week five after BDL. The highest correlation was observed with total bilirubin (R (2) = 0.8450, P = 3.04e - 12). In conclusion, anti-VEGFR-3 autoantibodies are early produced during BDL-induced cholestatic injury, and they are closely related to cholestasis, suggesting the potential of anti-VEGFR-3 autoantibodies as NIBMs of cholestasis in CCLDs and justifying the need for further investigations in patients with CCLD.

  6. Interdependencies among Selected Pro-Inflammatory Markers of Endothelial Dysfunction, C-Peptide, Anti-Inflammatory Interleukin-10 and Glucose Metabolism Disturbance in Obese Women

    PubMed Central

    Janowska, Joanna; Chudek, Jerzy; Olszanecka-Glinianowicz, Magdalena; Semik-Grabarczyk, Elżbieta; Zahorska-Markiewicz, Barbara

    2016-01-01

    Background: Currently increasing importance is attributed to the inflammatory process as a crucial factor responsible for the progressive damage to vascular walls and progression of atherosclerosis in obese people. We have studied the relationship between clinical and biochemical parameters and C-peptide and anti-inflammatory IL-10, as well as selected markers of inflammation and endothelial dysfunction such as: CCL2, CRP, sICAM-1, sVCAM-1 and E-selectin in obese women with various degree of glucose metabolism disturbance. Material and methods: The studied group consisted of 61 obese women, and 20 normal weight, healthy volunteers. Obese patients were spited in subgroups based on the degree of glucose metabolism disorder. Serum samples were analyzed using ELISA kits. Results: Increased concentrations of sICAM-1, sVCAM-1, E-selectin, CCL2 and CRP were found in all obese groups compared to the normal weight subjects. In patients with Type 2 diabetes mellitus (T2DM) parameters characterizing the degree of obesity significantly positively correlated with levels of CRP and CCL2. Significant relationships were found between levels of glucose and sICAM-1and also E-selectin and HOMA-IR. C-peptide levels are positively associated with CCL2, E-selectin, triglycerides levels, and inversely with IL-10 levels in newly diagnosed T2DM group (p<0.05). Concentrations of IL-10 correlated negatively with E-selectin, CCL2, C-peptide levels, and HOMA-IR in T2DM group (p<0.05). Conclusion: Disturbed lipid and carbohydrate metabolism are manifested by enhanced inflammation and endothelial dysfunction in patients with simply obesity. These disturbances are associates with an increase of adhesion molecules. The results suggest the probable active participation of higher concentrations of C-peptide in the intensification of inflammatory and atherogenic processes in obese patients with type 2 diabetes. In patients with obesity and type 2 diabetes, altered serum concentrations of Il-10 seems

  7. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains.

    PubMed

    Shiina, Satoshi; Ohno, Masasuke; Ohka, Fumiharu; Kuramitsu, Shunichiro; Yamamichi, Akane; Kato, Akira; Motomura, Kazuya; Tanahashi, Kuniaki; Yamamoto, Takashi; Watanabe, Reiko; Ito, Ichiro; Senga, Takeshi; Hamaguchi, Michinari; Wakabayashi, Toshihiko; Kaneko, Mika K; Kato, Yukinari; Chandramohan, Vidyalakshmi; Bigner, Darell D; Natsume, Atsushi

    2016-03-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in adults with a 5-year overall survival rate of less than 10%. Podoplanin (PDPN) is a type I transmembrane mucin-like glycoprotein, expressed in the lymphatic endothelium. Several solid tumors overexpress PDPN, including the mesenchymal type of GBM, which has been reported to present the worst prognosis among GBM subtypes. Chimeric antigen receptor (CAR)-transduced T cells can recognize predefined tumor surface antigens independent of MHC restriction, which is often downregulated in gliomas. We constructed a lentiviral vector expressing a third-generation CAR comprising a PDPN-specific antibody (NZ-1-based single-chain variable fragment) with CD28, 4-1BB, and CD3ζ intracellular domains. CAR-transduced peripheral blood monocytes were immunologically evaluated by calcein-mediated cytotoxic assay, ELISA, tumor size, and overall survival. The generated CAR T cells were specific and effective against PDPN-positive GBM cells in vitro. Systemic injection of the CAR T cells into an immunodeficient mouse model inhibited the growth of intracranial glioma xenografts in vivo. CAR T-cell therapy that targets PDPN would be a promising adoptive immunotherapy to treat mesenchymal GBM.

  8. Isolation and Characterization of Human Lung Lymphatic Endothelial Cells.

    PubMed

    Lorusso, Bruno; Falco, Angela; Madeddu, Denise; Frati, Caterina; Cavalli, Stefano; Graiani, Gallia; Gervasi, Andrea; Rinaldi, Laura; Lagrasta, Costanza; Maselli, Davide; Gnetti, Letizia; Silini, Enrico M; Quaini, Eugenio; Ampollini, Luca; Carbognani, Paolo; Quaini, Federico

    2015-01-01

    Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy. PMID:26137493

  9. Isolation and Characterization of Human Lung Lymphatic Endothelial Cells

    PubMed Central

    Lorusso, Bruno; Falco, Angela; Madeddu, Denise; Frati, Caterina; Cavalli, Stefano; Graiani, Gallia; Gervasi, Andrea; Rinaldi, Laura; Lagrasta, Costanza; Maselli, Davide; Gnetti, Letizia; Silini, Enrico M.; Quaini, Eugenio; Ampollini, Luca; Carbognani, Paolo; Quaini, Federico

    2015-01-01

    Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy. PMID:26137493

  10. Endothelium injury and inflammatory state during abdominal aortic aneurysm surgery: scrutinizing the very early and minute injurious effects using endothelial markers – a pilot study

    PubMed Central

    Biolik, Grzegorz; Ziaja, Damian; Fojt, Tadeusz; Cisak, Kamila; Antoniak, Katarzyna; Pawlicki, Krzysztof; Ziaja, Krzysztof; Duława, Jan

    2013-01-01

    Introduction One of the most severe complications of repair surgery for abdominal aortic aneurysms (AAA) is acute kidney injury (AKI). Acute kidney injury is an inflammatory process whose pathogenesis involves endothelial cells (EC). The aim of this study was to assess the dynamics of endothelium injury markers measured during elective AAA surgery which might confirm the inflammatory character of AKI. Material and methods The study group consisted of 14 patients with AAA. We measured plasma soluble forms of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, P-selectin as well as the levels of von Willebrand factor (vWF) before, during (including intra-abdominal vein levels before and after aortic clamp removal) and within 2 days after surgery. Results We have found a biphasic response of ICAM-1, VCAM-1 and P-selectin with an initial fall and subsequent rise. However, only VCAM-1 changes were significant compared to its baseline value. The maximum decrease of VCAM-1 was observed in the renal vein 5 min after aortic clamp removal (335.42 ±129.63 ng/ml vs. 488.90 ±169.80 ng/ml baseline value, p < 0.05), and the highest rise 48 h after aortic clamp removal (721.46 ±333.99 vs. baseline, p < 0.05). Conclusions Vascular cell adhesion molecule-1 turned out to be the most sensitive indicator of EC injury and inflammatory status after AAA surgery. During AAA surgery, soluble forms of P-selectin, ICAM-1 and VCAM-1 demonstrate a biphasic response with an initial fall and subsequent rise. These soluble forms could have a modulatory effect on the development of inflammation. PMID:23847670

  11. Adolescents with classical polycystic ovary syndrome have alterations in the surrogate markers of cardiovascular disease but not in the endothelial function. The possible benefits of metformin

    PubMed Central

    Fruzzetti, F.; Ghiadoni, L.; Virdis, A.; De Negri, F.; Perini, D.; Bucci, F.; Giannarelli, C.; Gadducci, A.; Taddei, S.

    2016-01-01

    Study Objective To study whether adolescents with the classical form of polycystic ovary syndrome have alterations in metabolic and vascular structure and function. The effect of metformin was evaluated. Design Controlled study Setting University outpatient clinic Participants Eighteen PCOS non obese adolescents were enrolled. Seventeen healthy age-matched adolescents were recruited as controls. Interventions The metabolic profile and the endothelial structure and function were evaluated. Main Outcome Measure(s) Hormonal and lipid profile, blood pressure (BP) measurement, fasting glucose and insulin levels, C-reactive protein (CRP), homocysteine, tissue-type plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1) and plasmin-antiplasmin complexes (PAP) were measured. Flow mediated dilation (FMD), central pulse wave velocity (PWV), radial artery pulse wave (AIx) and common carotid intima-media thickness (IMT) were also assessed. PCOS girls were also studied 6 months after treatment with metformin (850 mg bid). Results PCOS adolescents were insulin resistant and/or hyperinsulinemic and they had higher BP values and levels of CRP and PAI-1 than the controls. The levels of t-PA and PAP were similar in both groups. FMD, PWV and IMT were also similar. Metformin significantly (p<0.05) reduced insulin, BP, CRP and PAI-1 levels. The PAP levels significantly (p<0.05) increased. Radial AIx was significantly reduced after metformin. No modifications in FMD, PWV and IMT were observed. Conclusions Adolescents with classical PCOS have alterations in some surrogate markers of cardiovascular risk and they are ameliorated by metformin. No deterioration of vascular structure and function has been detected, probably due to the short duration of exposure to the disease. PMID:27018756

  12. Definition of a serum marker panel for glioblastoma discrimination and identification of Interleukin 1β in the microglial secretome as a novel mediator of endothelial cell survival induced by C-reactive protein.

    PubMed

    Nijaguna, Mamatha B; Schröder, Christoph; Patil, Vikas; Shwetha, Shivayogi D; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Santosh, Vani; Hoheisel, Jörg D; Somasundaram, Kumaravel

    2015-10-14

    Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n=27) and GBM (n=28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p<0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-FcγRIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1β (IL1β) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1β neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1β which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma

  13. An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells

    PubMed Central

    Kang, Jinjoo; Yoo, Jaehyuk; Lee, Sunju; Tang, Wanli; Aguilar, Berenice; Ramu, Swapnika; Choi, Inho; Otu, Hasan H.; Shin, Jay W.; Dotto, G. Paolo; Koh, Chester J.; Detmar, Michael

    2010-01-01

    Arteriovenous-lymphatic endothelial cell fates are specified by the master regulators, namely, Notch, COUP-TFII, and Prox1. Whereas Notch is expressed in the arteries and COUP-TFII in the veins, the lymphatics express all 3 cell fate regulators. Previous studies show that lymphatic endothelial cell (LEC) fate is highly plastic and reversible, raising a new concept that all 3 endothelial cell fates may coreside in LECs and a subtle alteration can result in a reprogramming of LEC fate. We provide a molecular basis verifying this concept by identifying a cross-control mechanism among these cell fate regulators. We found that Notch signal down-regulates Prox1 and COUP-TFII through Hey1 and Hey2 and that activated Notch receptor suppresses the lymphatic phenotypes and induces the arterial cell fate. On the contrary, Prox1 and COUP-TFII attenuate vascular endothelial growth factor signaling, known to induce Notch, by repressing vascular endothelial growth factor receptor-2 and neuropilin-1. We show that previously reported podoplanin-based LEC heterogeneity is associated with differential expression of Notch1 in human cutaneous lymphatics. We propose that the expression of the 3 cell fate regulators is controlled by an exquisite feedback mechanism working in LECs and that LEC fate is a consequence of the Prox1-directed lymphatic equilibrium among the cell fate regulators. PMID:20351309

  14. Angiomodulin, a marker of cancer vasculature, is upregulated by vascular endothelial growth factor and increases vascular permeability as a ligand of integrin αvβ3

    PubMed Central

    Komiya, Eriko; Sato, Hiroki; Watanabe, Naoko; Ise, Marii; Higashi, Shouichi; Miyagi, Yohei; Miyazaki, Kaoru

    2014-01-01

    Angiomodulin (AGM) is a member of insulin-like growth factor binding protein (IGFBP) superfamily and often called IGFBP-rP1 or IGFBP-7. AGM was originally identified as a tumor-derived cell adhesion factor, which was highly accumulated in blood vessels of human cancer tissues. AGM is also overexpressed in cancer-associated fibroblasts (CAFs) and activates fibroblasts. However, some studies have shown tumor-suppressing activity of AGM. To understand the roles of AGM in cancer progression, we here investigated the expression of AGM in benign and invasive breast cancers and its functions in cancer vasculature. Immunohistochemical analysis showed that AGM was highly expressed in cancer vasculature even in ductal carcinoma in situ (DCIS) as compared to normal vasculature, while its expression in CAFs was more prominent in invasive carcinomas than DCIS. In vitro analyses showed that AGM was strongly induced by vascular endothelial cell growth factor (VEGF) in vascular endothelial cells. Although AGM stimulated neither the growth nor migration of endothelial cells, it supported efficient adhesion of endothelial cells. Integrin αvβ3 was identified as a novel major receptor for AGM in vascular endothelial cells. AGM retracted endothelial cells by inducing actin stress fibers and loosened their VE-cadherin-mediated intercellular junction. Consequently, AGM increased vascular permeability both in vitro and in vivo. Furthermore, AGM and integrin αvβ3 were highly expressed and colocalized in cancer vasculature. These results suggest that AGM cooperates with VEGF to induce the aberrant functions of cancer vasculature as a ligand of integrin αvβ3. PMID:24737780

  15. Human antibodies targeting the C-type lectin-like domain of the tumor endothelial cell marker clec14a regulate angiogenic properties in vitro

    PubMed Central

    Ki, M K; Jeoung, M H; Choi, J R; Rho, S-S; Kwon, Y-G; Shim, H; Chung, J; Hong, H J; Song, B D; Lee, S

    2013-01-01

    It has been suggested that clec14a may be involved in tumor angiogenesis. However, a molecular mechanism has not been clearly identified. In this study, we show for the first time that C-type lectin-like domain (CTLD) of clec14a may be important for regulating cell migration and filopodia formation. Using phage display technology, recombinant human antibodies specific to the CTLDs of human and mouse clec14a (clec14a-CTLD (immunoglobulin G) IgG) were selected. Functional assays using the antibodies showed that clec14a-CTLD IgGs specifically blocked endothelial cell migration and tube formation without affecting cell viability or activation. Further, clec14a-CTLD IgGs inhibited clec14a-mediated cell–cell contact by blocking interaction between CTLDs. Finally, clec14a cross-linking by the clec14a-CTLD IgGs significantly downregulated clec14a expression on the surface of endothelial cells. These results strongly suggest that the clec14a-CTLD may be a key domain in angiogenesis, and that clec14a-CTLD IgGs specifically inhibit angiogenesis by modulating CTLD-mediated cell interactions and clec14a expression on the surface of endothelial cells. PMID:23644659

  16. Effect of a special carbohydrate-protein bar and tomato juice supplementation on oxidative stress markers and vascular endothelial dynamics in ultra-marathon runners.

    PubMed

    Samaras, Antonios; Tsarouhas, Konstantinos; Paschalidis, Eleftherios; Giamouzis, Grigorios; Triposkiadis, Filippos; Tsitsimpikou, Christina; Becker, Aphrodite Tousia; Goutzourelas, Nikolaos; Kouretas, Demetrios

    2014-07-01

    It is well established that exercise induces excessive production of reactive species leading to oxidative stress, which has been implicated in oxidative damage of macromolecules, immune dysfunction, muscle damage and fatigue. The present study examined the effect of supplementation of ultra-marathon runners for a two-months-period with a special whey protein bar containing carbohydrates and protein in a specific ratio (1:1) (N=16), prepared using as starting material the by-products of cheese manufacturing, and supplementation with commercially available tomato juice (N=15). Thiobarbituric-acid reactive substances and protein carbonyls were significantly decreased in both supplementation groups, while a pronounced increased in reduced glutathione was observed in the protein bar group. Total anti-oxidant activity remained unchanged in both groups. Flow-mediated dilatation, used as an estimate of endothelial function, was increased in both groups, with a significant rise observed only in the tomato juice administration group. In conclusion, supplementation of ultra marathon runners for a two-months-period with a special protein bar and tomato juice significantly improved the oxidative status of the subjects, while tomato juice also improved vascular endothelial function in these athletes.

  17. Vascular Endothelial Growth Factor Gene Polymorphism (rs2010963) and Its Receptor, Kinase Insert Domain-Containing Receptor Gene Polymorphism (rs2071559), and Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Merlo, Sebastjan; Starčević, Jovana Nikolajević; Mankoč, Sara; Šantl Letonja, Marija; Cokan Vujkovac, Andreja; Zorc, Marjeta; Petrovič, Daniel

    2016-01-01

    Background. The current study was designed to reveal possible associations between the polymorphisms of the vascular endothelial growth factor (VEGF) gene (rs2010963) and its receptor, kinase insert domain-containing receptor (KDR) gene polymorphism (rs2071559), and markers of carotid atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Patients and Methods. 595 T2DM subjects and 200 control subjects were enrolled. The carotid intima-media thickness (CIMT) and plaque characteristics (presence and structure) were assessed ultrasonographically. Biochemical analyses were performed using standard biochemical methods. Genotyping of VEGF/KDR polymorphisms (rs2010963, rs2071559) was performed using KASPar assays. Results. Genotype distributions and allele frequencies of the VEGF/KDR polymorphisms (rs2010963, rs2071559) were not statistically significantly different between diabetic patients and controls. In our study, we demonstrated an association between the rs2071559 of KDR and either CIMT or the sum of plaque thickness in subjects with T2DM. We did not, however, demonstrate any association between the tested polymorphism of VEGF (rs2010963) and either CIMT, the sum of plaque thickness, the number of involved segments, hsCRP, the presence of carotid plaques, or the presence of unstable carotid plaques. Conclusions. In the present study, we demonstrated minor effect of the rs2071559 of KDR on markers of carotid atherosclerosis in subjects with T2DM. PMID:26881237

  18. Vascular Endothelial Growth Factor Gene Polymorphism (rs2010963) and Its Receptor, Kinase Insert Domain-Containing Receptor Gene Polymorphism (rs2071559), and Markers of Carotid Atherosclerosis in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Merlo, Sebastjan; Starčević, Jovana Nikolajević; Mankoč, Sara; Šantl Letonja, Marija; Cokan Vujkovac, Andreja; Zorc, Marjeta; Petrovič, Daniel

    2016-01-01

    Background. The current study was designed to reveal possible associations between the polymorphisms of the vascular endothelial growth factor (VEGF) gene (rs2010963) and its receptor, kinase insert domain-containing receptor (KDR) gene polymorphism (rs2071559), and markers of carotid atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Patients and Methods. 595 T2DM subjects and 200 control subjects were enrolled. The carotid intima-media thickness (CIMT) and plaque characteristics (presence and structure) were assessed ultrasonographically. Biochemical analyses were performed using standard biochemical methods. Genotyping of VEGF/KDR polymorphisms (rs2010963, rs2071559) was performed using KASPar assays. Results. Genotype distributions and allele frequencies of the VEGF/KDR polymorphisms (rs2010963, rs2071559) were not statistically significantly different between diabetic patients and controls. In our study, we demonstrated an association between the rs2071559 of KDR and either CIMT or the sum of plaque thickness in subjects with T2DM. We did not, however, demonstrate any association between the tested polymorphism of VEGF (rs2010963) and either CIMT, the sum of plaque thickness, the number of involved segments, hsCRP, the presence of carotid plaques, or the presence of unstable carotid plaques. Conclusions. In the present study, we demonstrated minor effect of the rs2071559 of KDR on markers of carotid atherosclerosis in subjects with T2DM.

  19. PKA and CDK5 can phosphorylate specific serines on the intracellular domain of podoplanin (PDPN) to inhibit cell motility.

    PubMed

    Krishnan, Harini; Retzbach, Edward P; Ramirez, Maria I; Liu, Tong; Li, Hong; Miller, W Todd; Goldberg, Gary S

    2015-07-01

    Podoplanin (PDPN) is a transmembrane glycoprotein that promotes tumor cell migration, invasion, and cancer metastasis. In fact, PDPN expression is induced in many types of cancer. Thus, PDPN has emerged as a functionally relevant cancer biomarker and chemotherapeutic target. PDPN contains 2 intracellular serine residues that are conserved between species ranging from mouse to humans. Recent studies indicate that protein kinase A (PKA) can phosphorylate PDPN in order to inhibit cell migration. However, the number and identification of specific residues phosphorylated by PKA have not been defined. In addition, roles of other kinases that may phosphorylate PDPN to control cell migration have not been investigated. We report here that cyclin dependent kinase 5 (CDK5) can phosphorylate PDPN in addition to PKA. Moreover, results from this study indicate that PKA and CDK5 cooperate to phosphorylate PDPN on both intracellular serine residues to decrease cell motility. These results provide new insight into PDPN phosphorylation dynamics and the role of PDPN in cell motility. Understanding novel mechanisms of PDPN intracellular signaling could assist with designing novel targeted chemotherapeutic agents and procedures. PMID:25959509

  20. Antibody and lectin target podoplanin to inhibit oral squamous carcinoma cell migration and viability by distinct mechanisms

    PubMed Central

    Ochoa-Alvarez, Jhon A.; Krishnan, Harini; Pastorino, John G.; Nevel, Evan; Kephart, David; Lee, Joseph J.; Retzbach, Edward P.; Shen, Yongquan; Fatahzadeh, Mahnaz; Baredes, Soly; Kalyoussef, Evelyne; Honma, Masaru; Adelson, Martin E.; Kaneko, Mika K.; Kato, Yukinari; Young, Mary Ann; Deluca-Rapone, Lisa; Shienbaum, Alan J.; Yin, Kingsley; Jensen, Lasse D.; Goldberg, Gary S.

    2015-01-01

    Podoplanin (PDPN) is a unique transmembrane receptor that promotes tumor cell motility. Indeed, PDPN may serve as a chemotherapeutic target for primary and metastatic cancer cells, particularly oral squamous cell carcinoma (OSCC) cells that cause most oral cancers. Here, we studied how a monoclonal antibody (NZ-1) and lectin (MASL) that target PDPN affect human OSCC cell motility and viability. Both reagents inhibited the migration of PDPN expressing OSCC cells at nanomolar concentrations before inhibiting cell viability at micromolar concentrations. In addition, both reagents induced mitochondrial membrane permeability transition to kill OSCC cells that express PDPN by caspase independent nonapoptotic necrosis. Furthermore, MASL displayed a surprisingly robust ability to target PDPN on OSCC cells within minutes of exposure, and significantly inhibited human OSCC dissemination in zebrafish embryos. Moreover, we report that human OSCC cells formed tumors that expressed PDPN in mice, and induced PDPN expression in infiltrating host murine cancer associated fibroblasts. Taken together, these data suggest that antibodies and lectins may be utilized to combat OSCC and other cancers that express PDPN. PMID:25826087

  1. Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified by Podoplanin, to Inhibit Transformed Cell Growth and Migration

    PubMed Central

    Shen, Yongquan; Acharya, Nimish K.; Han, Min; McNulty, Dean E.; Hasegawa, Hitoki; Hyodo, Toshinori; Senga, Takeshi; Geng, Jian-Guo; Kosciuk, Mary; Shin, Seung S.; Goydos, James S.; Temiakov, Dmitry; Nagele, Robert G.; Goldberg, Gary S.

    2012-01-01

    Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth. PMID:22844530

  2. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults.

    PubMed

    Sawyer, Brandon J; Tucker, Wesley J; Bhammar, Dharini M; Ryder, Justin R; Sweazea, Karen L; Gaesser, Glenn A

    2016-07-01

    We hypothesized that high-intensity interval training (HIIT) would be more effective than moderate-intensity continuous training (MICT) at improving endothelial function and maximum oxygen uptake (V̇o2 max) in obese adults. Eighteen participants [35.1 ± 8.1 (SD) yr; body mass index = 36.0 ± 5.0 kg/m(2)] were randomized to 8 wk (3 sessions/wk) of either HIIT [10 × 1 min, 90-95% maximum heart rate (HRmax), 1-min active recovery] or MICT (30 min, 70-75% HRmax). Brachial artery flow-mediated dilation (FMD) increased after HIIT (5.13 ± 2.80% vs. 8.98 ± 2.86%, P = 0.02) but not after MICT (5.23 ± 2.82% vs. 3.05 ± 2.76%, P = 0.16). Resting artery diameter increased after MICT (3.68 ± 0.58 mm vs. 3.86 ± 0.58 mm, P = 0.02) but not after HIIT (4.04 ± 0.70 mm vs. 4.09 ± 0.70 mm; P = 0.63). There was a significant (P = 0.02) group × time interaction in low flow-mediated constriction (L-FMC) between MICT (0.63 ± 2.00% vs. -2.79 ± 3.20%; P = 0.03) and HIIT (-1.04 ± 4.09% vs. 1.74 ± 3.46%; P = 0.29). V̇o2 max increased (P < 0.01) similarly after HIIT (2.19 ± 0.65 l/min vs. 2.64 ± 0.88 l/min) and MICT (2.24 ± 0.48 l/min vs. 2.55 ± 0.61 l/min). Biomarkers of cardiovascular risk and endothelial function were unchanged. HIIT and MICT produced different vascular adaptations in obese adults, with HIIT improving FMD and MICT increasing resting artery diameter and enhancing L-FMC. HIIT required 27.5% less total exercise time and ∼25% less energy expenditure than MICT. PMID:27255523

  3. Endothelial Lessons.

    PubMed

    Vanhoutte, Paul M

    2016-01-01

    This essay focuses on nine important lessons learned during more than thirty years of endothelial research. They include: the danger of hiding behind a word, the confusion generated by abbreviations, the need to define the physiological role of the response studied, the local role of endothelium- dependent responses, the strength of pharmacological analyses, endothelial dysfunction as consequence and cause of disease, the importance of rigorous protocols, the primacy of in vivo studies and the importance of serendipity. PMID:26638800

  4. A potent oral P-selectin blocking agent improves microcirculatory blood flow and a marker of endothelial cell injury in patients with sickle cell disease.

    PubMed

    Kutlar, Abdullah; Ataga, Kenneth I; McMahon, Lillian; Howard, Joanna; Galacteros, Frederic; Hagar, Ward; Vichinsky, Elliott; Cheung, Anthony T W; Matsui, Neil; Embury, Stephen H

    2012-05-01

    Abnormal blood flow accounts for most of the clinical morbidity of sickle cell disease (SCD) [1,2]. Most notably, occlusion of flow in the microvasculature causes the acute pain crises [3] that are the commonest cause for patients with SCD to seek medical attention [4] and major determinants of their quality of life [5]. Based on evidence that endothelial P-selectin is central to the abnormal blood flow in SCD we provide results from four of our studies that are germane to microvascular blood flow in SCD. A proof-of-principle study established that doses of heparin lower than what are used for anticoagulation but sufficient to block P-selectin improved microvascular blood flow inpatients with SCD. An in vitro study showed that Pentosan Polysulfate Sodium (PPS) had greater P-selectin blocking activity than heparin. A Phase I clinical study demonstrated that a single oral dose of PPS increased microvascular blood flow in patients with SCD. A Phase II clinical study that was not completed documented that daily oral doses of PPS administered for 8 weeks lowered plasma levels of sVCAM-1 and tended to improve microvascular blood flow in patients with SCD. These data support the concept that P-selectin on the microvascular endothelium is critical to both acute vascular occlusion and chronically impaired microvascular blood flow in SCD. They also demonstrate that oral PPS is beneficial to microvascular sickle cell blood flow and has potential as an efficacious agent for long-term prophylactic therapy of SCD.

  5. Evaluation of Vascular Endothelial Growth Factor as a Prognostic Marker for Local Relapse in Early-Stage Breast Cancer Patients Treated With Breast-Conserving Therapy

    SciTech Connect

    Moran, Meena S.; Yang Qifeng; Goyal, Sharad; Harris, Lyndsay; Chung, Gina; Haffty, Bruce G.

    2011-12-01

    Purpose: Vascular endothelial growth factor (VEGF) is an important protein involved in the process of angiogenesis that has been found to correlate with relapse-free and overall survival in breast cancer, predominantly in locally advanced and metastatic disease. A paucity of data is available on the prognostic implications of VEGF in early-stage breast cancer; specifically, its prognostic value for local relapse after breast-conserving therapy (BCT) is largely unknown. The purpose of our study was to assess VEGF expression in a cohort of early-stage breast cancer patients treated with BCT and to correlate the clinical and pathologic features and outcomes with overexpression of VEGF. Methods and Materials: After obtaining institutional review board approval, the paraffin specimens of 368 patients with early-stage breast cancer treated with BCT between 1975 and 2005 were constructed into tissue microarrays with twofold redundancy. The tissue microarrays were stained for VEGF and read by a trained pathologist, who was unaware of the clinical details, as positive or negative according the standard guidelines. The clinical and pathologic data, long-term outcomes, and results of VEGF staining were analyzed. Results: The median follow-up for the entire cohort was 6.5 years. VEGF expression was positive in 56 (15%) of the 368 patients. Although VEGF expression did not correlate with age at diagnosis, tumor size, nodal status, histologic type, family history, estrogen receptor/progesterone receptor status, or HER-2 status, a trend was seen toward increased VEGF expression in the black cohort (26% black vs. 13% white, p = .068). Within the margin-negative cohort, VEGF did not predict for local relapse-free survival (RFS) (96% vs. 95%), nodal RFS (100% vs. 100%), distant metastasis-free survival (91% vs. 92%), overall survival (92% vs. 97%), respectively (all p >.05). Subset analysis revealed that VEGF was highly predictive of local RFS in node-positive, margin

  6. Markers for the lymphatic endothelium: in search of the holy grail?

    PubMed

    Sleeman, J P; Krishnan, J; Kirkin, V; Baumann, P

    2001-10-15

    The ability to discriminate reliably at the histological level between blood and lymphatic microcapillaries would greatly assist the study of a number of biological and pathological questions and may also be of clinical utility. A structure-function comparison of these types of microcapillary suggests that differences which could function as markers to allow discrimination between blood and lymphatic endothelium should exist. Indeed, to date a variety of such markers have been proposed, including basement membrane components, constituents of junctional complexes such as desmoplakin and enzymes such as 5'-nucleotidase. Additionally, a variety of cell surface molecules are thought to be differentially expressed, including PAL-E, VEGFR-3, podoplanin, and LYVE-1. Several of the lymphatic markers proposed in the literature require further characterization to demonstrate fully their lymphatic specificity and some have proven not to be reliable. The relative merits and drawbacks of each of the proposed markers is discussed. PMID:11596151

  7. Immunohistochemical study of the lymphatic vessels in major salivary glands of the rat.

    PubMed

    Aiyama, Shigeo; Kikuchi, Kenichiro; Takada, Kiyomi; Ikeda, Rie; Sato, Sumie; Kuroki, Jyunya

    2011-02-01

    This study was designed to examine whether lymphatic vessels are present in the lobules of major salivary glands in the rat. Immunostaining with an antibody against podoplanin, a lymphatic endothelial cell marker, was performed on sections of the submandibular, sublingual and parotid glands. Light microscopy demonstrated podoplanin-positive lymphatic vessels around the interlobular ducts and the interlobular arteries and veins in the interlobular connective tissue in all of the major salivary glands. No podoplanin-positive lymphatic vessels were found in the lobules. Electron microscopy also demonstrated lymphatic endothelial cells showing podoplanin expression only in the interlobular connective tissue. These findings suggest that the lymphatic system of the rat major salivary glands originates in the interlobular connective tissue, and not in the lobules.

  8. Prognostic value of immunohistochemical markers in malignant thymic epithelial tumors

    PubMed Central

    Leisibach, Priska; Schneiter, Didier; Soltermann, Alex; Yamada, Yoshi; Weder, Walter

    2016-01-01

    Background Thymic epithelial tumors (TET) are rare neoplasms with inconsistent treatment strategies. When researching for molecular pathways to find new therapies, the correlation between specific molecular markers and outcome has only rarely been investigated. The aim of this study was to investigate the correlation between survival, metastatic potential and invasiveness of aggressive subtypes of TET and immunohistochemical markers. Methods Overall survival (OS), disease-free survival (DFS), progression-free survival (PFS) and metastasis-free survival (MFS) of patients with WHO type B2/B3 mixed type thymoma (MT), thymoma type B3 (B3) and thymic carcinoma (TC), undergoing surgery [1998–2013] were determined. Tumor specimens were stained using a tissue microarray (TMA) (CD117, CD5, p63, p40, p21, p27, p53, Bcl-2, Ki67, podoplanin, synaptophysin, PTEN and Pax8). Invasive behavior of primary tumors and the presence of extrathoracic metastases were assessed. Results We found in 23 patients included into this study (four MT, ten B3, nine TC) that (I) p21 expression in the cytoplasm significantly correlated with a decrease of OS (P=0.016), PFS (P=0.034) and MFS (P=0.005); (II) MFS was significantly shorter when the combination of p21-low p27-low p53-high was present (P=0.029); and (III) nuclear p27 (P=0.042), Ki-67 (P=0.024) and podoplanin (P=0.05) expression correlated with the presence of extrathoracic metastases. Conclusions The main finding of this study is that cytoplasmic p21 expression negatively influences the outcome of malignant TETs and correlates with metastatic activity. Additionally, selected immunohistochemical markers correlate with the distant metastatic potential of TETs. These results may contribute to the stratification of diagnosis and improvement of treatment strategies for thymic malignancies. PMID:27747012

  9. Establishment of outgrowth endothelial cells from peripheral blood.

    PubMed

    Martin-Ramirez, Javier; Hofman, Menno; van den Biggelaar, Maartje; Hebbel, Robert P; Voorberg, Jan

    2012-09-01

    Blood outgrowth endothelial cells (BOECs) are important tools when investigating diagnostic and therapeutic approaches for vascular disease. In this protocol, mononuclear cells are isolated from peripheral blood and plated on type I collagen at ∼135,000 cells per cm(2) in endothelial cell differentiation medium. On average, 0.34 colonies of endothelial cells per milliliter of blood can be obtained. Colonies of endothelial cells become visible after 14-28 d. Upon confluence, these rapidly expanding colonies can be passaged and have been shown to propagate up to 10(18)-fold. Isolated BOECs are phenotypically similar to vascular endothelial cells, as revealed by their cobblestone morphology, the presence of endothelial cell-specific Weibel-Palade bodies and the expression of endothelial cell markers such as VE-cadherin. The protocol presented here also provides a particularly useful tool for the ex vivo assessment of endothelial cell function from patients with different vascular abnormalities. PMID:22918388

  10. Circulating endothelial cells: a new biomarker of endothelial dysfunction in hematological diseases.

    PubMed

    Gendron, Nicolas; Smadja, David M

    2016-08-01

    The endothelium and its integrity are in the center of numerous cardiovascular, pulmonary and tumoral diseases. Several studies identified different circulating cellular sub-populations, which allow a noninvasive exploration of endothelial dysfunction. Furthermore, angiogenesis plays a major role in the biology of benign and malignant hematologic diseases. Among these biomarkers, circulating endothelial cells could be considered as a marker of endothelial injury and/or endothelial activation as well as vascular remodeling, whereas circulating endothelial progenitor cells would be only involved in the vascular regeneration. In the future, the quantification of circulating endothelial cells in many diseases could be a noninvasive biomarker used in diagnosis, prognostic and therapeutic follow-up of lung vasculopathy and/or residual disease of hematological malignancies.

  11. Endothelial Dysfunction in Type 2 Diabetes Mellitus.

    PubMed

    Dhananjayan, R; Koundinya, K S Srivani; Malati, T; Kutala, Vijay Kumar

    2016-10-01

    Endothelial dysfunction is an imbalance in the production of vasodilator factors and when this balance is disrupted, it predisposes the vasculature towards pro-thrombotic and pro-atherogenic effects. This results in vasoconstriction, leukocyte adherence, platelet activation, mitogenesis, pro-oxidation, impaired coagulation and nitric oxide production, vascular inflammation, atherosclerosis and thrombosis. Endothelial dysfunction is focussed as it is a potential contributor to the pathogenesis of vascular disease in diabetes mellitus. Under physiological conditions, there is a balanced release of endothelial-derived relaxing and contracting factors, but this delicate balance is altered in diabetes mellitus and atherosclerosis, thereby contributing to further progression of vascular and end-organ damage. This review focuses on endothelial dysfunction in atherosclerosis, insulin resistance, metabolic syndrome, oxidative stress associated with diabetes mellitus, markers and genetics that are implicated in endothelial dysfunction.

  12. Endothelial Dysfunction in Type 2 Diabetes Mellitus.

    PubMed

    Dhananjayan, R; Koundinya, K S Srivani; Malati, T; Kutala, Vijay Kumar

    2016-10-01

    Endothelial dysfunction is an imbalance in the production of vasodilator factors and when this balance is disrupted, it predisposes the vasculature towards pro-thrombotic and pro-atherogenic effects. This results in vasoconstriction, leukocyte adherence, platelet activation, mitogenesis, pro-oxidation, impaired coagulation and nitric oxide production, vascular inflammation, atherosclerosis and thrombosis. Endothelial dysfunction is focussed as it is a potential contributor to the pathogenesis of vascular disease in diabetes mellitus. Under physiological conditions, there is a balanced release of endothelial-derived relaxing and contracting factors, but this delicate balance is altered in diabetes mellitus and atherosclerosis, thereby contributing to further progression of vascular and end-organ damage. This review focuses on endothelial dysfunction in atherosclerosis, insulin resistance, metabolic syndrome, oxidative stress associated with diabetes mellitus, markers and genetics that are implicated in endothelial dysfunction. PMID:27605734

  13. Circulating and tissue resident endothelial progenitor cells.

    PubMed

    Basile, David P; Yoder, Mervin C

    2014-01-01

    Progenitor cells for the endothelial lineage have been widely investigated for more than a decade, but continue to be controversial since no unique identifying marker has yet been identified. This review will begin with a discussion of the basic tenets originally proposed for proof that a cell displays properties of an endothelial progenitor cell. We then provide an overview of the methods for putative endothelial progenitor cell derivation, expansion, and enumeration. This discussion includes consideration of cells that are present in the circulation as well as cells resident in the vascular endothelial intima. Finally, we provide some suggested changes in nomenclature that would greatly clarify and demystify the cellular elements involved in vascular repair.

  14. Dermal stem cells can differentiate down an endothelial lineage.

    PubMed

    Bell, Emma; Richardson, Gavin D; Jahoda, Colin A; Gledhill, Karl; Phillips, Helen M; Henderson, Deborah; Owens, W Andrew; Hole, Nicholas

    2012-11-01

    In this study, we have demonstrated that cells of neural crest origin located in the dermal papilla (DP) exhibit endothelial marker expression and a functional activity. When grown in endothelial growth media, DP primary cultures upregulate expression of vascular endothelial growth factor receptor 1 (FLT1) mRNA and downregulate expression of the dermal stem cell marker α-smooth muscle actin. DP cells have demonstrated functional characteristics of endothelial cells, including the ability to form capillary-like structures on Matrigel, increase uptake of low-density lipoprotein and upregulate ICAM1 (CD54) in response to tumour necrosis factor alpha (TNF-α) stimulation. We confirmed that these observations were not due to contaminating endothelial cells, by using DP clones. We have also used the WNT1cre/ROSA26R and WNT1cre/YFP lineage-tracing mouse models to identify a population of neural crest-derived cells in DP cultures that express the endothelial marker PECAM (CD31); these cells also form capillary-like structures on Matrigel. Importantly, cells of neural crest origin that express markers of endothelial and mesenchymal lineages exist within the dermal sheath of the vibrissae follicle.

  15. Lack of vimentin impairs endothelial differentiation of embryonic stem cells

    PubMed Central

    Boraas, Liana C.; Ahsan, Tabassum

    2016-01-01

    The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM −/− ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM −/− EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM −/− EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro. PMID:27480130

  16. Lack of vimentin impairs endothelial differentiation of embryonic stem cells.

    PubMed

    Boraas, Liana C; Ahsan, Tabassum

    2016-01-01

    The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM -/- ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM -/- EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM -/- EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro. PMID:27480130

  17. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis.

    PubMed

    Chang, Yao-Wen; Hsieh, Pei-Wen; Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-12-15

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  18. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis

    PubMed Central

    Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-01-01

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  19. Marker development

    SciTech Connect

    Adams, M.R.

    1987-05-01

    This report is to discuss the marker development for radioactive waste disposal sites. The markers must be designed to last 10,000 years, and place no undue burdens on the future generations. Barriers cannot be constructed that preclude human intrusion. Design specifications for surface markers will be discussed, also marker pictograms will also be covered.

  20. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  1. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial.

    PubMed

    Azimi, Paria; Ghiasvand, Reza; Feizi, Awat; Hosseinzadeh, Javad; Bahreynian, Maryam; Hariri, Mitra; Khosravi-Boroujeni, Hossein

    2016-06-01

    Herbal medicines with high amounts of phytochemicals have been shown to have beneficial effects on blood pressure (BP), endothelial function and anthropometric measures. This study aimed to determine the effect of herbal treatment on BP, endothelial function and anthropometric measures in patients with type 2 diabetes mellitus (T2DM). This clinical trial included 204 T2DM patients randomly assigned to four intervention groups receiving 3 g cinnamon, 3 g cardamom, 1 g saffron or 3 g ginger with three glasses of black tea, and one control group consuming only three glasses of tea without any herbals, for 8 weeks. Intercellular adhesion molecule-1 (ICAM-1), systolic and diastolic BP and anthropometric measures were collected at baseline and after 8 weeks. No significant difference was found between various medicinal plants in terms of influencing BP, serum soluble (s)ICAM-1 concentrations and anthropometric measures. However, in within-group comparison saffron and ginger intakes significantly reduced sICAM-1 concentrations (340.9 ± 14.4 vs 339.69 ± 14.4 ng/ml, p = 0.01, and 391.78 ± 16.0 vs 390.97 ± 15.8 ng/ml, p = 0.009, respectively) and ginger intake affected systolic BP (143.06 ± 0.2 vs 142.07 ± 0.2 mmHg, p = 0.02). Although administration of these herbal medicines as supplementary remedies could affect BP and sICAM-1 concentrations, there was no significant difference between the plants in terms of influencing anthropometric measures, BP and endothelial function. PMID:26758574

  2. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial.

    PubMed

    Azimi, Paria; Ghiasvand, Reza; Feizi, Awat; Hosseinzadeh, Javad; Bahreynian, Maryam; Hariri, Mitra; Khosravi-Boroujeni, Hossein

    2016-06-01

    Herbal medicines with high amounts of phytochemicals have been shown to have beneficial effects on blood pressure (BP), endothelial function and anthropometric measures. This study aimed to determine the effect of herbal treatment on BP, endothelial function and anthropometric measures in patients with type 2 diabetes mellitus (T2DM). This clinical trial included 204 T2DM patients randomly assigned to four intervention groups receiving 3 g cinnamon, 3 g cardamom, 1 g saffron or 3 g ginger with three glasses of black tea, and one control group consuming only three glasses of tea without any herbals, for 8 weeks. Intercellular adhesion molecule-1 (ICAM-1), systolic and diastolic BP and anthropometric measures were collected at baseline and after 8 weeks. No significant difference was found between various medicinal plants in terms of influencing BP, serum soluble (s)ICAM-1 concentrations and anthropometric measures. However, in within-group comparison saffron and ginger intakes significantly reduced sICAM-1 concentrations (340.9 ± 14.4 vs 339.69 ± 14.4 ng/ml, p = 0.01, and 391.78 ± 16.0 vs 390.97 ± 15.8 ng/ml, p = 0.009, respectively) and ginger intake affected systolic BP (143.06 ± 0.2 vs 142.07 ± 0.2 mmHg, p = 0.02). Although administration of these herbal medicines as supplementary remedies could affect BP and sICAM-1 concentrations, there was no significant difference between the plants in terms of influencing anthropometric measures, BP and endothelial function.

  3. Increased Detection of Lymphatic Vessel Invasion by D2-40 (Podoplanin) in Early Breast Cancer: Possible Influence on Patient Selection for Accelerated Partial Breast Irradiation

    SciTech Connect

    Debald, Manuel; Poelcher, Martin; Flucke, Uta; Walgenbach-Bruenagel, Gisela

    2010-07-15

    Purpose: Several international trials are currently investigating accelerated partial breast irradiation (APBI) for patients with early-stage breast cancer. According to existing guidelines, patients with lymphatic vessel invasion (LVI) do not qualify for APBI. D2-40 (podoplanin) significantly increases the frequency of LVI detection compared with conventional hematoxylin and eosin (HE) staining in early-stage breast cancer. Our purpose was to retrospectively assess the hypothetical change in management from APBI to whole breast radiotherapy with the application of D2-40. Patients and Methods: Immunostaining with D2-40 was performed on 254 invasive breast tumors of 247 patients. The following criteria were used to determine the eligibility for APBI: invasive ductal adenocarcinoma of {<=}3 cm, negative axillary node status (N0), and unifocal disease. Of the 247 patients, 74 with available information concerning LVI, as detected by D2-40 immunostaining and routine HE staining, formed our study population. Results: Using D2-40, our results demonstrated a significantly greater detection rate (p = .031) of LVI compared with routine HE staining. LVI was correctly identified by D2-40 (D2-40-positive LVI) in 10 (13.5%) of 74 tumors. On routine HE staining, 4 tumors (5.4%) were classified as HE-positive LVI. Doublestaining of these specimens with D2-40 unmasked false-positive LVI status in 2 (50%) of the 4 tumors. According to the current recommendations for APBI, immunostaining with D2-40 would have changed the clinical management from APBI to whole breast radiotherapy in 8 (10.8%) of 74 patients and from whole breast radiotherapy to APBI in 2 patients (2.7%). Conclusion: These data support the implementation of D2-40 immunostaining in the routine workup to determine a patient's eligibility for APBI.

  4. The chimeric antibody chLpMab-7 targeting human podoplanin suppresses pulmonary metastasis via ADCC and CDC rather than via its neutralizing activity

    PubMed Central

    Ogasawara, Satoshi; Fujii, Yuki; Oki, Hiroharu; Fukayama, Masashi; Nishioka, Yasuhiko; Kaneko, Mika K.

    2015-01-01

    Podoplanin (PDPN/Aggrus/T1α) binds to C-type lectin-like receptor-2 (CLEC-2) and induces platelet aggregation. PDPN is associated with malignant progression, tumor metastasis, and poor prognosis in several types of cancer. Although many anti-human PDPN (hPDPN) monoclonal antibodies (mAbs), such as D2-40 and NZ-1, have been established, these epitopes are limited to the platelet aggregation-stimulating (PLAG) domain (amino acids 29-54) of hPDPN. Recently, we developed a novel mouse anti-hPDPN mAb, LpMab-7, which is more sensitive than D2-40 and NZ-1, using the Cancer-specific mAb (CasMab) method. The epitope of LpMab-7 was shown to be entirely different from that of NZ-1, a neutralizing mAb against the PLAG domain according to an inhibition assay and lectin microarray analysis. In the present study, we produced a mouse-human chimeric anti-hPDPN mAb, chLpMab-7. ChLpMab-7 showed high antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, chLpMab-7 inhibited the growth of hPDPN-expressing tumors in vivo. Although chLpMab-7 recognizes a non-PLAG domain of hPDPN, it suppressed the hematogenous metastasis of hPDPN-expressing tumors. These results indicated that chLpMab-7 suppressed tumor development and hematogenous metastasis in a neutralization-independent manner. In conclusion, hPDPN shows promise as a target in the development of a novel antibody-based therapy. PMID:26416352

  5. Bone Markers

    MedlinePlus

    ... Alkaline Phosphatase; Osteocalcin; P1NP; Procollagen Type 1 N-Terminal Propeptide Formal name: Biochemical Markers of Bone Remodeling ... tests for evaluating bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker ...

  6. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  7. Central Role of eNOS in the Maintenance of Endothelial Homeostasis

    PubMed Central

    Rodriguez-Mateos, Ana; Kelm, Malte

    2015-01-01

    Abstract Significance: Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. Recent Advances: Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. Critical Issues: Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. Future Directions: Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance. Antioxid. Redox Signal. 22, 1230–1242. PMID:25330054

  8. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.

    PubMed

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy; Tan, Wei

    2014-09-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.

  9. Synergism of Matrix Stiffness and Vascular Endothelial Growth Factor on Mesenchymal Stem Cells for Vascular Endothelial Regeneration

    PubMed Central

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy

    2014-01-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs. PMID:24702044

  10. Endothelial Activation and Repair During Hantavirus Infection: Association with Disease Outcome

    PubMed Central

    Connolly-Andersen, Anne-Marie; Thunberg, Therese; Ahlm, Clas

    2014-01-01

    Background.  Endothelial activation and dysfunction play a central role in the pathogenesis of sepsis and viral hemorrhagic fevers. Hantaviral disease is a viral hemorrhagic fever and is characterized by capillary dysfunction, although the underlying mechanisms for hantaviral disease are not fully elucidated. Methods.  The temporal course of endothelial activation and repair were analyzed during Puumala hantavirus infection and associated with disease outcome and a marker for hypoxia, insulin-like growth factor binding protein 1 (IGFBP-1). The following endothelial activation markers were studied: endothelial glycocalyx degradation (syndecan-1) and leukocyte adhesion molecules (soluble vascular cellular adhesion molecule 1, intercellular adhesion molecule 1, and endothelial selectin). Cytokines associated with vascular repair were also analyzed (vascular endothelial growth factor, erythropoietin, angiopoietin, and stromal cell-derived factor 1). Results.  Most of the markers we studied were highest during the earliest phase of hantaviral disease and associated with clinical and laboratory surrogate markers for disease outcome. In particular, the marker for glycocalyx degradation, syndecan-1, was significantly associated with levels of thrombocytes, albumin, IGFBP-1, decreased blood pressure, and disease severity. Conclusions.  Hantaviral disease outcome was associated with endothelial dysfunction. Consequently, the endothelium warrants further investigation when designing future medical interventions. PMID:25734100

  11. Effects of a high-protein, low-carbohydrate v. high-protein, moderate-carbohydrate weight-loss diet on antioxidant status, endothelial markers and plasma indices of the cardiometabolic profile.

    PubMed

    Johnstone, Alexandra M; Lobley, Gerald E; Horgan, Graham W; Bremner, David M; Fyfe, Claire L; Morrice, Philip C; Duthie, Garry G

    2011-07-01

    There are concerns that weight-loss (WL) diets based on very low carbohydrate (LC) intake have a negative impact on antioxidant status and biomarkers of cardiovascular and metabolic health. Obese men (n 16) participated in a randomised, cross-over design diet trial, with food provided daily, at approximately 8.3 MJ/d (approximately 70 % of energy maintenance requirements). They were provided with two high-protein diets (30 % of energy), each for a 4-week period, involving a LC (4 % carbohydrate) and a moderate carbohydrate (MC, 35 % carbohydrate) content. Body weight was measured daily, and weekly blood samples were collected. On average, subjects lost 6.75 and 4.32 kg of weight on the LC and MC diets, respectively (P < 0.001, SED 0.350). Although the LC and MC diets were associated with a small reduction in plasma concentrations of retinol, vitamin E (α-tocopherol) and β-cryptoxanthin (P < 0.005), these were still above the values indicative of deficiency. Interestingly, plasma vitamin C concentrations increased on consumption of the LC diet (P < 0.05). Plasma markers of insulin resistance (P < 0.001), lipaemia and inflammation (P < 0.05, TNF-α and IL-10) improved similarly on both diets. There was no change in other cardiovascular markers with WL. The present data suggest that a LC WL diet does not impair plasma indices of cardiometabolic health, at least within 4 weeks, in otherwise healthy obese subjects. In general, improvements in metabolic health associated with WL were similar between the LC and MC diets. Antioxidant supplements may be warranted if LC WL diets are consumed for a prolonged period.

  12. Chronic Inflammatory Diseases and Endothelial Dysfunction

    PubMed Central

    Castellon, Xavier; Bogdanova, Vera

    2016-01-01

    Chronic inflammatory diseases are associated with increases in cardiovascular diseases (CVD) and subclinical atherosclerosis as well as early-stage endothelial dysfunction screening using the FMD method (Flow Mediated Dilation). This phenomenon, referred to as accelerated pathological remodeling of arterial wall, could be attributed to traditional risk factors associated with atherosclerosis. Several new non-invasive techniques have been used to study arterial wall’s structural and functional alterations. These techniques (based of Radio Frequency, RF) allow for an assessment of artery age through calculations of intima-media thickness (RF- QIMT), pulse wave rate (RF- QAS) and endothelial dysfunction degree (FMD). The inflammatory and autoimmune diseases should now be considered as new cardiovascular risk factors, result of the major consequences of oxidative stress and RAS (Renin Angiotensin System) imbalance associated with the deleterious effect of known risk factors that lead to the alteration of the arterial wall. Inflammation plays a key role in all stages of the formation of vascular lesions maintained and exacerbated by the risk factors. The consequence of chronic inflammation is endothelial dysfunction that sets in and we can define it as an integrated marker of the damage to arterial walls by classic risk factors. The atherosclerosis, which develops among these patients, is the main cause for cardiovascular morbi-mortality and uncontrolled chronic biological inflammation, which quickly favors endothelial dysfunction. These inflammatory and autoimmune diseases should now be considered as new cardiovascular risk factors. PMID:26815098

  13. HDL and endothelial protection

    PubMed Central

    Tran-Dinh, A; Diallo, D; Delbosc, S; Varela-Perez, L Maria; Dang, QB; Lapergue, B; Burillo, E; Michel, JB; Levoye, A; Martin-Ventura, JL; Meilhac, O

    2013-01-01

    High-density lipoproteins (HDLs) represent a family of particles characterized by the presence of apolipoprotein A-I (apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver. In addition to this function, HDLs display pleiotropic effects including antioxidant, anti-apoptotic, anti-inflammatory, anti-thrombotic or anti-proteolytic properties that account for their protective action on endothelial cells. Vasodilatation via production of nitric oxide is also a hallmark of HDL action on endothelial cells. Endothelial cells express receptors for apoA-I and HDLs that mediate intracellular signalling and potentially participate in the internalization of these particles. In this review, we will detail the different effects of HDLs on the endothelium in normal and pathological conditions with a particular focus on the potential use of HDL therapy to restore endothelial function and integrity. PMID:23488589

  14. Fluid resuscitation should respect the endothelial glycocalyx layer.

    PubMed

    Guidet, Bertrand; Ait-Oufella, Hafid

    2014-12-23

    Endothelial glycocalyx degradation induced by fluid overload adds to the concern of a detrimental effect of uncontrolled fluid resuscitation and the risk of unnecessary fluid infusion. As a consequence, the use of new tools for monitoring response to fluids appears promising. From that perspective, the monitoring of plasma concentration of glycocalyx degradation markers could be useful.

  15. Endothelial cells derived from human embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  16. Assessment of Endothelial Dysfunction in Childhood Obesity and Clinical Use

    PubMed Central

    Hoymans, Vicky Y.; Van Craenenbroeck, Amaryllis H.; Vissers, Dirk K.; Vrints, Christiaan J.; Conraads, Viviane M.

    2013-01-01

    The association of obesity with noncommunicable diseases, such as cardiovascular complications and diabetes, is considered a major threat to the management of health care worldwide. Epidemiological findings show that childhood obesity is rapidly rising in Western society, as well as in developing countries. This pandemic is not without consequences and can affect the risk of future cardiovascular disease in these children. Childhood obesity is associated with endothelial dysfunction, the first yet still reversible step towards atherosclerosis. Advanced research techniques have added further insight on how childhood obesity and associated comorbidities lead to endothelial dysfunction. Techniques used to measure endothelial function were further brought to perfection, and novel biomarkers, including endothelial progenitor cells, were discovered. The aim of this paper is to provide a critical overview on both in vivo as well as in vitro markers for endothelial integrity. Additionally, an in-depth description of the mechanisms that disrupt the delicate balance between endothelial damage and repair will be given. Finally, the effects of lifestyle interventions and pharmacotherapy on endothelial dysfunction will be reviewed. PMID:23691262

  17. Grave Markers.

    ERIC Educational Resources Information Center

    DeMuro, Ted

    1985-01-01

    Junior high school students studied the cultural uses, symbolic meanings, and general physical forms of tombs and tombstones and then used basic slab building techniques to construct large clay grave markers. (RM)

  18. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas

    PubMed Central

    Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  19. PDGFRβ Is a Novel Marker of Stromal Activation in Oral Squamous Cell Carcinomas.

    PubMed

    Kartha, Vinay K; Stawski, Lukasz; Han, Rong; Haines, Paul; Gallagher, George; Noonan, Vikki; Kukuruzinska, Maria; Monti, Stefano; Trojanowska, Maria

    2016-01-01

    Carcinoma associated fibroblasts (CAFs) form the main constituents of tumor stroma and play an important role in tumor growth and invasion. The presence of CAFs is a strong predictor of poor prognosis of head and neck squamous cell carcinoma. Despite significant progress in determining the role of CAFs in tumor progression, the mechanisms contributing to their activation remain poorly characterized, in part due to fibroblast heterogeneity and the scarcity of reliable fibroblast surface markers. To search for such markers in oral squamous cell carcinoma (OSCC), we applied a novel approach that uses RNA-sequencing data derived from the cancer genome atlas (TCGA). Specifically, our strategy allowed for an unbiased identification of genes whose expression was closely associated with a set of bona fide stroma-specific transcripts, namely the interstitial collagens COL1A1, COL1A2, and COL3A1. Among the top hits were genes involved in cellular matrix remodeling and tumor invasion and migration, including platelet-derived growth factor receptor beta (PDGFRβ), which was found to be the highest-ranking receptor protein genome-wide. Similar analyses performed on ten additional TCGA cancer datasets revealed that other tumor types shared CAF markers with OSCC, including PDGFRβ, which was found to significantly correlate with the reference collagen expression in ten of the 11 cancer types tested. Subsequent immunostaining of OSCC specimens demonstrated that PDGFRβ was abundantly expressed in stromal fibroblasts of all tested cases (12/12), while it was absent in tumor cells, with greater specificity than other known markers such as alpha smooth muscle actin or podoplanin (3/11). Overall, this study identified PDGFRβ as a novel marker of stromal activation in OSCC, and further characterized a list of promising candidate CAF markers that may be relevant to other carcinomas. Our novel approach provides for a fast and accurate method to identify CAF markers without the need for

  20. Evolution of endothelial keratoplasty.

    PubMed

    Price, Francis W; Price, Marianne O

    2013-11-01

    Endothelial keratoplasty has evolved into a popular alternative to penetrating keratoplasty (PK) for the treatment of endothelial dysfunction. Although the earliest iterations were challenging and were not widely adopted, the iteration known as Descemet stripping endothelial keratoplasty (DSEK) has gained widespread acceptance. DSEK combines a simplified technique for stripping dysfunctional endothelium from the host cornea and microkeratome dissection of the donor tissue, a step now commonly completed in advance by eye bank technicians. Studies show that a newer endothelial keratoplasty iteration, known as Descemet membrane endothelial keratoplasty (DMEK), provides an even faster and better visual recovery than DSEK does. In addition, DMEK significantly reduces the risk of immunologic graft rejection episodes compared with that in DSEK or in PK. Although the DMEK donor tissue, consisting of the bare endothelium and Descemet membrane without any stroma, is more challenging to prepare and position in the recipient eye, recent improvements in instrumentation and surgical techniques are increasing the ease and the reliability of the procedure. DSEK successfully mitigates 2 of the main liabilities of PK: ocular surface complications and structural problems (including induced astigmatism and perpetually weak wounds), whereas DMEK further mitigates the 2 principal remaining liabilities of PK: immunologic graft reactions and secondary glaucoma from prolonged topical corticosteroid use.

  1. Extrarenal Progenitor Cells Do Not Contribute to Renal Endothelial Repair.

    PubMed

    Sradnick, Jan; Rong, Song; Luedemann, Anika; Parmentier, Simon P; Bartaun, Christoph; Todorov, Vladimir T; Gueler, Faikah; Hugo, Christian P; Hohenstein, Bernd

    2016-06-01

    Endothelial progenitor cells (EPCs) may be relevant contributors to endothelial cell (EC) repair in various organ systems. In this study, we investigated the potential role of EPCs in renal EC repair. We analyzed the major EPC subtypes in murine kidneys, blood, and spleens after induction of selective EC injury using the concanavalin A/anti-concanavalin A model and after ischemia/reperfusion (I/R) injury as well as the potential of extrarenal cells to substitute for injured local EC. Bone marrow transplantation (BMTx), kidney transplantation, or a combination of both were performed before EC injury to allow distinction of extrarenal or BM-derived cells from intrinsic renal cells. During endothelial regeneration, cells expressing markers of endothelial colony-forming cells (ECFCs) were the most abundant EPC subtype in kidneys, but were not detected in blood or spleen. Few cells expressing markers of EC colony-forming units (EC-CFUs) were detected. In BM chimeric mice (C57BL/6 with tandem dimer Tomato-positive [tdT+] BM cells), circulating and splenic EC-CFUs were BM-derived (tdT+), whereas cells positive for ECFC markers in kidneys were not. Indeed, most BM-derived tdT+ cells in injured kidneys were inflammatory cells. Kidneys from C57BL/6 donors transplanted into tdT+ recipients with or without prior BMTx from C57BL/6 mice were negative for BM-derived or extrarenal ECFCs. Overall, extrarenal cells did not substitute for any intrinsic ECs. These results demonstrate that endothelial repair in mouse kidneys with acute endothelial lesions depends exclusively on local mechanisms.

  2. Endothelial microparticles carrying hedgehog-interacting protein induce continuous endothelial damage in the pathogenesis of acute graft-versus-host disease.

    PubMed

    Nie, Di-Min; Wu, Qiu-Ling; Zheng, Peng; Chen, Ping; Zhang, Ran; Li, Bei-Bei; Fang, Jun; Xia, Ling-Hui; Hong, Mei

    2016-05-15

    Accumulating evidence suggests that endothelial microparticles (EMPs), a marker of endothelial damage, are elevated in acute graft-versus-host disease (aGVHD), and that endothelial damage is implicated in the pathogenesis of aGVHD, but the mechanisms remain elusive. In this study, we detected the plasma EMP levels and endothelial damage in patients and mice with aGVHD in vivo and then examined the effects of EMPs derived from injured endothelial cells (ECs) on endothelial damage and the role of hedgehog-interacting protein (HHIP) carried by EMPs in these effects in vitro. Our results showed that EMPs were persistently increased in the early posttransplantation phase in patients and mice with aGVHD. Meanwhile, endothelial damage was continuous in aGVHD mice, but was temporary in non-aGVHD mice after transplantation. In vitro, EMPs induced endothelial damage, including increased EC apoptosis, enhanced reactive oxygen species, decreased nitric oxide production and impaired angiogenic activity. Enhanced expression of HHIP, an antagonist for the Sonic hedgehog (SHH) signaling pathway, was observed in patients and mice with aGVHD and EMPs from injured ECs. The endothelial damage induced by EMPs was reversed when the HHIP incorporated into EMPs was silenced with an HHIP small interfering RNA or inhibited with the SHH pathway agonist, Smoothened agonist. This work supports a feasible vicious cycle in which EMPs generated during endothelial injury, in turn, aggravate endothelial damage by carrying HHIP into target ECs, contributing to the continuously deteriorating endothelial damage in the development of aGVHD. EMPs harboring HHIP would represent a potential therapeutic target for aGVHD. PMID:27009877

  3. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh.

    PubMed

    Deng, Meng; Gu, Yunpeng; Liu, Zhenjun; Qi, Yue; Ma, Gui E; Kang, Ning

    2015-01-01

    Adipose-derived stem cell (ADSC) is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA) mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34- when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs.

  4. Increased circulating inflammatory endothelial cells in blacks with essential hypertension.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Woollard, John R; Herrmann, Sandra M; Gloviczki, Monika L; Saad, Ahmed; Juncos, Luis A; Calhoun, David A; Rule, Andrew D; Lerman, Amir; Textor, Stephen C; Lerman, Lilach O

    2013-09-01

    Morbidity and mortality attributable to hypertension are higher in black essential hypertensive (EH) compared with white EH patients, possibly related to differential effects on vascular injury and repair. Although circulating endothelial progenitor cells (EPCs) preserve endothelial integrity, inflammatory endothelial cells (IECs) detach from sites of injury and represent markers of vascular damage. We hypothesized that blood levels of IECs and inflammatory markers would be higher in black EH compared with white EH patients. Inferior vena cava and renal vein levels of CD34+/KDR+ (EPC) and VAP-1+ (IEC) cells were measured by fluorescence-activated cell sorting in white EH and black EH patients under fixed sodium intake and blockade of the renin-angiotensin system, and compared with systemic levels in normotensive control subjects (n=19 each). Renal vein and inferior vena cava levels of inflammatory cytokines and EPC homing factors were measured by Luminex. Blood pressure, serum creatinine, lipids, and antihypertensive medications did not differ between white and black EH patients, and EPC levels were decreased in both. Circulating IEC levels were elevated in black EH patients, and inversely correlated with EPC levels (R(2)=0.58; P=0.0001). Systemic levels of inflammatory cytokines and EPC homing factors were higher in black EH compared with white EH patients, and correlated directly with IECs. Renal vein inflammatory cytokines, EPCs, and IECs did not differ from their circulating levels. Most IECs expressed endothelial markers, fewer expressed progenitor cell markers, but none showed lymphocyte or phagocytic cell markers. Thus, increased release of cytokines and IECs in black EH patients may impair EPC reparative capacity and aggravate vascular damage, and accelerate hypertension-related complications.

  5. Effect of Polyelectrolyte Film Stiffness on Endothelial Cells During Endothelial-to-Mesenchymal Transition.

    PubMed

    Zhang, He; Chang, Hao; Wang, Li-mei; Ren, Ke-feng; Martins, M Cristina L; Barbosa, Mário A; Ji, Jian

    2015-11-01

    Endothelial-to-mesenchymal transition (EndMT), during which endothelial cells (ECs) transdifferentiate into mesenchymal phenotype, plays a key role in the development of vascular implant complications such as endothelium dysfunction and in-stent restenosis. Substrate stiffness has been confirmed as a key factor to influence EC behaviors; however, so far, the relationship between substrate stiffness and EndMT has been rarely studied. Here, ECs were cultured on the (poly(L-lysine)/hyaluronate acid) (PLL/HA) multilayer films with controlled stiffness for 2 weeks, and their EndMT behaviors were studied. We demonstrated that ECs lost their markers (vWf and CD31) in a stiffness-dependent manner even without supplement of growth factors, and the softer film favored the maintaining of EC phenotype. Further, induced by transforming growth factor β1 (TGF-β1), ECs underwent EndMT, as characterized by losing their typical cobblestone morphology and markers and gaining smooth muscle cell markers (α-smooth muscle actin and calponin). Interestingly, stronger EndMT was observed when ECs were cultured on the stiffer film. Collectively, our findings suggest that substrate stiffness has significant effects on EndMT, and a softer substrate is beneficial to ECs by keeping their phenotype and inhibiting EndMT, which presents a new strategy for surface design of vascular implant materials. PMID:26477358

  6. In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery.

    PubMed

    Banizs, Anna B; Huang, Tao; Dryden, Kelly; Berr, Stuart S; Stone, James R; Nakamoto, Robert K; Shi, Weibin; He, Jiang

    2014-01-01

    Exosomes, one subpopulation of nanosize extracellular vesicles derived from multivesicular bodies, ranging from 30 to 150 nm in size, emerged as promising carriers for small interfering ribonucleic acid (siRNA) delivery, as they are capable of transmitting molecular messages between cells through carried small noncoding RNAs, messenger RNAs, deoxyribonucleic acids, and proteins. Endothelial cells are involved in a number of important biological processes, and are a major source of circulating exosomes. In this study, we prepared exosomes from endothelial cells and evaluated their capacity to deliver siRNA into primary endothelial cells. Exosomes were isolated and purified by sequential centrifugation and ultracentrifugation from cultured mouse aortic endothelial cells. Similar to exosome particles from other cell sources, endothelial exosomes are nanometer-size vesicles, examined by both the NanoSight instrument and transmission electron microscopy. Enzyme-linked immunosorbent assay analysis confirmed the expression of two exosome markers: CD9 and CD63. Flow cytometry and fluorescence microscopy studies demonstrated that endothelial exosomes were heterogeneously distributed within cells. In a gene-silencing study with luciferase-expressing endothelial cells, exosomes loaded with siRNA inhibited luciferase expression by more than 40%. In contrast, siRNA alone and control siRNA only suppressed luciferase expression by less than 15%. In conclusion, we demonstrated that endothelial exosomes have the capability to accommodate and deliver short foreign nucleic acids into endothelial cells.

  7. In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery

    PubMed Central

    Banizs, Anna B; Huang, Tao; Dryden, Kelly; Berr, Stuart S; Stone, James R; Nakamoto, Robert K; Shi, Weibin; He, Jiang

    2014-01-01

    Exosomes, one subpopulation of nanosize extracellular vesicles derived from multivesicular bodies, ranging from 30 to 150 nm in size, emerged as promising carriers for small interfering ribonucleic acid (siRNA) delivery, as they are capable of transmitting molecular messages between cells through carried small noncoding RNAs, messenger RNAs, deoxyribonucleic acids, and proteins. Endothelial cells are involved in a number of important biological processes, and are a major source of circulating exosomes. In this study, we prepared exosomes from endothelial cells and evaluated their capacity to deliver siRNA into primary endothelial cells. Exosomes were isolated and purified by sequential centrifugation and ultracentrifugation from cultured mouse aortic endothelial cells. Similar to exosome particles from other cell sources, endothelial exosomes are nanometer-size vesicles, examined by both the NanoSight instrument and transmission electron microscopy. Enzyme-linked immunosorbent assay analysis confirmed the expression of two exosome markers: CD9 and CD63. Flow cytometry and fluorescence microscopy studies demonstrated that endothelial exosomes were heterogeneously distributed within cells. In a gene-silencing study with luciferase-expressing endothelial cells, exosomes loaded with siRNA inhibited luciferase expression by more than 40%. In contrast, siRNA alone and control siRNA only suppressed luciferase expression by less than 15%. In conclusion, we demonstrated that endothelial exosomes have the capability to accommodate and deliver short foreign nucleic acids into endothelial cells. PMID:25214786

  8. Investigating the effect of hypoxic culture on the endothelial differentiation of human amniotic fluid-derived stem cells.

    PubMed

    Lloyd-Griffith, Cai; Duffy, Garry P; O'Brien, Fergal J

    2015-12-01

    Amniotic fluid-derived stem cells (AFSCs) are a unique stem cell source that may have great potential for use in tissue engineering (TE) due to their pluripotentiality. AFSCs have previously shown angiogenic potential and may present an alternative cell source for endothelial-like cells that could be used in range of applications, including the pre-vascularisation of TE constructs and the treatment of ischaemic diseases. This study investigated the ability of these cells to differentiate down an endothelial lineage with the aim of producing an endothelial-like cell suitable for use in pre-vascularisation. As hypoxia and the associated HIF-1 pathway have been implicated in the induction of angiogenesis in a number of biological processes, it was hypothesised that culture in hypoxic conditions could enhance the endothelial differentiation of AFSCs. The cells were cultured in endothelial cell media supplemented with 50 ng mL(-1) of VEGF, maintained in normoxia, intermittent hypoxia or continuous hypoxia and assessed for markers of endothelial differentiation at day 7 and 14. The results demonstrated that AFSCs subjected to these culture conditions display an endothelial gene expression profile and adopted functional endothelial cell characteristics indicative of early endothelial differentiation. Culture in continuous hypoxia enhanced endothelial gene expression but did not enhance functional endothelial cell characteristics. Overall, AFSCs subjected to endothelial stimuli demonstrated a less mature endothelial gene expression profile and phenotype when compared with HUVECs, the endothelial cell control. However, this study is the first time that the positive effect of an extended period of continuous hypoxic culture on endothelial differentiation in AFSCs has been demonstrated.

  9. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin

    2015-01-01

    Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue.

  10. In vitro differentiation of porcine aortic vascular precursor cells to endothelial and vascular smooth muscle cells.

    PubMed

    Zaniboni, Andrea; Bernardini, Chiara; Bertocchi, Martina; Zannoni, Augusta; Bianchi, Francesca; Avallone, Giancarlo; Mangano, Chiara; Sarli, Giuseppe; Calzà, Laura; Bacci, Maria Laura; Forni, Monica

    2015-09-01

    Recent findings suggest that progenitor and multipotent mesenchymal stromal cells (MSCs) are associated with vascular niches. Cells displaying mesenchymal properties and differentiating to whole components of a functional blood vessel, including endothelial and smooth muscle cells, can be defined as vascular stem cells (VSCs). Recently, we isolated a population of porcine aortic vascular precursor cells (pAVPCs), which have MSC- and pericyte-like properties. The aim of the present work was to investigate whether pAVPCs possess VSC-like properties and assess their differentiation potential toward endothelial and smooth muscle lineages. pAVPCs, maintained in a specific pericyte growth medium, were cultured in high-glucose DMEM + 10% FBS (long-term medium, LTM) or in human endothelial serum-free medium + 5% FBS and 50 ng/ml of hVEGF (endothelial differentiation medium, EDM). After 21 days of culture in LTM, pAVPCs showed an elongated fibroblast-like morphology, and they seem to organize in cord-like structures. qPCR analysis of smooth muscle markers [α-smooth muscle actin (α-SMA), calponin, and smooth muscle myosin (SMM) heavy chain] showed a significant increment of the transcripts, and immunofluorescence analysis confirmed the presence of α-SMA and SMM proteins. After 21 days of culture in EDM, pAVPCs displayed an endothelial cell-like morphology and revealed the upregulation of the expression of endothelial markers (CD31, vascular endothelial-cadherin, von Willebrand factor, and endothelial nitric oxide synthase) showing the CD31-typical pattern. In conclusion, pAVPCs could be defined as a VSC-like population considering that, if they are maintained in a specific pericyte medium, they express MSC markers, and they have, in addition to the classical mesenchymal trilineage differentiation potential, the capacity to differentiate in vitro toward the smooth muscle and the endothelial cell phenotypes.

  11. Local and Circulating Endothelial Cells Undergo Endothelial to Mesenchymal Transition (EndMT) in Response to Musculoskeletal Injury.

    PubMed

    Agarwal, Shailesh; Loder, Shawn; Cholok, David; Peterson, Joshua; Li, John; Fireman, David; Breuler, Christopher; Hsieh, Hsiao Sung; Ranganathan, Kavitha; Hwang, Charles; Drake, James; Li, Shuli; Chan, Charles K; Longaker, Michael T; Levi, Benjamin

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) has been implicated in a variety of aberrant wound healing conditions. However, unambiguous evidence of EndMT has been elusive due to limitations of in vitro experimental designs and animal models. In vitro experiments cannot account for the myriad ligands and cells which regulate differentiation, and in vivo tissue injury models may induce lineage-independent endothelial marker expression in mesenchymal cells. By using an inducible Cre model to mark mesenchymal cells (Scx-creERT/tdTomato + ) prior to injury, we demonstrate that musculoskeletal injury induces expression of CD31, VeCadherin, or Tie2 in mesenchymal cells. VeCadherin and Tie2 were expressed in non-endothelial cells (CD31-) present in marrow from uninjured adult mice, thereby limiting the specificity of these markers in inducible models (e.g. VeCadherin- or Tie2-creERT). However, cell transplantation assays confirmed that endothelial cells (ΔVeCadherin/CD31+/CD45-) isolated from uninjured hindlimb muscle tissue undergo in vivo EndMT when transplanted directly into the wound without intervening cell culture using PDGFRα, Osterix (OSX), SOX9, and Aggrecan (ACAN) as mesenchymal markers. These in vivo findings support EndMT in the presence of myriad ligands and cell types, using cell transplantation assays which can be applied for other pathologies implicated in EndMT including tissue fibrosis and atherosclerosis. Additionally, endothelial cell recruitment and trafficking are potential therapeutic targets to prevent EndMT. PMID:27616463

  12. Local and Circulating Endothelial Cells Undergo Endothelial to Mesenchymal Transition (EndMT) in Response to Musculoskeletal Injury

    PubMed Central

    Agarwal, Shailesh; Loder, Shawn; Cholok, David; Peterson, Joshua; Li, John; Fireman, David; Breuler, Christopher; Hsieh, Hsiao Sung; Ranganathan, Kavitha; Hwang, Charles; Drake, James; Li, Shuli; Chan, Charles K.; Longaker, Michael T.; Levi, Benjamin

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) has been implicated in a variety of aberrant wound healing conditions. However, unambiguous evidence of EndMT has been elusive due to limitations of in vitro experimental designs and animal models. In vitro experiments cannot account for the myriad ligands and cells which regulate differentiation, and in vivo tissue injury models may induce lineage-independent endothelial marker expression in mesenchymal cells. By using an inducible Cre model to mark mesenchymal cells (Scx-creERT/tdTomato + ) prior to injury, we demonstrate that musculoskeletal injury induces expression of CD31, VeCadherin, or Tie2 in mesenchymal cells. VeCadherin and Tie2 were expressed in non-endothelial cells (CD31−) present in marrow from uninjured adult mice, thereby limiting the specificity of these markers in inducible models (e.g. VeCadherin- or Tie2-creERT). However, cell transplantation assays confirmed that endothelial cells (ΔVeCadherin/CD31+/CD45−) isolated from uninjured hindlimb muscle tissue undergo in vivo EndMT when transplanted directly into the wound without intervening cell culture using PDGFRα, Osterix (OSX), SOX9, and Aggrecan (ACAN) as mesenchymal markers. These in vivo findings support EndMT in the presence of myriad ligands and cell types, using cell transplantation assays which can be applied for other pathologies implicated in EndMT including tissue fibrosis and atherosclerosis. Additionally, endothelial cell recruitment and trafficking are potential therapeutic targets to prevent EndMT. PMID:27616463

  13. Effects of shear stress on endothelial progenitor cells.

    PubMed

    Obi, Syotaro; Yamamoto, Kimiko; Ando, Joji

    2014-10-01

    Endothelial progenitor cells (EPCs) are adult stem cells that play a central role in neovascularization. EPCs are mobilized from bone marrow into peripheral blood, attach to existing endothelial cells, and then transmigrate across the endothelium into tissues, where they proliferate, differentiate, and form new blood vessels. In the process, EPCs are exposed to shear stress, a biomechanical force generated by flowing blood and tissue fluid flow. When cultured EPCs are exposed to controlled levels of shear stress in a flow-loading device, their bioactivities in terms of proliferation, anti-apoptosis, migration, production of bioactive substances, anti-thrombosis, and tube formation increase markedly. Expression of endothelial marker genes and proteins by EPCs also increases in response to shear stress, and they differentiate into mature endothelial cells. Great advances have been made in elucidating the mechanisms by which mature endothelial cells sense and respond to shear stress, but not in EPCs. Further study of EPC responses to shear stress will be necessary to better understand the physiological and pathophysiological roles of EPCs and to apply EPCs to new therapies in the field of regenerative medicine. PMID:25992410

  14. The Endothelial Glycocalyx: New Diagnostic and Therapeutic Approaches in Sepsis

    PubMed Central

    Koczera, Patrick

    2016-01-01

    Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The endothelial glycocalyx is one of the earliest sites involved during sepsis. This fragile layer is a complex network of cell-bound proteoglycans, glycosaminoglycan side chains, and sialoproteins lining the luminal side of endothelial cells with a thickness of about 1 to 3 μm. Sepsis-associated alterations of its structure affect endothelial permeability and result in the liberation of endogenous damage-associated molecular patterns (DAMPs). Once liberated in the circulatory system, DAMPs trigger the devastating consequences of the proinflammatory cascades in sepsis and septic shock. In this way, the injury to the glycocalyx with the consecutive release of DAMPs contributes to a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and septic cardiomyopathy. Moreover, the extent of glycocalyx degradation serves as a marker of endothelial dysfunction and sepsis severity. In this review, we highlight the crucial role of the glycocalyx in sepsis as a diagnostic tool and discuss the potential of members of the endothelial glycocalyx serving as hopeful therapeutic targets in sepsis-associated multiple organ failures. PMID:27699168

  15. Endothelial dysfunction and tendinopathy: how far have we come?

    PubMed

    Papalia, R; Moro, L; Franceschi, F; Albo, E; D'Adamio, S; Di Martino, A; Vadalà, G; Faldini, C; Denaro, V

    2013-12-01

    Symptomatic tendon tears are one of the most important causes of pain and joint dysfunction. Among the intrinsic causes, vascularization recently gained a major role. Endothelial function is indeed a key factor, as well as vascular tone and thrombotic factors, in the regulation of vascular homeostasis and the composition of vascular wall. In this review, we studied systematically whether there is a relationship between endothelial dysfunction and tendinopathy. A literature search was performed using the isolated or combined keywords endothelial dysfunction and tendon,' 'nitric oxide (NO) and tendinopathy,' and 'endothelial dysfunction in tendon healing.' We identified 21 published studies. Of the selected studies, 9 were in vivo studies, 2 focusing on animals and 7 on humans, while 12 reported about in vitro evaluations, where 7 were carried out on humans and 5 on animals. The evidence about a direct relationship between tendinopathy and endothelial dysfunction is still poor. As recent studies have shown, there is no significant improvement in clinical and functional assessments after treatment with NO in patients suffering from tendinopathy in different locations. No significant differences were identified in the outcomes reported for experiment group when compared with controls treated with conventional surgical procedures or rehabilitation programs. Nitric oxide could be a marker to quantify the response of the endothelium to mechanical stress or hypoxia indicating the final balance between vasodilatating and vasoconstricting factors and their effects, but more ad stronger evidence is still needed to fully support this practice. PMID:23907599

  16. The Endothelial Glycocalyx: New Diagnostic and Therapeutic Approaches in Sepsis

    PubMed Central

    Koczera, Patrick

    2016-01-01

    Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. The endothelial glycocalyx is one of the earliest sites involved during sepsis. This fragile layer is a complex network of cell-bound proteoglycans, glycosaminoglycan side chains, and sialoproteins lining the luminal side of endothelial cells with a thickness of about 1 to 3 μm. Sepsis-associated alterations of its structure affect endothelial permeability and result in the liberation of endogenous damage-associated molecular patterns (DAMPs). Once liberated in the circulatory system, DAMPs trigger the devastating consequences of the proinflammatory cascades in sepsis and septic shock. In this way, the injury to the glycocalyx with the consecutive release of DAMPs contributes to a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and septic cardiomyopathy. Moreover, the extent of glycocalyx degradation serves as a marker of endothelial dysfunction and sepsis severity. In this review, we highlight the crucial role of the glycocalyx in sepsis as a diagnostic tool and discuss the potential of members of the endothelial glycocalyx serving as hopeful therapeutic targets in sepsis-associated multiple organ failures.

  17. Endothelial RIG-I activation impairs endothelial function

    SciTech Connect

    Asdonk, Tobias; Nickenig, Georg; Zimmer, Sebastian

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer RIG-I activation impairs endothelial function in vivo. Black-Right-Pointing-Pointer RIG-I activation alters HCAEC biology in vitro. Black-Right-Pointing-Pointer EPC function is affected by RIG-I stimulation in vitro. -- Abstract: Background: Endothelial dysfunction is a crucial part of the chronic inflammatory atherosclerotic process and is mediated by innate and acquired immune mechanisms. Recent studies suggest that pattern recognition receptors (PRR) specialized in immunorecognition of nucleic acids may play an important role in endothelial biology in a proatherogenic manner. Here, we analyzed the impact of endothelial retinoic acid inducible gene I (RIG-I) activation upon vascular endothelial biology. Methods and results: Wild type mice were injected intravenously with 32.5 {mu}g of the RIG-ligand 3pRNA (RNA with triphosphate at the 5 Prime end) or polyA control every other day for 7 days. In 3pRNA-treated mice, endothelium-depended vasodilation was significantly impaired, vascular oxidative stress significantly increased and circulating endothelial microparticle (EMP) numbers significantly elevated compared to controls. To gain further insight in RIG-I dependent endothelial biology, cultured human coronary endothelial cells (HCAEC) and endothelial progenitor cells (EPC) were stimulated in vitro with 3pRNA. Both cells types express RIG-I and react with receptor upregulation upon stimulation. Reactive oxygen species (ROS) formation is enhanced in both cell types, whereas apoptosis and proliferation is not significantly affected in HCAEC. Importantly, HCAEC release significant amounts of proinflammatory cytokines in response to RIG-I stimulation. Conclusion: This study shows that activation of the cytoplasmatic nucleic acid receptor RIG-I leads to endothelial dysfunction. RIG-I induced endothelial damage could therefore be an important pathway in atherogenesis.

  18. Characterization and comparison of embryonic stem cell-derived KDR+ cells with endothelial cells.

    PubMed

    Sun, Xuan; Cheng, Lamei; Duan, Huaxin; Lin, Ge; Lu, Guangxiu

    2012-09-01

    Growing interest in utilizing endothelial cells (ECs) for therapeutic purposes has led to the exploration of human embryonic stem cells (hESCs) as a potential source for endothelial progenitors. In this study, ECs were induced from hESC lines and their biological characteristics were analyzed and compared with both cord blood endothelial progenitor cells (CBEPCs) and human umbilical vein endothelial cells (HUVECs) in vitro. The results showed that isolated embryonic KDR+ cells (EC-KDR+) display characteristics that were similar to CBEPCs and HUVECs. EC-KDR+, CBEPCs and HUVECs all expressed CD31 and CD144, incorporated DiI-Ac-LDL, bound UEA1 lectin, and were able to form tube-like structures on Matrigel. Compared with CBEPCs and HUVECs, the expression level of endothelial progenitor cell markers such as CD133 and KDR in EC-KDR+ was significantly higher, while the mature endothelial marker vWF was lowly expressed in EC-KDR+. In summary, the study showed that EC-KDR+ are primitive endothelial-like progenitors and might be a potential source for therapeutic vascular regeneration and tissue engineering.

  19. Efficient Generation of Human Embryonic Stem Cell-Derived Corneal Endothelial Cells by Directed Differentiation

    PubMed Central

    McCabe, Kathryn L.; Kunzevitzky, Noelia J.; Chiswell, Brian P.; Xia, Xin; Goldberg, Jeffrey L.; Lanza, Robert

    2015-01-01

    Aim To generate human embryonic stem cell derived corneal endothelial cells (hESC-CECs) for transplantation in patients with corneal endothelial dystrophies. Materials and Methods Feeder-free hESC-CECs were generated by a directed differentiation protocol. hESC-CECs were characterized by morphology, expression of corneal endothelial markers, and microarray analysis of gene expression. Results hESC-CECs were nearly identical morphologically to primary human corneal endothelial cells, expressed Zona Occludens 1 (ZO-1) and Na+/K+ATPaseα1 (ATPA1) on the apical surface in monolayer culture, and produced the key proteins of Descemet’s membrane, Collagen VIIIα1 and VIIIα2 (COL8A1 and 8A2). Quantitative PCR analysis revealed expression of all corneal endothelial pump transcripts. hESC-CECs were 96% similar to primary human adult CECs by microarray analysis. Conclusion hESC-CECs are morphologically similar, express corneal endothelial cell markers and express a nearly identical complement of genes compared to human adult corneal endothelial cells. hESC-CECs may be a suitable alternative to donor-derived corneal endothelium. PMID:26689688

  20. Interaction of recombinant octameric hemoglobin with endothelial cells.

    PubMed

    Gaucher, Caroline; Domingues-Hamdi, Élisa; Prin-Mathieu, Christine; Menu, Patrick; Baudin-Creuza, Véronique

    2015-02-01

    Hemoglobin-based oxygen carriers (HBOCs) may generate oxidative stress, vasoconstriction and inflammation. To reduce these undesirable vasoactive properties, we increased hemoglobin (Hb) molecular size by genetic engineering with octameric Hb, recombinant (r) HbβG83C. We investigate the potential side effects of rHbβG83C on endothelial cells. The rHbβG83C has no impact on cell viability, and induces a huge repression of endothelial nitric oxide synthase gene transcription, a marker of vasomotion. No induction of Intermolecular-Adhesion Molecule 1 and E-selectin (inflammatory markers) transcription was seen. In the presence of rHbβG83C, the transcription of heme oxygenase-1 (oxidative stress marker) is weakly increased compared to the two other HBOCs (references) or Voluven (control). This genetically engineered octameric Hb, based on a human Hb βG83C mutant, leads to little impact at the level of endothelial cell inflammatory response and thus appears as an interesting molecule for HBOC development.

  1. Endothelial to mesenchymal transition contributes to arsenic-trioxide-induced cardiac fibrosis

    PubMed Central

    Zhang, Yong; Wu, Xianxian; Li, Yang; Zhang, Haiying; Li, Zhange; Zhang, Ying; Zhang, Longyin; Ju, Jiaming; Liu, Xin; Chen, Xiaohui; Glybochko, Peter V.; Nikolenko, Vladimir; Kopylov, Philipp; Xu, Chaoqian; Yang, Baofeng

    2016-01-01

    Emerging evidence has suggested the critical role of endothelial to mesenchymal transition (EndMT) in fibrotic diseases. The present study was designed to examine whether EndMT is involved in arsenic trioxide (As2O3)-induced cardiac fibrosis and to explore the underlying mechanisms. Cardiac dysfunction was observed in rats after exposure to As2O3 for 15 days using echocardiography, and the deposition of collagen was detected by Masson’s trichrome staining and electron microscope. EndMT was indicated by the loss of endothelial cell markers (VE-cadherin and CD31) and the acquisition of mesenchymal cell markers (α-SMA and FSP1) determined by RT-PCR at the mRNA level and Western blot and immunofluorescence analysis at the protein level. In the in-vitro experiments, endothelial cells acquired a spindle-shaped morphology accompanying downregulation of the endothelial cell markers and upregulation of the mesenchymal cell markers when exposed to As2O3. As2O3 activated the AKT/GSK-3β/Snail signaling pathway, and blocking this pathway with PI3K inhibitor (LY294002) abolished EndMT in As2O3-treated endothelial cells. Our results highlight that As2O3 is an EndMT-promoting factor during cardiac fibrosis, suggesting that targeting EndMT is beneficial for preventing As2O3-induced cardiac toxicity. PMID:27671604

  2. Biomarkers of endothelial cell activation in early sepsis

    PubMed Central

    Skibsted, Simon; Jones, Alan E; Puskarich, Michael A.; Arnold, Ryan; Sherwin, Robert; Trzeciak, Stephen; Schuetz, Philipp; Aird, William C.; Shapiro, Nathan I

    2013-01-01

    PURPOSE To investigate the association of endothelial-related markers with organ dysfunction and in-hospital mortality to validate our earlier findings in a multicenter study. We hypothesize that: 1) endothelial biomarkers will be associated with organ dysfunction and mortality in sepsis; and, that sFlt-1, holds promise as novel prognostic markers in sepsis. METHODS A prospective, multicenter, observational study of a convenience sample of Emergency Department (ED) patients with a suspected infection presenting to one of four urban, academic medical center EDs between January 2009 and January 2010. We collected plasma while the patients were in the ED, and subsequently assayed endothelial-related biomarkers, namely sFlt-1, sE-Selectin, sICAM-1, sVCAM-1, and PAI-1. Outcomes were organ dysfunction and in-hospital mortality. RESULTS We enrolled at a total of 166 patients: 63 with sepsis (38%), 61 with severe sepsis (37%) and 42 with septic shock (25%). All endothelial biomarkers were significantly associated with sepsis severity, P < 0.002. We found a significant inter-correlation between all biomarkers, strongest between sFlt1 and PAI-1 (r=0.61, P < 0.001) and PAI-1 and sE-selectin and sICAM-1 (r=0.49, P < 0.001). Among the endothelial biomarkers, sFlt-1 had the strongest association with SOFA score (r=0.58, P < 0.001). sFlt-1 and PAI-1 had the highest area under the operating receiver characteristic curve for mortality of 0.87. CONCLUSIONS This multi-center validation study confirms that markers of endothelial activation are associated with sepsis severity, organ dysfunction and mortality in sepsis. This supports the hypothesis that the endothelium plays a central role in the pathophysiology of sepsis and may serve as a more accurate prediction tool and a target for therapies aimed at ameliorating endothelial cell dysfunction. Additionally, sFLT-1 holds promise as a novel sepsis severity biomarker. PMID:23524845

  3. In Vitro Endothelialization Test of Biomaterials Using Immortalized Endothelial Cells

    PubMed Central

    Kono, Ken; Hiruma, Hitomi; Kobayashi, Shingo; Sato, Yoji; Tanaka, Masaru; Sawada, Rumi; Niimi, Shingo

    2016-01-01

    Functionalizing biomaterials with peptides or polymers that enhance recruitment of endothelial cells (ECs) can reduce blood coagulation and thrombosis. To assess endothelialization of materials in vitro, primary ECs are generally used, although the characteristics of these cells vary among the donors and change with time in culture. Recently, primary cell lines immortalized by transduction of simian vacuolating virus 40 large T antigen or human telomerase reverse transcriptase have been developed. To determine whether immortalized ECs can substitute for primary ECs in material testing, we investigated endothelialization on biocompatible polymers using three lots of primary human umbilical vein endothelial cells (HUVEC) and immortalized microvascular ECs, TIME-GFP. Attachment to and growth on polymer surfaces were comparable between cell types, but results were more consistent with TIME-GFP. Our findings indicate that TIME-GFP is more suitable for in vitro endothelialization testing of biomaterials. PMID:27348615

  4. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells

    PubMed Central

    Wang, Jinju; Guo, Runmin; Yang, Yi; Jacobs, Bradley; Chen, Suhong; Iwuchukwu, Ifeanyi; Gaines, Kenneth J.; Chen, Yanfang; Simman, Richard; Lv, Guiyuan; Wu, Keng; Bihl, Ji C.

    2016-01-01

    Exosomes (EXs) are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads and fluorescence quantum dots (Q-dots®) techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by using nanoparticle tracking analysis (NTA) system. The sensitivities of the cell origin markers for ECs (CD105, CD144) and EPCs (CD34, KDR) were evaluated. The sensitivity and specificity were determined by using positive and negative markers for EXs (CD63), platelets (CD41), erythrocytes (CD235a), and microvesicles (Annexin V). Moreover, the methods were further validated in particle-free plasma and patient samples. Results showed that anti-CD105/anti-CD144 and anti-CD34/anti-KDR had the highest sensitivity and specificity for isolating and detecting EC-EXs and EPC-EXs, respectively. The methods had the overall recovery rate of over 70% and were able to detect the dynamical changes of circulating EC-EXs and EPC-EXs in acute ischemic stroke. In conclusion, we have developed sensitive and specific microbeads/Q-dots fluorescence NTA methods for EC-EX and EPC-EX isolation and detection, which will facilitate the functional study and biomarker discovery. PMID:27118976

  5. The Novel Methods for Analysis of Exosomes Released from Endothelial Cells and Endothelial Progenitor Cells.

    PubMed

    Wang, Jinju; Guo, Runmin; Yang, Yi; Jacobs, Bradley; Chen, Suhong; Iwuchukwu, Ifeanyi; Gaines, Kenneth J; Chen, Yanfang; Simman, Richard; Lv, Guiyuan; Wu, Keng; Bihl, Ji C

    2016-01-01

    Exosomes (EXs) are cell-derived vesicles that mediate cell-cell communication and could serve as biomarkers. Here we described novel methods for purification and phenotyping of EXs released from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads and fluorescence quantum dots (Q-dots®) techniques. EXs from the culture medium of ECs and EPCs were isolated and detected with cell-specific antibody conjugated microbeads and second antibody conjugated Q-dots by using nanoparticle tracking analysis (NTA) system. The sensitivities of the cell origin markers for ECs (CD105, CD144) and EPCs (CD34, KDR) were evaluated. The sensitivity and specificity were determined by using positive and negative markers for EXs (CD63), platelets (CD41), erythrocytes (CD235a), and microvesicles (Annexin V). Moreover, the methods were further validated in particle-free plasma and patient samples. Results showed that anti-CD105/anti-CD144 and anti-CD34/anti-KDR had the highest sensitivity and specificity for isolating and detecting EC-EXs and EPC-EXs, respectively. The methods had the overall recovery rate of over 70% and were able to detect the dynamical changes of circulating EC-EXs and EPC-EXs in acute ischemic stroke. In conclusion, we have developed sensitive and specific microbeads/Q-dots fluorescence NTA methods for EC-EX and EPC-EX isolation and detection, which will facilitate the functional study and biomarker discovery.

  6. [Medical significance of endothelial glycocalyx].

    PubMed

    Frati-Munari, Alberto C

    2013-01-01

    Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. It has several physiological roles: shear stress mechanotransduction to the endothelial cells, regulation of fluids and macromolecules vascular permeability, of coagulation cascade activation and fibrinolysis, and protects the endothelium from platelets and leukocytes adhesion. In general, glycocalyx protects vascular wall against pathogenic insults. The glycocalyx may be damaged by abnormal shear stress, reactive oxygen species, hypernatremia, hyperglycemia, hypercholesterolemia and inflammatory molecules, resulting in endothelial dysfunction, enhanced vascular permeability, lipoproteins leakage to subendothelial space, activation of plasma coagulation, and increased adherence of platelets and leukocytes to the endothelial cells. Shredding of glycocalyx appears as an important initial step in the pathophysiology of vascular diseases.

  7. [Hypertension, endothelial dysfunction and cardiovascular risk].

    PubMed

    Nitenberg, A

    2006-10-01

    Increased blood pressure induces functional and structural changes of the vascular endothelium. Depression of endothelium-dependant vasodilatation is an early manifestation of endothelial dysfunction due to hypertension. It can be demonstrated by pharmacological or physiological tests. Decreased availability of nitric oxide (NO) is a major determinant of the depression of vasodilatation. It may be caused by a reduction in the activity of NO-endothelial synthase (NOSe) related to: 1) a deficit in substrate (L-arginine), 2) an inhibition by asymmetrical dimethylarginine, 3) a deficit in the cofactor tetrahydrobiopterin (BH4). However, the increase in oxidative stress, a producer of superoxide radicals which combine with NO to form peroxynitrates (ONOO-), is the determining factor. It is related to activation of membranous NAD(P)H oxidases initiated by the stimulation of activating mecanosensors of protein C kinase. The message is amplified by oxidation of BH4 which transforms the NOSe into a producer of superoxide radicals. A cascade of auto-amplification loops leading to atherosclerosis and its complications is then triggered. The superoxide radicals and the peroxynitrates oxidise the LDL-cholesterol. They activate the nuclear factor-kappaB which controls the genes stimulating the expression of many proteins: angiotensinogen and AT1 receptors which stimulate the sympathetic system, receptors of oxidised LDL, adhesion and migration factors (ICAM-1, VCAM-1, E-selectin and MCP-1), pro-inflammatory cytokins (interleukines and TNF-alpha), growth factors (MAP kinases), plasminogen activator inhibitor 1. The monocytes and smooth muscle cells produce metalloproteinases and pro-inflammatory cytokins which destabilise the atheromatous plaque and favourise vascular remodelling. Inshort, the endothelial dysfunction due to hypertension plays a role in a complex physiopathological process and is a marker of future cardiovascular events.

  8. Haemodynamical variables versus endothelial hormones in hypertensive and type 2 diabetic patients with endothelial dysfunction.

    PubMed

    Fouillioux, Christian; Contreras, Freddy; Lares, Mary; Magaldi, Luis; Velasco, Manuel; La Mayda, Claudia; Pacheco, Betsy; Rojas, Joselyn; Chacín, Maricarmen; Cano, Raquel; Gotera, Daniela; Bermúdez, Valmore

    2010-01-01

    Leptin is a 167 aminoacid peptidic hormone secreted by adipose tissue. It works mainly in the hypothalamus at thirst signal, but given its closed connections with inflammatory and endothelial systems, also has been postulated that it may exert a regulatory control over blood pressure (BP), interacting with nitric oxide (NO) and C reactive protein (CRP). The cold pressor test (CPT) is a simple test that indirectly determines endothelial dysfunction. In this work, biochemical indicators (CRP, leptin, and NO) and hemodynamic indicators (systolic and diastolic BP) were performed and evaluated in hypertensive, type 2 diabetic, and control subjects during a single CPT for assessment of endothelial dysfunction. A total of 43 subjects, males and females aged 25 to 60 years and divided in three groups, 15 healthy volunteers, 13 hypertensive patients, and 15 patients with type 2 diabetes, were included in the study. A complete clinical history was obtained from each subject, and a complete physical examination, including an electrocardiogram was carried out. During the assay of 30 minutes, 0.9% saline was infused intravenously. CPT was performed to assess the cardiovascular reactivity at minute 15. The cardiovascular variables (systolic and diastolic BP) were measured in minute 0, 16, and 30. In addition, serum variables were obtained at the beginning and at the end of the experiment, and statistical analysis was performed. CPT caused in all subjects a significant increase of BP and pulse. There were no significant differences to CPR and leptin in any group, although we observed significant differences for NO (P < 0.05). Sensitivity and specificity for all biochemical variables resulted in nonsignificant statistical or clinical importance as markers of endothelial dysfunction; however, a positive association was found when leptin and NO were evaluated together (sensitivity: 0.2; specificity. 0.8). CRP, leptin, and NO did not shown any direct and significant association with

  9. Tumor endothelial cells with distinct patterns of TGFβ-driven endothelial-to-mesenchymal transition

    PubMed Central

    Xiao, Lin; Kim, Dae Joong; Davis, Clayton L.; McCann, James V.; Dunleavey, James M.; Vanderlinden, Alissa; Xu, Nuo; Pattenden, Samantha G.; Frye, Stephen V.; Xu, Xia; Onaitis, Mark; Monaghan-Benson, Elizabeth; Burridge, Keith; Dudley, Andrew C.

    2015-01-01

    Endothelial-to-mesenchymal transition (EndMT) occurs during development and underlies the pathophysiology of multiple diseases. In tumors, unscheduled EndMT generates cancer-associated myofibroblasts that fuel inflammation and fibrosis, and may contribute to vascular dysfunction that promotes tumor progression. We report that freshly isolated subpopulations of tumor-specific endothelial cells (TEC) from a spontaneous mammary tumor model undergo distinct forms of EndMT in response to TGFβ stimulation. Whereas some TEC strikingly up-regulate alpha smooth muscle actin (SMA), a principal marker of EndMT and activated myofibroblasts, counterpart normal mammary gland endothelial cells (NEC) showed little change in SMA expression after TGFβ treatment. Compared with NEC, SMA+ TEC were 40 % less motile in wound healing assays and formed more stable vascular-like networks in vitro when challenged with TGFβ. Lineage tracing using ZsGreenCdh5-Cre reporter mice confirmed that only a fraction of vessels in breast tumors contain SMA+ TEC, suggesting that not all endothelial cells (EC) respond identically to TGFβ in vivo. Indeed, examination of 84 TGFβ-regulated target genes revealed entirely different genetic signatures in TGFβ-stimulated NEC and TEC cultures. Finally, we found that basic FGF (bFGF) exerts potent inhibitory effects on many TGFβ-regulated genes but operates in tandem with TGFβ to up-regulate others. EC challenged with TGFβ secrete bFGF which blocks SMA expression in secondary cultures suggesting a cell-autonomous or lateral-inhibitory mechanism for impeding mesenchymal differentiation. Together, our results suggest that TGFβ-driven EndMT produces a spectrum of EC phenotypes with different functions that could underlie the plasticity and heterogeneity of the tumor vasculature. PMID:25634211

  10. Isolation of endothelial cells and pericytes from swine corpus luteum.

    PubMed

    Basini, G; Falasconi, I; Bussolati, S; Grolli, S; Ramoni, R; Grasselli, F

    2014-07-01

    From an angiogenesis perspective, the ovary offers a unique opportunity to study the physiological development of blood vessels. The first purpose of this work was to set up a protocol for the isolation of pig corpus luteum endothelial cells, which were characterized by both morphologic parameters and the expression of typical molecular markers; we also verified their ability to form capillary-like structures in a 3-dimensional matrix, their response to hypoxia and their migration in the presence of vascular endothelial growth factor (VEGF). The effectiveness of our isolation protocol was confirmed by the characteristic "cobblestone shape" of isolated cells at confluence as well as their expression of all the examined endothelial markers. Our data also showed a significant cell production of VEGF and nitric oxide. Isolated endothelial cells were also responsive to hypoxia by increasing the expression and production of VEGF and decreasing that of nitric oxide. In the angiogenesis bioassay, cells displayed the ability of forming capillary-like structures and also exhibited a significant migration in the scratch test. Our data suggest that the isolation of luteal endothelial cells represents a promising tool in experiments designed to clarify the biology of the angiogenic process. Furthermore, we have demonstrated that the isolated population comprises a subset of cells with a multidifferentiative capacity toward the chondrocytic and adipocytic phenotypes. These data suggest the presence of a perivascular or adventitial cell niche in the vascular wall of the corpus luteum populated with cells showing mesenchymal stem cell-like features, as already demonstrated for the adipose tissue and endometrium.

  11. Endothelial cell permeability to water and antipyrine

    SciTech Connect

    Garrick, R.A.

    1986-03-05

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water (/sup 3/HHO) and /sup 14/C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for /sup 3/HHO through the packed cells (D), the intracellular material (D/sub 2/), and the extracellular material (D/sub 1/) were 0.682, 0.932 and 2.45 x 10/sup -5/ cm/sup 2/ s/sup -1/ and for AP were 0.273, 0.355 and 1.13 x 10/sup -5/ cm/sup 2/ s/sup -1/ respectively. The permeability coefficient calculated by the series-parallel pathway model for /sup 3/HHO was higher than that for AP and for both /sup 3/HHO and AP were lower than those calculated for isolated lung cells and erythrocytes.

  12. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury.

    PubMed

    Basile, David P; Friedrich, Jessica L; Spahic, Jasmina; Knipe, Nicole; Mang, Henry; Leonard, Ellen C; Changizi-Ashtiyani, Saeed; Bacallao, Robert L; Molitoris, Bruce A; Sutton, Timothy A

    2011-03-01

    Acute kidney injury induces the loss of renal microvessels, but the fate of endothelial cells and the mechanism of potential vascular endothelial growth factor (VEGF)-mediated protection is unknown. Cumulative cell proliferation was analyzed in the kidney of Sprague-Dawley rats following ischemia-reperfusion (I/R) injury by repetitive administration of BrdU (twice daily) and colocalization in endothelial cells with CD31 or cablin. Proliferating endothelial cells were undetectable for up to 2 days following I/R and accounted for only ∼1% of BrdU-positive cells after 7 days. VEGF-121 preserved vascular loss following I/R but did not affect proliferation of endothelial, perivascular cells or tubular cells. Endothelial mesenchymal transition states were identified by localizing endothelial markers (CD31, cablin, or infused tomato lectin) with the fibroblast marker S100A4. Such structures were prominent within 6 h and sustained for at least 7 days following I/R. A Tie-2-cre transgenic crossed with a yellow fluorescent protein (YFP) reporter mouse was used to trace the fate of endothelial cells and demonstrated interstititial expansion of YFP-positive cells colocalizing with S100A4 and smooth muscle actin following I/R. The interstitial expansion of YFP cells was attenuated by VEGF-121. Multiphoton imaging of transgenic mice revealed the alteration of YFP-positive vascular cells associated with blood vessels characterized by limited perfusion in vivo. Taken together, these data indicate that vascular dropout post-AKI results from endothelial phenotypic transition combined with an impaired regenerative capacity, which may contribute to progressive chronic kidney disease. PMID:21123492

  13. Mechanisms of Tubulogenesis and Endothelial Phenotype Expression by MSCs

    PubMed Central

    Rytlewski, Julie A; Aldon, M Alejandra; Lewis, Evan W; Suggs, Laura J

    2015-01-01

    Stem cell-based therapies are a promising new avenue for treating ischemic disease and chronic wounds. Mesenchymal stem cells (MSCs) have a proven ability to augment the neovascularization processes necessary for wound healing and are widely popular as an autologous source of progenitor cells. Our lab has previously reported on PEGylated fibrin as a unique hydrogel that promotes spontaneous tubulogenesis of encapsulated MSCs without exogenous factors. However, the mechanisms underlying this process have remained unknown. To better understand the therapeutic value of PEGylated fibrin delivery of MSCs, we sought to clarify the relationship between biomaterial properties and cell behavior. Here we find that fibrin PEGylation does not dramatically alter the macroscopic mechanical properties of the fibrin-based matrix (less than 10% difference). It does, however, dramatically reduce the rate of diffusion through the gel matrix. PEGylated fibrin enhances the tubulogenic growth of encapsulated MSCs demonstrating fluid-filled lumens by interconnected MSCs. Image analysis gave a value of 4320±1770µm total network length versus 618±443µm for unmodified fibrin. PEGylation promotes the endothelial phenotype of encapsulated MSCs—compared to unmodified fibrin—as evidenced by higher levels of endothelial markers (von Willebrand factor, 2.2-fold; vascular endothelial cadherin, 1.8-fold) and vascular endothelial growth factor (VEGF, up to 1.8-fold). Prospective analysis of underlying molecular pathways demonstrated that this endothelial-like MSC behavior is sensitively modulated by hypoxic stress, but not VEGF supplementation as evidenced by a significant increase in VEGF and MMP-2 secretion per cell under hypoxia. Further gain-of-function studies under hypoxic stress demonstrated that hypoxia culture of MSCs in unmodified fibrin could increase both vWF and VE-cadherin levels to values that were not significantly different than cells cultured in PEGylated fibrin. This

  14. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites.

    PubMed

    Hung, Huey-Shan; Yang, Yi-Chun; Lin, Yu-Chun; Lin, Shinn-Zong; Kao, Wei-Chien; Hsieh, Hsien-Hsu; Chu, Mei-Yun; Fu, Ru-Huei; Hsu, Shan-hui

    2014-08-01

    The mobilization and homing of endothelial progenitor cells (EPCs) are critical to the development of an antithrombotic cardiovascular prosthesis. Polyurethane (PU) with superior elasticity may provide a mechanical environment resembling that of the natural vascular tissues. The topographical cues of PU were maximized by making nanocomposites with a small amount of gold nanoparticles (AuNPs). The nanocomposites of PU-AuNPs ("PU-Au") with a favorable response of endothelial cells were previously established. In the current study, the effect of PU and PU-Au nanocomposites on the behavior of human peripheral blood EPCs was investigated in vitro and in vivo. It was found that PU-Au promoted EPCs to become differentiated endothelial cells in vitro, confirmed by the increased expressions of CD31 and VEGF-R2 surface markers. The increased maturation of EPCs was significantly more remarkable on PU-Au, probably through the stromal derived factor 1α (SDF-1α)/CXCR4 signaling pathway. In vivo experiments showed that EPCs seeded on PU-Au coated catheters effectively reduced thrombosis by differentiation into endothelial cells. Surface endothelialization with CD31 and CD34 expression as well as intimal formation with α-SMA expression was significantly accelerated in the group receiving EPC-seeded PU-Au catheters. Moreover, the analysis of collagen deposition revealed a reduction of fibrosis in the group receiving EPC-seeded PU-Au catheters as compared to the other groups. These results suggest that EPCs engineered with a proper elastic substrate may provide unique endothelialization and antithrombogenic properties that benefit vascular tissue regeneration. PMID:24836305

  15. Liver Sinusoidal Endothelial Cells.

    PubMed

    Sørensen, Karen Kristine; Simon-Santamaria, Jaione; McCuskey, Robert S; Smedsrød, Bård

    2015-10-01

    The liver sinusoidal endothelial cell (LSEC) forms the fenestrated wall of the hepatic sinusoid and functions as a control post regulating and surveying the trafficking of molecules and cells between the liver parenchyma and the blood. The cell acts as a scavenger cell responsible for removal of potential dangerous macromolecules from blood, and is increasingly acknowledged as an important player in liver immunity. This review provides an update of the major functions of the LSEC, including its role in plasma ultrafiltration and regulation of the hepatic microcirculation, scavenger functions, immune functions, and role in liver aging, as well as issues that are either undercommunicated or confusingly dealt with in the literature. These include metabolic functions, including energy metabolic interplay between the LSEC and the hepatocyte, and adequate ways of identifying and distinguishing the cells.

  16. Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection.

    PubMed

    Kinnecom, Katie; Pachter, Joel S

    2005-12-01

    Laser capture microdissection (LCM) of the major cell types comprising brain microvessels offers a powerful technology to explore the molecular basis of the blood-brain barrier in health and disease. However, the ability to selectively retrieve endothelial or perivascular cells, without cross-contamination from the other, has proven difficult. Additionally, histochemical methods previously described for use with LCM have not allowed for identification of all the different size branches of the microvascular tree. Here, we describe a double immunostaining method, combining bright-field and fluorescence microscopy, and using an extensive dehydration with xylene, to clearly identify and spatially resolve endothelial from perivascular cells within all size microvascular branches in frozen brain sections. LCM of these sections, coupled with RNA analysis by reverse-transcription polymerase chain reaction, revealed that captured endothelial cells show endothelial markers but no detectable markers for astrocytes or smooth muscle cells/pericytes. Conversely, captured astrocytes or smooth muscle cells/pericytes demonstrate their respective markers, but not those of endothelial cells. This approach has applicability to microarray analysis, thereby enabling global gene profiling of the different cell types along the entirety of the brain microvascular tree.

  17. Tailoring Material Properties of Cardiac Matrix Hydrogels to Induce Endothelial Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Jeffords, Megan E.; Wu, Jinglei; Shah, Mickey; Hong, Yi; Zhang, Ge

    2015-01-01

    Cardiac matrix hydrogel has shown great promise as an injectable biomaterial due to the possession of cardiac-specific extracellular matrix composition. A cardiac matrix hydrogel facilitating neovascularization will further improve its therapeutic outcomes in cardiac repair. In this study, we explored the feasibility of tailoring material properties of cardiac matrix hydrogels using a natural compound, genipin, to promote endothelial differentiation of stem cells. Our results demonstrated that the genipin crosslinking could increase the mechanical properties of the cardiac matrix hydrogel to a stiffness range promoting endothelial differentiation of human mesenchymal stem cells (hMSCs). It also decreased the swelling ratio and prolonged degradation without altering gelation time. Human mesenchymal stem cells cultured on the genipin crosslinked cardiac matrix hydrogels showed great viability. After 1-day culture, hMSCs demonstrated down-regulation of early endothelial marker expression and up-regulation of mature endothelial marker expression. Especially for 1 mM genipin crosslinked cardiac matrix hydrogels, hMSCs showed particularly significant expression of mature endothelial cell marker vWF. These attractive results indicate the potential of using genipin crosslinked cardiac matrix hydrogels to promote rapid vascularization for cardiac infarction treatment through minimally invasive therapy. PMID:25946697

  18. Examining Endothelial Function and Platelet Reactivity in Patients with Depression before and after SSRI Therapy.

    PubMed

    Dawood, Tye; Barton, David A; Lambert, Elisabeth A; Eikelis, Nina; Lambert, Gavin W

    2016-01-01

    Although it is recognized that patients with major depressive disorder (MDD) are at increased risk of developing cardiovascular disease (CVD) the mechanisms responsible remain unknown. Endothelial dysfunction is one of the first signs of CVD. Using two techniques, flow-mediated dilatation in response to reactive hyperemia and laser Doppler velocimetry with iontophoresis, we examined endothelial function in the forearm before and after serotonin-specific reuptake inhibitor (SSRI) treatment in 31 patients with MDD. Measurement of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, soluble P-selectin, and noradrenaline in plasma was also performed. Prior to treatment, markers of endothelial and vascular function and platelet reactivity were within the normal range. Following SSRI therapy (95 ± 5 days) symptoms of depression were reduced (paired difference between pre- and post-treatment Hamilton rating -18 ± 1, P < 0.001) with 19 patients recovered and 4 remitted. There occurred no significant change in markers of endothelial or vascular function following SSRI therapy. The improvement in Hamilton depression rating in response to therapy could be independently predicted by the baseline arterial plasma noradrenaline concentration (r (2) = 0.36, P = 0.003). In this cohort of patients with MDD, SSRI therapy did not influence endothelial function or markers of vascular or platelet reactivity. Patient response to SSRI therapy could be predicted by the initial circulating level of noradrenaline, with noradrenaline levels being lower in responders. PMID:26924994

  19. Examining Endothelial Function and Platelet Reactivity in Patients with Depression before and after SSRI Therapy

    PubMed Central

    Dawood, Tye; Barton, David A.; Lambert, Elisabeth A.; Eikelis, Nina; Lambert, Gavin W.

    2016-01-01

    Although it is recognized that patients with major depressive disorder (MDD) are at increased risk of developing cardiovascular disease (CVD) the mechanisms responsible remain unknown. Endothelial dysfunction is one of the first signs of CVD. Using two techniques, flow-mediated dilatation in response to reactive hyperemia and laser Doppler velocimetry with iontophoresis, we examined endothelial function in the forearm before and after serotonin-specific reuptake inhibitor (SSRI) treatment in 31 patients with MDD. Measurement of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, soluble P-selectin, and noradrenaline in plasma was also performed. Prior to treatment, markers of endothelial and vascular function and platelet reactivity were within the normal range. Following SSRI therapy (95 ± 5 days) symptoms of depression were reduced (paired difference between pre- and post-treatment Hamilton rating −18 ± 1, P < 0.001) with 19 patients recovered and 4 remitted. There occurred no significant change in markers of endothelial or vascular function following SSRI therapy. The improvement in Hamilton depression rating in response to therapy could be independently predicted by the baseline arterial plasma noradrenaline concentration (r2 = 0.36, P = 0.003). In this cohort of patients with MDD, SSRI therapy did not influence endothelial function or markers of vascular or platelet reactivity. Patient response to SSRI therapy could be predicted by the initial circulating level of noradrenaline, with noradrenaline levels being lower in responders. PMID:26924994

  20. Isolated tumor endothelial cells maintain specific character during long-term culture

    SciTech Connect

    Matsuda, Kohei; Ohga, Noritaka; Hida, Yasuhiro; Muraki, Chikara; Tsuchiya, Kunihiko; Kurosu, Takuro; Akino, Tomoshige; Shih, Shou-Ching; and others

    2010-04-16

    Tumor angiogenesis is necessary for solid tumor progression and metastasis. Increasing evidence indicates that tumor endothelial cells (TECs) are more relevant to the study of tumor angiogenesis than normal endothelial cells (NECs) because their morphologies and gene expression are different from NECs. However, it is challenging to isolate and culture large numbers of pure ECs from tumor tissue since the percentage of ECs is only about 1-2% and tumor cells and fibroblasts easily overgrow them. In addition, there has been concern that isolated TECs may lose their special phenotype once they are dissociated from tumor cells. In this study, we have successfully purified murine TECs from four different human tumor xenografts and NECs from murine dermal tissue. Isolated ECs expressed endothelial markers, such as CD31, VE-cadherin (CD144), and endoglin (CD105), for more than 3 months after isolation. TECs maintained tumor endothelial-specific markers, such as tumor endothelial marker 8 (TEM8) and aminopeptidase N (APN), as in tumor blood vessels in vivo. In addition, TECs were more proliferative and motile than NECs. TECs showed a higher response to VEGF and higher expression of VEGF receptors-1 and -2 than NECs did. Stem cell antigen-1 was up-regulated in all four TECs, suggesting that they have a kind of stemness. Cultured TECs maintain distinct biological differences from NECs as in vivo. In conclusion, it was suggested that TECs are relevant material for tumor angiogenesis research.

  1. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2.

    PubMed

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe

    2014-09-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases.

  2. Endotoxin-Induced Endothelial Fibrosis Is Dependent on Expression of Transforming Growth Factors β1 and β2

    PubMed Central

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio

    2014-01-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972

  3. Solid tumor therapy by selectively targeting stromal endothelial cells.

    PubMed

    Liu, Shihui; Liu, Jie; Ma, Qian; Cao, Liu; Fattah, Rasem J; Yu, Zuxi; Bugge, Thomas H; Finkel, Toren; Leppla, Stephen H

    2016-07-12

    Engineered tumor-targeted anthrax lethal toxin proteins have been shown to strongly suppress growth of solid tumors in mice. These toxins work through the native toxin receptors tumor endothelium marker-8 and capillary morphogenesis protein-2 (CMG2), which, in other contexts, have been described as markers of tumor endothelium. We found that neither receptor is required for tumor growth. We further demonstrate that tumor cells, which are resistant to the toxin when grown in vitro, become highly sensitive when implanted in mice. Using a range of tissue-specific loss-of-function and gain-of-function genetic models, we determined that this in vivo toxin sensitivity requires CMG2 expression on host-derived tumor endothelial cells. Notably, engineered toxins were shown to suppress the proliferation of isolated tumor endothelial cells. Finally, we demonstrate that administering an immunosuppressive regimen allows animals to receive multiple toxin dosages and thereby produces a strong and durable antitumor effect. The ability to give repeated doses of toxins, coupled with the specific targeting of tumor endothelial cells, suggests that our strategy should be efficacious for a wide range of solid tumors. PMID:27357689

  4. Endothelial activation and injury by cigarette smoke exposure.

    PubMed

    Guarino, F; Cantarella, G; Caruso, M; Russo, C; Mancuso, S; Arcidiacono, G; Cacciola, R R; Bernardini, R; Polosa, R

    2011-01-01

    Endothelial activation/injury following exposure to cigarette smoke may explain incidence of atherosclerosis and cardiovascular disease in smokers. We investigated cigarette smoke extract (CSE) effects relative to activation, injury, and survival of human umbilical vein endothelial cells (HUVEC) and compared circulating levels of specific endothelial activation markers between smokers and healthy non-smokers before and after smoking cessation. Viability and toxicity of HUVEC were tested by MTT and LDH assay. Release (by endothelial cells) and circulating levels (in smokers) of von Willebrand Factor (vWF), thrombomodulin (TM), was evaluated by ELISA. Incubation with increasing concentrations of CSE reduced the percentage of viable cells, being 33.9%, 23.9% after CSE 4%, 6% respectively. Dose- and time-dependent release of LDH was observed after incubation with CSE. vWF, TM release were assayed after CSE 2% HUVEC stimulation. Significant 42%, 61%, 76% increase in vWF concentration was detected respectively at 30', 60', 120'. Reduction in circulating levels of vWF, from a median value of 144.0% to 123.7%, was observed in the quitters group after smoking cessation. Exposure to cigarette smoke is cytotoxic and induces activation/injury of endothelium in vitro and in vivo. These findings may provide pathogenetic basis by which smoking can predispose to development of atherothrombosis and cardiovascular disease. PMID:21880215

  5. Evolution of Neuronal and Endothelial Transcriptomes in Primates

    PubMed Central

    Giger, Thomas; Khaitovich, Philipp; Somel, Mehmet; Lorenc, Anna; Lizano, Esther; Harris, Laura W.; Ryan, Margaret M.; Lan, Martin; Wayland, Matthew T.; Bahn, Sabine; Pääbo, Svante

    2010-01-01

    The study of gene expression evolution in vertebrates has hitherto focused on the analysis of transcriptomes in tissues of different species. However, because a tissue is made up of different cell types, and cell types differ with respect to their transcriptomes, the analysis of tissues offers a composite picture of transcriptome evolution. The isolation of individual cells from tissue sections opens up the opportunity to study gene expression evolution at the cell type level. We have stained neurons and endothelial cells in human brains by antibodies against cell type-specific marker proteins, isolated the cells using laser capture microdissection, and identified genes preferentially expressed in the two cell types. We analyze these two classes of genes with respect to their expression in 62 different human tissues, with respect to their expression in 44 human “postmortem” brains from different developmental stages and with respect to between-species brain expression differences. We find that genes preferentially expressed in neurons differ less across tissues and developmental stages than genes preferentially expressed in endothelial cells. We also observe less expression differences within primate species for neuronal transcriptomes. In stark contrast, we see more gene expression differences between humans, chimpanzees, and rhesus macaques relative to within-species differences in genes expressed preferentially in neurons than in genes expressed in endothelial cells. This suggests that neuronal and endothelial transcriptomes evolve at different rates within brain tissue. PMID:20624733

  6. Senescence-Induced Oxidative Stress Causes Endothelial Dysfunction.

    PubMed

    Bhayadia, Raj; Schmidt, Bernhard M W; Melk, Anette; Hömme, Meike

    2016-02-01

    Age is a risk factor for cardiovascular disease, suggesting a causal relationship between age-related changes and vascular damage. Endothelial dysfunction is an early pathophysiological hallmark in the development of cardiovascular disease. Senescence, the cellular equivalent of aging, was proposed to be involved in endothelial dysfunction, but functional data showing a causal relationship are missing.Endothelium-dependent vasodilation was measured in aortic rings ex vivo. We investigated aortas from aged C57Bl/6 mice (24-28 months), in which p16 (INK4a) and p19 (ARF) expression, markers of stress-induced senescence, were significantly induced compared to young controls (4-6 months). To reflect telomere shortening in human aging, we investigated aortas from telomerase deficient (Terc(-/-)) mice of generation 3 (G3). Endothelium-dependent vasodilation in aged wildtype and in Terc(-/-) G3 mice was impaired. A combination of the superoxide dismutase mimetic 1-Oxyl-2,2,6, 6-tetramethyl-4-hydroxypiperidine (TEMPOL) and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin significantly improved endothelium-dependent vasodilation in aged wildtype and Terc(-/-) G3 mice compared to untreated controls. We show that both, aging and senescence induced by telomere shortening, cause endothelial dysfunction that can be restored by antioxidants, indicating a role for oxidative stress. The observation that cellular senescence is a direct signalling event leading to endothelial dysfunction holds the potential to develop new targets for the prevention of cardiovascular disease.

  7. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress

    PubMed Central

    Vairappan, Balasubramaniyan

    2015-01-01

    This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases. PMID:25848469

  8. Expression of endothelial selectin ligands on human leukocytes following dive.

    PubMed

    Glavas, Duska; Markotic, Anita; Valic, Zoran; Kovacic, Natasa; Palada, Ivan; Martinic, Roko; Breskovic, Toni; Bakovic, Darija; Brubakk, Alf O; Dujic, Zeljko

    2008-09-01

    The fact that impaired endothelial-dependent vasodilatation after scuba diving often occurs without visible changes in the endothelial layer implies its biochemical origin. Since Lewisx(CD15) and sialyl-Lewisx(CD15s) are granulocyte and monocyte carbohydrate antigens recognized as ligands by endothelial selectins, we assumed that they could be sensitive markers for impaired vasodilatation following diving. Using flow cytometry, we determined the CD15 and CD15s peripheral blood mononuclear cells of eight divers, 30 mins before and 50 mins after a single dive to 54 m for 20 mins bottom time. The number of gas bubbles in the right heart was monitored by ultrasound. Gas bubbles were seen in all eight divers, with the average number of bubbles/cm2 1.9+/-1.9. The proportion of CD15+monocytes increased 2-fold after the dive as well as the subpopulation of monocytes highly expressing CD15s. The absolute number of monocytes was slightly, but not significantly, increased after the dive, whereas the absolute number of granulocytes was markedly elevated (up to 61%). There were no significant correlations between bubble formation and CD15+monocyte expression (r=-0.56; P=0.17), as well as with monocytes highly expressing CD15s (r=0.43; P=0.29). This study suggests that biochemical changes induced by scuba diving primarily activate existing monocytes rather than increase the number of monocytes at a time of acute arterial endothelial dysfunction.

  9. Thrombocytes Correlate with Lymphangiogenesis in Human Esophageal Cancer and Mediate Growth of Lymphatic Endothelial Cells In Vitro

    PubMed Central

    Schoppmann, Sebastian F.; Alidzanovic, Lejla; Schultheis, Andrea; Perkmann, Thomas; Brostjan, Christine; Birner, Peter

    2013-01-01

    Recent data provide evidence for an important role of thrombocytes in lymphangiogenesis within human malignant disease. The aim of this study was to investigate the role of thrombocytes in lymphangiogenesis in human esophageal cancer. Perioperative peripheral blood platelet counts (PBPC) were evaluated retrospectively in 320 patients with esophageal cancer, comprising 184 adenocarcinomas (AC), and 136 squamous cell carcinomas (SCC). Data on lymphangiogenesis evaluated by anti-podoplanin immunostaining were available from previous studies, platelets within the tumor tissue were assessed by CD61 immunostaining. For in vitro studies, human lymphatic endothelial cells (LECs) were isolated and co-cultured with peripheral blood platelets. Stromal thrombocytic clusters (STC) were evident in 82 samples (25.6%), and vascular thrombocytic clusters (VTC) in 56 (17.5%). STC and VTC were associated with a significantly higher PBPC at investigation of all cases. The presence of STC was associated with higher lymphatic microvessel density (p<0.001), PBPC and STC were associated with lymphovascular invasion of tumor cells in a regression model. The presence of STCs was associated with shorter DFS of all patients (p = 0.036, Breslow test), and VTC with shorter DFS in in SCC (p = 0.025, Breslow test). In cell culture, LEC proliferation was enhanced by co-culture with human platelets in a dose- and time-dependent manner mediated by the release of PDGF-BB and VEGF-C. Platelets play an important role in lymphangiogenesis and lymphovascular invasion in esophageal cancer, influencing prognosis. So the disruption of signaling pathways between platelets, tumor cells and lymphatic endothelium might be of benefit for patients. PMID:23840559

  10. Thrombocytes Correlate with Lymphangiogenesis in Human Esophageal Cancer and Mediate Growth of Lymphatic Endothelial Cells In Vitro.

    PubMed

    Schoppmann, Sebastian F; Alidzanovic, Lejla; Schultheis, Andrea; Perkmann, Thomas; Brostjan, Christine; Birner, Peter

    2013-01-01

    Recent data provide evidence for an important role of thrombocytes in lymphangiogenesis within human malignant disease. The aim of this study was to investigate the role of thrombocytes in lymphangiogenesis in human esophageal cancer. Perioperative peripheral blood platelet counts (PBPC) were evaluated retrospectively in 320 patients with esophageal cancer, comprising 184 adenocarcinomas (AC), and 136 squamous cell carcinomas (SCC). Data on lymphangiogenesis evaluated by anti-podoplanin immunostaining were available from previous studies, platelets within the tumor tissue were assessed by CD61 immunostaining. For in vitro studies, human lymphatic endothelial cells (LECs) were isolated and co-cultured with peripheral blood platelets. Stromal thrombocytic clusters (STC) were evident in 82 samples (25.6%), and vascular thrombocytic clusters (VTC) in 56 (17.5%). STC and VTC were associated with a significantly higher PBPC at investigation of all cases. The presence of STC was associated with higher lymphatic microvessel density (p<0.001), PBPC and STC were associated with lymphovascular invasion of tumor cells in a regression model. The presence of STCs was associated with shorter DFS of all patients (p = 0.036, Breslow test), and VTC with shorter DFS in in SCC (p = 0.025, Breslow test). In cell culture, LEC proliferation was enhanced by co-culture with human platelets in a dose- and time-dependent manner mediated by the release of PDGF-BB and VEGF-C. Platelets play an important role in lymphangiogenesis and lymphovascular invasion in esophageal cancer, influencing prognosis. So the disruption of signaling pathways between platelets, tumor cells and lymphatic endothelium might be of benefit for patients.

  11. Activation of small ruminant aortic endothelial cells after in vitro infection by caprine arthritis encephalitis virus.

    PubMed

    Jan, C L; Greenland, T; Gounel, F; Balleydier, S; Mornex, J F

    2000-12-01

    Small ruminants infected by the lentiviruses caprine arthritis-encephalitis virus (CAEV), originally isolated from a goat, or maedi-visna virus, originally from sheep, typically develop an organising lymphoid infiltration of affected tissues. This could reflect modulation of the migration pattern of lymphocytes in infected animals. Possible active contribution by vascular endothelial cells was investigated using an in vitro model. Low-passage cultured ovine aortic endothelium proved susceptible to productive infection by CAEV without significant cytotoxicity. Infected endothelial cells maintained expression of endothelial markers, increased MHC class I antigen expression and initiated expression of the adhesion molecule VCAM -1 and, at a late stage, MHC class II antigens. Infected endothelial cells showed a two-fold increase in binding capacity for sheep peripheral blood leucocytes over uninfected controls. Such events could contribute to the tissue distribution of lymphoid cells and local immune responses in lentiviral infections of small ruminants. PMID:11124093

  12. Diabetes Causes Bone Marrow Endothelial Barrier Dysfunction by Activation of the RhoA–Rho-Associated Kinase Signaling Pathway

    PubMed Central

    Mangialardi, Giuseppe; Katare, Rajesh; Oikawa, Atsuhiko; Meloni, Marco; Reni, Carlotta; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Objective Diabetes mellitus causes bone marrow (BM) microangiopathy. This study aimed to investigate the mechanisms responsible for BM endothelial dysfunction in diabetes mellitus. Methods and Results The analysis of differentially expressed transcripts in BM endothelial cells (BMECs) from type-1 diabetic and nondiabetic mice showed an effect of diabetes mellitus on signaling pathways controlling cell death, migration, and cytoskeletal rearrangement. Type-1 diabetic-BMECs displayed high reactive oxygen species levels, increased expression and activity of RhoA and its associated protein kinases Rho-associated kinase 1/Rho-associated kinase 2, and reduced Akt phosphorylation/activity. Likewise, diabetes mellitus impaired Akt-related BMEC functions, such as migration, network formation, and angiocrine factor-releasing activity, and increased vascular permeability. Moreover, high glucose disrupted BMEC contacts through Src tyrosine kinase phosphorylation of vascular endothelial cadherin. These alterations were prevented by constitutively active Akt (myristoylated Akt), Rho-associated kinase inhibitor Y-27632, and Src inhibitors. Insulin replacement restored BMEC abundance, as assessed by flow cytometry analysis of the endothelial marker MECA32, and endothelial barrier function in BM of type-1 diabetic mice. Conclusion Redox-dependent activation of RhoA/Rho-associated kinase and Src/vascular endothelial cadherin signaling pathways, together with Akt inactivation, contribute to endothelial dysfunction in diabetic BM. Metabolic control is crucial for maintenance of endothelial cell homeostasis and endothelial barrier function in BM of diabetic mice. PMID:23307872

  13. A tissue-specific endothelial cell molecule involved in lymphocyte homing

    NASA Astrophysics Data System (ADS)

    Streeter, Philip R.; Berg, Ellen Lakey; Rouse, Bich Tien N.; Bargatze, Robert F.; Butcher, Eugene C.

    1988-01-01

    An endothelial cell surface molecule that is selectively expressed in mucosal organs is required for lymphocyte homing to mucosal lymphoid tissues. This 'vascular addressin' appears to function as a tissue-specific marker or address signal for recognition by lymphocytes circulating in the blood.

  14. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta

    PubMed Central

    Leclercq, Anne; Veillat, Véronique; Loriot, Sandrine; Spuul, Pirjo; Madonna, Francesco; Roques, Xavier; Génot, Elisabeth

    2015-01-01

    Background Aortic diseases are diverse and involve a multiplicity of biological systems in the vascular wall. Aortic dissection, which is usually preceded by aortic aneurysm, is a leading cause of morbidity and mortality in modern societies. Although the endothelium is now known to play an important role in vascular diseases, its contribution to aneurysmal aortic lesions remains largely unknown. The aim of this study was to define a reliable methodology for the isolation of aortic intimal and adventitial endothelial cells in order to throw light on issues relevant to endothelial cell biology in aneurysmal diseases. Methodology/Principal Findings We set up protocols to isolate endothelial cells from both the intima and the adventitia of human aneurysmal aortic vessel segments. Throughout the procedure, analysis of cell morphology and endothelial markers allowed us to select an endothelial fraction which after two rounds of expansion yielded a population of >90% pure endothelial cells. These cells have the features and functionalities of freshly isolated cells and can be used for biochemical studies. The technique was successfully used for aortic vessel segments of 20 patients and 3 healthy donors. Conclusions/Significance This simple and highly reproducible method allows the simultaneous preparation of reasonably pure primary cultures of intimal and adventitial human endothelial cells, thus providing a reliable source for investigating their biology and involvement in both thoracic aneurysms and other aortic diseases. PMID:26599408

  15. Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation?

    PubMed

    Ribeiro, Fernando; Alves, Alberto Jorge; Duarte, José Alberto; Oliveira, José

    2010-06-11

    There is an increasing evidence that endothelial dysfunction and vascular wall inflammation are present in all stages of atherosclerosis. Atherosclerosis does not have to necessarily progress to an acute clinical event. Several therapeutic strategies exist, such as exercise training, which mitigates endothelial dysfunction and inflammation. Exercise training consistently improves the nitric oxide bioavailability, and the number of endothelial progenitor cells, and also diminishes the level of inflammatory markers, namely pro-inflammatory cytokines and C-reactive protein. However, the mechanisms by which exercise improves endothelial function in coronary artery disease patients are not fully clarified. Several mechanisms have been proposed to explain the positive effect of exercise on the disease progression. They include the decrease in cytokine production by the adipose tissue, skeletal muscles, endothelial cells, and blood mononuclear cells, and also, the increase in the bioavailability of nitric oxide, antioxidant defences, and regenerative capacity of endothelium. This study aims to provide a critical review of the literature linking exercise, inflammation, and endothelial dysfunction in coronary artery patients, and to discuss the potential mechanisms behind the exercise-training improvement of endothelial function and inflammatory status.

  16. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes.

    PubMed

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio Mv; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-06-10

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  17. Endothelial dysfunction as a predictor of cardiovascular disease in type 1 diabetes

    PubMed Central

    Bertoluci, Marcello C; Cé, Gislaine V; da Silva, Antônio MV; Wainstein, Marco V; Boff, Winston; Puñales, Marcia

    2015-01-01

    Macro and microvascular disease are the main cause of morbi-mortality in type 1 diabetes (T1DM). Although there is a clear association between endothelial dysfunction and atherosclerosis in type 2 diabetes, a cause-effect relationship is less clear in T1DM. Although endothelial dysfunction (ED) precedes atherosclerosis, it is not clear weather, in recent onset T1DM, it may progress to clinical macrovascular disease. Moreover, endothelial dysfunction may either be reversed spontaneously or in response to intensive glycemic control, long-term exercise training and use of statins. Acute, long-term and post-prandial hyperglycemia as well as duration of diabetes and microalbuminuria are all conditions associated with ED in T1DM. The pathogenesis of endothelial dysfunction is closely related to oxidative-stress. NAD(P)H oxidase over activity induces excessive superoxide production inside the mitochondrial oxidative chain of endothelial cells, thus reducing nitric oxide bioavailability and resulting in peroxynitrite formation, a potent oxidant agent. Moreover, oxidative stress also uncouples endothelial nitric oxide synthase, which becomes dysfunctional, inducing formation of superoxide. Other important mechanisms are the activation of both the polyol and protein kinase C pathways as well as the presence of advanced glycation end-products. Future studies are needed to evaluate the potential clinical applicability of endothelial dysfunction as a marker for early vascular complications in T1DM. PMID:26069717

  18. The Assessment of Endothelial Function – From Research into Clinical Practice

    PubMed Central

    Flammer, Andreas J.; Anderson, Todd; Celermajer, David S.; Creager, Mark A.; Deanfield, John; Ganz, Peter; Hamburg, Naomi; Lüscher, Thomas F.; Shechter, Michael; Taddei, Stefano; Vita, Joseph A; Lerman, Amir

    2012-01-01

    The discovery of the endothelium as a crucial organ for the regulation of the vasculature to physiological needs and the recognition of endothelial dysfunction as a key pathological condition - which is associated with most if not all cardiovascular risk factors - led to a tremendous boost of endothelial research in the past 3 decades. Despite the possibility to measure endothelial function in the individual and its widespread use in research, its use as a clinical tool in daily medicine is not established yet. We review the most common methods to assess vascular function in humans and discuss their advantages and disadvantages. Furthermore we give an overview about clinical settings were endothelial function measurements may be valuable in individual patients. Specifically, we provide information why endothelial function is not only a risk marker for cardiovascular risk but may also provides prognostic information beyond commonly used risk scores in primary prevention, and in patients with already established coronary disease. We conclude, that non-invasive endothelial function measurements provide valuable additional information, however, to ascertain its use for daily clinical practice, future research should determine whether endothelial function can be used to guide treatment in the individual and if this translates into better outcomes. PMID:22869857

  19. Endothelial Differentiation of Human Adipose-Derived Stem Cells on Polyglycolic Acid/Polylactic Acid Mesh

    PubMed Central

    Deng, Meng; Gu, Yunpeng; Liu, Zhenjun; Qi, Yue; Ma, Gui E.; Kang, Ning

    2015-01-01

    Adipose-derived stem cell (ADSC) is considered as a cell source potentially useful for angiogenesis in tissue engineering and regenerative medicine. This study investigated the growth and endothelial differentiation of human ADSCs on polyglycolic acid/polylactic acid (PGA/PLA) mesh compared to 2D plastic. Cell adhesion, viability, and distribution of hADSCs on PGA/PLA mesh were observed by CM-Dil labeling, live/dead staining, and SEM examination while endothelial differentiation was evaluated by flow cytometry, Ac-LDL/UEA-1 uptake assay, immunofluorescence stainings, and gene expression analysis of endothelial related markers. Results showed hADSCs gained a mature endothelial phenotype with a positive ratio of 21.4 ± 3.7% for CD31+/CD34− when induced in 3D mesh after 21 days, which was further verified by the expressions of a comprehensive range of endothelial related markers, whereas hADSCs in 2D induced and 2D/3D noninduced groups all failed to differentiate into endothelial cells. Moreover, compared to 2D groups, the expression for α-SMA was markedly suppressed in 3D cultured hADSCs. This study first demonstrated the endothelial differentiation of hADSCs on the PGA/PLA mesh and pointed out the synergistic effect of PGA/PLA 3D culture and growth factors on the acquisition of mature characteristic endothelial phenotype. We believed this study would be the initial step towards the generation of prevascularized tissue engineered constructs. PMID:26106426

  20. Isolation, characterization, and long-term cultivation of porcine and murine cerebral capillary endothelial cells.

    PubMed

    Tontsch, U; Bauer, H C

    1989-03-01

    We present a simple method for isolation and long-term cultivation of porcine and murine cerebral capillary endothelial cells (cEC). Two major points are made. First, that the "characteristic" morphology of the endothelial cells depends mainly on the presence of endothelial cell growth factors in the culture medium and second, that the identification of the cells as endothelial cells requires a special lectin instead of criteria used for large vessel endothelial cells, such as factor VIII staining or LDL uptake. Pure cerebral capillaries were isolated by means of a series of centrifugation steps; endothelial cells were released by collagenase treatment and cultivated on plastic petri dishes, which proved to be better for cell attachment than collagen or gelatin coating. The microvascular cells were cultivated in either the presence or absence of growth factors. Medium 199 + 10% FCS produced mainly spindle-shaped cells, growing in the "hills and valleys" pattern, which, if not passaged for weeks, showed three dimensional tubular structures. Cells of the "cobblestone" phenotype were promoted in medium 199 + 10% FCS, enriched with endothelial cell growth supplement (ECGS) and heparin (referred to as complete medium). These cells retained their phenotype for months and could be passaged up to 35 times till now. If ECGS and heparin were omitted from these cultures, the cells became elongated and resembled smooth muscle cells. This effect was reversible when the cells were transferred to complete medium. With cEC, cloned by limiting dilution, we noticed this reversal phenomenon as well. We used several markers to characterize the microvascular cells and could show that the lectin of Bandeiraea simplicifolia is a highly reliable marker for endothelial cells and that the monoclonal antibody alpha-sm-1 (anti-smooth muscle cell actin) is excellent for determining smooth muscle cells.

  1. Endothelial-regenerating cells: an expanding universe.

    PubMed

    Steinmetz, Martin; Nickenig, Georg; Werner, Nikos

    2010-03-01

    Atherosclerosis is the most common cause for cardiovascular diseases and is based on endothelial dysfunction. A growing body of evidence suggests the contribution of bone marrow-derived endothelial progenitor cells, monocytic cells, and mature endothelial cells to vessel formation and endothelial rejuvenation. To this day, various subsets of these endothelial-regenerating cells have been identified according to cellular origin, phenotype, and properties in vivo and in vitro. However, the definition and biology, especially of endothelial progenitor cells, is complex and under heavy debate. In this review, we focus on current definitions of endothelial progenitor cells, highlight the clinical relevance of endothelial-regenerating cells, and provide new insights into cell-cell interactions involved in endothelial cell rejuvenation.

  2. Enhancement of endothelial differentiation of adipose derived mesenchymal stem cells by a three-dimensional culture system of microwell.

    PubMed

    Qiu, Xuefeng; Zhang, Yanting; Zhao, Xiaozhi; Zhang, Shiwei; Wu, Jinhui; Guo, Hongqian; Hu, Yiqiao

    2015-01-01

    Adipose derived mesenchymal stem cells (AdMSCs) have been demonstrated to have ability to differentiate into several cell lineages, including endothelial cells. The low endothelial differentiation efficiency, however, limits further clinical application of AdMSCs for therapeutic angiogenesis. This study was designed to investigate the feasibility to promote endothelial differentiation efficacy of AdMSCs using microwell array as a 3-D culture system. AdMSCs aggregates were prepared using photocrosslinkable polyethylene glycol dimethacrylate (PEGDM) derived microwell. AdMSCs aggregated and formed well defined 3-D aggregates following seeding. The microwell was effective in regulating the size of AdMSCs aggregates with low variation. AdMSCs within the 3-D aggregates maintained the cell surface epitopes of AdMSCs with high viability. Endothelial growth medium was used to induce the in vitro endothelial differentiation of AdMSCs. Both gene expression results from real time PCR and protein expression data from immunofluorescent staining revealed that 3-D cultured aggregates significantly promote the endothelial differentiation efficacy of AdMSCs. AdMSCs or AdMSCs aggregates were injected into the subcutaneous space of nu/nu mice to investigate the endothelial differentiation in vivo. The immunofluorescent staining data indicated promoted endothelial differentiation of 3-D aggregates compared with 2-D AdMSCs. Aggregates dissociated cells were obtained by transferring 3-D aggregates onto the adherent surfaces. Cells dissociated from induced aggregates were still positive for endothelial specific markers and were able to form endothelial-like tube structures on matrigel, indicating the endothelial properties. We conclude that microwell is an ideal 3-D culture system for promoting endothelial differentiation efficacy of AdMSCs. PMID:25890756

  3. Identification of novel targets for antiangiogenic therapy by comparing the gene expressions of tumor and normal endothelial cells.

    PubMed

    Otsubo, Tsuguteru; Hida, Yasuhiro; Ohga, Noritaka; Sato, Hideshi; Kai, Toshihiro; Matsuki, Yasushi; Takasu, Hideo; Akiyama, Kosuke; Maishi, Nako; Kawamoto, Taisuke; Shinohara, Nobuo; Nonomura, Katsuya; Hida, Kyoko

    2014-05-01

    Targeting tumor angiogenesis is an established strategy for cancer therapy. Because angiogenesis is not limited to pathological conditions such as cancer, molecular markers that can distinguish between physiological and pathological angiogenesis are required to develop more effective and safer approaches for cancer treatment. To identify such molecules, we determined the gene expression profiles of murine tumor endothelial cells (mTEC) and murine normal endothelial cells using DNA microarray analysis followed by quantitative reverse transcription-polymerase chain reaction analysis. We identified 131 genes that were differentially upregulated in mTEC. Functional analysis using siRNA-mediated gene silencing revealed five novel tumor endothelial cell markers that were involved in the proliferation or migration of mTEC. The expression of DEF6 and TMEM176B was upregulated in tumor vessels of human renal cell carcinoma specimens, suggesting that they are potential targets for antiangiogenic intervention for renal cell carcinoma. Comparative gene expression analysis revealed molecular differences between tumor endothelial cells and normal endothelial cells and identified novel tumor endothelial cell markers that may be exploited to target tumor angiogenesis for cancer treatment. PMID:24602018

  4. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    SciTech Connect

    Mathieu, Celine . E-mail: marc-andre.mouthon@cea.fr

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelial cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.

  5. Endothelial function in obstructive sleep apnea.

    PubMed

    Atkeson, Amy; Yeh, Susie Yim; Malhotra, Atul; Jelic, Sanja

    2009-01-01

    Untreated obstructive sleep apnea (OSA) is an independent risk factor for hypertension, myocardial infarction, and stroke. The repetitive hypoxia/reoxygenation and sleep fragmentation associated with OSA impair endothelial function. Endothelial dysfunction, in turn, may mediate increased risk for cardiovascular diseases. Specifically, in OSA, endothelial nitric oxide availability and repair capacity are reduced, whereas oxidative stress and inflammation are enhanced. Treatment of OSA improves endothelial vasomotor tone and reduces inflammation. We review the evidence and possible mechanisms of endothelial dysfunction as well as the effect of treatment on endothelial function in OSA.

  6. Comparison of peripheral endothelial function in shift versus nonshift workers.

    PubMed

    Suessenbacher, Alois; Potocnik, Miriam; Dörler, Jakob; Fluckinger, Gabriele; Wanitschek, Maria; Pachinger, Otmar; Frick, Matthias; Alber, Hannes F

    2011-03-15

    Shift working is related to increased cardiovascular morbidity. Peripheral endothelial dysfunction, an inherent feature of early atherosclerosis, has been suggested as a surrogate marker of cardiovascular risk. Whether shift working is associated with peripheral endothelial dysfunction has not been investigated to date. A total of 48 male shift workers (SWs) and 47 male nonshift workers (NSWs) (mean age 43 ± 5 years) were recruited from a glass manufactory. The SWs and NSWs were matched according to age, body mass index, smoking habits, family history of premature coronary artery disease, prevalence of hypercholesterolemia and hypertension, and work place. Their sport habits were also documented. Peripheral endothelial function was assessed using the EndoPAT technique to determine the peripheral arterial tone (PAT) index. According to the study design, no difference was found in the risk factor profiles between the SWs and NSWs. Despite a greater percentage of regular physical activity among the SWs (16.7 vs 4.3%, p = 0.05), shift working was associated with a reduced PAT index compared to working only on the day shift (PAT index 1.73 ± 0.4 vs 1.94 ± 0.5, p = 0.03). In the NSW group, the participants with regular physical training (n = 16) had a greater PAT index than those without regular physical activity (n = 12; PAT index 2.28 ± 0.45 vs 1.86 ± 0.51, p = 0.03). No such difference was found in the SWs. In conclusion, SWs had a reduced PAT index compared with NSWs, suggesting endothelial dysfunction. Therefore, the known increased cardiovascular risk in those shift working might be related to endothelial dysfunction.

  7. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells

    PubMed Central

    Montt-Guevara, Maria Magdalena; Giretti, Maria Silvia; Russo, Eleonora; Giannini, Andrea; Mannella, Paolo; Genazzani, Andrea Riccardo; Genazzani, Alessandro David; Simoncini, Tommaso

    2015-01-01

    Estetrol (E4) is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO) is a key player for vascular function and disease during pregnancy and throughout aging in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVEC). E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2, and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use. PMID:26257704

  8. Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells.

    PubMed

    Montt-Guevara, Maria Magdalena; Giretti, Maria Silvia; Russo, Eleonora; Giannini, Andrea; Mannella, Paolo; Genazzani, Andrea Riccardo; Genazzani, Alessandro David; Simoncini, Tommaso

    2015-01-01

    Estetrol (E4) is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO) is a key player for vascular function and disease during pregnancy and throughout aging in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVEC). E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2, and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use. PMID:26257704

  9. Instruction of Circulating Endothelial Progenitors In Vitro towards Specialized Blood-Brain Barrier and Arterial Phenotypes

    PubMed Central

    Ponio, Julie Boyer-Di; El-Ayoubi, Fida; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Driancourt, Catherine; Godet, Maeva; Perrière, Nicolas; Guillevic, Oriane; Couraud, Pierre Olivier; Uzan, Georges

    2014-01-01

    Objective The vascular system is adapted to specific functions in different tissues and organs. Vascular endothelial cells are important elements of this adaptation, leading to the concept of ‘specialized endothelial cells’. The phenotype of these cells is highly dependent on their specific microenvironment and when isolated and cultured, they lose their specific features after few passages, making models using such cells poorly predictive and irreproducible. We propose a new source of specialized endothelial cells based on cord blood circulating endothelial progenitors (EPCs). As prototype examples, we evaluated the capacity of EPCs to acquire properties characteristic of cerebral microvascular endothelial cells (blood-brain barrier (BBB)) or of arterial endothelial cells, in specific inducing culture conditions. Approach and Results First, we demonstrated that EPC-derived endothelial cells (EPDCs) co-cultured with astrocytes acquired several BBB phenotypic characteristics, such as restricted paracellular diffusion of hydrophilic solutes and the expression of tight junction proteins. Second, we observed that culture of the same EPDCs in a high concentration of VEGF resulted, through activation of Notch signaling, in an increase of expression of most arterial endothelial markers. Conclusions We have thus demonstrated that in vitro culture of early passage human cord blood EPDCs under specific conditions can induce phenotypic changes towards BBB or arterial phenotypes, indicating that these EPDCs maintain enough plasticity to acquire characteristics of a variety of specialized phenotypes. We propose that this property of EPDCs might be exploited for producing specialized endothelial cells in culture to be used for drug testing and predictive in vitro assays. PMID:24392113

  10. Gene expression programs of mouse endothelial cells in kidney development and disease.

    PubMed

    Brunskill, Eric W; Potter, S Steven

    2010-01-01

    Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease. PMID:20706631

  11. Gene Expression Programs of Mouse Endothelial Cells in Kidney Development and Disease

    PubMed Central

    Brunskill, Eric W.; Potter, S. Steven

    2010-01-01

    Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease. PMID:20706631

  12. How cholesterol regulates endothelial biomechanics

    PubMed Central

    Hong, Zhongkui; Staiculescu, Marius C.; Hampel, Paul; Levitan, Irena; Forgacs, Gabor

    2012-01-01

    As endothelial cells form the barrier between blood flow and surrounding tissue, many of their functions depend on mechanical integrity, in particular those of the plasma membrane. As component and organizer of the plasma membrane, cholesterol is a regulator of cellular mechanical properties. Disruption of cholesterol balance leads to impairment of endothelial functions and eventually to disease. The mechanical properties of the membrane are strongly affected by the cytoskeleton. As Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key mediator between the membrane and cytoskeleton, it also affects cellular biomechanical properties. Typically, PIP2 is concentrated in cholesterol-rich microdomains, such as caveolae and lipid rafts, which are particularly abundant in the endothelial plasma membrane. We investigated the connection between cholesterol and PIP2 by extracting membrane tethers from bovine aortic endothelial cells (BAEC) at different cholesterol levels and PIP2 conditions. Our results suggest that in BAEC the role of PIP2, as a mediator of membrane-cytoskeleton adhesion, is regulated by cholesterol. Our findings confirm the specific role of cholesterol in endothelial cells and may have implications for cholesterol-dependent vascular pathologies. PMID:23162471

  13. Association of Kidney Function with Changes in the Endothelial Surface Layer

    PubMed Central

    Dane, Martijn J.C.; Khairoun, Meriem; Lee, Dae Hyun; van den Berg, Bernard M.; Eskens, Bart J.M.; Boels, Margien G.S.; van Teeffelen, Jurgen W.G.E.; Rops, Angelique L.W.M.M.; van der Vlag, Johan; van Zonneveld, Anton Jan; Reinders, Marlies E.J.; Vink, Hans; Rabelink, Ton J.

    2014-01-01

    Background and objectives ESRD is accompanied by endothelial dysfunction. Because the endothelial glycocalyx (endothelial surface layer) governs interactions between flowing blood and the vessel wall, perturbation could influence disease progression. This study used a novel noninvasive sidestream–darkfield imaging method, which measures the accessibility of red blood cells to the endothelial surface layer in the microcirculation (perfused boundary region), to investigate whether renal function is associated with endothelial surface layer dimensions. Design, setting, participants, & measurements Perfused boundary region was measured in control participants (n=10), patients with ESRD (n=23), participants with normal kidney function after successful living donor kidney transplantation (n=12), and patients who developed interstitial fibrosis/tubular atrophy after kidney transplantation (n=10). In addition, the endothelial activation marker angiopoietin-2 and shed endothelial surface layer components syndecan-1 and soluble thrombomodulin were measured using ELISA. Results Compared with healthy controls (1.82±0.16 µm), ESRD patients had a larger perfused boundary region (+0.23; 95% confidence interval, 0.46 to <0.01; P<0.05), which signifies loss of endothelial surface layer dimensions. This large perfused boundary region was accompanied by higher circulating levels of syndecan-1 (+57.71; 95% confidence interval, 17.38 to 98.04; P<0.01) and soluble thrombomodulin (+12.88; 95% confidence interval, 0.29 to 25.46; P<0.001). After successful transplantation, the perfused boundary region was indistinguishable from healthy controls (without elevated levels of soluble thrombomodulin or syndecan-1). In contrast, however, patients who developed interstitial fibrosis and tubular atrophy showed a large perfused boundary region (+0.36; 95% confidence interval, 0.09 to 0.63; P<0.01) and higher levels of endothelial activation markers. In addition, a significant correlation

  14. Regulation of endothelial permeability by second messengers.

    PubMed

    Siflinger-Birnboim, A; Malik, A B

    1996-02-01

    The mechanisms by which mediators such as oxidants released by neutrophil (PMN) activation increase endothelial permeability are poorly understood. The focus of this article is to identify some of these mechanisms. Studies using endothelial cell monolayers in culture have shown that PMN activation increases endothelial permeability both in the presence and absence of PMN-endothelial monolayer contact. Hydrogen peroxide (H2O2), an oxidant released by PMN activation, plays an important role in PMN-induced increases in endothelial permeability. The results of these studies suggest that, as with other mediators of inflammation (e.g., histamine, thrombin) the mechanism of H2O2-induced increase in endothelial permeability involves activation of endothelial protein kinase C (PKC) and increase in endothelial cytosolic Ca2+.

  15. Lymphangiogenesis in Regional Lymph Nodes Is an Independent Prognostic Marker in Rectal Cancer Patients after Neoadjuvant Treatment

    PubMed Central

    Jakob, Christiane; Aust, Daniela E.; Liebscher, Birgit; Baretton, Gustavo B.; Datta, Kaustubh; Muders, Michael H.

    2011-01-01

    One of the major prognostic factors in rectal cancer is lymph node metastasis. The formation of lymph node metastases is dependent on the existence of a premetastatic niche. An important factor preceding metastasis are lymph vessels which are located in the lymph node. Accordingly, the occurrence of intranodal lymphangiogenesis is thought to indicate distant metastasis and worse prognosis. To evaluate the significance of lymph node lymphangiogenesis, we studied formalin fixed, paraffin embedded adenocarcinomas and regional lymph nodes of 203 rectal cancer patients who were treated with neoadjuvant radiochemotherapy and consecutive curative surgery with cancer free surgical margins (R0). Regional lymph node lymph vessels were detected by immunohistochemistry for podoplanin (D2-40). Our results show that the presence of lymphatic vessels in regional lymph nodes significantly affects the disease-free survival in univariate and multivariate analyses. In contrast, there was no correlation between peritumoral or intratumoral lymph vessel density and prognosis. Indeed, our study demonstrates the importance of lymphangiogenesis in regional lymph nodes after neoadjuvant radiochemotherapy and consecutive surgery as an independent prognostic marker. Staining for intranodal lymphangiogenesis and methods of intravital imaging of lymphangiogenesis and lymphatic flow may be a useful strategy to predict long-term outcome in rectal cancer patients. Furthermore, addition of VEGF-blocking agents to standardized neoadjuvant treatment schemes might be indicated in advanced rectal cancer. PMID:22087309

  16. Endothelial Caveolar Subcellular Domain Regulation of Endothelial Nitric Oxide Synthase

    PubMed Central

    Ramadoss, Jayanth; Pastore, Mayra B.; Magness, Ronald R.

    2015-01-01

    SUMMARY Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific sub-cellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments.eNOS translocation from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information: 1) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; 2) how eNOS trafficking relates to specific protein-protein interaction for inactivation and activation of eNOS; and 3) how these complex mechanisms confer specific subcellular location relative to eNOS multi-site phosphorylation and signaling.Dysfunction in regulation of eNOS activation may contribute to several disease states; in particular gestational endothelial abnormalities (preeclampsia, gestational diabetes, etc) that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, type II diabetes and adiposity.1 PMID:23745825

  17. Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: role of IL-1β and TGF-β2.

    PubMed

    Nie, Linghui; Lyros, Orestis; Medda, Rituparna; Jovanovic, Nebojsa; Schmidt, Jamie L; Otterson, Mary F; Johnson, Christopher P; Behmaram, Behnaz; Shaker, Reza; Rafiee, Parvaneh

    2014-11-01

    Endothelial-mesenchymal transition (EndoMT) has been recognized as a key determinant of tumor microenvironment in cancer progression and metastasis. Endothelial cells undergoing EndoMT lose their endothelial markers, acquire the mesenchymal phenotype, and become more invasive with increased migratory abilities. Early stages of esophageal adenocarcinoma (EAC) are characterized by strong microvasculature whose impact in tumor progression remains undefined. Our aim was to determine the role of EndoMT in EAC by investigating the impact of tumor cells on normal primary human esophageal microvascular endothelial cells (HEMEC). HEMEC were either cocultured with OE33 adenocarcinoma cells or treated with IL-1β and transforming growth factor-β2 (TGF-β2) for indicated periods and analyzed for EndoMT-associated changes by real-time PCR, Western blotting, immunofluorescence staining, and functional assays. Additionally, human EAC tissues were investigated for detection of EndoMT-like cells. Our results demonstrate an increased expression of mesenchymal markers [fibroblast-specific protein 1 (FSP1), collagen1α2, vimentin, α-smooth muscle actin (α-SMA), and Snail], decreased expression of endothelial markers [CD31, von Willebrand factor VIII (vWF), and VE-cadherin], and elevated migration ability in HEMEC following coculture with OE33 cells. The EndoMT-related changes were inhibited by IL-1β and TGF-β2 gene silencing in OE33 cells. Recombinant IL-1β and TGF-β2 induced EndoMT in HEMEC. Although the level of VEGF expression was elevated in EndoMT cells, the angiogenic property of these cells was diminished. In vivo, by immunostaining EndoMT-like cells were detected at the invasive front of EAC. Our findings underscore a significant role for EndoMT in EAC and provide new insights into the mechanisms and significance of EndoMT in the context of tumor progression.

  18. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  19. Retinal Endothelial Cell Apoptosis Stimulates Recruitment of Endothelial Progenitor Cells

    PubMed Central

    Bhatwadekar, Ashay D.; Glenn, Josephine V.; Curtis, Tim M.; Grant, Maria B.; Stitt, Alan W.; Gardiner, Tom A.

    2013-01-01

    Purpose Bone marrow–derived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair. Methods Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed. Results Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P < 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P < 0.05– 0.001). EPCs showed a characteristic chemotactic response (P < 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-α when compared to control medium; SDF-1 remained unchanged. Conclusions The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment. PMID:19474402

  20. Increased expression of angiogenic factors in cultured human brain arteriovenous malformation endothelial cells.

    PubMed

    Xu, Ming; Xu, Hongzhi; Qin, Zhiyong; Zhang, Jie; Yang, Xiaoyu; Xu, Feng

    2014-09-01

    To compare the mRNA level of angiogenic factor vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, and MMP-9 in cultured human brain arteriovenous malformation (AVM) endothelial cells (ECs) and normal brain endothelial cells (BECs). Tissue explants both from deformed vessels of AVM and normal microvessel were put into culture for endothelial cells. After the monolayer adherent ECs reached confluence, they were tested with endothelial specific marker CD34 and von Willebrand factor (vWF) by immunochemical assay. mRNA levels of VEGF-A, MMP-2, and MMP-9 in AVM endothelial cells (AVMECs) and BECs were measured by PCR. Immunostaining confirmed that more than 95 % of the cultured cells were CD34 (Fig. 1b) and/or vWF positive. Expression levels of VEGF-A and MMP-2 mRNAs were significantly higher in AVMECs than in BECs. The MMP-9 level was also increased in AVMECs, but the difference was not statistically significant. Vascular tissue explants adherent method is a better approach for isolation and culture of AVMECs. Cultured AVMECs expressed higher angiogenic factors (VEGF, MMP-2) than the controlled BECs, implicating angiogenesis plays an important role in the pathogenesis of AVM.

  1. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent

    PubMed Central

    Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon

    2014-01-01

    Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736

  2. Liver Sinusoidal Endothelial Cells Escape Senescence by Loss of p19ARF

    PubMed Central

    Koudelkova, Petra; Weber, Gerhard; Mikulits, Wolfgang

    2015-01-01

    Liver sinusoidal endothelial cells (LSECs) represent a highly differentiated cell type that lines hepatic sinusoids. LSECs form a discontinuous endothelium due to fenestrations under physiological conditions, which are reduced upon chronic liver injury. Cultivation of rodent LSECs associates with a rapid onset of stress-induced senescence a few days post isolation, which limits genetic and biochemical studies ex vivo. Here we show the establishment of LSECs isolated from p19ARF-/- mice which undergo more than 50 cell doublings in the absence of senescence. Isolated p19ARF-/- LSECs display a cobblestone-like morphology and show the ability of tube formation. Analysis of DNA content revealed a stable diploid phenotype after long-term passaging without a gain of aneuploidy. Notably, p19ARF-/- LSECs express the endothelial markers CD31, vascular endothelial growth factor receptor (VEGFR)-2, VE-cadherin, von Willebrand factor, stabilin-2 and CD146 suggesting that these cells harbor and maintain an endothelial phenotype. In line, treatment with small molecule inhibitors against VEGFR-2 caused cell death, demonstrating the sustained ability of p19ARF-/- LSECs to respond to anti-angiogenic therapeutics. From these data we conclude that loss of p19ARF overcomes senescence of LSECs, allowing immortalization of cells without losing endothelial characteristics. Thus, p19ARF-/- LSECs provide a novel cellular model to study endothelial cell biology. PMID:26528722

  3. Changes in endothelial cell proliferation and vascular permeability after systemic lipopolysaccharide administration in the subfornical organ.

    PubMed

    Morita-Takemura, Shoko; Nakahara, Kazuki; Tatsumi, Kouko; Okuda, Hiroaki; Tanaka, Tatsuhide; Isonishi, Ayami; Wanaka, Akio

    2016-09-15

    The subfornical organ (SFO) has highly permeable fenestrated vasculature and is a key site for immune-to-brain communications. Recently, we showed the occurrence of continuous angiogenesis in the SFO. In the present study, we found that systemic administration of bacterial lipopolysaccharide (LPS) reduced the vascular permeability and endothelial cell proliferation. In LPS-administered mice, the SFO vasculature showed a significant decrease in the immunoreactivity of plasmalemma vesicle associated protein-1, a marker of endothelial fenestral diaphragms. These data suggest that vasculature undergoes structural change to decrease vascular permeability in response to systemic LPS administration. PMID:27609286

  4. A boost of BMP4 accelerates the commitment of human embryonic stem cells to the endothelial lineage.

    PubMed

    Goldman, Orit; Feraud, Olivier; Boyer-Di Ponio, Julie; Driancourt, Catherine; Clay, Denis; Le Bousse-Kerdiles, Marie-Caroline; Bennaceur-Griscelli, Annelise; Uzan, Georges

    2009-08-01

    Embryoid bodies (EBs) generated during differentiation of human embryonic stem cells (hESCs) contain vascular-like structures, suggesting that commitment of mesoderm progenitors into endothelial cells occurs spontaneously. We showed that bone morphogenetic protein 4 (BMP4), an inducer of mesoderm, accelerates the peak expression of CD133/kinase insert domain-containing receptor (KDR) and CD144/KDR. Because the CD133(+)KDR(+) population could represent endothelial progenitors, we sorted them at day 7 and cultured them in endothelial medium. These cells were, however, unable to differentiate into endothelial cells. Under standard conditions, the CD144(+)KDR(+) population represents up to 10% of the total cells at day 12. In culture, these cells, if sorted, give rise to a homogeneous population with a morphology typical of endothelial cells and express endothelial markers. These endothelial cells derived from the day 12 sorted population were functional, as assessed by different in vitro assays. When EBs were stimulated by BMP4, the CD144(+)KDR(+) peak was shifted to day 7. Most of these cells, however, were CD31(-), becoming CD31(+) in culture. They then expressed von Willebrand factor and were functional. This suggests that, initially, the BMP4-boosted day 7, CD144(+)KDR(+)CD31(-) population represents immature endothelial cells that differentiate into mature endothelial cells in culture. The expression of OCT3/4, a marker of immaturity for hESCs decreases during EB differentiation, decreasing faster following BMP4 induction. We also show that BMP4 inhibits the global expression of GATA2 and RUNX1, two transcription factors involved in hemangioblast formation, at day 7 and day 12.

  5. Heterogeneity of endothelial cell phenotype within and amongst conduit vessels of the swine vasculature.

    PubMed

    Simmons, Grant H; Padilla, Jaume; Laughlin, M Harold

    2012-09-01

    The purpose of this study was to investigate the extent of endothelial cell phenotypic heterogeneity throughout the swine vasculature, with a focus on the conduit vessels of the arterial and venous circulations. We tested the hypothesis that atheroprone arteries exhibit higher expression of markers of inflammation and oxidative stress than do veins and atheroresistant arteries. The study sample included tissues from 79 castrated, male swine. Immediately after the animals were killed, endothelial cells were mechanically scraped from isolated segments of the thoracic and abdominal aorta, carotid, brachial, femoral and renal arteries, and the vein regionally associated with each of these vessels, as well as the internal mammary and right coronary arteries. Cells were also taken from two regions of the aortic arch contrasted by atheroprone versus atherosusceptible haemodynamics. Endothelial cell phenotype was assessed by either immunoblotting or quantitative real-time PCR for a host of both pro- and anti-atherogenic markers (e.g. endothelial nitric oxide synthase, p67phox, cyclo-oxygenase-1 and superoxide dismutase 1). Marked heterogeneity across the vasculature was observed in the expression of both pro- and anti-atherogenic markers, at both the protein and transcriptional levels. In particular, the coronary vascular endothelium expressed higher levels of the oxidative stress marker p67phox (P < 0.05 versus other arteries). In addition, differential expression of endothelial nitric oxide synthase and KLF4 was evident between atheroprone and atherosusceptible regions of the aorta, while expression of endothelial nitric oxide synthase, KLF2, KLF4 and cyclo-oxygenase-1 was lower in both areas of the aortic arch compared with the internal mammary artery. Conduit arteries typically expressed higher levels of both pro- and anti-atherogenic markers relative to their associated veins. We show, for the first time, that endothelial cell phenotype is variable within vessels

  6. Microenvironmental Regulation of the Sinusoidal Endothelial Cell Phenotype In Vitro

    PubMed Central

    March, Sandra; Hui, Elliot E.; Underhill, Gregory H.; Khetani, Salman; Bhatia, Sangeeta N.

    2010-01-01

    Liver Sinusoidal Endothelial Cells (LSEC) differ, both structurally and functionally, from endothelial cells (EC) lining blood vessels of other tissues. For example, in contrast to other EC, LSEC posses fenestrations, have low detectable levels of PECAM-1 expression, and in rat tissue, they distinctively express a cell surface marker recognized by the SE-1 antibody. These unique phenotypic characteristics seen in hepatic tissue are lost over time upon culture in vitro; therefore, this study sought to systematically examine the effects of microenvironmental stimuli, namely, extracellular matrix (ECM) and neighboring cells, on the LSEC phenotype in vitro. In probing the role of the underlying extracellular matrix, we identified collagen I and collagen III as well as mixtures of collagen I/collagen IV/fibronectin as having a positive effect on LSEC survival. Furthermore, using a stable hepatocellular model (hepatocyte-fibroblast) we were able to prolong the expression of both SE-1 and phenotypic functions of LSEC such as Factor VIII activity in co-cultured LSECs through the production of short-range paracrine signals. In the course of these experiments, we identified the antigen recognized by SE-1 as CD32b. Collectively, this study has identified several microenvironmental regulators of liver sinusoidal endothelial cells that prolong their phenotypic functions for up to 2 weeks in culture, enabling the development of better in vitro models of liver physiology and disease. PMID:19585615

  7. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia.

    PubMed

    McCarthy, Cathal; Kenny, Louise C

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  8. Endothelial microparticles mediate inflammation-induced vascular calcification.

    PubMed

    Buendía, Paula; Montes de Oca, Addy; Madueño, Juan Antonio; Merino, Ana; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael; Rodríguez, Mariano; Carracedo, Julia

    2015-01-01

    Stimulation of endothelial cells (ECs) with TNF-α causes an increase in the expression of bone morphogenetic protein-2 (BMP-2) and the production of endothelial microparticles (EMPs). BMP-2 is known to produce osteogenic differentiation of vascular smooth muscle cells (VSMCs). It was found that EMPs from TNF-α-stimulated endothelial cells (HUVECs) contained a significant amount of BMP-2 and were able to enhance VSMC osteogenesis and calcification. Calcium content was greater in VSMCs exposed to EMPs from TNF-α-treated HUVECs than EMPs from nontreated HUVECs (3.56 ± 0.57 vs. 1.48 ± 0.56 µg/mg protein; P < 0.05). The increase in calcification was accompanied by up-regulation of Cbfa1 (osteogenic transcription factor) and down-regulation of SM22α (VSMC lineage marker). Inhibition of BMP-2 by small interfering RNA reduced the VSMC calcification induced by EMPs from TNF-α-treated HUVECs. Similar osteogenic capability was observed in EMPs from both patients with chronic kidney disease and senescent cells, which also presented a high level of BMP-2 expression. Labeling of EMPs with CellTracker shows that EMPs are phagocytized by VSMCs under all conditions (with or without high phosphate, control, and EMPs from TNF-α-treated HUVECs). Our data suggest that EC damage results in the release of EMPs with a high content of calcium and BMP-2 that are able to induce calcification and osteogenic differentiation of VSMCs.

  9. Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression

    PubMed Central

    Panth, Nisha; Kim, Dong-Wook

    2016-01-01

    The levels of circulating microparticles (MPs) are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs) described as complex submicron (0.1 to 1.0 μm) vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis. PMID:27066292

  10. Therapeutically targeting mitochondrial redox signalling alleviates endothelial dysfunction in preeclampsia

    PubMed Central

    McCarthy, Cathal; Kenny, Louise C.

    2016-01-01

    Aberrant placentation generating placental oxidative stress is proposed to play a critical role in the pathophysiology of preeclampsia. Unfortunately, therapeutic trials of antioxidants have been uniformly disappointing. There is provisional evidence implicating mitochondrial dysfunction as a source of oxidative stress in preeclampsia. Here we provide evidence that mitochondrial reactive oxygen species mediates endothelial dysfunction and establish that directly targeting mitochondrial scavenging may provide a protective role. Human umbilical vein endothelial cells exposed to 3% plasma from women with pregnancies complicated by preeclampsia resulted in a significant decrease in mitochondrial function with a subsequent significant increase in mitochondrial superoxide generation compared to cells exposed to plasma from women with uncomplicated pregnancies. Real-time PCR analysis showed increased expression of inflammatory markers TNF-α, TLR-9 and ICAM-1 respectively in endothelial cells treated with preeclampsia plasma. MitoTempo is a mitochondrial-targeted antioxidant, pre-treatment of cells with MitoTempo protected against hydrogen peroxide-induced cell death. Furthermore MitoTempo significantly reduced mitochondrial superoxide production in cells exposed to preeclampsia plasma by normalising mitochondrial metabolism. MitoTempo significantly altered the inflammatory profile of plasma treated cells. These novel data support a functional role for mitochondrial redox signaling in modulating the pathogenesis of preeclampsia and identifies mitochondrial-targeted antioxidants as potential therapeutic candidates. PMID:27604418

  11. Endothelial microparticles mediate inflammation-induced vascular calcification.

    PubMed

    Buendía, Paula; Montes de Oca, Addy; Madueño, Juan Antonio; Merino, Ana; Martín-Malo, Alejandro; Aljama, Pedro; Ramírez, Rafael; Rodríguez, Mariano; Carracedo, Julia

    2015-01-01

    Stimulation of endothelial cells (ECs) with TNF-α causes an increase in the expression of bone morphogenetic protein-2 (BMP-2) and the production of endothelial microparticles (EMPs). BMP-2 is known to produce osteogenic differentiation of vascular smooth muscle cells (VSMCs). It was found that EMPs from TNF-α-stimulated endothelial cells (HUVECs) contained a significant amount of BMP-2 and were able to enhance VSMC osteogenesis and calcification. Calcium content was greater in VSMCs exposed to EMPs from TNF-α-treated HUVECs than EMPs from nontreated HUVECs (3.56 ± 0.57 vs. 1.48 ± 0.56 µg/mg protein; P < 0.05). The increase in calcification was accompanied by up-regulation of Cbfa1 (osteogenic transcription factor) and down-regulation of SM22α (VSMC lineage marker). Inhibition of BMP-2 by small interfering RNA reduced the VSMC calcification induced by EMPs from TNF-α-treated HUVECs. Similar osteogenic capability was observed in EMPs from both patients with chronic kidney disease and senescent cells, which also presented a high level of BMP-2 expression. Labeling of EMPs with CellTracker shows that EMPs are phagocytized by VSMCs under all conditions (with or without high phosphate, control, and EMPs from TNF-α-treated HUVECs). Our data suggest that EC damage results in the release of EMPs with a high content of calcium and BMP-2 that are able to induce calcification and osteogenic differentiation of VSMCs. PMID:25342130

  12. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition

    PubMed Central

    Vargel, Özge; Zhang, Yang; Kosim, Kinga; Ganter, Kerstin; Foehr, Sophia; Mardenborough, Yannicka; Shvartsman, Maya; Enright, Anton J.; Krijgsveld, Jeroen; Lancrin, Christophe

    2016-01-01

    The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as well as EMT markers. Finally we found that the expression of the transcription factor Sox17 was up-regulated upon TGFβ signalling activation and showed that its overexpression was enough to block blood cell formation. In conclusion we showed that triggering the TGFβ pathway does not enhance EHT as we hypothesised but instead impairs it. PMID:26891705

  13. Analysis of Endothelial Barrier Function In Vitro

    PubMed Central

    Wang, Yuping; Alexander, J. Steven

    2016-01-01

    Increased microvascular solute permeability underlies many forms of pathophysiological conditions, including inflammation. Endothelial monolayer cultures provide an excellent model system which allows systemic and mechanistic study of endothelial barrier function and paracellular permeability in vitro. The endothelial-specific complexus adherens junction protein VE-cadherin and their intracellular complex form pericellular structures along the cell borders which are critical to regulate endothelial barrier function by controlling pericellular permeability of vasculature. Here, we describe methods for both visualizing and quantifying junctional permeability and barrier changes in endothelial monolayers in vitro. PMID:21874457

  14. Evolving functions of endothelial cells in inflammation.

    PubMed

    Pober, Jordan S; Sessa, William C

    2007-10-01

    Inflammation is usually analysed from the perspective of tissue-infiltrating leukocytes. Microvascular endothelial cells at a site of inflammation are both active participants in and regulators of inflammatory processes. The properties of endothelial cells change during the transition from acute to chronic inflammation and during the transition from innate to adaptive immunity. Mediators that act on endothelial cells also act on leukocytes and vice versa. Consequently, many anti-inflammatory therapies influence the behaviour of endothelial cells and vascular therapeutics influence inflammation. This Review describes the functions performed by endothelial cells at each stage of the inflammatory process, emphasizing the principal mediators and signalling pathways involved and the therapeutic implications. PMID:17893694

  15. Analysis of endothelial barrier function in vitro.

    PubMed

    Wang, Yuping; Alexander, J Steven

    2011-01-01

    Increased microvascular solute permeability underlies many forms of pathophysiological conditions, including inflammation. Endothelial monolayer cultures provide an excellent model system which allows systemic and mechanistic study of endothelial barrier function and paracellular permeability in vitro. The endothelial-specific complexus adherens junction protein VE-cadherin and their intracellular complex form pericellular structures along the cell borders which are critical to regulate endothelial barrier function by controlling pericellular permeability of vasculature. Here, we describe methods for both visualizing and quantifying junctional permeability and barrier changes in endothelial monolayers in vitro. PMID:21874457

  16. Storage and regulated secretion of factor VIII in blood outgrowth endothelial cells

    PubMed Central

    van den Biggelaar, Maartje; Bouwens, Eveline A.M.; Kootstra, Neeltje A.; Hebbel, Robert P.; Voorberg, Jan; Mertens, Koen

    2009-01-01

    Background Gene therapy provides an attractive alternative for protein replacement therapy in hemophilia A patients. Recent studies have shown the potential benefit of directing factor (F)VIII gene delivery to cells that also express its natural carrier protein von Willebrand factor (VWF). In this study, we explored the feasibility of blood outgrowth endothelial cells as a cellular FVIII delivery device with particular reference to long-term production levels, intracellular storage in Weibel-Palade bodies and agonist-induced regulated secretion. Design and Methods Human blood outgrowth endothelial cells were isolated from peripheral blood collected from healthy donors, transduced at passage 5 using a lentiviral vector encoding human B-domain deleted FVIII-GFP and characterized by flow cytometry and confocal microscopy. Results Blood outgrowth endothelial cells displayed typical endothelial morphology and expressed the endothelial-specific marker VWF. Following transduction with a lentivirus encoding FVIII-GFP, 80% of transduced blood outgrowth endothelial cells expressed FVIII-GFP. Levels of FVIII-GFP positive cells declined slowly upon prolonged culturing. Transduced blood outgrowth endothelial cells expressed 1.6±1.0 pmol/1×106 cells/24h FVIII. Morphological analysis demonstrated that FVIII-GFP was stored in Weibel-Palade bodies together with VWF and P-selectin. FVIII levels were only slightly increased following agonist-induced stimulation, whereas a 6- to 8-fold increase of VWF levels was observed. Subcellular fractionation revealed that 15–22% of FVIII antigen was present within the dense fraction containing Weibel-Palade bodies. Conclusions We conclude that blood outgrowth endothelial cells, by virtue of their ability to store a significant portion of synthesized FVIII-GFP in Weibel-Palade bodies, provide an attractive cellular on-demand delivery device for gene therapy of hemophilia A. PMID:19336741

  17. Impact of diabetic serum on endothelial cells: An in-vitro-analysis of endothelial dysfunction in diabetes mellitus type 2

    SciTech Connect

    Muenzel, Daniela; Lehle, Karla Haubner, Frank; Schmid, Christof; Birnbaum, Dietrich E.; Preuner, Juergen G.

    2007-10-19

    Diabetic endothelial dysfunction was characterized by altered levels of adhesion molecules and cytokines. Aim of our study was to evaluate the effects of diabetic serum on cell-growth and proinflammatory markers in human saphenous vein endothelial cells (HSVEC) from diabetic and non-diabetic patients. Diabetic serum showed (1) complementary proliferative activity for non-diabetic and diabetic HSVEC, (2) unchanged surface expression of adhesion molecules, and (3) elevated levels of sICAM-1 in HSVEC of all donors. The concentration of sVCAM-1 was increased only in diabetic cells. The proinflammatory state of diabetic HSVEC characterized by increased levels of cytokines was compensated. We concluded that even under normoglycemic conditions the serum itself contains critical factors leading to abnormal regulation of inflammation in diabetics. We introduced an in vitro model of diabetes representing the endothelial situation at the beginning of diabetes (non-diabetic cells/diabetic serum) as well as the diabetic chronic state (diabetic cells/diabetic serum)

  18. Analyses of Endothelial Cells and Endothelial Progenitor Cells Released Microvesicles by Using Microbead and Q-dot Based Nanoparticle Tracking Analysis.

    PubMed

    Wang, Jinju; Zhong, Yun; Ma, Xiaotang; Xiao, Xiang; Cheng, Chuanfang; Chen, Yusen; Iwuchukwu, Ifeanyi; Gaines, Kenneth J; Zhao, Bin; Liu, Shiming; Travers, Jeffrey B; Bihl, Ji C; Chen, Yanfang

    2016-04-20

    Accurate analysis of specific microvesicles (MVs) from biofluids is critical and challenging. Here we described novel methods to purify and detect MVs shed from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads with fluorescence quantum dots (Q-dots) coupled nanoparticle tracking analysis (NTA). In the in vitro screening systems, we demonstrated that 1) anti-CD105 (EC marker) and anti-CD34 (EPC marker) conjugated-microbeads had the highest sensitivity and specificity for isolating respective MVs, which were confirmed with negative controls, CD41 and CD235a; 2) anti-CD144 (EC marker) and anti-KDR (EPC marker) conjugated-Q-dots exhibited the best sensitivity and specificity for their respective MV NTA detection, which were confirmed with positive control, anti-Annexin V (MV universal marker). The methods were further validated by their ability to efficiently recover the known amount of EC-MVs and EPC-MVs from particle-depleted plasma, and to detect the dynamical changes of plasma MVs in ischemic stroke patients, as compared with traditional flow cytometry. These novel methods provide ideal approaches for functional analysis and biomarker discovery of ECs- and EPCs- derived MVs.

  19. Analyses of Endothelial Cells and Endothelial Progenitor Cells Released Microvesicles by Using Microbead and Q-dot Based Nanoparticle Tracking Analysis

    PubMed Central

    Wang, Jinju; Zhong, Yun; Ma, Xiaotang; Xiao, Xiang; Cheng, Chuanfang; Chen, Yusen; Iwuchukwu, Ifeanyi; Gaines, Kenneth J.; Bin Zhao; Liu, Shiming; Travers, Jeffrey B.; Bihl, Ji C.; Chen, Yanfang

    2016-01-01

    Accurate analysis of specific microvesicles (MVs) from biofluids is critical and challenging. Here we described novel methods to purify and detect MVs shed from endothelial cells (ECs) and endothelial progenitor cells (EPCs) by combining microbeads with fluorescence quantum dots (Q-dots) coupled nanoparticle tracking analysis (NTA). In the in vitro screening systems, we demonstrated that 1) anti-CD105 (EC marker) and anti-CD34 (EPC marker) conjugated-microbeads had the highest sensitivity and specificity for isolating respective MVs, which were confirmed with negative controls, CD41 and CD235a; 2) anti-CD144 (EC marker) and anti-KDR (EPC marker) conjugated-Q-dots exhibited the best sensitivity and specificity for their respective MV NTA detection, which were confirmed with positive control, anti-Annexin V (MV universal marker). The methods were further validated by their ability to efficiently recover the known amount of EC-MVs and EPC-MVs from particle-depleted plasma, and to detect the dynamical changes of plasma MVs in ischemic stroke patients, as compared with traditional flow cytometry. These novel methods provide ideal approaches for functional analysis and biomarker discovery of ECs- and EPCs- derived MVs. PMID:27094208

  20. Endothelial Plasticity: Shifting Phenotypes through Force Feedback

    PubMed Central

    Krenning, Guido; Barauna, Valerio G.; Krieger, José E.; Harmsen, Martin C.; Moonen, Jan-Renier A. J.

    2016-01-01

    The endothelial lining of the vasculature is exposed to a large variety of biochemical and hemodynamic stimuli with different gradients throughout the vascular network. Adequate adaptation requires endothelial cells to be highly plastic, which is reflected by the remarkable heterogeneity of endothelial cells in tissues and organs. Hemodynamic forces such as fluid shear stress and cyclic strain are strong modulators of the endothelial phenotype and function. Although endothelial plasticity is essential during development and adult physiology, proatherogenic stimuli can induce adverse plasticity which contributes to disease. Endothelial-to-mesenchymal transition (EndMT), the hallmark of endothelial plasticity, was long thought to be restricted to embryonic development but has emerged as a pathologic process in a plethora of diseases. In this perspective we argue how shear stress and cyclic strain can modulate EndMT and discuss how this is reflected in atherosclerosis and pulmonary arterial hypertension. PMID:26904133

  1. Itinerary of high density lipoproteins in endothelial cells.

    PubMed

    Perisa, Damir; Rohrer, Lucia; Kaech, Andres; von Eckardstein, Arnold

    2016-02-01

    High density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.4 nm nanogold and investigated their cellular localization by using immunofluorescent microscopy (IFM) and electron microscopy (EM). HDL as well as ApoA-I is taken up by ECs into the same route of intracellular trafficking. Time kinetics and pulse chase experiments revealed that HDL is trafficked through different vesicles. HDL partially co-localized with LDL, albumin, and transferrin. HDL did not co-localize with clathrin and caveolin-1. Fluorescent HDL was recovered at small proportions in early endosomes and endosome to trans-golgi network vesicles but not at all in recycling endosomes, in late endosomes or lysosomes. EM identified HDL mainly in large filled vesicles which however upon IFM did not colocalize with markers of multivesicular bodies or autophagosomes. The uptake or cellular distribution of HDL was altered upon pharmacological interference with cytochalasine D, colchicine and dynasore. Blockage of fluid phase uptake with Amiloride or EIPA did not reduce the uptake of HDL. Neither did we observe any co-localization of HDL with dextran as the marker of fluid phase uptake. In conclusion, HDL and ApoA-I are internalized and trafficked by endothelial cells through a non-classical endocytic route. PMID:26577406

  2. Arterial identity of endothelial cells is controlled by local cues.

    PubMed

    Othman-Hassan, K; Patel, K; Papoutsi, M; Rodriguez-Niedenführ, M; Christ, B; Wilting, J

    2001-09-15

    The ephrins and their Eph receptors comprise the largest family of receptor tyrosine kinases. Studies on mice have revealed an important function of ephrin-B2 and Eph-B4 for the development of the arterial and venous vasculature, respectively, but the mechanisms regulating their expression have not been studied yet. We have cloned a chick ephrin-B2 cDNA probe. Expression was observed in endothelial cells of extra- and intraembryonic arteries and arterioles in all embryos studied from day 2 (stage 10 HH, before perfusion of the vessels) to day 16. Additionally, expression was found in the somites and neural tube in early stages, and later also in the smooth muscle cells of the aorta, parts of the Müllerian duct, dosal neural tube, and joints of the limbs. We isolated endothelial cells from the internal carotid artery and the vena cava of 14-day-old quail embryos and grafted them separately into day-3 chick embryos. Reincubation was performed until day 6 and the quail endothelial cells were identified with the QH1 antibody. The grafted arterial and venous endothelial cells expressed ephrin-B2 when they integrated into the lining of arteries. Cells that were not integrated into vessels, or into vessels other than arteries, were ephrin-B2-negative. The studies show that the expression of the arterial marker ephrin-B2 is controlled by local cues in arterial vessels of older embryos. Physical forces or the media smooth muscle cells may be involved in this process.

  3. Endothelial dysfunction: a comprehensive appraisal

    PubMed Central

    Esper, Ricardo J; Nordaby, Roberto A; Vilariño, Jorge O; Paragano, Antonio; Cacharrón, José L; Machado, Rogelio A

    2006-01-01

    The endothelium is a thin monocelular layer that covers all the inner surface of the blood vessels, separating the circulating blood from the tissues. It is not an inactive organ, quite the opposite. It works as a receptor-efector organ and responds to each physical or chemical stimulus with the release of the correct substance with which it may maintain vasomotor balance and vascular-tissue homeostasis. It has the property of producing, independently, both agonistic and antagonistic substances that help to keep homeostasis and its function is not only autocrine, but also paracrine and endocrine. In this way it modulates the vascular smooth muscle cells producing relaxation or contraction, and therefore vasodilatation or vasoconstriction. The endothelium regulating homeostasis by controlling the production of prothrombotic and antithrombotic components, and fibrynolitics and antifibrynolitics. Also intervenes in cell proliferation and migration, in leukocyte adhesion and activation and in immunological and inflammatory processes. Cardiovascular risk factors cause oxidative stress that alters the endothelial cells capacity and leads to the so called endothelial "dysfunction" reducing its capacity to maintain homeostasis and leads to the development of pathological inflammatory processes and vascular disease. There are different techniques to evaluate the endothelium functional capacity, that depend on the amount of NO produced and the vasodilatation effect. The percentage of vasodilatation with respect to the basal value represents the endothelial functional capacity. Taking into account that shear stress is one of the most important stimulants for the synthesis and release of NO, the non-invasive technique most often used is the transient flow-modulate "endothelium-dependent" post-ischemic vasodilatation, performed on conductance arteries such as the brachial, radial or femoral arteries. This vasodilatation is compared with the vasodilatation produced by drugs that

  4. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors

    PubMed Central

    Wong, Wing Tak; Cooke, John P

    2016-01-01

    Transdifferentiation is the direct conversion from one somatic cell type into another desired somatic cell type. This reprogramming method offers an attractive approach for regenerative medicine. Here, we demonstrate that neonatal fibroblasts can be transdifferentiated into endothelial cells using only four endothelial transcription factors, namely, ETV2, FLI1, GATA2, and KLF4. We observed a significant up-regulation of endothelial genes including KDR, CD31, CD144, and vWF in human neonatal foreskin (BJ) fibroblasts infected with the lentiviral construct encoding the open reading frame of the four transcription factors. We observed morphological changes in BJ fibroblasts from the fibroblastic spindle shape into a more endothelial-like cobblestone structures. Fluorescence-activated cell sorting analysis revealed that ~16% of the infected cells with the lentiviral constructs encoding 4F expressed CD31. The sorted cells were allowed to expand for 2 weeks and these cells were immunostained and found to express endothelial markers CD31. The induced endothelial cells also incorporated fluorescence-labeled acetylated low-density lipoprotein and efficiently formed capillary-like networks when seeded on Matrigel. These results suggested that the induced endothelial cells were functional in vitro. Taken together, we successfully demonstrated the direct conversion of human neonatal fibroblasts into endothelial cells by transduction of lentiviral constructs encoding endothelial lineage-specific transcription factors ETV2, FLI1, GATA2, and KLF4. The directed differentiation of fibroblasts into endothelial cells may have significant utility in diseases characterized by fibrosis and loss of microvasculature. PMID:27081470

  5. Maggot debridement therapy promotes diabetic foot wound healing by up-regulating endothelial cell activity.

    PubMed

    Sun, Xinjuan; Chen, Jin'an; Zhang, Jie; Wang, Wei; Sun, Jinshan; Wang, Aiping

    2016-03-01

    To determine the role of maggot debridement therapy (MDT) on diabetic foot wound healing, we compared growth related factors in wounds before and after treatment. Furthermore, we utilized human umbilical vein endothelial cells (HUVECs) to explore responses to maggot excretions/secretions on markers of angiogenesis and proliferation. The results showed that there was neo-granulation and angiogenesis in diabetic foot wounds after MDT. Moreover, significant elevation in CD34 and CD68 levels was also observed in treated wounds. In vitro, ES increased HUVEC proliferation, improved tube formation, and increased expression of vascular endothelial growth factor receptor 2 in a dose dependent manner. These results demonstrate that MDT and maggot ES can promote diabetic foot wound healing by up-regulating endothelial cell activity.

  6. Salt controls endothelial and vascular phenotype.

    PubMed

    Kusche-Vihrog, Kristina; Schmitz, Boris; Brand, Eva

    2015-03-01

    High salt (NaCl) intake promotes the development of vascular diseases independent of a rise in blood pressure, whereas reduction of salt consumption has beneficial effects for the arterial system. This article summarizes our current understanding of the molecular mechanisms of high salt-induced alterations of the endothelial phenotype, the impact of the individual endothelial genotype, and the overall vascular phenotype. We focus on the endothelial Na(+) channel (EnNaC)-controlled nanomechanical properties of the endothelium, since high Na(+) leads to an EnNaC-induced Na(+)-influx and subsequent stiffening of endothelial cells. The mechanical stiffness of the endothelial cell (i.e., the endothelial phenotype) plays a crucial role as it controls the production of the endothelium-derived vasodilator nitric oxide (NO) which directly affects the tone of the vascular smooth muscle cells. In contrast to soft endothelial cells, stiff endothelial cells release reduced amounts of NO, the hallmark of endothelial dysfunction. This endothelium-born process is followed by the development of arterial stiffness (i.e., the vascular phenotype), predicting the development of vascular end-organ damage such as myocardial infarction, stroke, and renal impairment. In this context, we outline the potential clinical implication of direct (amiloride) and indirect (spironolactone) EnNaC inhibition on vascular function. However, interindividual differences exist in the response to high salt intake which involves different endothelial genotypes. Thus, selected genes and genetic variants contributing to the development of salt-induced endothelial dysfunction and hypertension are discussed. In this review, we focus on the role of salt in endothelial and vascular (dys)function and the link between salt-induced changes of the endothelial and vascular phenotype and its clinical implications.

  7. Culture of human endothelial cells.

    PubMed

    Gallicchio, M A

    2001-01-01

    Endothelial cells line the luminal surface of all blood vessels in the body. The endothelial surface in adult humans is composed of approximately l-6×l0(13) cells and covers an area of 1-7 m(2). Endothelium serves many functions, including fluid and solute exchange through cell contraction, provision of an antithrombogenic surface through tissue plasminogen activator (tPA) and prostacyclin release, synthesis of angiogenic factors such as adenosine, allowance of leukocyte trafficking through adhesion molecule synthesis, presentation of antigens to the immune system, maintenance of vascular tone through nitric oxide and endothelin synthesis, and metabolism of circulating molecules through the release of enzymes such as lipoprotein lipase. PMID:21340938

  8. Do incretins improve endothelial function?

    PubMed Central

    2014-01-01

    An impaired endothelial function has been recognized in the early stage of atherosclerosis, and is a major factor affecting the future development of cardiovascular events. Type 2 diabetes mellitus (T2DM) is widely prevalent, and is one of the most important risk factors for cardiovascular disease. T2DM is associated with increases in both morbidity and mortality, particularly from cardiovascular disease. New therapies based on the incretin hormone and its actions are now becoming widely used, and appear to offer advantages over conventional therapies by keeping the body weight steady and limiting hypoglycemia, while also achieving attractive glycemic control. However, there is little data available about the effects of incretins on the cardiovascular system. This review will focus on the effects of incretin therapies, including glucagon-like peptide-1 (GLP-1) analogs and dipeptidyl peptidase (DPP)-4 inhibitors, on the endothelial function, and will discuss the potential mechanisms underlying these effects. PMID:24428883

  9. [Endothelial dysfunction and nonspecific immune reactions in development and progression of osteoarthrosis in women engaged into manual work].

    PubMed

    Maliutina, N N; Nevzorova, M S

    2015-01-01

    The article considers mechanisms of development and progression of osteoarthrosis as an occupationally conditioned disease in women of manual work. Women working in physical overstrain conditions are under occupational risk with dysfunction of many body systems. The authors set a hypothesis on association of endothelial dysfunction markers dysbalance and structural remodelling of cartilage matrix as a proof of degenerative changes. PMID:26596115

  10. Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts.

    PubMed

    Shin, Young Min; Lee, Yu Bin; Kim, Seok Joo; Kang, Jae Kyeong; Park, Jong-Chul; Jang, Wonhee; Shin, Heungsoo

    2012-07-01

    Most polymeric vascular prosthetic materials have low patency rate for replacement of small diameter vessels (<5 mm), mainly due to failure to generate healthy endothelium. In this study, we present polydopamine-mediated immobilization of growth factors on the surface of polymeric materials as a versatile tool to modify surface characteristics of vascular grafts potentially for accelerated endothelialization. Polydopamine was deposited on the surface of biocompatible poly(L-lactide-co-ε-caprolactone) (PLCL) elastomer, on which vascular endothelial growth factor (VEGF) was subsequently immobilized by simple dipping. Surface characteristics and composition were investigated by using scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Immobilization of VEGF on the polydopamine-deposited PLCL films was effective (19.8 ± 0.4 and 197.4 ± 19.7 ng/cm(2) for DPv20 and DPv200 films, respectively), and biotin-mediated labeling of immobilized VEGF revealed that the fluorescence intensity increased as a function of the concentration of VEGF solution. The effect of VEGF on adhesion of HUVECs was marginal, which may have been masked by polydopamine layer that also enhanced cell adhesion. However, VEGF-immobilized substrate significantly enhanced proliferation of HUVECs for over 7 days of in vitro culture and also improved their migration. In addition, immobilized VEGF supported robust cell to cell interactions with strong expression of CD 31 marker. The same process was effective for immobilization of basic fibroblast growth factor, demonstrating the robustness of polydopamine layer for secondary ligation of growth factors as a simple and novel surface modification strategy for vascular graft materials. PMID:22617001

  11. Loss of /sup 51/chromium, lactate dehydrogenase, and /sup 111/indium as indicators of endothelial cell injury

    SciTech Connect

    Chopra, J.; Joist, J.H.; Webster, R.O.

    1987-11-01

    Injury to endothelial cells appears to be an important initial event in the pathogenesis of many diseases such as acute lung injury, venous and arterial thromboembolism, and atherosclerosis. Different methods for detecting damage to cultured endothelial cells have been described. However, their relative sensitivity as markers of endothelial cell damage has not been adequately determined. We compared the loss of /sup 51/Chromium (/sup 51/Cr), the cytoplasmic enzyme lactate dehydrogenase (LDH), and /sup 111/Indium (/sup 111/In) from endothelial cells upon exposure to several injurious agents. Cultured bovine pulmonary artery endothelial cells in confluent monolayers were labeled with /sup 51/Cr or /sup 111/Inoxine and exposed to increasing concentrations of the nonionic detergent, Triton X-100 (0.2 to 1%), hydrogen peroxide (1 to 500 microM), or neutrophils stimulated with phorbol myristate acetate. With all forms of injury, loss of /sup 51/Cr occurred earlier and to a greater extent than LDH loss which in turn was greater than loss of /sup 111/In. Substantial loss of /sup 51/Cr was observed in the absence of appreciable ultrastructural damage to endothelial cell external membranes. The findings may reflect the relative ease with which small molecules such as adenine nucleotides (/sup 51/Cr-labeled) escape whereas larger molecules such as LDH and proteins binding /sup 111/In are retained intracellularly. Thus, /sup 51/Cr loss appears to be a more sensitive indicator of sublytic endothelial cell injury than either /sup 111/In or LDH release.

  12. Flow-Mediated Endothelial Mechanotransduction

    PubMed Central

    Davies, Peter F.

    2011-01-01

    Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and the mechanotransduction mechanisms that lead to biophysical, biochemical, and gene regulatory responses of endothelial cells to hemodynamic shear stresses are reviewed. PMID:7624393

  13. ENDOTHELIAL CELLS IN ALLOGRAFT REJECTION

    PubMed Central

    Al-Lamki, Rafia S.; Bradley, John R.; Pober, Jordan S.

    2008-01-01

    In organ transplantation, blood borne cells and macromolecules (e.g. antibodies) of the host immune system are brought into direct contact with the endothelial cell (EC) lining of graft vessels. In this location, graft ECs play several roles in allograft rejection, including the initiation of rejection responses by presentation of alloantigen to circulating T cells; the development of inflammation and thrombosis; and as targets of injury and agents of repair. PMID:19034000

  14. Serine Protease Activation Essential for Endothelial-Mesenchymal Transition in Vascular Calcification

    PubMed Central

    Yao, Jiayi; Guihard, Pierre J.; Blazquez-Medela, Ana M.; Guo, Yina; Moon, Jeremiah H.; Jumabay, Medet; Boström, Kristina I.; Yao, Yucheng

    2015-01-01

    Rationale Endothelial cells have the ability to undergo endothelial-mesenchymal transitions (EndMTs), by which they acquire a mesenchymal phenotype and stem-cell like characteristics. We previously found that EndMTs ocurred in the endothelium deficient in matrix Gla protein (MGP) enabling endothelial cells to contribute cells to vascular calcification. However, the mechanism responsible for initiating EndMTs is not fully understood. Objective To determine the role of specific serine proteases and sex determining region Y-box 2 (Sox2) in the initiation of EndMTs. Methods and Results In this study, we used in vivo and in vitro models of vascular calcification to demonstrate that serine proteases and Sox2 are essential for the initiation of EndMTs in MGP-deficient endothelium. We showed that expression of a group of specific serine proteases was highly induced in endothelial cells at sites of vascular calcification in Mgp null aortas. Treatment with serine protease inhibitors decreased both stem-cell marker expression and vascular calcification. In human aortic endothelial cells, this group of serine proteases also induced EndMTs, and the activation of proteases was mediated by Sox2. Knockdown of the serine proteases or Sox2 diminished EndMTs and calcification. Endothelial-specific deletion of Sox2 decreased expression of stem-cell markers and aortic calcification in MGP-deficient mice. Conclusions Our results suggest that Sox2-mediated activation of specific serine proteases is essential for initiating EndMTs, and thus, may provide new therapeutic targets for treating vascular calcification. PMID:26265629

  15. Nucleoside Reverse Transcriptase Inhibitors Induce a Mitophagy-Associated Endothelial Cytotoxicity That Is Reversed by Coenzyme Q10 Cotreatment

    PubMed Central

    Dugas, Tammy R.

    2013-01-01

    Cardiovascular complications have been documented in HIV-1 infected populations, and antiretroviral therapy may play a role. Nucleoside reverse transcriptase inhibitors (NRTIs) are antiretrovirals known to induce mitochondrial damage in endothelial cells, culminating in endothelial dysfunction, an initiating event in atherogenesis. Though the mechanism for NRTI-induced endothelial toxicity is not yet clear, our prior work suggested that a mitochondrial oxidative stress may be involved. To further delineate the mechanism of toxicity, endothelial cells were treated with NRTIs of varying subclasses, and the level of reactive oxygen species (ROS) and mitochondrial function were assessed. To test whether rescue of mitochondrial electron transport attenuated NRTI-induced endothelial cytotoxicity, in some cases, cells were cotreated with the electron transport cofactor coenzyme Q10 (Q10). At 4–6h, NRTIs increased levels of ROS but decreased the activities of electron transport chain complexes I–IV, levels of ATP and the NAD/NADH ratio. Moreover, nitric oxide levels were decreased, whereas endothelin-1 release was increased. Q10 abolished NRTI-induced mitochondria injury and effects on endothelial agonist production. Interestingly, in cells treated with NRTIs only, markers for mitochondrial toxicity returned to baseline levels by 18–24h, suggesting a compensatory mechanism for clearing damaged mitochondria. Using confocal microscopy, with confirmation utilizing the autophagy and mitophagy markers LC-3 and Nix, respectively, we observed autophagy of mitochondria at 8–10h after treatment. Q10 prevented NRTI-mediated increase in LC-3. These findings suggest that NRTI-induced mitophagy may be involved in NRTI-induced endothelial dysfunction and that this damage likely results from oxidant injury. Further, Q10 supplementation could potentially prevent NRTI-induced endothelial dysfunction. PMID:23640862

  16. Innovative Flow Cytometry Allows Accurate Identification of Rare Circulating Cells Involved in Endothelial Dysfunction

    PubMed Central

    Boraldi, Federica; Bartolomeo, Angelica; De Biasi, Sara; Orlando, Stefania; Costa, Sonia; Cossarizza, Andrea; Quaglino, Daniela

    2016-01-01

    Introduction Although rare, circulating endothelial and progenitor cells could be considered as markers of endothelial damage and repair potential, possibly predicting the severity of cardiovascular manifestations. A number of studies highlighted the role of these cells in age-related diseases, including those characterized by ectopic calcification. Nevertheless, their use in clinical practice is still controversial, mainly due to difficulties in finding reproducible and accurate methods for their determination. Methods Circulating mature cells (CMC, CD45-, CD34+, CD133-) and circulating progenitor cells (CPC, CD45dim, CD34bright, CD133+) were investigated by polychromatic high-speed flow cytometry to detect the expression of endothelial (CD309+) or osteogenic (BAP+) differentiation markers in healthy subjects and in patients affected by peripheral vascular manifestations associated with ectopic calcification. Results This study shows that: 1) polychromatic flow cytometry represents a valuable tool to accurately identify rare cells; 2) the balance of CD309+ on CMC/CD309+ on CPC is altered in patients affected by peripheral vascular manifestations, suggesting the occurrence of vascular damage and low repair potential; 3) the increase of circulating cells exhibiting a shift towards an osteoblast-like phenotype (BAP+) is observed in the presence of ectopic calcification. Conclusion Differences between healthy subjects and patients with ectopic calcification indicate that this approach may be useful to better evaluate endothelial dysfunction in a clinical context. PMID:27560136

  17. FGF2 inhibits endothelial-mesenchymal transition through microRNA-20a-mediated repression of canonical TGF-β signaling.

    PubMed

    Correia, Ana C P; Moonen, Jan-Renier A J; Brinker, Marja G L; Krenning, Guido

    2016-02-01

    Endothelial-to-mesenchymal transition (EndMT) is characterized by the loss of endothelial cell markers and functions, and coincides with de novo expression of mesenchymal markers. EndMT is induced by TGFβ1 and changes endothelial microRNA expression. We found that miR-20a is decreased during EndMT, and that ectopic expression of miR-20a inhibits EndMT induction. TGFβ1 induces cellular hypertrophy in human umbilical vein endothelial cells and abrogates VE-cadherin expression, reduces endothelial sprouting capacity and induces the expression of the mesenchymal marker SM22α (also known as TAGLN). We identified ALK5 (also known as TGFBR1), TGFBR2 and SARA (also known as ZFYVE9) as direct miR-20a targets. Expression of miR-20a mimics abrogate the endothelial responsiveness to TGFβ1, by decreasing ALK5, TGFBR2 and SARA, and inhibit EndMT, as indicated by the maintenance of VE-cadherin expression, the ability of the cells to sprout and the absence of SM22α expression. FGF2 increases miR-20a expression and inhibits EndMT in TGFβ1-stimulated endothelial cells. In summary, FGF2 controls endothelial TGFβ1 signaling by regulating ALK5, TGFBR2 and SARA expression through miR-20a. Loss of FGF2 signaling combined with a TGFβ1 challenge reduces miR-20a levels and increases endothelial responsiveness to TGFβ1 through elevated receptor complex levels and activation of Smad2 and Smad3, which culminates in EndMT. PMID:26729221

  18. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo.

    PubMed

    Ferreira, Lino S; Gerecht, Sharon; Shieh, Hester F; Watson, Nicki; Rupnick, Maria A; Dallabrida, Susan M; Vunjak-Novakovic, Gordana; Langer, Robert

    2007-08-01

    We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.

  19. Expression of Endothelial Nitric Oxide Synthase and Endothelin-1 in Skin Tissue from Amputated Limbs of Patients with Complex Regional Pain Syndrome

    PubMed Central

    Groeneweg, J. George; Antonissen, Claudia Heijmans; Huygen, Frank J. P. M.; Zijlstra, Freek J.

    2008-01-01

    Background and Objectives. Impaired microcirculation during the chronic stage of complex regional pain syndrome (CRPS) is related to increased vasoconstriction, tissue hypoxia, and metabolic tissue acidosis in the affected limb. Endothelial dysfunction is suggested to be the main cause of diminished blood flow. The aim of this study was to examine the distribution of endothelial nitric oxide synthase (eNOS) and endothelin-1(ET-1) relative to vascular density represented by the endothelial marker CD31-immunoreactivity in the skin tissue of patients with chronic CRPS. Methods. We performed immunohistochemical staining on sections of skin specimens obtained from the amputated limbs (one arm and one leg) of two patients with CRPS. Results. In comparison to proximal specimens we found an increased number of migrated endothelial cells as well as an increase of eNOS activity in distal dermis specimens. Conclusions. We found indications that endothelial dysfunction plays a role in chronic CRPS. PMID:18663383

  20. Novel regulators of endothelial barrier function

    PubMed Central

    Ravindran, Krishnan; Kuebler, Wolfgang M.

    2014-01-01

    Endothelial barrier function is an essential and tightly regulated process that ensures proper compartmentalization of the vascular and interstitial space, while allowing for the diffusive exchange of small molecules and the controlled trafficking of macromolecules and immune cells. Failure to control endothelial barrier integrity results in excessive leakage of fluid and proteins from the vasculature that can rapidly become fatal in scenarios such as sepsis or the acute respiratory distress syndrome. Here, we highlight recent advances in our understanding on the regulation of endothelial permeability, with a specific focus on the endothelial glycocalyx and endothelial scaffolds, regulatory intracellular signaling cascades, as well as triggers and mediators that either disrupt or enhance endothelial barrier integrity, and provide our perspective as to areas of seeming controversy and knowledge gaps, respectively. PMID:25381026

  1. Replication of human endothelial cells in culture.

    PubMed

    Lewis, L J; Hoak, J C; Maca, R D; Fry, G L

    1973-08-01

    Investigative studies dealing with the properties and functions of endothelial cells have been hampered because there has been little or no success in the isolation, growth, and passage of individual cells in large numbers. We have developed a system whereby pure cultures of endothelial cells derived from umbilical veins can be subcultured for at least five serial passages. Many facets of endothelial function and interaction can be evaluated with the use of this new adaptive system of isolation and culture. PMID:4718112

  2. The effect of bisphosphonates on the endothelial differentiation of mesenchymal stem cells.

    PubMed

    Sharma, Dileep; Hamlet, Stephen Mark; Petcu, Eugen Bogdan; Ivanovski, Saso

    2016-02-09

    The contribution of the local stem cell niche to providing an adequate vascular framework during healing cannot be overemphasized. Bisphosphonates (BPs) are known to have a direct effect on the local vasculature, but their effect on progenitor cell differentiation is unknown. This in vitro study evaluated the effect(s) of various BPs on the differentiation of human placental mesenchymal stem cells (pMSCs) along the endothelial lineage and their subsequent functional and morphogenic capabilities. pMSC multipotency was confirmed by successful differentiation into cells of both the osteogenic and endothelial lineages, as demonstrated by positive Alizarin Red S staining and Ac-LDL uptake. pMSC differentiation in the presence of non-cytotoxic BP concentrations showed that nitrogen containing BPs had a significant inhibitory effect on cell migration and endothelial marker gene expression, as well as compromised endothelial differentiation as demonstrated using von Willebrand factor immunofluorescence staining and tube formation assay. This in vitro study demonstrated that at non-cytotoxic levels, nitrogen-containing BPs inhibit differentiation of pMSCs into cells of an endothelial lineage and affect the downstream functional capability of these cells supporting a multi-modal effect of BPs on angiogenesis as pathogenic mechanism contributing to bone healing disorders such as bisphosphonate related osteonecrosis of the jaws (BRONJ).

  3. The effect of bisphosphonates on the endothelial differentiation of mesenchymal stem cells

    PubMed Central

    Sharma, Dileep; Hamlet, Stephen Mark; Petcu, Eugen Bogdan; Ivanovski, Saso

    2016-01-01

    The contribution of the local stem cell niche to providing an adequate vascular framework during healing cannot be overemphasized. Bisphosphonates (BPs) are known to have a direct effect on the local vasculature, but their effect on progenitor cell differentiation is unknown. This in vitro study evaluated the effect(s) of various BPs on the differentiation of human placental mesenchymal stem cells (pMSCs) along the endothelial lineage and their subsequent functional and morphogenic capabilities. pMSC multipotency was confirmed by successful differentiation into cells of both the osteogenic and endothelial lineages, as demonstrated by positive Alizarin Red S staining and Ac-LDL uptake. pMSC differentiation in the presence of non-cytotoxic BP concentrations showed that nitrogen containing BPs had a significant inhibitory effect on cell migration and endothelial marker gene expression, as well as compromised endothelial differentiation as demonstrated using von Willebrand factor immunofluorescence staining and tube formation assay. This in vitro study demonstrated that at non-cytotoxic levels, nitrogen-containing BPs inhibit differentiation of pMSCs into cells of an endothelial lineage and affect the downstream functional capability of these cells supporting a multi-modal effect of BPs on angiogenesis as pathogenic mechanism contributing to bone healing disorders such as bisphosphonate related osteonecrosis of the jaws (BRONJ). PMID:26857282

  4. Normalized endothelial function but sustained cardiovascular risk profile 11 years following a pregnancy complicated by preeclampsia.

    PubMed

    Östlund, Eva; Al-Nashi, Maha; Hamad, Rangeen Rafik; Larsson, Anders; Eriksson, Maria; Bremme, Katarina; Kahan, Thomas

    2013-12-01

    Women with a history of preeclampsia are at increased risk of future cardiovascular disease. Preeclampsia is associated with elevated blood pressure, inflammation and endothelial dysfunction, and these findings remain 1 year after delivery. Whether these abnormalities persist long after delivery, and whether they may contribute to future cardiovascular disease, is not well studied. We studied 15 women with a history of preeclampsia and 16 matched controls with an uncomplicated pregnancy 11 years following the index pregnancy; all had also been previously examined at 1 year. We assessed arterial stiffness (pulse wave analysis), 24 h ambulatory blood pressure and endothelial function (forearm flow-mediated dilatation and pulse wave analysis following β receptor agonist provocation), and determined markers of glucose and lipid metabolism, inflammation and vascular function. The preeclampsia group had higher blood pressures and reduced night/day blood pressure ratios, increased body mass index and reduced glucose tolerance, and increased levels of tissue necrosis factor receptor 1 and intracellular adhesion molecule-1, suggesting inflammatory and vascular activation. However, the endothelial impairment observed in the preeclampsia group at 1 year was normalized at 11 years, whereas the control group remained unchanged during follow-up. Our findings of higher blood pressures, impaired glucose tolerance and normalization of endothelial function 11 years after preeclampsia suggest cardiovascular risk factors present already before pregnancy to be more important than permanent endothelial damage for the increased risk of future cardiovascular complications in women with a history of preeclampsia.

  5. Calcineurin inhibitors cyclosporine A and tacrolimus induce vascular inflammation and endothelial activation through TLR4 signaling

    PubMed Central

    Rodrigues-Diez, Raquel; González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Rodrigues-Diez, Raúl R.; Egido, Jesús; Ortiz, Alberto; Ruiz-Ortega, Marta; Ramos, Adrián M.

    2016-01-01

    The introduction of the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus greatly reduced the rate of allograft rejection, although their chronic use is marred by a range of side effects, among them vascular toxicity. In transplant patients, it is proved that innate immunity promotes vascular injury triggered by ischemia-reperfusion damage, atherosclerosis and hypertension. We hypothesized that activation of the innate immunity and inflammation may contribute to CNI toxicity, therefore we investigated whether TLR4 mediates toxic responses of CNIs in the vasculature. Cyclosporine and tacrolimus increased the production of proinflammatory cytokines and endothelial activation markers in cultured murine endothelial and vascular smooth muscle cells as well as in ex vivo cultures of murine aortas. CNI-induced proinflammatory events were prevented by pharmacological inhibition of TLR4. Moreover, CNIs were unable to induce inflammation and endothelial activation in aortas from TLR4−/− mice. CNI-induced cytokine and adhesion molecules synthesis in endothelial cells occurred even in the absence of calcineurin, although its expression was required for maximal effect through upregulation of TLR4 signaling. CNI-induced TLR4 activity increased O2−/ROS production and NF-κB-regulated synthesis of proinflammatory factors in cultured as well as aortic endothelial and VSMCs. These data provide new insight into the mechanisms associated with CNI vascular inflammation. PMID:27295076

  6. Influence of irradiation on release of endothelial microparticles (EMP) in vitro.

    PubMed

    Neuber, Christin; Pufe, Johanna; Pietzsch, Jens

    2015-01-01

    Survivors of Hodgkin's disease as well as of breast and lung cancer are at risk of radiation-associated cardiovascular disease. Recent studies demonstrated a correlation between cardiovascular risk factors and circulating endothelial microparticles (EMP) and thereby suggest increased EMP levels in circulation to be an early biomarker of endothelial dysfunction and cardiovascular risk. This prompted us to analyze the amount of EMP released by human aortic endothelial cells (HAEC) after exposure to different doses of X-ray (0.4, 2, 4, 6, and 20 Gy) using antibodies against the endothelial cell markers CD31, CD144, and CD146 by flow cytometry. In this pilot experiment only CD146 proved appropriate for quantification of HAEC-derived EMP. Exposure of HAEC to different doses of X-ray did not significantly influence formation of CD146-positive EMP. However, low doses (0.4 Gy) tended to decrease EMP formation, whereas higher doses (2 or 4 Gy) slightly increased release of CD146-positive EMP. By contrast, inflammatory activation of HAEC by TPA significantly increased EMP release about 15-fold (P <  0.01). In conclusion, under the present experimental conditions EMP did not prove a suitable biomarker for radiation-induced endothelial dysfunction in vitro.

  7. Soluble adhesion molecules correlate with surface expression in an in vitro model of endothelial activation.

    PubMed

    Kjaergaard, Anders G; Dige, Anders; Krog, Jan; Tønnesen, Else; Wogensen, Lise

    2013-10-01

    Endothelial activation is a pivotal event in the development and progression of inflammation. Central to endothelial activation is the up-regulation of cellular adhesion molecules (CAMs) including E-selectin (CD62E), ICAM-1 (CD54), VCAM-1 (CD106) and PECAM-1 (CD31). These CAMs are also found in soluble forms (sCAMs). In this in vitro study of endothelial activation, we examined whether the levels of sCAMs correlate with the endothelial surface expression of CAMs in a dose-dependent and time-dependent manner. Such a correlation would support the use of sCAMs as surrogate markers for endothelial activation in inflammatory conditions. Human umbilical vein endothelial cells (HUVEC) were cultured with various concentrations of TNF-α for 8 hr and at a fixed concentration of TNF-α for various durations. The levels of soluble and surface-bound E-selectin, ICAM-1, VCAM-1 and PECAM-1 were quantified by flow cytometry. TNF-α stimulation increased CAM and sCAM expression in a dose-dependent and time-dependent manner. There was a significant positive correlation between the levels of ICAM-1 and sICAM-1 and between the levels of VCAM and sVCAM-1 in both the dose-response and time-response experiments. A positive correlation between the levels of E-selectin and sE-selectin was observed in the time-response experiment. This study supports the use of sCAMs as potential biomarkers of endothelial activation. In particular, the use of sICAM-1, sVCAM-1 and sE-selectin seems promising.

  8. Renal Endothelial Dysfunction in Diabetic Nephropathy

    PubMed Central

    Cheng, Huifang; Harris, Raymond C.

    2015-01-01

    Endothelial dysfunction has been posited to play an important role in the pathogenesis of diabetic nephropathy (DN). Due to the heterogeneity of endothelial cells (ECs), it is difficult to generalize about endothelial responses to diabetic stimuli. At present, there are limited techniques fordirectly measuring EC function in vivo, so diagnosis of endothelial disorders still largely depends on indirect assessment of mediators arising from EC injury. In the kidney microcirculation, both afferent and efferent arteries, arterioles and glomerular endothelial cells (GEnC) have all been implicated as targets of diabetic injury. Both hyperglycemia per se, as well as the metabolic consequences of glucose dysregulation, are thought to lead to endothelial cell dysfunction. In this regard, endothelial nitric oxide synthase (eNOS) plays a central role in EC dysfunction. Impaired eNOS activity can occur at numerous levels, including enzyme uncoupling, post-translational modifications, internalization and decreased expression. Reduced nitric oxide (NO) bioavailability exacerbates oxidative stress, further promoting endothelial dysfunction and injury. The injured ECs may then function as active signal transducers of metabolic, hemodynamic and inflammatory factors that modify the function and morphology of the vessel wall and interact with adjacent cells, which may activate a cascade of inflammatory and proliferative and profibrotic responses in progressive DN. Both pharmacological approaches and potential regenerative therapies hold promise for restoration of impaired endothelial cells in diabetic nephropathy. PMID:24720460

  9. Molecular mechanisms that control endothelial cell contacts.

    PubMed

    Vestweber, D

    2000-02-01

    Endothelial cell contacts control the permeability of the blood vessel wall. This allows the endothelium to form a barrier for solutes, macromolecules, and leukocytes between the vessel lumen and the interstitial space. Loss of this barrier function in pathophysiological situations can lead to extracellular oedema. The ability of leukocytes to enter tissue at sites of inflammation is dependent on molecular mechanisms that allow leukocytes to adhere to the endothelium and to migrate through the endothelial cell layer and the underlying basal lamina. It is a commonly accepted working hypothesis that inter-endothelial cell contacts are actively opened and closed during this process. Angiogenesis is another important process that requires well-controlled regulation of inter-endothelial cell contacts. The formation of new blood vessels by sprouting from pre-existing vessels depends on the loosening of established endothelial cell contacts and the migration of endothelial cells that form the outgrowing sprouts. This review focuses on the molecular composition of endothelial cell surface proteins and proteins of the cytoskeletal undercoat of the plasma membrane at sites of inter-endothelial cell contacts and discusses the current knowledge about the potential role of such molecules in the regulation of endothelial cell contacts. PMID:10685062

  10. Progenitor endothelial cell involvement in Alzheimer's disease

    SciTech Connect

    Budinger, Thomas F.

    2003-05-01

    There is compelling evidence that endothelial cells of the brain and periphery are dysfunctional in Alzheimer's Disease. There is evidence for a fundamental defect in, or abnormal aging of, endothelial progenitor cells in atherosclerosis. The possibility that endothelial cell defects are a primary cause for Alzheimer's Disease or other dementias can be researched by molecular and cell biology studies as well as cell trafficking studies using recently demonstrated molecular imaging methods. The evidence for abnormal endothelial function and the methods to explore this hypothesis are presented.

  11. Endothelial cells in health and disease.

    PubMed

    Eckers, Anna; Haendeler, Judith

    2015-05-10

    According to the World Health Organization, from 2014, cardiovascular diseases (CVD) are the number one cause of death worldwide. One of the key players in maintaining proper cardiovascular function is the endothelium, the inner layer of all blood vessels. This monolayer of cells on one hand serves as a barrier between blood and the surrounding tissue and on the other hand regulates many aspects of vessel function. Therefore, it is not surprising that interventions reducing the risk for CVD improve endothelial function. There is a clear correlation between endothelial dysfunction, in which the endothelial homeostasis is disturbed, and the development and progression of many CVD. Thus, the development of diagnostic tools for early detection of disturbances in endothelial homeostasis or interventions aimed at improving endothelial function after insults require a comprehensive knowledge not only of the cellular reactions to the positive or negative stimuli but also of the molecular mechanisms relaying these responses. Thus, this Forum on "endothelial cells in health and disease" focuses on key molecules and processes intimately involved in endothelial cell function and covers areas from endothelial nitric oxide synthase-dependent processes, over the group of Phox-Bem1 domain proteins, cytochrome P450 epoxygenase-derived metabolites, and pre-mRNA splicing to microRNAs. Finally, one has to conclude that keeping endothelial homeostasis is the central key for a healthy long life of the human individual.

  12. Circulating Endothelial Cells and Endothelial Function predict Major Adverse Cardiac Events and Early Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Magdy, Abdel Hamid; Bakhoum, Sameh; Sharaf, Yasser; Sabry, Dina; El-Gengehe, Ahmed T; Abdel-Latif, Ahmed

    2016-01-01

    Endothelial progenitor cells (EPCs) and circulating endothelial cells (CECs) are mobilized from the bone marrow and increase in the early phase after ST-elevation myocardial infarction (STEMI). The aim of this study was to assess the prognostic significance of CECs and indices of endothelial dysfunction in patients with STEMI. In 78 patients with acute STEMI, characterization of CD34+/VEGFR2+ CECs, and indices of endothelial damage/dysfunction such as brachial artery flow mediated dilatation (FMD) were determined. Blood samples for CECs assessment and quantification were obtained within 24 hours of admission and FMD was assessed during the index hospitalization. At 30 days follow up, the primary composite end point of major cardiac adverse events (MACE) consisting of all-cause mortality, recurrent non-fatal MI, or heart failure and the secondary endpoint of early adverse left ventricular (LV) remodeling were analyzed. The 17 patients (22%) who developed MACE had significantly higher CEC level (P = 0.004), vWF level (P =0.028), and significantly lower FMD (P = 0.006) compared to the remaining patients. Logistic regression analysis showed that CECs level and LV ejection fraction were independent predictors of MACE. The areas under the receiver operating characteristic curves (ROC) for CEC level, FMD, and the logistic model with both markers were 0.73, 0.75, and 0.82 respectively for prediction of the MACE. The 16 patients who developed the secondary endpoint had significantly higher CEC level compared to remaining patients (p =0.038). In conclusion, increased circulating endothelial cells and endothelial dysfunction predicted the occurrence of major adverse cardiac events and adverse cardiac remodeling in patients with STEMI. PMID:26864952

  13. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.

  14. Endotoxin Induces Fibrosis in Vascular Endothelial Cells through a Mechanism Dependent on Transient Receptor Protein Melastatin 7 Activity

    PubMed Central

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A.; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial­to­mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  15. Endotoxin induces fibrosis in vascular endothelial cells through a mechanism dependent on transient receptor protein melastatin 7 activity.

    PubMed

    Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe

    2014-01-01

    The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis. PMID:24710004

  16. Comparison of endothelial evaluation techniques.

    PubMed

    Langston, R H; Roisman, T S

    1981-01-01

    Comparative evaluation of the corneal endothelium with the Heyer-Schulte specular photomicroscope, the McIntyre CEB reticle affixed to a slitlamp, and a slitlamp alone found the reticle-slitlamp combination to give results within a 10% average of endothelial cell counts determined with the specular microscope. The reticle also compared favorably in time and cost savings. All three methods of corneal evaluation were effective for observation of polymegathism. Because of its lower magnification, the slitlamp without the reticle was best suited for evaluation of cornea guttata. PMID:7287565

  17. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A).

    PubMed

    Nishida-Fukuda, Hisayo; Araki, Ryoichi; Shudou, Masachika; Okazaki, Hidenori; Tomono, Yasuko; Nakayama, Hironao; Fukuda, Shinji; Sakaue, Tomohisa; Shirakata, Yuji; Sayama, Koji; Hashimoto, Koji; Detmar, Michael; Higashiyama, Shigeki; Hirakawa, Satoshi

    2016-05-13

    Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a type I transmembrane glycoprotein, is known as one of the most specific lymphatic vessel markers in the skin. In this study, we found that the ectodomain of LYVE-1 undergoes proteolytic cleavage, and this process produces soluble LYVE-1. We further identified the cleavage site for ectodomain shedding and generated an uncleavable mutant of LYVE-1. In lymphatic endothelial cells, ectodomain shedding of LYVE-1 was induced by vascular endothelial growth factor (VEGF)-A, an important factor for angiogenesis and lymphangiogenesis under pathological conditions. VEGF-A-induced LYVE-1 ectodomain shedding was mediated via the extracellular signal-regulated kinase (ERK) and a disintegrin and metalloproteinase (ADAM) 17. Wild-type LYVE-1, but not uncleavable LYVE-1, promoted migration of lymphatic endothelial cells in response to VEGF-A. Immunostaining analyses in human psoriasis skin lesions and VEGF-A transgenic mouse skin suggested that the ectodomain shedding of LYVE-1 occurred in lymphatic vessels undergoing chronic inflammation. These results indicate that the ectodomain shedding of LYVE-1 might be involved in promoting pathological lymphangiogenesis.

  18. Ectodomain Shedding of Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE-1) Is Induced by Vascular Endothelial Growth Factor A (VEGF-A).

    PubMed

    Nishida-Fukuda, Hisayo; Araki, Ryoichi; Shudou, Masachika; Okazaki, Hidenori; Tomono, Yasuko; Nakayama, Hironao; Fukuda, Shinji; Sakaue, Tomohisa; Shirakata, Yuji; Sayama, Koji; Hashimoto, Koji; Detmar, Michael; Higashiyama, Shigeki; Hirakawa, Satoshi

    2016-05-13

    Lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), a type I transmembrane glycoprotein, is known as one of the most specific lymphatic vessel markers in the skin. In this study, we found that the ectodomain of LYVE-1 undergoes proteolytic cleavage, and this process produces soluble LYVE-1. We further identified the cleavage site for ectodomain shedding and generated an uncleavable mutant of LYVE-1. In lymphatic endothelial cells, ectodomain shedding of LYVE-1 was induced by vascular endothelial growth factor (VEGF)-A, an important factor for angiogenesis and lymphangiogenesis under pathological conditions. VEGF-A-induced LYVE-1 ectodomain shedding was mediated via the extracellular signal-regulated kinase (ERK) and a disintegrin and metalloproteinase (ADAM) 17. Wild-type LYVE-1, but not uncleavable LYVE-1, promoted migration of lymphatic endothelial cells in response to VEGF-A. Immunostaining analyses in human psoriasis skin lesions and VEGF-A transgenic mouse skin suggested that the ectodomain shedding of LYVE-1 occurred in lymphatic vessels undergoing chronic inflammation. These results indicate that the ectodomain shedding of LYVE-1 might be involved in promoting pathological lymphangiogenesis. PMID:26966180

  19. Identification of Vascular Lineage-Specific Genes by Transcriptional Profiling of Isolated Blood Vascular and Lymphatic Endothelial Cells

    PubMed Central

    Hirakawa, Satoshi; Hong, Young-Kwon; Harvey, Natasha; Schacht, Vivien; Matsuda, Kant; Libermann, Towia; Detmar, Michael

    2003-01-01

    In mammals, the lymphatic vascular system develops by budding of lymphatic progenitor endothelial cells from embryonic veins to form a distinct network of draining vessels with important functions in the immune response and in cancer metastasis. However, the lineage-specific molecular characteristics of blood vascular versus lymphatic endothelium have remained poorly defined. We isolated lymphatic endothelial cells (LECs) and blood vascular endothelial cells (BVECs) by immunomagnetic isolation directly from human skin. Cultured LECs but not BVECs expressed the lymphatic markers Prox1 and LYVE-1 and formed LYVE-1-positive vascular tubes after implantation in vivo. Transcriptional profiling studies revealed increased expression of several extracellular matrix and adhesion molecules in BVECs, including versican, collagens, laminin, and N-cadherin, and of the growth factor receptors endoglin and vascular endothelial growth factor receptor-1/Flt-1. Differential immunostains of human skin confirmed the blood vessel-specific expression of these genes. During embryonic development, endoglin expression was gradually down-regulated on lymphatic endothelium whereas vascular endothelial growth factor receptor-1 was absent from lymphatics. We also identified several genes with specific expression in LECs. These results demonstrate that some lineage-specific genes are only expressed during distinct developmental stages and they identify new molecular markers for blood vascular and lymphatic endothelium with important implications for future studies of vascular development and function. PMID:12547715

  20. Vascular endothelial dysfunction and pharmacological treatment

    PubMed Central

    Su, Jin Bo

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smoking, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide (NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease. PMID:26635921

  1. Vascular endothelial dysfunction and pharmacological treatment.

    PubMed

    Su, Jin Bo

    2015-11-26

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smoking, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide (NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease. PMID:26635921

  2. An integrative microfluidically supported in vitro model of an endothelial barrier combined with cortical spheroids simulates effects of neuroinflammation in neocortex development.

    PubMed

    Raasch, Martin; Rennert, Knut; Jahn, Tobias; Gärtner, Claudia; Schönfelder, Gilbert; Huber, Otmar; Seiler, Andrea E M; Mosig, Alexander S

    2016-07-01

    The development of therapeutic substances to treat diseases of the central nervous system is hampered by the tightness and selectivity of the blood-brain barrier. Moreover, testing of potential drugs is time-consuming and cost-intensive. Here, we established a new microfluidically supported, biochip-based model of the brain endothelial barrier in combination with brain cortical spheroids suitable to detect effects of neuroinflammation upon disruption of the endothelial layer in response to inflammatory signals. Unilateral perfusion of the endothelial cell layer with a cytokine mix comprising tumor necrosis factor, IL-1β, IFNγ, and lipopolysaccharide resulted in a loss of endothelial von Willebrand factor and VE-cadherin expression accompanied with an increased leakage of the endothelial layer and diminished endothelial cell viability. In addition, cytokine treatment caused a loss of neocortex differentiation markers Tbr1, Tbr2, and Pax6 in the cortical spheroids concomitant with reduced cell viability and spheroid integrity. From these observations, we conclude that our endothelial barrier/cortex model is suitable to specifically reflect cytokine-induced effects on barrier integrity and to uncover damage and impairment of cortical tissue development and viability. With all its limitations, the model represents a novel tool to study cross-communication between the brain endothelial barrier and underlying cortical tissue that can be utilized for toxicity and drug screening studies focusing on inflammation and neocortex formation. PMID:27478526

  3. Engraftment of Syngeneic and Allogeneic Endothelial Cells, Hepatocytes and Cholangiocytes into Partially Hepatectomized Rats Previously Treated with Mitomycin C1

    PubMed Central

    Brilliant, Kate E.; Mills, David R.; Callanan, Helen M.; Hixson, Douglas C.

    2009-01-01

    Background Pretreatment with retrorsine crosslinks host hepatocyte DNA and prevents proliferation after partial hepatectomy (PH), allowing selective expansion of transplanted progenitors. Shortcomings are length of protocol and carcinogenicity of retrorsine. Methods This report describes a rapid liver repopulation protocol using mitomycin C (MMC) to block proliferation of rat hepatocytes in response to PH. One week post-MMC treatment, dipeptidyl peptidase IV negative (DPPIV−) host rats were given a PH followed by injection of late gestation, newborn or adult total liver isolates from DPPIV+ rats. For allogeneic transplantation, host rats received injections of anti-CD3 antibody before and after PH. Results Host liver staining 2–9 weeks post-transplantation revealed well-defined donor hepatocyte colonies with strong canalicular DPPIV activity. At the same cell dose, fetal and newborn isolates produced more colonies than adult liver isolates. Hepatocyte colonies also co-expressed marker proteins characteristic of adult hepatocytes and showed polarized localization of plasma membrane proteins. Host livers contained large clusters of sinusoids lined by DPPIV+ endothelial cells co-expressing the endothelial cell marker, RECA-1 but lacked the canalicular marker leucine aminopeptidase. Colonies containing donor hepatocytes, endothelial cells and bile ducts, were also observed. Similar levels of engraftment and expansion were achieved with allogeneic liver cell isolates by using anti-CD3 antibody treatment. Conclusions The MMC transplantation model provides a rapid method for engraftment and expansion of hepatocytes, endothelial cells and cholangiocytes and should be applicable to investigations centering on the role of endothelial cells in liver regeneration and the identification and characterization of putative endothelial, hepatocyte and cholangiocyte progenitors. PMID:19696631

  4. Atherogenic Cytokines Regulate VEGF-A-Induced Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells into Endothelial Cells.

    PubMed

    Ikhapoh, Izuagie Attairu; Pelham, Christopher J; Agrawal, Devendra K

    2015-01-01

    Coronary artery stenting or angioplasty procedures frequently result in long-term endothelial dysfunction or loss and complications including arterial thrombosis and myocardial infarction. Stem cell-based therapies have been proposed to support endothelial regeneration. Mesenchymal stem cells (MSCs) differentiate into endothelial cells (ECs) in the presence of VEGF-A in vitro. Application of VEGF-A and MSC-derived ECs at the interventional site is a complex clinical challenge. In this study, we examined the effect of atherogenic cytokines (IL-6, TNFα, and Ang II) on EC differentiation and function. MSCs (CD44(+), CD73(+), CD90(+), CD14(-), and CD45(-)) were isolated from the bone marrow of Yucatan microswine. Naïve MSCs cultured in differentiation media containing VEGF-A (50 ng/mL) demonstrated increased expression of EC-specific markers (vWF, PECAM-1, and VE-cadherin), VEGFR-2 and Sox18, and enhanced endothelial tube formation. IL-6 or TNFα caused a dose-dependent attenuation of EC marker expression in VEGF-A-stimulated MSCs. In contrast, Ang II enhanced EC marker expression in VEGF-A-stimulated MSCs. Addition of Ang II to VEGF-A and IL-6 or TNFα was sufficient to rescue the EC phenotype. Thus, Ang II promotes but IL-6 and TNFα inhibit VEGF-A-induced differentiation of MSCs into ECs. These findings have important clinical implications for therapies intended to increase cardiac vascularity and reendothelialize coronary arteries following intervention. PMID:26106428

  5. Endothelial cell micropatterning: Methods, effects, and applications

    PubMed Central

    Anderson, Deirdre E.J.; Hinds, Monica T.

    2012-01-01

    The effects of flow on endothelial cells have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of endothelial cell morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines endothelial cell micropatterning research by exploring both the many alternative methods used to alter endothelial cell morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in endothelial cell proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, is discussed. PMID:21761242

  6. Today's oxidative stress markers.

    PubMed

    Czerska, Marta; Mikołajewska, Karolina; Zieliński, Marek; Gromadzińska, Jolanta; Wąsowicz, Wojciech

    2015-01-01

    Oxidative stress represents a situation where there is an imbalance between the reactive oxygen species (ROS) and the availability and the activity of antioxidants. This balance is disturbed by increased generation of free radicals or decreased antioxidant activity. It is very important to develop methods and find appropriate biomarkers that may be used to assess oxidative stress in vivo. It is significant because appropriate measurement of such stress is necessary in identifying its role in lifestyle-related diseases. Previously used markers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS) or malondialdehyde (MDA), are progressively being supplemented by new ones, such as isoprostanes (IsoPs) and their metabolites or allantoin. This paper is focusing on the presentation of new ones, promising markers of oxidative stress (IsoPs, their metabolites and allantoin), taking into account the advantage of those markers over markers used previously. PMID:26325052

  7. [Biological markers of alcoholism].

    PubMed

    Marcos Martín, M; Pastor Encinas, I; Laso Guzmán, F J

    2005-09-01

    Diagnosis of alcoholism is very important, given its high prevalence and possibility of influencing the disease course. For this reason, the so-called biological markers of alcoholism are useful. These are analytic parameters that alter in the presence of excessive alcohol consumption. The two most relevant markers are the gamma-glutamyltranspeptidase and carbohydrate deficient transferrin. With this clinical comment, we aim to contribute to the knowledge of these tests and promote its use in the clinical practice. PMID:16194480

  8. SNAP23 Regulates Endothelial Exocytosis of von Willebrand Factor

    PubMed Central

    Zhu, Qiuyu; Yamakuchi, Munekazu; Lowenstein, Charles J.

    2015-01-01

    Endothelial exocytosis regulates vascular thrombosis and inflammation. The trafficking and release of endothelial vesicles is mediated by SNARE (Soluble NSF Attachment protein REceptors) molecules, but the exact identity of endothelial SNAREs has been unclear. Three SNARE molecules form a ternary complex, including isoforms of the syntaxin (STX), vesicle-associated membrane protein (VAMP), and synaptosomal-associated protein (SNAP) families. We now identify SNAP23 as the predominant endothelial SNAP isoform that mediates endothelial exocytosis of von Willebrand Factor (VWF). SNAP23 was localized to the plasma membrane. Knockdown of SNAP23 decreased endothelial exocytosis, suggesting it is important for endothelial exocytosis. SNAP23 interacted with the endothelial exocytic machinery, and formed complexes with other known endothelial SNARE molecules. Taken together, these data suggest that SNAP23 is a key component of the endothelial SNARE machinery that mediates endothelial exocytosis. PMID:26266817

  9. Biocompatibility of common polyimides with human endothelial cells for a cardiovascular microsensor.

    PubMed

    Starr, Peter; Agrawal, C Mauli; Bailey, Steven

    2016-02-01

    The cardiovasculature is an emerging niche for polyimide microdevices, yet the biocompatibility of polyimides with human endothelial cells has not been reported in the literature. In this study, we have evaluated an experimental polyimide-based pressure sensor for biological safety to determine its suitability for intravascular operation by using an in vitro model of human endothelium, following ISO 10993-5 protocols for extract tests and direct contact tests. First, SV-HCEC cells were incubated with extracts derived from common microfabrication polyimides utilized in the transducer (PMDA-ODA, BPDA-PPD, and a proprietary thermoplastic adhesive), and then labeled with selective probes to evaluate the effect of the polyimides on mitochondria and cell viability. Flow cytometry analysis showed that incubation of SV-HCECs with polyimide extracts resulted in no significant change in mitochondrial membrane potential (detected by JC-1) or apoptotic (annexin V) and necrotic (propidium iodide) cell death, when compared to incubation with extracts of high-density polyethylene (HDPE) and untreated cells used as negative controls. Second, primary human endothelial cells were incubated in direct contact with the completed sensor and then labeled with selective probes for live-dead analysis (calcein-AM, ethidium homodimer-1). Endothelial cells showed no loss of viability when compared to negative controls. Combined, the studies show no significant change in early markers of stress or more strict markers of viability in endothelial cells treated with the polyimides tested. We conclude that these common microfabrication polyimides and the derived sensor are not cytotoxic to human endothelial cells, the primary cell type that cardiovascular sensors will contact in vivo. PMID:26418753

  10. Bone Marrow Transplantation Improves Endothelial Function in Hypertensive Dahl Salt-Sensitive Rats

    PubMed Central

    Yu, Hong; Shao, Hongwei; Yan, Jing; Tsoukias, Nikolaos M.; Zhou, Ming-Sheng

    2012-01-01

    Bone marrow-derived endothelial progenitor cells (EPCs) constitute an important endogenous system in the maintenance of endothelial integrity and vascular homeostasis. Cardiovascular risk factors are associated with a reduced number and functional capacity of EPCs. Here we investigated the effect of transplantation of bone marrow-derived cells from Dahl salt-resistant rat into age-matched Dahl salt-sensitive (DS) rat on blood pressure, endothelial function, and circulating EPC number. The recipient DS rats were fed a normal (0.5% NaCl, NS) or high salt (4% NaCl, HS) diet for 6 weeks after BMT. DS rats on a NS or a HS diet without BMT were used as controls. Hypertensive DS (HS-DS) rat (systolic blood pressure: 213 ± 4 mmHg vs. 152 ± 4 mmHg in NS, p<0.05) manifested impaired endothelium-dependent relaxation to acetylcholine (EDR), increased gene expression of vascular oxidative stress and proinflamamtory cytokines, and decreased eNOS expression. BMT on HS-DS rat significantly improved EDR and eNOS expression, reduced oxidative stress without reduction in SBP (206 ± 6 mmHg). Flow cytometry analysis showed that there was no difference in the number of circulating EPCs, demonstrated by expression of EPC markers CD34, cKit, and vascular endothelial growth factor, between hypertensive and normotensive rats. Surprisingly, BMT resulted in a 5–10 fold increase in the above-mentioned EPC markers in hypertensive, but not normotensive rat. These results suggest that DS rat has an impaired ability to increase bone marrow-derived EPCs in response to HS diet challenge, which may contribute to endothelial dysfunction. PMID:22995801

  11. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    SciTech Connect

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  12. [Serological markers of fibrosis].

    PubMed

    Fernández-Varo, Guillermo

    2012-12-01

    Liver biopsy has classically been considered the gold standard to evaluate the degree of fibrosis, since it allows direct measurement of this entity. However, this technique carries an inherent risk of complications and observer variability and technical limitations can provoke sampling errors, all of which has prompted the search for alternative, noninvasive methods. The use of routine clinical laboratory tests has been investigated and various indexes that combine indirect serological markers have been developed and validated. These indexes are useful, low-cost, noninvasive tests to detect significant fibrosis or cirrhosis. Direct serological markers are those that reflect changes in the composition of the extracellular matrix. Several studies have analyzed the utility of these markers (either individually or combined with other direct and indirect markers) in the detection of the severity and progression of liver fibrosis and in the follow-up of changes related to antiviral therapy. In the last few years, imaging tests based on the measurement of liver stiffness, such as FibroScan or acoustic radiation force impulse (ARFI), have been found to be rapid and reproducible methods to evaluate liver fibrosis. Recently, the results obtained by combining distinct serological markers and imaging techniques have shown a higher diagnostic yield and this strategy seems promising. The present article reviews the most widely discussed noninvasive markers, the most recent alternatives, and the perspectives for their use in clinical practice. PMID:23298654

  13. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease.

    PubMed

    Aragona, Caterina Oriana; Imbalzano, Egidio; Mamone, Federica; Cairo, Valentina; Lo Gullo, Alberto; D'Ascola, Angela; Sardo, Maria Adriana; Scuruchi, Michele; Basile, Giorgio; Saitta, Antonino; Mandraffino, Giuseppe

    2016-01-01

    Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs) in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to "endothelial progenitor cells" and "endothelium" and, for the different categories, respectively, "smoking"; "blood pressure"; "diabetes mellitus" or "insulin resistance"; "dyslipidemia"; "aging" or "elderly"; "angina pectoris" or "myocardial infarction"; "stroke" or "cerebrovascular disease"; "homocysteine"; "C-reactive protein"; "vitamin D". Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  14. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery.

    PubMed

    Igarashi, Tsutomu; Ohsawa, Ikuroh; Kobayashi, Maika; Igarashi, Toru; Suzuki, Hisaharu; Iketani, Masumi; Takahashi, Hiroshi

    2016-01-01

    In phacoemulsification, ultrasound induces hydroxyl radical (·OH) formation, damaging corneal endothelium. Whether H2 can prevent such oxidative damage in phacoemulsification was examined by in vitro and in vivo studies. H2 was dissolved in a commercial irrigating solution. The effects of H2 against ·OH generation were first confirmed in vitro by electron-spin resonance (ESR) and hydroxyphenyl fluorescein (HPF). ESR showed a significantly decreased signal magnitude, and fluorescence intensity by oxidized HPF was significantly less in the H2-dissolved solution. The effects of H2 in phacoemulsification were evaluated in rabbits, comparing H2-dissolved and control solutions. Five hours after the procedure, the whole cornea was excised and subjected to image analysis for corneal edema, real-time semiquantitative PCR (qPCR) for heme oxygenase (HO)-1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 mRNA, and immunohistochemistry. Corneal edema was significantly less and the increases in anti-oxidative HO-1, CAT and SOD2 mRNA expressions were significantly suppressed in the H2 group. In addition, corneal endothelial cell expressions of two oxidative stress markers, 4-HNE and 8-OHdG, were significantly lower in the H2 group. In conclusion, H2 dissolved in the ocular irrigating solution protected corneal endothelial cells from phacoemulsification-induced oxidative stress and damage. PMID:27498755

  15. In Vitro Expansion of Corneal Endothelial Cells on Biomimetic Substrates

    PubMed Central

    Palchesko, Rachelle N.; Lathrop, Kira L.; Funderburgh, James L.; Feinberg, Adam W.

    2015-01-01

    Corneal endothelial (CE) cells do not divide in vivo, leading to edema, corneal clouding and vision loss when the density drops below a critical level. The endothelium can be replaced by transplanting allogeneic tissue; however, access to donated tissue is limited worldwide resulting in critical need for new sources of corneal grafts. In vitro expansion of CE cells is a potential solution, but is challenging due to limited proliferation and loss of phenotype in vitro via endothelial to mesenchymal transformation (EMT) and senescence. We hypothesized that a bioengineered substrate recapitulating chemo-mechanical properties of Descemet's membrane would improve the in vitro expansion of CE cells while maintaining phenotype. Results show that bovine CE cells cultured on a polydimethylsiloxane surface with elastic modulus of 50 kPa and collagen IV coating achieved >3000-fold expansion. Cells grew in higher-density monolayers with polygonal morphology and ZO-1 localization at cell-cell junctions in contrast to control cells on polystyrene that lost these phenotypic markers coupled with increased α-smooth muscle actin expression and fibronectin fibril assembly. In total, these results demonstrate that a biomimetic substrate presenting native basement membrane ECM proteins and mechanical environment may be a key element in bioengineering functional CE layers for potential therapeutic applications. PMID:25609008

  16. Endothelial microparticles as conveyors of information in atherosclerotic disease.

    PubMed

    Schiro, A; Wilkinson, F L; Weston, R; Smyth, J V; Serracino-Inglott, F; Alexander, M Y

    2014-06-01

    Endothelial microparticles (EMPs) are complex submicron membrane-shed vesicles released into the circulation following endothelium cell activation or apoptosis. They are classified as either physiological or pathological, with anticoagulant or pro-inflammatory effects respectively. Endothelial dysfunction caused by inflammation is a key initiating event in atherosclerotic plaque formation. Athero-emboli, resulting from ruptured carotid plaques are a major cause of stroke. Current clinical techniques for arterial assessment, angiography and carotid ultrasound, give accurate information about stenosis but limited evidence on plaque composition, inflammation or vulnerability; as a result, patients with asymptomatic, or fragile carotid lesions, may not be identified and treated effectively. There is a need to discover novel biomarkers and develop more efficient diagnostic approaches in order to stratify patients at most risk of stroke, who would benefit from interventional surgery. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. In this review, we will present the evidence to support this hypothesis and propose a novel concept for the development of a diagnostic device that could be implemented in the clinic. PMID:24721189

  17. In vitro expansion of corneal endothelial cells on biomimetic substrates.

    PubMed

    Palchesko, Rachelle N; Lathrop, Kira L; Funderburgh, James L; Feinberg, Adam W

    2015-01-01

    Corneal endothelial (CE) cells do not divide in vivo, leading to edema, corneal clouding and vision loss when the density drops below a critical level. The endothelium can be replaced by transplanting allogeneic tissue; however, access to donated tissue is limited worldwide resulting in critical need for new sources of corneal grafts. In vitro expansion of CE cells is a potential solution, but is challenging due to limited proliferation and loss of phenotype in vitro via endothelial to mesenchymal transformation (EMT) and senescence. We hypothesized that a bioengineered substrate recapitulating chemo-mechanical properties of Descemet's membrane would improve the in vitro expansion of CE cells while maintaining phenotype. Results show that bovine CE cells cultured on a polydimethylsiloxane surface with elastic modulus of 50 kPa and collagen IV coating achieved >3000-fold expansion. Cells grew in higher-density monolayers with polygonal morphology and ZO-1 localization at cell-cell junctions in contrast to control cells on polystyrene that lost these phenotypic markers coupled with increased α-smooth muscle actin expression and fibronectin fibril assembly. In total, these results demonstrate that a biomimetic substrate presenting native basement membrane ECM proteins and mechanical environment may be a key element in bioengineering functional CE layers for potential therapeutic applications. PMID:25609008

  18. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery

    PubMed Central

    Igarashi, Tsutomu; Ohsawa, Ikuroh; Kobayashi, Maika; Igarashi, Toru; Suzuki, Hisaharu; Iketani, Masumi; Takahashi, Hiroshi

    2016-01-01

    In phacoemulsification, ultrasound induces hydroxyl radical (·OH) formation, damaging corneal endothelium. Whether H2 can prevent such oxidative damage in phacoemulsification was examined by in vitro and in vivo studies. H2 was dissolved in a commercial irrigating solution. The effects of H2 against ·OH generation were first confirmed in vitro by electron-spin resonance (ESR) and hydroxyphenyl fluorescein (HPF). ESR showed a significantly decreased signal magnitude, and fluorescence intensity by oxidized HPF was significantly less in the H2-dissolved solution. The effects of H2 in phacoemulsification were evaluated in rabbits, comparing H2-dissolved and control solutions. Five hours after the procedure, the whole cornea was excised and subjected to image analysis for corneal edema, real-time semiquantitative PCR (qPCR) for heme oxygenase (HO)-1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 mRNA, and immunohistochemistry. Corneal edema was significantly less and the increases in anti-oxidative HO-1, CAT and SOD2 mRNA expressions were significantly suppressed in the H2 group. In addition, corneal endothelial cell expressions of two oxidative stress markers, 4-HNE and 8-OHdG, were significantly lower in the H2 group. In conclusion, H2 dissolved in the ocular irrigating solution protected corneal endothelial cells from phacoemulsification-induced oxidative stress and damage. PMID:27498755

  19. Endothelial and platelet function alterations in HIV-infected patients.

    PubMed

    Gresele, P; Falcinelli, E; Sebastiano, M; Baldelli, F

    2012-03-01

    The HIV epidemic has huge dimensions: in 2009, 33.3million people worldwide, including 2.5million children, were affected by human immunodeficiency virus (HIV) infection. The introduction of Highly Active Anti-Retroviral Therapy (HAART) has significantly modified the course of HIV disease, with longer survival and improved quality of life, but it has simultaneously lead to the appearance of previously unrecognized complications, such as ischemic cardiovascular events. Many studies have shown a higher rate of premature atherosclerosis in patients with HIV infection, leading to coronary, cerebrovascular, or peripheral arterial disease. However, it is still debated whether cardiovascular complications are a consequence of HIV infection itself or of the long-term use of HAART. In particular, myocardial infarction has been suggested to be associated with the use of abacavir. Endothelial dysfunction and platelet activation are markers of atherosclerosis and of increased cardiovascular risk. Here we review the evidence that endothelial dysfunction and platelet alterations are associated with chronic HIV infection, the possible role of different HAARTs, and the possible pathophysiologic mechanisms. Potential therapeutic implications are also discussed.

  20. Extracellular ATP protects endothelial cells against DNA damage.

    PubMed

    Aho, Joonas; Helenius, Mikko; Vattulainen-Collanus, Sanna; Alastalo, Tero-Pekka; Koskenvuo, Juha

    2016-09-01

    Cell damage can lead to rapid release of ATP to extracellular space resulting in dramatic change in local ATP concentration. Evolutionary, this has been considered as a danger signal leading to adaptive responses in adjacent cells. Our aim was to demonstrate that elevated extracellular ATP or inhibition of ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39) activity could be used to increase tolerance against DNA-damaging conditions. Human endothelial cells, with increased extracellular ATP concentration in cell proximity, were more resistant to irradiation or chemically induced DNA damage evaluated with the DNA damage markers γH2AX and phosphorylated p53. In our rat models of DNA damage, inhibiting CD39-driven ATP hydrolysis with POM-1 protected the heart and lung tissues against chemically induced DNA damage. Interestingly, the phenomenon could not be replicated in cancer cells. Our results show that transient increase in extracellular ATP can promote resistance to DNA damage.

  1. Assessment of endothelial and neurovascular function in human skin microcirculation.

    PubMed

    Roustit, Matthieu; Cracowski, Jean-Luc

    2013-07-01

    Peripheral microvascular dysfunction has been described in many physiological and pathological conditions. Owing to its accessibility, the cutaneous microcirculation provides a unique index of microvascular function. Skin microvascular function has therefore been proposed as a prognostic marker or for evaluating the effect of drugs on the microcirculation. Various reactivity tests, coupled with techniques measuring skin blood flux, are used to non-invasively explore both endothelial and neurovascular microvascular functioning in humans. We review the advantages and limitations of the main reactivity tests, including post-occlusive reactive hyperemia, local thermal hyperemia, pressure-induced vasodilation, and iontophoresis of vasodilators, combined with measurement techniques such as laser Doppler and laser speckle contrast imaging. Recent advances in our comprehension of the physiological pathways underlying these reactivity tests, as well as technological developments in microcirculation imaging, have provided reliable and reproducible tools for studying the microcirculation.

  2. Establishment of a translational endothelial cell model using directed differentiation of induced pluripotent stem cells from Cynomolgus monkey

    PubMed Central

    Thoma, Eva C.; Heckel, Tobias; Keller, David; Giroud, Nicolas; Leonard, Brian; Christensen, Klaus; Roth, Adrian; Bertinetti-Lapatki, Cristina; Graf, Martin; Patsch, Christoph

    2016-01-01

    Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here, we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs, we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover, we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions, such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species. PMID:27779219

  3. Neither Proteinuria Nor Albuminuria Is Associated With Endothelial Dysfunction in HIV-Infected Patients Without Diabetes or Hypertension

    PubMed Central

    Shen, Changyu; Mather, Kieren J.; Agarwal, Rajiv; Dubé, Michael P.

    2011-01-01

    It is unknown whether systemic endothelial dysfunction underlies the association between nephropathy and cardiovascular disease (CVD) in persons infected with human immunodeficiency virus (HIV). Spot urine protein to creatinine ratio, spot urine albumin to creatinine ratio, creatinine clearance, estimated glomerular filtration rate, and flow-mediated dilation (FMD) of the brachial artery were evaluated in 123 study participants infected with HIV (58 receiving antiretroviral therapy [ART] and 65 not receiving ART) with no history of diabetes or hypertension. None of the renal markers, modeled as either continuous or categorical variables, correlated with FMD. Contrary to expectations, endothelial dysfunction may not be the link between nephropathy and CVD in HIV. PMID:22013226

  4. Reciprocal interactions between mitral valve endothelial and interstitial cells reduce endothelial-to-mesenchymal transition and myofibroblastic activation

    PubMed Central

    Shapero, Kayle; Wylie-Sears, Jill; Levine, Robert A.; Mayer, John E.; Bischoff, Joyce

    2015-01-01

    Thickening of mitral leaflets, endothelial-to-mesenchymal transition (EndMT), and activated myofibroblast-like interstitial cells have been observed in ischemic mitral valve regurgitation. We set out to determine if interactions between mitral valve endothelial cells (VEC) and interstitial cells (VIC) might affect these alterations. We used in vitro co-culture in Transwell™ inserts to test the hypothesis that VIC secrete factors that inhibit EndMT and conversely, that VEC secrete factors that mitigate the activation of VIC to a myofibroblast-like, activated phenotype. Primary cultures and clonal populations of ovine mitral VIC and VEC were used. Western blot, quantitative reverse transcriptase PCR (qPCR) and functional assays were used to assess changes in cell phenotype and behavior. VIC or conditioned media from VIC inhibited transforming growth factorβ (TGFβ)-induced EndMT in VEC, as indicated by reduced expression of EndMT markers α-smooth muscle actin (α-SMA), Slug, Snai1 and MMP-2 and maintained ability of VEC to mediate leukocyte adhesion, an important endothelial function. VEC or conditioned media from VEC reversed the spontaneous cell culture-induced change in VIC to an activated phenotype, as indicated by reduced expression of α-SMA and type I collagen, increased expression chondromodulin-1 (Chm1), and reduced contractile activity. These results demonstrate that mitral VEC and VIC secrete soluble factors that can reduce VIC activation and inhibit TGFβ-driven EndMT, respectively. These findings suggest that the endothelium of the mitral valve is critical for the maintenance of a quiescent VIC phenotype and that, in turn, VIC prevent EndMT. We speculate that disturbance of the ongoing reciprocal interactions between VEC and VICs in vivo may contribute to the thickened and fibrotic leaflets observed in ischemic mitral regurgitation, and in other types of valve disease. PMID:25633835

  5. Flow cytometric analysis of circulating endothelial cells and endothelial progenitors for clinical purposes in oncology: A critical evaluation

    PubMed Central

    DANOVA, MARCO; COMOLLI, GIUDITTA; MANZONI, MARIANGELA; TORCHIO, MARTINA; MAZZINI, GIULIANO

    2016-01-01

    Malignant tumors are characterized by uncontrolled cell growth and metastatic spread, with a pivotal importance of the phenomenon of angiogenesis. For this reason, research has focused on the development of agents targeting the vascular component of the tumor microenvironment and regulating the angiogenic switch. As a result, the therapeutic inhibition of angiogenesis has become an important component of anticancer treatment, however, its utility is partly limited by the lack of an established methodology to assess its efficacy in vivo. Circulating endothelial cells (CECs), which are rare in healthy subjects and significantly increased in different tumor types, represent a promising tool for monitoring the tumor clinical outcome and the treatment response. A cell population circulating into the blood also able to form endothelial colonies in vitro and to promote vasculogenesis is represented by endothelial progenitor cells (EPCs). The number of both of these cell types is extremely low and they cannot be identified using a single marker, therefore, in absence of a definite consensus on their phenotype, require discrimination using combinations of antigens. Multiparameter flow cytometry (FCM) is ideal for rapid processing of high numbers of cells per second and is commonly utilized to quantify CECs and EPCs, however, remains technically challenging since there is as yet no standardized protocol for the identification and enumeration of these rare events. Methodology in studies on CECs and/or EPCs as clinical biomarkers in oncology is heterogeneous and data have been obtained from different studies leading to conflicting conclusions. The present review presented a critical review of the issues that limit the comparability of results of the most significant studies employing FCM for CEC and/or EPC detection in patients with cancer. PMID:27284422

  6. Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury.

    PubMed

    Sugiyama, Michael G; Gamage, Asela; Zyla, Roman; Armstrong, Susan M; Advani, Suzanne; Advani, Andrew; Wang, Changsen; Lee, Warren L

    2016-02-01

    Lung injury after influenza infection is characterized by increased permeability of the lung microvasculature, culminating in acute respiratory failure. Platelets interact with activated endothelial cells and have been implicated in the pathogenesis of some forms of acute lung injury. Autopsy studies have revealed pulmonary microthrombi after influenza infection, and epidemiological studies suggest that influenza vaccination is protective against pulmonary thromboembolism; however, the effect of influenza infection on platelet-endothelial interactions is unclear. We demonstrate that endothelial infection with both laboratory and clinical strains of influenza virus increased the adhesion of human platelets to primary human lung microvascular endothelial cells. Platelets adhered to infected cells as well as to neighboring cells, suggesting a paracrine effect. Influenza infection caused the upregulation of von Willebrand factor and ICAM-1, but blocking these receptors did not prevent platelet-endothelial adhesion. Instead, platelet adhesion was inhibited by both RGDS peptide and a blocking antibody to platelet integrin α5β1, implicating endothelial fibronectin. Concordantly, lung histology from infected mice revealed viral dose-dependent colocalization of viral nucleoprotein and the endothelial marker PECAM-1, while platelet adhesion and fibronectin deposition also were observed in the lungs of influenza-infected mice. Inhibition of platelets using acetylsalicylic acid significantly improved survival, a finding confirmed using a second antiplatelet agent. Thus, influenza infection induces platelet-lung endothelial adhesion via fibronectin, contributing to mortality from acute lung injury. The inhibition of platelets may constitute a practical adjunctive strategy to the treatment of severe infections with influenza.IMPORTANCE There is growing appreciation of the involvement of the lung endothelium in the pathogenesis of severe infections with influenza virus. We have

  7. Influenza Virus Infection Induces Platelet-Endothelial Adhesion Which Contributes to Lung Injury.

    PubMed

    Sugiyama, Michael G; Gamage, Asela; Zyla, Roman; Armstrong, Susan M; Advani, Suzanne; Advani, Andrew; Wang, Changsen; Lee, Warren L

    2015-12-04

    Lung injury after influenza infection is characterized by increased permeability of the lung microvasculature, culminating in acute respiratory failure. Platelets interact with activated endothelial cells and have been implicated in the pathogenesis of some forms of acute lung injury. Autopsy studies have revealed pulmonary microthrombi after influenza infection, and epidemiological studies suggest that influenza vaccination is protective against pulmonary thromboembolism; however, the effect of influenza infection on platelet-endothelial interactions is unclear. We demonstrate that endothelial infection with both laboratory and clinical strains of influenza virus increased the adhesion of human platelets to primary human lung microvascular endothelial cells. Platelets adhered to infected cells as well as to neighboring cells, suggesting a paracrine effect. Influenza infection caused the upregulation of von Willebrand factor and ICAM-1, but blocking these receptors did not prevent platelet-endothelial adhesion. Instead, platelet adhesion was inhibited by both RGDS peptide and a blocking antibody to platelet integrin α5β1, implicating endothelial fibronectin. Concordantly, lung histology from infected mice revealed viral dose-dependent colocalization of viral nucleoprotein and the endothelial marker PECAM-1, while platelet adhesion and fibronectin deposition also were observed in the lungs of influenza-infected mice. Inhibition of platelets using acetylsalicylic acid significantly improved survival, a finding confirmed using a second antiplatelet agent. Thus, influenza infection induces platelet-lung endothelial adhesion via fibronectin, contributing to mortality from acute lung injury. The inhibition of platelets may constitute a practical adjunctive strategy to the treatment of severe infections with influenza.IMPORTANCE There is growing appreciation of the involvement of the lung endothelium in the pathogenesis of severe infections with influenza virus. We have

  8. Clinical utility of biomarkers of endothelial activation in sepsis-a systematic review

    PubMed Central

    2012-01-01

    Introduction A strong biologic rationale exists for targeting markers of endothelial cell (EC) activation as clinically informative biomarkers to improve diagnosis, prognostic evaluation or risk-stratification of patients with sepsis. Methods The objective was to review the literature on the use of markers of EC activation as prognostic biomarkers in sepsis. MEDLINE was searched for publications using the keyword 'sepsis' and any of the identified endothelial-derived biomarkers in any searchable field. All clinical studies evaluating markers reflecting activation of ECs were included. Studies evaluating other exogenous mediators of EC dysfunction and studies of patients with malaria and febrile neutropenia were excluded. Results Sixty-one studies were identified that fulfilled the inclusion criteria. Overall, published studies report positive correlations between multiple EC-derived molecules and the diagnosis of sepsis, supporting the critical role of EC activation in sepsis. Multiple studies also reported positive associations for mortality and severity of illness, although these results were less consistent than for the presence of sepsis. Very few studies, however, reported thresholds or receiver operating characteristics that would establish these molecules as clinically-relevant biomarkers in sepsis. Conclusions Multiple endothelial-derived molecules are positively correlated with the presence of sepsis in humans, and variably correlated to other clinically-important outcomes. The clinical utility of these biomarkers is limited by a lack of assay standardization, unknown receiver operating characteristics and lack of validation. Additional large-scale prospective clinical trials will be required to determine the clinical utility of biomarkers of endothelial activation in the management of patients with sepsis. PMID:22248019

  9. Chronic Sleep Fragmentation Induces Endothelial Dysfunction and Structural Vascular Changes in Mice

    PubMed Central

    Carreras, Alba; Zhang, Shelley X.; Peris, Eduard; Qiao, Zhuanhong; Gileles-Hillel, Alex; Li, Richard C.; Wang, Yang; Gozal, David

    2014-01-01

    Study Objectives: Sleep fragmentation (SF) is a common occurrence and constitutes a major characteristic of obstructive sleep apnea (OSA). SF has been implicated in multiple OSA-related morbidities, but it is unclear whether SF underlies any of the cardiovascular morbidities of OSA. We hypothesized that long-term SF exposures may lead to endothelial dysfunction and altered vessel wall structure. Methods and Results: Adult male C57BL/6J mice were fed normal chow and exposed to daylight SF or control sleep (CTL) for 20 weeks. Telemetric blood pressure and endothelial function were assessed weekly using a modified laser-Doppler hyperemic test. Atherosclerotic plaques, elastic fiber disruption, lumen area, wall thickness, foam cells, and macrophage recruitment, as well as expression of senescence-associated markers were examined in excised aortas. Increased latencies to reach baseline perfusion levels during the post-occlusive period emerged in SF mice with increased systemic BP values starting at 8 weeks of SF and persisting thereafter. No obvious atherosclerotic plaques emerged, but marked elastic fiber disruption and fiber disorganization were apparent in SF-exposed mice, along with increases in the number of foam cells and macrophages in the aorta wall. Senescence markers showed reduced TERT and cyclin A and increased p16INK4a expression, with higher IL-6 plasma levels in SF-exposed mice. Conclusions: Long-term sleep fragmentation induces vascular endothelial dysfunction and mild blood pressure increases. Sleep fragmentation also leads to morphologic vessel changes characterized by elastic fiber disruption and disorganization, increased recruitment of inflammatory cells, and altered expression of senescence markers, thereby supporting a role for sleep fragmentation in the cardiovascular morbidity of OSA. Citation: Carreras A, Zhang SX, Peris E, Qiao Z, Gileles-Hillel A, Li RC, Wang Y, Gozal D. Chronic sleep fragmentation induces endothelial dysfunction and

  10. Intravascular papillary endothelial hyperplasia: histomorphological and immunohistochemical features

    PubMed Central

    2013-01-01

    Background Intravascular papillary endothelial hyperplasia (IPEH) is a benign intravascular process with features mimicking other benign and malignant vascular proliferations. IPEH lesions predominate in the head-neck region and the extremities. The characteristic histomorphological feature of IPEH is a papillary structure covered with hyperplastic endothelial cells within the vascular lumen. It is critical that this clinically benign lesion should not be mistaken for well-differentiated vascular tumors. In addition to the characteristic histological features, other useful diagnostic features included the intra-luminal location of the lesion, an intimate association with the organizing thrombus, the absence of necrosis, cellular pleomorphism, and mitotic activity. In addition, immunohistochemistry may indicate the vascular origin and proliferative index. In this study, we evaluated histomorphological and immunohistochemical findings (CD31, CD34, FVIII, type IV collagen, SMA, MSA, CD105, and Ki-67 staining) of ten IPEH cases. Methods Ten IPEH cases were re-examined for a panel of histomorphological and immunohistochemical features. CD31, CD34, FVIII, Type IV collagen, SMA and MSA antibodies utilized for immunohistochemical analysis. The histomorphological and immunohistochemical findings were evaluated by two independent pathologists using light microscopy. Results All ten cases involved intraluminal lesions with characteristic features of IPEH. All ten cases (100%) were stained positive for CD31 and CD34. The degree of staining with FVIII, type IV collagen, SMA, and MSA was variable. Conclusion In this series of specimens, CD31 and CD34 were the most sensitive markers indicating the vascular origin of the lesion. Staining for the other vascular markers (FVIII, type IV collagen, SMA and MSA) was variable. Different maturation degrees of lesions may account for the variation in immunohistochemical staining. Few previous investigations evaluated a wide range of

  11. Relationship between asymmetric dimethylarginine and endothelial dysfunction in patients with rheumatoid arthritis

    PubMed Central

    Şentürk, Taşkın; Yılmaz, Nergiz; Sargın, Gökhan; Köseoğlu, Kutsi; Yenisey, Çiğdem

    2016-01-01

    Objective In rheumatoid arthritis (RA), endothelial dysfunction caused by the inflammatory process increases the risk of cardiovascular disease. Asymmetric Dimethylarginine (ADMA) leads to vascular dysfunction, whereas atherosclerosis and increased ADMA is associated with cardiovascular disease risk factors. Flow-mediated Dilation (FMD) is a radiological method to demonstrate endothelial dysfunction. In the present study, we assessed the availability of ADMA as a marker for endothelial dysfunction in RA patients. ADMA can be used as a simple and cheaper method for the determination of endothelial dysfunction. Material and Methods Forty patients (1 male, 39 female) diagnosed with RA according to the classification criteria and 29 healthy volunteers (2 males, 27 females) were included in this study. ADMA was studied by enzyme-linked immunosorbent assay (ELISA). Chi-square, Fisher’s exact test, Mann–Whitney U test, and Spearman’s correlation tests were used for analytical analysis, and p<0.05 was considered as the level of statistical significance. Results In our study, ADMA levels were significantly higher in RA patients. The ADMA level was inversely correlated with FMD. Although high levels of both C-reactive protein and ADMA were detected in patients with high disease activity, there was no statistically significant difference between these parameters (p=0.18). There were statistically significant negative correlations between FMD and age and disease duration (p=0.01, p=0.01). However, there were no statistically significant correlations with erythrocyte sedimentation rate, rheumatoid factor, and disease activity score (p=0.68). In RA patients, there was a statistically significant positive correlation between disease duration and ADMA, whereas a negative correlation was found between FMD and ADMA (p<0.05). Conclusion Our results support the hypothesis that ADMA may be used in the assessment of endothelial dysfunction in patients with RA. It will be cost

  12. Effects of sodium and potassium supplementation on endothelial function: a fully controlled dietary intervention study.

    PubMed

    Gijsbers, Lieke; Dower, James I; Schalkwijk, Casper G; Kusters, Yvo H A M; Bakker, Stephan J L; Hollman, Peter C H; Geleijnse, Johanna M

    2015-11-14

    High Na and low K intakes have adverse effects on blood pressure, which increases the risk for CVD. The role of endothelial dysfunction and inflammation in this pathophysiological process is not yet clear. In a randomised placebo-controlled cross-over study in untreated (pre)hypertensives, we examined the effects of Na and K supplementation on endothelial function and inflammation. During the study period, subjects were provided with a diet that contained 2·4 g/d of Na and 2·3 g/d of K for a 10 460 kJ (2500 kcal) intake. After 1-week run-in, subjects received capsules with supplemental Na (3·0 g/d), supplemental K (2·8 g/d) or placebo, for 4 weeks each, in random order. After each intervention, circulating biomarkers of endothelial function and inflammation were measured. Brachial artery flow-mediated dilation (FMD) and skin microvascular vasomotion were assessed in sub-groups of twenty-two to twenty-four subjects. Of thirty-seven randomised subjects, thirty-six completed the study. Following Na supplementation, serum endothelin-1 was increased by 0·24 pg/ml (95 % CI 0·03, 0·45), but no change was seen in other endothelial or inflammatory biomarkers. FMD and microvascular vasomotion were unaffected by Na supplementation. K supplementation reduced IL-8 levels by 0·28 pg/ml (95 % CI 0·03, 0·53), without affecting other circulating biomarkers. FMD was 1·16 % (95% CI 0·37, 1·96) higher after K supplementation than after placebo. Microvascular vasomotion was unaffected. In conclusion, a 4-week increase in Na intake increased endothelin-1, but had no effect on other endothelial or inflammatory markers. Increased K intake had a beneficial effect on FMD and possibly IL-8, without affecting other circulating endothelial or inflammatory biomarkers.

  13. Cathepsin S Cleavage of Protease-Activated Receptor-2 on Endothelial Cells Promotes Microvascular Diabetes Complications.

    PubMed

    Kumar Vr, Santhosh; Darisipudi, Murthy N; Steiger, Stefanie; Devarapu, Satish Kumar; Tato, Maia; Kukarni, Onkar P; Mulay, Shrikant R; Thomasova, Dana; Popper, Bastian; Demleitner, Jana; Zuchtriegel, Gabriele; Reichel, Christoph; Cohen, Clemens D; Lindenmeyer, Maja T; Liapis, Helen; Moll, Solange; Reid, Emma; Stitt, Alan W; Schott, Brigitte; Gruner, Sabine; Haap, Wolfgang; Ebeling, Martin; Hartmann, Guido; Anders, Hans-Joachim

    2016-06-01

    Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.

  14. [Endothelial function: role, assessment and limits].

    PubMed

    Puissant, C; Abraham, P; Durand, S; Humeau-Heurtier, A; Faure, S; Rousseau, P; Mahé, G

    2014-02-01

    For several years, detecting and preventing cardiovascular diseases have become a major issue. Different methods have been developed to evaluate endothelial function. Endothelial dysfunction is one of the first steps leading to atherosclerosis. This review presents an insight into endothelial function, the interests of its assessment and methods for studying endothelial function. To date, the vascular endothelium must be considered as a specific organ with its own functions that contribute to the homeostasis of the cardiovascular system. Endothelial dysfunction typically corresponds to a decrease of nitric oxide NO bioavailability. Biological or physico-chemical methods may be used to assess dysfunction. Biological methods allow measuring NO metabolites and pro-inflammatory and vasoconstrictor mediators released by the endothelium. The physico-chemical methods include intra-coronary injections, plethysmography, flow-mediated dilation (FMD), digital plethysmography and optical techniques using laser (laser Doppler single-point, laser Doppler imager, laser speckle contrast imaging) that can be coupled with provocation tests (iontophoresis, microdialysis, post-ischemic hyperemia, local heating). The principle of each technique and its use in clinical practice are discussed. Studying endothelial dysfunction is a particularly promising field because of new drugs being developed. Nevertheless, assessment methodology still needs further development to enable reliable, non-invasive, reproducible, and inexpensive ways to analyze endothelial dysfunction.

  15. Isolation, propagation, characterization, cryopreservation, and application of novel cardiovascular endothelial cell line from Channa striatus (Bloch, 1793).

    PubMed

    Abdul Majeed, S; Nambi, K S N; Taju, G; Sahul Hameed, A S

    2015-03-01

    There are only few primary endothelial cell cultures developed from fishes to date, but in this work the development of an endothelial cell line from Channa striatus is described. The vascular explants were plated into fibronectin (5 µg ml(-1)) and anti-CD31 antibody (100 ng ml(-1))-coated flask; after 60 h incubation explants were removed from the flask. The flask contained only endothelial and blood cells. Blood cells were cleared out after subsequent passages. The culture medium used was Leibovitz's L-15 supplemented with 20 % serum and antibiotics. The cultures were incubated at 28 °C in a normal atmosphere incubator. The plating efficiency was high (53.72 %). The endothelial cells were cryopreserved at different passage levels and revived successfully with 75-85 % survival. Polymerase chain reaction amplification of mitochondrial 16S rRNA using primer specific to C. striatus confirmed the origin of C. striatus cardiovascular endothelial (CSCVE) cell line from C. striatus. This cell line was further characterized for chromosome number, transfection, mycoplasma, cell cycle distribution, mitochondrial staining, and phagocytic activity. Cells were analyzed according to morphological appearance and expression of specific endothelial markers by fluorescent staining (von Willebrand Factor, anti-platelet endothelial cell adhesion molecule-1, and anti-Endoglin). The formation of tubules in the Matrigel and endothelial co-cultured with fibroblast like cells was observed. The cytotoxicity of ciprofloxacin on the CSCVE cell line was determined by MTT, AB, and R-123 cytotoxicity end points. Susceptibility of CSCVE cell line to nodavirus was confirmed by cytopathic effect and reverse transcriptase-polymerase chain reaction. PMID:25194832

  16. Endothelial Heparan Sulfate in Angiogenesis

    PubMed Central

    Fuster, Mark M.; Wang, Lianchun

    2013-01-01

    Heparan sulfate (HS) is a linear polysaccharide composed of 50–200 glucosamine and uronic acid (glucuronic acid or iduronic acid) disaccharide repeats with epimerization and various sulfation modifications. HS is covalently attached to core proteins to form HS-proteoglycans. Most of the functions of HS-proteoglycans are mediated by their HS moieties. The biosynthesis of HS is initiated by chain polymerization and is followed by stepwise modification reactions, including sulfation and epimerization. These modifications generate ligand-binding sites that modulate cell functions and activities of proteinases and/or proteinase inhibitors. HS is abundantly expressed in developing and mature vasculature, and understanding its roles in vascular biology and related human diseases is an area of intense investigation. In this chapter, we summarize the significant recent advances in our understanding of the roles of HS in developmental and pathological angiogenesis with a major focus on studies using transgenic as well as gene knockout/knockdown models in mice and zebrafish. These studies have revealed that HS critically regulates angiogenesis by playing a proangiogenic role, and this regulatory function critically depends on HS fine structure. The latter is responsible for facilitating cell-surface binding of various proangiogenic growth factors that in turn mediate endothelial growth signaling. In cancer, mouse studies have revealed important roles for endothelial cell-surface HS as well as matrix-associated HS, wherein signaling by multiple growth factors as well as matrix storage of growth factors may be regulated by HS. We also discuss important mediators that may fine-tune such regulation, such as heparanase and sulfatases; and models wherein targeting HS (or core protein) biosynthesis may affect tumor growth and vascularization. Finally, the importance of targeting HS in other human diseases wherein angiogenesis may play pathophysiologic (or even therapeutic) roles

  17. Role of Lipotoxicity in Endothelial Dysfunction

    PubMed Central

    Kim, Jeong-a; Montagnani, Monica; Chandrasekran, Sruti; Quon, Michael J.

    2014-01-01

    SUMMARY Lipotoxicity, caused in large part by overnutrition, directly leads to endothelial dysfunction. Excess lipids in both the circulation and at the tissue level contribute to endothelial dysfunction that underlies much of the pathophysiology of both metabolic disease, including obesity and diabetes and their CV complications. Direct lipotoxic effects on other organs as well as secondary insults from endothelial dysfunction synergize to cause substantial morbidity and mortality. Lifestyle interventions, including reduced calorie intake, diet, and exercise as well as a variety of pharmacologic interventions targeting various mechanisms underlying lipotoxicity in vascular endothelium significantly modify metabolic and CV risk. PMID:22999242

  18. Exercise training reverses endothelial dysfunction in nonalcoholic fatty liver disease.

    PubMed

    Pugh, Christopher J A; Spring, Victoria S; Kemp, Graham J; Richardson, Paul; Shojaee-Moradie, Fariba; Umpleby, A Margot; Green, Daniel J; Cable, N Timothy; Jones, Helen; Cuthbertson, Daniel J

    2014-11-01

    Nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for cardiovascular disease (CVD). Endothelial dysfunction is an early manifestation of atherosclerosis and an important prognostic marker for future cardiovascular events. The aim of this study was twofold: to examine 1) the association between liver fat, visceral adipose tissue (VAT), and endothelial dysfunction in obese NAFLD patients and 2) the impact of supervised exercise training on this vascular defect. Brachial artery endothelial function was assessed by flow-mediated dilatation (FMD) in 34 obese NAFLD patients and 20 obese controls of similar age and cardiorespiratory fitness [peak oxygen uptake (V̇o2 peak)] (48 ± 2 vs. 47 ± 2 yr; 27 ± 1 vs. 26 ± 2 ml·kg−1·min−1−1). Magnetic resonance imaging and spectroscopy quantified abdominal and liver fat, respectively. Twenty-one NAFLD patients completed either 16 wk of supervised moderate-intensity exercise training (n = 13) or conventional care (n = 8). Differences between NAFLD and controls were compared using independent t-tests and effects of interventions by analysis of covariance. NAFLD patients had higher liver fat [11.6% (95% CI = 7.4, 18.1), P < 0.0005] and VAT [1.6 liters (95% CI = 1.2, 2.0), P < 0.0001] than controls and exhibited impaired FMD compared with controls [−3.6% (95% CI = −4.9, −2.2), P < 0.0001]. FMD was inversely correlated with VAT (r = −0.54, P = 0.001) in NAFLD, although the impairment in FMD remained following covariate adjustment for VAT [3.1% (95% CI = 1.8, 4.5), P < 0.001]. Exercise training, but not conventional care, significantly improved V̇o2 peak [9.1 ml·kg−1·min−1 (95% CI = 4.1, 14.1); P = 0.001] and FMD [3.6% (95% CI = 1.6, 5.7), P = 0.002]. Endothelial dysfunction in NAFLD cannot be fully explained by excess VAT but can be reversed with exercise training; this has potential implications for the primary prevention of CVD in NAFLD.

  19. Interleukin-3 greatly expands non-adherent endothelial forming cells with pro-angiogenic properties.

    PubMed

    Moldenhauer, Lachlan M; Cockshell, Michaelia P; Frost, Lachlan; Parham, Kate A; Tvorogov, Denis; Tan, Lih Y; Ebert, Lisa M; Tooley, Katie; Worthley, Stephen; Lopez, Angel F; Bonder, Claudine S

    2015-05-01

    Circulating endothelial progenitor cells (EPCs) provide revascularisation for cardiovascular disease and the expansion of these cells opens up the possibility of their use as a cell therapy. Herein we show that interleukin-3 (IL3) strongly expands a population of human non-adherent endothelial forming cells (EXnaEFCs) with low immunogenicity as well as pro-angiogenic capabilities in vivo, making their therapeutic utilisation a realistic option. Non-adherent CD133(+) EFCs isolated from human umbilical cord blood and cultured under different conditions were maximally expanded by day 12 in the presence of IL3 at which time a 350-fold increase in cell number was obtained. Cell surface marker phenotyping confirmed expression of the hematopoietic progenitor cell markers CD133, CD117 and CD34, vascular cell markers VEGFR2 and CD31, dim expression of CD45 and absence of myeloid markers CD14 and CD11b. Functional experiments revealed that EXnaEFCs exhibited classical properties of endothelial cells (ECs), namely binding of Ulex europaeus lectin, up-take of acetylated-low density lipoprotein and contribution to EC tube formation in vitro. These EXnaEFCs demonstrated a pro-angiogenic phenotype within two independent in vivo rodent models. Firstly, a Matrigel plug assay showed increased vascularisation in mice. Secondly, a rat model of acute myocardial infarction demonstrated reduced heart damage as determined by lower levels of serum creatinine and a modest increase in heart functionality. Taken together, these studies show IL3 as a potent growth factor for human CD133(+) cell expansion with clear pro-angiogenic properties (in vitro and in vivo) and thus may provide clinical utility for humans in the future. PMID:25900163

  20. Deeper Penetration of Erythrocytes into the Endothelial Glycocalyx Is Associated with Impaired Microvascular Perfusion

    PubMed Central

    Lee, Dae Hyun; Dane, Martijn J. C.; van den Berg, Bernard M.; Boels, Margien G. S.; van Teeffelen, Jurgen W.; de Mutsert, Renée; den Heijer, Martin; Rosendaal, Frits R.; van der Vlag, Johan; van Zonneveld, Anton Jan; Vink, Hans; Rabelink, Ton J.

    2014-01-01

    Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43–2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: −0.034; 95% confidence interval: −0.037 to −0.031). We conclude that microvascular beds with a thick (“healthy”) glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin (“risk”) glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion. PMID:24816787

  1. Association of Microvascular Function and Endothelial Biomarkers With Clinical Outcome in Dengue: An Observational Study

    PubMed Central

    Yacoub, Sophie; Lam, Phung Khanh; Vu, Le Hoang Mai; Le, Thi Lien; Ha, Ngo Thanh; Toan, Tran Thi; Van, Nguyen Thu; Quyen, Nguyen Than Ha; Le Duyen, Huynh Thi; Van Kinh, Nguyen; Fox, Annette; Mongkolspaya, Juthathip; Wolbers, Marcel; Simmons, Cameron Paul; Screaton, Gavin Robert; Wertheim, Heiman; Wills, Bridget

    2016-01-01

    Background. The hallmark of severe dengue is increased microvascular permeability, but alterations in the microcirculation and their evolution over the course of dengue are unknown. Methods. We conducted a prospective observational study to evaluate the sublingual microcirculation using side-stream dark-field imaging in patients presenting early (<72 hours after fever onset) and patients hospitalized with warning signs or severe dengue in Vietnam. Clinical findings, microvascular function, global hemodynamics assessed with echocardiography, and serological markers of endothelial activation were determined at 4 time points. Results. A total of 165 patients were enrolled. No difference was found between the microcirculatory parameters comparing dengue with other febrile illnesses. The proportion of perfused vessels (PPV) and the mean flow index (MFI) were lower in patients with dengue with plasma than those without leakage (PPV, 88.1% vs 90.6% [P = .01]; MFI, 2.1 vs 2.4 [P = .007]), most markedly during the critical phase. PPV and MFI were correlated with the endothelial activation markers vascular cell adhesion molecule 1 (P < .001 for both) and angiopoietin 2 (P < .001 for both), negatively correlated. Conclusions. Modest microcirculatory alterations occur in dengue, are associated with plasma leakage, and are correlate with molecules of endothelial activation, angiopoietin 2 and vascular cell adhesion molecule 1. PMID:27230099

  2. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion.

    PubMed

    Lee, Dae Hyun; Dane, Martijn J C; van den Berg, Bernard M; Boels, Margien G S; van Teeffelen, Jurgen W; de Mutsert, Renée; den Heijer, Martin; Rosendaal, Frits R; van der Vlag, Johan; van Zonneveld, Anton Jan; Vink, Hans; Rabelink, Ton J

    2014-01-01

    Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43-2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: -0.034; 95% confidence interval: -0.037 to -0.031). We conclude that microvascular beds with a thick ("healthy") glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin ("risk") glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion.

  3. Circulating endothelial cells are increased in chronic myeloid leukemia blast crisis.

    PubMed

    Godoy, C R T; Levy, D; Giampaoli, V; Chamone, D A F; Bydlowski, S P; Pereira, J

    2015-06-01

    We measured circulating endothelial precursor cells (EPCs), activated circulating endothelial cells (aCECs), and mature circulating endothelial cells (mCECs) using four-color multiparametric flow cytometry in the peripheral blood of 84 chronic myeloid leukemia (CML) patients and 65 healthy controls; and vascular endothelial growth factor (VEGF) by quantitative real-time PCR in 50 CML patients and 32 healthy controls. Because of an increase in mCECs, the median percentage of CECs in CML blast crisis (0.0146%) was significantly higher than in healthy subjects (0.0059%, P<0.01) and in the accelerated phase (0.0059%, P=0.01). There were no significant differences in the percentages of CECs in chronic- or active-phase patients and healthy subjects (P>0.05). In addition, VEGF gene expression was significantly higher in all phases of CML: 0.245 in blast crisis, 0.320 in the active phase, and 0.330 in chronic phase patients than it was in healthy subjects (0.145). In conclusion, CML in blast crisis had increased levels of CECs and VEGF gene expression, which may serve as markers of disease progression and may become targets for the management of CML.

  4. Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation

    PubMed Central

    Lutter, Sophie; Xie, Sherry; Tatin, Florence

    2012-01-01

    Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels—smooth muscle and endothelial cells—and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function. PMID:22665518

  5. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.

    PubMed

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3'-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  6. In vivo characterization of endothelial cell activation in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Schultheiss, Caroline; Blechert, Birgit; Gaertner, Florian C; Drecoll, Enken; Mueller, Jan; Weber, Georg F; Drzezga, Alexander; Essler, Markus

    2006-01-01

    Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD is characterized by an excessive cerebral amyloid deposition leading to degeneration of neurons and eventually to dementia. It has been shown by epidemiological studies that cardiovascular drugs with an anti-angiogenic effect can influence the outcome of AD patients. Therefore, it has been speculated that in AD angiogenesis in the brain vasculature may play an important role. Here we report that in the brain of APP23 mice--a transgenic model of AD--after deposition of amyloid in blood vessels endothelial cell activation occurs in an age-dependent manner. Amyloid deposition is followed by the expression of beta3-integrin, a specific marker molecule of activated endothelium. The beta3-integrin expression is restricted to amyloid-positive vessels. Moreover, homogenates of the brains of APP23 mice induced the formation of new vessels in an in vivo angiogenesis assay. Vessel formation could be blocked by the VEGF antagonist SU 4312 as well as by statins, suggesting that these drugs may interfere with endothelial cell activation in AD. In conclusion our results indicate that amyloid deposition in the vasculature leads to endothelial cell apoptosis and endothelial cell activation, which can be modulated by anti-angiogenic drugs.

  7. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    PubMed

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression.

  8. Inflammatory response of endothelial cells to hepatitis C virus recombinant envelope glycoprotein 2 protein exposure

    PubMed Central

    Urbaczek, Ana Carolina; Ribeiro, Lívia Carolina de Abreu; Ximenes, Valdecir Farias; Afonso, Ana; Nogueira, Camila Tita; Generoso, Wesley Cardoso; Alberice, Juliana Vieira; Rudnicki, Martina; Ferrer, Renila; da Fonseca, Luiz Marcos; da Costa, Paulo Inácio

    2014-01-01

    The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV. PMID:25317702

  9. Existence of Neural Crest-Derived Progenitor Cells in Normal and Fuchs Endothelial Dystrophy Corneal Endothelium.

    PubMed

    Katikireddy, Kishore Reddy; Schmedt, Thore; Price, Marianne O; Price, Francis W; Jurkunas, Ula V

    2016-10-01

    Human corneal endothelial cells are derived from neural crest and because of postmitotic arrest lack competence to repair cell loss from trauma, aging, and degenerative disorders such as Fuchs endothelial corneal dystrophy (FECD). Herein, we identified a rapidly proliferating subpopulation of cells from the corneal endothelium of adult normal and FECD donors that exhibited features of neural crest-derived progenitor (NCDP) cells by showing absence of senescence with passaging, propensity to form spheres, and increased colony forming efficacy compared with the primary cells. The collective expression of stem cell-related genes SOX2, OCT4, LGR5, TP63 (p63), as well as neural crest marker genes PSIP1 (p75(NTR)), PAX3, SOX9, AP2B1 (AP-2β), and NES, generated a phenotypic footprint of endothelial NCDPs. NCDPs displayed multipotency by differentiating into microtubule-associated protein 2, β-III tubulin, and glial fibrillary acidic protein positive neurons and into p75(NTR)-positive human corneal endothelial cells that exhibited transendothelial resistance of functional endothelium. In conclusion, we found that mitotically incompetent ocular tissue cells contain adult NCDPs that exhibit a profile of transcription factors regulating multipotency and neural crest progenitor characteristics. Identification of normal NCDPs in FECD-affected endothelium holds promise for potential autologous cell therapies. PMID:27639969

  10. Molecular basis for globotriaosylceramide regulation and enzyme uptake in immortalized aortic endothelial cells from Fabry mice.

    PubMed

    Meng, Xing-Li; Day, Taniqua S; McNeill, Nathan; Ashcraft, Paula; Frischmuth, Thomas; Cheng, Seng H; Liu, Zhi-Ping; Shen, Jin-Song; Schiffmann, Raphael

    2016-05-01

    Fabry disease is caused by deficient activity of α-galactosidase A and subsequent intracellular accumulation of glycosphingolipids, mainly globotriaosylceramide (Gb3). Vascular endothelial cells may play important roles in disease pathogenesis, and are one of the main target cell types in therapeutic interventions. In this study, we generated immortalized aortic endothelial cell lines from a mouse model of Fabry disease. These cells retained endothelial cell-specific markers and functions. Gb3 expression level in one of these clones (referred to as FMEC2) was highly susceptible to culture media, and appeared to be regulated by glucosylceramide synthase. Results also showed that Gb3 could be upregulated by hydrocortisone. FMEC2 express the mannose 6-phosphate receptor and sortilin but not the mannose receptor. Uptake studies suggested that sortilin plays a role in the binding and internalization of mammalian cell-produced α-galactosidase A. Moss-aGal (a plant-made enzyme) was endocytosed by FMEC2 via a receptor other than the aforementioned receptors. In conclusion, this study suggests that glucosylceramide synthase and hydrocortisone may play important roles in modulating Gb3 levels in Fabry mouse aortic endothelial cells, and that endocytosis of recombinant α-galactosidase A involves a combination of multiple receptors depending on the properties of the enzyme. PMID:26960552

  11. Pentosan polysulfate protects brain endothelial cells against bacterial lipopolysaccharide-induced damages.

    PubMed

    Veszelka, Szilvia; Pásztói, Mária; Farkas, Attila E; Krizbai, István; Ngo, Thi Khue Dung; Niwa, Masami; Abrahám, Csongor S; Deli, Mária A

    2007-01-01

    Peripheral inflammation can aggravate local brain inflammation and neuronal death. The blood-brain barrier (BBB) is a key player in the event. On a relevant in vitro model of primary rat brain endothelial cells co-cultured with primary rat astroglia cells lipopolysaccharide (LPS)-induced changes in several BBB functions have been investigated. LPS-treatment resulted in a dose- and time-dependent decrease in the integrity of endothelial monolayers: transendothelial electrical resistance dropped, while flux of permeability markers fluorescein and albumin significantly increased. Immunostaining for junctional proteins ZO-1, claudin-5 and beta-catenin was significantly weaker in LPS-treated endothelial cells than in control monolayers. LPS also reduced the intensity and changed the pattern of ZO-1 immunostaining in freshly isolated rat brain microvessels. The activity of P-glycoprotein, an important efflux pump at the BBB, was also inhibited by LPS. At the same time production of reactive oxygen species and nitric oxide was increased in brain endothelial cells treated with LPS. Pentosan polysulfate, a polyanionic polysaccharide could reduce the deleterious effects of LPS on BBB permeability, and P-glycoprotein activity. LPS-stimulated increase in the production of reactive oxygen species and nitric oxide was also decreased by pentosan treatment. The protective effect of pentosan for brain endothelium can be of therapeutical significance in bacterial infections affecting the BBB.

  12. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress

    PubMed Central

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3’-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  13. Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography.

    PubMed

    Ding, Yonghui; Yang, Meng; Yang, Zhilu; Luo, Rifang; Lu, Xiong; Huang, Nan; Huang, Pingbo; Leng, Yang

    2015-03-01

    A wide variety of environmental cues provided by the extracellular matrix, including biophysical and biochemical cues, are responsible for vascular cell behavior and function. In particular, substrate topography and surface chemistry have been shown to regulate blood and vascular compatibility individually. The combined impact of chemical and topographic cues on blood and vascular compatibility, and the interplay between these two types of cues, are subjects that are currently being explored. In the present study, a facile polydopamine-mediated approach is introduced for immobilization of heparin on topographically patterned substrates, and the combined effects of these cues on blood compatibility and re-endothelialization are systematically investigated. The results show that immobilized heparin and substrate topography cooperatively modulate anti-coagulation activity, endothelial cell (EC) attachment, proliferation, focal adhesion formation and endothelial marker expression. Meanwhile, the substrate topography is the primary determinant of cell alignment and elongation, driving in vivo-like endothelial organization. Importantly, combining immobilized heparin with substrate topography empowers substantially greater competitive ability of ECs over smooth muscle cells than each cue individually. Moreover, a model is proposed to elucidate the cooperative interplay between immobilized heparin and substrate topography in regulating cell behavior.

  14. PCB 77 dechlorination products modulate pro-inflammatory events in vascular endothelial cells.

    PubMed

    Eske, Katryn; Newsome, Bradley; Han, Sung Gu; Murphy, Margaret; Bhattacharyya, Dibakar; Hennig, Bernhard

    2014-05-01

    Persistent organic pollutants such as polychlorinated biphenyls (PCBs) are associated with detrimental health outcomes including cardiovascular diseases. Remediation of these compounds is a critical component of environmental policy. Although remediation efforts aim to completely remove toxicants, little is known about the effects of potential remediation byproducts. We previously published that Fe/Pd nanoparticles effectively dechlorinate PCB 77 to biphenyl, thus eliminating PCB-induced endothelial dysfunction using primary vascular endothelial cells. Herein, we analyzed the toxic effects of PCB congener mixtures (representative mixtures of commercial PCBs based on previous dechlorination data) produced at multiple time points during the dechlorination of PCB 77 to biphenyl. Compared with pure PCB 77, exposing endothelial cells to lower chlorinated PCB byproducts led to improved cellular viability, decreased superoxide production, and decreased nuclear factor kappa B activation based on duration of remediation. Presence of the parent compound, PCB 77, led to significant increases in mRNA and protein inflammatory marker expression. These data implicate that PCB dechlorination reduces biological toxicity to vascular endothelial cells.

  15. Glycomics and Disease Markers

    PubMed Central

    An, Hyun Joo; Kronewitter, Scott R.; de Leoz, Maria Lorna A.; Lebrilla, Carlito B.

    2009-01-01

    Summary of Recent Advances Glycomics is the comprehensive study of all glycans expressed in biological systems. The biosynthesis of glycan relies on a number of highly competitive processes involving glycosyl transferase. Glycosylation is therefore highly sensitive to the biochemical environment and has been implicated in many diseases including cancer. Recently, interest in profiling the glycome has increased due to the potential of glycans for disease markers. In this regard, mass spectrometry is emerging as a powerful technique for profiling the glycome. Global glycan profiling of human serum based on mass spectrometry has already led to several potentially promising markers for several types of cancer and diseases. PMID:19775929

  16. Asiaticoside Inhibits TNF-α-Induced Endothelial Hyperpermeability of Human Aortic Endothelial Cells.

    PubMed

    Fong, Lai Yen; Ng, Chin Theng; Zakaria, Zainul Amiruddin; Baharuldin, Mohamad Taufik Hidayat; Arifah, Abdul Kadir; Hakim, Muhammad Nazrul; Zuraini, Ahmad

    2015-10-01

    The increase in endothelial permeability often promotes edema formation in various pathological conditions. Tumor necrosis factor-alpha (TNF-α), a pro-atherogenic cytokine, impairs endothelial barrier function and causes endothelial dysfunction in early stage of atherosclerosis. Asiaticoside, one of the triterpenoids derived from Centella asiatica, is known to possess antiinflammatory activity. In order to examine the role of asiaticoside in preserving the endothelial barrier, we assessed its effects on endothelial hyperpermeability and disruption of actin filaments evoked by TNF-α in human aortic endothelial cells (HAEC). TNF-α caused an increase in endothelial permeability to fluorescein isothiocyanate (FITC)-dextran. Asiaticoside pretreatment significantly suppressed TNF-α-induced increased permeability. Asiaticoside also prevented TNF-α-induced actin redistribution by suppressing stress fiber formation. However, the increased F to G actin ratio stimulated by TNF-α was not changed by asiaticoside. Cytochalasin D, an actin depolymerizing agent, was used to correlate the anti-hyperpermeability effect of asiaticoside with actin cytoskeleton. Surprisingly, asiaticoside failed to prevent cytochalasin D-induced increased permeability. These results suggest that asiaticoside protects against the disruption of endothelial barrier and actin rearrangement triggered by TNF-α without a significant change in total actin pool. However, asiaticoside seems to work by other mechanisms to maintain the integrity of endothelial barrier rather than stabilizing the F-actin organization.

  17. The relationship between oxidised LDL, endothelial progenitor cells and coronary endothelial function in patients with CHD

    PubMed Central

    Watt, Jonathan; Kennedy, Simon; Ahmed, Nadeem; Hayhurst, James; McClure, John D; Berry, Colin; Wadsworth, Roger M; Oldroyd, Keith G

    2016-01-01

    Objective The balance between coronary endothelial dysfunction and repair is influenced by many protective and deleterious factors circulating in the blood. We studied the relationship between oxidised low-density lipoprotein (oxLDL), circulating endothelial progenitor cells (EPCs) and coronary endothelial function in patients with stable coronary heart disease (CHD). Methods 33 patients with stable CHD were studied. Plasma oxLDL was measured using ELISA, coronary endothelial function was assessed using intracoronary acetylcholine infusion and EPCs were quantified using flow cytometry for CD34+/KDR+ cells. Results Plasma oxLDL correlated positively with the number of EPCs in the blood (r=0.46, p=0.02). There was a positive correlation between the number of circulating EPCs and coronary endothelial function (r=0.42, p=0.04). There was no significant correlation between oxLDL and coronary endothelial function. Conclusions Plasma levels of oxLDL are associated with increased circulating EPCs in the blood of patients with CHD, which may reflect a host-repair response to endothelial injury. Patients with stable CHD had a high prevalence of coronary endothelial dysfunction, which was associated with lower numbers of circulating EPCs, suggesting a mechanistic link between endothelial dysfunction and the pathogenesis of atherosclerosis. PMID:26848395

  18. Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis

    PubMed Central

    Pal, Priya; Daniels, Brian P.; Oskman, Anna; Diamond, Michael S.; Klein, Robyn S.

    2016-01-01

    ABSTRACT Cerebral malaria (CM) is a disease of the vascular endothelium caused by Plasmodium falciparum. It is characterized by parasite sequestration, inflammatory cytokine production, and vascular leakage. A distinguishing feature of P. falciparum infection is parasite production and secretion of histidine-rich protein II (HRPII). Plasma HRPII is a diagnostic and prognostic marker for falciparum malaria. We demonstrate that disruption of a human cerebral microvascular endothelial barrier by P. falciparum-infected erythrocytes depends on expression of HRPII. Purified recombinant or native HRPII can recapitulate these effects. HRPII action occurs via activation of the inflammasome, resulting in decreased integrity of tight junctions and increased endothelial permeability. We propose that HRPII is a virulence factor that may contribute to cerebral malaria by compromising endothelial barrier integrity within the central nervous system. PMID:27273825

  19. Soluble endoglin, hypercholesterolemia and endothelial dysfunction.

    PubMed

    Rathouska, Jana; Jezkova, Katerina; Nemeckova, Ivana; Nachtigal, Petr

    2015-12-01

    A soluble form of endoglin (sEng) is known to be an extracellular domain of the full-length membrane endoglin, which is elevated during various pathological conditions related to vascular endothelium. In the current review, we tried to summarize a possible role of soluble endoglin in cardiovascular pathologies, focusing on its relation to endothelial dysfunction and cholesterol levels. We discussed sEng as a proposed biomarker of cardiovascular disease progression, cardiovascular disease treatment and endothelial dysfunction. We also addressed a potential interaction of sEng with TGF-β/eNOS or BMP-9 signaling. We suggest soluble endoglin levels to be monitored, because they reflect the progression/treatment efficacy of cardiovascular diseases related to endothelial dysfunction and hypercholesterolemia. A possible role of soluble endoglin as an inducer of endothelial dysfunction however remains to be elucidated. PMID:26520890

  20. [Descemet's stripping automated endothelial keratoplasty (DSAEK)].

    PubMed

    Cursiefen, C; Kruse, F E

    2009-10-01

    Penetrating keratoplasty has been the gold standard for the surgical treatment of corneal endothelial pathologies, but tremendous progress has been made in recent years in improving the technology of posterior lamellar keratoplasty techniques such as Descemet's stripping automated endothelial keratoplasty (DSAEK). This progress is shown by a literature review using PubMed sources and our own clinical and experimental data. Posterior lamellar keratoplasty using a microkeratome is a reliable surgical technique for Fuchs' endothelial dystrophy and pseudophakic bullous keratopathy. Visual rehabilitation is faster with lamellar compared with penetrating keratoplasty, but final visual acuity seems to be a bit reduced. Posterior lamellar keratoplasty techniques such as DSAEK may replace penetrating keratoplasty as the gold standard for treating a large proportion of corneal endothelial pathologies. PMID:19798505

  1. Mitochondria, endothelial cell function, and vascular diseases

    PubMed Central

    Tang, Xiaoqiang; Luo, Yu-Xuan; Chen, Hou-Zao; Liu, De-Pei

    2014-01-01

    Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction. PMID:24834056

  2. Genetics Home Reference: Fuchs endothelial dystrophy

    MedlinePlus

    ... a protein that is part of type VIII collagen. Type VIII collagen is largely found within the cornea, surrounding the endothelial cells. Specifically, type VIII collagen is a major component of a tissue at ...

  3. Endothelial glucocorticoid receptor suppresses atherogenesis- Brief Report

    PubMed Central

    Zhang, Xinbo; Rotllan, Noemi; Feng, Yan; Zhou, Han; Fernández-Hernando, Carlos; Yu, Jun; Sessa, William C.

    2015-01-01

    Objective The purpose of this study was to determine the role of the endothelial glucocorticoid receptor in the pathogenesis of atherosclerosis. Approach and Results Control mice and mice lacking the endothelial glucocorticoid receptor were bred onto an Apoe knockout background and subjected to high-fat diet feeding for 12 weeks. Assessment of body weight and total cholesterol and triglycerides before and after the diet revealed no differences between the two groups of mice. However, mice lacking the endothelial glucocorticoid receptor developed more severe atherosclerotic lesions in the aorta, brachiocephalic artery and aortic sinus as well as a heightened inflammatory milieu as evidence by increased macrophage recruitment in the lesions. Conclusions These data suggest the endothelial glucocorticoid receptor is important for tonic inhibition of inflammation and limitation of atherosclerosis progression in this model. PMID:25810297

  4. Endothelial progenitor cells in cardiovascular diseases.

    PubMed

    Lee, Poay Sian Sabrina; Poh, Kian Keong

    2014-07-26

    Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome.

  5. Changes of soluble CD40 ligand in the progression of acute myocardial infarction associate to endothelial nitric oxide synthase polymorphisms and vascular endothelial growth factor but not to platelet CD62P expression.

    PubMed

    Napoleão, Patrícia; Monteiro, Maria do Céu; Cabral, Luís B P; Criado, Maria Begoña; Ramos, Catarina; Selas, Mafalda; Viegas-Crespo, Ana Maria; Saldanha, Carlota; Carmo, Miguel Mota; Ferreira, Rui Cruz; Pinheiro, Teresa

    2015-12-01

    Reported in vitro data implicated soluble CD40 ligand (sCD40L) in endothelial dysfunction and angiogenesis. However, whether sCD40L could exert that influence in endothelial dysfunction and angiogenesis after injury in acute myocardial infarction (AMI) patients remains unclear. In the present study, we evaluated the association of sCD40L with markers of platelet activation, endothelial, and vascular function during a recovery period early after AMI. To achieve this goal, the time changes of soluble, platelet-bound, and microparticle-bound CD40L levels over 1 month were assessed in AMI patients and correlated with endothelial nitric oxide synthase (eNOS) polymorphisms, vascular endothelial growth factor (VEGF) concentrations, and platelet expression of P-selectin (CD62P). The association of soluble form, platelet-bound, and microparticle-bound CD40L with CD62P expression on platelets, a marker of platelet activation, was also assessed to evaluate the role of CD40L in the thrombosis, whereas the association with eNOS and VEGF was to evaluate the role of CD40L in vascular dysfunction. This work shows for the first time that time changes of sCD40L over 1 month after myocardial infarct onset were associated with G894T eNOS polymorphism and with the VEGF concentrations, but not to the platelet CD62P expression. These results indicate that, in terms of AMI pathophysiology, the sCD40L cannot be consider just as being involved in thrombosis and inflammation but also as having a relevant role in vascular and endothelial dysfunction. PMID:26279254

  6. Novel heart valve prosthesis with self-endothelialization potential made of modified polyhedral oligomeric silsesquioxane-nanocomposite material.

    PubMed

    Ghanbari, Hossein; Radenkovic, Dina; Marashi, Sayed Mahdi; Parsno, Shirin; Roohpour, Nima; Burriesci, Gaetano; Seifalian, Alexander M

    2016-06-01

    In the cardiovascular system, the endothelial layer provides a natural antithrombogenic surface on the inner portion of the heart and associated vessels. For a synthetic material therefore, the ability to attract and retain endothelial or endothelial progenitor cells (EPCs), ultimately creating a single endothelial layer on its surface, is of prime importance. The authors have developed a nanocomposite polymer, based on a combination of polyhedral oligomeric silsesquioxane nanoparticles and polycarbonate urea urethane (POSS-PCU), which is biocompatible and has been used in human for the world's first synthetic trachea, tear duct, and bypass graft. In this study, the authors modified the surface of this casted nanocomposite by grafting fibronectin derived bioactive peptides [glycine-arginine-glycine-aspartic acid-glycine (GRGDG) and lauric acid conjugated GRGDG (GRGDG-LA)] to enhance the endothelialization for using heart valves leaflets from circulating EPCs. Human peripheral blood mononuclear cells were separated using Ficoll-Paque centrifugation, with harvested EPCs purified using CD34 microbead labeling and magnetic-activated cell sorting. Cells were seeded onto 96 well plates coated with POSS-PCU, GRGDG/GRGDG-LA modified POSS-PCU and PCU polymers, for a period of 21 days. Cells were studied under light, confocal, and scanning electron microscope (SEM). Fluorescence-activated cell sorting was used to analyze cell surface markers. Cell attachment and proliferation was observed in all POSS-PCU samples, significantly higher than the activity seen within the control PCU polymers (p < 0.05). Microscopic examination revealed clonal expansion and morphological changes in cells seeded on POSS-PCU. The cells expressed increasing levels of mature endothelial cell markers over time with a concurrent reduction in hematopoietic stem cell marker expression. SEM showed a mixed population of morphologically differentiated endothelial cells and EPCs. These results support

  7. The Swift Turbidity Marker

    ERIC Educational Resources Information Center

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  8. Fetal exposure to a diabetic intrauterine environment resulted in a failure of cord blood endothelial progenitor cell adaptation against chronic hypoxia

    PubMed Central

    Dincer, U Deniz

    2015-01-01

    Gestational diabetes mellitus (GDM) has long-term health consequences, and fetal exposure to a diabetic intrauterine environment increases cardiovascular risk for her adult offspring. Some part of this could be related to their endothelial progenitor cells (EPCs). Understanding the vessel-forming ability of human umbilical cord blood (HUCB)-derived endothelial colony-forming cells (ECFCs) against pathological stress such as GDM response to hypoxia could generate new therapeutic strategies. This study aims to investigate the role of chronic hypoxia in EPCs functional and vessel-forming ability in GDM subjects. Each ECFC was expressed in endothelial and pro-angiogenic specific markers, namely endothelial nitric oxide synthase (eNOS), platelet (PECAM-1) endothelial cell adhesion molecule 1, vascular endothelial-cadherin CdH5 (Ca-dependent cell adhesion molecule), vascular endothelial growth factor A, (VEGFA) and insulin-like growth factor 1 (IGF1). Chronic hypoxia did not affect CdH5, but PECAM1 MRNA expressions were increased in control and GDM subjects. Control hypoxic and GDM normoxic VEGFA MRNA expressions and hypoxia-inducible factor 1-alpha (HIF1α) protein expressions were significantly increased in HUCB ECFCs. GDM resulted in most failure of HUCB ECFC adaptation and eNOS protein expressions against chronic hypoxia. Chronic hypoxia resulted in an overall decline in HUCB ECFCs’ proliferative ability due to reduction of clonogenic capacity and diminished vessel formation. Furthermore, GDM also resulted in most failure of cord blood ECFC adaptation against chronic hypoxic environment. PMID:25565870

  9. Characterization of a Distinct Population of Circulating Human Non-Adherent Endothelial Forming Cells and Their Recruitment via Intercellular Adhesion Molecule-3

    PubMed Central

    Thompson, Emma J.; Barrett, Jeffrey M.; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F.; Bonder, Claudine S.

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis. PMID:23144795

  10. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain.

    PubMed

    Wälchli, Thomas; Mateos, José María; Weinman, Oliver; Babic, Daniela; Regli, Luca; Hoerstrup, Simon P; Gerhardt, Holger; Schwab, Martin E; Vogel, Johannes

    2015-01-01

    During development and in various diseases of the CNS, new blood vessel formation starts with endothelial tip cell selection and vascular sprout migration, followed by the establishment of functional, perfused blood vessels. Here we describe a method that allows the assessment of these distinct angiogenic steps together with antibody-based protein detection in the postnatal mouse brain. Intravascular and perivascular markers such as Evans blue (EB), isolectin B4 (IB4) or laminin (LN) are used alongside simultaneous immunofluorescence on the same sections. By using confocal laser-scanning microscopy and stereological methods for analysis, detailed quantification of the 3D postnatal brain vasculature for perfused and nonperfused vessels (e.g., vascular volume fraction, vessel length and number, number of branch points and perfusion status of the newly formed vessels) and characterization of sprouting activity (e.g., endothelial tip cell density, filopodia number) can be obtained. The entire protocol, from mouse perfusion to vessel analysis, takes ∼10 d.

  11. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells

    PubMed Central

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S.; Guo, Bing; Barakat, Abdul I.; Kennedy, Ian M.

    2010-01-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001–50 μg/ml) of CeO2 nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y2O3 and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition. PMID:19558244

  12. Superimposed coagulopathic conditions in cirrhosis: infection and endogenous heparinoids, renal failure, and endothelial dysfunction.

    PubMed

    Smalberg, Jasper H; Leebeek, Frank W G

    2009-02-01

    In this article, the authors discuss three pathophysiologic mechanisms that influence the coagulation system in patients who have liver disease. First, bacterial infections may play an important role in the cause of variceal bleeding in patients who have liver cirrhosis, affecting coagulation through multiple pathways. One of the pathways through which this occurs is dependent on endogenous heparinoids, on which the authors focus in this article. Secondly, the authors discuss renal failure, a condition that is frequently encountered in patients who have liver cirrhosis. Finally, they review dysfunction of the endothelial system. The role of markers of endothelial function in cirrhotic patients, such as von Willebrand factor and endothelin-1, is discussed. PMID:19150307

  13. Nox2 contributes to the arterial endothelial specification of mouse induced pluripotent stem cells by upregulating Notch signaling

    PubMed Central

    Kang, Xueling; Wei, Xiangxiang; Wang, Xinhong; Jiang, Li; Niu, Cong; Zhang, Jianyi; Chen, Sifeng; Meng, Dan

    2016-01-01

    Reactive oxygen species (ROS) have a crucial role in stem-cell differentiation; however, the mechanisms by which ROS regulate the differentiation of stem cells into endothelial cells (ECs) are unknown. Here, we determine the role of ROS produced by NADPH oxidase 2 (Nox2) in the endothelial-lineage specification of mouse induced-pluripotent stem cells (miPSCs). When wild-type (WT) and Nox2-knockout (Nox2−/−) miPSCs were differentiated into ECs (miPSC-ECs), the expression of endothelial markers, arterial endothelial markers, pro-angiogenic cytokines, and Notch pathway components was suppressed in the Nox2−/− cells but increased in both WT and Nox2−/− miPSCs when Nox2 expression was upregulated. Higher levels of Nox2 expression increased Notch signaling and arterial EC differentiation, and this increase was abolished by the inhibition of ROS generation or by the silencing of Notch1 expression. Nox2 deficiency was associated with declines in the survival and angiogenic potency of miPSC-ECs, and capillary and arterial density were lower in the ischemic limbs of mice after treatment with Nox2−/− miPSC-ECs than WT miPSC-EC treatment. Taken together, these observations indicate that Nox2-mediated ROS production promotes arterial EC specification in differentiating miPSCs by activating the Notch signaling pathway and contributes to the angiogenic potency of transplanted miPSC-derived ECs. PMID:27642005

  14. Nox2 contributes to the arterial endothelial specification of mouse induced pluripotent stem cells by upregulating Notch signaling.

    PubMed

    Kang, Xueling; Wei, Xiangxiang; Wang, Xinhong; Jiang, Li; Niu, Cong; Zhang, Jianyi; Chen, Sifeng; Meng, Dan

    2016-01-01

    Reactive oxygen species (ROS) have a crucial role in stem-cell differentiation; however, the mechanisms by which ROS regulate the differentiation of stem cells into endothelial cells (ECs) are unknown. Here, we determine the role of ROS produced by NADPH oxidase 2 (Nox2) in the endothelial-lineage specification of mouse induced-pluripotent stem cells (miPSCs). When wild-type (WT) and Nox2-knockout (Nox2(-/-)) miPSCs were differentiated into ECs (miPSC-ECs), the expression of endothelial markers, arterial endothelial markers, pro-angiogenic cytokines, and Notch pathway components was suppressed in the Nox2(-/-) cells but increased in both WT and Nox2(-/-) miPSCs when Nox2 expression was upregulated. Higher levels of Nox2 expression increased Notch signaling and arterial EC differentiation, and this increase was abolished by the inhibition of ROS generation or by the silencing of Notch1 expression. Nox2 deficiency was associated with declines in the survival and angiogenic potency of miPSC-ECs, and capillary and arterial density were lower in the ischemic limbs of mice after treatment with Nox2(-/-) miPSC-ECs than WT miPSC-EC treatment. Taken together, these observations indicate that Nox2-mediated ROS production promotes arterial EC specification in differentiating miPSCs by activating the Notch signaling pathway and contributes to the angiogenic potency of transplanted miPSC-derived ECs. PMID:27642005

  15. Mesenchymal-endothelial-transition contributes to cardiac neovascularization

    PubMed Central

    Ubil, Eric; Duan, Jinzhu; Pillai, Indulekha C.L.; Rosa-Garrido, Manuel; Wu, Yong; Bargiacchi, Francesca; Lu, Yan; Stanbouly, Seta; Huang, Jie; Rojas, Mauricio; Vondriska, Thomas M.; Stefani, Enrico; Deb, Arjun

    2014-01-01

    Endothelial cells contribute to a subset of cardiac fibroblasts by undergoing endothelial-to-mesenchymal-transition, but whether cardiac fibroblasts can adopt an endothelial cell fate and directly contribute to neovascularization after cardiac injury is not known. Here, using genetic fate map techniques, we demonstrate that cardiac fibroblasts rapidly adopt an endothelial cell like phenotype after acute ischemic cardiac injury. Fibroblast derived endothelial cells exhibit anatomical and functional characteristics of native endothelial cells. We show that the transcription factor p53 regulates such a switch in cardiac fibroblast fate. Loss of p53 in cardiac fibroblasts severely decreases the formation of fibroblast derived endothelial cells, reduces post infarct vascular density and worsens cardiac function. Conversely, stimulation of the p53 pathway in cardiac fibroblasts augments mesenchymal to endothelial transition, enhances vascularity and improves cardiac function. These observations demonstrate that mesenchymal-to-endothelial-transition contributes to neovascularization of the injured heart and represents a potential therapeutic target for enhancing cardiac repair. PMID:25317562

  16. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.

  17. CD34+ Cells Represent Highly Functional Endothelial Progenitor Cells in Murine Bone Marrow

    PubMed Central

    Yang, Junjie; Ii, Masaaki; Kamei, Naosuke; Alev, Cantas; Kwon, Sang-Mo; Kawamoto, Atsuhiko; Akimaru, Hiroshi; Masuda, Haruchika; Sawa, Yoshiki; Asahara, Takayuki

    2011-01-01

    Background Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. Methodology/Principal Findings CD34+ cells, c-Kit+/Sca-1+/Lin− (KSL) cells, c-Kit+/Lin− (KL) cells and Sca-1+/Lin− (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. Conclusion These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology. PMID:21655289

  18. Elevated circulating levels and tissue expression of pentraxin 3 in uremia: a reflection of endothelial dysfunction.

    PubMed

    Witasp, Anna; Rydén, Mikael; Carrero, Juan Jesús; Qureshi, Abdul Rashid; Nordfors, Louise; Näslund, Erik; Hammarqvist, Folke; Arefin, Samsul; Kublickiene, Karolina; Stenvinkel, Peter

    2013-01-01

    Elevated systemic pentraxin 3 (PTX3) levels appear to be a powerful marker of inflammatory status and a superior outcome predictor in patients with chronic kidney disease (CKD). As previous data imply that PTX3 is involved in vascular pathology and that adipose tissue mass may influence circulating PTX3 levels, we aimed to study the importance of adipose tissue expression of PTX3 in the uremic milieu and its relation to endothelial dysfunction parameters. Plasma PTX3 and abdominal subcutaneous adipose tissue (SAT) PTX3 mRNA levels were quantified in 56 stage 5 CKD patients (median age 57 [range 25-75] years, 30 males) and 40 age and gender matched controls (median age 58 [range 20-79] years, 27 males). Associations between PTX3 measures and an extensive panel of clinical parameters, including surrogate markers of endothelial function, were assessed. Functional ex vivo studies on endothelial status and immunohistochemical staining for PTX3 were conducted in resistance subcutaneous arteries isolated from SAT. SAT PTX3 mRNA expression correlated with plasma PTX3 concentrations (rho = 0.54, p = 0.0001) and was increased (3.7 [0.4-70.3] vs. 1.2 [0.2-49.3] RQ, p = 0.02) in CKD patients with cardiovascular disease (CVD), but was not significantly different between patients and controls. The association to CVD was lost after adjustments. SAT PTX3 mRNA levels were independently correlated to asymmetric dimethylarginine and basal resistance artery tone developed after inhibition with nitric oxide synthase and cyclooxygenase (rho = -0.58, p = 0.002). Apparent positive PTX3 immunoreactivity was observed in both patient and control arteries. In conclusion, fat PTX3 mRNA levels are associated with measures of endothelial cell function in patients with CKD. PTX3 may be involved in adipose tissue-orchestrated mechanisms that are restricted to the uremic milieu and modify inflammation and vascular complications in CKD patients.

  19. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway. PMID:27449753

  20. Vascular endothelial growth factor B, a novel growth factor for endothelial cells.

    PubMed Central

    Olofsson, B; Pajusola, K; Kaipainen, A; von Euler, G; Joukov, V; Saksela, O; Orpana, A; Pettersson, R F; Alitalo, K; Eriksson, U

    1996-01-01

    We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle. Images Fig. 3 Fig. 4 Fig. 5 PMID:8637916

  1. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus.

    PubMed

    Reynolds, John A; Haque, Sahena; Williamson, Kate; Ray, David W; Alexander, M Yvonne; Bruce, Ian N

    2016-01-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk. PMID:26930567

  2. Role of Epac1, an Exchange Factor for Rap GTPases, in Endothelial Microtubule Dynamics and Barrier Function

    PubMed Central

    Sehrawat, Seema; Cullere, Xavier; Patel, Sunita; Italiano, Joseph

    2008-01-01

    Rap1 GTPase activation by its cAMP responsive nucleotide exchange factor Epac present in endothelial cells increases endothelial cell barrier function with an associated increase in cortical actin. Here, Epac1 was shown to be responsible for these actin changes and to colocalize with microtubules in human umbilical vein endothelial cells. Importantly, Epac activation with a cAMP analogue, 8-pCPT-2′O-Me-cAMP resulted in a net increase in the length of microtubules. This did not require cell–cell interactions or Rap GTPase activation, and it was attributed to microtubule growth as assessed by time-lapse microscopy of human umbilical vein endothelial cell expressing fluorophore-linked microtubule plus-end marker end-binding protein 3. An intact microtubule network was required for Epac-mediated changes in cortical actin and barrier enhancement, but it was not required for Rap activation. Finally, Epac activation reversed microtubule-dependent increases in vascular permeability induced by tumor necrosis factor-α and transforming growth factor-β. Thus, Epac can directly promote microtubule growth in endothelial cells. This, together with Rap activation leads to an increase in cortical actin, which has functional significance for vascular permeability. PMID:18172027

  3. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus.

    PubMed

    Reynolds, John A; Haque, Sahena; Williamson, Kate; Ray, David W; Alexander, M Yvonne; Bruce, Ian N

    2016-03-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk.

  4. Vitamin D improves endothelial dysfunction and restores myeloid angiogenic cell function via reduced CXCL-10 expression in systemic lupus erythematosus

    PubMed Central

    Reynolds, John A.; Haque, Sahena; Williamson, Kate; Ray, David W.; Alexander, M. Yvonne; Bruce, Ian N.

    2016-01-01

    Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk. PMID:26930567

  5. Referential Markers and Agreement Markers in Functional Discourse Grammar

    ERIC Educational Resources Information Center

    Hengeveld, Kees

    2012-01-01

    It follows from the ordering principles that are applied in Functional Discourse Grammar that the positional possibilities of markers of agreement and those of cross-reference are different. Markers of cross reference are predicted to occur closer to the verb stem, while markers of agreement would occupy peripheral positions. This paper tests…

  6. The research on endothelial function in women and men at risk for cardiovascular disease (REWARD) study: methodology

    PubMed Central

    2011-01-01

    Background Endothelial function has been shown to be a highly sensitive marker for the overall cardiovascular risk of an individual. Furthermore, there is evidence of important sex differences in endothelial function that may underlie the differential presentation of cardiovascular disease (CVD) in women relative to men. As such, measuring endothelial function may have sex-specific prognostic value for the prediction of CVD events, thus improving risk stratification for the overall prediction of CVD in both men and women. The primary objective of this study is to assess the clinical utility of the forearm hyperaemic reactivity (FHR) test (a proxy measure of endothelial function) for the prediction of CVD events in men vs. women using a novel, noninvasive nuclear medicine -based approach. It is hypothesised that: 1) endothelial dysfunction will be a significant predictor of 5-year CVD events independent of baseline stress test results, clinical, demographic, and psychological variables in both men and women; and 2) endothelial dysfunction will be a better predictor of 5-year CVD events in women compared to men. Methods/Design A total of 1972 patients (812 men and 1160 women) undergoing a dipyridamole stress testing were recruited. Medical history, CVD risk factors, health behaviours, psychological status, and gender identity were assessed via structured interview or self-report questionnaires at baseline. In addition, FHR was assessed, as well as levels of sex hormones via blood draw. Patients will be followed for 5 years to assess major CVD events (cardiac mortality, non-fatal MI, revascularization procedures, and cerebrovascular events). Discussion This is the first study to determine the extent and nature of any sex differences in the ability of endothelial function to predict CVD events. We believe the results of this study will provide data that will better inform the choice of diagnostic tests in men and women and bring the quality of risk stratification in

  7. Lipoprotein marker for hypertriglyceridemia

    DOEpatents

    Cubicciotti, Roger S.; Karu, Alexander E.; Krauss, Ronald M.

    1986-01-01

    Methods and compositions are provided for the detection of a particular low density lipoprotein which has been found to be a marker for patients suffering from type IV hypertriglyceridemia. A monoclonal antibody capable of specifically binding to a characteristic epitopic site on this LDL subspecies can be utilized in a wide variety of immunoassays. Hybridoma cell line SPL.IVA5A1 was deposited at the American Type Culture Collection on Mar. 29, 1984, and granted accession no. HB 8535.

  8. Modulation of endothelial cell phenotype by physical activity: impact on obesity-related endothelial dysfunction.

    PubMed

    Bender, Shawn B; Laughlin, M Harold

    2015-07-01

    Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events.

  9. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria.

    PubMed

    Barber, Bridget E; William, Timothy; Grigg, Matthew J; Parameswaran, Uma; Piera, Kim A; Price, Ric N; Yeo, Tsin W; Anstey, Nicholas M

    2015-01-01

    Plasmodium vivax can cause severe malaria, however its pathogenesis is poorly understood. In contrast to P. falciparum, circulating vivax parasitemia is low, with minimal apparent sequestration in endothelium-lined microvasculature, and pathogenesis thought unrelated to parasite biomass. However, the relationships between vivax disease-severity and total parasite biomass, endothelial autocrine activation and microvascular dysfunction are unknown. We measured circulating parasitemia and markers of total parasite biomass (plasma parasite lactate dehydrogenase [pLDH] and PvLDH) in adults with severe (n = 9) and non-severe (n = 53) vivax malaria, and examined relationships with disease-severity, endothelial activation, and microvascular function. Healthy controls and adults with non-severe and severe falciparum malaria were enrolled for comparison. Median peripheral parasitemia, PvLDH and pLDH were 2.4-fold, 3.7-fold and 6.9-fold higher in severe compared to non-severe vivax malaria (p = 0.02, p = 0.02 and p = 0.015, respectively), suggesting that, as in falciparum malaria, peripheral P. vivax parasitemia underestimates total parasite biomass, particularly in severe disease. P. vivax schizonts were under-represented in peripheral blood. Severe vivax malaria was associated with increased angiopoietin-2 and impaired microvascular reactivity. Peripheral vivax parasitemia correlated with endothelial activation (angiopoietin-2, von-Willebrand-Factor [VWF], E-selectin), whereas markers of total vivax biomass correlated only with systemic inflammation (IL-6, IL-10). Activity of the VWF-cleaving-protease, ADAMTS13, was deficient in proportion to endothelial activation, IL-6, thrombocytopenia and vivax disease-severity, and associated with impaired microvascular reactivity in severe disease. Impaired microvascular reactivity correlated with lactate in severe vivax malaria. Findings suggest that tissue accumulation of P. vivax may occur, with the hidden

  10. Endothelial ischemia-reperfusion injury in humans: association with age and habitual exercise

    PubMed Central

    Umpierre, Daniel; Harrison, Michelle L.; Lin, Hsin-Fu; Tarumi, Takashi; Renzi, Christopher P.; Dhindsa, Mandeep; Hunter, Stacy D.; Tanaka, Hirofumi

    2011-01-01

    Advancing age is a major risk factor for coronary artery disease. Endothelial dysfunction accompanied by increased oxidative stress and inflammation with aging may predispose older arteries to greater ischemia-reperfusion (I/R) injury. Because coronary artery ischemia cannot be induced safely, the effects of age and habitual endurance exercise on endothelial I/R injury have not been determined in humans. Using the brachial artery as a surrogate model of the coronary arteries, endothelial function, assessed by brachial artery flow-mediated dilation (FMD), was measured before and after 20 min of continuous forearm occlusion in young sedentary (n = 10, 24 ± 2 yr) and middle-aged (n = 9, 48 ± 2 yr) sedentary adults to gain insight into the effects of primary aging on endothelial I/R injury. Young (n = 9, 25 ± 1 yr) and middle-aged endurance-trained (n = 9, 50 ± 2 yr) adults were also studied to determine whether habitual exercise provides protection from I/R injury. Fifteen minutes after ischemic injury, FMD decreased significantly by 37% in young sedentary, 35% in young endurance-trained, 68% in middle-aged sedentary, and 50% in middle-aged endurance-trained subjects. FMD returned to baseline levels within 30 min in young sedentary and endurance-trained subjects but remained depressed in middle-aged sedentary and endurance-trained subjects. Circulating markers of antioxidant capacity and inflammation were not related to FMD. In conclusion, advancing age is associated with a greater magnitude and delayed recovery from endothelial I/R injury in humans. Habitual endurance exercise may provide partial protection to the endothelium against this form of I/R injury with advancing age. PMID:21239631

  11. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling

    PubMed Central

    Skaria, Tom; Burgener, Julia; Bachli, Esther; Schoedon, Gabriele

    2016-01-01

    Microvascular leakage due to endothelial barrier dysfunction is a prominent feature of T helper 2 (Th2) cytokine mediated allergic inflammation. Interleukin-4 (IL-4) is a potent Th2 cytokine, known to impair the barrier function of endothelial cells. However, the effectors mediating IL-4 induced cytoskeleton remodeling and consequent endothelial barrier dysfunction remain poorly defined. Here we have used whole genome transcriptome profiling and gene ontology analyses to identify the genes and processes regulated by IL-4 signaling in human coronary artery endothelial cells (HCAEC). The study revealed Wnt5A as an effector that can mediate actin cytoskeleton remodeling in IL-4 activated HCAEC through the regulation of LIM kinase (LIMK) and Cofilin (CFL). Following IL-4 treatment, LIMK and CFL were phosphorylated, thereby indicating the possibility of actin stress fiber formation. Imaging of actin showed the formation of stress fibers in IL-4 treated live HCAEC. Stress fiber formation was notably decreased in the presence of Wnt inhibitory factor 1 (WIF1). Non-invasive impedance measurements demonstrated that IL-4 increased the permeability and impaired the barrier function of HCAEC monolayers. Silencing Wnt5A significantly reduced permeability and improved the barrier function of HCAEC monolayers upon IL-4 treatment. Our study identifies Wnt5A as a novel marker of IL-4 activated vascular endothelium and demonstrates a critical role for Wnt5A in mediating IL-4 induced endothelial barrier dysfunction. Wnt5A could be a potential therapeutic target for reducing microvascular leakage and edema formation in Th2 driven inflammatory diseases. PMID:27214384

  12. Post-Exercise Ankle-Brachial Pressure Index Demonstrates Altered Endothelial Function in the Elderly

    PubMed Central

    Sato, Shinji; Masami, Kozue; Otsuki, Shingo; Tanaka, Shiro; Nakayama, Noriko; Makita, Shigeru; Koshiyama, Hiroyuki; Nohara, Ryuji

    2011-01-01

    Background: The ankle-brachial pressure index (ABI), the ratio of the systolic blood pressure of the ankle to the systolic brachial pressure, is commonly measured at rest, but ABI values post-exercise enhance the sensitivity of the test and can be used to identify atherosclerotic vascular damage. However, it has not been established whether or not enhanced post-exercise ABI is also associated with endothelial dysfunction. We hypothesized that a decrease in post-exercise ABI is related to impaired endothelial function. Purpose: To investigate alterations in post-exercise ABI values and endothelial dysfunction in the elderly. Methods: The study population comprised 35 men and women aged 51–77 years (mean age: 66 years). Patients with peripheral arterial disease or a history of heart failure were excluded. The ABI was estimated at rest and immediately after exercise. The exercise protocol comprised 2.5 min of active pedal flexion exercises at a speed of 60 times/min. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD) in the brachial artery using ultrasound imaging. Results: No correlation was found between FMD and the ABI at rest. However, a weak correlation was found between FMD and post-exercise ABI (r = 0.46, P = 0.06). A strong correlation was observed between FMD and a decrease in post-exercise ABI compared to baseline readings (r = −0.52, P = 0.01). Multiple linear regression analysis was used to generate a prediction equation for FMD using the percentage decrease in post-exercise ABI. Significant correlations were observed between the ultrasound imaging-measured FMD and the predicted FMD (R2 = 0.27, P = 0.001). Conclusions: Post-exercise ABI appears to be a simple surrogate marker for endothelial function in the elderly, although larger studies are required for validation. PMID:23885186

  13. Administration of tauroursodeoxycholic acid prevents endothelial dysfunction caused by an oral glucose load.

    PubMed

    Walsh, Lauren K; Restaino, Robert M; Neuringer, Martha; Manrique, Camila; Padilla, Jaume

    2016-11-01

    Postprandial hyperglycaemia leads to a transient impairment in endothelial function; however, the mechanisms remain largely unknown. Previous work in cell culture models demonstrate that high glucose results in endoplasmic reticulum (ER) stress and, in animal studies, ER stress has been implicated as a cause of endothelial dysfunction. In the present study, we tested the hypothesis that acute oral administration of tauroursodeoxycholic acid (TUDCA, 1500 mg), a chemical chaperone known to alleviate ER stress, would prevent hyperglycaemia-induced endothelial dysfunction. In 12 young healthy subjects (seven men, five women), brachial artery flow-mediated dilation (FMD) was assessed at baseline, and at 60 and 120 min after an oral glucose challenge. Subjects were tested on two separate visits in a single-blind randomized cross-over design: after oral ingestion of TUDCA or placebo capsules. FMD was reduced from baseline during hyperglycaemia under the placebo condition (-32% at 60 min and -28% at 120 min post oral glucose load; P<0.05 from baseline) but not under the TUDCA condition (-4% at 60 min and +0.3% at 120 min post oral glucose load; P>0.05 from baseline). Postprandial plasma glucose and insulin were not altered by TUDCA ingestion. Plasma oxidative stress markers 3-nitrotyrosine and thiobarbituric acid reactive substance (TBARS) remained unaltered throughout the oral glucose challenge in both conditions. These results suggest that hyperglycaemia-induced endothelial dysfunction can be mitigated by oral administration of TUDCA, thus supporting the hypothesis that ER stress may contribute to endothelial dysfunction during postprandial hyperglycaemia.

  14. Endothelial damage in major depression patients is modulated by SSRI treatment, as demonstrated by circulating biomarkers and an in vitro cell model

    PubMed Central

    Lopez-Vilchez, I; Diaz-Ricart, M; Navarro, V; Torramade, S; Zamorano-Leon, J; Lopez-Farre, A; Galan, A M; Gasto, C; Escolar, G

    2016-01-01

    There is a link between depression, cardiovascular events and inflammation. We have explored this connection through endothelial dysfunction, using in vivo and in vitro approaches. We evaluated circulating biomarkers of endothelial dysfunction in patients with major depression at their diagnosis (MD-0) and during antidepressant treatment with the selective serotonin reuptake inhibitor escitalopram, for 8 and 24 weeks (MD-8 and MD-24). Results were always compared with matched healthy controls (CON). We measured in vivo circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) in blood samples, and assessed plasma levels of soluble von Willebrand factor (VWF) and vascular cell adhesion molecule-1 (VCAM-1). CEC counts, soluble VWF and VCAM-1 were statistically elevated in MD-0 (P<0.01 versus CON) and gradually decreased during treatment. Conversely, EPC levels were lower in MD-0, tending to increase throughout treatment. In vitro studies were performed in human endothelial cells cultured in the presence of sera from each study group. Elevated expression of the inflammation marker intercellular adhesion molecule-1 and oxidative stress, with lower presence of endothelial nitric oxide synthase and higher reactive oxygen species production, were found in cells exposed to MD-0 sera (P<0.05 versus CON). These results were normalized in cells exposed to MD-24 sera. Thrombogenicity of extracellular matrices generated by these cells, measured as expression of VWF, tissue factor and platelet reactivity, showed non-significant differences. We provide a model of cultured endothelial cells reproducing endothelial dysfunction in naive patients with major depression, demonstrating endothelial damage and inflammation at diagnosis, and recovering with selective serotonin reuptake inhibitor treatment for 24 weeks. PMID:27598970

  15. Endothelial damage in major depression patients is modulated by SSRI treatment, as demonstrated by circulating biomarkers and an in vitro cell model.

    PubMed

    Lopez-Vilchez, I; Diaz-Ricart, M; Navarro, V; Torramade, S; Zamorano-Leon, J; Lopez-Farre, A; Galan, A M; Gasto, C; Escolar, G

    2016-01-01

    There is a link between depression, cardiovascular events and inflammation. We have explored this connection through endothelial dysfunction, using in vivo and in vitro approaches. We evaluated circulating biomarkers of endothelial dysfunction in patients with major depression at their diagnosis (MD-0) and during antidepressant treatment with the selective serotonin reuptake inhibitor escitalopram, for 8 and 24 weeks (MD-8 and MD-24). Results were always compared with matched healthy controls (CON). We measured in vivo circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) in blood samples, and assessed plasma levels of soluble von Willebrand factor (VWF) and vascular cell adhesion molecule-1 (VCAM-1). CEC counts, soluble VWF and VCAM-1 were statistically elevated in MD-0 (P<0.01 versus CON) and gradually decreased during treatment. Conversely, EPC levels were lower in MD-0, tending to increase throughout treatment. In vitro studies were performed in human endothelial cells cultured in the presence of sera from each study group. Elevated expression of the inflammation marker intercellular adhesion molecule-1 and oxidative stress, with lower presence of endothelial nitric oxide synthase and higher reactive oxygen species production, were found in cells exposed to MD-0 sera (P<0.05 versus CON). These results were normalized in cells exposed to MD-24 sera. Thrombogenicity of extracellular matrices generated by these cells, measured as expression of VWF, tissue factor and platelet reactivity, showed non-significant differences. We provide a model of cultured endothelial cells reproducing endothelial dysfunction in naive patients with major depression, demonstrating endothelial damage and inflammation at diagnosis, and recovering with selective serotonin reuptake inhibitor treatment for 24 weeks. PMID:27598970

  16. Glucose-Regulated Protein 78 (Grp78) Confers Chemoresistance to Tumor Endothelial Cells under Acidic Stress

    PubMed Central

    Visioli, Fernanda; Wang, Yugang; Alam, Goleeta N.; Ning, Yu; Rados, Pantelis V.; Nör, Jacques E.; Polverini, Peter J.

    2014-01-01

    Objectives This study was designed to investigate the activation of the unfolded protein response (UPR) in tumor associated endothelial cells (TECs) and its association with chemoresistance during acidic pH stress. Materials and Methods Endothelial cells from human oral squamous cell carcinomas (OSCC) were excised by laser capture microdissection (LCM) followed by analysis of UPR markers (Grp78, ATF4 and CHOP) using quantitative PCR. Grp78 expression was also determined by immunostaining. Acidic stress was induced in primary human dermal microvascular endothelial cells (HDMECs) by treatment with conditioned medium (CM) from tumor cells grown under hypoxic conditions or by adjusting medium pH to 6.4 or 7.0 using lactic acid or hydrochloric acid (HCl). HDMEC resistance to the anti-angiogenic drug Sunitinib was assessed with SRB assay. Results UPR markers, Grp78, ATF4 and CHOP were significantly upregulated in TECs from OSCC compared to HDMECs. HDMECs cultured in acidic CM (pH 6.0–6.4) showed increased expression of the UPR markers. However, severe acidosis led to marked cell death in HDMECs. Alternatively, HDMECs were able to adapt when exposed to chronic acidosis at pH 7.0 for 7 days, with concomittant increase in Grp78 expression. Chronic acidosis also confers drug resistance to HDMECs against Sunitinib. Knockdown of Grp78 using shRNA resensitizes HDMECs to drug treatment. Conclusions UPR induction in ECs under acidic pH conditions is related to chemoresistance and may contribute to therapeutic failures in response to chemotherapy. Targeting Grp78, the key component of the UPR pathway, may provide a promising approach to overcome ECs resistance in cancer therapy. PMID:24964091

  17. Tesmilifene modifies brain endothelial functions and opens the blood-brain/blood-glioma barrier.

    PubMed

    Walter, Fruzsina R; Veszelka, Szilvia; Pásztói, Mária; Péterfi, Zoltán A; Tóth, András; Rákhely, Gábor; Cervenak, László; Ábrahám, Csongor S; Deli, Mária A

    2015-09-01

    Tesmilifene, a tamoxifen analog with antihistamine action, has chemopotentiating properties in experimental and clinical cancer studies. In our previous works, tesmilifene increased the permeability of the blood-brain barrier (BBB) in animal and culture models. Our aim was to investigate the effects of tesmilifene on brain microvessel permeability in the rat RG2 glioma model and to reveal its mode of action in brain endothelial cells. Tesmilifene significantly increased fluorescein extravasation in the glioma. Short-term treatment with tesmilifene reduced the resistance and increased the permeability for marker molecules in a rat triple co-culture BBB model. Tesmilifene also affected the barrier integrity in brain endothelial cells co-cultured with RG2 glioblastoma cells. Tesmilifene inhibited the activity of P-glycoprotein and multidrug resistance-associated protein-1 efflux pumps and down-regulated the mRNA expression of tight junction proteins, efflux pumps, solute carriers, and metabolic enzymes important for BBB functions. Among the possible signaling pathways that regulate BBB permeability, tesmilifene activated the early nuclear translocation of NFκB. The MAPK/ERK and PI3K/Akt kinase pathways were also involved. We demonstrate for the first time that tesmilifene increases permeability marker molecule extravasation in glioma and inhibits efflux pump activity in brain endothelial cells, which may have therapeutic relevance. Tesmilifene, a chemopotentiator in experimental and clinical cancer studies increases vascular permeability in RG2 glioma in rats and permeability for marker molecules in a culture model of the blood-brain barrier. Tesmilifene inhibits the activity of efflux pumps and down-regulates the mRNA expression of tight junction proteins, transporters, and metabolic enzymes important for the blood-brain barrier functions, which may have therapeutic relevance.

  18. Endothelial progenitor cells in diabetic foot syndrome.

    PubMed

    Drela, Ewelina; Stankowska, Katarzyna; Kulwas, Arleta; Rość, Danuta

    2012-01-01

    In the late 20th century endothelial progenitor cells (EPCs) were discovered and identified as cells capable of differentiating into endothelial cells. Antigens characteristic of endothelial cells and hematopoietic cells are located on their surface. EPCs can proliferate, adhere, migrate and have the specific ability to form vascular structure, and they have a wide range of roles: They participate in maintaining hemostasis, and play an important part in the processes of vasculogenesis and angiogenesis. They are sources of angiogenic factors, especially vascular endothelial growth factor (VEGF). EPCs exist in bone marrow, from which they are recruited into circulation in response to specific stimuli. Tissue ischemia is thought to be the strongest inductor of EPC mobilization. Local ischemia accompanies many pathological states, including diabetic foot syndrome (DFS). Impaired angiogenesis--in which EPCs participate--is typical of DFS. An analysis of the available literature indicates that in diabetic patients the number of EPCs declines and their functioning is impaired. Endothelial progenitor cells are crucial to vasculogenesis and angiogenesis during ischemic neovascularization. The pathomechanisms underlying impaired angiogenesis in patients with DFS is complicated, but the discovery of EPCs has shed new light on the pathogenesis of many diseases, including diabetes foot syndrome.

  19. [Cytokines, endothelial dysfunction, and insulin resistance].

    PubMed

    de Carvalho, Maria Helena C; Colaço, André Luiz; Fortes, Zuleica Bruno

    2006-04-01

    Endothelial dysfunction is associated with several vascular conditions as atherosclerosis, hypertension, hyperlipidemia and diabetes mellitus. In all these conditions insulin resistance (IR) is present. Cytokines are low molecular weight proteins with several endocrine and metabolic functions that participate of inflammation and immune response. Several of these cytokines are independent risk factors for cerebrovascular and coronary artery disease. The major sources of cytokines (adipokines) are the visceral and subcutaneous adipose tissues. Thus, increased adipose tissue mass is associated with alteration in adipokine production as over expression of tumor necrosis factor alpha, interleukin 6, plasminogen activator inhibitor 1, and under expression of adiponectin in adipocite tissue. The pro-inflammatory status associated with these changes provides a potential link between IR and endothelial dysfunction, the early stage in the atherosclerotic process, in obese individuals, and type 2 diabetic patients. Reduction of adipose tissue mass through weight reduction in association with exercise reduces TNF-alpha, IL-6, and PAI-1, increases adiponectin, and is associated with improved insulin sensitivity and endothelial function. This review will focus on the evidence for regulation of endothelial function by insulin and the adypokines such as adyponectin, leptin, resistin, IL-6 and TNF-alpha. Interaction between insulin signaling and adypokines will be discussed, as well as the concept that aberrant adypokine secretion in IR and/or obesity impairs endothelial function and contributes further to reduce insulin sensitivity.

  20. PECAM-1: regulator of endothelial junctional integrity.

    PubMed

    Privratsky, Jamie R; Newman, Peter J

    2014-03-01

    PECAM-1 (also known as CD31) is a cellular adhesion and signaling receptor comprising six extracellular immunoglobulin (Ig)-like homology domains, a short transmembrane domain and a 118 amino acid cytoplasmic domain that becomes serine and tyrosine phosphorylated upon cellular activation. PECAM-1 expression is restricted to blood and vascular cells. In circulating platelets and leukocytes, PECAM-1 functions largely as an inhibitory receptor that, via regulated sequential phosphorylation of its cytoplasmic domain, limits cellular activation responses. PECAM-1 is also highly expressed at endothelial cell intercellular junctions, where it functions as a mechanosensor, as a regulator of leukocyte trafficking and in the maintenance of endothelial cell junctional integrity. In this review, we will describe (1) the functional domains of PECAM-1 and how they contribute to its barrier-enhancing properties, (2) how the physical properties of PECAM-1 influence its subcellular localization and its ability to influence endothelial cell barrier function, (3) various stimuli that initiate PECAM-1 signaling and/or function at the endothelial junction and (4) cross-talk of PECAM-1 with other junctional molecules, which can influence endothelial cell function. PMID:24435645

  1. Endothelial Cell Response to Fusobacterium nucleatum.

    PubMed

    Mendes, Reila Tainá; Nguyen, Daniel; Stephens, Danielle; Pamuk, Ferda; Fernandes, Daniel; Van Dyke, Thomas E; Kantarci, Alpdogan

    2016-07-01

    Vascular response is an essential aspect of an effective immune response to periodontal disease pathogens, as new blood vessel formation contributes to wound healing and inflammation. Gaining a greater understanding of the factors that affect vascular response may then contribute to future breakthroughs in dental medicine. In this study, we have characterized the endothelial cell response to the common bacterium Fusobacterium nucleatum, an important bridging species that facilitates the activity of late colonizers of the dental biofilm. Endothelial cells were infected with Fusobacterium nucleatum (strain 25586) for periods of 4, 12, 24, or 48 h. Cell proliferation and tube formation were analyzed, and expression of adhesion molecules (CD31 and CD34) and vascular endothelial growth factor (VEGF) receptors 1 and 2 was measured by fluorescence-activated cell sorter (FACS) analysis. Data indicate that F. nucleatum impaired endothelial cell proliferation and tube formation. The findings suggest that the modified endothelial cell response acts as a mechanism promoting the pathogenic progression of periodontal diseases and may potentially suggest the involvement of periodontopathogens in systemic diseases associated with periodontal inflammation.

  2. Platelet and endothelial activation in catastrophic and quiescent antiphospholipid syndrome.

    PubMed

    Bontadi, A; Ruffatti, A; Falcinelli, E; Giannini, S; Marturano, A; Tonello, M; Hoxha, A; Pengo, V; Punzi, L; Momi, S; Gresele, P

    2013-05-01

    Antiphospholipid antibodies (aPL) seem to induce a prothrombotic state by activating endothelium and platelets, but no studies have evaluated systematically the effects of aPL from patients with the antiphospholipid syndrome (APS) in quiescent versus catastrophic phase. Our aims were to evaluate the in vitro effects on platelet activation of anti-β2 glycoprotein I (anti-β2GPI) antibodiesisolated from APS patientin either quiescent or catastrophic phase and to investigate ex vivo platelet and endothelial activation in patients with quiescent or catastrophic APS. Anti-β2GPI antibodies were isolated from plasma of a pregnant woman in two different stages of APS (quiescent and catastrophic, respectively). They were co-incubated with washed platelets from healthy controls that were then challenged with TRAP-6 (thrombin receptor activating peptide 6) and the expression of P- selectin (P-sel) on platelets was assessed by flow cytometry. Moreover, plasma samples from six patients with quiescent, four with catastrophic APS and 10 controls were assessed for several markers of platelet and endothelial activation. The results showed that purified anti-β2GPI antibodies co-incubated with platelets enhanced TRAP-6- induced platelet P-sel expression. Notably, anti-β2GPI antibodies isolated during the catastrophic phase enhanced platelet P-sel expression more than antibodies isolated from the same patient in the quiescent stage of disease. Moreover, APS patients had significantly higher plasma levels of soluble (s) Psel, sCD40 ligand, soluble vascular cell adhesion molecule 1 and monocyte chemoattractant protein 1 than control subjects. In addition, sP-sel and von Willebrand factor activity were significantly higher during catastrophic than in quiescent phase. PMID:23572134

  3. Circulating endothelial cells and their progenitors in acute myeloid leukemia

    PubMed Central

    Zahran, Asmaa Mohammed; Aly, Sanaa Shaker; Altayeb, Hanan Ahmed; Ali, Arwa Mohammed

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by the accumulation of immature myeloid progenitor cells in the bone marrow. Studies are required to investigate the prognostic and predictive value of surrogate biomarkers. Given the importance of angiogenesis in oncology in terms of pathogenesis as well as being a target for treatment, circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are promising candidates to serve as such markers. The aim of the present study was to quantify CECs and EPCs in patients with AML at initial diagnosis and following induction chemotherapy, and to correlate these findings with the response to treatment in AML patients. The present study included 40 patients with de novo AML and 20 age- and gender-matched healthy controls. CECs and EPCs were evaluated by flow cytometry at initial diagnosis and after induction chemotherapy (3+7 protocol for AML other than M3 and all-trans-retinoic acid plus anthracycline for M3 disease). CECs and EPCs were significantly higher in AML patients at diagnosis and after induction chemotherapy than in controls. After induction chemotherapy, CECs and EPCs were significantly decreased compared with the levels at initial diagnosis. Patients who achieved complete response (n=28) had lower initial CEC and EPC levels compared with patients who did not respond to treatment. These results suggest that CEC levels are higher in AML patients and may correlate with disease status and treatment response. Further investigations are required to better determine the predictive value and implication of these cells in AML management. PMID:27602121

  4. [Tumor markers in gastric cancer].

    PubMed

    Ohkura, Hisanao

    2002-04-01

    There are two markers, pepsinogen isoenzymes and antibody against Helicobactor pyroli, for screening of high-risk group for gastric cancer. Most of markers are used in diagnosis, staging, monitoring and differentiating subgroups of gastric cancer. Markers in ascitic fluid are used for diagnosing peritoneal invasion of gastric cancer. PMID:11977555

  5. [Justifying genetic and immune markers of efficiency and sensitivity under combined exposure to risk factors in mining industry workers].

    PubMed

    Dolgikh, O V; Zaitseva, N V; Krivtsov, A V; Gorshkova, K G; Lanin, D V; Bubnova, O A; Dianova, D G; Lykhina, T S; Vdovina, N A

    2014-01-01

    The authors evaluated and justified immunologic and genetic markers under combined exposure to risk factors in mining industry workers. Analysis covered polymorphism features of 29 genes with variant alleles possibly participating in occupationally conditioned diseases formation and serving as sensitivity markers of these diseases risk. The genes association selected demonstrates reliably changed polymorphism vs. the reference group (SOD2 superoxidedismutase gene, ANKK1 dophamine receptor gene, SULT1A1 sulphtransaminase gene, MTHFR methylene tetrahydrofolate reductase gene, VEGF endothelial growth factor gene, TNF-alpha tumor necrosis factor gene). Under combined exposure to occupational hazards (sylvinite dust, noise) in mining industry, this association can serve as adequate marking complex of sensitivity to development of occupationally conditioned diseases. Increased-production of immune cytokine regulation markers: tumor necrosis factor and vascular endothelial growth factor. Genes SOD2, ANKK1, SULT1A1, VEGF, TNFalpha are recommended as sensitivity markers, and the coded cytokines (tumor necrosis factor and endothelial growth factor) are proposed as effect markers in evaluation of health risk for workers in mining industry.

  6. Generation of novel monoclonal antibodies for the enrichment and characterization of human corneal endothelial cells (hCENC) necessary for the treatment of corneal endothelial blindness

    PubMed Central

    Ding, Vanessa; Chin, Angela; Peh, Gary; Mehta, Jodhbir S; Choo, Andre

    2014-01-01

    Corneal transplantation is the primary treatment option to restore vision for patients with corneal endothelial blindness. Although the success rate of treatment is high, limited availability of transplant grade corneas is a major obstacle. Tissue-engineered corneal endothelial grafts constructed using cultivated human corneal endothelial cells (hCENC) isolated from cadaveric corneas may serve as a potential graft source. Currently, tools for the characterization of cultured hCENC and enrichment of hCENC from potential contaminating cells such as stromal fibroblasts are lacking. In this study, we describe the generation and characterization of novel cell surface monoclonal antibodies (mAbs) specific for hCENC. These mAbs could be used for enrichment and characterization of hCENC. Out of a total of 389 hybridomas, TAG-1A3 and TAG-2A12 were found to be specific to the corneal endothelial monolayer by immunostaining of frozen tissue sections. Both mAbs were able to clearly identify hCENC with good ‘cobblestone-like’ morphology from multiple donors. The antigen targets for TAG-1A3 and TAG-2A12 were found to be CD166/ALCAM and Peroxiredoxin-6 (Prdx-6), respectively, both of which have not been previously described as markers of hCENC. Additionally, unlike other Prdx-6 mAbs, TAG-2A12 was found to specifically bind cell surface Prdx-6, which was only expressed on hCENC and not on other cell types screened such as human corneal stromal fibroblasts (hCSF) and human pluripotent stem cells (hPSC). From our studies, we conclude that TAG-1A3 and TAG-2A12 are promising tools to quantitatively assess hCENC quality. It is also noteworthy that the binding specificity of TAG-2A12 could be used for the enrichment of hCENC from cell mixtures of hCSF and hPSC. PMID:25484056

  7. Elevated Procoagulant Endothelial and Tissue Factor Expressing Microparticles in Women with Recurrent Pregnancy Loss

    PubMed Central

    Patil, Rucha; Ghosh, Kanjaksha; Satoskar, Purnima; Shetty, Shrimati

    2013-01-01

    Background 15% of reproducing couples suffer from pregnancy loss(PL) and recurs in 2-3%. One of the most frequently hypothesized causes of unexplained PL refers to a defective maternal haemostatic response leading to uteroplacental thrombosis. Hereditary thrombophilia and antiphospholipid antibodies have been extensively described as risk factors for PL in women with unknown aetiology. Recently, a new marker has emerged: the cell-derived procoagulant circulating microparticles(MPs) which have been reported to have a major role in many thrombosis complicated diseases. This study aims to analyze the significance of procoagulant MPs in women suffering from unexplained recurrent pregnancy loss(RPL), and characterize their cellular origin. Method and Findings 115 women with RPL were analyzed for common thrombophilia markers and different cell derived MPs-total annexinV, platelet(CD41a), endothelial(CD146,CD62e), leukocyte(CD45), erythrocyte(CD235a) and tissue factor(CD142)(TF) expressing MPs and were compared with 20 healthy non-pregnant women. Methodology for MP analysis was standardized by participating in the “Vascular Biology Scientific and Standardization Committee workshop”. Results Total annexinV, TF and endothelial MPs were found significantly increased(p<0.05, 95% confidence interval) in women with RPL. The procoagulant activity of MPs measured by STA-PPL clotting time assay was found in correspondence with annexinV MP levels, wherein the clot time was shortened in samples with increased MP levels. Differences in platelet, leukocyte and erythrocyte derived MPs were not significant. Thirty seven of 115 women were found to carry any of the acquired or hereditary thrombophilia markers. No significant differences were seen in the MP profile of women with and without thrombophilia marker. Conclusion The presence of elevated endothelial, TF and phosphatidylserine expressing MPs at a distance (at least 3 months) from the PL suggests a continued chronic endothelial

  8. KRIT1 Protein Depletion Modifies Endothelial Cell Behavior via Increased Vascular Endothelial Growth Factor (VEGF) Signaling*

    PubMed Central

    DiStefano, Peter V.; Kuebel, Julia M.; Sarelius, Ingrid H.; Glading, Angela J.

    2014-01-01

    Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1+/− mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1. PMID:25320085

  9. Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells.

    PubMed

    Yang, Guanghua; Kramer, M Gabriela; Fernandez-Ruiz, Veronica; Kawa, Milosz P; Huang, Xin; Liu, Zhongmin; Prieto, Jesus; Qian, Cheng

    2015-11-27

    Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.

  10. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    PubMed Central

    Ryman, Valerie E.; Packiriswamy, Nandakumar

    2016-01-01

    Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA) oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1) metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE), can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE), is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC) to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  11. IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury.

    PubMed

    Salmeron, Kathleen; Aihara, Takuma; Redondo-Castro, Elena; Pinteaux, Emmanuel; Bix, Gregory

    2016-02-01

    Inflammation is a major contributor to neuronal injury and is associated with poor outcome after acute brain injury such as stroke. The pro-inflammatory cytokine interleukin (IL)-1 is a critical regulator of cerebrovascular inflammation after ischemic injury, mainly through action of both of its isoforms, IL-1α and IL-1β, at the brain endothelium. In contrast, the differential action of these ligands on endothelial activation and post-stroke angiogenesis is largely unknown. Here, we demonstrate that IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present during post-stroke angiogenic periods. Furthermore, we demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells in vitro. Using brain endothelial cell lines, we found that IL-1α was significantly more potent than IL-1β at inducing endothelial cell activation, as measured by expression of the pro-angiogenic chemokine CXCL-1. IL-1α also induced strong expression of the angiogenic mediator IL-6 in a concentration-dependent manner. Furthermore, IL-1α induced significant proliferation and migration of endothelial cells, and promoted formation of tube-like structures that are established key hallmarks of angiogenesis in vitro. Finally, all of those responses were blocked by the IL-1 receptor antagonist (IL-1RA). In conclusion, our data highlights a potential new role for IL-1 in brain repair mechanisms and identifies IL-1α as a potential new therapy to promote post-stroke angiogenesis. Inflammation is a major contributor to neuronal injury and is associated with poor outcome after neurotrauma. We demonstrate that cytokine IL-1α is chronically elevated in the brain after experimental stroke suggesting that it is present chronically post-stroke. We demonstrate that IL-1α is a potent mediator of endothelial activation and inducer of angiogenic markers in endothelial cells. Our data highlights a new

  12. Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro.

    PubMed

    Zhang, Ruyu; Lu, Ying; Li, Ju; Wang, Jia; Liu, Caixia; Gao, Fang; Sun, Dong

    2016-02-01

    Amniotic fluid-derived stem cells (AFSCs) are a novel source of stem cells that are isolated and cultured from second trimester amniocentesis. Glial cell line-derived neurotrophic factor (GDNF) acts as a tissue morphogen and regulates stem cell proliferation and differentiation. This study investigated the effect of an adenovirus-mediated GDNF gene, which was engineered into AFSCs, on the cells' biological properties and whether GDNF in combination with AFSCs can be directionally differentiated into vascular endothelial-like cells in vitro. AFSCs were isolated and cultured using the plastic adherence method in vitro and identified by the transcription factor Oct-4, which is the primary marker of pluripotent stem cells. AFSCs were efficiently transfected by a GFP-labeled plasmid system of an adenovirus vector carrying the GDNF gene (Ad-GDNF-GFP). Transfected AFSCs stably expressed GDNF. Transfected AFSCs were cultured in endothelial growth medium-2 containing vascular endothelial growth factor. After 1 week, AFSCs were positive for von Willebrand factor (vWF) and CD31, which are markers of endothelial cells, and the recombinant GDNF group was significantly higher than undifferentiated controls and the GFP only group. These results demonstrated that AFSCs differentiated into vascular endothelial-like cells in vitro, and recombinant GDNF promoted differentiation. The differentiation-induced AFSCs may be used as seed cells to provide a new manner of cell and gene therapies for transplantation into the vascular injury site to promote angiogenesis.

  13. Glassy Dynamics, Cell Mechanics and Endothelial Permeability

    PubMed Central

    Hardin, Corey; Rajendran, Kavitha; Manomohan, Greeshma; Tambe, Dhananjay T.; Butler, James P.; Fredberg, Jeffrey J.; Martinelli, Roberta; Carman, Christopher V.; Krishnan, Ramaswamy

    2013-01-01

    A key feature of all inflammatory processes is disruption of the vascular endothelial barrier. Such disruption is initiated in part through active contraction of the cytoskeleton of the endothelial cell (EC). Because contractile forces are propagated from cell to cell across a great many cell-cell junctions, this contractile process is strongly cooperative and highly nonlocal. We show here that the characteristic length scale of propagation is modulated by agonists and antagonists that impact permeability of the endothelial barrier. In the presence of agonists including thrombin, histamine, and H202, force correlation length increases, whereas in the presence of antagonists including sphingosine-1-phosphate, hepatocyte growth factor, and the rho kinase inhibitor, Y27632, force correlation length decreases. Intercellular force chains and force clusters are also evident, both of which are reminiscent of soft glassy materials approaching a glass transition. PMID:23638866

  14. Isolation and culture of pulmonary endothelial cells.

    PubMed

    Ryan, U S

    1984-06-01

    Methods for isolation, identification and culture of pulmonary endothelial cells are now routine. In the past, methods of isolation have used proteolytic enzymes to detach cells; thereafter, traditional methods for cell passaging have used trypsin/EDTA mixtures. Cells isolated and passaged using proteolytic enzymes have been useful in establishing the field and in verifying certain endothelial properties. However, there is a growing awareness of the role of endothelial cells in processing vasoactive substances, in responding to hormones and other agonists and in cell-cell interactions with other cell types of the vascular wall, with blood cells and with cellular products. Consequently, a new requirement has arisen for cells in vitro that maintain the differentiated properties of their counterparts in vivo. The deleterious effects of trypsin and other proteolytic enzymes commonly used in cell culture on surface structures of endothelial cells such as enzymes, receptors and junctional proteins, as well as on extracellular layers such as the glycocalyx or "endothelial fuzz," have led to the development of methods that avoid use of proteolytic enzymes at both the isolation step and during subsequent subculture. This chapter describes traditional methods for isolating pulmonary endothelial cells but emphasizes newer approaches using mechanical harvest and scale-up using microcarriers. The new methods allow maintenance of long-term, large-scale cultures of cells that retain the full complement of surface properties and that maintain the cobblestone monolayer morphology and differentiated functional properties. Methods for identification of isolated cells are therefore also considered as methods for validation of cultures during their in vitro lifespan. PMID:6090112

  15. Crossing the endothelial barrier during metastasis.

    PubMed

    Reymond, Nicolas; d'Água, Bárbara Borda; Ridley, Anne J

    2013-12-01

    During metastasis, cancer cells disseminate to other parts of the body by entering the bloodstream in a process that is called intravasation. They then extravasate at metastatic sites by attaching to endothelial cells that line blood vessels and crossing the vessel walls of tissues or organs. This Review describes how cancer cells cross the endothelial barrier during extravasation and how different receptors, signalling pathways and circulating cells such as leukocytes and platelets contribute to this process. Identification of the mechanisms that underlie cancer cell extravasation could lead to the development of new therapies to reduce metastasis.

  16. Enhancing endothelial progenitor cell for clinical use

    PubMed Central

    Ye, Lei; Poh, Kian-Keong

    2015-01-01

    Circulating endothelial progenitor cells (EPCs) have been demonstrated to correlate negatively with vascular endothelial dysfunction and cardiovascular risk factors. However, translation of basic research into the clinical practice has been limited by the lack of unambiguous and consistent definitions of EPCs and reduced EPC cell number and function in subjects requiring them for clinical use. This article critically reviews the definition of EPCs based on commonly used protocols, their value as a biomarker of cardiovascular risk factor in subjects with cardiovascular disease, and strategies to enhance EPCs for treatment of ischemic diseases. PMID:26240678

  17. Enhancing endothelial progenitor cell for clinical use.

    PubMed

    Ye, Lei; Poh, Kian-Keong

    2015-07-26

    Circulating endothelial progenitor cells (EPCs) have been demonstrated to correlate negatively with vascular endothelial dysfunction and cardiovascular risk factors. However, translation of basic research into the clinical practice has been limited by the lack of unambiguous and consistent definitions of EPCs and reduced EPC cell number and function in subjects requiring them for clinical use. This article critically reviews the definition of EPCs based on commonly used protocols, their value as a biomarker of cardiovascular risk factor in subjects with cardiovascular disease, and strategies to enhance EPCs for treatment of ischemic diseases.

  18. Endothelial progenitor cells--an evolving story.

    PubMed

    Pearson, Jeremy D

    2010-05-01

    The first description of endothelial progenitor cells (EPC) in 1997 led rapidly to substantial changes in our understanding of angiogenesis, and within 5 years to the first clinical studies in humans using bone marrow derived EPC to enhance coronary neovascularisation and cardiac function after myocardial ischemia. However, to improve the success of this therapy a clearer understanding of the biology of EPC is needed. This article summarises recent data indicating that most EPC are not, in fact, endothelial progenitors but can be better described as angiogenic monocytes, and explores the implications this has for their future therapeutic use.

  19. TRAIL-Death Receptor 4 Signaling via Lysosome Fusion and Membrane Raft Clustering In Coronary Arterial Endothelial Cells: Evidence from ASM Knockout Mice

    PubMed Central

    Li, Xiang; Han, Wei-Qing; Boini, Krishna M.; Xia, Min; Zhang, Yang; Li, Pin-Lan

    2012-01-01

    Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and its receptor death receptor 4 (DR4) have been implicated in the development of endothelial dysfunction and atherosclerosis. However, the signaling mechanism mediating DR4 activation and leading to endothelial injury remains unclear. We recently demonstrated that ceramide production via hydrolysis of membrane sphingomyelin by acid sphingomyelinase (ASM) results in membrane raft (MRs) clustering and formation of important redox signaling platforms, which play a crucial role in amplifying redox signaling in endothelial cells leading to endothelial dysfunction. The present study aims to investigate whether TRAIL triggers MR clustering via lysosome fusion and ASM activation, thereby conducting transmembrane redox signaling and changing endothelial function. Using confocal microscopy, we found that TRAIL induced MR clustering and its co-localization with DR4 in coronary arterial endothelial cells (CAECs) isolated from wild-type (Smpd1+/+) mice. Further, TRAIL triggered ASM translocation, ceramide production and NADPH oxidase aggregation in MR clusters in Smpd1+/+ CAECs, whereas these observations were not found in Smpd1−/− CAECs. Moreover, ASM deficiency reduced TRAIL-induced O2−· production in CAECs and abolished TRAIL-induced impairment on endothelium-dependent vasodilation in small resistance arteries. By measuring fluorescence resonance energy transfer (FRET), we found that Lamp-1 (lysosome membrane marker protein) and ganglioside GM1 (MR marker) were trafficking together in Smpd1+/+ CAECs, which was absent in Smpd1−/− CAECs. Consistently, fluorescence imaging of living cells with specific lysosome probes demonstrated that TRAIL-induced lysosome fusion with membrane was also absent in Smpd1−/− CAECs. Taken together, these results suggest that ASM is essential for TRAIL-induced lysosomal trafficking and fusion with membrane and formation of MR redox signaling platforms, which may

  20. [Markers of hepatitis virus].

    PubMed

    Suzuki, Fumitaka

    2008-11-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) are the major viruses known to cause viral hepatitis. Serological markers are commonly used as diagnostic and/or prognostic indicators of acute or chronic HBV or HCV infection. The ability to detect HBV DNA in serum has been reported to have prognostic value for the outcome of chronic HBV infection. A rapid and sustained drop in HBV DNA or HCV RNA levels in patients under therapy has been shown to be a predictive factor for a favourable treatment outcome. Various techniques for detecting HBV DNA or HCV RNA have already been described; however, there are various problems with the sensitivity or detection range of those methods. New virus measuring methods have recently been reported and used. The Cobas Taq Man HCV Test is a new method to detect HBV DNA and HCV RNA with higher sensitivity and a broader range of quantitation than conventional methods. Some reports have shown that these methods improve therapy monitoring and the management of HBV or HCV infection. Moreover, hepatitis E virus (HEV) infection has been reported in Japan. The clinical features and viral markers of HEV have also been described. PMID:19086457

  1. Early endothelial progenitor cells as a source of myeloid cells to improve the pre-vascularisation of bone constructs.

    PubMed

    Shi, Y; Kramer, G; Schröder, A; Kirkpatrick, C J; Seekamp, A; Schmidt, H; Fuchs, S

    2014-01-25

    According to present knowledge, blood derived endothelial progenitor cells (EPC) might act as proangiogenic myeloid cells, which play a fundamental role in the regulation of angiogenesis and blood vessel reorganisation. In this context, we have evaluated the contribution of endogenous myeloid cells in co-cultures of blood derived outgrowth endothelial cells (OEC) and osteogenic cells. In addition, we investigated the role of EPC as a potential source of myeloid cells in the formation of vascular structures in an in vitro model consisting of mesenchymal stem cells (MSC) and OEC. For this purpose, we added EPCs to co-cultures of MSC and OECs. Vascular structures and the co-localisation of myeloid cells were analysed by confocal laser microscopy (CLSM) for endothelial and myeloid markers and quantitative image analysis. The molecular effects of myeloid cells were evaluated by quantitative real time PCR, ELISA and protein arrays from cell culture supernatants and lysates. Endogenous myeloid cells were significantly co-localised with angiogenic structures in co-cultures of OEC and osteogenic cells. The active addition of EPC to co-cultures of OEC and MSC resulted in a statistically approved increase in the formation of prevascular structures at early stages of the co-culture process. In addition, we observed an increase of endothelial markers, indicating beneficial effects of EPC or myeloid cells on endothelial cell growth. Furthermore, real time PCR indicated high expression levels of CD68, CD11b and CD163 in co-cultures of EPC and MSC indicating that EPC act at least partly as macrophage like-cells.

  2. Sevelamer revisited: pleiotropic effects on endothelial and cardiovascular risk factors in chronic kidney disease and end-stage renal disease

    PubMed Central

    2013-01-01

    Endothelial dysfunction underlies multiple cardiovascular consequences of chronic kidney disease (CKD) and antecedent diabetes or hypertension. Endothelial insults in CKD or end-stage renal disease (ESRD) patients include uremic toxins, serum uric acid, hyperphosphatemia, reactive oxygen species, and advanced glycation endproducts (AGEs). Sevelamer carbonate, a calcium-free intestinally nonabsorbed polymer, is approved for hyperphosphatemic dialysis patients in the US and hyperphosphatemic stage 3–5 CKD patients in many other countries. Sevelamer has been observed investigationally to reduce absorption of AGEs, bacterial toxins, and bile acids, suggesting that it may reduce inflammatory, oxidative, and atherogenic stimuli in addition to its on-label action of lowering serum phosphate. Some studies also suggest that noncalcium binders may contribute less to vascular calcification than calcium-based binders. Exploratory sevelamer carbonate use in patients with stages 2–4 diabetic CKD significantly reduced HbA1c, AGEs, fibroblast growth factor (FGF)-23, and total and low-density lipoprotein (LDL) cholesterol versus calcium carbonate; inflammatory markers decreased and defenses against AGEs increased. Sevelamer has also been observed to reduce circulating FGF-23, potentially reducing risk of left ventricular hypertrophy. Sevelamer but not calcium-based binders in exploratory studies increases flow-mediated vasodilation, a marker of improved endothelial function, in patients with CKD. In contrast, lanthanum carbonate and calcium carbonate effects on FMV did not differ in hemodialysis recipients. The recent INDEPENDENT-CKD randomized trial compared sevelamer versus calcium carbonate in predialysis CKD patients (investigational in the US, on-label in European participants); sevelamer reduced 36-month mortality and the composite endpoint of mortality or dialysis inception. Similarly, INDEPENDENT-HD in incident dialysis patients showed improved survival with 24 months

  3. Sevelamer revisited: pleiotropic effects on endothelial and cardiovascular risk factors in chronic kidney disease and end-stage renal disease.

    PubMed

    Rastogi, Anjay

    2013-12-01

    Endothelial dysfunction underlies multiple cardiovascular consequences of chronic kidney disease (CKD) and antecedent diabetes or hypertension. Endothelial insults in CKD or end-stage renal disease (ESRD) patients include uremic toxins, serum uric acid, hyperphosphatemia, reactive oxygen species, and advanced glycation endproducts (AGEs). Sevelamer carbonate, a calcium-free intestinally nonabsorbed polymer, is approved for hyperphosphatemic dialysis patients in the US and hyperphosphatemic stage 3-5 CKD patients in many other countries. Sevelamer has been observed investigationally to reduce absorption of AGEs, bacterial toxins, and bile acids, suggesting that it may reduce inflammatory, oxidative, and atherogenic stimuli in addition to its on-label action of lowering serum phosphate. Some studies also suggest that noncalcium binders may contribute less to vascular calcification than calcium-based binders. Exploratory sevelamer carbonate use in patients with stages 2-4 diabetic CKD significantly reduced HbA1c, AGEs, fibroblast growth factor (FGF)-23, and total and low-density lipoprotein (LDL) cholesterol versus calcium carbonate; inflammatory markers decreased and defenses against AGEs increased. Sevelamer has also been observed to reduce circulating FGF-23, potentially reducing risk of left ventricular hypertrophy. Sevelamer but not calcium-based binders in exploratory studies increases flow-mediated vasodilation, a marker of improved endothelial function, in patients with CKD. In contrast, lanthanum carbonate and calcium carbonate effects on FMV did not differ in hemodialysis recipients. The recent independent-CKD randomized trial compared sevelamer versus calcium carbonate in predialysis CKD patients (investigational in the US, on-label in European participants); sevelamer reduced 36-month mortality and the composite endpoint of mortality or dialysis inception. Similarly, independent-HD in incident dialysis patients showed improved survival with 24 months of

  4. Tumor-derived mural-like cells coordinate with endothelial cells: role of YKL-40 in mural cell-mediated angiogenesis.

    PubMed

    Francescone, R; Ngernyuang, N; Yan, W; Bentley, B; Shao, R

    2014-04-17

    Tumor neo-vasculature is characterized by spatial coordination of endothelial cells with mural cells, which delivers oxygen and nutrients. Here, we explored a key role of the secreted glycoprotein YKL-40, a mesenchymal marker, in the interaction between endothelial cells and mesenchymal mural-like cells for tumor angiogenesis. Xenotransplantation of tumor-derived mural-like cells (GSDCs) expressing YKL-40 in mice developed extensive and stable blood vessels covered with more GSDCs than those in YKL-40 gene knockdown tumors. YKL-40 expressed by GSDCs was associated with increased interaction of neural cadherin/β-catenin/smooth muscle alpha actin; thus, mediating cell-cell adhesion and permeability. YKL-40 also induced the interaction of vascular endothelial cadherin/β-catenin/actin in endothelial cells (HMVECs). In cell co-culture systems, YKL-40 enhanced both GSDC and HMVEC contacts, restricted vascular leakage, and stabilized vascular networks. Collectively, the data inform new mechanistic insights into the cooperation of mural cells with endothelial cells induced by YKL-40 during tumor angiogenesis, and also enhance our understanding of YKL-40 in both mural and endothelial cell biology.

  5. Rapamycin inhibits re-endothelialization after percutaneous coronary intervention by impeding the proliferation and migration of endothelial cells and inducing apoptosis of endothelial progenitor cells.

    PubMed

    Liu, Hai-Tao; Li, Fei; Wang, Wen-Yong; Li, Xiao-Jing; Liu, Yi-Meng; Wang, Rui-An; Guo, Wen-Yi; Wang, Hai-Chang

    2010-01-01

    Endothelial-cell function is important in the healing of damaged endothelium after percutaneous coronary artery damage. In 3 different animal models, we sought to determine whether rapamycin (sirolimus) affects the proliferation and migration of endothelial cells and endothelial progenitor cells. First, after we implanted stents in dogs, we found that re-endothelialization was impeded more by drug-eluting stents than by bare-metal stents, 30 days after percutaneous coronary intervention. Second, in vitro in rats, we found that 1-100 ng/mL of rapamycin time- and dose-dependently inhibited proliferation over 72 hr (with effects evident as early as 24 hr) and also dose-dependently induced endothelial progenitor-cell apoptosis. Finally, in vivo in rats, we observed that vascular endothelial growth factor expression was decreased after 5 days of rapamycin treatment. We conclude that rapamycin impedes re-endothelialization after drug-eluting stent implantation by inhibiting the proliferation and migration of coronary endothelial cells, inducing endothelial progenitor-cell apoptosis, and decreasing vascular endothelial growth factor expression in the circulation. PMID:20401293

  6. Association of endothelial microparticle with NO, eNOS, ET-1, and fractional flow reserve in patients with coronary intermediate lesions.

    PubMed

    Song, Rui; Chou, Yuan I Scarlet; Kong, Jinge; Li, Jizhao; Pan, Bing; Cui, Ming; Zhou, Enchen; Zhang, Yongzhen; Zheng, Lemin

    2015-01-01

    Endothelial microparticle (EMP) is a biomarker for endothelial dysfunction. The aim of this study is to investigate the utility of EMP in evaluating coronary intermediate lesions. Participants included 49 patients with coronary intermediate lesions and 24 subjects with normal coronary arteries. Among these subjects, 28 patients accepted fractional flow reserve (FFR). Results showed that level of EMP was significantly higher in the intermediate lesion group. No correlation was found between EMP and FFR value, suggesting that circulating EMP is a systemic marker rather than a focal one. PMID:26554436

  7. [Effect of L-carnitine, afobazole and their combination with L-arginine on biochemical and histological indices of endothelial disfunction in cobalt intoxication in rats].

    PubMed

    Dzugkoev, S G; Mozhaeva, I V; Otiev, M A; Margieva, O I; Dzugkoeva, F S

    2015-01-01

    The influence of L-carnitine and afobazole and their combination with L-arginine on biochemical and histological indices of endothelial dysfunction in rats with cobalt intoxication. The obtained data revealed biochemical markers of endothelial dysfunction. Found that-in rats with cobalt intoxication during treatment occurred inhibition of lipid peroxidation (LPO), reduced the concentration of malondialdehyde (MDA) in erythrocytes, activation of superoxide dismutase (SOD). This was accompanied by increased concentrations of nitric oxide (NO), the availability of the substrate L-arginine and possibly the expression of eNOS in the background of L-carnitine and afobazole. PMID:26571811

  8. VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes.

    PubMed

    Igarashi, Yasuyuki; Chosa, Naoyuki; Sawada, Shunsuke; Kondo, Hisatomo; Yaegashi, Takashi; Ishisaki, Akira

    2016-04-01

    The direction of mesenchymal stem cell (MSC) differentiation is regulated by stimulation with various growth factors and cytokines. We recently established MSC lines, [transforming growth factor-β (TGF-β)-responsive SG‑2 cells, bone morphogenetic protein (BMP)-responsive SG‑3 cells, and TGF-β/BMP-non-responsive SG‑5 cells], derived from the bone marrow of green fluorescent protein-transgenic mice. In this study, to compare gene expression profiles in these MSC lines, we used DNA microarray analysis to characterize the specific gene expression profiles observed in the TGF-β-responsive SG‑2 cells. Among the genes that were highly expressed in the SG‑2 cells, we focused on vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), the gene product of FMS-like tyrosine kinase 4 (Flt4). We found that VEGF-C, a specific ligand of VEGFR3, significantly induced the cell proliferative activity, migratory ability (as shown by Transwell migration assay), as well as the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the SG‑2 cells. Additionally, VEGF-C significantly increased the expression of prospero homeobox 1 (Prox1) and lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), which are lymphatic endothelial cell markers, and decreased the expression of osteogenic differentiation marker genes in these cells. By contrast, TGF-β significantly increased the expression of early-phase osteogenic differentiation marker genes in the SG‑2 cells and markedly decreased the expression of lymphatic endothelial cell markers. The findings of our study strongly suggest the following: i) that VEGF-C promotes the proliferative activity and migratory ability of MSCs; and ii) VEGF-C and TGF-β reciprocally regulate MSC commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes, respectively. Our findings provide new insight into the molecular mechanisms underlying the regenerative ability of MSCs. PMID:26934950

  9. VEGF-C and TGF-β reciprocally regulate mesenchymal stem cell commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes.

    PubMed

    Igarashi, Yasuyuki; Chosa, Naoyuki; Sawada, Shunsuke; Kondo, Hisatomo; Yaegashi, Takashi; Ishisaki, Akira

    2016-04-01

    The direction of mesenchymal stem cell (MSC) differentiation is regulated by stimulation with various growth factors and cytokines. We recently established MSC lines, [transforming growth factor-β (TGF-β)-responsive SG‑2 cells, bone morphogenetic protein (BMP)-responsive SG‑3 cells, and TGF-β/BMP-non-responsive SG‑5 cells], derived from the bone marrow of green fluorescent protein-transgenic mice. In this study, to compare gene expression profiles in these MSC lines, we used DNA microarray analysis to characterize the specific gene expression profiles observed in the TGF-β-responsive SG‑2 cells. Among the genes that were highly expressed in the SG‑2 cells, we focused on vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3), the gene product of FMS-like tyrosine kinase 4 (Flt4). We found that VEGF-C, a specific ligand of VEGFR3, significantly induced the cell proliferative activity, migratory ability (as shown by Transwell migration assay), as well as the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the SG‑2 cells. Additionally, VEGF-C significantly increased the expression of prospero homeobox 1 (Prox1) and lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), which are lymphatic endothelial cell markers, and decreased the expression of osteogenic differentiation marker genes in these cells. By contrast, TGF-β significantly increased the expression of early-phase osteogenic differentiation marker genes in the SG‑2 cells and markedly decreased the expression of lymphatic endothelial cell markers. The findings of our study strongly suggest the following: i) that VEGF-C promotes the proliferative activity and migratory ability of MSCs; and ii) VEGF-C and TGF-β reciprocally regulate MSC commitment to differentiation into lymphatic endothelial or osteoblastic phenotypes, respectively. Our findings provide new insight into the molecular mechanisms underlying the regenerative ability of MSCs.

  10. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells.

    PubMed

    Fujiwara, K

    2006-04-01

    Endothelial cells are known to respond to mechanical forces such as fluid shear stress and cyclic stretch, but elucidating the mechanism for mechanosensing has been difficult. Experimental data indicate that there are probably several sensing mechanisms. We have recently proposed a novel mechanoresponse mechanism that involves platelet endothelial cell adhesion molecule-1 (PECAM-1). When endothelial cells are stimulated by fluid shear stress, PECAM-1 is tyrosine phosphorylated and activates the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling cascade. The same signalling events occurred when we applied pulling force directly on PECAM-1 on the endothelial cell surface using magnetic beads coated with antibodies against the external domain of PECAM-1. These results appear to indicate that PECAM-1 is a mechanotransduction molecule. To our knowledge, this is the first mammalian molecule that is shown to respond to mechanical force directly exerted to it. PMID:16594905

  11. A Subpopulation of Circulating Endothelial Cells Express CD109 and is Enriched in the Blood of Cancer Patients

    PubMed Central

    Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Quarna, Jessica; Antoniotti, Pierluigi; Cuppini, Lucia; Finocchiaro, Gaetano; Eoli, Marica; Rosti, Vittorio; Bertolini, Francesco

    2014-01-01

    Background The endothelium is not a homogeneous organ. Endothelial cell heterogeneity has been described at the level of cell morphology, function, gene expression, and antigen composition. As a consequence of the genetic, transcriptome and surrounding environment diversity, endothelial cells from different vascular beds have differentiated functions and phenotype. Detection of circulating endothelial cells (CECs) by flow cytometry is an approach widely used in cancer patients, and their number, viability and kinetic is a promising tool to stratify patient receiving anti-angiogenic treatment. Methodology/Principal Findings Currently CECs are identified as positive for a nuclear binding antigen (DNA+), negative for the pan leukocyte marker CD45, and positive for CD31 and CD146. Following an approach recently validated in our laboratory, we investigated the expression of CD109 on CECs from the peripheral blood of healthy subject and cancer patients. The endothelial nature of these cells was validated by RT-PCR for the presence of m-RNA level of CDH5 (Ve-Cadherin) and CLDN5 (Claudin5), two endothelial specific transcripts. Before treatment, significantly higher levels of CD109+ CECs and viable CD109+CECs were found in breast cancer patients and glioblastoma patients compared to healthy controls, and their number significantly decreased after treatment. Higher levels of endothelial specific transcripts expressed in developing endothelial cells CLEC14a, TMEM204, ARHGEF15, GPR116, were observed in sorted CD109+CECs when compared to sorted CD146+CECs, suggesting that these genes can play an important role not only during embryogenesis but also in adult angiogenesis. Interestingly, mRNA levels of TEM8 (identified as Antrax Toxin Receptor1, Antrax1) were expressed in CD109+CECs+ but not in CD146+CECs. Conclusion Taken together our results suggest that CD109 represent a rare population of circulating tumor endothelial cells, that play a potentially useful prognostic role in

  12. Induction of Hepatic and Endothelial Differentiation by Perfusion in a Three-Dimensional Cell Culture Model of Human Fetal Liver

    PubMed Central

    Pekor, Christopher; Gerlach, Jörg C.; Nettleship, Ian

    2015-01-01

    The development of functional engineered tissue constructs depends on high cell densities and appropriate vascularization. In this study we implemented a four-compartment three-dimensional perfusion bioreactor culture model for studying the effects of medium perfusion on endothelial, hepatic, and hematopoietic cell populations of primary human fetal liver in an in vivo-like environment. Human fetal liver cells were cultured in bioreactors configured to provide either perfusion or diffusion conditions. Metabolic activities of the cultures were monitored daily by measuring glucose consumption and lactate production. Cell viability during culture was analyzed by lactate dehydrogenase activity. Hepatic functionality was determined by the release of albumin and alpha-fetoprotein (AFP) in culture medium samples. After 4 days of culture, cells were analyzed for the expression of a variety of endothelial, hepatic, and hematopoietic genes, as well as the surface marker expression of CD31 and CD34 in flow cytometry. We found that medium perfusion increased the gene expression of endothelial markers such as CD31, von Willebrand factor (vWF), CD140b, CD309, and CD144 while decreasing the gene expression of the erythrocyte-surface marker CD235a. Hepatic differentiation was promoted under perfusion conditions as demonstrated by lower AFP and higher albumin secretion compared with cultures not exposed to medium perfusion. Additionally, cultures exposed to medium perfusion gave higher rates of glucose consumption and lactate production, indicating increased metabolic activity. In conclusion, high-density bioreactors configured to provide constant medium perfusion significantly induced hepatic and endothelial cell differentiation and provided improved conditions for the culture of human fetal liver cells compared with cultures without perfusion. PMID:25559936

  13. Adipose-derived stem cells (ASCs) as a source of endothelial cells in the reconstruction of endothelialized skin equivalents.

    PubMed

    Auxenfans, C; Lequeux, C; Perrusel, E; Mojallal, A; Kinikoglu, B; Damour, O

    2012-07-01

    Tissue-engineered autologous skin is a potential alternative to autograft for burn coverage, but produces poor clinical responses such as unsatisfactory graft intake due to insufficient vascularization. Endothelialized skin equivalents comprising human umbilical vein endothelial cells (HUVECs) survive significantly longer due to inosculation with the capillaries of the host, but these cells are allogeneic by definition. The aim of this study was to reconstruct an autologous endothelialized skin equivalent by incorporating progenitor or pre-differentiated endothelial cells derived from adipose tissue, easily accessible source for autologous transplantation. Human adipose tissue-derived stem cells were isolated from lipoaspirates and amplified to obtain endothelial progenitor cells, which were subsequently differentiated into endothelial cells. These cells were then seeded along with human fibroblasts into a porous collagen-glycosaminoglycan-chitosan scaffold to obtain an endothelialized dermal equivalent. Then, human keratinocytes give rise to a endothelialized skin equivalent. Immunohistochemistry and transmission electron microscopy results demonstrate the presence of capillary-like tubular structures in skin equivalents comprising pre-differentiated endothelial cells, but not endothelial progenitor cells. The former expressed both EN4 and von Willebrand factor, and Weibel-Palade bodies were detected in their cytoplasm. This study demonstrates that adipose tissue is an excellent source of autologous endothelial cells to reconstruct endothelialized tissue equivalents, and that pre-differentiation of stem cells is necessary to obtain vasculature in such models. PMID:21755603

  14. Successful silencing of plasminogen activator inhibitor-1 in human vascular endothelial cells using small interfering RNA.

    PubMed

    Hecke, Anneke; Brooks, Hilary; Meryet-Figuière, Matthieu; Minne, Stephanie; Konstantinides, Stavros; Hasenfuss, Gerd; Lebleu, Bernard; Schäfer, Katrin

    2006-05-01

    Clinical as well as experimental evidence suggests that vascular overexpression of plasminogen activator inhibitor (PAI)-1, the primary physiological inhibitor of both urokinase and tissue-type plasminogen activator, may be involved in the pathophysiology of atherosclerosis and cardiovascular disease. We investigated the feasibility, efficacy and functional effects of PAI-1 gene silencing in human vascular endothelial cells using small interfering RNA. Double-stranded 21 bp-RNA molecules targeted at sequences within the human PAI-1 gene were constructed. Successful siRNA transfection of HUVEC was confirmed using fluorescence microscopy and flow cytometry. One of five candidate siRNA sequences reduced PAI-1 mRNA and protein in a concentration- and time-dependent manner. Suppression of PAI-1 mRNA was detected up to 72 hours after transfection. Moreover, siRNA treatment reduced the activity of PAI-1 released from HUVEC, and prevented the oxLDL- or LPS-induced upregulation of PAI-1 secretion. Importantly, siRNA treatment did not affect the expression of other endothelial-cell markers. Moreover, downregulation of PAI-1 significantly enhanced the ability of endothelial cells to adhere to vitronectin, and this effect could be reversed upon addition of recombinant PAI-1. SiRNA-mediated reduction of PAI-1 expression may be a promising strategy for dissecting the effects of PAI-1 on vascular homeostasis.

  15. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability.

    PubMed

    Evrard, Solene M; Lecce, Laura; Michelis, Katherine C; Nomura-Kitabayashi, Aya; Pandey, Gaurav; Purushothaman, K-Raman; d'Escamard, Valentina; Li, Jennifer R; Hadri, Lahouaria; Fujitani, Kenji; Moreno, Pedro R; Benard, Ludovic; Rimmele, Pauline; Cohain, Ariella; Mecham, Brigham; Randolph, Gwendalyn J; Nabel, Elizabeth G; Hajjar, Roger; Fuster, Valentin; Boehm, Manfred; Kovacic, Jason C

    2016-06-24

    Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix and collagen production, and plaque structural integrity. However, little is known about the origins of atherosclerosis-associated fibroblasts. Here we show using endothelial-specific lineage-tracking that EndMT-derived fibroblast-like cells are common in atherosclerotic lesions, with EndMT-derived cells expressing a range of fibroblast-specific markers. In vitro modelling confirms that EndMT is driven by TGF-β signalling, oxidative stress and hypoxia; all hallmarks of atherosclerosis. 'Transitioning' cells are readily detected in human plaques co-expressing endothelial and fibroblast/mesenchymal proteins, indicative of EndMT. The extent of EndMT correlates with an unstable plaque phenotype, which appears driven by altered collagen-MMP production in EndMT-derived cells. We conclude that EndMT contributes to atherosclerotic patho-biology and is associated with complex plaques that may be related to clinical events.

  16. Release of VCAM-1 associated endothelial microparticles following simulated SCUBA dives.

    PubMed

    Vince, R V; McNaughton, L R; Taylor, L; Midgley, A W; Laden, G; Madden, L A

    2009-03-01

    Microparticles (MP) are shed into the circulation from endothelium following activation or apoptosis. Vascular cell adhesion molecule-1 (VCAM-1) is expressed on endothelial cells following activation and here we report quantification of VCAM-1 positive microparticles (VCAM + MP) following simulated SCUBA dives, breathing either air or oxygen. VCAM + MP were quantified pre-dive (09:00 and 13:00) and post-dive (+1, +3 and +15 h) on both air and oxygen dives and compared with control samples taken from the same subjects. VCAM + MP followed a similar trend in all experiments, however both dives caused a change in endothelial state, as measured by VCAM + MP. A significant increase in VCAM + MP was observed 1 h post-air dive relative to the control (p = 0.013), which was not observed after the oxygen dive (p = 0.095). Oxidative stress (TBARS) was correlated with VCAM + MP. Data presented highlights the potential of MP as a biological marker of both endothelial state and decompression illness.

  17. Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli.

    PubMed

    Boncela, Joanna; Przygodzka, Patrycja; Wyroba, Elzbieta; Papiewska-Pajak, Izabela; Cierniewski, Czeslaw S

    2013-05-01

    Due to the lack of an N-terminal signal peptide, SerpinB2 (plasminogen activator inhibitor type 2) accumulates in cells and only a small percentage of it is secreted. The extracellular concentration of SerpinB2 significantly increases during inflammation. In the present study we investigated the mechanism with which SerpinB2 can be secreted from endothelial cells activated with LPS. We evaluated the intracellular distribution of SerpinB2 by double immunogold labeling followed by a high resolution electron microscopy analysis. We found that SerpinB2 gathers in the vesicular structures and in the endothelial cell periphery. These vesicles stained positive for the trans-Golgi network marker TGN46, which is consistent with their formation by the endoplasmatic reticulum (ER) and Golgi-dependent pathways. SerpinB2 was delivered to the plasma membrane, apparently together with TGN46 in the same vesicles, which after fusion with the membranes released cargo. Secretion of SerpinB2 was partially inhibited by brefeldin A. The secreted SerpinB2 was predominantly in its nonglycosylated 43kDa form as evaluated by Western immunoblotting. Our data suggest that increased expression of SerpinB2 by an inflammatory stimulus is sufficient to generate structures that resemble secretory vesicles. These vesicles may represent the mechanism by which high local concentrations of SerpinB2 are released at inflammation sites from endothelial cells.

  18. Biocompatibility of porcine small intestinal submucosa and rat endothelial progenitor cells in vitro

    PubMed Central

    Rong, Jian-Jie; Sang, Hong-Fei; Qian, Ai-Min; Meng, Qing-You; Zhao, Tie-Jun; Li, Xiao-Qiang

    2015-01-01

    Objective: This study investigated the biocompatibility of the small intestinal submucosa (SIS) and endothelial progenitor cells (EPCs) by co-cultivating EPCs and SIS in vitro and observing EPC growth on the SIS. Methods: The porcine SIS was prepared and bone marrow mononuclear cells (BMMNCs) were isolated from 3 or 4-week old male SD rats. Cellular morphology was observed by light microscopy and scanning electron microscopy (SEM) and viabilities by the MTT assays. Endothelial progenitor cells (EPCs) were phenotyped by immunocytochemistry, immunofluorescence microscopy and flow cytometry. Vascular lumen formation was evaluated by the Matrigel tube formation assays. EPCs were seeded onto the SIS and production of angiogenin-1 and endothelial cell growth factor (VEGF) by EPCs was examined by ELISA and immunoblotting assays. Results: Light microscopy and SEM showed that the mechanically and chemically treated small intestinal submucosa was composed of cell-free extracellular matrix. Immunohistochemistry, and flow cytometry revealed that the EPCs expressed appropriate surface markers including CD34, CD133, and VEGFR-2. Furthermore, the EPCs formed lumen-like structures and the SIS significantly enhanced the growth of EPCs in vitro. Conclusion: SIS has good biocompatibility with EPCs. SIS pre-seeded with EPCs can be potentially applied as an alternative scaffold material in artificial blood vessel prosthesis. PMID:25973012

  19. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability

    PubMed Central

    Evrard, Solene M.; Lecce, Laura; Michelis, Katherine C.; Nomura-Kitabayashi, Aya; Pandey, Gaurav; Purushothaman, K-Raman; d'Escamard, Valentina; Li, Jennifer R.; Hadri, Lahouaria; Fujitani, Kenji; Moreno, Pedro R.; Benard, Ludovic; Rimmele, Pauline; Cohain, Ariella; Mecham, Brigham; Randolph, Gwendalyn J.; Nabel, Elizabeth G.; Hajjar, Roger; Fuster, Valentin; Boehm, Manfred; Kovacic, Jason C.

    2016-01-01

    Endothelial to mesenchymal transition (EndMT) plays a major role during development, and also contributes to several adult cardiovascular diseases. Importantly, mesenchymal cells including fibroblasts are prominent in atherosclerosis, with key functions including regulation of: inflammation, matrix and collagen production, and plaque structural integrity. However, little is known about the origins of atherosclerosis-associated fibroblasts. Here we show using endothelial-specific lineage-tracking that EndMT-derived fibroblast-like cells are common in atherosclerotic lesions, with EndMT-derived cells expressing a range of fibroblast-specific markers. In vitro modelling confirms that EndMT is driven by TGF-β signalling, oxidative stress and hypoxia; all hallmarks of atherosclerosis. ‘Transitioning' cells are readily detected in human plaques co-expressing endothelial and fibroblast/mesenchymal proteins, indicative of EndMT. The extent of EndMT correlates with an unstable plaque phenotype, which appears driven by altered collagen-MMP production in EndMT-derived cells. We conclude that EndMT contributes to atherosclerotic patho-biology and is associated with complex plaques that may be related to clinical events. PMID:27340017

  20. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  1. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    SciTech Connect

    Lin, Ming-Chung; Chen, Chia-Ling; Yang, Tsan-Tzu; Choi, Pui-Ching; Hsing, Chung-Hsi; Lin, Chiou-Feng

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  2. Protective effects of vascular endothelial growth factor in cultured brain endothelial cells against hypoglycemia.

    PubMed

    Zhao, Fei; Deng, Jiangshan; Yu, Xiaoyan; Li, Dawei; Shi, Hong; Zhao, Yuwu

    2015-08-01

    Hypoglycemia is a common and serious problem among patients with type 1 diabetes receiving treatment with insulin. Clinical studies have demonstrated that hypoglycemic edema is involved in the initiation of hypoglycemic brain damage. However, the mechanisms of this edema are poorly understood. Vascular endothelial growth factor (VEGF), a potent regulator of blood vessel function, has been observed an important candidate hormone induced by hypoglycemia to protect neurons by restoring plasma glucose. Whether VEGF has a protective effect against hypoglycemia-induced damage in brain endothelial cells is still unknown. To investigate the effects of hypoglycemia on cerebral microvascular endothelial cells and assess the protective effect of exogenous VEGF on endothelial cells during hypoglycemia, confluent monolayers of the brain endothelial cell line bEnd.3 were treated with normal (5.5 mM glucose), hypoglycemic (0, 0.5, 1 mM glucose) medium or hypoglycemic medium in the presence of VEGF. The results clearly showed that hypoglycemia significantly downregulated the expression of claudin-5 in bEnd.3 cells, without affecting ZO-1 and occludin expression and distribution. Besides, transendothelial permeability significantly increased under hypoglycemic conditions compared to that under control conditions. Moreover, the hypoglycemic medium in presence of VEGF decreased endothelial permeability via the inhibition of claudin-5 degradation and improved hypoglycemia-induced cell toxicity. Furthermore, Glucose transporter-1 (Glut-1) and apoptosis regulator Bcl-2 expression were significantly upregulated. Taken together, hypoglycemia can significantly increase paraendocellular permeability by downregulating claudin-5 expression. We further showed that VEGF protected brain endothelial cells against hypoglycemia by enhancing glucose passage, reducing endothelial cell death, and ameliorating paraendocellular permeability.

  3. Genetic Variation in the Platelet Endothelial Aggregation Receptor 1 Gene Results in Endothelial Dysfunction.

    PubMed

    Fisch, Adam S; Yerges-Armstrong, Laura M; Backman, Joshua D; Wang, Hong; Donnelly, Patrick; Ryan, Kathleen A; Parihar, Ankita; Pavlovich, Mary A; Mitchell, Braxton D; O'Connell, Jeffrey R; Herzog, William; Harman, Christopher R; Wren, Jonathan D; Lewis, Joshua P

    2015-01-01

    Platelet Endothelial Aggregation Receptor 1 (PEAR1) is a newly identified membrane protein reported to be involved in multiple vascular and thrombotic processes. While most studies to date have focused on the effects of this receptor in platelets, PEAR1 is located in multiple tissues including the endothelium, where it is most highly expressed. Our first objective was to evaluate the role of PEAR1 in endothelial function by examining flow-mediated dilation of the brachial artery in 641 participants from the Heredity and Phenotype Intervention Heart Study. Our second objective was to further define the impact of PEAR1 on cardiovascular disease computationally through meta-analysis of 75,000 microarrays, yielding insights regarding PEAR1 function, and predictions of phenotypes and diseases affected by PEAR1 dysregulation. Based on the results of this meta-analysis we examined whether genetic variation in PEAR1 influences endothelial function using an ex vivo assay of endothelial cell migration. We observed a significant association between rs12041331 and flow-mediated dilation in participants of the Heredity and Phenotype Intervention Heart Study (P = 0.02). Meta-analysis results revealed that PEAR1 expression is highly correlated with several genes (e.g. ANG2, ACVRL1, ENG) and phenotypes (e.g. endothelial cell migration, angiogenesis) that are integral to endothelial function. Functional validation of these results revealed that PEAR1 rs12041331 is significantly associated with endothelial migration (P = 0.04). Our results suggest for the first time that genetic variation of PEAR1 is a significant determinant of endothelial function through pathways implicated in cardiovascular disease. PMID:26406321

  4. Brain endothelial dysfunction in cerebral adrenoleukodystrophy.

    PubMed

    Musolino, Patricia L; Gong, Yi; Snyder, Juliet M T; Jimenez, Sandra; Lok, Josephine; Lo, Eng H; Moser, Ann B; Grabowski, Eric F; Frosch, Matthew P; Eichler, Florian S

    2015-11-01

    See Aubourg (doi:10.1093/awv271) for a scientific commentary on this article.X-linked adrenoleukodystrophy is caused by mutations in the ABCD1 gene leading to accumulation of very long chain fatty acids. Its most severe neurological manifestation is cerebral adrenoleukodystrophy. Here we demonstrate that progressive inflammatory demyelination in cerebral adrenoleukodystrophy coincides with blood-brain barrier dysfunction, increased MMP9 expression, and changes in endothelial tight junction proteins as well as adhesion molecules. ABCD1, but not its closest homologue ABCD2, is highly expressed in human brain microvascular endothelial cells, far exceeding its expression in the systemic vasculature. Silencing of ABCD1 in human brain microvascular endothelial cells causes accumulation of very long chain fatty acids, but much later than the immediate upregulation of adhesion molecules and decrease in tight junction proteins. This results in greater adhesion and transmigration of monocytes across the endothelium. PCR-array screening of human brain microvascular endothelial cells after ABCD1 silencing revealed downregulation of both mRNA and protein levels of the transcription factor c-MYC (encoded by MYC). Interestingly, MYC silencing mimicked the effects of ABCD1 silencing on CLDN5 and