Science.gov

Sample records for endothelial nos estrogen

  1. Post-translational Regulation of Endothelial Nitric Oxide Synthase (eNOS) by Estrogens in the Rat Vagina

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Strong, Travis D.; Lagoda, Gwen A.; Bivalacqua, Trinity J.; Burnett, Arthur L.

    2010-01-01

    Introduction Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. Aims Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. Methods We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17β (15 μg). Main Outcome Measures Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. Results We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement

  2. p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols.

    PubMed

    Anter, Elad; Chen, Kai; Shapira, Oz M; Karas, Richard H; Keaney, John F

    2005-05-27

    Black tea has been shown to improve endothelial function in patients with coronary artery disease and recent data indicate the polyphenol fraction of black tea enhances endothelial nitric oxide synthase (eNOS) activity through p38 MAP kinase (p38 MAPK) activation. Because the mechanisms for this phenomenon are not yet clear, we sought to elucidate the signaling events in response to black tea polyphenols. Bovine aortic endothelial cells (BAECs) exposed to black tea polyphenols demonstrated eNOS activation that was inhibited by the estrogen receptor (ER) antagonist ICI 182,780, and siRNA-mediated silencing of ER expression. Consistent with this observation, black tea polyphenols induced time-dependent phosphorylation of ERalpha on Ser-118 that was inhibited by ICI 182,780. Phosphorylation of ERalpha on Ser-118 was due to p38 MAP kinase (p38 MAPK) as, it was inhibited by SB203580 and overexpression of dominant-negative p38alpha MAPK. Conversely, constitutively active MKK6 induced p38 MAPK activation that recapitulated the effects of polyphenols by inducing ERalpha phosphorylation and downstream activation of Akt, and eNOS. The key role of ERalpha Ser-118 phosphorylation was confirmed in eNOS-transfected COS-7 cells, as polyphenol-induced eNOS activation required cotransfection with ERalpha subject to phosphorylation at Ser-118. This residue appeared critical for functional association of ERalpha with p38 MAPK as ERalpha with Ser-118 mutated to alanine could not form a complex with p38 MAPK. These findings suggest p38 MAP kinase-mediated eNOS activation requires ERalpha and these data uncover a new mechanism of ERalpha activation that has broad implications for NO bioactivity and endothelial cell phenotype.

  3. Estradiol reduces ferrous citrate complex-induced NOS2 up-regulation in cerebral endothelial cells by interfering the nuclear factor kappa B transactivation through an estrogen receptor β-mediated pathway.

    PubMed

    Chen, Li-Ching; Lee, Wen-Sen

    2013-01-01

    Hemorrhagic stroke caused leakage of red blood cells which converts to hemoglobin, heme, and iron accumulated at the lesions. High concentration of ferrous iron from subarachnoid hemorrhage (SAH) induced cerebral vasospasm. Using the two-hemorrhage SAH model in rats, we previously demonstrated that estradiol (E2) significantly attenuated the SAH-induced vasospasm by inhibiting the NOS2 expression. Adding ferrous citrate (FC) complexes to the primary cultured mouse cerebral endothelial cells (CEC) to mimic the SAH conditions, we also showed that FC up-regulates NOS2 through nuclear translocation of NFκB induced by free radicals generation. Here, we further studied the molecular mechanism underlying E2-mediated reduction of the FC-induced up-regulation of NOS2. Treatment with E2 (100 nM) reduced the FC (100 µM)-induced increases of free radical generation and the levels of NOS2 mRNA and protein in the CEC. Moreover, E2 also prevented the FC-induced increases of IκBα phosphorylation, NFκB nuclear translocation, NFκB binding onto the NOS2 promoter, and the NOS2 promoter luciferase activity. However, knock-down the estrogen receptor β (ERβ), but not ERα, abolished the E2-mediated prevention on the FC-induced increases of NOS2 mRNA and protein. The data from the present study suggest that E2 inhibited NOS2 gene expression by interfering with NFκB nuclear translocation and NFκB binding onto the NOS2 through an ERβ-mediated pathway. Our results provide the molecular basis for designing the applicable therapeutic or preventive strategies in the treatment SAH patients.

  4. Endothelial NOS (NOS3) impairs myocardial function in developing sepsis.

    PubMed

    van de Sandt, Annette M; Windler, Rainer; Gödecke, Axel; Ohlig, Jan; Zander, Simone; Reinartz, Michael; Graf, Jürgen; van Faassen, Ernst E; Rassaf, Tienush; Schrader, Jürgen; Kelm, Malte; Merx, Marc W

    2013-03-01

    Endothelial nitric oxide synthase (NOS)3-derived nitric oxide (NO) modulates inotropic response and diastolic interval for optimal cardiac performance under non-inflammatory conditions. In sepsis, excessive NO production plays a key role in severe hypotension and myocardial dysfunction. We aimed to determine the role of NOS3 on myocardial performance, NO production, and time course of sepsis development. NOS3(-/-) and C57BL/6 wildtype mice were rendered septic by cecum ligation and puncture (CLP). Cardiac function was analyzed by serial echocardiography, in vivo pressure and isolated heart measurements. Cardiac output (CO) increased to 160 % of baseline at 10 h after sepsis induction followed by a decline to 63 % of baseline after 18 h in wildtype mice. CO was unaltered in septic NOS3(-/-) mice. Despite the hyperdynamic state, cardiac function and mean arterial pressure were impaired in septic wildtype as early as 6 h post CLP. At 12 h, cardiac function in septic wildtype was refractory to catecholamines in vivo and respective isolated hearts showed impaired pressure development and limited coronary flow reserve. Hemodynamics remained stable in NOS3(-/-) mice leading to significant survival benefit. Unselective NOS inhibition in septic NOS3(-/-) mice diminished this survival benefit. Plasma NO( x )- and local myocardial NO( x )- and NO levels (via NO spin trapping) demonstrated enhanced NO( x )- and bioactive NO levels in septic wildtype as compared to NOS3(-/-) mice. Significant contribution by inducible NOS (NOS2) during this early phase of sepsis was excluded. Our data suggest that NOS3 relevantly contributes to bioactive NO pool in developing sepsis resulting in impaired cardiac contractility.

  5. PGC-1α dictates endothelial function through regulation of eNOS expression

    PubMed Central

    Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.

    2016-01-01

    Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955

  6. Calcium regulates estrogen increase in permeability of cultured CaSki epithelium by eNOS-dependent mechanism.

    PubMed

    Gorodeski, G I

    2000-11-01

    Estrogen increases baseline transepithelial permeability across CaSki cultures and augments the increase in permeability in response to hypertonic gradients. In estrogen-treated cells, lowering cytosolic calcium abrogated the hypertonicity-induced augmented increase in permeability and decreased baseline permeability to a greater degree than in estrogen-deprived cells. Steady-state levels of cytosolic calcium in estrogen-deprived cells were higher than in estrogen-treated cells. Increases in extracellular calcium increased cytosolic calcium more in estrogen-deprived cells than in estrogen-treated cells. However, in estrogen-treated cells, increasing cytosolic calcium was associated with greater increases in permeability in response to hypertonic gradients than in estrogen-deprived cells. Lowering cytosolic calcium blocked the estrogen-induced increase in nitric oxide (NO) release and in the in vitro conversion of L-[(3)H]arginine to L-[(3)H]citrulline. Treatment with estrogen upregulated mRNA of the NO synthase isoform endothelial nitric oxide synthase (eNOS). These results indicate that cytosolic calcium mediates the responses to estrogen and suggest that the estrogen increase in permeability and the augmented increase in permeability in response to hypertonicity involve an increase in NO synthesis by upregulation of the calcium-dependent eNOS.

  7. Estrogen administration during superovulation increases oocyte quality and expressions of vascular endothelial growth factor and nitric oxide synthase in the ovary.

    PubMed

    Ha, Choong-Sik; Joo, Bo-Sun; Kim, Seung-Chul; Joo, Jong-Kil; Kim, Hwi-Gon; Lee, Kyu-Sup

    2010-08-01

    This study investigated whether estrogen administration during superovulation enhances oocyte quality using a mice model. We also investigated whether this estrogen treatment regulates the expressions of angiogenic factors, such as vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS), in the ovary. Female mice were co-injected with various doses of estrogen (1 microM, 10 microM and 100 microM) and pregnant mare serum gonadotrophin during superovulation, followed by human chorionic gonadotrophin injection 48 hours later. Then they were mated with individual males. After 18 hours, zygotes were flushed and cultured to blastocyst. The expression of VEGF and eNOS in the ovary was examined using Western blot and immunohistochemistry. The control group was superovulated without estrogen. Both numbers of ovulated zygotes and the rate of embryo development to blastocyst were significantly increased in the 1-microM estrogen dose compared to the control group. VEGF and eNOS expressions were stimulated by estrogen treatment. In particular, VEGF expression was significantly increased at 1-microM estrogen concentration, whereas, eNOS expression was significantly increased in all estrogen concentrations compared to controls. The study showed that estrogen co-injection during superovulation increased the ovarian response, embryo developmental competence and expressions of VEGF and eNOS in the ovary.

  8. Estrogen-like effects of wine extracts on nitric oxide synthesis in human endothelial cells.

    PubMed

    Simoncini, Tommaso; Lenzi, Elena; Zöchling, Alfred; Gopal, Santhosh; Goglia, Lorenzo; Russo, Eleonora; Polak, Kinga; Casarosa, Elena; Jungbauer, Alois; Genazzani, Alessandro D; Genazzani, Andrea R

    2011-10-01

    Endothelial dysfunction frequently ensues during the climacteric due to hormonal and metabolic changes. Non-pharmacological interventions such as lifestyle and dietary modifications are emerging as valuable strategies to counteract the cardiovascular consequences of ageing. A number of chemical components of wine, including alcohol and some polyphenols, are known to be active on the vessels. However, the molecular mechanisms through which they modulate endothelial function are largely unclear. The aim of this study was to investigate the effects of non-alcoholic wine fractions from five different wines on the synthesis of nitric oxide (NO) via the expression and enzymatic activation of the endothelial nitric oxide synthase (eNOS) in human endothelial cells. All non-alcoholic fractions studied increased NO synthesis, although with different potencies. All wine extracts maximally enhanced NO production at doses in the range achieved with a moderate wine intake, with decreasing effects with further increases of the dose. Interestingly, a part of these actions was recruited via estrogen receptors (ERs). Within the polyphenols with known binding activity for ERs contained in the tested wines, resveratrol, epicatechin, syringic acid, apigenin, malvidin and ellagic acid were largely responsible for eNOS activation. These findings show that some of the non-alcoholic components of wine enhance the production of NO by the vessels acting on ERs, and suggest that a moderate intake of wine may benefit the cardiovascular system through estrogen-like effects.

  9. Expressions of vascular endothelial growth factor and nitric oxide synthase III in the thyroid gland of ovariectomized rats are upregulated by estrogen and selective estrogen receptor modulators.

    PubMed

    de Araujo, Luiz Felipe Bittencourt; Grozovsky, Renata; dos Santos Pereira, Mário José; de Carvalho, Jorge José; Vaisman, Mário; Carvalho, Denise P

    2010-01-01

    Estrogen promotes the growth of thyroid cells. Therefore, we analyzed the influence of estrogen and selective estrogen receptor modulators (SERMs) on the expression of vascular endothelial growth factor (VEGF) and nitric oxide synthase III (NOS III) in the thyroid gland of ovariectomized (Ovx) rats. Wistar rats were divided into five groups, and bilateral ovariectomies were performed, except on the Sham-operated controls (Sham). Rats were grouped as follows: Sham; Ovx; and Ovx rats treated with daily subcutaneous injections of estradiol benzoate 3.5 microg/kg, tamoxifen 2.5 mg/kg, or raloxifene 2.5 mg/kg for 50 consecutive days. Control animals received vehicle (propyleneglycol), and at the end of the treatment, rats were sacrificed. The thyroid glands were excised, weighed, and processed for analysis of the expression of VEGF or NOS III by immunohistochemistry. The mean vascular areas were evaluated by immunodetection of alpha-smooth muscle actin. Thyroid weight and mean vascular area were lower in Ovx as compared with Sham, Ovx + estradiol benzoate, Ovx + Tam, or Ovx + Ral (p < 0.01). VEGF (p < 0.01) and NOS III expressions (p < 0.05) were significantly lower in the Ovx group, as compared with Sham, Ovx + estradiol benzoate, Ovx + Tam, and Ovx + Ral. Immunoreactivity for both VEGF and NOS III was mainly detected in the cytoplasm of the follicular epithelial cells. Our data suggest that estrogen and SERMs regulate the thyroid gland vascularization and that tamoxifen and raloxifene behave like estrogen does. Estrogen and SERMs upregulate VEGF and NOS III in such a way as to reverse the effects detected on the thyroid microvasculature of the Ovx rats.

  10. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells

    PubMed Central

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R.; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  11. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    PubMed

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  12. Estrogen Enhances Linkage in the Vascular Endothelial Calmodulin Network via a Feedforward Mechanism at the G Protein-coupled Estrogen Receptor 1.

    PubMed

    Tran, Quang-Kim; Firkins, Rachel; Giles, Jennifer; Francis, Sarah; Matnishian, Vahe; Tran, Phuong; VerMeer, Mark; Jasurda, Jake; Burgard, Michelle Ann; Gebert-Oberle, Briana

    2016-05-13

    Estrogen exerts many effects on the vascular endothelium. Calmodulin (CaM) is the transducer of Ca(2+) signals and is a limiting factor in cardiovascular tissues. It is unknown whether and how estrogen modifies endothelial functions via the network of CaM-dependent proteins. Here we show that 17β-estradiol (E2) up-regulates total CaM level in endothelial cells. Concurrent measurement of Ca(2+) and Ca(2+)-CaM indicated that E2 also increases free Ca(2+)-CaM. Pharmacological studies, gene silencing, and receptor expression-specific cell studies indicated that the G protein-coupled estrogen receptor 1 (GPER/GPR30) mediates these effects via transactivation of EGFR and subsequent MAPK activation. The outcomes were then examined on four distinct members of the intracellular CaM target network, including GPER/GPR30 itself and estrogen receptor α, the plasma membrane Ca(2+)-ATPase (PMCA), and endothelial nitric-oxide synthase (eNOS). E2 substantially increases CaM binding to estrogen receptor α and GPER/GPR30. Mutations that reduced CaM binding to GPER/GPR30 in separate binding domains do not affect GPER/GPR30-Gβγ preassociation but decrease GPER/GPR30-mediated ERK1/2 phosphorylation. E2 increases CaM-PMCA association, but the expected stimulation of Ca(2+) efflux is reversed by E2-stimulated tyrosine phosphorylation of PMCA. These effects sustain Ca(2+) signals and promote Ca(2+)-dependent CaM interactions with other CaM targets. Consequently, E2 doubles CaM-eNOS interaction and also promotes dual phosphorylation of eNOS at Ser-617 and Ser-1179. Calculations using in-cell and in vitro data revealed substantial individual and combined contribution of these effects to total eNOS activity. Taken together, E2 generates a feedforward loop via GPER/GPR30, which enhances Ca(2+)/CaM signals and functional linkage in the endothelial CaM target network.

  13. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells.

    PubMed

    Klinge, Carolyn M; Blankenship, Kristy A; Risinger, Kelly E; Bhatnagar, Shephali; Noisin, Edouard L; Sumanasekera, Wasana K; Zhao, Lei; Brey, Darren M; Keynton, Robert S

    2005-03-04

    Vascular endothelial cells (EC) are an important target of estrogen action through both the classical genomic (i.e. nuclear-initiated) activities of estrogen receptors alpha and beta (ERalpha and ERbeta) and the rapid "non-genomic" (i.e. membrane-initiated) activation of ER that stimulates intracellular phosphorylation pathways. We tested the hypothesis that the red wine polyphenol trans-resveratrol activates MAPK signaling via rapid ER activation in bovine aortic EC, human umbilical vein EC, and human microvascular EC. We report that bovine aortic EC, human umbilical vein EC, and human microvascular EC express ERalpha and ERbeta. We demonstrate that resveratrol and estradiol (E(2)) rapidly activated MAPK in a MEK-1, Src, matrix metalloproteinase, and epidermal growth factor receptor-dependent manner. Importantly, resveratrol activated MAPK and endothelial nitric-oxide synthase (eNOS) at nm concentrations (i.e. an order of magnitude less than that required for ER genomic activity) and concentrations possibly achieved transiently in serum following oral red wine consumption. Co-treatment with ER antagonists ICI 182,780 or 4-hydroxytamoxifen blocked resveratrol- or E(2)-induced MAPK and eNOS activation, indicating ER dependence. We demonstrate for the first time that ERalpha-and ERbeta-selective agonists propylpyrazole triol and diarylpropionitrile, respectively, stimulate MAPK and eNOS activity. A red but not a white wine extract also activated MAPK, and activity was directly correlated with the resveratrol concentration. These data suggest that ER may play a role in the rapid effects of resveratrol in EC and that some of the atheroprotective effects of resveratrol may be mediated through rapid activation of ER signaling in EC.

  14. Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production.

    PubMed

    Hox, Valerie; Desai, Avanti; Bandara, Geethani; Gilfillan, Alasdair M; Metcalfe, Dean D; Olivera, Ana

    2015-03-01

    Clinical observations suggest that anaphylaxis is more common in adult women compared with adult men, although the mechanistic basis for this sex bias is not well understood. We sought to document sex-dependent differences in a mouse model of anaphylaxis and explore the role of female sex hormones and the mechanisms responsible. Passive systemic anaphylaxis was induced in female and male mice by using histamine, as well as IgE or IgG receptor aggregation. Anaphylaxis was assessed by monitoring body temperature, release of mast cell mediators and/or hematocrit, and lung weight as a measure of vascular permeability. A combination of ovariectomy, estrogen receptor antagonism, and estrogen administration techniques were used to establish estrogen involvement. Anaphylactic responses were more pronounced in female than male mice. The enhanced severity of anaphylaxis in female mice was eliminated after pretreatment with an estrogen receptor antagonist or ovariectomy but restored after administration of estradiol in ovariectomized mice, demonstrating that the sex-specific differences are due to the female steroid estradiol. Estrogen did not affect mast cell responsiveness or anaphylaxis onset. Instead, it increased tissue expression of endothelial nitric oxide synthase (eNOS). Blockage of NOS activity with the inhibitor L-NG-nitroarginine methyl ester or genetic eNOS deficiency abolished the sex-related differences. Our study defines a contribution of estrogen through its regulation of eNOS expression and nitric oxide production to vascular hyperpermeability and intensified anaphylactic responses in female mice, providing additional mechanistic insights into risk factors and possible implications for clinical management in the further exploration of human anaphylaxis. Published by Elsevier Inc.

  15. Estrogen dependence of the renal vasodilatory effect of nicotine in rats: role of α7 nicotinic cholinergic receptor/eNOS signaling

    PubMed Central

    El-Mas, Mahmoud M.; El-gowilly, Sahar M.; Gohar, Eman Y.; Ghazal, Abdel-Rheem M.; Abdel-Rahman, Abdel A.

    2013-01-01

    Aims We recently reported that acute exposure to nicotine vasodilates the renal vasculature of male rats via facilitation of endothelial nitric oxide synthase (eNOS). In this study, we investigated whether this effect of nicotine is sexually dimorphic and the role of estrogen in modulating the nicotine effect. Main methods Nicotine-evoked vasodilation was evaluated in phenylephrine-preconstricted perfused kidneys obtained from male, proestrus female, ovariectomized (OVX) and estrogen-replaced OVX (OVXE2) rats. Key findings Nicotine infusion (5×10−5, 1×10−4, and 5×10−4 M) produced greater concentration-dependent reductions in the renal perfusion pressure (RPP) in isolated kidney from proestrus females than from males. Inhibition of NOS by NG-nitro-L-arginine abolished the nicotine-evoked reduction in RPP and abolished the gender difference in the nicotine effect. Nicotine vasodilation was also attenuated in kidneys isolated from OVX and diestrus rats, models characterized by reduced estrogen levels. Further, estrogen or L-arginine supplementation in OVX rats largely restored the renal vasodilatory response to nicotine. Estrogen receptor blockade by tamoxifen abrogated the enhanced nicotine-evoked vasodilation elicited by E2 in OVX rats. The nitrite/nitrate levels and protein expressions of eNOS and α7 nicotinic cholinergic receptor (α7 nAChRs) were significantly higher in renal tissues of OVXE2 compared with OVX rats, suggesting a facilitatory effect for E2 on α7 nAChRs/eNOS signaling. Significance Estrogen-dependent facilitation of NOS signaling mediates the enhanced vasodilator capacity of nicotine in the renal vasculature of female rats. Preliminary evidence also suggests a potential role for α7 nAChRs in this estrogen-dependent phenomenon. PMID:21092740

  16. Puerarin activates endothelial nitric oxide synthase through estrogen receptor-dependent PI3-kinase and calcium-dependent AMP-activated protein kinase

    SciTech Connect

    Hwang, Yong Pil; Kim, Hyung Gyun; Hien, Tran Thi; Jeong, Myung Ho; Jeong, Tae Cheon; Jeong, Hye Gwang

    2011-11-15

    The cardioprotective properties of puerarin, a natural product, have been attributed to the endothelial nitric oxide synthase (eNOS)-mediated production of nitric oxide (NO) in EA.hy926 endothelial cells. However, the mechanism by which puerarin activates eNOS remains unclear. In this study, we sought to identify the intracellular pathways underlying eNOS activation by puerarin. Puerarin induced the activating phosphorylation of eNOS on Ser1177 and the production of NO in EA.hy926 cells. Puerarin-induced eNOS phosphorylation required estrogen receptor (ER)-mediated phosphatidylinositol 3-kinase (PI3K)/Akt signaling and was reversed by AMP-activated protein kinase (AMPK) and calcium/calmodulin-dependent kinase II (CaMKII) inhibition. Importantly, puerarin inhibited the adhesion of tumor necrosis factor (TNF)-{alpha}-stimulated monocytes to endothelial cells and suppressed the TNF-{alpha} induced expression of intercellular cell adhesion molecule-1. Puerarin also inhibited the TNF-{alpha}-induced nuclear factor-{kappa}B activation, which was attenuated by pretreatment with N{sup G}-nitro-L-arginine methyl ester, a NOS inhibitor. These results indicate that puerarin stimulates eNOS phosphorylation and NO production via activation of an estrogen receptor-mediated PI3K/Akt- and CaMKII/AMPK-dependent pathway. Puerarin may be useful for the treatment or prevention of endothelial dysfunction associated with diabetes and cardiovascular disease. -- Highlights: Black-Right-Pointing-Pointer Puerarin induced the phosphorylation of eNOS and the production of NO. Black-Right-Pointing-Pointer Puerarin activated eNOS through ER-dependent PI3-kinase and Ca{sup 2+}-dependent AMPK. Black-Right-Pointing-Pointer Puerarin-induced NO was involved in the inhibition of NF-kB activation. Black-Right-Pointing-Pointer Puerarin may help for prevention of vascular dysfunction and diabetes.

  17. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

    PubMed

    Wu, Feng; Szczepaniak, William S; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E; Chen, Alex F; Gladwin, Mark T; McVerry, Bryan J

    2014-12-15

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

  18. Melatonin affects the dynamic steady-state equilibrium of estrogen sulfates in human umbilical vein endothelial cells by regulating the balance between estrogen sulfatase and sulfotransferase.

    PubMed

    González, Alicia; Martínez-Campa, Carlos; Alonso-González, Carolina; Cos, Samuel

    2015-12-01

    Melatonin is known to reduce the growth of endocrine-responsive breast cancers by interacting with estrogen signaling pathways. Estrogens play an important role in breast cancer, but also in various types of tissues, including vascular tissue. Estrogen sulfatase (STS) converts inactive estrogen sulfates into active estrogens, whereas estrogen sulfotransferase (EST) sulfonates estrogens to estrogen sulfates. Therefore, STS and EST are considered to be involved in the regulation of local estrogen levels in hormone‑dependent tumors and in non-pathologic tissues, such as those of the vascular system. Estrogens have a major impact on the vasculature, influencing vascular function, the expression of adhesion proteins, angiogenesis and the inflammatory state. In this study, we investigated the status of STS and EST in human umbilical vein endothelial cells (HUVECs) and the modulatory effects of melatonin. Both STS and EST were highly expressed in the HUVECs. The enzymatic activity correlated with the expression levels in these cells. Our findings also demonstrated that melatonin, at physiological concentrations, modulated the synthesis and transformation of biologically active estrogens in HUVECs through the inhibition of STS activity and expression, and the stimulation of EST activity and expression. Since melatonin decreased the STS levels and increased the EST levels, it modified the dynamic steady‑state equilibrium of estrogen sulfates by increasing the inactive estrogen levels and decreasing the active estrogen levels. Therefore, melatonin may modulate the known different biological actions of estrogens in endothelial cells, as well as in estrogen-dependent tumors and non-pathologic tissues.

  19. The Relationship Between Endothelial Nitric Oxide Synthase Gene (NOS3) Polymorphisms, NOS3 Expression, and Varicocele.

    PubMed

    Kahraman, Cigdem Yuce; Tasdemir, Sener; Sahin, Ibrahim; Marzioglu Ozdemir, Ebru; Yaralı, Oguzhan; Ziypak, Tevfik; Adanur, Senol; Kahraman, Mustafa; Tatar, Abdulgani

    2016-04-01

    Varicocele is an abnormal enlargement of the pampiniform venous plexus in the scrotum. Varicocele is the most common cause of secondary male infertility. Nitric oxide (NO), which has a role on varicocele pathophysiology, is synthesized by endothelial nitric oxide synthase gene (NOS3). In our study, we aimed to explain the relationship between varicocele, three common NOS3 polymorphisms (T-786C, G894T, 4b/a), and NOS3 mRNA expression levels. We investigated NOS3 T-786C, G894T, and 4b/a polymorphisms in 102 patients with varicocele and 100 healthy controls. Twenty-four patients and 17 controls were chosen for expression studies based on polymorphism subgroupings. Subgroup 1 includes patients who have no minor allele polymorphisms, and subgroups 2, 3, and 4 have T-786C, G894T, and 4b/a polymorphisms, respectively. The 4b/a polymorphism demonstrated significantly elevated levels in both allele and genotype analysis in the control group compared to the patient group. The G894T polymorphism was statistically elevated for genotypic frequencies in the patient group compared to the control group, but this finding did not extend to allelic frequencies. There were no statistically significant differences in either the allelic or genotypic frequencies between patients and control groups for the T-786C polymorphism. When patient and control expression levels were compared without considering the subgroups, the NOS3 expression level was found to be statistically higher in the patient group. There were no statistically significant differences in the patient and control group expression levels when stratified by subgroup, nor was there any effect of the polymorphisms under study on expression levels. The 4b/a polymorphism may have a protective effect for varicocelem and G894T polymorphism may contribute to varicocele occurrence by lowering the level of NO. The higher NOS3 expression levels in the patient group may be a kind of dilator compensatory mechanism to protect vascular

  20. Essential Role of Estrogen for Improvements in Vascular Endothelial Function With Endurance Exercise in Postmenopausal Women

    PubMed Central

    Stauffer, Brian L.; Kohrt, Wendy M.; Seals, Douglas R.

    2013-01-01

    Objective: In contrast to age-matched men, endurance exercise training is not consistently associated with enhanced endothelial function in estrogen-deficient postmenopausal women. We determined whether endurance exercise training improves endothelial function in postmenopausal women treated with estrogen. In a substudy, we determined if oxidative stress is mechanistically linked to endothelial function adaptations to endurance exercise training. Participants and Design: Brachial artery flow-mediated dilation (FMD) was measured in 36 sedentary, estrogen-deficient postmenopausal women (45–65 y) at study entry (baseline), after 12 weeks of either placebo, oral (1 mg/d) estradiol, or transdermal estradiol (0.05 mg/d) (randomized), and after an additional 12 weeks of continued estradiol or placebo treatment with concurrent endurance exercise training. In subgroups of women, FMD also was measured during the infusion of ascorbic acid at baseline and following estradiol/placebo plus endurance exercise training, and in seven habitually endurance-trained estrogen-deficient controls. Results: FMD increased in the estrogen-treated groups (both P < .01) after 12 weeks and remained unchanged in placebo. FMD further increased following 12 weeks of endurance exercise training in estrogen-treated (both P < .025), but not placebo-treated women (P = .55). In the substudy, baseline FMD was similar between sedentary and endurance-trained controls. Ascorbic acid increased FMD at baseline in sedentary women and endurance-trained controls, and following endurance exercise training in placebo-treated, but not in estrogen-treated women. Conclusions: Estrogen status appears to play an important modulatory role in improvements in endothelial function with endurance exercise training in postmenopausal women. The restored endurance exercise training adaptation in estrogen-treated postmenopausal women may be related to mitigation of oxidative stress. PMID:24092827

  1. Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene

    SciTech Connect

    Robinson, L.J.; Michel, T.; Weremowicz, S.; Morton, C.C. )

    1994-01-15

    Endothelial NOS activity is a major determinant of vascular tone and blood pressure, and in several important (and sometimes hereditary) disease states, such as hypertension, diabetes, and atherosclerosis, the endothelial NO signaling system appears to be abnormal. To explore the relationship of the endothelial NOS activity, the authors isolated the human gene encoding the endothelial NOS. Genomic clones containing the 5[prime] end of this gene were identified in a human genomic library by applying a polymerase chain reaction (PCR)-based approach. Identification of the human gene for endothelial NOS (NOS3) was confirmed by nucleotide sequence analysis of the first coding exon, which was found to be identical to its cognate cDNA. The NOS3 gene spans at least 20 kb and appears to contain multiple introns. The transcription start site and promoter region of the NOS3 gene were identified by primer extension and ribonuclease protection assays. Sequencing of the putative promoter revealed consensus sequences for the shear stress-response element, as well as cytokine-responsive cis regulatory sequences, both possible important to the roles played by NOS3 in the normal and the diseased cardiovascular system. The authors also mapped the chromosomal location of the NOS3 gene. First, a chromosomal panel of human-rodent somatic cell hybrids was screened using PCR with oligonucleotide primers derived from the NOS3 genomic clone. The specificity of the amplified PCR product was confirmed by human and hamster genomic DNA controls, as well as by Southern blot analysis, using the NOS3 cDNA as probe. Definitive chromosomal assignment of the NOS3 gene to human chromosome 7 was based upon 0% discordancy; fluorescence in situ hybridization sublocalized the NOS3 gene to 7q36. The identification and characterization of the NOS3 gene may lead to further insights into heritable disease states associated with this gene product. 41 refs., 3 figs., 1 tab.

  2. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway.

    PubMed

    Han, Fang; Zhang, Shuxian; Hou, Ningning; Wang, Di; Sun, Xiaodong

    2015-11-01

    Irisin is a novel hormone secreted by myocytes. Lower levels of irisin are independently associated with endothelial dysfunction in obese subjects. The objective of this study was to explore whether irisin exerts a direct vascular protective effect on endothelial function in high-fat-diet-induced obese mice. Male C57BL/6 mice were given chow or a high-fat diet with or without treatment with irisin. Aortic endothelial function was determined by measuring endothelium-dependent vasodilatation (EDV). Nitric oxide (NO) in the aorta was determined. The effect of irisin on the levels of AMP-activated protein kinase (AMPK), Akt, and endothelial NO synthase (eNOS) phosphorylation in endothelial cells was determined. Human umbilical vein endothelial cells were used to study the role of irisin in the AMPK-eNOS pathway. Acetylcholine-stimulated EDV was significantly lower in obese mice compared with control mice. Treatment of obese mice with irisin significantly enhanced EDV and improved endothelial function. This beneficial effect of irisin was partly attenuated in the presence of inhibitors of AMPK, Akt, and eNOS. Treatment of obese mice with irisin enhanced NO production and phosphorylation of AMPK, Akt, and eNOS in endothelial cells. These factors were also enhanced by irisin in human umbilical vein endothelial cells in vitro. Suppression of AMPK expression by small interfering RNA blocked irisin-induced eNOS and Akt phosphorylation and NO production. We have provided the first evidence that irisin improves endothelial function in aortas of high-fat-diet-induced obese mice. The mechanism for this protective effect is related to the activation of the AMPK-eNOS signaling pathway.

  3. PGE1 analog alprostadil induces VEGF and eNOS expression in endothelial cells.

    PubMed

    Haider, Dominik G; Bucek, Robert A; Giurgea, Aura G; Maurer, Gerald; Glogar, Helmut; Minar, Erich; Wolzt, Michael; Mehrabi, Mohammad R; Baghestanian, Mehrdad

    2005-11-01

    Endothelial nitric oxide synthase (eNOS), VEGF, and hypoxia-inducible factor 1-alpha (HIF-1alpha) are important regulators of endothelial function, which plays a role in the pathophysiology of heart failure (HF). PGE1 analog treatment in patients with HF elicits beneficial hemodynamic effects, but the precise mechanisms have not been investigated. We have investigated the effects of the PGE1 analog alprostadil on eNOS, VEGF, and HIF-1alpha expression in human umbilical vein endothelial cells (HUVEC) using RT-PCR and immunoblotting under normoxic and hypoxic conditions. In addition, we studied protein expression by immunohistochemical staining in explanted hearts from patients with end-stage HF, treated or untreated with systemic alprostadil. Alprostadil causes an upregulation of eNOS and VEGF protein and mRNA expression in HUVEC and decreases HIF-1alpha. Hypoxia potently increased eNOS, VEGF, and HIF-1alpha synthesis. The alprostadil-induced upregulation of eNOS and VEGF was prevented by inhibition of MAPKs with PD-98056 or U-0126. Consistently, the expression of eNOS and VEGF was increased, and HIF-1alpha was reduced in failing hearts treated with alprostadil. The potent effects of alprostadil on endothelial VEGF and eNOS synthesis may be useful for patients with HF where endothelial dysfunction is involved in the disease process.

  4. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    PubMed Central

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  5. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats

    PubMed Central

    Kim, Jae Hyung; Bugaj, Lukasz J.; Oh, Young Jun; Bivalacqua, Trinity J.; Ryoo, Sungwoo; Soucy, Kevin G.; Santhanam, Lakshmi; Webb, Alanah; Camara, Andre; Sikka, Gautam; Nyhan, Daniel; Shoukas, Artin A.; Ilies, Monica; Christianson, David W.; Champion, Hunter C.

    2009-01-01

    There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2−) production than young. Acute inhibition of both NOS, with NG-nitro-l-arginine methyl ester, and arginase, with 2(S)-amino- 6-boronohexanoic acid (ABH), significantly reduced O2− production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692–702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2− production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness. PMID:19661445

  6. Central Role of eNOS in the Maintenance of Endothelial Homeostasis

    PubMed Central

    Rodriguez-Mateos, Ana; Kelm, Malte

    2015-01-01

    Abstract Significance: Disruption of endothelial function is considered a key event in the development and progression of atherosclerosis. Endothelial nitric oxide synthase (eNOS) is a central regulator of cellular function that is important to maintain endothelial homeostasis. Recent Advances: Endothelial homeostasis encompasses acute responses such as adaption of flow to tissue's demand and more sustained responses to injury such as re-endothelialization and sprouting of endothelial cells (ECs) and attraction of circulating angiogenic cells (CAC), both of which support repair of damaged endothelium. The balance and the intensity of endothelial damage and repair might be reflected by changes in circulating endothelial microparticles (EMP) and CAC. Flow-mediated vasodilation (FMD) is a generally accepted clinical read-out of NO-dependent vasodilation, whereas EMP are upcoming prognostically validated markers of endothelial injury and CAC are reflective of the regenerative capacity with both expressing a functional eNOS. These markers can be integrated in a clinical endothelial phenotype, reflecting the net result between damage from risk factors and endogenous repair capacity with NO representing a central signaling molecule. Critical Issues: Improvements of reproducibility and observer independence of FMD measurements and definitions of relevant EMP and CAC subpopulations warrant further research. Future Directions: Endothelial homeostasis may be a clinical therapeutic target for cardiovascular health maintenance. Antioxid. Redox Signal. 22, 1230–1242. PMID:25330054

  7. Impact of eNOS-Dependent Oxidative Stress on Endothelial Function and Neointima Formation

    PubMed Central

    Suvorava, Tatsiana; Nagy, Nadine; Pick, Stephanie; Lieven, Oliver; Rüther, Ulrich; Dao, Vu Thao-Vi; Fischer, Jens W.; Weber, Martina

    2015-01-01

    Abstract Aims: Vascular oxidative stress generated by endothelial NO synthase (eNOS) was observed in experimental and clinical cardiovascular disease, but its relative importance for vascular pathologies is unclear. We investigated the impact of eNOS-dependent vascular oxidative stress on endothelial function and on neointimal hyperplasia. Results: A dimer-destabilized mutant of bovine eNOS where cysteine 101 was replaced by alanine was cloned and introduced into an eNOS-deficient mouse strain (eNOS-KO) in an endothelial-specific manner. Destabilization of mutant eNOS in cells and eNOS-KO was confirmed by the reduced dimer/monomer ratio. Purified mutant eNOS and transfected cells generated less citrulline and NO, respectively, while superoxide generation was enhanced. In eNOS-KO, introduction of mutant eNOS caused a 2.3–3.7-fold increase in superoxide and peroxynitrite formation in the aorta and myocardium. This was completely blunted by an NOS inhibitor. Nevertheless, expression of mutant eNOS in eNOS-KO completely restored maximal aortic endothelium-dependent relaxation to acetylcholine. Neointimal hyperplasia induced by carotid binding was much larger in eNOS-KO than in mutant eNOS-KO and C57BL/6, while the latter strains showed comparable hyperplasia. Likewise, vascular remodeling was blunted in eNOS-KO only. Innovation: Our results provide the first in vivo evidence that eNOS-dependent oxidative stress is unlikely to be an initial cause of impaired endothelium-dependent vasodilation and/or a pathologic factor promoting intimal hyperplasia. These findings highlight the importance of other sources of vascular oxidative stress in cardiovascular disease. Conclusion: eNOS-dependent oxidative stress is unlikely to induce functional vascular damage as long as concomitant generation of NO is preserved. This underlines the importance of current and new therapeutic strategies in improving endothelial NO generation. Antioxid. Redox Signal. 23, 711–723. PMID:25764009

  8. NADPH Oxidase 4 Promotes Endothelial Angiogenesis Through eNOS Activation

    PubMed Central

    Craige, Siobhan M.; Kai, Chen; Pei, Yongmei; Chunying, Li; Xiaoyun, Huang; Christine, Chen; Shibata, Rei; Sato, Kaori; Walsh, Kenneth; Keaney, John F.

    2013-01-01

    Background Reactive Oxygen Species (ROS) serve signaling functions in the vasculature, and hypoxia has been associated with increased ROS production. NADPH oxidase 4 (Nox4) is an ROS-producing enzyme that is highly expressed in the endothelium, yet its specific role is unknown. We sought to determine the role of Nox4 in the endothelial response to hypoxia. Methods and Results Hypoxia induced Nox4 expression both in vitro and in vivo and overexpression of Nox4 was sufficient to promote endothelial proliferation, migration, and tube formation. To determine the in vivo relevance of our observations, we generated transgenic mice with endothelial-specific Nox4 overexpression using the VE-cadherin promoter (VECad-Nox4 mice). In vivo, the VECad-Nox4 mice had accelerated recovery from hind limb ischemia and enhanced aortic capillary sprouting. Because endothelial nitric oxide synthase (eNOS) is involved in endothelial angiogenic responses and eNOS is activated by ROS, we probed the effect of Nox4 on eNOS. In cultured ECs overexpressing Nox4 we observed a significant increase in eNOS protein expression and activity. To causally address the link between eNOS and Nox4 we crossed our transgenic Nox4 mice with eNOS-/- mice. Aorta from these mice did not demonstrate enhanced aortic sprouting and VECad-Nox4 mice on the eNOS-/- background did not demonstrate enhanced recovery from hind limb ischemia. Conclusions Collectively, we demonstrate that augmented endothelial Nox4 expression promotes angiogenesis and recovery from hypoxia in an eNOS-dependent manner. PMID:21788590

  9. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms.

    PubMed

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Tanus-Santos, Jose E

    2016-01-10

    Nitric oxide (NO) is an important vasodilator with a well-established role in cardiovascular homeostasis. While mediator is synthesized from L-arginine by neuronal, endothelial, and inducible nitric oxide synthases (NOS1,NOS3 and NOS2 respectively), NOS3 is the most important isoform for NO formation in the cardiovascular system. NOS3 is a dimeric enzyme whose expression and activity are regulated at transcriptional, posttranscriptional,and posttranslational levels. The NOS3 gene, which encodes NOS3, exhibits a number of polymorphic sites including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Some NOS3 polymorphisms show functional effects on NOS3 expression or activity, thereby affecting NO formation. Interestingly, many studies have evaluated the effects of functional NOS3 polymorphisms on disease susceptibility and drug responses. Moreover, some studies have investigated how NOS3 haplotypes may impact endogenous NO formation and disease susceptibility. In this article,we carried out a comprehensive review to provide a basic understanding of biochemical mechanisms involved in NOS3 regulation and how genetic variations in NOS3 may translate into relevant clinical and pharmacogenetic implications.

  10. ER Alpha Rapid Signaling Is Required for Estrogen Induced Proliferation and Migration of Vascular Endothelial Cells

    PubMed Central

    Lu, Qing; Schnitzler, Gavin R.; Ueda, Kazutaka; Iyer, Lakshmanan K.; Diomede, Olga I.; Andrade, Tiffany; Karas, Richard H.

    2016-01-01

    Estrogen promotes the proliferation and migration of vascular endothelial cells (ECs), which likely underlies its ability to accelerate re-endothelialization and reduce adverse remodeling after vascular injury. In previous studies, we have shown that the protective effects of E2 (the active endogenous form of estrogen) in vascular injury require the estrogen receptor alpha (ERα). ERα transduces the effects of estrogen via a classical DNA binding, “genomic” signaling pathway and via a more recently-described “rapid” signaling pathway that is mediated by a subset of ERα localized to the cell membrane. However, which of these pathways mediates the effects of estrogen on endothelial cells is poorly understood. Here we identify a triple point mutant version of ERα (KRR ERα) that is specifically defective in rapid signaling, but is competent to regulate transcription through the “genomic” pathway. We find that in ECs expressing wild type ERα, E2 regulates many genes involved in cell migration and proliferation, promotes EC migration and proliferation, and also blocks the adhesion of monocytes to ECs. ECs expressing KRR mutant ERα, however, lack all of these responses. These observations establish KRR ERα as a novel tool that could greatly facilitate future studies into the vascular and non-vascular functions of ERα rapid signaling. Further, they support that rapid signaling through ERα is essential for many of the transcriptional and physiological responses of ECs to E2, and that ERα rapid signaling in ECs, in vivo, may be critical for the vasculoprotective and anti-inflammatory effects of estrogen. PMID:27035664

  11. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling

    PubMed Central

    Förstermann, Ulrich; Li, Huige

    2011-01-01

    Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553

  12. Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes.

    PubMed

    Zeng, Ye; Liu, Jingxia

    2016-11-01

    Blood flow patterns in proatherogenic and antiatherogenic regions are rather different. We hypothesize that the laminar flow with steady shear stress increased nitric oxide (NO) bioavailability while disturbed flow with low shear stress reduced it, which is mediating by glypican-1. Thus, we detected the expression of glypican-1 under different shear stress magnitudes, and tested whether the magnitude of shear stress determines the level of endothelial NO synthase (eNOS) via glypican-1 by using phosphatidylinositol phospholipase C (PI-PLC). Results revealed that the expression of glypican-1 depends on the magnitude and duration of shear stress loading. Activation of eNOS in HUVECs is downregulated by 4dyn/cm(2) of shear stress, but is upregulated by 15dyn/cm(2). Removal of glypican-1 significantly suppressed the 15dyn/cm(2) shear stress-induced eNOS activity, and further reduced the 4dyn/cm(2)-inhibited eNOS activity. Therefore, eNOS activation depends on shear stress magnitudes and is mediated by glypican-1. The role of glypican-1 in mediating the eNOS activation under shear stress might involve in protecting the endothelial function against disturbed flow and enhancing the sensitive of the endothelial cell to laminar flow, supporting a potential role of glypican-1 against atherosclerosis.

  13. Nebivolol decreases endothelial cell stiffness via the estrogen receptor beta: a nano-imaging study.

    PubMed

    Hillebrand, Uta; Lang, Detlef; Telgmann, Ralph G; Hagedorn, Claudia; Reuter, Stefan; Kliche, Katrin; Stock, Christian M; Oberleithner, Hans; Pavenstädt, Hermann; Büssemaker, Eckhart; Hausberg, Martin

    2009-03-01

    Nebivolol (NEB) is a [beta]1-receptor blocker with nitric oxide-dependent vasodilating properties. NEB-induced nitric oxide release is mediated through the estrogen receptor. Here, we tested the hypothesis that NEB decreases endothelial cell stiffness and that these effects can be abolished by both endothelial nitric oxide synthase and estrogen receptor blockade. Human endothelial cells (EAHy-926) were incubated with vehicle, NEB 0.7 nmol/l, metoprolol 200 nmol/l, 17[beta]-estradiol (E2) 15 nmol/l, the estrogen receptor antagonists tamoxifen 100 nmol/l and ICI 182780 (ICI) 100 nmol/l, the nitric oxide synthase inhibitor N[omega]-nitro-L-arginine methyl ester 1 mmol/l and combinations of NEB and E2 with either tamoxifen, ICI or N[omega]-nitro-L-arginine methyl ester as well as metoprolol and ICI. Atomic force microscopy was performed to measure cellular stiffness, cell volume and apical surface. Presence of estrogen receptor protein in EAHy-926 was confirmed by western blot analysis; quantification of ER[alpha] and ER[beta] total RNA was performed by semiquantitative PCR. Both NEB as well as E2 decreased cellular stiffness to a similar extent (NEB: 0.83 +/- 0.03 pN/nm, E2: 0.87 +/- 0.03 pN/nm, vehicle: 2.19 +/- 0.07 pN/nm), whereas metoprolol had no effect on endothelial stiffness (2.07 +/- 0.04 pN/nm, all n = 60, P < 0.01). The decrease in stiffness occurred as soon as 5 min after starting NEB incubation. The effects are mediated through nongenomic ER[beta] pathways, as ER[alpha] is not translated into measurable protein levels in EAHy-926. Furthermore, NEB increased cell volume by 48 +/- 4% and apical surface by 34 +/- 3%. E2 had comparable effects. Tamoxifen, ICI and N[omega]-nitro-L-arginine methyl ester substantially diminished the effects of NEB and E2. NEB decreases cellular stiffness and causes endothelial cell growth. These effects are nitric oxide-dependent and mediated through nongenomic ER[beta] pathways. The morphological and functional alterations

  14. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress.

    PubMed

    Mahmoud, Ayman M; Wilkinson, Fiona L; McCarthy, Eoghan M; Moreno-Martinez, Daniel; Langford-Smith, Alexander; Romero, Miguel; Duarte, Juan; Alexander, M Yvonne

    2017-10-01

    Endothelial microparticles (EMPs) are endothelium-derived submicron vesicles that are released in response to diverse stimuli and are elevated in cardiovascular disease, which is correlated with risk factors. This study investigates the effect of EMPs on endothelial cell function and dysfunction in a model of free fatty acid (FFA) palmitate-induced oxidative stress. EMPs were generated from TNF-α-stimulated HUVECs and quantified by using flow cytometry. HUVECs were treated with and without palmitate in the presence or absence of EMPs. EMPs were found to carry functional eNOS and to protect against oxidative stress by positively regulating eNOS/Akt signaling, which restored NO production, increased superoxide dismutase and catalase, and suppressed NADPH oxidase and reactive oxygen species (ROS) production, with the involvement of NF-erythroid 2-related factor 2 and heme oxygenase-1. Conversely, under normal conditions, EMPs reduced NO release and increased ROS and redox-sensitive marker expression. In addition, functional assays using EMP-treated mouse aortic rings that were performed under homeostatic conditions demonstrated a decline in endothelium-dependent vasodilatation, but restored the functional response under lipid-induced oxidative stress. These data indicate that EMPs harbor functional eNOS and potentially play a role in the feedback loop of damage and repair during homeostasis, but are also effective in protecting against FFA-induced oxidative stress; thus, EMP function is reflected by the microenvironment.-Mahmoud, A. M., Wilkinson, F. L., McCarthy, E. M., Moreno-Martinez, D., Langford-Smith, A., Romero, M., Duarte, J., Alexander, M. Y. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. © FASEB.

  15. Estrogen protects renal endothelial barrier function from ischemia-reperfusion in vitro and in vivo

    PubMed Central

    Fujiyoshi, Tetsuhiro; Komers, Radko; Herson, Paco S.; Anderson, Sharon

    2012-01-01

    Emerging evidence suggests that renal endothelial function may be altered in ischemia-reperfusion injury. Acute kidney injury is sexually dimorphic, and estrogen protects renal tubular function after experimental ischemic injury. This study tested the hypothesis that during ischemia-reperfusion, estrogen alters glomerular endothelial function to prevent hyperpermeability. Glomerular endothelial cells were exposed to 8-h oxygen-glucose deprivation (OGD) followed by 4- and 8-h reoxygenation-glucose repletion. After 4-h reoxygenation-glucose repletion, transendothelial permeability to Ficoll-70 was reduced, and transendothelial resistance increased, by 17β-estradiol vs. vehicle treatment during OGD (OGD-vehicle: 91.0 ± 11.8%, OGD-estrogen: 102.6 ± 10.8%, P < 0.05). This effect was reversed by coadministration of G protein-coupled receptor 30 (GPR30) antagonist G15 with 17β-estradiol (OGD-estrogen-G15: 89.5 ± 6.9, P < 0.05 compared with 17β-estradiol). To provide preliminary confirmation of this result in vivo, Ficoll-70 was administered to mice 24 h after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). Blood urea nitrogen (BUN) and serum creatinine (SCr) in these mice were elevated within 12 h following CA/CPR and reduced at 24 h by pretreatment with 17β-estradiol (BUN/SCr 17β-estradiol: 34 ± 19/0.2 ± 0.1 vehicle: 92 ± 49/0.5 ± 0.3, n = 8–12, P < 0.05). Glomerular sieving of Ficoll 70 was increased by CA/CPR within 2 h of injury and 17β-estradiol treatment (θ; 17β-estradiol: 0.74 ± 0.26 vs. vehicle: 1.05 ± 0.53, n = 14–15, P < 0.05). These results suggest that estrogen reduces postischemic glomerular endothelial hyperpermeability at least in part through GPR30 and that estrogen may regulate post CA/CPR glomerular permeability in a similar fashion in vivo. PMID:22622457

  16. eNOS-Dependent Antisenscence Effect of a Calcium Channel Blocker in Human Endothelial Cells

    PubMed Central

    Hayashi, Toshio; Yamaguchi, Tomoe; Sakakibara, Yasufumi; Taguchi, Kumiko; Maeda, Morihiko; Kuzuya, Masafumi; Hattori, Yuichi

    2014-01-01

    Senescence of vascular endothelial cells is an important contributor to the pathogenesis of age-associated vascular disorders such as atherosclerosis. We investigated the effects of antihypertensive agents on high glucose-induced cellular senescence in human umbilical venous endothelial cells (HUVECs). Exposure of HUVECs to high glucose (22 mM) for 3 days increased senescence-associated- β-galactosidase (SA-β-gal) activity, a senescence marker, and decreased telomerase activity, a replicative senescence marker. The calcium channel blocker nifedipine, but not the β1-adrenergic blocking agent atenolol or the angiotensin-converting enzyme inhibitor perindopril, reduced SA-β-gal positive cells and prevented a decrease in telomerase activity in a high-glucose environment. This beneficial effect of nifedipine was associated with reduced reactive oxygen species (ROS) and increased endothelial nitric oxide synthase (eNOS) activity. Thus, nifedipine prevented high glucose-induced ROS generation and increased basal eNOS phosphorylation level at Ser-1177. Treatment with NG-nitro-L-arginine (L-NAME) and transfection of small interfering RNA (siRNA) targeting eNOS eliminated the anti-senscence effect of nifedipine. These results demonstrate that nifedipine can prevent endothelial cell senescence in an eNOS-dependent manner. The anti-senescence action of nifedipine may represent a novel mechanism by which it protects against atherosclerosis. PMID:24520379

  17. L-theanine promotes nitric oxide production in endothelial cells through eNOS phosphorylation.

    PubMed

    Siamwala, Jamila H; Dias, Paul M; Majumder, Syamantak; Joshi, Manoj K; Sinkar, Vilas P; Banerjee, Gautam; Chatterjee, Suvro

    2013-03-01

    Consumption of tea (Camellia sinensis) improves vascular function and is linked to lowering the risk of cardiovascular disease. Endothelial nitric oxide is the key regulator of vascular functions in endothelium. In this study, we establish that l-theanine, a non-protein amino-acid found in tea, promotes nitric oxide (NO) production in endothelial cells. l-theanine potentiated NO production in endothelial cells was evaluated using Griess reaction, NO sensitive electrode and a NO specific fluorescent probe (4-amino-5-methylamino-2',7'-difluororescein diacetate). l-Theanine induced NO production was partially attenuated in presence of l-NAME or l-NIO and completely abolished using eNOS siRNA. eNOS activation was Ca(2+) and Akt independent, as assessed by fluo-4AM and immunoblotting experiments, respectively and was associated with phosphorylation of eNOS Ser 1177. eNOS phosphorylation was inhibited in the presence of ERK1/2 inhibitor, PD-98059 and partially inhibited by PI3K inhibitor, LY-294002 and Wortmanin suggesting PI3K-ERK1/2 dependent pathway. Increased NO production was associated with vasodilation in ex ovo (chorioallantoic membrane) model. These results demonstrated that l-theanine administration in vitro activated ERK/eNOS resulting in enhanced NO production and thereby vasodilation in the artery. The results of our experiments are suggestive of l-theanine mediated vascular health benefits of tea.

  18. Resveratrol stimulates nitric oxide production by increasing estrogen receptor alpha-Src-caveolin-1 interaction and phosphorylation in human umbilical vein endothelial cells.

    PubMed

    Klinge, Carolyn M; Wickramasinghe, Nalinie S; Ivanova, Margarita M; Dougherty, Susan M

    2008-07-01

    Epidemiological studies correlate moderate red wine consumption to reduced incidence of cardiovascular disease. Resveratrol is a polyphenolic compound in red wine that has cardioprotective effects in rodents. Although endothelial cell (EC) studies indicate that micromolar resveratrol has diverse biological activities, these concentrations are not physiologically relevant because human oral ingestion provides only brief exposure to nanomolar plasma levels. Previously, we reported that nanomolar resveratrol activated ERK1/2 signaling in bovine aortic ECs (BAECs). The goal of this study was to determine the mechanisms by which nanomolar resveratrol rapidly activates endothelial nitric oxide synthase (eNOS) in human umbilical vein ECs (HUVECs). We report for the first time that resveratrol increased interaction between estrogen receptor alpha (ER alpha), caveolin-1 (Cav-1) and c-Src, and increased phosphorylation of Cav-1, c-Src, and eNOS. Pretreatment with the lipid raft disruptor beta-methyl cyclodextrin or G alpha inhibitor pertussis toxin blocked resveratrol- and E(2)-induced eNOS activation and NO production. Depletion of endogenous ER alpha, not ERbeta, by siRNA attenuated resveratrol- and E(2)-induced ERK1/2, Src, and eNOS phosphorylation. Our data demonstrate that nanomolar resveratrol induces ER alpha-Cav-1-c-SRC interaction, resulting in NO production through a G alpha-protein-coupled mechanism. This study provides important new insights into mechanisms for the beneficial effects of resveratrol in ECs.

  19. The role of endothelial nitric oxide synthase (eNOS) in the pathogenesis of sinonasal polyps.

    PubMed

    Muluk, N Bayar; Arikan, O K; Atasoy, P; Kiliç, R; Yalçinozan, E Tuna

    2014-01-01

    The pathogenesis of sinonasal polyps has not been known completely. We investigated the role of endothelial Nitric Oxide Synthase (eNOS) in the pathogenesis of sinonasal polyps. Study group (Groups 1-3) consisted of nasal polyp samples of patients with sinonasal polyps; and control group consisted of inferior turbinate samples of patients without nasal polyp. In Group 1: 14 specimens from ethmoid sinus; in Group 2: 10 specimens from nasal cavity; in Group 3: 10 specimens from maxillary sinus; and in Group 4 (Control): 9 specimens from inferior turbinate were included. By immunohistochemical staining technique, eNOS Positivity Index in mucosal layers; and in the inflammatory cells were assessed. eNOS Positivity Index was higher at apical layer of epithelium; and perivascular and glandular parts of subepithelial layer. As a rate of mononuclear cells increased, eNOS positivity increased at basal part of epithelium. In eNOS Positivity Index of mononuclear cells increased ones, eNOS values also increased at glands of subepithelial layer. In nasal cavity, eNOS positivity index of all cells was significantly higher than that of the control group. Increased eNOS all cells positivity index values were seen with decreased glandular and endothelial eNOS values. In all cells group, fibroblasts were seen beside the mononuclear cells. It was observed that eNOS was not expressed in PMNC (mainly neutrophils), growing more in acute inflammatory process; and was expressed in MNCs and all cells group with fibroblasts which were the cells of chronic inflammatory process. Especially MNCs and fibroblasts may play a role in the polyp formation process. In males and in patients with longer polyp duration, eNOS values decreased. We concluded that eNOS Positivity Index was higher at apical layer of epithelium; and perivascular and glandular parts of subepithelial layer. eNOS plays role in vascular dilatation, increases in vascular permeability; increases in nasal secretion due to glandular

  20. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway.

    PubMed

    Wang, Youping; Cui, Lin; Xu, Hui; Liu, Suxiao; Zhu, Feiyun; Yan, Fengna; Shen, Si; Zhu, Mingjun

    2017-05-01

    Transient receptor potential vanilloid type 1 channel (TRPV1) is found to be expressed in endothelial cells (ECs) and activate endothelial nitric oxide synthase (eNOS). Recent studies implicate TRPV1 in attenuating inflammatory responses. However, the mechanisms underlying the beneficial effects remain unclear. In this study, we investigated whether TRPV1 suppresses inflammatory responses of ECs via eNOS/NO pathway. Human umbilical vein endothelial cells (HUVECs) and renal microvascular endothelial cells (MVECs) isolated from deoxycorticosterone (DOCA)-salt hypertensive mice were cultured in the presence of capsaicin (CAP, a specific TRPV1 agonist) with or without the specific inhibitor of TRPV1, NOS, or Ca(2+)-dependent phosphatidylinositol 3-kinase (PI3K)/Akt pathway, before lipopolysaccharide (LPS) stimulation. NO metabolites, protein expression, and inflammatory molecules were evaluated by Griess assay and immune assay-based multiplex analysis, respectively. Monocyte adhesion was determined by measuring the fluorescently labeled human monocytes attached to LPS-stimulated ECs. In HUVECs, treatment with CAP increased NO production, and CAP-induced NO production was accompanied by increased eNOS(ser1177) phosphorylation. Additionally, CAP attenuated LPS-induced cytokine and chemokine production, adhesion molecule expression, activation of NF-κB, and monocyte adhesion in HUVECs, and these effects were abrogated by the inhibition of TRPV1, NOS, or Ca(2+)-dependent PI3K/Akt pathway. Moreover, these protective actions of TRPV1 were also observed in renal MVECs isolated from DOCA-salt hypertensive mice. Our results indicate that TRPV1 activation suppresses the inflammatory response of ECs via the activation of Ca(2+)/PI3K/Akt/eNOS/NO pathway, the protective effects are also documented in ECs derived from salt-sensitive hypertensive mice. Copyright © 2017. Published by Elsevier B.V.

  1. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.

    PubMed

    Fleming, Ingrid; Fisslthaler, Beate; Dixit, Madhulika; Busse, Rudi

    2005-09-15

    The application of fluid shear stress to endothelial cells elicits the formation of nitric oxide (NO) and phosphorylation of the endothelial NO synthase (eNOS). Shear stress also elicits the enhanced tyrosine phosphorylation of endothelial proteins, especially of those situated in the vicinity of cell-cell contacts. Since a major constituent of these endothelial cell-cell contacts is the platelet endothelial cell adhesion molecule-1 (PECAM-1) we assessed the role of PECAM-1 in the activation of eNOS. In human endothelial cells, shear stress induced the tyrosine phosphorylation of PECAM-1 and enhanced the association of PECAM-1 with eNOS. Endothelial cell stimulation with shear stress elicited the phosphorylation of Akt and eNOS as well as of the AMP-activated protein kinase (AMPK). While the shear-stress-induced tyrosine phosphorylation of PECAM-1 as well as the serine phosphorylation of Akt and eNOS were abolished by the pre-treatment of cells with the tyrosine kinase inhibitor PP1 the phosphorylation of AMPK was unaffected. Down-regulation of PECAM-1 using a siRNA approach attenuated the shear-stress-induced phosphorylation of Akt and eNOS, as well as the shear-stress-induced accumulation of cyclic GMP levels while the shear-stress-induced phosphorylation of AMPK remained intact. A comparable attenuation of Akt and eNOS (but not AMPK) phosphorylation and NO production was also observed in endothelial cells generated from PECAM-1-deficient mice. These data indicate that the shear-stress-induced activation of Akt and eNOS in endothelial cells is modulated by the tyrosine phosphorylation of PECAM-1 whereas the shear-stress-induced phosphorylation of AMPK is controlled by an alternative signaling pathway.

  2. Estradiol induces endothelial cell migration and proliferation through estrogen receptor-enhanced RhoA/ROCK pathway.

    PubMed

    Oviedo, Pilar J; Sobrino, Agua; Laguna-Fernandez, Andrés; Novella, Susana; Tarín, Juan J; García-Pérez, Miguel-Angel; Sanchís, Juan; Cano, Antonio; Hermenegildo, Carlos

    2011-03-30

    Migration and proliferation of endothelial cells are involved in re-endothelialization and angiogenesis, two important cardiovascular processes that are increased in response to estrogens. RhoA, a small GTPase which controls multiple cellular processes, is involved in the control of cell migration and proliferation. Our aim was to study the role of RhoA on estradiol-induced migration and proliferation and its dependence on estrogen receptors activity. Human umbilical vein endothelial cells were stimulated with estradiol, in the presence or absence of ICI 182780 (estrogen receptors antagonist) and Y-27632 (Rho kinase inhibitor). Estradiol increased Rho GEF-1 gene expression and RhoA (gene and protein expression and activity) in an estrogen receptor-dependent manner. Cell migration, stress fiber formation and cell proliferation were increased in response to estradiol and were also dependent on the estrogen receptors and RhoA activation. Estradiol decreased p27 levels, and significantly raised the expression of cyclins and CDK. These effects were counteracted by the use of either ICI 182780 or Y-27632. In conclusion, estradiol enhances the RhoA/ROCK pathway and increases cell cycle-related protein expression by acting through estrogen receptors. This results in an enhanced migration and proliferation of endothelial cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Activation of classical estrogen receptor subtypes reduces tight junction disruption of brain endothelial cells under ischemia/reperfusion injury.

    PubMed

    Shin, Jin A; Yoon, Joo Chun; Kim, Minsuk; Park, Eun-Mi

    2016-03-01

    Ischemic stroke, which induces oxidative stress in the brain, disrupts tight junctions (TJs) between brain endothelial cells, resulting in blood-brain barrier (BBB) breakdown and brain edema. Estrogen reduces oxidative stress and protects brain endothelial cells from ischemic insult. The aim of this study was to determine the protective effects of estrogen on TJ disruption and to examine the roles of classical estrogen receptor (ER) subtypes, ERα- and ERβ, in estrogen effects in brain endothelial cells (bEnd.3) exposed to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Estrogen pretreatment prevented OGD/R-induced decreases in cell viability and TJ protein levels. ERα- and ERβ-specific agonists also reduced TJ disruption. Knockdown of ERα or ERβ expression partially inhibited the effects of estrogen, but completely reversed the effects of corresponding ER subtype-specific agonists on the outcomes of OGD/R. During the early reperfusion period, activation of extracellular signal-regulated kinase1/2 and hypoxia-inducible factor 1α/vascular endothelial growth factor was associated with decreased expression of occludin and claudin-5, respectively, and these changes in TJ protein levels were differentially regulated by ER subtype-specific agonists. Our results suggest that ERα and ERβ activation reduce TJ disruption via inhibition of signaling molecules after ischemic injury and that targeting each ER subtype can be a useful strategy for protecting the BBB from ischemic stroke in postmenopausal women. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Endothelial function in women of the Kronos Early Estrogen Prevention Study.

    PubMed

    Kling, J M; Lahr, B A; Bailey, K R; Harman, S M; Miller, V M; Mulvagh, S L

    2015-04-01

    Endothelial dysfunction occurs early in the atherosclerotic disease process, often preceding clinical symptoms. Use of menopausal hormone treatment (MHT) to reduce cardiovascular risk is controversial. This study evaluated effects of 4 years of MHT on endothelial function in healthy, recently menopausal women. Endothelial function was determined by pulse volume digital tonometry providing a reactive hyperemia index (RHI) in a subset of women enrolled in the Kronos Early Estrogen Prevention Study. RHI was measured before and annually after randomization to daily oral conjugated equine estrogen (oCEE, 0.45 mg), weekly transdermal 17β-estradiol (tE2, 50 μg) each with intermittent progesterone (200 mg daily 12 days of the month) or placebo pills and patch. At baseline, RHI averaged 2.39 ± 0.69 (mean ± standard deviation; n = 83), and over follow-up did not differ significantly among groups: oCEE, 2.26 ± 0.48 (n = 26); tE2, 2.26 ± 0.45 (n = 24); and placebo, 2.37 ± 0.37 (n = 33). Changes in RHI did not correlate with changes in traditional cardiovascular risk factors, but may inversely correlate with carotid intima medial thickness (Spearman correlation coefficient ρ = -0.268, p = 0.012). In this 4-year prospective assessment of recently menopausal women, MHT did not significantly alter RHI when compared to placebo.

  5. Endothelial function in women of the Kronos Early Estrogen Prevention Study

    PubMed Central

    Kling, J. M.; Lahr, B. A.; Bailey, K. R.; Harman, S. M.; Mulvagh, S. L.

    2015-01-01

    Objective Endothelial dysfunction occurs early in the atherosclerotic disease process, often preceding clinical symptoms. Use of menopausal hormone treatment (MHT) to reduce cardiovascular risk is controversial. This study evaluated effects of 4 years of MHT on endothelial function in healthy, recently menopausal women. Methods Endothelial function was determined by pulse volume digital tonometry providing a reactive hyperemia index (RHI) in a subset of women enrolled in the Kronos Early Estrogen Prevention Study. RHI was measured before and annually after randomization to daily oral conjugated equine estrogen (oCEE, 0.45 mg), weekly transdermal 17β-estradiol (tE2, 50 μg) each with intermittent progesterone (200 mg daily 12 days of the month) or placebo pills and patch. Results At baseline, RHI averaged 2.39 ± 0.69 (mean ± standard deviation; n = 83), and over follow-up did not differ significantly among groups: oCEE, 2.26 ± 0.48 (n = 26); tE2, 2.26 ± 0.45 (n = 24); and placebo, 2.37 ± 0.37 (n = 33). Changes in RHI did not correlate with changes in traditional cardiovascular risk factors, but may inversely correlate with carotid intima medial thickness (Spearman correlation coefficient ρ = −0.268, p = 0.012). Conclusion In this 4-year prospective assessment of recently menopausal women, MHT did not significantly alter RHI when compared to placebo. PMID:25417709

  6. (−)-Epicatechin activation of endothelial cell eNOS, NO and related signaling pathways

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo; Villarreal, Francisco

    2010-01-01

    Recent reports indicate that (−)-epicatechin can exert cardioprotective actions, which may involve eNOS-mediated nitric oxide production in endothelial cells. However, the mechanism by which (−)-epicatechin activates eNOS remains unclear. In this study, we proposed to identify the intracellular pathways involved in (−)-epicatechin-induced effects on eNOS, utilizing human coronary artery endothelial cells in culture. Treatment of cells with (−)-epicatechin leads to time- and dose-dependent effects, which peaked at 10 min at 1 μmol/L. (−)-Epicatechin treatment activates eNOS via serine-633 and serine-1177 phosphorylation and threonine-495 dephosphorylation. Using specific inhibitors, we have established the participation of the PI3K pathway in eNOS activation. (−)-Epicatechin induces eNOS uncoupling from caveolin-1 and its association with calmodulin-1, suggesting the involvement of intracellular calcium. These results allowed us to propose that (−) epicatechin effects may be dependent on actions exerted at the cell membrane level. To test this hypothesis, cells were treated with the phospholipase C inhibitor U73122, which blocked (−)-epicatechin-induced eNOS activation. We also demonstrated inositol phosphate accumulation in (−)-epicatechin-treated cells. The inhibitory effects of the pre-incubation of cells with the CaMKII inhibitor KN-93 indicate that (−)-epicatechin-induced eNOS activation is at least partially mediated via the Ca2+/CaMKII pathway. The (−)-epicatechin stereoisomer catechin was only able to partially stimulate nitric oxide production in cells. Altogether, these results strongly suggest the presence of a cell surface acceptor-effector for the cacao flavanol (−)-epicatechin, which may mediate its cardiovascular effects. PMID:20404222

  7. Role of endothelial nitric oxide synthase (eNOS) in chronic stress-promoted tumour growth

    PubMed Central

    Barbieri, Antonio; Palma, Giuseppe; Rosati, Alessandra; Giudice, Aldo; Falco, Antonia; Petrillo, Antonella; Petrillo, Mario; Bimonte, Sabrina; Benedetto, Maria Di; Esposito, Giuseppe; Stiuso, Paola; Abbruzzese, Alberto; Caraglia, Michele; Arra, Claudio

    2012-01-01

    Abstract Accumulating evidence suggests that chronic stress can be a cofactor for the initiation and progression of cancer. Here we evaluated the role of endothelial nitric oxide synthase (eNOS) in stress-promoted tumour growth of murine B16F10 melanoma cell line in C57BL/6 mice. Animals subjected to restraint stress showed increased levels adrenocorticotropic hormone, enlarged adrenal glands, reduced thymus weight and a 3.61-fold increase in tumour growth in respect to no-stressed animals. Tumour growth was significantly reduced in mice treated with the β-antagonist propranolol. Tumour samples obtained from stressed mice displayed high levels of vascular endothelial growth factor (VEGF) protein in immunohistochemistry. Because VEGF can induce eNOS increase, and nitric oxide is a relevant factor in angiogenesis, we assessed the levels of eNOS protein by Western blot analysis. We found a significant increase in eNOS levels in tumour samples from stressed mice, indicating an involvement of this enzyme in stress-induced tumour growth. Accordingly, chronic stress did not promote tumour growth in eNOS−/− mice. These results disclose for the first time a pivotal role for eNOS in chronic stress-induced initiation and promotion of tumour growth. PMID:21722303

  8. Effects of Dietary Decosahexaenoic Acid (Dha) on eNOS in Human Coronary Artery Endothelial Cells

    PubMed Central

    Stebbins, Charles L.; Stice, James P.; Hart, C. Michael; Mbai, Fiona N.; Knowlton, Anne A.

    2015-01-01

    Endothelial dysfunction occurs in heart disease, and may reduce functional capacity via attenuations in peripheral blood flow. Dietary DHA may improve this dysfunction, but the mechanism is unknown. We determined if DHA enhances expression and activity of eNOS in cultured human coronary artery endothelial cells (HCAEC). HCAEC from 4 donors were treated with 5 nM, 50 nM, or 1 μM DHA for 7 days to model chronic DHA exposure. A trend for increased expression of eNOS and phospho-eNOS was observed with 5 and 50 nM DHA. DHA also enhanced expression of two proteins instrumental in activation of eNOS; phospho-Akt (5 and 50 nM) and HSP90 (50 nM and 1 μM). VEGF-induced activation of Akt increased NOx in treated (50 nM DHA) vs. untreated HCAEC (9.2±1.0 vs. 3.3±1.1 μmols/μg protein/μl). Findings suggest that DHA enhances eNOS and Akt activity, augments HSP90 expression, and increases NO bioavailability in response to Akt kinase activation PMID:18682551

  9. Extensive Ethnogenomic Diversity of Endothelial Nitric Oxide Synthase (eNOS) Polymorphisms

    PubMed Central

    Thomas, Bolaji N.; Thakur, Tanya J.; Yi, Li; Guindo, Aldiouma; Diallo, Dapa A.; Ott, Jurg

    2013-01-01

    Nitric oxide (NO) is highly reactive, produced in endothelial cells by endothelial NO synthase (eNOS) and has been implicated in sickle cell pathophysiology. We evaluated the distribution of functionally significant eNOS variants (the T786C variant in the promoter region, the Glu298Asp variant in exon 7, and the variable number of tandem repeats (VNTR) in intron 4) in Africans, African Americans and Caucasians. The C-786 variant was more common in Caucasians than in Africans and African Americans. Consistent with other findings, the Asp-298 variant had the highest frequency in Caucasians followed by African Americans, but was completely absent in Africans. The very rare intron 4 allele, eNOS 4c, was found in some Africans and African Americans, but not in Caucasians. eNOS 4d allele was present in 2 Africans. These findings suggest a consistent and widespread genomic diversity in the distribution of eNOS variants in Africans, comparative to African Americans and Caucasians. PMID:23400313

  10. Endothelial function and insulin resistance in early postmenopausal women with cardiovascular risk factors: importance of ESR1 and NOS3 polymorphisms.

    PubMed

    Clapauch, Ruth; Mourão, André Felipe; Mecenas, Anete S; Maranhão, Priscila A; Rossini, Ana; Bouskela, Eliete

    2014-01-01

    Cardiovascular benefits from estradiol activation of nitric oxide endothelial production may depend on vascular wall and on estrogen receptor alpha (ESR1) and nitric oxide synthase (NOS3) polymorphisms. We have evaluated the microcirculation in vivo through nailfold videocapillaroscopy, before and after acute nasal estradiol administration at baseline and after increased sheer stress (postocclusive reactive hyperemia response) in 100 postmenopausal women, being 70 controls (healthy) and 30 simultaneously hypertensive and diabetic (HD), correlating their responses to PvuII and XbaI ESR1 polymorphisms and to VNTR, T-786C and G894T NOS3 variants. In HD women, C variant allele of ESR1 Pvull was associated to higher vasodilatation after estradiol (1.72 vs 1.64 mm/s, p = 0.01 compared to TT homozygotes) while G894T and T-786C NOS3 polymorphisms were connected to lower increment after shear stress (15% among wild type and 10% among variant alleles, p = 0.02 and 0.04). The G variant allele of ESR1 XbaI polymorphism was associated to higher HOMA-IR (3.54 vs. 1.64, p = 0.01) in HD and higher glucose levels in healthy women (91.8 vs. 87.1 mg/dl, p = 0.01), in which increased waist and HOMA-IR were also related to the G allele in NOS3 G894T (waist 93.5 vs 88.2 cm, p = 0.02; HOMA-IR 2.89 vs 1.48, p = 0.05). ESR1 Pvull, NOS3 G894T and T-786C polymorphism analysis may be considered in HD postmenopausal women for endothelial response prediction following estrogen therapy but were not discriminatory for endothelial response in healthy women. ESR1 XbaI and G894T NOS3 polymorphisms may be useful in accessing insulin resistance and type 2 diabetes risks in all women, even before menopause and occurrence of metabolic disease.

  11. Endothelial Function and Insulin Resistance in Early Postmenopausal Women with Cardiovascular Risk Factors: Importance of ESR1 and NOS3 Polymorphisms

    PubMed Central

    Clapauch, Ruth; Mourão, André Felipe; Mecenas, Anete S.; Maranhão, Priscila A.; Rossini, Ana; Bouskela, Eliete

    2014-01-01

    Cardiovascular benefits from estradiol activation of nitric oxide endothelial production may depend on vascular wall and on estrogen receptor alpha (ESR1) and nitric oxide synthase (NOS3) polymorphisms. We have evaluated the microcirculation in vivo through nailfold videocapillaroscopy, before and after acute nasal estradiol administration at baseline and after increased sheer stress (postocclusive reactive hyperemia response) in 100 postmenopausal women, being 70 controls (healthy) and 30 simultaneously hypertensive and diabetic (HD), correlating their responses to PvuII and XbaI ESR1 polymorphisms and to VNTR, T-786C and G894T NOS3 variants. In HD women, C variant allele of ESR1 Pvull was associated to higher vasodilatation after estradiol (1.72 vs 1.64 mm/s, p = 0.01 compared to TT homozygotes) while G894T and T-786C NOS3 polymorphisms were connected to lower increment after shear stress (15% among wild type and 10% among variant alleles, p = 0.02 and 0.04). The G variant allele of ESR1 XbaI polymorphism was associated to higher HOMA-IR (3.54 vs. 1.64, p = 0.01) in HD and higher glucose levels in healthy women (91.8 vs. 87.1 mg/dl, p = 0.01), in which increased waist and HOMA-IR were also related to the G allele in NOS3 G894T (waist 93.5 vs 88.2 cm, p = 0.02; HOMA-IR 2.89 vs 1.48, p = 0.05). ESR1 Pvull, NOS3 G894T and T-786C polymorphism analysis may be considered in HD postmenopausal women for endothelial response prediction following estrogen therapy but were not discriminatory for endothelial response in healthy women. ESR1 XbaI and G894T NOS3 polymorphisms may be useful in accessing insulin resistance and type 2 diabetes risks in all women, even before menopause and occurrence of metabolic disease. PMID:25077953

  12. Aging and estrogen alter endothelial reactivity to reactive oxygen species in coronary arterioles.

    PubMed

    Kang, Lori S; Chen, Bei; Reyes, Rafael A; Leblanc, Amanda J; Teng, Bunyen; Mustafa, S Jamal; Muller-Delp, Judy M

    2011-06-01

    Endothelium-dependent, nitric oxide (NO)-mediated vasodilation can be impaired by reactive oxygen species (ROS), and this deleterious effect of ROS on NO availability may increase with aging. Endothelial function declines rapidly after menopause, possibly because of loss of circulating estrogen and its antioxidant effects. The purpose of the current study was to determine the role of O(2)(-) and H(2)O(2) in regulating flow-induced dilation in coronary arterioles of young (6-mo) and aged (24-mo) intact, ovariectomized (OVX), or OVX + estrogen-treated (OVE) female Fischer 344 rats. Both aging and OVX reduced flow-induced NO production, whereas flow-induced H(2)O(2) production was not altered by age or estrogen status. Flow-induced vasodilation was evaluated before and after treatment with the superoxide dismutase (SOD) mimetic Tempol (100 μM) or the H(2)O(2) scavenger catalase (100 U/ml). Removal of H(2)O(2) with catalase reduced flow-induced dilation in all groups, whereas Tempol diminished vasodilation in intact and OVE, but not OVX, rats. Immunoblot analysis revealed elevated nitrotyrosine with aging and OVX. In young rats, OVX reduced SOD protein while OVE increased SOD in aged rats; catalase protein did not differ in any group. Collectively, these studies suggest that O(2)(-) and H(2)O(2) are critical components of flow-induced vasodilation in coronary arterioles from female rats; however, a chronic deficiency of O(2)(-) buffering by SOD contributes to impaired flow-induced dilation with aging and loss of estrogen. Furthermore, these data indicate that estrogen replacement restores O(2)(-) homeostasis and flow-induced dilation of coronary arterioles, even at an advanced age.

  13. (−)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo

    2011-01-01

    The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (−)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca2+ depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca2+-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca2+-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca2+ depletion. Thus, under Ca2+-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca2+-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-l-arginine methyl ester, suggesting a functional relevance for this phenomenon. PMID:21209365

  14. iNOS Activation Regulates β-catenin Association with Its Partners in Endothelial Cells

    PubMed Central

    Gonzalez, Deyarina; Rojas, Armando; Herrera, Maria Beatriz; Conlan, R. Steven

    2012-01-01

    Background Signals that disrupt β-catenin association to cadherins may influence the translocation of β-catenin to the nucleus to regulate transcription. Post-translational modification of proteins is a signalling event that may lead to changes in structural conformation, association or function of the target proteins. NO and its derivatives induce nitration of proteins during inflammation. It has been described that animals treated with NO donors showed increased permeability due to modulation of VE-cadherin/catenin complex. We, therefore, aim to evaluate the effect of iNOS activation on the expression, nuclear localisation and function of β-catenin in endothelial cells. Methodology/Principal Findings Expression, nuclear localisation, post-translational modifications and function of β-catenin was analysed by cell fractionation, immunoprecipitation, immunoblots, QRT-PCR and permeability assays in murine endothelial cells (H5V). Influence of macrophage activation on expression of VE-cadherin/p120-catenin/β-catenin complex in co-cultured H5V cells was also assessed. Activation of macrophages to produce NO provoked a decrease in VE-cadherin/p120-catenin/β-catenin expression in H5V cells. Phosphorylation of β-catenin, p120-catenin and VE-cadherin, and reduction in the barrier properties of the cell monolayer was associated with iNOS induction. Moreover, high NO levels provoked nitration of β-catenin, and induced its translocation to the nucleus. In the nucleus of NOS activated cells, nitration levels of β-catenin influenced its association with TCF4 and p65 proteins. High levels of NO altered β-catenin mediated gene expression of NFκB and Wnt target genes without affecting cell viability. Conclusions NOS activity modulates β-catenin post-translational modifications, function and its association with different partners to promote endothelial cell survival. Therapeutic manipulation of iNOS levels may remove a critical cytoprotective mechanism of importance in

  15. Extracellular histones disarrange vasoactive mediators release through a COX-NOS interaction in human endothelial cells.

    PubMed

    Pérez-Cremades, Daniel; Bueno-Betí, Carlos; García-Giménez, José Luis; Ibañez-Cabellos, José Santiago; Hermenegildo, Carlos; Pallardó, Federico V; Novella, Susana

    2017-02-28

    Extracellular histones are mediators of inflammation, tissue injury and organ dysfunction. Interactions between circulating histones and vascular endothelial cells are key events in histone-mediated pathologies. Our aim was to investigate the implication of extracellular histones in the production of the major vasoactive compounds released by human endothelial cells (HUVECs), prostanoids and nitric oxide (NO). HUVEC exposed to increasing concentrations of histones (0.001 to 100 μg/ml) for 4 hrs induced prostacyclin (PGI2) production in a dose-dependent manner and decreased thromboxane A2 (TXA2) release at 100 μg/ml. Extracellular histones raised cyclooxygenase-2 (COX-2) and prostacyclin synthase (PGIS) mRNA and protein expression, decreased COX-1 mRNA levels and did not change thromboxane A2 synthase (TXAS) expression. Moreover, extracellular histones decreased both, eNOS expression and NO production in HUVEC. The impaired NO production was related to COX-2 activity and superoxide production since was reversed after celecoxib (10 μmol/l) and tempol (100 μmol/l) treatments, respectively. In conclusion, our findings suggest that extracellular histones stimulate the release of endothelial-dependent mediators through an up-regulation in COX-2-PGIS-PGI2 pathway which involves a COX-2-dependent superoxide production that decreases the activity of eNOS and the NO production. These effects may contribute to the endothelial cell dysfunction observed in histone-mediated pathologies.

  16. Diesel Particulate Exposed Macrophages Alter Endothelial Cell Expression of eNOS, iNOS, MCP1, and Glutathione Synthesis Genes

    PubMed Central

    Weldy, Chad S.; Wilkerson, Hui-Wen; Larson, Timothy V.; Stewart, James A.; Kavanagh, Terrance J.

    2011-01-01

    There is considerable debate regarding inhaled diesel exhaust particulate (DEP) causing impairments in vascular reactivity. Although there is evidence that inhaled particles can translocate from the lung into the systemic circulation, it has been suggested that inflammatory factors produced in the lung following macrophage particle engulfment also pass into the circulation. To investigate these differing hypotheses, we used in vitro systems to model each exposure. By using a direct exposure system and a macrophage-endothelial cell co-culture model, we compared the effects of direct DEP exposure and exposure to inflammatory factors produced by DEP-treated macrophages, on endothelial cell mRNA levels for eNOS, iNOS, endothelin-1, and endothelin-converting-enzyme-1. As markers of oxidative stress, we measured the effects of DEP treatment on glutathione (GSH) synthesis genes and on total GSH. In addition, we analyzed the effect of DEP treatment on monocyte chemo-attractant protein-1. Direct DEP exposure increased endothelial GCLC and GCLM as well as total GSH in addition to increased eNOS, iNOS and Mcp1 mRNA. Alternatively, inflammatory factors released from DEP-exposed macrophages markedly up-regulated endothelial iNOS and Mcp1 while modestly down-regulating eNOS. These data support both direct exposure to DEP and the release of inflammatory cytokines as explanations for DEP-induced impairments in vascular reactivity. PMID:21920430

  17. Ivabradine Prevents Low Shear Stress Induced Endothelial Inflammation and Oxidative Stress via mTOR/eNOS Pathway

    PubMed Central

    Li, Bing; Zhang, Junxia; Wang, Zhimei; Chen, Shaoliang

    2016-01-01

    Ivabradine not only reduces heart rate but has other cardiac and vascular protective effects including anti-inflammation and anti-oxidation. Since endothelial nitric oxide synthase (eNOS) is a crucial enzyme in maintaining endothelial activity, we aimed to investigate the impact of ivabradine in low shear stress (LSS) induced inflammation and endothelial injury and the role of eNOS played in it. Endothelial cells (ECs) were subjected to LSS at 2dyne/cm2, with 1 hour of ivabradine (0.04μM) or LY294002 (10μM) pre-treatment. The mRNA expression of IL-6, VCAM-1 along with eNOS were measured by QPCR. Reactive oxygen species (ROS) was detected by dihydroethidium (DHE) and DCF, and protein phosphorylation was detected by western blot. It demonstrated that ivabradine decreased LSS induced inflammation and oxidative stress in endothelial cells. Western blot showed reduced rictor and Akt-Ser473 as well as increased eNOS-Thr495 phosphorylation. However, mTORC1 pathway was only increased when LSS applied within 30 minutes. These effects were reversed by ivabradine. It would appear that ivabradine diminish ROS generation by provoking mTORC2/Akt phosphorylation and repressing mTORC1 induced eNOS-Thr495 activation. These results together suggest that LSS induced endothelial inflammation and oxidative stress are suppressed by ivabradine via mTORC2/Akt activation and mTORC1/eNOS reduction. PMID:26890696

  18. Ivabradine Prevents Low Shear Stress Induced Endothelial Inflammation and Oxidative Stress via mTOR/eNOS Pathway.

    PubMed

    Li, Bing; Zhang, Junxia; Wang, Zhimei; Chen, Shaoliang

    2016-01-01

    Ivabradine not only reduces heart rate but has other cardiac and vascular protective effects including anti-inflammation and anti-oxidation. Since endothelial nitric oxide synthase (eNOS) is a crucial enzyme in maintaining endothelial activity, we aimed to investigate the impact of ivabradine in low shear stress (LSS) induced inflammation and endothelial injury and the role of eNOS played in it. Endothelial cells (ECs) were subjected to LSS at 2dyne/cm2, with 1 hour of ivabradine (0.04μM) or LY294002 (10μM) pre-treatment. The mRNA expression of IL-6, VCAM-1 along with eNOS were measured by QPCR. Reactive oxygen species (ROS) was detected by dihydroethidium (DHE) and DCF, and protein phosphorylation was detected by western blot. It demonstrated that ivabradine decreased LSS induced inflammation and oxidative stress in endothelial cells. Western blot showed reduced rictor and Akt-Ser473 as well as increased eNOS-Thr495 phosphorylation. However, mTORC1 pathway was only increased when LSS applied within 30 minutes. These effects were reversed by ivabradine. It would appear that ivabradine diminish ROS generation by provoking mTORC2/Akt phosphorylation and repressing mTORC1 induced eNOS-Thr495 activation. These results together suggest that LSS induced endothelial inflammation and oxidative stress are suppressed by ivabradine via mTORC2/Akt activation and mTORC1/eNOS reduction.

  19. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase.

    PubMed

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10μg/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  20. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: Essential roles of estrogen receptor-dependent PI3-kinase and AMP-activated protein kinase

    SciTech Connect

    Hien, Tran Thi; Kim, Nak Doo; Pokharel, Yuba Raj; Oh, Seok Jeong; Lee, Moo Yeol; Kang, Keon Wook

    2010-08-01

    We previously showed that ginsenosides increase nitric oxide (NO) production in vascular endothelium and that ginsenoside Rg3 (Rg3) is the most active one among ginseng saponins. However, the mechanism for Rg3-mediated nitric oxide production is still uncertain. In this study, we determined whether Rg3 affects phosphorylation and expression of endothelial nitric oxide synthase (eNOS) in ECV 304 human endothelial cells. Rg3 increased both the phosphorylation and the expression of eNOS in a concentration-dependent manner and a maximal effect was found at 10 {mu}g/ml of Rg3. The enzyme activities of phosphatidylinositol 3-kinase (PI3-kinase), c-Jun N-terminal kinase (JNK), and p38 kinase were enhanced as were estrogen receptor (ER)- and glucocorticoid receptor (GR)-dependent reporter gene transcriptions in Rg3-treated endothelial cells. Rg3-induced eNOS phosphorylation required the ER-mediated PI3-kinase/Akt pathway. Moreover, Rg3 activates AMP-activated protein kinase (AMPK) through up-regulation of CaM kinase II and Rg3-stimulated eNOS phosphorylation was reversed by AMPK inhibition. The present results provide a mechanism for Rg3-stimulated endothelial NO production.

  1. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    SciTech Connect

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru; Niwa, Koichi; Hattori, Yuichi; Kondo, Takashi; Inanami, Osamu

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  2. Estrogen

    MedlinePlus

    ... life', the end of monthly menstrual periods). Some brands of estrogen are also used to treat vaginal ... prevent osteoporosis should consider a different treatment. Some brands of estrogen are also to relieve symptoms of ...

  3. Crataegus special extract WS 1442 causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of endothelial NO synthase but not via activation of estrogen receptors.

    PubMed

    Anselm, Eric; Socorro, Vanesca Frota Madeira; Dal-Ros, Stéphanie; Schott, Christa; Bronner, Christian; Schini-Kerth, Valérie B

    2009-03-01

    This study determined whether the Crataegus (Hawthorn species) special extract WS 1442 stimulates the endothelial formation of nitric oxide (NO), a vasoprotective factor, and characterized the underlying mechanism. Vascular reactivity was assessed in porcine coronary artery rings, reactive oxygen species (ROS) formation in artery sections by microscopy, and phosphorylation of Akt and endothelial NO synthase (eNOS) in endothelial cells by Western blot analysis. WS 1442 caused endothelium-dependent relaxations in coronary artery rings, which were reduced by N-nitro-L-arginine (a competitive inhibitor of NO synthase) and by charybdotoxin plus apamin (two inhibitors of endothelium-derived hyperpolarizing factor-mediated responses). Relaxations to WS 1442 were inhibited by intracellular ROS scavengers and inhibitors of Src and PI3-kinase, but not by an estrogen receptor antagonist. WS 1442 stimulated the endothelial formation of ROS in artery sections, and a redox-sensitive phosphorylation of Akt and eNOS in endothelial cells. WS 1442 induced endothelium-dependent NO-mediated relaxations of coronary artery rings through the redox-sensitive Src/PI3-kinase/Akt-dependent phosphorylation of eNOS.

  4. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism.

    PubMed

    Chu, Shaoyou; Bohlen, H Glenn

    2004-09-01

    Kidney glomeruli are important targets of diabetic nephropathy. We hypothesized a high concentration of glucose could suppress glomerular endothelial nitric oxide synthase (eNOS) by a protein kinase C (PKC) mechanism, as has been found in other tissues. Mouse kidney slices (150-200 microm) were bathed in Hanks' solution with 100 microM L-arginine and exposed to either 5 or 20-30 mM D-glucose. Immunofluorescence identified only eNOS in normal mouse glomeruli. Measurements of glomerular NO concentration with NO-sensitive fluorescent dye (4,5-diaminofluorescein diacetate) using confocal microscopy and NO-sensitive microelectrodes verified that resting glomeruli had active production of NO that was inhibited by N(G)-nitro-L-arginine methyl ester. High-concentration (20-30 mM) D-glucose inhibited 60-70% of the NO production within 15-30 min; L-glucose at the same concentration did not have any effect. Inhibition of PKC-beta with 100 nM ruboxistaurin prevented eNOS suppression in high-glucose media. Activation of PKC with 100 nM phorbol ester also suppressed the glomerular NO concentration. We concluded that eNOS in the renal glomerular capillary endothelial cells is suppressed by activity of PKC at high-glucose concentrations comparable to those in diabetic animals and humans. The consequence is a rapid decline in the generation of NO in the glomerular endothelial cells in the presence of a high concentration of glucose.

  5. Cigarette Smoke Extract Changes Expression of Endothelial Nitric Oxide Synthase (eNOS) and p16(INK4a) and is Related to Endothelial Progenitor Cell Dysfunction.

    PubMed

    He, Zhihui; Chen, Yan; Hou, Can; He, Wenfang; Chen, Ping

    2017-07-02

    BACKGROUND Endothelial dysfunction is an important pathophysiologic feature in many smoke-related diseases. Endothelial progenitor cells (EPCs) are the precursors of endothelial cells and play a fundamental role in the maintenance of endothelial integrity and function. Endothelial nitric oxide synthase (eNOS) is the dominant NOS isoform in the vasculature and plays a central role in the maintenance of endothelial homeostasis. p16(INK4a) is a cyclin-dependent kinase inhibitor and could be regarded as a major dominant senescence gene. The present study aimed to determine whether the expression of eNOS and p16(INK4a) in EPCs is related to EPCs function and the possible epigenetic mechanism, if any. MATERIAL AND METHODS We investigated EPCs capacity for proliferation, adhesion, and secretion, and the expression of eNOS and p16(INK4a) in EPCs which were altered by cigarette smoke extract (CSE) in vitro. Furthermore, Decitabine (Dec), an agent of demethylation, was used to examine whether it could alter the changes induced by CSE. RESULTS The present study demonstrated that EPCs altered by CSE in vitro displayed decreased capacities of proliferation, adhesion, and secretion, which was accompanied by decreased eNOS expression and increased p16(INK4a) expression in EPCs. Furthermore, Dec could alleviate the changes in the expression of eNOS and p16(INK4a), and protect against the EPCs dysfunction caused by CSE. CONCLUSIONS The decreased eNOS expression and increased p16(INK4a) expression was associated with dysfunction of EPCs caused by CSE. The mechanism of methylation, one of the most common epigenetic mechanism, may be involved in the EPCs dysfunction caused by CSE.

  6. Phosphodiesterase-5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity

    PubMed Central

    Gebska, Milena A.; Stevenson, Blake K.; Hemnes, Anna R.; Bivalacqua, Trinity J.; Haile, Azeb; Hesketh, Geoffrey G.; Murray, Christopher I.; Zaiman, Ari L.; Halushka, Marc K.; Krongkaew, Nispa; Strong, Travis D.; Cooke, Carol A.; El-Haddad, Hazim; Tuder, Rubin M.; Berkowitz, Dan E.; Champion, Hunter C.

    2011-01-01

    Aims It has been well demonstrated that phosphodiesterase-5A (PDE5A) is expressed in smooth muscle cells and plays an important role in regulation of vascular tone. The role of endothelial PDE5A, however, has not been yet characterized. The present study was undertaken to determine the presence, localization, and potential physiologic significance of PDE5A within vascular endothelial cells. Methods and results We demonstrate primary location of human, mouse, and bovine endothelial PDE5A at or near caveolae. We found that the spatial localization of PDE5A at the level of caveolin-rich lipid rafts allows for a feedback loop between endothelial PDE5A and nitric oxide synthase (NOS3). Treatment of human endothelium with PDE5A inhibitors resulted in a significant increase in NOS3 activity, whereas overexpression of PDE5A using an adenoviral vector, both in vivo and in cell culture, resulted in decreased NOS3 activity and endothelium-dependent vasodilation. The molecular mechanism responsible for these interactions is primarily regulated by cGMP-dependent second messenger. PDE5A overexpression also resulted in a significant decrease in protein kinase 1 (PKG1) activity. Overexpression of PKG1 rapidly activated NOS3, whereas silencing of the PKG1 gene with siRNA inhibited both NOS3 phosphorylation (S1179) and activity, indicating a novel role for PKG1 in direct regulation of NOS3. Conclusion Our data collectively suggest another target for PDE5A inhibition in endothelial dysfunction and provide another physiologic significance for PDE5A in the modulation of endothelial-dependent flow-mediated vasodilation. Using both in vitro and in vivo models, as well as human data, we show that inhibition of endothelial PDE5A improves endothelial function. PMID:21421555

  7. Phosphodiesterase-5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity.

    PubMed

    Gebska, Milena A; Stevenson, Blake K; Hemnes, Anna R; Bivalacqua, Trinity J; Haile, Azeb; Hesketh, Geoffrey G; Murray, Christopher I; Zaiman, Ari L; Halushka, Marc K; Krongkaew, Nispa; Strong, Travis D; Cooke, Carol A; El-Haddad, Hazim; Tuder, Rubin M; Berkowitz, Dan E; Champion, Hunter C

    2011-05-01

    It has been well demonstrated that phosphodiesterase-5A (PDE5A) is expressed in smooth muscle cells and plays an important role in regulation of vascular tone. The role of endothelial PDE5A, however, has not been yet characterized. The present study was undertaken to determine the presence, localization, and potential physiologic significance of PDE5A within vascular endothelial cells. We demonstrate primary location of human, mouse, and bovine endothelial PDE5A at or near caveolae. We found that the spatial localization of PDE5A at the level of caveolin-rich lipid rafts allows for a feedback loop between endothelial PDE5A and nitric oxide synthase (NOS3). Treatment of human endothelium with PDE5A inhibitors resulted in a significant increase in NOS3 activity, whereas overexpression of PDE5A using an adenoviral vector, both in vivo and in cell culture, resulted in decreased NOS3 activity and endothelium-dependent vasodilation. The molecular mechanism responsible for these interactions is primarily regulated by cGMP-dependent second messenger. PDE5A overexpression also resulted in a significant decrease in protein kinase 1 (PKG1) activity. Overexpression of PKG1 rapidly activated NOS3, whereas silencing of the PKG1 gene with siRNA inhibited both NOS3 phosphorylation (S1179) and activity, indicating a novel role for PKG1 in direct regulation of NOS3. Our data collectively suggest another target for PDE5A inhibition in endothelial dysfunction and provide another physiologic significance for PDE5A in the modulation of endothelial-dependent flow-mediated vasodilation. Using both in vitro and in vivo models, as well as human data, we show that inhibition of endothelial PDE5A improves endothelial function.

  8. Lack of association between endothelial nitric oxide synthase (NOS3) gene polymorphisms and suicide attempts

    PubMed Central

    Sáiz, Pilar A; García-Portilla, Maria P; Paredes, Begoña; Arango, Celso; Morales, Blanca; Alvarez, Victoria; Coto E, Eliecer; Bascarán, Teresa; Bousoño, Manuel; Bobes, Julio

    2007-01-01

    Objective The aim of this study is to investigate the association between two polymorphisms of endothelial nitric oxide synthase (NOS3) and suicide attempts. Methods We genotyped 186 suicide attempters and 420 unrelated healthy controls. The following polymorphisms were analysed: T-786C and 27-bp repeat in intron 4. Results No significant differences were found in genotype or in allelic distribution of the aforesaid polymorphisms. There were also no differences in the genotype distribution or allelic frequencies when separately assessing males and females or impulsive and non-impulsive attempters and normal controls. Estimated haplotype frequencies were similar in both groups. Conclusion Our data do not support the hypothesis that genetically determined changes in the NOS3 gene confer increased susceptibility for suicidal behavior. PMID:17605790

  9. Silencing of GSTP1, a Prostate Cancer Prognostic Gene, by the Estrogen Receptor-β and Endothelial Nitric Oxide Synthase Complex

    PubMed Central

    Re, A.; Aiello, A.; Nanni, S.; Grasselli, A.; Benvenuti, V.; Pantisano, V.; Strigari, L.; Colussi, C.; Ciccone, S.; Mazzetti, A. P.; Pierconti, F.; Pinto, F.; Bassi, P.; Gallucci, M.; Sentinelli, S.; Trimarchi, F.; Bacchetti, S.; Pontecorvi, A.; Lo Bello, M.

    2011-01-01

    We recently identified in prostate tumors (PCa) a transcriptional prognostic signature comprising a significant number of genes differentially regulated in patients with worse clinical outcome. Induction of up-regulated genes was due to chromatin remodeling by a combinatorial complex between estrogen receptor (ER)-β and endothelial nitric oxide synthase (eNOS). Here we show that this complex can also repress transcription of prognostic genes that are down-regulated in PCa, such as the glutathione transferase gene GSTP1. Silencing of GSTP1 is a common early event in prostate carcinogenesis, frequently caused by promoter hypermethylation. We validated loss of glutathione transferase (GST) P1-1 expression in vivo, in tissue microarrays from a retrospective cohort of patients, and correlated it with decreased disease-specific survival. Furthermore, we show that in PCa cultured cells ERβ/eNOS causes GSTP1 repression by being recruited at estrogen responsive elements in the gene promoter with consequential remodeling of local chromatin. Treatment with ERβ antagonist or its natural ligand 5α-androstane-3β,17β-diol, eNOS inhibitors or ERβ small interference RNA abrogated the binding and reversed GSTP1 silencing, demonstrating the direct involvement of the complex. In vitro, GSTP1 silencing by ERβ/eNOS was specific for cells from patients with worse clinical outcome where it appeared the sole mechanism regulating GSTP1 expression because no promoter hypermethylation was present. However, in vivo chromatin immunoprecipitation assays on fresh PCa tissues demonstrated that silencing by ERβ/eNOS can coexist with promoter hypermethylation. Our findings reveal that the ERβ/eNOS complex can exert transcriptional repression and suggest that this may represent an epigenetic event favoring inactivation of the GSTP1 locus by methylation. Moreover, abrogation of ERβ/eNOS function by 3β-adiol emphasizes the significance of circulating or locally produced sex steroid hormones

  10. Reversal of SIN-1-induced eNOS dysfunction by the spin trap, DMPO, in bovine aortic endothelial cells via eNOS phosphorylation

    PubMed Central

    Das, Amlan; Gopalakrishnan, Bhavani; Druhan, Lawrence J; Wang, Tse-Yao; De Pascali, Francesco; Rockenbauer, Antal; Racoma, Ira; Varadharaj, Saradhadevi; Zweier, Jay L; Cardounel, Arturo J; Villamena, Frederick A

    2014-01-01

    Background and Purpose Nitric oxide (NO) derived from eNOS is mostly responsible for the maintenance of vascular homeostasis and its decreased bioavailability is characteristic of reactive oxygen species (ROS)-induced endothelial dysfunction (ED). Because 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a commonly used spin trap, can control intracellular nitroso-redox balance by scavenging ROS and donating NO, it was employed as a cardioprotective agent against ED but the mechanism of its protection is still not clear. This study elucidated the mechanism of protection by DMPO against SIN-1-induced oxidative injury to bovine aortic endothelial cells (BAEC). Experimental Approach BAEC were treated with SIN-1, as a source of peroxynitrite anion (ONOO−), and then incubated with DMPO. Cytotoxicity following SIN-1 alone and cytoprotection by adding DMPO was assessed by MTT assay. Levels of ROS and NO generation from HEK293 cells transfected with wild-type and mutant eNOS cDNAs, tetrahydrobiopterin bioavailability, eNOS activity, eNOS and Akt kinase phosphorylation were measured. Key Results Post-treatment of cells with DMPO attenuated SIN-1-mediated cytotoxicity and ROS generation, restoration of NO levels via increased in eNOS activity and phospho-eNOS levels. Treatment with DMPO alone significantly increased NO levels and induced phosphorylation of eNOS Ser1179 via Akt kinase. Transfection studies with wild-type and mutant human eNOS confirmed the dual role of eNOS as a producer of superoxide anion (O2−) with SIN-1 treatment, and a producer of NO in the presence of DMPO. Conclusion and Implications Post-treatment with DMPO of oxidatively challenged cells reversed eNOS dysfunction and could have pharmacological implications in the treatment of cardiovascular diseases. PMID:24405159

  11. Resveratrol Prevented Lipopolysaccharide-Induced Endothelial Dysfunction in Rat Thoracic Aorta Through Increased eNOS Expression

    PubMed Central

    Uğurel, Seda Sultan; Kuşçu, Nilay; Özenci, Çiler Çelik; Dalaklıoğlu, Selvinaz; Taşatargil, Arda

    2016-01-01

    Background: The cardiovascular benefits of Resveratrol (RVT) have been well established by previous experimental and clinical studies. Aims: The goal of this study was to test the effectiveness of RVT administration on the impaired endothelial function induced by lipopolysaccharide (LPS), and to elucidate the role of endothelial nitric oxide synthase (eNOS)/Sirtuin 1 (SIRT1) pathway. Study Design: Animal experiment. Methods: Endotoxemia was induced by intraperitoneal injection of 10 mg/kg LPS, and the thoracic aorta was isolated six hours later. RVT was injected intraperitoneally 15 minutes before LPS administration. Six hours after LPS injection, potassium chloride (KCl), phenylephrine (Phe), acetylcholine (ACh), and sodium nitroprusside (SNP) were used to examine to vascular reactivity and endothelial function. eNOS, phospho-eNOS (p-eNOS) (Ser 1177), and SIRT1 expressions in thoracic aorta were evaluated by Western blot. Results: LPS administration significantly inhibited the relaxation response induced by ACh, while the relaxation to SNP was not significantly altered. Phe- and KCl-induced contractile responses in the thoracic aorta significantly decreased in LPS-injected group. eNOS and p-eNOS expression decreased significantly in arteries obtained from LPS group rats. The impaired vasoreactivity as well as decreased expressions of eNOS, p-eNOS, and SIRT1 in vessels from LPS-injected rats were improved by RVT treatment. Conclusion: The endothelium-dependent vasodilatation of the thoracic aorta was significantly inhibited by LPS administration, and RVT treatment may improve vascular endothelial function. The protective effect of RVT might be associated with increased eNOS expression and activity. PMID:27403381

  12. Endothelial function does not improve with high-intensity continuous exercise training in SHR: implications of eNOS uncoupling.

    PubMed

    Battault, Sylvain; Singh, François; Gayrard, Sandrine; Zoll, Joffrey; Reboul, Cyril; Meyer, Grégory

    2016-02-01

    Exercise training is a well-recognized way to improve vascular endothelial function by increasing nitric oxide (NO) bioavailability. However, in hypertensive subjects, unlike low- and moderate-intensity exercise training, the beneficial effects of continuous high-intensity exercise on endothelial function are not clear, and the underlying mechanisms remain unknown. The aim of this study was to investigate the impact of high-intensity exercise on vascular function, especially on the NO pathway, in spontaneous hypertensive rats (SHR). These effects were studied on WKY, sedentary SHR and SHR that exercised at moderate (SHR-MOD) and high intensity (SHR-HI) on a treadmill (1 h per day; 5 days per week for 6 weeks at 55% and 80% of their maximal aerobic velocity, respectively). Endothelial function and specific NO contributions to acetylcholine-mediated relaxation were evaluated by measuring the aortic ring isometric forces. Endothelial nitric oxide synthase (eNOS) expression and phosphorylation (ser1177) were evaluated by western blotting. The total aortic and eNOS-dependent reactive oxygen species (ROS) production was assessed using electron paramagnetic resonance in aortic tissue. Although the aortas of SHR-HI had increased eNOS levels without alteration of eNOS phosphorylation, high-intensity exercise had no beneficial effect on endothelium-dependent vasorelaxation, unlike moderate exercise. This result was associated with increased eNOS-dependent ROS production in the aortas of SHR-HI. Notably, the use of the recoupling agent BH4 or a thiol-reducing agent blunted eNOS-dependent ROS production in the aortas of SHR-HI. In conclusion, the lack of a positive effect of high-intensity exercise on endothelial function in SHR was mainly explained by redox-dependent eNOS uncoupling, resulting in a switch from NO to O2(-) generation.

  13. Mg-supplementation Protects Against Ritonavir-mediated Endothelial Oxidative Stress and Hepatic eNOS Downregulation

    PubMed Central

    Chen, Xi; Mak, I.Tong

    2014-01-01

    Ritonavir (RTV), a prototypical protease inhibitor currently used as a key component for anti-HIV therapy, is known for its endothelial and hepatic toxicity. The effects of RTV and Mg-supplementation on cultured bovine endothelial cells (EC) and rat hepatic endothelial nitric oxide synthase (eNOS) status were investigated. RTV dose-dependently (5–30µM) decreased EC viability after 48hrs; high Mg (2 mM) significantly attenuated the lost viability. ECs incubated with 15 µM RTV for 6 to 24 hrs. resulted in 2–4-fold elevation of oxidized glutathione and a 25% loss of total glutathione. At 24 hrs., EC superoxide production due to RTV was detected by dihydroethidium staining, and increased 41% when quantified by flow cytometry; both altered glutathione status and superoxide levels were substantially reversed by 2 mM Mg. RTV reduced eNOS mRNA (−25% at 24 hrs.), and led to decreased eNOS dimer/monomer ratios; nitric oxide (NO)-derived products decreased 40%; both changes were attenuated by Mg-supplementation. In male LewXBrown-Norway rats, RTV administration (75 mg/kg/day, 5 weeks) resulted in an 85% increase in plasma 8-isoprostane, a 30% decrease of hepatic eNOS mRNA; concomitantly, eNOS protein decreased 72%, whereas plasma nitrite level was reduced 49%. Dietary Mg-supplementation (6-fold higher than control) prevented the eNOS mRNA decrease along with lowering 8-isoprostane, and restored the eNOS protein and plasma nitrite levels comparable to controls. Conclusion Mg attenuates RTV-mediated EC oxidative eNOS dysfunction, and down-regulation of hepatic eNOS expression; we suggest that Mg can serve as a beneficial adjunct therapeutic against RTV-mediated eNOS toxicity. PMID:24434120

  14. Ceramide mediates inhibition of the Akt/eNOS pathway by high levels of glucose in human vascular endothelial cells.

    PubMed

    Wang, Aimin; Li, Chun; Liao, Jie; Dong, Min; Xiao, Zhiming; Lei, Minxiang

    2013-01-01

    To investigate how ceramide mediates the effects of high-glucose-induced inhibition of the Akt/endothelial nitric oxide synthase (eNOS) signalling pathway in human vascular endothelial cells (HUVECs). NO levels were determined by ELISA. Endogenous ceramide levels were determined using a liquid chromatography-mass spectrometry assay. Akt and eNOS protein expressions were determined by Western blotting. High-glucose levels induce ceramide accumulation in a dose- and time-dependent manner (p<0.05). We also show that exposure of HUVECs to high-glucose conditions inhibits the insulin-mediated activation of Akt/eNOS signalling and the subsequent NO generation in a dose-dependent manner (p<0.05). Preventing de novo ceramide synthesis attenuated the antagonistic effects of high-glucose levels on the Akt/eNOS signalling pathway (p<0.05); conversely, inducing ceramide build-up augmented the inhibitory effects of high-glucose levels on the Akt/eNOS signalling pathway (p<0.05). Ceramide is both necessary and sufficient for mediating the inhibition of the Akt/eNOS signalling pathway by high-glucose levels in endothelial cells.

  15. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection.

  16. Development of confocal immunofluorescence FRET microscopy to Investigate eNOS and GSNOR localization and interaction in pulmonary endothelial cells

    NASA Astrophysics Data System (ADS)

    Rehman, Shagufta; Brown-Steinke, Kathleen; Palmer, Lisa; Periasamy, Ammasi

    2015-03-01

    Confocal FRET microscopy is a widely used technique for studying protein-protein interactions in live or fixed cells. Endothelial nitric oxide synthase (eNOS) and S-nitrosoglutathione reductase (GSNOR) are enzymes involved in regulating the bioavailability of S-nitrosothiols (SNOs) in the pulmonary endothelium and have roles in the development of pulmonary arterial hypertension. Labeling of endogenous proteins to better understand a disease process can be challenging. We have used immunofluorescence to detect endogenous eNOS and GSNOR in primary pulmonary endothelial cells to co-localize these proteins as well as to study their interaction by FRET. The challenge has been in selecting the right immunofluorescence labeling condition, right antibody, the right blocking reagent, the right FRET pair and eliminating cross-reactivity of secondary antibodies. We have used Alexa488 and Alexa568 as a FRET pair. After a series of optimizations, the data from Confocal Laser Scanning Microscopy (CLSM) demonstrate co-localization of eNOS and GSNOR in the perinuclear region of the pulmonary endothelial cell primarily within the cis-Golgi with lower levels of co-localization seen within the trans-Golgi. FRET studies demonstrate, for the first time, interaction between eNOS and GSNOR in both murine and bovine pulmonary endothelial cells. Further characterization of eNOSGSNOR interaction and the subcellular location of this interaction will provide mechanistic insight into the importance of S-nitrosothiol signaling in pulmonary biology, physiology and pathology.

  17. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases

    PubMed Central

    Di Lorenzo, Annarita; Lin, Michelle I.; Murata, Takahisa; Landskroner-Eiger, Shira; Schleicher, Michael; Kothiya, Milankumar; Iwakiri, Yasuko; Yu, Jun; Huang, Paul L.; Sessa, William C.

    2013-01-01

    Summary Transient disruption of endothelial adherens junctions and cytoskeletal remodeling are responsible for increases in vascular permeability induced by inflammatory stimuli and vascular endothelial growth factor (VEGF). Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is crucial for VEGF-induced changes in permeability in vivo; however, the molecular mechanism by which endogenous NO modulates endothelial permeability is not clear. Here, we show that the lack of eNOS reduces VEGF-induced permeability, an effect mediated by enhanced activation of the Rac GTPase and stabilization of cortical actin. The loss of NO increased the recruitment of the Rac guanine-nucleotide-exchange factor (GEF) TIAM1 to adherens junctions and VE-cadherin (also known as cadherin 5), and reduced Rho activation and stress fiber formation. In addition, NO deficiency reduced VEGF-induced VE-cadherin phosphorylation and impaired the localization, but not the activation, of c-Src to cell junctions. The physiological role of eNOS activation is clear given that VEGF-, histamine- and inflammation-induced vascular permeability is reduced in mice bearing a non-phosphorylatable knock-in mutation of the key eNOS phosphorylation site S1176. Thus, NO is crucial for Rho GTPase-dependent regulation of cytoskeletal architecture leading to reversible changes in vascular permeability. PMID:24046447

  18. Estrogen signaling in microvascular arteries: parturition reduces vasodilation by reducing 17β-estradiol and nNOS.

    PubMed

    Royal, Crista R; Ma, Handong; Walker, Richard; White, Richard E

    2011-01-01

    Few studies have examined the potential effects of childbirth on the responses of the female vasculature--especially the resistance microvasculature of non-reproductive tissues. In the present study we have investigated the response of mesenteric microvascular resistance vessels to estrogen (E2), an important vasoactive hormone. Vessels were obtained from either nulliparous or postpartum female Sprague-Dawley rats, and isometric tension studies were performed. We found that E2 induced a concentration-dependent, endothelium-independent relaxation of microvessels precontracted with 10(-5) M phenylephrine; however, E2-induced relaxation was reduced by nearly half in vessels from postpartum animals compared to nulliparous controls. Inhibiting nitric oxide synthase activity with 10(-4) M L-NMMA or L-NPA (which exhibits selectivity for type 1 or nNOS) attenuated the relaxation effect of E2 on arteries from nulliparous animals. In contrast, L-NPA had little effect on arteries from postpartum animals, suggesting a reduced influence of nNOS after parturition. Moreover, expression of nNOS protein in microvessels was decreased 39% in the postpartum state compared to arteries from nulliparous animals. We propose that the impaired E2-induced relaxation response of microvessels from postpartum animals reflects a downregulation of NO production due to lower nNOS expressed in vascular smooth muscle cells. We measured a 73% decrease in serum E2 levels in the postpartum state compared to nulliparous animals. Because E2 has been shown to increase nNOS protein expression, we propose that lower E2 levels after parturition decrease expression of nNOS, leading to a reduced vasodilatory capacity of resistance microvessels.

  19. Endothelial NOS-dependent activation of c-Jun NH(2)- terminal kinase by oxidized low-density lipoprotein

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Levonen, A. L.; Moellering, D.; Ramachandran, A.; Patel, R. P.; Jo, H.; Darley-Usmar, V. M.

    2001-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to activate a number of signal transduction pathways in endothelial cells. Among these are the c-Jun NH(2)-terminal kinase (JNK), also known as stress-activated protein kinase, and extracellular signal-regulated kinase (ERK). These mitogen-activated protein kinases (MAP kinase) determine cell survival in response to environmental stress. Interestingly, JNK signaling involves redox-sensitive mechanisms and is activated by reactive oxygen and nitrogen species derived from both NADPH oxidases, nitric oxide synthases (NOS), peroxides, and oxidized low-density lipoprotein (oxLDL). The role of endothelial NOS (eNOS) in the activation of JNK in response to oxLDL has not been examined. Herein, we show that on exposure of endothelial cells to oxLDL, both ERK and JNK are activated through independent signal transduction pathways. A key role of eNOS activation through a phosphatidylinositol-3-kinase-dependent mechanism leading to phosphorylation of eNOS is demonstrated for oxLDL-dependent activation of JNK. Moreover, we show that activation of ERK by oxLDL is critical in protection against the cytotoxicity of oxLDL.

  20. Endothelial NOS-dependent activation of c-Jun NH(2)- terminal kinase by oxidized low-density lipoprotein

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Levonen, A. L.; Moellering, D.; Ramachandran, A.; Patel, R. P.; Jo, H.; Darley-Usmar, V. M.

    2001-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to activate a number of signal transduction pathways in endothelial cells. Among these are the c-Jun NH(2)-terminal kinase (JNK), also known as stress-activated protein kinase, and extracellular signal-regulated kinase (ERK). These mitogen-activated protein kinases (MAP kinase) determine cell survival in response to environmental stress. Interestingly, JNK signaling involves redox-sensitive mechanisms and is activated by reactive oxygen and nitrogen species derived from both NADPH oxidases, nitric oxide synthases (NOS), peroxides, and oxidized low-density lipoprotein (oxLDL). The role of endothelial NOS (eNOS) in the activation of JNK in response to oxLDL has not been examined. Herein, we show that on exposure of endothelial cells to oxLDL, both ERK and JNK are activated through independent signal transduction pathways. A key role of eNOS activation through a phosphatidylinositol-3-kinase-dependent mechanism leading to phosphorylation of eNOS is demonstrated for oxLDL-dependent activation of JNK. Moreover, we show that activation of ERK by oxLDL is critical in protection against the cytotoxicity of oxLDL.

  1. Intact mitochondrial Ca2+ uniport is essential for agonist-induced activation of endothelial nitric oxide synthase (eNOS)

    PubMed Central

    Charoensin, Suphachai; Eroglu, Emrah; Opelt, Marissa; Bischof, Helmut; Madreiter-Sokolowski, Corina T.; Kirsch, Andrijana; Depaoli, Maria R.; Frank, Saša; Schrammel, Astrid; Mayer, Bernd; Waldeck-Weiermair, Markus; Graier, Wolfgang F.; Malli, Roland

    2017-01-01

    Mitochondrial Ca2+ uptake regulates diverse endothelial cell functions and has also been related to nitric oxide (NO•) production. However, it is not entirely clear if the organelles support or counteract NO• biosynthesis by taking up Ca2+. The objective of this study was to verify whether or not mitochondrial Ca2+ uptake influences Ca2+-triggered NO• generation by endothelial NO• synthase (eNOS) in an immortalized endothelial cell line (EA.hy926), respective primary human umbilical vein endothelial cells (HUVECs) and eNOS-RFP (red fluorescent protein) expressing human embryonic kidney (HEK293) cells. We used novel genetically encoded fluorescent NO• probes, the geNOps, and Ca2+ sensors to monitor single cell NO• and Ca2+ dynamics upon cell treatment with ATP, an inositol 1,4,5-trisphosphate (IP3)-generating agonist. Mitochondrial Ca2+ uptake was specifically manipulated by siRNA-mediated knock-down of recently identified key components of the mitochondrial Ca2+ uniporter machinery. In endothelial cells and the eNOS-RFP expressing HEK293 cells we show that reduced mitochondrial Ca2+ uptake upon the knock-down of the mitochondrial calcium uniporter (MCU) protein and the essential MCU regulator (EMRE) yield considerable attenuation of the Ca2+-triggered NO• increase independently of global cytosolic Ca2+ signals. The knock-down of mitochondrial calcium uptake 1 (MICU1), a gatekeeper of the MCU, increased both mitochondrial Ca2+ sequestration and Ca2+-induced NO• signals. The positive correlation between mitochondrial Ca2+ elevation and NO• production was independent of eNOS phosphorylation at serine1177. Our findings emphasize that manipulating mitochondrial Ca2+ uptake may represent a novel strategy to control eNOS-mediated NO• production. PMID:27923677

  2. A NOS3 polymorphism determines endothelial response to folate in children with type 1 diabetes or obesity.

    PubMed

    Wiltshire, Esko J; Peña, Alexia S; MacKenzie, Karen; Bose-Sundernathan, Tulika; Gent, Roger; Couper, Jennifer J

    2015-02-01

    To determine the effect of polymorphisms in NOS3 and folate pathway enzymes on vascular function and folate status and endothelial response to folate in children with diabetes or obesity. A total of 244 subjects (age 13.8 ± 2.8 years, 125 males) were studied for NOS3 and/or folate pathway polymorphisms using polymerase chain reaction/restriction fragment length polymorphism, including at baseline: 139 with type 1 diabetes; 58 with obesity; and 47 controls. The effect of NOS3 genotype on endothelial response to folate (5 mg) was assessed in 85 subjects with diabetes and 28 obese subjects who received active treatment during intervention trials. Vascular function (flow-mediated dilatation [FMD] and glyceryl trinitrate-mediated dilatation), clinical, and biochemical measurements were assessed at baseline and 8 weeks in folate intervention studies. Folate pathway enzyme and NOS3 polymorphisms did not significantly affect baseline vascular function. The polymorphism in intron 4 of endothelial nitric oxide synthase altered endothelial response to folate significantly: in subjects with diabetes FMD improved by 6.4 ± 5% (insertion carriers) vs 2.3 ± 6.6% (deletion carriers), P = .01; in obese subjects FMD improved by 1.8 ± 5.4% (insertion carriers) and deteriorated by -3.2 ± 7.2% (deletion carriers), P = .05. More subjects carrying the insertion normalized FMD after folate supplementation (insertion 64% vs deletion 28%, χ(2) = 10.14, P = .001). A NOS3 polymorphism predicts endothelial response to folate in children with diabetes or obesity, with implications for vascular risk and folate intervention studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Alcohol consumption negates estrogen-mediated myocardial repair in ovariectomized mice by inhibiting endothelial progenitor cell mobilization and function.

    PubMed

    Mackie, Alexander R; Krishnamurthy, Prasanna; Verma, Suresh K; Thorne, Tina; Ramirez, Veronica; Qin, Gangjian; Abramova, Tatiana; Hamada, Hiromichi; Losordo, Douglas W; Kishore, Raj

    2013-06-21

    We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.

  4. Alcohol Consumption Negates Estrogen-mediated Myocardial Repair in Ovariectomized Mice by Inhibiting Endothelial Progenitor Cell Mobilization and Function*

    PubMed Central

    Mackie, Alexander R.; Krishnamurthy, Prasanna; Verma, Suresh K.; Thorne, Tina; Ramirez, Veronica; Qin, Gangjian; Abramova, Tatiana; Hamada, Hiromichi; Losordo, Douglas W.; Kishore, Raj

    2013-01-01

    We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair. PMID:23645678

  5. Up-regulation of the RhoA/Rho-kinase signaling pathway in corpus cavernosum from endothelial nitric-oxide synthase (NOS), but not neuronal NOS, null mice.

    PubMed

    Priviero, Fernanda B M; Jin, Li-Ming; Ying, Zhekang; Teixeira, Cleber E; Webb, R Clinton

    2010-04-01

    We tested the hypothesis that the basal release of nitric oxide (NO) from endothelial cells modulates contractile activity in the corpus cavernosum (CC) via inhibition of the RhoA/Rho-kinase signaling pathway. Cavernosal strips from wild-type (WT), endothelial nitric-oxide synthase knockout [eNOS(-/-)], and neuronal nitric-oxide synthase knockout [nNOS(-/-)] mice were mounted in myographs, and isometric force was recorded. mRNA and protein expression of key molecules in the RhoA/Rho-kinase pathway were analyzed by real-time polymerase chain reaction and Western blot, respectively. The cGMP levels were determined. The Rho-kinase inhibitors (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl] homopiperazine (H-1152) reduced cavernosal contractions evoked by phenylephrine or electrical field stimulation (EFS) in a concentration-dependent manner, although this inhibition was less effective in tissues from eNOS(-/-) mice. Y-27632 enhanced relaxations induced by sodium nitroprusside, EFS, and NO (administered as acidified NaNO2) without affecting the cGMP content of the cavernosal strips. This enhancement was less prominent in CC from eNOS(-/-). The protein expression of RhoA, Rho-guanine dissociation inhibitor, and Rho-kinase beta did not differ among the strains. However, in eNOS(-/-) CC, the protein expression of Rho-kinase alpha and both mRNA and protein expression of p115-Rho-associated guanine exchange factor (RhoGEF), PDZ-RhoGEF, and leukemia-associated RhoGEF were up-regulated. Phosphorylation of MYPT1 at Thr696 was higher in tissues from eNOS(-/-) mice. A high concentration of Y-27632 significantly enhanced NO release in CC stimulated by EFS. These results suggest a basal release of NO from endothelial cells, which inhibits contractions mediated by the RhoA/Rho-kinase pathway and modulates the expression of proteins related to this pathway in mouse CC. It indicates that

  6. Up-Regulation of the RhoA/Rho-Kinase Signaling Pathway in Corpus Cavernosum from Endothelial Nitric-Oxide Synthase (NOS), but Not Neuronal NOS, Null Mice

    PubMed Central

    Jin, Li-Ming; Ying, Zhekang; Teixeira, Cleber E.; Webb, R. Clinton

    2010-01-01

    We tested the hypothesis that the basal release of nitric oxide (NO) from endothelial cells modulates contractile activity in the corpus cavernosum (CC) via inhibition of the RhoA/Rho-kinase signaling pathway. Cavernosal strips from wild-type (WT), endothelial nitric-oxide synthase knockout [eNOS(−/−)], and neuronal nitric-oxide synthase knockout [nNOS(−/−)] mice were mounted in myographs, and isometric force was recorded. mRNA and protein expression of key molecules in the RhoA/Rho-kinase pathway were analyzed by real-time polymerase chain reaction and Western blot, respectively. The cGMP levels were determined. The Rho-kinase inhibitors (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl] homopiperazine (H-1152) reduced cavernosal contractions evoked by phenylephrine or electrical field stimulation (EFS) in a concentration-dependent manner, although this inhibition was less effective in tissues from eNOS(−/−) mice. Y-27632 enhanced relaxations induced by sodium nitroprusside, EFS, and NO (administered as acidified NaNO2) without affecting the cGMP content of the cavernosal strips. This enhancement was less prominent in CC from eNOS(−/−). The protein expression of RhoA, Rho-guanine dissociation inhibitor, and Rho-kinase β did not differ among the strains. However, in eNOS(−/−) CC, the protein expression of Rho-kinase α and both mRNA and protein expression of p115-Rho-associated guanine exchange factor (RhoGEF), PDZ-RhoGEF, and leukemia-associated RhoGEF were up-regulated. Phosphorylation of MYPT1 at Thr696 was higher in tissues from eNOS(−/−) mice. A high concentration of Y-27632 significantly enhanced NO release in CC stimulated by EFS. These results suggest a basal release of NO from endothelial cells, which inhibits contractions mediated by the RhoA/Rho-kinase pathway and modulates the expression of proteins related to this pathway in mouse CC. It

  7. Altered Endometrial Expression of Endothelial Nitric oxide Synthase (eNOS) in women with Unexplained Recurrent Miscarriage and Infertility

    PubMed Central

    Najafi, Tohid; Novin, Marefat Ghaffari; Ghazi, Reza; Khorram, Omid

    2012-01-01

    Background Endothelial nitric oxide synthase (eNOS) has diverse roles in the female reproductive system including a role in blastocyst implantation. Aberrant expression of eNOS could therefore be significant in the pathogenesis of disorders of implantation Materials and Methods eNOS protein and mRNA levels in the endometrium of women with recurrent miscarriages, unexplained infertility, and a control group was determined by compartmental quantitative immunohistochemistry and real time RT-PCR Results eNOS was immunolocalized to all layers of the endometrium and the vascular endothelium. eNOS protein expression was higher in glandular epithelium (P=0.004) and luminal epithelium (P=0.002) but not vascular endothelium and stroma (P=0.14) in women with recurrent miscarriage. Similarly, in women with unexplained infertility eNOS expression was significantly higher (P<0.03) in luminal epithelium but not in any other compartments compared with the control group. The levels of mRNA expression as determined by real time RT-PCR confirmed the protein data demonstrating higher eNOS mRNA expression In the endometrium of women with recurrent miscarriage and unexplained infertility compared with controls Conclusion Increased expression of eNOS in glandular and luminal epithelium of the endometrium in women with recurrent miscarriages and unexplained infertility suggests a detrimental effect of excess nitric oxide in endometrial receptivity and implantation PMID:22877939

  8. Endothelial AMPK Activation Induces Mitochondrial Biogenesis and Stress Adaptation via eNOS-Dependent mTORC1 Signaling

    PubMed Central

    Li, Chunying; Reif, Michaella M; Craige, Siobhan; Kant, Shashi; Keaney, John F.

    2016-01-01

    Metabolic stress sensors like AMP-activated protein kinase (AMPK) are known to confer stress adaptation and promote longevity in lower organisms. This study demonstrates that activating the metabolic stress sensor AMP-activated protein kinase (AMPK) in endothelial cells helps maintain normal cellular function by promoting mitochondrial biogenesis and stress adaptation. To better define the mechanisms whereby AMPK promotes endothelial stress resistance, we used 5-aminoimidazole-4-carboxamide riboside (AICAR) to chronically activate AMPK and observed stimulation of mitochondrial biogenesis in wild type mouse endothelium, but not in endothelium from endothelial nitric oxide synthase knockout (eNOS-null) mice. Interestingly, AICAR-enhanced mitochondrial biogenesis was blocked by pretreatment with the mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin. Further, AICAR stimulated mTORC1 as determined by phosphorylation of its known downstream effectors in wild type, but not eNOS-null, endothelial cells. Together these data indicate that eNOS is needed to couple AMPK activation to mTORC1 and thus promote mitochondrial biogenesis and stress adaptation in the endothelium. These data suggest a novel mechanism for mTORC1 activation that is significant for investigations in vascular dysfunction. PMID:26989010

  9. Regulation of Endothelial Glutathione by ICAM-1 governs VEGF-A mediated eNOS Activity and Angiogenesis

    PubMed Central

    Langston, Will; Chidlow, John H.; Booth, Blake A.; Barlow, Shayne C.; Lefer, David J.; Patel, Rakesh P.; Kevil, Christopher G.

    2007-01-01

    Previous studies suggest that inflammatory cell adhesion molecules may modulate endothelial cell migration and angiogenesis through unknown mechanisms. Using a combination of in vitro and in vivo approaches, herein we reveal a novel redox sensitive mechanism by which ICAM-1 modulates endothelial GSH that controls VEGF-A induced eNOS activity, endothelial chemotaxis, and angiogenesis. In vivo disk angiogenesis assays showed attenuated VEGF-A mediated angiogenesis in ICAM-1−/− mice. Moreover, VEGF-A dependent chemotaxis, eNOS phosphorylation, and nitric oxide (NO) production were impaired in ICAM-1−/− MAEC compared to WT MAEC. Decreasing intracellular GSH in ICAM-1−/− MAEC to levels observed in WT MAEC with 150 μM buthionine sulfoximine (BSO) restored VEGF-A responses. Conversely, GSH supplementation of WT MAEC with 5 mM glutathione ethyl ester (GEE) mimicked defects observed in ICAM-1−/− cells. Deficient angiogenic responses in ICAM-1−/− cells were associated with increased expression of the lipid phosphatase, PTEN, consistent with antagonism of signaling pathways leading to eNOS activation. PTEN expression was also sensitive to GSH status, decreasing or increasing in proportion to intracellular GSH concentrations. These data suggest a novel role for ICAM-1 in modulating VEGF-A induced angiogenesis and eNOS activity through regulation of PTEN expression via modulation of intracellular GSH status. PMID:17291995

  10. Pretreatment with β-Boswellic Acid Improves Blood Stasis Induced Endothelial Dysfunction: Role of eNOS Activation

    PubMed Central

    Wang, Mingming; Chen, Minchun; Ding, Yi; Zhu, Zhihui; Zhang, Yikai; Wei, Peifeng; Wang, Jingwen; Qiao, Yi; Li, Liang; Li, Yuwen; Wen, Aidong

    2015-01-01

    Vascular endothelial cells play an important role in modulating anti-thrombus and maintaining the natural function of vascular by secreting many active substances. β-boswellic acid (β-BA) is an active triterpenoid compound from the extract of boswellia serrate. In this study, it is demonstrated that β-BA ameliorates plasma coagulation parameters, protects endothelium from blood stasis induced injury and prevents blood stasis induced impairment of endothelium-dependent vasodilatation. Moreover, it is found that β-BA significantly increases nitric oxide (NO) and cyclic guanosine 3’, 5’-monophosphate (cGMP) levels in carotid aortas of blood stasis rats. To stimulate blood stasis-like conditions in vitro, human umbilical vein endothelial cells (HUVECs) were exposed to transient oxygen and glucose deprivation (OGD). Treatment of β-BA significantly increased intracellular NO level. Western blot and immunofluorescence as well as immunohistochemistry reveal that β-BA increases phosphorylation of enzyme nitric oxide synthase (eNOS) at Ser1177. In addition, β-BA mediated endothelium-dependent vasodilatation can be markedly blocked by eNOS inhibitor L-NAME in blood stasis rats. In OGD treated HUEVCs, the protective effect of β-BA is attenuated by knockdown of eNOS. In conclusion, the above findings provide convincing evidence for the protective effects of β-BA on blood stasis induced endothelial dysfunction by eNOS signaling pathway. PMID:26482008

  11. Melasma treatment: A novel approach using a topical agent that contains an anti-estrogen and a vascular endothelial growth factor inhibitor.

    PubMed

    Cohen, Philip R

    2017-04-01

    Melasma is an acquired disorder of pigmentation that presents with asymptomatic symmetric darkening of the face. The pathogenesis of this condition is multifactorial and influenced by several factors including female sex hormones, genetic predisposition and ultraviolet light exposure. The management of melasma is usually directed at more than one of the causative etiologic factors and often incorporates a combination of topical agents, with or without the addition of physical modalities. Estrogen and angiogenesis are significant factors in the etiology of melasma. A useful addition to the therapeutic armentarium for treating melasma would include a topical agent that could effect both of these causative factors. Specifically, a topical preparation consisting of an anti-estrogen and a vascular endothelial growth factor inhibitor would accomplish this goal. Suitable candidates that target estrogen receptors and vascular endothelial growth factor are currently used in medical oncology as systemic antineoplastic agents. The anti-estrogen could be either a selective estrogen receptor modulator (such as tamoxifen or raloxifene) or an aromatase inhibitor (such as anastrozole or letrozole or exemestane). The vascular endothelial growth factor inhibitor would be bevacizumab. In conclusion, a novel-topically administered-therapy for melasma would combine an anti-estrogen and a vascular endothelial growth factor inhibitor.

  12. ET-1 Stimulates Superoxide Production by eNOS Following Exposure of Vascular Endothelial Cells to Endotoxin.

    PubMed

    Gopalakrishna, Deepak; Pennington, Samantha; Karaa, Amel; Clemens, Mark G

    2016-07-01

    It has been shown that microcirculation is hypersensitized to endothelin1 (ET-1) following endotoxin (lipopolysaccharide [LPS]) treatment leading to an increased vasopressor response. This may be related in part to decreased activation of endothelial nitric oxide synthase (eNOS) by ET-1. eNOS can also be uncoupled to produce superoxide (O2). This aberrant eNOS activity could further contribute to the hyperconstriction and injury caused by ET-1 following LPS. We therefore tested whether LPS affects ROS production by vascular endothelial cells and whether and how this effect is altered by ET-1. Human umbilical vein endothelial cells (HUVEC) or human microvascular endothelial cells (HMEC) were subjected to a 6-h treatment with LPS (250 ng/mL) or LPS and sepiapterin (100 μM) followed by a 30-min treatment with 100 μM L-Iminoethyl Ornithine (L-NIO) an irreversible eNOS inhibitor and 30-min treatment with ET-1 (10 nM). Conversion of [H]L-arginine to [H]L-citrulline was used to measure eNOS activity. Superoxide dismutase (SOD) inhibitable reduction of Cytochrome-C, dihydro carboxy fluorescein (DCF), and Mitosox was used to estimate ROS. LT-SDS PAGE was used to assess the degree of monomerization of the eNOS homodimer. Stimulation of HUVECs with ET-1 significantly increased NO synthesis by 1.4-fold (P < 0.05). ET-1 stimulation of LPS-treated HUVECs failed to increase NO production. Western blot for eNOS protein showed no change in eNOS protein levels. LPS alone resulted in an insignificant increase in ROS production as measured by cytochrome C that was increased 4.6-fold by ET-1 stimulation (P < 0.05). L-NIO significantly decreased ET-1-induced ROS production (P < 0.05). Sepiapterin significantly decreased ROS production in both; unstimulated and ET-1-stimulated LPS-treated groups, but did not restore NO production. DCF experiments confirmed intracellular ROS while Mitosox suggested a non-mitochondrial source. ET-1 treatment following a chronic LPS stress

  13. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS-NO-nitrite signaling.

    PubMed

    Yazji, Ibrahim; Sodhi, Chhinder P; Lee, Elizabeth K; Good, Misty; Egan, Charlotte E; Afrazi, Amin; Neal, Matthew D; Jia, Hongpeng; Lin, Joyce; Ma, Congrong; Branca, Maria F; Prindle, Thomas; Richardson, Ward M; Ozolek, John; Billiar, Timothy R; Binion, David G; Gladwin, Mark T; Hackam, David J

    2013-06-04

    Necrotizing enterocolitis (NEC) is a devastating disease of premature infants characterized by severe intestinal necrosis and for which breast milk represents the most effective protective strategy. Previous studies have revealed a critical role for the lipopolysaccharide receptor toll-like receptor 4 (TLR4) in NEC development through its induction of mucosal injury, yet the reasons for which intestinal ischemia in NEC occurs in the first place remain unknown. We hypothesize that TLR4 signaling within the endothelium plays an essential role in NEC development by regulating perfusion to the small intestine via the vasodilatory molecule endothelial nitric oxide synthase (eNOS). Using a unique mouse system in which we selectively deleted TLR4 from the endothelium, we now show that endothelial TLR4 activation is required for NEC development and that endothelial TLR4 activation impairs intestinal perfusion without effects on other organs and reduces eNOS expression via activation of myeloid differentiation primary response gene 88. NEC severity was significantly increased in eNOS(-/-) mice and decreased upon administration of the phosphodiesterase inhibitor sildenafil, which augments eNOS function. Strikingly, compared with formula, human and mouse breast milk were enriched in sodium nitrate--a precursor for enteral generation of nitrite and nitric oxide--and repletion of formula with sodium nitrate/nitrite restored intestinal perfusion, reversed the deleterious effects of endothelial TLR4 signaling, and reduced NEC severity. These data identify that endothelial TLR4 critically regulates intestinal perfusion leading to NEC and reveal that the protective properties of breast milk involve enhanced intestinal microcirculatory integrity via augmentation of nitrate-nitrite-NO signaling.

  14. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    SciTech Connect

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.

  15. Effect of melatonin and vitamin C on expression of endothelial NOS in heart of chronic alcoholic rats.

    PubMed

    Sönmez, M F; Narin, F; Akkuş, D; Ozdamar, S

    2009-07-01

    The aim of this study was to investigate the effects of melatonin and vitamin C on expression of endothelial nitric oxide synthase (NOS) in heart tissue of chronic alcoholic rats. Twenty-four adult male Wistar rats weighing 200-250 g were used in this study. Rats were divided into four groups. The first group served as control (n = 6). The second group was treated with ethanol (%7.2) for 28 days (n = 6), which was administered in artificial isocaloric diets. The third group was given ethanol and supplemented with 40 mg/kg vitamin C [intraperitoneally (i.p.)] (n = 6). The fourth group was given ethanol and supplemented with 4 mg/kg melatonin (i.p.) (n = 6). At the end of the experiment, rats were sacrificed and heart tissues were processed for immunohistochemistry analysis to endothelial NOS (eNOS). eNOS immunoreactivity showed heterogeneous distribution in control group. eNOS immunoreactivity was (+) in some myocytes and (++) in some others. Expression of eNOS in alcohol group was heterogeneous like control group but also stronger than that. Immunoreactivity was (+++) in myocytes near the epicardial zone and (++) in myocytes near the endocardium border. In melatonin and vitamin C-treated groups, eNOS immunoreactivity was diffuse and the intensity of reaction was (+++) in subepicardial region. However, eNOS immunoreactivity scores were weaker in these groups when compared with the alcohol group. Our results indicate that alleviation of oxidative stress by antioxidant therapy reduces reactive oxygen species-mediated nitric oxide inactivation.

  16. A key role for tetrahydrobiopterin‐dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin‐deficient mice

    PubMed Central

    Chuaiphichai, Surawee; Crabtree, Mark J; Mcneill, Eileen; Hale, Ashley B; Trelfa, Lucy; Douglas, Gillian

    2017-01-01

    Background and Purpose The cofactor tetrahydrobiopterin (BH4) is a critical regulator of endothelial NOS (eNOS) function, eNOS‐derived NO and ROS signalling in vascular physiology. To determine the physiological requirement for de novo endothelial cell BH4 synthesis for the vasomotor function of resistance arteries, we have generated a mouse model with endothelial cell‐specific deletion of Gch1, encoding GTP cyclohydrolase 1 (GTPCH), an essential enzyme for BH4 biosynthesis, and evaluated BH4‐dependent eNOS regulation, eNOS‐derived NO and ROS generation. Experimental Approach The reactivity of mouse second‐order mesenteric arteries was assessed by wire myography. High performance liquid chromatography was used to determine BH4, BH2 and biopterin. Western blotting was used for expression analysis. Key Results Gch1 fl/flTie2cre mice demonstrated reduced GTPCH protein and BH4 levels in mesenteric arteries. Deficiency in endothelial cell BH4 leads to eNOS uncoupling, increased ROS production and loss of NO generation in mesenteric arteries of Gch1 fl/flTie2cre mice. Gch1 fl/flTie2cre mesenteric arteries had enhanced vasoconstriction to U46619 and phenylephrine, which was abolished by L‐NAME. Endothelium‐dependent vasodilatations to ACh and SLIGRL were impaired in mesenteric arteries from Gch1 fl/flTie2cre mice, compared with those from wild‐type littermates. Loss of eNOS‐derived NO‐mediated vasodilatation was associated with increased eNOS‐derived H2O2 and cyclooxygenase‐derived vasodilator in Gch1 fl/flTie2cre mesenteric arteries. Conclusions and Implications Endothelial cell Gch1 and BH4‐dependent eNOS regulation play pivotal roles in maintaining vascular homeostasis in resistance arteries. Therefore, targeting vascular Gch1 and BH4 biosynthesis may provide a novel therapeutic target for the prevention and treatment of microvascular dysfunction in patients with cardiovascular disease. PMID:28128438

  17. Vascular cell signaling by membrane estrogen receptors.

    PubMed

    Kim, Kyung Hee; Moriarty, Katie; Bender, Jeffrey R

    2008-10-01

    The definition of estrogen's actions has expanded from transcriptional regulation to the rapid, membrane-initiated activation of numerous signal transduction cascades. Multiple biological effects of estrogen have been shown in numerous animals, cellular and molecular studies, which support the favorable effects of estrogen on vascular structure, function, and cell signaling. Work from several laboratories has shown that these effects are mediated by distinct forms of estrogen receptor (ER) alpha. This includes estrogen-stimulated rapid activation of endothelial nitric oxide synthase (eNOS), resulting in the elaboration of the athero-protective, angiogenesis-promoting product nitric oxide (NO). We have described the expression of ER46, an N-terminus truncated isoform of the ERalpha, in human endothelial cells (EC), and its critical role in membrane-initiated, rapid responses to 17beta-estradiol (E2). We have proposed an ER46-centered, eNOS activating molecular complex in human EC caveolar membranes, containing c-Src, phosphatidylinositol 3-kinase (PI3K), Akt and eNOS. Our previous studies support estrogen-induced rapid eNOS activation via a sequential c-Src/PI3K/Akt cascade in EC. In this review, we describe estrogen-induced, rapid, non-genomic actions in endothelium, driven by c-Src-ER46-caveolin-1 interactions, with consequent activation of eNOS. Amidst ongoing controversies in hormone replacement therapy, these molecular and cellular data, defining favorable estrogenic effects on the endothelium, provide a strong impetus to resolve these clinical questions.

  18. Platelet Activating Factor-Induced Ceramide Micro-Domains Drive Endothelial NOS Activation and Contribute to Barrier Dysfunction

    PubMed Central

    Predescu, Sanda; Knezevic, Ivana; Bardita, Cristina; Neamu, Radu Florin; Brovcovych, Viktor; Predescu, Dan

    2013-01-01

    The spatial and functional relationship between platelet activating factor-receptor (PAF-R) and nitric oxide synthase (eNOS) in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs) as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO) production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM) on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min) increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles. PMID:24086643

  19. Cavin-2 regulates the activity and stability of endothelial nitric oxide synthase (eNOS) in angiogenesis.

    PubMed

    Boopathy, Gandhi T K; Kulkarni, Madhura; Ho, Sze Yuan; Boey, Adrian; Chua, Edmond Wei Min; Barathi, Veluchamy A; Carney, Tom J; Wang, Xiaomeng; Hong, Wanjin

    2017-09-14

    Angiogenesis is a highly regulated process for formation of new blood vessels from pre-existing ones. Angiogenesis is dysregulated in various pathologies, including age-related macular degeneration, arthritis, and cancer. Inhibiting pathological angiogenesis therefore represents a promising therapeutic strategy for treating these disorders, highlighting the need to study angiogenesis in more detail. To this end, identifying the genes essential for blood vessel formation and elucidating their function are crucial for a complete understanding of angiogenesis. Here, focusing on potential candidate genes for angiogenesis, we performed a morpholino-based genetic screen in zebrafish and identified Cavin-2, a membrane-bound phosphatidylserine-binding protein and critical organizer of caveolae (small microdomains in the plasma membrane), as a regulator of angiogenesis. Using endothelial cells, we show that Cavin-2 is required for in vitro angiogenesis and also for endothelial cell proliferation, migration, and invasion. We noted a high level of Cavin-2 expression in the neovascular tufts in the mouse model of oxygen-induced retinopathy, suggesting a role for Cavin-2 in pathogenic angiogenesis. Interestingly, we also found that Cavin-2 regulates the production of nitric oxide (NO) in endothelial cells by controlling the stability and activity of the endothelial nitric oxide synthase (eNOS) and that Cavin-2 knockdown cells produce much less NO than WT cells. Also, mass spectrometry, flow cytometry, and electron microscopy analyses indicated that Cavin-2 is secreted in endothelial microparticles (EMPs) and is required for EMP biogenesis. Taken together, our results indicate that in addition to its function in caveolae biogenesis, Cavin-2 plays a critical role in endothelial cell maintenance and function by regulating eNOS activity. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  20. Polymorphisms of the endothelial nitric oxide synthase (NOS3) gene in preeclampsia: a candidate-gene association study.

    PubMed

    Zdoukopoulos, Nikos; Doxani, Chrysa; Messinis, Ioannis E; Stefanidis, Ioannis; Zintzaras, Elias

    2011-11-03

    The endothelial nitric oxide synthase gene (NOS3) has been proposed as a candidate gene for preeclampsia. However, studies so far have produced conflicting results. This study examines the specific role of variants and haplotypes of the NOS3 gene in a population of Caucasian origin. We examined the association of three common variants of the NOS3 gene (4b/a, T-786C and G894T) and their haplotypes in a case-control sample of 102 patients with preeclampsia and 176 women with a history of uncomplicated pregnancies. Genotyping for the NOS3 variants was performed and odds ratios and 95% confidence intervals were obtained to evaluate the association between NOS3 polymorphisms and preeclampsia. The single locus analysis for the three variants using various genetic models and a model-free approach revealed no significant association in relation to clinical status. The analysis of haplotypes also showed lack of significant association. Given the limitations of the candidate-gene approach in investigating complex traits, the evidence of our study does not support the major contributory role of these common NOS3 variants in preeclampsia. Future larger studies may help in elucidating the genetics of preeclampsia further.

  1. Endothelial Dysfunction in Children With Obstructive Sleep Apnea Is Associated With Epigenetic Changes in the eNOS Gene

    PubMed Central

    Kheirandish-Gozal, Leila; Khalyfa, Abdelnaby; Gozal, David; Bhattacharjee, Rakesh

    2013-01-01

    Background: Obstructive sleep apnea (OSA) is a highly prevalent disorder that has been associated with an increased risk for cardiovascular morbidity, even in children. However, not all children with OSA manifest alterations in endothelial postocclusive hyperemia, an endothelial nitric oxide synthase (eNOS)-dependent response. Since expression of the eNOS gene is regulated by epigenetic mechanisms and OSA may cause epigenetic modifications such as DNA hypermethylation, we hypothesized that epigenetic modifications in the eNOS gene may underlie the differential vascular phenotypes in pediatric OSA. Methods: Age-, sex-, ethnicity-, and BMI-matched prepubertal children with polysomnographically confirmed OSA and either normal (OSAn) or abnormal (OSAab) postocclusive hyperemic responses, assessed as the time to attain peak reperfusion flow (Tmax) by laser Doppler flowmetry, were recruited. Blood genomic DNA was assessed for epigenetic modifications in the eNOS gene using pyrosequencing. Children with no evidence of OSA or endothelial dysfunction served as a control group. Results: The study comprised 36 children with OSA (11 with OSAab and 25 with OSAn) and 35 children in the control group. Overall, the mean age was 7.5 ± 2.4 years, 65% were boys, and 30% were obese; mean apnea-hypopnea index was 18 ± 8.6/h of sleep for the children with OSA. Tmax was 66.7 ± 8.8 s in the OSAab group and 30.1 ± 8.3 s in the OSAn group (P < .001). Pyrosequencing of the proximal promoter region of the eNOS gene revealed no significant differences in six of the seven CpG sites. However, a CpG site located at position -171 (relative to transcription start site), approximating important transcriptional elements, displayed significantly higher methylation levels in the OSAab group as compared with the OSAn or control groups (81.5% ± 3.5%, 74.8% ± 1.4%, and 74.5% ± 1.7%, respectively; P < .001). eNOS mRNA expression levels were assessed in a separate group of children and were

  2. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis.

    PubMed

    Kirkby, Nicholas S; Tesfai, Abel; Ahmetaj-Shala, Blerina; Gashaw, Hime H; Sampaio, Walkyria; Etelvino, Gisele; Leão, Nádia Miricéia; Santos, Robson A; Mitchell, Jane A

    2016-12-01

    Nonsteroidal antiinflammatory drugs, including ibuprofen, are among the most commonly used medications and produce their antiinflammatory effects by blocking cyclooxygenase (COX)-2. Their use is associated with increased risk of heart attacks caused by blocking COX-2 in the vasculature and/or kidney, with our recent work implicating the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), a cardiotoxic hormone whose effects can be prevented by l-arginine. The ibuprofen salt ibuprofen arginate (Spididol) was created to increase solubility but we suggest that it could also augment the NO pathway through codelivery of arginine. Here we investigated the idea that ibuprofen arginate can act to simultaneously inhibit COX-2 and preserve the NO pathway. Ibuprofen arginate functioned similarly to ibuprofen sodium for inhibition of mouse/human COX-2, but only ibuprofen arginate served as a substrate for NOS. Ibuprofen arginate but not ibuprofen sodium also reversed the inhibitory effects of ADMA and N(G)-nitro-l-arginine methyl ester on inducible NOS (macrophages) and endothelial NOS in vitro (aorta) and in vivo (blood pressure). These observations show that ibuprofen arginate provides, in one preparation, a COX-2 inhibitor and NOS substrate that could act to negate the harmful cardiovascular consequences mediated by blocking renal COX-2 and increased ADMA. While remarkably simple, our findings are potentially game-changing in the nonsteroidal antiinflammatory drug arena.-Kirkby, N. S., Tesfai, A., Ahmetaj-Shala, B., Gashaw, H. H., Sampaio, W., Etelvino, G., Leão, N. M., Santos, R. A., Mitchell, J. A. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis. © The Author(s).

  3. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis

    PubMed Central

    Kirkby, Nicholas S.; Tesfai, Abel; Ahmetaj-Shala, Blerina; Gashaw, Hime H.; Sampaio, Walkyria; Etelvino, Gisele; Leão, Nádia Miricéia; Santos, Robson A.; Mitchell, Jane A.

    2016-01-01

    Nonsteroidal antiinflammatory drugs, including ibuprofen, are among the most commonly used medications and produce their antiinflammatory effects by blocking cyclooxygenase (COX)-2. Their use is associated with increased risk of heart attacks caused by blocking COX-2 in the vasculature and/or kidney, with our recent work implicating the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), a cardiotoxic hormone whose effects can be prevented by l-arginine. The ibuprofen salt ibuprofen arginate (Spididol) was created to increase solubility but we suggest that it could also augment the NO pathway through codelivery of arginine. Here we investigated the idea that ibuprofen arginate can act to simultaneously inhibit COX-2 and preserve the NO pathway. Ibuprofen arginate functioned similarly to ibuprofen sodium for inhibition of mouse/human COX-2, but only ibuprofen arginate served as a substrate for NOS. Ibuprofen arginate but not ibuprofen sodium also reversed the inhibitory effects of ADMA and NG-nitro-l-arginine methyl ester on inducible NOS (macrophages) and endothelial NOS in vitro (aorta) and in vivo (blood pressure). These observations show that ibuprofen arginate provides, in one preparation, a COX-2 inhibitor and NOS substrate that could act to negate the harmful cardiovascular consequences mediated by blocking renal COX-2 and increased ADMA. While remarkably simple, our findings are potentially game-changing in the nonsteroidal antiinflammatory drug arena.—Kirkby, N. S., Tesfai, A., Ahmetaj-Shala, B., Gashaw, H. H., Sampaio, W., Etelvino, G., Leão, N. M., Santos, R. A., Mitchell, J. A. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis. PMID:27601438

  4. Habitual aerobic exercise does not protect against micro- or macrovascular endothelial dysfunction in healthy estrogen-deficient postmenopausal women.

    PubMed

    Santos-Parker, Jessica R; Strahler, Talia R; Vorwald, Victoria M; Pierce, Gary L; Seals, Douglas R

    2017-01-01

    Aging causes micro- and macrovascular endothelial dysfunction, as assessed by endothelium-dependent dilation (EDD), which can be prevented and reversed by habitual aerobic exercise (AE) in men. However, in estrogen-deficient postmenopausal women, whole forearm microvascular EDD has not been studied, and a beneficial effect of AE on macrovascular EDD has not been consistently shown. We assessed forearm blood flow in response to brachial artery infusions of acetylcholine (FBFACh), a measure of whole forearm microvascular EDD, and brachial artery flow-mediated dilation (FMD), a measure of macrovascular EDD, in 12 premenopausal sedentary women (Pre-S; 24 ± 1 yr; V̇o2max = 37.5 ± 1.6 ml·kg(-1)·min(-1)), 25 estrogen-deficient postmenopausal sedentary women (Post-S; 62 ± 1 yr; V̇o2max = 24.7 ± 0.9 ml·kg(-1)·min(-1)), and 16 estrogen-deficient postmenopausal AE-trained women (Post-AE; 59 ± 1 yr; V̇o2max = 40.4 ± 1.4 ml·kg(-1)·min(-1)). FBFACh was lower in Post-S and Post-AE compared with Pre-S women (135 ± 9 and 116 ± 17 vs. 193 ± 21 AUC, respectively, both P < 0.008), whereas Post-S and Post-AE women were not different (P = 0.3). Brachial artery FMD was 34% (5.73 ± 0.67%) and 45% (4.79 ± 0.57%) lower in Post-S and Post-AE, respectively, vs. Pre-S women (8.69 ± 0.95%, both P ≤ 0.01), but not different between Post-S and Post-AE women (P = 0.3). Post-AE women had lower circulating C-reactive protein and oxidized low-density lipoprotein compared with Post-S women (0.5 ± 0.1 vs. 1.1 ± 0.2 mg/l and 40 ± 4 vs. 55 ± 3 U/l, respectively, both P = 0.01), but these markers were not correlated to FBFACh (P = 0.3) or brachial artery FMD (P = 0.8). These findings are consistent with the idea that habitual AE does not protect against age/menopause-related whole forearm micro- and macrovascular endothelial dysfunction in healthy nonobese estrogen-deficient postmenopausal women, despite being associated with lower systemic markers of inflammation and oxidative

  5. Targeting eNOS and beyond: Emerging heterogeneity of the role of endothelial Rho proteins in stroke protection

    PubMed Central

    Sawada, Naoki; Liao, James K.

    2010-01-01

    Summary Currently available modalities for the treatment of acute ischemic stroke are aimed to preserve or augment cerebral blood flow (CBF). Experimental evidence suggests that statins, which show 25–30% reduction of stroke incidence in clinical trials, confer stroke protection by upregulation of eNOS and increasing CBF. The upregulation of eNOS by statins is mediated by inhibition of small GTP-binding protein RhoA. Our recent study uncovered a unique role for a Rho-family member Rac1 in stroke protection. Rac1 in endothelium does not affect CBF. Instead, inhibition of endothelial Rac1 leads to broad upregulation of genes relevant to neurovascular protection. Intriguingly, inhibition of endothelial Rac1 enhances neuronal cell survival through endothelium-derived neurotrophic factors including artemin. This review discusses the emerging therapeutic opportunities to target the neurovascular signaling beyond the blood-brain barrier, with special emphasis on the novel role of endothelial Rac1 in stroke protection. PMID:19673606

  6. eNOS-dependent S-nitrosylation of β-catenin prevents its association with TCF4 and inhibits proliferation of endothelial cells by Wnt3a.

    PubMed

    Zhang, Ying; Chidiac, Rony; Delisle, Chantal; Gratton, Jean-Philippe

    2017-03-20

    Nitric oxide (NO) produced by endothelial NO synthase (eNOS) modulates many functions in endothelial cells. S-nitrosylation (SNO) of cysteine residues on β-catenin by eNOS-derived NO has been shown to influence intercellular contacts between endothelial cells. However, the implication of SNO in the regulation of β-catenin transcriptional activity is ill-defined. Here we report that NO inhibits the transcriptional activity of β-catenin and endothelial cell proliferation induced by activation of Wnt/β-catenin signaling. Interestingly, induction by Wnt3a of β-catenin target genes, such as Axin2, is repressed in an eNOS-dependent manner by VEGF. We identify Cys466 of β-catenin as a target for SNO by eNOS-derived NO and as the critical residue for the repressive effects of NO on β-catenin transcriptional activity. Furthermore, we observed that Cys466 of β-catenin, located at the binding interface of the β-catenin/TCF4 transcriptional complex, is essential for disruption of this complex by NO. Importantly, Cys466 of β-catenin is necessary for the inhibitory effects of NO on Wnt3a-stimulated proliferation of endothelial cells. Thus our data define the mechanism responsible for the repressive effects of NO on the transcriptional activity of β-catenin and link eNOS-derived NO to the modulation by VEGF of Wnt/β-catenin-induced endothelial cell proliferation.

  7. Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex.

    PubMed

    Toth, Peter; Tarantini, Stefano; Davila, Antonio; Valcarcel-Ares, M Noa; Tucsek, Zsuzsanna; Varamini, Behzad; Ballabh, Praveen; Sonntag, William E; Baur, Joseph A; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of cognitive impairment associated with aging and pathological conditions associated with accelerated cerebromicrovascular aging (e.g., hypertension, obesity). Although previous studies demonstrate that endothelial dysfunction plays a critical role in neurovascular uncoupling in these conditions, the role of endothelial NO mediation in neurovascular coupling responses is not well understood. To establish the link between endothelial function and functional hyperemia, neurovascular coupling responses were studied in mutant mice overexpressing or deficient in endothelial NO synthase (eNOS), and the role of P2Y1 receptors in purinergic glioendothelial coupling was assessed. We found that genetic depletion of eNOS (eNOS(-/-)) and pharmacological inhibition of NO synthesis significantly decreased the CBF responses in the somatosensory cortex evoked by whisker stimulation and by administration of ATP. Overexpression of eNOS enhanced NO mediation of functional hyperemia. In control mice, the selective and potent P2Y1 receptor antagonist MRS2179 attenuated both whisker stimulation-induced and ATP-mediated CBF responses, whereas, in eNOS(-/-) mice, the inhibitory effects of MRS2179 were blunted. Collectively, our findings provide additional evidence for purinergic glio-endothelial coupling during neuronal activity, highlighting the role of ATP-mediated activation of eNOS via P2Y1 receptors in functional hyperemia.

  8. Bone Morphogenic Protein 4 Mediates NOX1-Dependent eNOS Uncoupling, Endothelial Dysfunction, and COX2 Induction in Type 2 Diabetes Mellitus.

    PubMed

    Youn, Ji-Youn; Zhou, Jun; Cai, Hua

    2015-08-01

    We have recently shown that angiotensin II-mediated uncoupling of endothelial nitric oxide synthase (eNOS) contributes to endothelial dysfunction in streptozotocin-induced type 1 diabetes mellitus. However, it has remained unclear whether and how eNOS uncoupling occurs in type 2 diabetes mellitus (T2DM) and the consequences of such in regulating vascular function. Here we investigated a role of bone morphogenic protein (BMP)-4 in mediating eNOS uncoupling, endothelial dysfunction, and inflammation in db/db mice. Circulating levels of BMP4 were markedly elevated in db/db mice but not in mice with type 1 diabetes mellitus, in which angiotensin II levels were significantly increased. Infusion of BMP4 antagonist noggin into db/db mice (15 μg/kg/day, 4 weeks) abolished eNOS uncoupling activity while restoring tetrahydrobiopterin (H(4)B) bioavailability. The impaired endothelium-dependent vasorelaxation in db/db aortas was significantly improved by noggin infusion. Exposure of aortic endothelial cells to BMP4 (50 ng/mL, 24 hours) resulted in eNOS uncoupling, which was attenuated by H(4)B precursor sepiapterin or small interfering RNA silencing nicotinamide adenine dinucleotide phosphate oxidase isoform 1 (NOX1). Interestingly, BMP4-dependent NOX1 up-regulation was abrogated by sepiapterin, implicating a NOX1-uncoupled eNOS-NOX1 feed-forward loop. BMP4 induction of cyclooxygenase 2 (COX2) expression and vascular cell adhesion protein 1 was found in db/db mice. Consistently, COX2 was up-regulated by BMP4 in endothelial cells, which was attenuated by sepiapterin, implicating an upstream role of eNOS uncoupling in COX2-mediated inflammatory activation. Taken together, our data for the first time reveal a novel role of BMP4 in inducing NOX1-dependent eNOS uncoupling in T2DM, which may promote development of novel therapeutics restoring endothelial function in T2DM.

  9. Effects of human endothelial gene polymorphisms on cellular responses to hyperglycaemia: role of NOS3 (Glu298Asp) and ACE (I/D) polymorphisms.

    PubMed

    Joshi, Mandar S; Wattanapitayakul, Suvara; Schanbacher, Brandon L; Bauer, John A

    2011-10-01

    The functional relevance of NOS3 and ACE genetic variations to endothelial cell function is largely unstudied. Here we tested the functional relevance of the NOS3 (Glu298Asp) polymorphism and ACE (I/D) polymorphism in endothelial cells in vitro. Our hypothesis was that these genetic polymorphisms alter endothelial cell sensitivity to glucose and 3-nitrotyrosine (3NT). Genotyped HUVECs were incubated with glucose, free 3NT or a combination of these two toxicants. Significant differences in glucose-induced cell death and free 3NT-induced cell death were observed among the NOS3 genotypes. Combined glucose/3NT caused increased toxicity among the NOS3 genotypes. No differences were observed among the ACE genotypes in their responses to glucose/3NT. These data demonstrate that the NOS3 genotype may be an important predictor of, or be mechanistically involved in, endothelial vulnerability, whereas the ACE I/D genotype is apparently less important. Thus this NOS3 genetic variation may play a role in vulnerability to endothelium-dependent diabetic vascular complications.

  10. NOS expression is increased in endothelial cells exposed to plasma from women with preeclampsia.

    PubMed

    Davidge, S T; Baker, P N; Roberts, J M

    1995-09-01

    Endothelial cell function is proposed to be altered by a factor(s) in the maternal circulation of women with the pregnancy disorder preeclampsia. Our initial hypothesis was that in preeclampsia, such factor(s) would reduce synthesis of nitric oxide (NO) by endothelial cells. However, we previously observed increased NO synthase activity in endothelial cells exposed to plasma from preeclamptic women. This study tested whether exposing cells to plasma from preeclamptic women increased transcription and/or translation of endothelial NO synthase. Cultured bovine coronary microvascular endothelial cells were exposed to 2% plasma from patients with preeclampsia and patients with uncomplicated pregnancies. Nitrite production was greater in endothelial cells exposed to plasma from preeclamptic women (8.97 +/- 0.54 vs. 6.39 +/- 0.59 nmol nitrites.10(6) cells-1 x 24 h-1; P < 0.05). Similarly, endothelial NO synthase mass as measured by Western immunoblotting was significantly increased (20,980 +/- 1,406 vs. 15,047 +/- 1,003 absorbancy units; P < 0.02). There was no detectable difference in mRNA for endothelial NO synthase. However, actinomycin (3 micrograms/ml), a transcription inhibitor, significantly decreased nitrite production only in cells exposed to plasma from preeclamptic women (5.28 +/- 0.52 vs. 3.56 +/- 0.36 nmol.10(6) cells-1 x 24 h-1, P < 0.05). These findings indicate a regulation of the "constitutive" isoform of NO synthase by factor(s) in the blood of preeclamptic women, which may have significance in this pathological condition of pregnancy.

  11. Polyphenol-enriched diet prevents coronary endothelial dysfunction by activating the Akt/eNOS pathway.

    PubMed

    Vilahur, Gemma; Padró, Teresa; Casaní, Laura; Mendieta, Guiomar; López, José A; Streitenberger, Sergio; Badimon, Lina

    2015-03-01

    The Mediterranean diet, rich in polyphenols, has shown to be cardioprotective. However the mechanisms involved remain unknown. We investigated whether supplementation with a pomegranate extract rich in polyphenols renders beneficial effects on coronary function in a clinically relevant experimental model and characterized the underlying mechanisms. Pigs were fed a 10-day normocholesterolemic or hypercholesterolemic diet. Half of the animals were given a supplement of 625 mg/day of a pomegranate extract (Pomanox; 200 mg punicalagins/day). Coronary responses to escalating doses of vasoactive drugs (acetylcholine, calcium ionophore, and sodium nitroprusside) and L-NG-monomethylarginine (endothelial nitric oxide-synthase inhibitor) were measured using flow Doppler. Akt/endothelial nitric oxide-synthase axis activation, monocyte chemoattractant protein-1 expression, oxidative deoxyribonucleic acid damage in the coronary artery, and lipoprotein resistance to oxidation were evaluated. In dyslipidemic animals, Pomanox supplementation prevented diet-induced impairment of endothelial relaxation, reaching vasodilatory values comparable to normocholesterolemic animals upon stimulation with acetylcholine and/or calcium ionophore. These beneficial effects were associated with vascular Akt/endothelial nitric oxide-synthase activation and lower monocyte chemoattractant protein-1 expression. Pomanox supplementation reduced systemic oxidative stress (higher high-density lipoprotein-antioxidant capacity and higher low-density lipoprotein resistance to oxidation) and coronary deoxyribonucleic acid damage. Normocholesterolemic animals elicited similar drug-related vasodilation regardless of Pomanox supplementation. All animals displayed a similar vasodilatory response to sodium nitroprusside and L-NG-monomethylarginine blunted all vasorelaxation responses except for sodium nitroprusside. Pomanox supplementation hinders hyperlipemia-induced coronary endothelial dysfunction by activating

  12. Chinese medicine Tongxinluo modulates vascular endothelial function by inducing eNOS expression via the PI-3K/Akt/HIF-dependent signaling pathway.

    PubMed

    Liang, Jun Qing; Wu, Kun; Jia, Zhen Hua; Liu, Chang; Ding, Jin; Huang, Shan Na; Yin, Pei Pei; Wu, Xiang Chun; Wei, Cong; Wu, Yi Ling; Wang, Hong Yang

    2011-01-27

    To investigate the molecular mechanisms whereby the Chinese medicinal compound Tongxinluo improves vascular endothelial function through studying the induction of endothelial nitric oxide synthase (eNOS) and its upstream signaling pathway. Hyperhomocysteinemia was induced in Wistar rats by a methionine-rich diet followed by Tongxinluo treatment. The aorta ring was isolated for measuring vascular dilation of aorta and eNOS expression. Human umbilical vein endothelial cells (HUVECs) were transfected with AP-1, NF-κB, HRE or eNOS reporter plasmid followed by Tongxinluo exposure. Expression of the reporter genes was measured by luciferase assay. The level of eNOS was studied by western blot and the nitric oxide content was measured using the nitrate reductase method. HUVECs were also transiently transfected with the dominant negative mutant of HIF-1, PI-3K or Akt to explore the role of HIF and PI-3K/Akt pathway in eNOS induction by Tongxinluo. Tongxinluo could significantly up-regulate the expression of eNOS in the aortic tissue and improve the endothelium-dependent vasodilation of the aorta ring. Additionally, Tongxinluo at various doses could significantly enhance the expression of HRE and eNOS reporter gene as well as up-regulate the protein level of eNOS. Meanwhile, Tongxinluo caused a dose-dependent increase in the NO content in the supernatant of HUVECs. Suppression of HIF-1 activation by DN-HIF or inhibition of PI-3K/Akt pathway by ΔP85 or DN-Akt both attenuated HRE reporter gene activation and eNOS induction by Tongxinluo. Tongxinluo, a compound Chinese traditional medicine, up-regulates the expression of eNOS via the PI-3K/Akt/HIF-dependent signaling pathway, thus improving the endothelium-dependent vasodilation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Activation of estrogen receptor beta is a prerequisite for estrogen-dependent upregulation of nitric oxide synthases in neonatal rat cardiac myocytes.

    PubMed

    Nuedling, S; Karas, R H; Mendelsohn, M E; Katzenellenbogen, J A; Katzenellenbogen, B S; Meyer, R; Vetter, H; Grohé, C

    2001-08-03

    Physiological effects of estrogen on myocardium are mediated by two intracellular estrogen receptors, ERalpha and ERbeta, that regulate transcription of target genes through binding to specific DNA target sequences. To define the role of ERbeta in the transcriptional activation of both endothelial (eNOS) and inducible nitric oxide synthase (iNOS) in cardiac myocytes, we used the complete ER-specific antagonist R,R-tetrahydrochrysene (R,R-THC). R,R-THC inhibited activation of iNOS/eNOS promoter-luciferase reporter constructs (iNOS/eNOS-Luc) in a dose-dependent fashion in COS7 cells selectively transfected with ERbeta, but failed to influence ERalpha-mediated increase of iNOS/ eNOS-Luc. In neonatal rat cardiomyocytes transfected with eNOS-Luc or iNOS-Luc, incubation with 17betaestradiol (E2, 10(-8) M) for 24 h stimulated expression of eNOS and iNOS. R,R-THC (10(-5) M) completely inhibited this effect. Furthermore, eNOS and iNOS protein expression in cardiac myocytes induced by E2 was completely blocked by R,R-THC as shown by immunoblot analysis. Taken together, these results show that ERbeta mediates transcriptional activation of eNOS and iNOS by E2.

  14. Hypercholesterolemia-induced erectile dysfunction: endothelial nitric oxide synthase (eNOS) uncoupling in the mouse penis by NAD(P)H oxidase

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Lagoda, Gwen A.; Strong, Travis D.; Sezen, Sena F.; Johnson, Justin M.; Burnett, Arthur L.

    2010-01-01

    INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)–null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67phox, p47phox, and gp91phox), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES Molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared to WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67phox, p47phox and gp91phox, eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P < 0.05) the abnormalities in protein expressions of gp67phox and gp47phox, 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters

  15. Chronic aerobic exercise associated to dietary modification improve endothelial function and eNOS expression in high fat fed hamsters.

    PubMed

    Boa, Beatriz C S; Souza, Maria das Graças C; Leite, Richard D; da Silva, Simone V; Barja-Fidalgo, Thereza Christina; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete

    2014-01-01

    Obesity is epidemic in the western world and central adipose tissue deposition points to increased cardiovascular morbidity and mortality, independently of any association between obesity and other cardiovascular risk factors. Physical exercise has been used as non-pharmacological treatment to significantly reverse/attenuate obesity comorbidities. In this study we have investigated effects of exercise and/or dietary modification on microcirculatory function, body composition, serum glucose, iNOS and eNOS expression on 120 male hamsters treated for 12 weeks with high fat chow (HF, n = 30) starting on the 21st day of birth. From week 12 to 20, animals were randomly separated in HF (no treatment change), return to standard chow (HFSC, n = 30), high fat chow associated to an aerobic exercise training program (AET) (HFEX, n = 30) and return to standard chow+AET (HFSCEX, n = 30). Microvascular reactivity in response to acetylcholine and sodium nitroprusside and macromolecular permeability increase induced by 30 minutes ischemia followed by reperfusion were assessed on the cheek pouch preparation. Total body fat and aorta eNOS and iNOS expression by immunoblotting assay were evaluated on the experimental day. Compared to HFSC and HFSCEX groups, HF and HFEX ones presented increased visceral fat [(mean±SEM) (HF)4.9±1.5 g and (HFEX)4.7±0.9 g vs. (HFSC)*3.0±0.7 g and (HFSCEX)*1.9±0.4 g/100 g BW]; impaired endothelial-dependent vasodilatation [Ach 10(-8) M (HF)87.9±2.7%; (HFSC)*116.7±5.9%; (HFEX)*109.1±4.6%; (HFSCEX)*105±2.8%; Ach10(-6) M (HF)95.3±3.1%; (HFSC)*126±6.2%; (HFEX)*122.5±2.8%; (HFSCEX)*118.1±4.3% and Ach10(-4) M (HF)109.5±4.8%; (HFSC)*149.6±6.6%; (HFEX)*143.5±5.4% and (HFSCEX)*139.4±5.2%], macromolecular permeability increase after ischemia/reperfusion [(HF)40.5±4.2; (HFSC)*19.0±1.6; (HFEX)*18.6±2.1 and (HFSCEX)* 21.5±3.7 leaks/cm2), decreased eNOS expression, increased leptin and glycaemic levels. Endothelial

  16. Sodium nitrite exerts an antihypertensive effect and improves endothelial function through activation of eNOS in the SHR

    PubMed Central

    Ling, Wei Chih; Murugan, Dharmani Devi; Lau, Yeh Siang; Vanhoutte, Paul M.; Mustafa, Mohd Rais

    2016-01-01

    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L−1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS. PMID:27616322

  17. Fenofibrate Improves Vascular Endothelial Function by Reducing Oxidative Stress While Increasing eNOS in Healthy Normolipidemic Older Adults

    PubMed Central

    Walker, Ashley E; Kaplon, Rachelle E; Lucking, Sara Marian S; Russell-Nowlan, Molly J; Eckel, Robert H; Seals, Douglas R

    2013-01-01

    Vascular endothelial dysfunction develops with aging, as indicated by impaired endothelium-dependent dilation(EDD), and is related to increased cardiovascular disease risk. We hypothesized that short-term treatment with fenofibrate, a lipid-lowering agent with potential pleiotropic effects, would improve EDD in middle-aged and older normolipidemic adults by reducing oxidative stress. Brachial artery flow-mediated dilation (FMD), a measure of EDD, was assessed in 22healthy adults aged 50-77 years before and after 7days of fenofibrate (145 mg/d; n=12/7M) or placebo (n=10/5M). Brachial FMD was unchanged with placebo, but improved after 2 and 7 days of fenofibrate (5.1±0.7 vs. 2d: 6.0±0.7 and 7d: 6.4±0.6 %Δ; both P<0.005). The improvements in FMD after 7 days remained significant (P<0.05) after accounting for modest changes in plasma total and LDL-cholesterol. Endothelium-independent dilation was not affected by fenofibrate or placebo (P>0.05). Infusion (i.v.) of the antioxidant vitamin C improved brachial FMD at baseline in both groups and during placebo treatment (P<0.05), but not after 2 and 7 days of fenofibrate (P>0.05). Fenofibrate treatment also reduced plasma oxidized LDL, a systemic marker of oxidative stress, compared with placebo (P<0.05). In vascular endothelial cells sampled from peripheral veins of the subjects, endothelial nitric oxide synthase (eNOS) protein expression was unchanged with placebo and after 2 days of fenofibrate, but was increased after 7 days of fenofibrate (0.54±0.03 vs. 2d: 0.52±0.04 and 7d: 0.76±0.11 intensity/HUVEC control; P<0.05 7d). Short-term treatment with fenofibrate improves vascular endothelial function in healthy normolipidemic middle-aged/older adults by reducing oxidative stress and induces increases in eNOS. PMID:23108655

  18. Telmisartan attenuates monocrotaline-induced pulmonary artery endothelial dysfunction through a PPAR gamma-dependent PI3K/Akt/eNOS pathway.

    PubMed

    Li, He; Lu, Wei; Cai, Wei-Wei; Wang, Pei-Jian; Zhang, Ning; Yu, Chang-Ping; Wang, Dong-Liang; Liu, Bai-Cheng; Sun, Wei

    2014-06-01

    Pulmonary artery endothelial dysfunction has been demonstrated in pulmonary arterial hypertension (PAH). Telmisartan has beneficial effects in endothelial function in PAH patients; however, the underlying mechanisms for these effects remain unknown. In this study, we observed the effects of telmisartan on monocrotaline (MCT)-induced Sprague Dawley (SD) rat model of PAH. After a single-dose injection of MCT (60 mg/kg), oral administration of telmisartan (10 mg/kg/d) was started from day 1 to day 28 or with saline as MCT control. The vasorelaxation and remodelling of pulmonary arteries; the expression of peroxisome proliferator-activated receptor γ (PPARγ), Akt, eNOS; levels of phosphorylation of Akt (p-Akt) and phosphorylation of eNOS (p-eNOS) were analysed in isolated rat pulmonary arteries and cultured human pulmonary artery endothelial cells (HPAECs). Compared to MCT control group, telmisartan treatment ameliorated pulmonary artery endothelial dysfunction and remodelling, prevented the elevation of right ventricular systolic pressure (RVSP) induced by MCT. Immunoblotting results indicated lower levels of PPARγ, p-Akt and p-eNOS in pulmonary arteries treated with MCT alone and levels were significantly restored by co-treatment with telmisartan. In isolated pulmonary arteries, the impaired endothelium-dependent vasorelaxation of pulmonary arteries was improved following incubation with telmisartan for 12 h, whereas this effect was blocked by the inhibition of either PPARγ or phosphoinositide 3-kinase (PI3K) signals transduction. In cultured HPAECs, treatment with telmisartan increased PPARγ expression and promoted the phosphorylation of Akt and eNOS, thereby increasing the production of NO. These effects were abolished by the inhibition of PPARγ or PI3K. Telmisartan protected against endothelial dysfunction in MCT-induced PAH through a PPARγ-dependent PI3K/Akt/eNOS pathway. Thus, telmisartan may be a promising therapeutic strategy for patients with a high

  19. Effects of Simulated Microgravity on Human Umbilical Vein Endothelial Cell Angiogenesis and Role of the PI3K-Akt-eNOS Signal Pathway

    PubMed Central

    Zhang, Shu; Du, Ting-Yuan; Yang, Chang-Bin; Li, Ying-Hui; Sun, Xi-Qing

    2012-01-01

    Endothelial cells are very sensitive to microgravity and the morphological and functional changes in endothelial cells are believed to be at the basis of weightlessness-induced cardiovascular deconditioning. It has been shown that the proliferation, migration, and morphological differentiation of endothelial cells play critical roles in angiogenesis. However, the influence of microgravity on the ability of endothelial cells to foster angiogenesis remains to be explored in detail. In the present study, we used a clinostat to simulate microgravity, and we observed tube formation, migration, and expression of endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVEC-C). Specific inhibitors of eNOS and phosphoinositide 3-kinase (PI3K) were added to the culture medium and gravity-induced changes in the pathways that mediate angiogenesis were investigated. After 24 h of exposure to simulated microgravity, HUVEC-C tube formation and migration were significantly promoted.This was reversed by co-incubation with the specific inhibitor of N-nitro-L-arginine methyl ester hydrochloride (eNOS). Immunofluorescence assay, RT-PCR, and Western blot analysis demonstrated that eNOS expression in the HUVEC-C was significantly elevated after simulated microgravity exhibition. Ultrastructure observation via transmission electron microscope showed the number of caveolae organelles in the membrane of HUVEC-C to be significantly reduced. This was correlated with enhanced eNOS activity. Western blot analysis then showed that phosphorylation of eNOS and serine/threonine kinase (Akt) were both up-regulated after exposure to simulated microgravity. However, the specific inhibitor of PI3K not only significantly downregulated the expression of phosphorylated Akt, but also downregulated the phosphorylation of eNOS. This suggested that the PI3K-Akt signal pathway might participate in modulating the activity of eNOS. In conclusion, the present study indicates that 24

  20. Berberine protects endothelial progenitor cell from damage of TNF-α via the PI3K/AKT/eNOS signaling pathway.

    PubMed

    Xiao, Min; Men, Li Na; Xu, Ming Guo; Wang, Guo Bing; Lv, Hai Tao; Liu, Cong

    2014-11-15

    Endothelial progenitor cells (EPCs) dysfunction is closely correlated with the coronary artery injury induced by Kawasaki disease (KD). The level of tumor necrosis factor-α (TNF-α) elevated significantly in acute phase of KD which can damage the functions of EPCs. The aim of this study was to investigate whether berberine (BBR) can protect EPCs from the inhibition caused by TNF-α via the PI3K (Phosphatidyl Inositol 3-kinase) /AKT (Serine/threonine protein kinase B) /eNOS (endothelial Nitric Oxide synthase) signaling pathway. The cell proliferative ability of EPCs was determined by MTT (methyl thiazolyl tetrazolium) assays. Nitric oxide (NO) level was determined in supernatants. The mRNA level of eNOS, PI3K and AKT were measured by Real Time-Polymerase Chain Reaction (RT-PCR), and the protein levels of eNOS, phospho-eNOS (p-eNOS), Akt, phospho-Akt (p-Akt) and PI3K were analyzed using Western-blot. The results demonstrated that TNF-α inhibits the proliferative ability of EPCs. However, BBR improves the proliferative activity of EPCs inhibited by TNF-α. Blockade of PI3K by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (Ly294002) and blockade of eNOS by l-NAME (NG-Nitroarginine Methyl Ester) attenuates the effect of BBR. BBR can increase the level of PI3K/Akt/eNOS mRNA and the protein level of PI3K, p-Akt, eNOS and p-eNOS, which can be blocked by PI3K inhibitor (LY294002) and eNOS inhibitor (l-NAME). Therefore, we concluded that impaired EPCs proliferation could be reversed by BBR via the PI3K/AKT/eNOS signaling pathway.

  1. Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway

    SciTech Connect

    Ou, Hsiu-Chung; Lee, Wen-Jane; Lee, Shin-Da; Huang, Chih-Yang; Chiu, Tsan-Hung; Tsai, Kun-Ling; Hsu, Wen-Cheng; Sheu, Wayne Huey-Herng

    2010-10-15

    Endothelial apoptosis is a driving force in atherosclerosis development. Oxidized low-density lipoprotein (oxLDL) promotes inflammatory and thrombotic processes and is highly atherogenic, as it stimulates macrophage cholesterol accumulation and foam cell formation. Previous studies have shown that the phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase/nitric oxide (PI3K/Akt/eNOS/NO) pathway is involved in oxLDL-induced endothelial apoptosis. Ellagic acid, a natural polyphenol found in berries and nuts, has in recent years been the subject of intense research within the fields of cancer and inflammation. However, its protective effects against oxLDL-induced injury in vascular endothelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effect of ellagic acid in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. Our results showed that pretreatment with ellagic acid (5-20 {mu}M) significantly attenuated oxLDL-induced cytotoxicity, apoptotic features, and generation of reactive oxygen species (ROS). In addition, the anti-apoptotic effect of ellagic acid was partially inhibited by a PI3K inhibitor (wortmannin) and a specific eNOS inhibitor (cavtratin) but not by an ERK inhibitor (PD98059). In exploring the underlying mechanisms of ellagic acid action, we found that oxLDL decreased Akt and eNOS phosphorylation, which in turn activated NF-{kappa}B and downstream pro-apoptotic signaling events including calcium accumulation, destabilization of mitochondrial permeability, and disruption of the balance between pro- and anti-apoptotic Bcl-2 proteins. Those alterations induced by oxLDL, however, were attenuated by pretreatment with ellagic acid. The inhibition of oxLDL-induced endothelial apoptosis by ellagic acid is due at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  2. Vasoinhibins Prevent Bradykinin-Stimulated Endothelial Cell Proliferation by Inactivating eNOS via Reduction of both Intracellular Ca2+ Levels and eNOS Phosphorylation at Ser1179

    PubMed Central

    Thebault, Stéphanie; González, Carmen; García, Celina; Zamarripa, David Arredondo; Nava, Gabriel; Vaca, Luis; López-Casillas, Fernando; de la Escalera, Gonzalo Martínez; Clapp, Carmen

    2011-01-01

    Vasoinhibins, a family of antiangiogenic peptides derived from prolactin proteolysis, inhibit the vascular effects of several proangiogenic factors, including bradykinin (BK). Here, we report that vasoinhibins block the BK-induced proliferation of bovine umbilical vein endothelial cells. This effect is mediated by the inactivation of endothelial nitric oxide synthase (eNOS), as the NO donor DETA-NONOate reverted vasoinhibin action. It is an experimentally proven fact that the elevation of intracellular Ca2+ levels ([Ca2+]i) upon BK stimulation activates eNOS, and vasoinhibins blocked the BK-mediated activation of phospholipase C and the formation of inositol 1,4,5-triphosphate leading to a reduced release of Ca2+ from intracellular stores. The [Ca2+]i rise evoked by BK also involves the influx of extracellular Ca2+ via canonical transient receptor potential (TRPC) channels. Vasoinhibins likely interfere with TRPC-mediated Ca2+ entry since La3+, which is an enhancer of TRPC4 and TRPC5 channel activity, prevented vasoinhibins from blocking the stimulation by BK of endothelial cell NO production and proliferation, and vasoinhibins reduced the BK-induced increase of TRPC5 mRNA expression. Finally, vasoinhibins prevented the BK-induced phosphorylation of eNOS at Ser1179, a post-translational modification that facilitates Ca2+-calmodulin activation of eNOS. Together, our data show that vasoinhibins, by lowering NO production through the inhibition of both [Ca2+]i mobilization and eNOS phosphorylation, prevent the BK-induced stimulation of endothelial cell proliferation. Thus, vasoinhibins help to regulate BK effects on angiogenesis and vascular homeostasis.

  3. Direct vasorelaxation by a novel phytoestrogen tanshinone IIA is mediated by nongenomic action of estrogen receptor through endothelial nitric oxide synthase activation and calcium mobilization.

    PubMed

    Fan, Guanwei; Zhu, Yan; Guo, Hao; Wang, Xiaoying; Wang, Hong; Gao, Xiumei

    2011-03-01

    Salvia miltiorrhiza (Danshen) has been widely used in China and other Asian countries for treating various cardiovascular diseases resulting from its ability to improve coronary microcirculation and increase coronary blood flow. Tanshinone IIA (Tan IIA), the major active lipophilic ingredient responsible for the beneficial actions of Salvia miltiorrhiza, has been shown to induce vasodilation in coronary arteries. Because our recent study identified Tan IIA as a new member of the phytoestrogens, we hypothesized that its action might be mediated by estrogen receptor (ER) in vascular endothelial cells. The aim of the present study was to assess whether cardiovascular protection exerted by Tan IIA is mediated by the ER signal pathway and whether the genomic or nongenomic action of ER is involved within arteries and vascular endothelial cells. The effect of Tan IIA on blood vessels was investigated by vascular ring assay using endothelium-intact and endothelium-denuded rat aortas. Similar to estrogen, Tan IIA caused an nitric oxide- and endothelium-dependent relaxation, which was blocked by ER antagonist ICI 182,780. Primary cardiac microvascular endothelial cells were used as a model to study the cellular and molecular mechanisms of Tan IIA-induced vasorelaxation. We demonstrate that Tan IIA is capable of activating the estrogen receptor signal pathway, leading to increased endothelial nitric oxide synthase gene expression, nitric oxide production, ERK1/2 phosphorylation, and Ca mobilization. Collectively, these effects contribute to Tan IIA's vasodilative activity effects of y ER antagonist Cnt of cardiovascular diseases. Our findings support a continued effort in discovering and developing novel phytoestrogens as an alternative hormone replacement therapy for safer and more effective treatment of cardiovascular diseases.

  4. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    SciTech Connect

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.; Searles, Charles D.

    2010-03-19

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.

  5. Role of reactive oxygen species in the signalling cascade of cyclosporine A-mediated up-regulation of eNOS in vascular endothelial cells

    PubMed Central

    López-Ongil, S; Hernández-Perera, O; Navarro-Antolín, J; Pérez de Lema, G; Rodríguez-Puyol, M; Lamas, S; Rodríguez-Puyol, D

    1998-01-01

    Cyclosporine A (CsA) increases eNOS mRNA expression in bovine cultured aortic endothelial cells (BAEC). As some effects of CsA may be mediated by reactive oxygen species (ROS), present experiments were devoted to test the hypothesis that the CsA-induced eNOS up-regulation could be dependent on an increased synthesis of ROS.CsA induced a dose-dependent increase of ROS synthesis, with the two fluorescent probes used, DHR123 (CsA 1 μM: 305±7% over control) and H2DCFDA (CsA 1 μM: 178±6% over control).Two ROS generating systems, xanthine plus xanthine oxidase (XXO) and glucose oxidase (GO), increased the expression of eNOS mRNA in BAEC, an effect which was maximal after 8 h of incubation (XXO: 168±21% of control values. GO: 208±18% of control values). The ROS-dependent increased eNOS mRNA expression was followed by an increase in eNOS activity.The effect of CsA on eNOS mRNA expression was abrogated by catalase, and superoxide dismutase (SOD). In contrast, the antioxidant PDTC augmented eNOS mRNA expression, both in basal conditions and in the presence of CsA.The potential participation of the transcription factor AP-1 was explored. Electrophoretic mobility shift assays were consistent with an increase in AP-1 DNA-binding activity in BAEC treated with CsA or glucose oxidase.The present results support a role for ROS, particularly superoxide anion and hydrogen peroxide, as mediators of the CsA-induced eNOS mRNA up-regulation. Furthermore, they situate ROS as potential regulators of gene expression in endothelial cells, both in physiological and pathophysiological situations. PMID:9647467

  6. Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells

    SciTech Connect

    Chung, Byung-Hee; Kim, Jong-Dai; Kim, Chun-Ki; Kim, Jung Huan; Won, Moo-Ho; Lee, Han-Soo; Dong, Mi-Sook; Ha, Kwon-Soo; Kwon, Young-Geun; Kim, Young-Myeong

    2008-11-14

    We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy.

  7. Endothelial (NOS3 E298D) and inducible (NOS2 exon 22) nitric oxide synthase polymorphisms, as well as plasma NOx, influence sepsis development.

    PubMed

    Martin, Guadalupe; Asensi, Víctor; Montes, A Hugo; Collazos, Julio; Alvarez, Victoria; Pérez-Is, Laura; Carton, José A; Taboada, Francisco; Valle-Garay, Eulalia

    2014-11-15

    Nitric oxide (NO) influences susceptibility to infection and hemodynamic failure (HF) in sepsis. NOS3 and NOS2 SNPs might modify plasma nitrite/nitrate (NOx) levels, sepsis development, hemodynamics and survival. 90 severely septic and 91 non-infected ICU patients were prospectively studied. NOS3 (E298D), NOS3 (-786 T/C), NOS3 (27 bp-VNTR), and NOS2A (exon 22) SNPs and plasma NOx levels were assessed. 21 patients (11.6%) died, 7 with sepsis. TT homozygotes and T allele carriers of NOS3 (E298D) and AG carriers of the NOS2A (exon 22) SNPs were more frequent among septic compared to non-infected ICU patients (p < 0.05). Plasma NOx was higher in septic, especially in septic with hemodynamic failure (HF) or fatal outcome (p < 0.006). Plasma NOx was higher in carriers of the T allele of the NOS3 (E298D) SNP (p = 0.006). Sepsis independently associated with HF, increased NOx, peripheral neutrophils, and fibrinogen levels, decreased prothrombin and the presence of the NOS3 (E298D) and NOS2A (exon 22) SNPs. A low APACHE II score was the only variable associated with sepsis survival. NOx was independently associated with sepsis, HF, decreased neutrophils and higher APACHE. NOS3 (E298D) and NOS2A (exon 22) SNPs, individually and in combination, and plasma NOx, associated with sepsis development. NOx associated with HF and fatal outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Single nucleotide polymorphism (SNP) of the endothelial nitric oxide synthase (eNOS) gene (Glu298Asp variant) in infertile men with asthenozoospermia.

    PubMed

    Buldreghini, Eddi; Mahfouz, Reda Z; Vignini, Arianna; Mazzanti, Laura; Ricciardo-Lamonica, Giuseppe; Lenzi, Andrea; Agarwal, Ashok; Balercia, Giancarlo

    2010-01-01

    The objective of this study was to elucidate the missense Glu298Asp polymorphism within exon 7 of the endothelial nitric oxide synthase (eNOS) gene in infertile men with asthenozoospermia and its potential role in sperm motility. In this prospective controlled study conducted in our andrology unit, we investigated the frequency of the 894G>T polymorphism (Glu298Asp variant) within exon 7 of the eNOS gene in 70 infertile men and 60 healthy men. Sperm motion kinetics were assessed with computer-assisted semen analysis. The presence of G>T, a single nucleotide polymorphism (SNP) in exon 7 of the eNOS gene (NCBI SNP cluster rs1799983; GenBank accession number NG_011992; protein accession number NP_000594) was determined by allelespecific polymerase chain reaction followed by restriction fragment length polymorphism analysis. Sequencing analysis was used to confirm the specific genotype. The 894G>T eNOS allele (T) was found at a higher frequency in the patients with asthenozoospermia (60% vs 22.5% in the control group; P = .02). The percentage of progressive motile sperm (grade a + b) was lower in the asthenozoospermic infertile men with the homozygous eNOS (TT) genotype than in the wild-type eNOS (GG) (P = .02) and heterozygous eNOS (GT) genotypes (P = .01). However, the percentage of progressive motile sperm (grade a + b) was higher in the wild-type vs mutant eNOS (TT) (P = .03) and heterozygous eNOS (GT) genotypes (P = .04). Our findings suggest that the T allele encoding for aspartic acid of the eNOS (Glu298Asp) gene may contribute to poor sperm motility.

  9. [Salidroside attenuates high glucose-induced apoptosis in human umbilical vein endothelial cells via activating the Ca(2)+/CaM/CAMKIIδ/eNOS pathway].

    PubMed

    Chen, Ziwei; Wu, Xiang

    2014-04-01

    Endothelial oxidative stress plays an important role in the pathogenesis of cardiovascular disease. Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L, could exert potent antioxidant properties. In this study, we investigated the protective effects, and related mechanism of salidroside against high glucose (33 mmol/L)-induced cell damage in human umbilical vein endothelial cells (HUVECs). HUVECs were cultured in normal glucose (5.5 mmol/L), high glucose (33 mmol/L), high salidroside (10 µg/ml+33 mmol/L glucose), moderate salidroside (4 µg/ml+33 mmol/L glucose), low salidroside (1 µg/ml+33 mmol/L glucose) and very low salidroside (0.1 µg/ml+33 mmol/L glucose) for 48 h. Cell viability, the level of malondialdehyde (MDA) , reactive oxygen species (ROS) , nitric oxide (NO) , [Ca(2)+]i, calmodulin (CaM) , calmodulin-dependent kinase (CaMK) IIδ, endothelial nitric oxide synthase (eNOS) , active caspase-3 protein expression and eNOS ser 1177 phosphorylation of HUVECs post various treatments were measured. The cell viability was assessed with MTT assay, and the level of ROS, and [Ca(2)+]i was analyzed using flow cytometry. Nitric oxide and MDA was detected by Nitric Oxide Assay Kit and MDA Assay Kit. Western blot was performed to detect the protein expressions of eNOS, active caspase-3 and eNOS ser 1177 phosphorylation. Comparing to the normal glucose group, high glucose treatment increased the cell damage, the level of NO and [Ca(2)+]i (P < 0.05) , downregulated CAMKIIδ, eNOS expression and eNOS ser 1177 phosphorylation (P < 0.05), elevated the concentration of MDA and ROS (P < 0.05) in HUVECs. Salidroside treatment significantly attenuated high glucose-induce cell damage on cultured HUVECs in a dose-dependent manner. Comparing to the high glucose group, 10 µg/ml Salidroside significantly increased cell viability (P < 0.05) , inhibited high glucose-induced release of MDA , generation of ROS, active caspase 3 protein expression (P < 0

  10. Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways.

    PubMed

    Erdogdu, Ozlem; Eriksson, Linnéa; Xu, Hua; Sjöholm, Ake; Zhang, Qimin; Nyström, Thomas

    2013-04-01

    Experimental studies have indicated that endothelial cells play an important role in maintaining vascular homeostasis. We previously reported that human coronary artery endothelial cells (HCAECs) express the glucagon-like peptide 1 (GLP1) receptor and that the stable GLP1 mimetic exendin-4 is able to activate the receptor, leading to increased cell proliferation. Here, we have studied the effect of exendin-4 and native GLP1 (7-36) on lipoapoptosis and its underlying mechanisms in HCAECs. Apoptosis was assessed by DNA fragmentation and caspase-3 activation, after incubating cells with palmitate. Nitric oxide (NO) and reactive oxidative species (ROS) were analyzed. GLP1 receptor activation, PKA-, PI3K/Akt-, eNOS-, p38 MAPK-, and JNK-dependent pathways, and genetic silencing of transfection of eNOS were also studied. Palmitate-induced apoptosis stimulated cells to release NO and ROS, concomitant with upregulation of eNOS, which required activation of p38 MAPK and JNK. Exendin-4 restored the imbalance between NO and ROS production in which ROS production decreased and NO production was further augmented. Incubation with exendin-4 and GLP1 (7-36) protected HCAECs against lipoapoptosis, an effect that was blocked by PKA, PI3K/Akt, eNOS, p38 MAPK, and JNK inhibitors. Genetic silencing of eNOS also abolished the anti-apoptotic effect afforded by exendin-4. Our results support the notion that GLP1 receptor agonists restore eNOS-induced ROS production due to lipotoxicity and that such agonists protect against lipoapoptosis through PKA-PI3K/Akt-eNOS-p38 MAPK-JNK-dependent pathways via a GLP1 receptor-dependent mechanism.

  11. Mild caloric restriction reduces blood pressure and activates endothelial AMPK-PI3K-Akt-eNOS pathway in obese Zucker rats.

    PubMed

    García-Prieto, C F; Pulido-Olmo, H; Ruiz-Hurtado, G; Gil-Ortega, M; Aranguez, I; Rubio, M A; Ruiz-Gayo, M; Somoza, B; Fernández-Alfonso, M S

    2015-01-01

    Genetic obesity models exhibit endothelial dysfunction associated to adenosine monophosphate-activated protein kinase (AMPK) dysregulation. This study aims to assess if mild short-term caloric restriction (CR) restores endothelial AMPK activity leading to an improvement in endothelial function. Twelve-week old Zucker lean and obese (fa/fa) male rats had access to standard chow either ad libitum (AL, n=8) or 80% of AL (CR, n=8) for two weeks. Systolic blood pressure was significantly higher in fa/fa AL rats versus lean AL animals, but was normalized by CR. Endothelium-dependent relaxation to acetylcholine (ACh, 10(-9) to 10(-4) M) was reduced in fa/fa AL compared to control lean AL rats (p<0.001), and restored by CR. The AMPK activator AICAR (10(-5) to 8·10(-3) M) elicited a lower relaxation in fa/fa AL rings that was normalized by CR (p<0.001). Inhibition of PI3K (wortmannin, 10(-7) M), Akt (triciribine, 10(-5) M), or eNOS (L-NAME, 10(-4) M) markedly reduced AICAR-induced relaxation in lean AL, but not in fa/fa AL rats. These inhibitions were restored by CR in Zucker fa/fa rings. These data show that mild short-term CR improves endothelial function and lowers blood pressure in obesity due to the activation of the AMPK-PI3K-Akt-eNOS pathway.

  12. The Involvement of Angiotensin Type 1 and Type 2 Receptors in Estrogen-Induced Cell Proliferation and Vascular Endothelial Growth Factor Expression in the Rat Anterior Pituitary

    PubMed Central

    Lawnicka, Hanna; Ptasinska-Wnuk, Dorota; Mucha, Slawomir; Kunert-Radek, Jolanta; Pawlikowski, Marek; Stepien, Henryk

    2012-01-01

    The aim of our study was to examine the involvement of renin-angiotensin system (RAS) in estrogen-induced lactotropes proliferation and vascular endothelial growth factor (VEGF) expression in rat pituitary. The study was performed on Fisher 344 rats underwent 8-day treatment with diethylstilboestrol (DES). The proliferation index (PCNA) and VEGF expression in pituitary sections were estimated using immunohistochemical methods. Treatment with DES increased the number of PCNA-positive cells, VEGF-positive cells, and VEGF-positive blood vessels in pituitary. Stimulatory effect of estrogen on cell proliferation and VEGF expression in blood vessels was attenuated by losartan, PD123319, and captopril. VEGF immunoreactivity in pituitary cells of DES-treated rats was decreased by AT1 antagonist and not changed by AT2 blocker and ACE inhibitor. Our findings suggest the involvement of RAS in DES-induced cell proliferation and VEGF expression in pituitary. Both the AT1 and AT2 receptors appear to mediate the estrogen-dependent mitogenic and proangiogenic effects in rat pituitary. PMID:22645419

  13. Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/eNOS pathway.

    PubMed

    Ahsan, Anil; Han, Guozhu; Pan, Junfang; Liu, Shumin; Padhiar, Arshad Ahmed; Chu, Peng; Sun, Zhengwu; Zhang, Zonghui; Sun, Bin; Wu, Jingjun; Irshad, Aisha; Lin, Yuan; Peng, Jinyong; Tang, Zeyao

    2015-12-01

    Endothelial apoptosis triggered by oxidized low-density lipoprotein (oxLDL) can accelerate the progression of endothelial dysfunction atherosclerosis. Phosphocreatine (PCr) is a natural compound, which has been used in cardiac disease and cardiopulmonary resuscitation. However, its protective effects on atherosclerosis and its mechanism have not been clarified. In the present study, we investigated the anti-apoptotic effect of phosphocreatine in human umbilical vein endothelial cells (HUVECs) exposed to oxLDL and explored the possible mechanisms. HUVECs were pre-treated with 10-30 mM PCr and then stimulated with oxLDL. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, CCK assay, and flow cytometry respectively. Levels of Bax, Bcl-2, protein expression of protein kinase B (Akt), eNOS and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Lactate dehydrogenase (LDH), malondialdehyde (MDA), nitric oxide (NO) and superoxide dismutase (SOD) contents were determined by spectrophotometer. Our results showed that PCr dose-dependently prevented oxLDL associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, LDH and MDA leakage and loss of SOD, decrease of Bcl-2/Bax protein ratio, activation of caspase-3 and 9, and ROS generation. In addition, the antiapoptotic effect of PCr was partially inhibited by a PI3K inhibitor (LY294002) and also enhanced p-Akt/Akt protein ratio, eNOS activation and NO production. In conclusion, our data show that the inhibition of oxLDL-induced endothelial apoptosis by PCr is due, at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway.

  14. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle.

    PubMed

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J; Høier, Birgitte; Krustrup, Peter; Bangsbo, Jens

    2008-03-01

    The present study used passive limb movement as an experimental model to study the effect of increased blood flow and passive stretch, without enhanced metabolic demand, in young healthy male subjects. The model used was 90 min of passive movement of the leg leading to a 2.8-fold increase (P < 0.05) in blood flow without a significant enhancement in oxygen uptake. Muscle interstitial fluid was sampled with microdialysis technique and analyzed for vascular endothelial growth factor (VEGF) protein and for the effect on endothelial cell proliferation. Biopsies obtained from the musculus vastus lateralis were analyzed for mRNA content of VEGF, endothelial nitric oxide synthase (eNOS), and matrix metalloproteinase-2 (MMP-2). The passive leg movement caused an increase (P < 0.05) in interstitial VEGF protein concentration above rest (73 +/- 21 vs. 344 +/- 83 pg/ml). Addition of muscle dialysate to cultured endothelial cells revealed that dialysate obtained during leg movement induced a 3.2-fold higher proliferation rate (P < 0.05) than dialysate obtained at rest. Passive movement also enhanced (P < 0.05) the eNOS mRNA level fourfold above resting levels. VEGF mRNA and MMP-2 mRNA levels were unaffected. The results show that a session of passive leg movement, elevating blood flow and causing passive stretch, augments the interstitial concentrations of VEGF, the proliferative effect of interstitial fluid, and eNOS mRNA content in muscle tissue. We propose that enhanced blood flow and passive stretch are positive physiological stimulators of factors associated with capillary growth in human muscle.

  15. Abnormal phosphorylation of Tie2/Akt/eNOS signaling pathway and decreased number or function of circulating endothelial progenitor cells in prehypertensive premenopausal women with diabetes mellitus.

    PubMed

    Zeng, Haitao; Jiang, Yanping; Tang, Hailin; Ren, Zi; Zeng, Gaofeng; Yang, Zhen

    2016-03-02

    The number and activity of circulating endothelial progenitor cells (EPCs) in prehypertension is preserved in premenopausal women. However, whether this favorable effect still exists in prehypertensive premenopausal women with diabetes is not clear. This study compared the number and functional activity of circulating EPCs in normotensive or prehypertensive premenopausal women without diabetes mellitus and normotensive or prehypertensive premenopausal women with diabetes mellitus, evaluated the vascular endothelial function in each groups, and investigated the possible underlying mechanism. We found that compared with normotensive premenopausal women, the number and function of circulating EPCs, as well as endothelial function evaluated by flow-mediated dilatation (FMD) in prehypertensive premenopausal women were preserved. In parallel, the Tie2/Akt/eNOS signaling pathway and the plasma NO level or NO secretion of circulating EPCs in prehypertensive premenopausal women was also retained. However, in presence of normotension or prehypertension with diabetes mellitus, the number or function of circulating EPCs and FMD in premenopausal women decreased. Similarly, the phosphorylation of Tie2/Akt/eNOS signaling pathway and the plasma NO level or NO secretion of circulating EPCs was reduced in prehypertension premenopausal with diabetes mellitus. The present findings firstly demonstrate that the unfavorable effects of diabetes mellitus on number and activity of circulating EPCs in prehypertension premenopausal women, which is at least partially related to the abnormal phosphorylation of Tie2/Akt/eNOS signaling pathway and subsequently reduced nitric oxide bioavailability. The Tie2/Akt/eNOS signaling pathway may be a potential target of vascular protection in prehypertensive premenopausal women with diabetes mellitus.

  16. Rumex acetosa L. induces vasorelaxation in rat aorta via activation of PI3-kinase/Akt- AND Ca(2+)-eNOS-NO signaling in endothelial cells.

    PubMed

    Sun, Y Y; Su, X H; Jin, J Y; Zhou, Z Q; Sun, S S; Wen, J F; Kang, D G; Lee, H S; Cho, K W; Jin, S N

    2015-12-01

    Rumex acetosa L. (RA) (Polygonaceae) is an important traditional Chinese medicine (TCM) commonly used in clinic for a long history in China and the aerial parts of RA has a wide variety of pharmacological actions such as diuretic, anti-hypertensive, anti-oxidative, and anti-cancer effects. However, the mechanisms involved are to be defined. The purpose of the present study was to evaluate the vasorelaxant effect and define the mechanism of action of the ethanol extract of Rumex acetosa L. (ERA) in rat aorta. ERA was examined for its vascular relaxant effect in isolated phenylephrine-precontracted rat thoracic aorta and its acute effects on arterial blood pressure. In addition, the roles of the nitric oxide synthase (NOS)-nitric oxide (NO) signaling in the ERA-induced effects were tested in human umbilical vein endothelial cells (HUVECs). The phosphorylation levels of Akt and eNOS were assessed by Western blot analysis in the cultured HUVECs. ERA induced endothelium-dependent vasorelaxation. The ERA-induced vasorelaxation was abolished by L-NAME (an NOS inhibitor) or ODQ (a sGC inhibitor), but not by indomethacin. Inhibition of PI3-kinase/Akt signaling pathway markedly reduced the ERA-induced vasorelaxation. In HUVECs, ERA increased NO formation in a dose-dependent manner, which was inhibited by L-NAME and by removing extracellular Ca(2+). In addition, ERA promoted phosphorylation of Akt and eNOS, which was prevented by wortmannin and LY294002, indicating that ERA induces eNOS phosphorylation through the PI3-kinase/Akt pathway. Further, in anesthetized rats, intravenously administered ERA decreased arterial blood pressure in a dose-dependent manner through an activation of the NOS-NO system. In summary, the ERA- induced vasorelaxation was dependent on endothelial integrity and NO production, and was mediated by activation of both the endothelial PI3-kinase/Akt- and Ca(2+)-eNOS-NO signaling and muscular NO-sGC-cGMP signaling.

  17. Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated RISK pathway in an endothelial NOS-dependent mechanism.

    PubMed

    Zhou, Hua; Hou, Shao Zhen; Luo, Pei; Zeng, Bao; Wang, Jing Rong; Wong, Yuen Fan; Jiang, Zhi Hong; Liu, Liang

    2011-05-17

    Ginseng (Panax ginseng C.A. Meyer) is widely used in Asian communities for treating cardiovascular diseases. However, the mechanism by which it protects the myocardium in ischemia-reperfusion (I/R) injury remains unclear. In this study, we aim to investigate whether a standardized ginseng extract (RSE) protects rodent hearts against I/R injury and if glucocorticoid and/or estrogen receptor-mediated activation of Akt and Erk1/2 (the reperfusion injury salvage kinase pathway, RISK) and subsequent nitric oxide (NO) synthesis signaling are involved in this effect. Rats or gene-deleted mice were subjected to 30 min ischemia by occluding the left anterior descending coronary artery and 90 min reperfusion. Infarct size, serum level of creatine kinase (CK), lactate dehydrogenase (LDH), and NO, expression and phosphorylation of glucocorticoid receptor (GR), estrogen receptor (ER), phosphatidylinositol-3 kinase (PI3K), Akt, NO synthase (NOS), extracellular signal-regulated kinase (Erk) 1/2, p38, and c-Jun NH2 terminal kinases (JNK) were examined in rat or mice treated with or without RSE in the absence or presence of pharmacological inhibitors. RSE significantly reduced infarct size in a dose-dependent manner and reduced the incidence of arrhythmia, increased serum NO production, reduced serum activities of creatine kinase and lactate dehydrogenase. The infarct size reduction effect of RSE was abolished by RU468 (an inhibitor of GR), tamoxifen (an inhibitor of ER), LY294002 (an inhibitor of PI3K), Akt inhibitor IV (an inhibitor of Akt protein kinase), U0126 (an inhibitor of Erk1/2) and NG-nitro-l-arginine methyl ester hydrochloride (an inhibitor of NOS), but not actinomycin D (an inhibitor of transcription process). RSE also significantly increased the activation of GR/ER, PI3K-Akt-eNOS cascades and Erk1/2 signaling in rat heart. However, RSE did not markedly reduce infarct size in endothelium NOS(-/-) mice. This differs from its effect in inducible NOS(-/-) and wild type

  18. Docosahexaenoic acid inhibits vascular endothelial growth factor (VEGF)-induced cell migration via the GPR120/PP2A/ERK1/2/eNOS signaling pathway in human umbilical vein endothelial cells.

    PubMed

    Chao, Che-Yi; Lii, Chong-Kuei; Ye, Siou-Yu; Li, Chien-Chun; Lu, Chia-Yang; Lin, Ai-Hsuan; Liu, Kai-Li; Chen, Haw-Wen

    2014-05-07

    Cell migration plays an important role in angiogenesis and wound repair. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen that is essential for endothelial cell survival, proliferation, and migration. Docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, shows both anti-inflammatory and antioxidant activities in vitro and in vivo. This study investigated the molecular mechanism by which DHA down-regulates VEGF-induced cell migration. HUVECs were used as the study model, and the MTT assay, Western blot, wound-healing assay, and phosphatase activity assay were used to explore the effects of DHA on cell migration. GPR120 is the putative receptor for DHA action. The results showed that DHA, PD98059 (an ERK1/2 inhibitor), and GW9508 (a GPR120 agonist) inhibited VEGF-induced cell migration. In contrast, pretreatment with okadaic acid (OA, a PP2A inhibitor) and S-nitroso-N-acetyl-DL-penicillamine (an NO donor) reversed the inhibition of cell migration by DHA. VEGF-induced cell migration was accompanied by phosphorylation of ERK1/2 and eNOS. Treatment of HUVECs with DHA increased PP2A enzyme activity and decreased VEGF-induced phosphorylation of ERK1/2 and eNOS. However, pretreatment with OA significantly decreased DHA-induced PP2A enzyme activity and reversed the DHA inhibition of VEGF-induced ERK1/2 and eNOS phosphorylation. These results suggest that stimulation of PP2A activity and inhibition of the VEGF-induced ERK1/2/eNOS signaling pathway may be involved in the DHA suppression of VEGF-induced cell migration. Thus, the effect of DHA on angiogenesis and wound repair is at least partly by virtue of its attenuation of cell migration.

  19. Endothelial glutathione-S-transferase A4-4 protects against oxidative stress and modulates iNOS expression through NF-{kappa}B translocation

    SciTech Connect

    Yang Yongzhen; Yang Yusong; Xu Ya; Lick, Scott D.; Awasthi, Yogesh C.; Boor, Paul J.

    2008-07-15

    Our recent work in endothelial cells and human atherosclerotic plaque showed that overexpression of glutathione-S-tranferases (GSTs) in endothelium protects against oxidative damage from aldehydes such as 4-HNE. Nuclear factor (NF)-{kappa}B plays a crucial role during inflammation and immune responses by regulating the expression of inducible genes such as inducible nitric oxide synthase (iNOS). 4-HNE induces apoptosis and affects NF-{kappa}B mediated gene expression, but conflicting results on 4-HNE's effect on NF-{kappa}B have been reported. We compared the effect of 4-HNE on iNOS and the NF-{kappa}B pathway in control mouse pancreatic islet endothelial (MS1) cells and those transfected with mGSTA4, a {alpha}-class GST with highest activity toward 4-HNE. When treated with 4-HNE, mGSTA4-transfected cells showed significant upregulation of iNOS and nitric oxide (NO) through (NF)-{kappa}B (p65) translocation in comparison with wild-type or vector-transfected cells. Immunohistochemical studies of early human plaques showed lower 4-HNE content and upregulation of iNOS, which we take to indicate that GSTA4-4 induction acts as an enzymatic defense against high levels of 4-HNE, since 4-HNE accumulated in more advanced plaques, when detoxification and exocytotic mechanisms are likely to be overwhelmed. These studies suggest that GSTA4-4 may play an important defensive role against atherogenesis through detoxification of 4-HNE and upregulation of iNOS.

  20. Chronic Cigarette Smoking Impairs Erectile Function through Increased Oxidative Stress and Apoptosis, Decreased nNOS, Endothelial and Smooth Muscle Contents in a Rat Model.

    PubMed

    Huang, Yun-Ching; Chin, Chih-Chien; Chen, Chih-Shou; Shindel, Alan W; Ho, Dong-Ru; Lin, Ching-Shwun; Shi, Chung-Sheng

    2015-01-01

    Cigarette use is an independent risk factor for the development of erectile dysfunction (ED). While the association between chronic smoking and ED is well established, the fundamental mechanism(s) of cigarette-related ED are incompletely understood, partly due to no reliable animal model of smoking-induced ED. The present study was designed to validate an in vivo rat model of chronic cigarette-induced ED. Forty 12-week old male Sprague-Dawley rats were divided into 4 groups. Ten rats served as control group and were exposed only to room air. The remaining 30 rats were passively exposed to cigarette smoke (CS) for 4 weeks (n = 10), 12 weeks (n = 10), and 24 weeks (n = 10). At the 24-week time point all rats were assessed with intracavernous pressure (ICP) during cavernous nerve electrostimulation. Blood and urine were collected to measure serum testosterone and oxidative stress, respectively. Corporal tissue was assessed by Western blot for neuronal nitric oxide synthase (nNOS). Penile tissues were subjected to immunohistochemistry for endothelial, smooth muscle, and apoptotic content. Mean arterial pressure (MAP) was significantly higher in 24-week cigarette exposed animals compared to the control animals. Mean ICP/MAP ratio and cavernosal smooth muscle/endothelial contents were significantly lower in the 12- and 24-week rats compared to control animals. Oxidative stress was significantly higher in the 24-week cigarette exposed group compared to control animals. Mean nNOS expression was significantly lower, and apoptotic index significantly higher, in CS-exposed animals compared to control animals. These findings indicate that the rat model exposure to CS increases apoptosis and oxidative stress and decreases nNOS, endothelial and smooth muscle contents, and ICP in a dose dependent fashion. The rat model is a useful tool for further study of the molecular and cellular mechanisms of CS-related ED.

  1. Chronic Cigarette Smoking Impairs Erectile Function through Increased Oxidative Stress and Apoptosis, Decreased nNOS, Endothelial and Smooth Muscle Contents in a Rat Model

    PubMed Central

    Huang, Yun-Ching; Chin, Chih-Chien; Chen, Chih-Shou; Shindel, Alan. W.; Ho, Dong-Ru; Lin, Ching-Shwun; Shi, Chung-Sheng

    2015-01-01

    Cigarette use is an independent risk factor for the development of erectile dysfunction (ED). While the association between chronic smoking and ED is well established, the fundamental mechanism(s) of cigarette-related ED are incompletely understood, partly due to no reliable animal model of smoking-induced ED. The present study was designed to validate an in vivo rat model of chronic cigarette-induced ED. Forty 12-week old male Sprague-Dawley rats were divided into 4 groups. Ten rats served as control group and were exposed only to room air. The remaining 30 rats were passively exposed to cigarette smoke (CS) for 4 weeks (n = 10), 12 weeks (n = 10), and 24 weeks (n = 10). At the 24-week time point all rats were assessed with intracavernous pressure (ICP) during cavernous nerve electrostimulation. Blood and urine were collected to measure serum testosterone and oxidative stress, respectively. Corporal tissue was assessed by Western blot for neuronal nitric oxide synthase (nNOS). Penile tissues were subjected to immunohistochemistry for endothelial, smooth muscle, and apoptotic content. Mean arterial pressure (MAP) was significantly higher in 24-week cigarette exposed animals compared to the control animals. Mean ICP/MAP ratio and cavernosal smooth muscle/endothelial contents were significantly lower in the 12- and 24-week rats compared to control animals. Oxidative stress was significantly higher in the 24-week cigarette exposed group compared to control animals. Mean nNOS expression was significantly lower, and apoptotic index significantly higher, in CS-exposed animals compared to control animals. These findings indicate that the rat model exposure to CS increases apoptosis and oxidative stress and decreases nNOS, endothelial and smooth muscle contents, and ICP in a dose dependent fashion. The rat model is a useful tool for further study of the molecular and cellular mechanisms of CS-related ED. PMID:26491965

  2. Puerarin protects endothelial cells from oxidized low density lipoprotein induced injuries via the suppression of LOX-1 and induction of eNOS.

    PubMed

    Bao, Mei-hua; Zhang, Yi-wen; Lou, Xiao-ya; Xiao, Yan; Cheng, Yu; Zhou, Hong-hao

    2014-04-01

    Oxidized low density lipoprotein (oxLDL) induced injury of endothelial cells is considered to be the first step in the pathogenesis of atherosclerosis. This study aimed to investigate some of the effects and mechanisms of puerarin on oxLDL-induced endothelial injuries. We measured cell viability, and the release of lactate dehydrogenase (LDH), nitric oxide (NO), and interleukin-8 (IL-8) to evaluate the protective effects of puerarin. Intracellular reactive oxygen species (ROS) were detected using 2',7'-dichlorofluorescein diacetate (DCFH-DA). The expression of lectin-like low-density lipoprotein receptor-1 (LOX-1), endothelial nitric oxide synthase (eNOS), cyclooxygenase 2 (COX-2), p38MAPK, and protein kinase B (PKB) phosphorylation, nuclear factor-κB (NF-κB) nuclear translocation, and inhibitor of κB (IκB) degradation were detected using quantitative real-time PCR or Western blot. The results showed that oxLDL significantly decreased cell viability, increased LDH and IL-8 release, inhibited NO production, and induced COX-2 expression. Pretreatment with puerarin led to a strong inhibition of these effects. OxLDL stimulated the expression of LOX-1, the overproduction of ROS, the phosphorylation of p38MAPK, the dephosphorylation of PKB, activation of NF-κB, and the degradation of IκB. These oxLDL-induced effects were suppressed after puerarin pretreatment. These results suggest that puerarin inhibits oxLDL-induced endothelial cell injuries, at least in part, via inhibition of the LOX-1-mediated p38MAPK-NF-κB inflammatory and the PKB-eNOS signaling pathways.

  3. Role of gender and estrogen receptors in the rat aorta endothelium-dependent relaxation to red wine polyphenols.

    PubMed

    Kane, Modou Oumy; Anselm, Eric; Rattmann, Yanna Dantas; Auger, Cyril; Schini-Kerth, Valérie B

    2009-01-01

    Regular intake of moderate amounts of beverages rich in polyphenols such as red wine is associated with a protective effect on the vascular system, in part, by increasing the endothelial formation of nitric oxide (NO), a major vasoprotective factor. Since estrogens are potent inducers of NO formation and polyphenols have been shown to have phytoestrogen properties, we determined whether estrogen receptors mediate the stimulatory effect of red wine polyphenols (RWPs) on the endothelial formation of NO using isolated rat aortic rings and cultured endothelial cells. RWPs caused endothelium-dependent relaxations, which were more pronounced in the aorta of female than male rats. Increased relaxations were also observed to acetylcholine but not to sodium nitroprusside. Relaxations to RWPs were abolished by nitro l-arginine and MnTMPyP, markedly reduced by polyethyleneglycol-catalase and wortmannin, and not affected by the estrogen antagonist ICI 182,780 in aortic rings from males and females. eNOS expression was higher in aortic sections of female than male rats. RWPs caused the phosphorylation of Akt and eNOS in endothelial cells, which was unaffected by ICI 182,780. Thus, RWPs cause redox-sensitive PI3-kinase/Akt-dependent NO-mediated relaxations, which are more pronounced in the aorta of female than male rats; an effect most likely due to the increased expression level of eNOS rather than activation of estrogen receptors.

  4. Influence of Ovarian Endometrioma on Expression of Steroid Receptor RNA Activator, Estrogen Receptors, Vascular Endothelial Growth Factor, and Thrombospondin 1 in the Surrounding Ovarian Tissues

    PubMed Central

    Lin, Kaiqing; Ma, Junyan; Wu, Ruijin; Zhou, Caiyun

    2014-01-01

    This study investigates the influence of ovarian endometrioma on expression of steroid receptor RNA activator (SRA), estrogen receptors (ERs), vascular endothelial growth factor (VEGF), and thrombospondin 1 (TSP-1) in the surrounding ovarian tissues. Taken from the women with ovarian endometrioma and mature teratoma during laparoscopy, the biopsies were analyzed by real-time polymerase chain reaction and Western blot. Our results indicated that ovarian tissues surrounding endometrioma had lower SRA and ER-α levels but higher SRA protein (SRAP) and ER-β levels than ovarian endometrioma. With lower VEGF levels and higher TSP-1 levels, the surrounding ovarian tissues showed higher expression levels of SRA, SRAP, ER-α, and ER-β in the ovarian endometrioma group when compared to the controls. These data showed that ovarian endometrioma increases SRA, ERs, and TSP-1 but decreases VEGF levels in the surrounding ovarian tissues, suggesting that abnormal expression of these molecules may affect biological behaviors of ovarian endometrioma. PMID:23749764

  5. Activation function 2 (AF2) of estrogen receptor-α is required for the atheroprotective action of estradiol but not to accelerate endothelial healing

    PubMed Central

    Billon-Galés, Audrey; Krust, Andrée; Fontaine, Coralie; Abot, Anne; Flouriot, Gilles; Toutain, Céline; Berges, Hortense; Gadeau, Alain-Pierre; Lenfant, Françoise; Gourdy, Pierre; Chambon, Pierre; Arnal, Jean-François

    2011-01-01

    17β-Estradiol (E2) regulates estrogen receptor-α (ERα) target gene transcription through the two independent activation functions (AFs), AF1 and AF2, located in the N-terminal and ligand binding domain of ERα, respectively. We previously reported that ERα is required for the E2 atheroprotective action as well as for its accelerative action on endothelial healing, but its AF1 function is dispensable. Here, we investigated the role of ERαAF2 in these two major beneficial actions of E2 by electively targeting ERαAF2 (named ERαAF20). Our results prove four points. (i) Compared with WT ERα, the ability of ERαAF20 to stimulate the C3 complement or the estrogen response element-thymidine kinase promoter in two cell lines was dramatically decreased, confirming the importance of AF2 in the E2-induced transcriptional activity of ERα. (ii) The uterotrophic action of E2 was totally absent in ERαAF20 mice, showing the crucial role of ERαAF2 in E2-induced uterus hyperplasia. (iii) ERαAF2 was dispensable for the accelerative action of E2 on endothelial healing, underlining the functionality of ERαAF20 in vivo. (iv) Finally, the atheroprotective effect of E2 was abrogated in ERαAF20 LDL-r−/− mice. Thus, whereas ERαAF1 and ERαAF2 are both required for the uterotrophic action of E2, we show that only ERαAF2 is necessary for its atheroprotective effect. PMID:21788522

  6. Splice isoform estrogen receptors as integral transmembrane proteins.

    PubMed

    Kim, Kyung Hee; Toomre, Derek; Bender, Jeffrey R

    2011-11-01

    In addition to enhancing or repressing transcription, steroid hormone receptors rapidly transduce kinase activation signals. On ligand engagement, an N-terminus-truncated splice isoform of estrogen receptor (ER) α, ER46, triggers membrane-initiated signals, resulting in endothelial nitric oxide synthase (eNOS) activation and endothelial NO production. The orientation of ER46 at the plasma membrane is incompletely defined. With the use of ecliptic pHluorin-fused ER46, total internal reflection fluorescence microscopy in live human endothelial cells illustrates that ER46 can topologically conform to a type I transmembrane protein structure. Mutation of isoleucine-386 at the center of ER46's transmembrane hydrophobic core prevents membrane spanning, obscures the N-terminal ectodomain, and effects a marked reduction in membrane-impermeant estrogen binding with diminished rapid eNOS activation and NO production, despite maintained genomic induction of an estrogen response element-luciferase reporter. Thus there exist pools of transmembrane steroid hormone receptors that are efficient signaling molecules and potential novel therapeutic targets.

  7. Angiopoietin-1 regulates microvascular reactivity and protects the microcirculation during acute endothelial dysfunction: role of eNOS and VE-cadherin.

    PubMed

    Alfieri, Alessio; Ong, Albert C M; Kammerer, Richard A; Solanky, Tirupa; Bate, Simon; Tasab, Mohammed; Brown, Nicola J; Brookes, Zoe L

    2014-02-01

    The growth factor angiopoietin-1 (Ang-1) plays an essential role in angiogenesis and vascular homeostasis. Nevertheless, the role of Ang-1 in regulating vascular tone and blood flow is largely unexplored. Endothelial nitric oxide synthase (eNOS) and the junctional protein VE-cadherin are part of the complex signalling cascade initiated by Ang-1 in endothelial cells. In this study, we aimed to investigate the mechanisms underlying acute effects of Ang-1 on microvascular reactivity, permeability and blood flow, and hypothesise that eNOS and VE-cadherin underpin Ang-1 mediated vascular effects that are independent of angiogenesis and proliferation. Myography of isolated microarterioles from male C3H/HeN mice (7-10 weeks) was employed to measure vascular reactivity in vitro. Microcirculatory function in vivo was evaluated by intravital microscopy and Doppler fluximetry in dorsal window chambers. Ang-1 and its stable variant MAT.Ang-1 induced a concentration-dependent vasodilation of arterioles in vitro, which was blocked with nitric oxide (NO) synthesis inhibitor l-NAME. In vivo, MAT.Ang-1 restored to control levels l-NAME induced peripheral vasoconstriction, decreased blood flow and microvascular hyperpermeability. Tissue protein expression of VE-cadherin was reduced by NOS inhibition and restored to control levels by MAT.Ang-1, whilst VE-cadherin phosphorylation was increased by l-NAME and subsequently reduced by MAT.Ang-1 administration. Moreover, MAT.Ang-1 alone did not modulate systemic levels of angiogenetic factors. Our novel findings report that Ang-1 induces arteriolar vasodilation via release of NO, suggesting that Ang-1 is an important regulator of microvascular tone. As MAT.Ang-1 ameliorates detrimental effects on the microcirculation induced by inhibition of NO synthesis and stabilizes the endothelial barrier function through VE-cadherin, we propose that this Ang-1 variant may serve as a novel therapeutic agent to protect the microcirculation against

  8. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction.

    PubMed

    Hamada, Hiromichi; Kim, Myeong Kon; Iwakura, Atsushi; Ii, Masaaki; Thorne, Tina; Qin, Gangjian; Asai, Jun; Tsutsumi, Yoshiaki; Sekiguchi, Haruki; Silver, Marcy; Wecker, Andrea; Bord, Evelyn; Zhu, Yan; Kishore, Raj; Losordo, Douglas W

    2006-11-21

    Estradiol (E2) modulates the kinetics of circulating endothelial progenitor cells (EPCs) and favorably affects neovascularization after ischemic injury. However, the roles of estrogen receptors alpha (ER alpha) and beta (ER beta) in EPC biology are largely unknown. In response to E2, migration, tube formation, adhesion, and estrogen-responsive element-dependent gene transcription activities were severely impaired in EPCs obtained from ER alpha-knockout mice (ER alphaKO) and moderately impaired in ER betaKO EPCs. The number of ER alphaKO EPCs (42.4+/-1.5; P<0.001) and ER betaKO EPCs (55.4+/-1.8; P=0.03) incorporated into the ischemic border zone was reduced as compared with wild-type (WT) EPCs (72.5+/-1.3). In bone marrow transplantation (BMT) models, the number of mobilized endogenous EPCs in E2-treated mice was significantly reduced in ER alphaKO BMT (WT mice transplanted with ER alphaKO bone marrow) (2.03+/-0.18%; P=0.004 versus WT BMT) and ER betaKO BMT (2.62+/-0.07%; P=0.02 versus WT) compared with WT BMT (2.87+/-0.13%) (WT to WT BMT as control) mice. Capillary density at the border zone of ischemic myocardium also was significantly reduced in ER alphaKO BMT and ER betaKO BMT compared with WT mice (WT BMT, 1718+/-75/mm2; ER alphaKO BMT, 1107+/-48/mm2; ER betaKO BMT, 1567+/-50/mm2). ER alpha mRNA was expressed more abundantly on EPCs compared with ER beta. Moreover, vascular endothelial growth factor was significantly downregulated on ER alphaKO EPCs compared with WT EPCs both in vitro and in vivo. Both ER alpha and ER beta contribute to E2-mediated EPC activation and tissue incorporation and to preservation of cardiac function after myocardial infarction. ER alpha plays a more prominent role in this process. Moreover, ER alpha contributes to upregulation of vascular endothelial growth factor, revealing possible mechanisms of an effect of E2 on EPC biology. Finally, these data provide additional evidence of the importance of bone marrow-derived EPC phenotype in

  9. Endothelial nitric oxide synthase (eNOS) 4b/a gene polymorphisms and coronary artery disease: evidence from a meta-analysis.

    PubMed

    Yang, Yujiao; Du, Kang; Liu, Zhengxia; Lu, Xiang

    2014-05-07

    A variety of studies have suggested that the 4b/a polymorphism in the endothelial nitric oxide synthase (eNOS) was associated with coronary artery disease (CAD) risk. However, the data remain conflicting. The aim of the present meta-analysis was to estimate the overall association between risk of CAD and eNOS 4b/a polymorphism. Case-control, cohort or cross-sectional studies evaluating the association between eNOS 4b/a polymorphism and CAD susceptibility were systematically identified in PubMed up to 31 October 2013. Pooled odds ratios (OR) and corresponding 95% confidence intervals (CIs) were calculated to assess the association in overall and subgroup analyses. A total of 10,617 cases and 8302 controls from 37 studies were included in the study. The results of overall analysis revealed significant positive associations between CAD risk and eNOS 4b/a polymorphism in homozygote comparisons (OR = 1.47, 95% CI = 1.16-1.87), heterozygote comparisons (OR = 1.14, 95% CI = 1.02-1.27) and dominant models (OR = 1.18, 95% CI = 1.06-1.33). In subgroup analyses, similar associations were identified in African individuals, as determined using population-based source subgroups and noted in small-and-moderate sample size subgroups (case sample size or control sample size <500). The current meta-analysis revealed that eNOS 4b/a polymorphisms could be a risk factor for developing CAD, particularly in African populations and population-based subgroups.

  10. FM19G11 reverses endothelial dysfunction in rat and human arteries through stimulation of the PI3K/Akt/eNOS pathway, independently of mTOR/HIF-1α activation.

    PubMed

    El Assar, M; Sánchez-Puelles, J M; Royo, I; López-Hernández, E; Sánchez-Ferrer, A; Aceña, J L; Rodríguez-Mañas, L; Angulo, J

    2015-03-01

    FM19G11 up-regulates mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) and PI3K/Akt pathways, which are involved in endothelial function. We evaluated the effects of FM19G11 on defective endothelial vasodilatation in arteries from rats and humans and investigated the mechanisms involved. Effects of chronic in vivo administration of FM19G11 on aortic endothelial vasodilatation were evaluated together with ex vivo treatment in aortic and mesenteric arteries from control and insulin-resistant rats (IRR). Its effects on vasodilator responses of penile arteries (HPRAs) and corpus cavernosum (HCC) from men with vasculogenic erectile dysfunction (ED) (model of human endothelial dysfunction) were also evaluated. Vascular expression of phosphorylated-endothelial NOS (p-eNOS), phosphorylated-Akt (p-Akt) and HIF-1α was determined by immunodetection and cGMP by elisa. Chronic administration of FM19G11 reversed the impaired endothelial vasodilatation in IRR. Ex vivo treatment with FM19G11 also significantly improved endothelium-dependent vasodilatation in aorta and mesenteric arteries from IRR. These effects were accompanied by the restoration of p-eNOS and cGMP levels in IRR aorta and were prevented by either NOS or PI3K inhibition. p-Akt and p-eNOS contents were increased by FM19G11 in aortic endothelium of IRR. FM19G11-induced restoration of endothelial vasodilatation was unaffected by mTOR/HIF-1α inhibitors. FM19G11 also restored endothelial vasodilatation in HPRA and HCC from ED patients. Stimulation of the PI3K/Akt/eNOS pathway by FM19G11 alleviates impaired NO-mediated endothelial vasodilatation in rat and human arteries independently of mTOR/HIF-1α activation. This pharmacological strategy could be beneficial for managing pathological conditions associated with endothelial dysfunction, such as ED. © 2014 The British Pharmacological Society.

  11. FM19G11 reverses endothelial dysfunction in rat and human arteries through stimulation of the PI3K/Akt/eNOS pathway, independently of mTOR/HIF-1α activation

    PubMed Central

    El Assar, M; Sánchez-Puelles, J M; Royo, I; López-Hernández, E; Sánchez-Ferrer, A; Aceña, J L; Rodríguez-Mañas, L; Angulo, J

    2015-01-01

    Background and Purpose FM19G11 up-regulates mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) and PI3K/Akt pathways, which are involved in endothelial function. We evaluated the effects of FM19G11 on defective endothelial vasodilatation in arteries from rats and humans and investigated the mechanisms involved. Experimental Approach Effects of chronic in vivo administration of FM19G11 on aortic endothelial vasodilatation were evaluated together with ex vivo treatment in aortic and mesenteric arteries from control and insulin-resistant rats (IRR). Its effects on vasodilator responses of penile arteries (HPRAs) and corpus cavernosum (HCC) from men with vasculogenic erectile dysfunction (ED) (model of human endothelial dysfunction) were also evaluated. Vascular expression of phosphorylated-endothelial NOS (p-eNOS), phosphorylated-Akt (p-Akt) and HIF-1α was determined by immunodetection and cGMP by elisa. Key Results Chronic administration of FM19G11 reversed the impaired endothelial vasodilatation in IRR. Ex vivo treatment with FM19G11 also significantly improved endothelium-dependent vasodilatation in aorta and mesenteric arteries from IRR. These effects were accompanied by the restoration of p-eNOS and cGMP levels in IRR aorta and were prevented by either NOS or PI3K inhibition. p-Akt and p-eNOS contents were increased by FM19G11 in aortic endothelium of IRR. FM19G11-induced restoration of endothelial vasodilatation was unaffected by mTOR/HIF-1α inhibitors. FM19G11 also restored endothelial vasodilatation in HPRA and HCC from ED patients. Conclusions and Implications Stimulation of the PI3K/Akt/eNOS pathway by FM19G11 alleviates impaired NO-mediated endothelial vasodilatation in rat and human arteries independently of mTOR/HIF-1α activation. This pharmacological strategy could be beneficial for managing pathological conditions associated with endothelial dysfunction, such as ED. PMID:25363469

  12. Oxidized LDL at low concentration promotes in-vitro angiogenesis and activates nitric oxide synthase through PI3K/Akt/eNOS pathway in human coronary artery endothelial cells

    SciTech Connect

    Yu, Shan; Wong, Siu Ling; Lau, Chi Wai; Huang, Yu; Yu, Cheuk-Man

    2011-04-01

    Research highlights: {yields} Low-concentration oxidized LDL enhances angiogenesis through nitric oxide (NO). {yields} Oxidized LDL increases intracellular NO levels via eNOS phosphorylation. {yields} Akt/PI3K signaling mediates oxidized LDL-induced eNOS phosphorylation. -- Abstract: It has long been considered that oxidized low-density lipoprotein (oxLDL) causes endothelial dysfunction and is remarkably related to the development of atherosclerosis. However, the effect of oxLDL at very low concentration (<10 {mu}g/ml) on the endothelial cells remains speculative. Nitric oxide (NO) has a crucial role in the endothelial cell function. In this study, we investigated the effect of oxLDL at low concentration on NO production and proliferation, migration, tube formation of the human coronary artery endothelial cells (HCAEC). Results showed that oxLDL at 5 {mu}g/ml enhanced HCAEC proliferation, migration and tube formation. These phenomena were accompanied by an increased intracellular NO production. L-NAME (a NOS inhibitor), LY294002 and wortmannin (PI3K inhibitors) could abolish oxLDL-induced angiogenic effects and prevent NO production in the HCAEC. The phosphorylation of Akt, PI3K and eNOS were up-regulated by oxLDL, which was attenuated by LY294002. Our results suggested that oxLDL at low concentration could promote in-vitro angiogenesis and activate nitric oxide synthesis through PI3K/Akt/eNOS pathway in HCAEC.

  13. Target sequencing, cell experiments, and a population study establish endothelial nitric oxide synthase (eNOS) gene as hypertension susceptibility gene.

    PubMed

    Salvi, Erika; Kuznetsova, Tatiana; Thijs, Lutgarde; Lupoli, Sara; Stolarz-Skrzypek, Katarzyna; D'Avila, Francesca; Tikhonoff, Valerie; De Astis, Silvia; Barcella, Matteo; Seidlerová, Jitka; Benaglio, Paola; Malyutina, Sofia; Frau, Francesca; Velayutham, Dinesh; Benfante, Roberta; Zagato, Laura; Title, Alexandra; Braga, Daniele; Marek, Diana; Kawecka-Jaszcz, Kalina; Casiglia, Edoardo; Filipovsky, Jan; Nikitin, Yuri; Rivolta, Carlo; Manunta, Paolo; Beckmann, Jacques S; Barlassina, Cristina; Cusi, Daniele; Staessen, Jan A

    2013-11-01

    A case-control study revealed association between hypertension and rs3918226 in the endothelial nitric oxide synthase (eNOS) gene promoter (minor/major allele, T/C allele). We aimed at substantiating these preliminary findings by target sequencing, cell experiments, and a population study. We sequenced the 140-kb genomic area encompassing the eNOS gene. In HeLa and HEK293T cells transfected with the eNOS promoter carrying either the T or the C allele, we quantified transcription by luciferase assay. In 2722 randomly recruited Europeans (53.0% women; mean age 40.1 years), we studied blood pressure change and incidence of hypertension in relation to rs3918226, using multivariable-adjusted models. Sequencing confirmed rs3918226, a binding site of E-twenty six transcription factors, as the single nucleotide polymorphism most closely associated with hypertension. In T compared with C transfected cells, eNOS promoter activity was from 20% to 40% (P<0.01) lower. In the population, systolic/diastolic blood pressure increased over 7.6 years (median) by 9.7/6.8 mm Hg in 28 TT homozygotes and by 3.8/1.9 mm Hg in 2694 C allele carriers (P≤0.0004). The blood pressure rise was 5.9 mm Hg systolic (confidence interval [CI], 0.6-11.1; P=0.028) and 4.8 mm Hg diastolic (CI, 1.5-8.2; P=0.0046) greater in TT homozygotes, with no differences between the CT and CC genotypes (P≥0.90). Among 2013 participants normotensive at baseline, 692 (34.4%) developed hypertension. The hazard ratio and attributable risk associated with TT homozygosity were 2.04 (CI, 1.24-3.37; P=0.0054) and 51.0%, respectively. In conclusion, rs3918226 in the eNOS promoter tags a hypertension susceptibility locus, TT homozygosity being associated with lesser transcription and higher risk of hypertension.

  14. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a.

    PubMed

    Alhosin, Mahmoud; Anselm, Eric; Rashid, Sherzad; Kim, Jong Hun; Madeira, Socorro Vanesca Frota; Bronner, Christian; Schini-Kerth, Valérie B

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene.

  15. Redox-Sensitive Up-Regulation of eNOS by Purple Grape Juice in Endothelial Cells: Role of PI3-Kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a

    PubMed Central

    Rashid, Sherzad; Kim, Jong Hun; Frota Madeira, Socorro Vanesca; Bronner, Christian; Schini-Kerth, Valérie B.

    2013-01-01

    The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene. PMID:23533577

  16. Estrogen-related receptor alpha induces the expression of vascular endothelial growth factor in breast cancer cells

    PubMed Central

    Stein, Rebecca A.; Gaillard, Stéphanie; McDonnell, Donald P.

    2009-01-01

    Estrogen-related receptor alpha (ERRα) is an orphan member of the nuclear receptor family of transcription factors. In addition to its function as a metabolic regulator, ERRα has been implicated in the growth and progression of several malignancies. In the setting of breast cancer, not only is ERRα a putative negative prognostic factor, but we have recently found that knockdown of its expression retards tumor growth in a xenograft model of this disease. The specific aspects of ERRα function that are responsible for its actions in breast cancer, however, remain unclear. Using the coactivator PGC-1α as a protein ligand to regulate ERRα activity, we analyzed the effects of this receptor on gene expression in the ERα-positive MCF-7 cell line. This analysis led to the identification of a large number of potential ERRα target genes, many of which were subsequently validated in other breast cancer cell lines. Importantly, we demonstrate in this study that activation of ERRα in several different breast cancer cell lines leads to a significant increase in VEGF mRNA expression, an activity that translates into an increase in VEGF protein secretion. The induction of VEGF results from the interaction of ERRα with specific ERR-responsive elements within the VEGF promoter. These findings suggest that ERRα-dependent induction of VEGF may contribute to the overall negative phenotype observed in tumors in which ERRα is expressed and provide validation for its use as a therapeutic target in cancer. PMID:19429439

  17. Estrogen and the cardiovascular system.

    PubMed

    Knowlton, A A; Lee, A R

    2012-07-01

    Estrogen is a potent steroid with pleiotropic effects, which have yet to be fully elucidated. Estrogen has both nuclear and non-nuclear effects. The rapid response to estrogen, which involves a membrane associated estrogen receptor(ER) and is protective, involves signaling through PI3K, Akt, and ERK 1/2. The nuclear response is much slower, as the ER-estrogen complex moves to the nucleus, where it functions as a transcription factor, both activating and repressing gene expression. Several different ERs regulate the specificity of response to estrogen, and appear to have specific effects in cardiac remodeling and the response to injury. However, much remains to be understood about the selectivity of these receptors and their specific effects on gene expression. Basic studies have demonstrated that estrogen treatment prevents apoptosis and necrosis of cardiac and endothelial cells. Estrogen also attenuates pathologic cardiac hypertrophy. Estrogen may have great benefit in aging as an anti-inflammatory agent. However, clinical investigations of estrogen have had mixed results, and not shown the clear-cut benefit of more basic investigations. This can be explained in part by differences in study design: in basic studies estrogen treatment was used immediately or shortly after ovariectomy, while in some key clinical trials, estrogen was given years after menopause. Further basic research into the underlying molecular mechanisms of estrogen's actions is essential to provide a better comprehension of the many properties of this powerful hormone.

  18. The apolipoprotein A-I mimetic peptide, D-4F, alleviates ox-LDL-induced oxidative stress and promotes endothelial repair through the eNOS/HO-1 pathway.

    PubMed

    Liu, Donghui; Ding, Zhenzhen; Wu, Mengzhang; Xu, Wenqi; Qian, Mingming; Du, Qian; Zhang, Le; Cui, Ye; Zheng, Jianlan; Chang, He; Huang, Caihua; Lin, Donghai; Wang, Yan

    2017-04-01

    Apolipoprotein A-I (apoA-I) mimetic peptide exerts many anti-atherogenic properties. However, the underlying mechanisms related to the endothelial protective effects remain elusive. In this study, the apoA-I mimetic peptide, D-4F, was used. Proliferation assay, wound healing, and transwell migration experiments showed that D-4F improved the impaired endothelial proliferation and migration resulting from ox-LDL. Endothelial adhesion molecules expression and monocyte adhesion assay demonstrated that D-4F inhibited endothelial inflammation. Caspase-3 activation and TUNEL stain indicated that D-4F reduced endothelial cell apoptosis. A pivotal anti-oxidant enzyme, heme oxygenase-1 (HO-1) was upregulated by D-4F. The Akt/AMPK/eNOS pathways were involved in the expression of HO-1 induced by D-4F. Moreover, the anti-oxidation, pro-proliferation, and pro-migration capacities of D-4F were diminished by the inhibitors of both eNOS (L-NAME) and HO-1 (Znpp). Additionally, downregulation of ATP-binding cassette transporter A1 (ABCA1) by siRNA abolished the activation of Akt, AMPK and eNOS, and reduced the upregulation of HO-1 triggered by D-4F. Furthermore, D-4F promoted the reendothelialization of injured intima in carotid artery injury model of C57BL/6J mice in vivo. In summary, these findings suggested that D-4F might be a powerful candidate in the protection of endothelial cells and the prevention of cardiovascular disease (CVD). Copyright © 2017. Published by Elsevier Ltd.

  19. Hormonal modulation of endothelial NO production.

    PubMed

    Duckles, Sue P; Miller, Virginia M

    2010-05-01

    Since the discovery of endothelium-derived relaxing factor and the subsequent identification of nitric oxide (NO) as the primary mediator of endothelium-dependent relaxations, research has focused on chemical and physical stimuli that modulate NO levels. Hormones represent a class of soluble, widely circulating chemical factors that impact production of NO both by rapid effects on the activity of endothelial nitric oxide synthase (eNOS) through phosphorylation of the enzyme and longer term modulation through changes in amount of eNOS protein. Hormones that increase NO production including estrogen, progesterone, insulin, and growth hormone do so through both of these common mechanisms. In contrast, some hormones, including glucocorticoids, progesterone, and prolactin, decrease NO bioavailability. Mechanisms involved include binding to repressor response elements on the eNOS gene, competing for co-regulators common to hormones with positive genomic actions, regulating eNOS co-factors, decreasing substrate for eNOS, and increasing production of oxygen-derived free radicals. Feedback regulation by the hormones themselves as well as the ability of NO to regulate hormonal release provides a second level of complexity that can also contribute to changes in NO levels. These effects on eNOS and changes in NO production may contribute to variability in risk factors, presentation of and treatment for cardiovascular disease associated with aging, pregnancy, stress, and metabolic disorders in men and women.

  20. Hormonal modulation of endothelial NO production

    PubMed Central

    Miller, Virginia M.

    2010-01-01

    Since the discovery of endothelium-derived relaxing factor and the subsequent identification of nitric oxide (NO) as the primary mediator of endothelium-dependent relaxations, research has focused on chemical and physical stimuli that modulate NO levels. Hormones represent a class of soluble, widely circulating chemical factors that impact production of NO both by rapid effects on the activity of endothelial nitric oxide synthase (eNOS) through phosphorylation of the enzyme and longer term modulation through changes in amount of eNOS protein. Hormones that increase NO production including estrogen, progesterone, insulin, and growth hormone do so through both of these common mechanisms. In contrast, some hormones, including glucocorticoids, progesterone, and prolactin, decrease NO bioavailability. Mechanisms involved include binding to repressor response elements on the eNOS gene, competing for co-regulators common to hormones with positive genomic actions, regulating eNOS co-factors, decreasing substrate for eNOS, and increasing production of oxygen-derived free radicals. Feedback regulation by the hormones themselves as well as the ability of NO to regulate hormonal release provides a second level of complexity that can also contribute to changes in NO levels. These effects on eNOS and changes in NO production may contribute to variability in risk factors, presentation of and treatment for cardiovascular disease associated with aging, pregnancy, stress, and metabolic disorders in men and women. PMID:20213497

  1. Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS

    PubMed Central

    Crabtree, Mark J.; Smith, Caroline L.; Lam, George; Goligorsky, Michael S.; Gross, Steven S.

    2009-01-01

    5,6,7,8-Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthases (NOSs). Oxidation of BH4, in the setting of diabetes and other chronic vasoinflammatory conditions, can cause cofactor insufficiency and uncoupling of endothelial NOS (eNOS), manifest by a switch from nitric oxide (NO) to superoxide production. Here we tested the hypothesis that eNOS uncoupling is not simply a consequence of BH4 insufficiency, but rather results from a diminished ratio of BH4 vs. its catalytically incompetent oxidation product, 7,8-dihydrobiopterin (BH2). In support of this hypothesis, [3H]BH4 binding studies revealed that BH4 and BH2 bind eNOS with equal affinity (Kd ≈ 80 nM) and BH2 can rapidly and efficiently replace BH4 in preformed eNOS-BH4 complexes. Whereas the total biopterin pool of murine endothelial cells (ECs) was unaffected by 48-h exposure to diabetic glucose levels (30 mM), BH2 levels increased from undetectable to 40% of total biopterin. This BH2 accumulation was associated with diminished calcium ionophore-evoked NO activity and accelerated superoxide production. Since superoxide production was suppressed by NOS inhibitor treatment, eNOS was implicated as a principal superoxide source. Importantly, BH4 supplementation of ECs (in low and high glucose-containing media) revealed that calcium ionophore-evoked NO bioactivity correlates with intracellular BH4: BH2 and not absolute intracellular levels of BH4. Reciprocally, superoxide production was found to negatively correlate with intracellular BH4:BH2. Hyperglycemia-associated BH4 oxidation and NO insufficiency was recapitulated in vivo, in the Zucker diabetic fatty rat model of type 2 diabetes. Together, these findings implicate diminished intracellular BH4:BH2, rather than BH4 depletion per se, as the molecular trigger for NO insufficiency in diabetes. PMID:18192221

  2. XJP-1 protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by inhibiting NADPH oxidase subunit expression and modulating the PI3K/Akt/eNOS pathway.

    PubMed

    Fu, Rong; Wang, Qiujuan; Guo, Qinglong; Xu, Jinyi; Wu, Xiaoming

    2013-01-01

    Endothelial apoptosis triggered by oxidized low-density lipoprotein (ox-LDL) can accelerate the progression of endothelial dysfunction in atherosclerosis. (±)7,8-Dihydroxy-3-methyl-isochromanone-4 (XJP-1) is a natural phenolic compound derived from banana peel. In the present study, we investigated the anti-apoptotic effect of XJP-1 in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL and explored underlying mechanisms. Our results showed that in the presence of ox-LDL, XJP-1 significantly attenuated ox-LDL-mediated cytotoxicity, apoptosis, caspase-3 activation, reactive oxygen species (ROS) generation, and NADPH oxidase subunit (p22phox and p47phox) expression in HUVECs. In addition, the anticytotoxic and anti-apoptotic effect of XJP-1 was partially inhibited by a PI3K inhibitor (LY294002), an Akt inhibitor (SH-6), a specific eNOS inhibitor (l-NAME) and a NADPH oxidase inhibitor (DPI). In exploring the underlying mechanisms of XJP-1 action, we found that XJP-1 eliminated ox-LDL-induced dephosphorylation of Akt and eNOS in a dose-dependent manner. However, XJP-1 alone upregulation of Akt and eNOS phosphorylation were blocked by LY294002 and SH-6. Moreover, XJP-1 increased NO production, but this effect was abolished by LY294002, SH-6 and l-NAME. The inhibition of ox-LDL-induced endothelial dysfunction by XJP-1 is due at least in part to its anti-oxidant activity and its ability to modulate the PI3K/Akt/eNOS signaling pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The changes in the endothelial expression of cell adhesion molecules and iNOS in the vessel wall after the short-term administration of simvastatin in rabbit model of atherosclerosis.

    PubMed

    Nachtigal, Petr; Kopecky, Martin; Solichova, Dagmar; Zdansky, Petr; Semecky, Vladimir

    2005-02-01

    Cell adhesion molecules P-selectin, VCAM-1 and ICAM-1 play an important role in the pathogenesis of atherosclerosis. High levels of nitric oxide (NO) produced by inducible NO synthase (iNOS) have been associated with atherosclerotic processes. Simvastatin is an HMG-CoA reductase inhibitor responsible for many clinical benefits. The aim of this study was to detect and quantify changes in endothelial expression of P-selectin, VCAM-1, ICAM-1 and iNOS in the vessel wall after the shortterm administration of simvastatin in a rabbit model of atherosclerosis. Eighteen New Zealand White rabbits were randomly divided into three groups (n=6). In the cholesterol group, rabbits consumed an atherogenic diet (0.4% cholesterol) for eight weeks. In the simvastatin group, rabbits consumed an atherogenic diet for six weeks and then consumed an atherogenic diet supplemented with simvastatin (10 mg kg(-1)) for two weeks. Biochemical analysis showed that administration of simvastatin led to an almost two-fold lowering of the total serum cholesterol, VLDL, LDL and HDL, but not triglycerides, compared with the cholesterol-fed rabbits only. Stereological analysis of the immunohistochemical staining revealed that administration of simvastatin (10 mg kg(-1) daily) in an atherogenic diet decreased the endothelial expression of P-selectin, ICAM-1 and iNOS in both aortic arch and carotid artery compared with the cholesterol fed-rabbits only. We conclude that simvastatin has beneficial effects on endothelial function by decreasing expression of P-selectin, ICAM-1 and iNOS in endothelial cells in the very early stages of atherogenesis.

  4. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine.

    PubMed

    Jiang, Jiaye; Gan, Zhongyuan; Li, Yuan; Zhao, Wenqi; Li, Hanqing; Zheng, Jian-Pu; Ke, Yan

    2017-01-01

    Sleep loss can induce or aggravate the development of cardiovascular and cerebrovascular diseases. However, the molecular mechanism underlying this phenomenon is poorly understood. The present study was designed to investigate the effects of REM sleep deprivation on blood pressure in rats and the underlying mechanisms of these effects. After Sprague-Dawley rats were subjected to REM sleep deprivation for 5 days, their blood pressures and endothelial function were measured. In addition, one group of rats was given continuous access to L-arginine supplementation (2% in distilled water) for the 5 days before and the 5 days of REM sleep deprivation to reverse sleep deprivation-induced pathological changes. The results showed that REM sleep deprivation decreased body weight, increased blood pressure, and impaired endothelial function of the aortas in middle-aged rats but not young rats. Moreover, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) concentrations as well as endothelial NO synthase (eNOS) phosphorylation in the aorta were decreased by REM sleep deprivation. Supplementation with L-arginine could protect against REM sleep deprivation-induced hypertension, endothelial dysfunction, and damage to the eNOS/NO/cGMP signaling pathway. The results of the present study suggested that REM sleep deprivation caused endothelial dysfunction and hypertension in middle-aged rats via the eNOS/NO/cGMP pathway and that these pathological changes could be inhibited via L-arginine supplementation. The present study provides a new strategy to inhibit the signaling pathways involved in insomnia-induced or insomnia-enhanced cardiovascular diseases.

  5. An NO Donor Approach to Neuroprotective and Procognitive Estrogen Therapy Overcomes Loss of NO Synthase Function and Potentially Thrombotic Risk

    PubMed Central

    VandeVrede, Lawren; Abdelhamid, Ramy; Qin, Zhihui; Choi, Jaewoo; Piyankarage, Sujeewa; Luo, Jia; Larson, John; Bennett, Brian M.; Thatcher, Gregory R. J.

    2013-01-01

    Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3rd generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer's transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events. PMID:23976955

  6. An NO donor approach to neuroprotective and procognitive estrogen therapy overcomes loss of NO synthase function and potentially thrombotic risk.

    PubMed

    VandeVrede, Lawren; Abdelhamid, Ramy; Qin, Zhihui; Choi, Jaewoo; Piyankarage, Sujeewa; Luo, Jia; Larson, John; Bennett, Brian M; Thatcher, Gregory R J

    2013-01-01

    Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3(rd) generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer's transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events.

  7. Tetramethylpyrazine attenuates TNF-α-induced iNOS expression in human endothelial cells: Involvement of Syk-mediated activation of PI3K-IKK-IκB signaling pathways

    SciTech Connect

    Zheng, Zhen; Li, Zhiliang; Chen, Song; Pan, Jieyi; Ma, Xiaochun

    2013-08-15

    Endothelial cells produce nitric oxide (NO) by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NO synthase (iNOS). We explored the effect of tetramethylpyrazine (TMP), a compound derived from chuanxiong, on tumor necrosis factor (TNF)-α-induced iNOS in human umbilical vein endothelial cells (HUVECs) and explored the signal pathways involved by using RT-PCR and Western blot. TMP suppressed TNF-α-induced expression of iNOS by inhibiting IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor κB (NF-κB) nuclear translocation, which were required for NO gene transcription. Exposure to wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression, suggesting activation of such a signal pathway might be phosphoinositide-3-kinase (PI3K) dependent. Spleen tyrosine kinase (Syk) inhibitor piceatannol significantly inhibited NO production. Furthermore, piceatannol obviously suppressed TNF-α-induced IκB phosphorylation and the downstream NF-κB activation, suggesting that Syk is an upstream key regulator in the activation of PI3K/IKK/IκB-mediated signaling. TMP significantly inhibited TNF-α-induced phosphorylation of Syk and PI3K. Our data indicate that TMP might repress iNOS expression, at least in part, through its inhibitory effect of Syk-mediated PI3K phosphorylation in TNF-α-stimulated HUVECs. -- Highlights: •TMP suppressed TNF-α-induced expression of iNOS by inhibiting IKK/IκB/NF-κB pathway. •PI3K inhibitor wortmannin abrogated IKK/IκB/NF-κB-mediated iNOS expression. •Syk inhibitor piceatannol repressed PI3K/IKK/IκB mediated NO production. •Syk is an upstream regulator in the activation of PI3K/IKK/IκB-mediated signaling. •TMP might repress iNOS expression through Syk-mediated PI3K pathway.

  8. Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men.

    PubMed

    Cocks, Matthew; Shaw, Christopher S; Shepherd, Sam O; Fisher, James P; Ranasinghe, Aaron; Barker, Thomas A; Wagenmakers, Anton J M

    2016-04-15

    Skeletal muscle capillary density and vasoreactivity are reduced in obesity, due to reduced nitric oxide bioavailability. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), but its effect on the skeletal muscle microvasculature has not been studied in obese individuals. We observed that SIT and MICT led to equal increases in capillarisation and endothelial eNOS content, while reducing endothelial NOX2 content in microvessels of young obese men. We conclude that SIT is equally effective at improving skeletal muscle capillarisation and endothelial enzyme balance, while being a time efficient alternative to traditional MICT. Sprint interval training (SIT) has been proposed as a time efficient alternative to moderate-intensity continuous training (MICT), leading to similar improvements in skeletal muscle capillary density and microvascular function in young healthy humans. In this study we made the first comparisons of the muscle microvascular response to SIT and MICT in an obese population. Sixteen young obese men (age 25 ± 1 years, BMI 34.8 ± 0.9 kg m(-2) ) were randomly assigned to 4 weeks of MICT (40-60 min cycling at ∼65% V̇O2 peak , 5 times per week) or constant load SIT (4-7 constant workload intervals of 200% Wmax 3 times per week). Muscle biopsies were taken before and after training from the m. vastus lateralis to measure muscle microvascular endothelial eNOS content, eNOS serine(1177) phosphorylation, NOX2 content and capillarisation using quantitative immunofluorescence microscopy. Maximal aerobic capacity (V̇O2 peak ), whole body insulin sensitivity and arterial stiffness were also assessed. SIT and MICT increased skeletal muscle microvascular eNOS content and eNOS ser(1177) phosphorylation in terminal arterioles and capillaries (P < 0.05), but the latter effect was eliminated when normalised to eNOS content (P = 0.217). SIT and MICT also reduced

  9. VASCULAR ACTIONS OF ESTROGENS: FUNCTIONAL IMPLICATIONS

    PubMed Central

    Miller, Virginia M.; Duckles, Sue P.

    2009-01-01

    The impact of estrogen exposure in preventing or treating cardiovascular disease is controversial. But it is clear that estrogen has important effects on vascular physiology and pathophysiology, with potential therapeutic implications. Therefore, it is the goal of this review to summarize, using an integrated approach, current knowledge of the vascular effects of estrogen, both in humans and in experimental animals. Aspects of estrogen synthesis and receptors, as well as general mechanisms of estrogenic action are reviewed with an emphasis on issues particularly relevant to the vascular system. Recent understanding of the impact of estrogen on mitochondrial function suggests that the longer lifespan of women compared to men may depend in part on the ability of estrogen to decrease production of reactive oxygen species in mitochondria. Mechanisms by which estrogen increases endothelial vasodilator function, promotes angiogenesis and modulates autonomic function are summarized. Key aspects of the relevant pathophysiology of inflammation, atherosclerosis, stroke, migraine and thrombosis are reviewed concerning current knowledge of estrogenic effects. A number of emerging concepts are addressed throughout. These include the importance of estrogenic formulation and route of administration and the impact of genetic polymorphisms, either in estrogen receptors or in enzymes responsible for estrogen metabolism, on responsiveness to hormone treatment. The importance of local metabolism of estrogenic precursors and the impact of timing for initiation of treatment and its duration are also considered. While consensus opinions are emphasized, controversial views are presented in order to stimulate future research. PMID:18579753

  10. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  11. G protein-coupled estrogen receptor protects from atherosclerosis.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Howard, Tamara A; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B; Barton, Matthias; Prossnitz, Eric R

    2014-12-23

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.

  12. MALAT1 and HOTAIR Long Non-Coding RNAs Play Opposite Role in Estrogen-Mediated Transcriptional Regulation in Prostate Cancer Cells

    PubMed Central

    Aiello, Aurora; Bacci, Lorenza; Re, Agnese; Ripoli, Cristian; Pierconti, Francesco; Pinto, Francesco; Masetti, Riccardo; Grassi, Claudio; Gaetano, Carlo; Bassi, Pier Francesco; Pontecorvi, Alfredo; Nanni, Simona; Farsetti, Antonella

    2016-01-01

    In the complex network of nuclear hormone receptors, the long non-coding RNAs (lncRNAs) are emerging as critical determinants of hormone action. Here we investigated the involvement of selected cancer-associated lncRNAs in Estrogen Receptor (ER) signaling. Prior studies by Chromatin Immunoprecipitation (ChIP) Sequencing showed that in prostate cancer cells ERs form a complex with the endothelial nitric oxide synthase (eNOS) and that in turn these complexes associate with chromatin in an estrogen-dependent fashion. Among these associations (peaks) we focused our attention on those proximal to the regulatory region of HOTAIR and MALAT1. These transcripts appeared regulated by estrogens and able to control ERs function by interacting with ERα/ERβ as indicated by RNA-ChIP. Further studies performed by ChIRP revealed that in unstimulated condition, HOTAIR and MALAT1 were present on pS2, hTERT and HOTAIR promoters at the ERE/eNOS peaks. Interestingly, upon treatment with17β-estradiol HOTAIR recruitment to chromatin increased significantly while that of MALAT1 was reduced, suggesting an opposite regulation and function for these lncRNAs. Similar results were obtained in cells and in an ex vivo prostate organotypic slice cultures. Overall, our data provide evidence of a crosstalk between lncRNAs, estrogens and estrogen receptors in prostate cancer with important consequences on gene expression regulation. PMID:27922078

  13. Association between the - 786T>C 1polymorphism in the promoter region of endothelial nitric oxide synthase (eNOS) and risk of coronary artery disease: a systematic review and meta-analysis.

    PubMed

    Liu, Dan; Jiang, Zhouqin; Dai, Limeng; Zhang, Xiaolin; Yan, Chenghui; Han, Yaling

    2014-07-15

    A variety of studies have evaluated the association between the -786T>C polymorphism in the promoter region of endothelial nitric oxide synthase (eNOS) and risk of coronary artery disease (CAD). However, the results remain conflicting. To better understand the role of eNOS -786T>C polymorphism in CAD risk, we conducted a comprehensive systematic review and meta-analysis. Case-control, cohort or cross-sectional studies evaluating the association between eNOS -786T>C polymorphism and CAD risk were searched in electronic databases of PubMed, ISI Web of Knowledge, Medline, Embase and Google Scholar Search (up to January 2013). Overall and subgroup analyses were performed. Odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the association between eNOS -786T>C polymorphism and CAD risk. Statistical analysis was performed with Review Manager 5.0 and STATA12.0. Twenty-four studies were analyzed between 6192 CAD cases and 9281 healthy controls. The combined results of overall analysis showed significant positive associations between CAD risk and eNOS -786T>C polymorphism in dominant model (OR=1.45, 95% CI=1.27-1.65), recessive model (OR=1.37, 95% CI=1.20-1.56), homozygote comparison (OR=1.64, 95% CI=1.31-2.04), heterozygote comparison (TC vs. TT, OR=1.39, 95% CI=1.23-1.57; CC vs. TC, OR=1.20, 95% CI=1.04-1.37) and allele comparison (OR=1.35, 95% CI=1.21-1.50). On subgroup analysis based on the ethnicity of population (Caucasians, Asians and others), significant differences were found in all genetic models for Caucasians, similar associations existed in Asians except heterozygote comparison (CC vs. TC). However, the associations were only found in dominant model, heterozygote comparison (TC vs. TT) and allele comparison for the populations named others. Our investigations demonstrate the significant associations between eNOS -786C>T polymorphism and CAD risk, and this polymorphism might become an early marker for the risk evaluation of CAD. © 2013

  14. [T(-786) --> C-polymorphism of the endothelial nitric oxide synthase promoter gene (eNOS) and exercise performance in sport].

    PubMed

    Drozdovs'ka, S B; Lysenko, O M; Dosenko, V Ie; Il'ïn, V M; Moĭbenko, O O

    2013-01-01

    Given the significant impact of the T(-786) --> C-polymorphism of the eNOS gene in the process of adaptation to physical stress, we aimed to investigate the effect of this polymorphism on physical performance in sportsmen and establish the possibility of its use as a marker of predisposition to the sport. DNA of 516 people, of which 195 qualified athletes and 321 people who had no experience of regular exercise was investigated. The frequency of genotypes and alleles of the T(-786) --> C-polymorphism of the eNOS gene in groups of athletes of different sports, the distribution of genotypes and alleles among athletes and those who are not involved in sports were studied. T allele frequency in a group of athletes on 6.4% (r(chi)2 = 0.03) than in control group. The association of the T allele of the T(-786) --> C-polymorphism of the eNOS gene with a predisposition for speed and power was established. In the group of athletes in speed and power sports, the T-allele frequency was higher than that in the control group by 12% (r(chi)2 = 0.002) and than in group endurance sports by 10% (r(chi)2 = 0.004). We found that the T(-786) --> C-polymorphism of the eNOS gene influence the power and efficiency ofthe functioning of the cardiorespiratory system of athletes during exercise.

  15. The 27-bp repeat polymorphism in intron 4 (27 bp-VNTR) of endothelial nitric oxide synthase (eNOS) gene is associated with albumin to creatinine ratio in Mexican Americans.

    PubMed

    Nath, Subrata D; He, Xin; Voruganti, V Saroja; Blangero, John; MacCluer, Jean W; Comuzzie, Anthony G; Arar, Nedal H; Abboud, Hanna E; Thameem, Farook

    2009-11-01

    The T-786C, Glu298Asp, and 27 bp variable number of tandem repeats (27 bp-VNTR-a/b) polymorphsims of the endothelial nitric oxide synthase (eNOS) gene are thought to alter nitric oxide production and contribute to the development of vascular and renal disease risk. The objective of this study is to investigate whether these three polymorphisms examined previously by others are associated with cardiovascular and renal disease risk in Mexican Americans. Study participants (N = 848; 21 families) were genotyped for T-786C, Glu298Asp, and 27 bp-VNTR-a/b polymorphisms by PCR followed by restriction digestion. Association analyses were performed by a measured genotype approach implemented in the program SOLAR. Of the phenotypes (type 2 diabetes, hypertension, body mass index, waist circumference, total cholesterol, high density lipoprotein cholesterol, triglycerides, systolic and diastolic blood pressure, albumin to creatinine ratio (ACR), and estimated glomerular filtration rate) examined for association, the 27 bp-VNTR-a/b variant exhibited statistically significant association with ACR (P = 0.047) after accounting for the trait specific covariate effects. In addition, the promoter variant (T-786C) showed a significant association with triglycerides (P = 0.034) after accounting for covariate influences. In conclusion, the present study adds evidence to the role of eNOS candidate gene polymorphisms in modulating the risk factors related to cardiovascular-renal disease in Mexican Americans although the magnitude of the genetic effect is small.

  16. The role of NOS2A −954G/C and vascular endothelial growth factor +936C/T polymorphisms in type 2 diabetes mellitus and diabetic nonproliferative retinopathy risk management

    PubMed Central

    Porojan, Mihai Dumitru; Cătană, Andreea; Popp, Radu A; Dumitrascu, Dan L; Bala, Cornelia

    2015-01-01

    Type 2 diabetes mellitus (T2DM) remains one of the major health problems in Europe. Retinopathy is one of the major causes of morbidity in T2DM, strongly influencing the evolution and prognosis of these patients. In the last 2 decades, several studies have been conducted to identify the possible genetic susceptibility factors involved in the pathogenesis of the disease. However, there is little data related to the involvement of vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS) gene polymorphisms in the T2DM Caucasian population. The objective of this study was to identify a possible connection between NOS2A −954G/C (rs2297518) and VEGF +936C/T (rs3025039) polymorphisms and the risk of developing T2DM and nonproliferative diabetic retinopathy in a Caucasian population group. We investigated 200 patients diagnosed with T2DM and 208 controls. Genotypes were determined by multiplex polymerase chain reaction-restriction fragment length polymorphism. Statistical and comparative analyses (Fisher’s exact test) for dominant and recessive models of NOS2A −954G/C and VEGF +936C/T polymorphisms revealed an increased risk of T2DM (χ2=8.14, phi =0.141, P=0.004, odds ratio [OR] =2.795, 95% confidence interval [CI] =1.347–5.801; χ2=18.814, phi =0.215, P<0.001, OR =2.59, 95% CI =1.675–4.006, respectively). Also, comparative analysis for the recessive model (using Pearson’s chi-square test [χ2] and the phi coefficient [phi]) reveals that the variant CC genotype of NOS2A gene is more frequently associated with T2DM without retinopathy (χ2=3.835, phi =−0.138, P=0.05, OR =0.447, 95% CI =0.197–1.015). In conclusion, the results of the study place VEGF +936C/T polymorphisms among the genetic risk factor for T2DM, whereas NOS2A −954G/C polymorphisms act like a protective individual factor for nonproliferative retinopathy. PMID:26664124

  17. The role of NOS2A -954G/C and vascular endothelial growth factor +936C/T polymorphisms in type 2 diabetes mellitus and diabetic nonproliferative retinopathy risk management.

    PubMed

    Porojan, Mihai Dumitru; Cătană, Andreea; Popp, Radu A; Dumitrascu, Dan L; Bala, Cornelia

    2015-01-01

    Type 2 diabetes mellitus (T2DM) remains one of the major health problems in Europe. Retinopathy is one of the major causes of morbidity in T2DM, strongly influencing the evolution and prognosis of these patients. In the last 2 decades, several studies have been conducted to identify the possible genetic susceptibility factors involved in the pathogenesis of the disease. However, there is little data related to the involvement of vascular endothelial growth factor (VEGF) and nitric oxide synthase (NOS) gene polymorphisms in the T2DM Caucasian population. The objective of this study was to identify a possible connection between NOS2A -954G/C (rs2297518) and VEGF +936C/T (rs3025039) polymorphisms and the risk of developing T2DM and nonproliferative diabetic retinopathy in a Caucasian population group. We investigated 200 patients diagnosed with T2DM and 208 controls. Genotypes were determined by multiplex polymerase chain reaction-restriction fragment length polymorphism. Statistical and comparative analyses (Fisher's exact test) for dominant and recessive models of NOS2A -954G/C and VEGF +936C/T polymorphisms revealed an increased risk of T2DM (χ (2)=8.14, phi =0.141, P=0.004, odds ratio [OR] =2.795, 95% confidence interval [CI] =1.347-5.801; χ (2)=18.814, phi =0.215, P<0.001, OR =2.59, 95% CI =1.675-4.006, respectively). Also, comparative analysis for the recessive model (using Pearson's chi-square test [χ (2)] and the phi coefficient [phi]) reveals that the variant CC genotype of NOS2A gene is more frequently associated with T2DM without retinopathy (χ (2)=3.835, phi =-0.138, P=0.05, OR =0.447, 95% CI =0.197-1.015). In conclusion, the results of the study place VEGF +936C/T polymorphisms among the genetic risk factor for T2DM, whereas NOS2A -954G/C polymorphisms act like a protective individual factor for nonproliferative retinopathy.

  18. NOS1 — EDRN Public Portal

    Cancer.gov

    NOS1, or nitric oxide synthase 1 (neuronal), along with inducible nitric oxide synthase (NOS2) and endothelial nitric oxide synthase (NOS3), catalyze the generation of nitric oxide and L-citrulline from L-arginine and molecular oxygen. Nitric oxide is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, nitric oxide displays many properties of a neurotransmitter. NOS1 also displays antimicrobial and antitumoral activities.

  19. Influence of eNOS gene 4a/b VNTR polymorphism on development of endothelial dysfunction and respiratory system disorders in children - residents of radioactively contaminated areas.

    PubMed

    Stepanova, Ye I; Kolpakov, Ye; Zyhalo, V M; Lytvynets, O M; Kondrashova, V H; Vdovenko, V Yu; Skvarska, O O; Leonovych, O S

    2015-12-01

    Meta roboty – doslidyty rol' polimorfizmu geniv eNOS u rozvytku endotelial'noI dysfunktsiI ta funktsional' nykh rozladiv systemy dykhannia u ditey – meshkantsiv radioaktyvno zabrudnenykh terytoriy.Materialy i metody doslidzhennia. Dlia vyznachennia mozhlyvykh asotsiatyvnykh zv’iazkiv polimorfizmu u 4 mu introni gena eNOS z pokaznykamy, shcho kharakteryzuiut' funktsional'nyy stan endoteliiu ta bronkholegenevoI sys temy, provedeno obstezhennia 184 ditey. Z nykh osnovnu grupu sklaly 135 ditey – meshkantsiv radioaktyvno zabrud nenykh terytoriy, kontrol'nu – 49 ditey, iaki prozhyvaly v „chystykh ” shchodo radioaktyvnogo zabrudnennia regionakh i ne nalezhaly do postrazhdalykh vnaslidok Chornobyl's'koI avariI kontyngentiv. Provodyly molekuliarno gene tychne doslidzhennia z vyznachenniam polimorfizmu v 4 mu introni gena eNOS. Doslidzhennia ventyliatsiynoI spro mozhnosti legeniv otsiniuvaly za dopomogoiu metodu pnevmotakhografiI. Dlia reiestratsiI endoteliyzalezhnoI reaktsiI sudynnogo rusla na zminy umov krovopostachannia vykorystovuvaly termografichnyy sposib. Vyznachennia rivniv azotystykh spoluk NO2 ta NO3 provodyly za standartnoiu metodykoiu z vykorystanniam reaktyvu Grissa. Riven' inkorporovanogo 137Cs v organizmi vyznachaly za dopomogoiu lichyl'nyka vyprominiuvannia liudyny Skrynner 3M vyrobnytstva Instytutu ekologiI liudyny.Rezul'taty. Dity osnovnoI grupy za chastotoiu polimorfnykh 4a/b genotypiv ta aleliv 4a i 4b gena eNOS ne vidriznia lysia vid kontroliu ta danykh literatury. U ditey osnovnoI grupy z genotypom 4a/4b u porivnianni z dit'my, iaki ma ly genotyp 4b/4b, vidmichalosia zbil'shennia tryvalosti vidnovlennia krovoobigu do vykhidnogo rivnia pislia ok liuziynoI proby; sposterigalosia znyzhennia vmistu nitrytu v syrovattsi krovi; zmenshennia integral'nykh pokaznykiv elastychnosti i roztiazhnosti legenevoI tkanyny, prokhidnosti dykhal'nykh shliakhiv; u 1,5 raza chastishe reiestruvalysia oznaky bronkhospazmu. Tsi nespryiatlyvi efekty buly

  20. MicroRNA-130a alleviates human coronary artery endothelial cell injury and inflammatory responses by targeting PTEN via activating PI3K/Akt/eNOS signaling pathway

    PubMed Central

    Song, Chun-Li; Liu, Bin; Shi, Yong-Feng; Liu, Ning; Yan, You-You; Zhang, Ji-Chang; Xue, Xin; Wang, Jin-Peng; Zhao, Zhuo; Liu, Jian-Gen; Li, Yang-Xue; Zhang, Xiao-Hao; Wu, Jun-Duo

    2016-01-01

    Our study aims to investigate the roles of microRNA-130a (miR-130a) in human coronary artery endothelial cells (HCAECs) injury and inflammatory responses by targeting PTEN through the PI3K/Akt/eNOS signaling pathway. HCAECs were treated with 1.0 mmol/L homocysteine (HCY) and assigned into eight groups: the blank group, the negative control (NC) group, the miR-130a mimics group, the miR-130a inhibitors group, the si-PTEN group, the Wortmannin group, the miR-130a inhibitors + si-PTEN group and the miR-130a mimics + Wortmannin group. Luciferase reporter gene assay was used to validate the relationship between miR-130a and PTEN. The expressions of miR-130a, PTEN and PI3K/Akt/eNOS signaling pathway-related proteins were detected by qRT-PCR assay and Western blotting. MTT assay and Hoechst 33258 staining were adopted to testify cell growth and apoptosis. The NO kit assay was used to detect the NO release. ELISA was conducted to measure serum cytokine levels. Luciferase reporter gene assay confirmed the target relationship between miR-130a and PTEN. Compared with the blank and NC groups, the miR-130a mimics and si-PTEN groups showed significant increases in the expressions of PI3K/Akt/eNOS signaling pathway-related proteins, cell viability and the NO release, while serum cytokine levels and cell apoptosis were decreased; by contrast, an opposite trend was observed in miR-130a inhibitors and Wortmannin groups. However, no significant difference was found in the miR-130a inhibitors + si-PTEN and miR-130a mimics + Wortmannin groups when compared with the blank group. These results indicate that miR-130a could alleviate HCAECs injury and inflammatory responses by down-regulating PTEN and activating PI3K/Akt/eNOS signaling pathway. PMID:27713121

  1. S-nitrosylation of cofilin-1 mediates estradiol-17β-stimulated endothelial cytoskeleton remodeling.

    PubMed

    Zhang, Hong-hai; Lechuga, Thomas J; Tith, Tevy; Wang, Wen; Wing, Deborah A; Chen, Dong-bao

    2015-03-01

    Rapid nitric oxide (NO) production via endothelial NO synthase (eNOS) activation represents a major signaling pathway for the cardiovascular protective effects of estrogens; however, the pathways after NO biosynthesis that estrogens use to function remain largely unknown. Covalent adduction of a NO moiety to cysteines, termed S-nitrosylation (SNO), has emerged as a key route for NO to directly regulate protein function. Cofilin-1 (CFL1) is a small actin-binding protein essential for actin dynamics and cytoskeleton remodeling. Despite being identified as a major SNO protein in endothelial cells, whether SNO regulates CFL-1 function is unknown. We hypothesized that estradiol-17β (E2β) stimulates SNO of CFL1 via eNOS-derived NO and that E2β-induced SNO-CFL1 mediates cytoskeleton remodeling in endothelial cells. Point mutation studies determined Cys80 as the primary SNO site among the 4 cysteines (Cys39/80/139/147) in CFL1. Substitutions of Cys80 with Ala or Ser were used to prepare the SNO-mimetic/deficient (C80A/S) CFL1 mutants. Recombinant wild-type (wt) and mutant CFL1 proteins were prepared; their actin-severing activity was determined by real-time fluorescence imaging analysis. The activity of C80A CFL1 was enhanced to that of the constitutively active S3/A CFL1, whereas the other mutants had no effects. C80A/S mutations lowered Ser3 phosphorylation. Treatment with E2β increased filamentous (F)-actin and filopodium formation in endothelial cells, which were significantly reduced in cells overexpressing wt-CFL. Overexpression of C80A, but not C80S, CFL1 decreased basal F-actin and further suppressed E2β-induced F-actin and filopodium formation compared with wt-CFL1 overexpression. Thus, SNO(Cys80) of cofilin-1 via eNOS-derived NO provides a novel pathway for mediating estrogen-induced endothelial cell cytoskeleton remodeling.

  2. Role of estrogen in diastolic dysfunction.

    PubMed

    Zhao, Zhuo; Wang, Hao; Jessup, Jewell A; Lindsey, Sarah H; Chappell, Mark C; Groban, Leanne

    2014-03-01

    The prevalence of left ventricular diastolic dysfunction (LVDD) sharply increases in women after menopause and may lead to heart failure. While evidence suggests that estrogens protect the premenopausal heart from hypertension and ventricular remodeling, the specific mechanisms involved remain elusive. Moreover, whether there is a protective role of estrogens against cardiovascular disease, and specifically LVDD, continues to be controversial. Clinical and basic science have implicated activation of the renin-angiotensin-aldosterone system (RAAS), linked to the loss of ovarian estrogens, in the pathogenesis of postmenopausal diastolic dysfunction. As a consequence of increased tissue ANG II and low estrogen, a maladaptive nitric oxide synthase (NOS) system produces ROS that contribute to female sex-specific hypertensive heart disease. Recent insights from rodent models that mimic the cardiac phenotype of an estrogen-insufficient or -deficient woman (e.g., premature ovarian failure or postmenopausal), including the ovariectomized congenic mRen2.Lewis female rat, provide evidence showing that estrogen modulates the tissue RAAS and NOS system and related intracellular signaling pathways, in part via the membrane G protein-coupled receptor 30 (GPR30; also called G protein-coupled estrogen receptor 1). Complementing the cardiovascular research in this field, the echocardiographic correlates of LVDD as well as inherent limitations to its use in preclinical rodent studies will be briefly presented. Understanding the roles of estrogen and GPR30, their interactions with the local RAAS and NOS system, and the relationship of each of these to LVDD is necessary to identify new therapeutic targets and alternative treatments for diastolic heart failure that achieve the cardiovascular benefits of estrogen replacement without its side effects and contraindications.

  3. Role of estrogen in diastolic dysfunction

    PubMed Central

    Zhao, Zhuo; Wang, Hao; Jessup, Jewell A.; Lindsey, Sarah H.; Chappell, Mark C.

    2014-01-01

    The prevalence of left ventricular diastolic dysfunction (LVDD) sharply increases in women after menopause and may lead to heart failure. While evidence suggests that estrogens protect the premenopausal heart from hypertension and ventricular remodeling, the specific mechanisms involved remain elusive. Moreover, whether there is a protective role of estrogens against cardiovascular disease, and specifically LVDD, continues to be controversial. Clinical and basic science have implicated activation of the renin-angiotensin-aldosterone system (RAAS), linked to the loss of ovarian estrogens, in the pathogenesis of postmenopausal diastolic dysfunction. As a consequence of increased tissue ANG II and low estrogen, a maladaptive nitric oxide synthase (NOS) system produces ROS that contribute to female sex-specific hypertensive heart disease. Recent insights from rodent models that mimic the cardiac phenotype of an estrogen-insufficient or -deficient woman (e.g., premature ovarian failure or postmenopausal), including the ovariectomized congenic mRen2.Lewis female rat, provide evidence showing that estrogen modulates the tissue RAAS and NOS system and related intracellular signaling pathways, in part via the membrane G protein-coupled receptor 30 (GPR30; also called G protein-coupled estrogen receptor 1). Complementing the cardiovascular research in this field, the echocardiographic correlates of LVDD as well as inherent limitations to its use in preclinical rodent studies will be briefly presented. Understanding the roles of estrogen and GPR30, their interactions with the local RAAS and NOS system, and the relationship of each of these to LVDD is necessary to identify new therapeutic targets and alternative treatments for diastolic heart failure that achieve the cardiovascular benefits of estrogen replacement without its side effects and contraindications. PMID:24414072

  4. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    PubMed

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.

  5. Estrogen Injection

    MedlinePlus

    ... carefully for side effects.tell your doctor what herbal products you are taking, especially St. John's wort.tell your doctor if you have or have ever had yellowing of the skin or eyes during pregnancy or during your treatment with an estrogen product, endometriosis (a condition in ...

  6. Estrogen, aging and the cardiovascular system

    PubMed Central

    Stice, James P.; Lee, Jennifer S.; Pechenino, Angela S.; Knowlton, Anne A.

    2014-01-01

    Estrogen is a powerful hormone with pleiotropic effects. Estrogens have potent antioxidant effects and are able to reduce inflammation, induce vasorelaxation and alter gene expression in both the vasculature and the heart. Estrogen treatment of cultured cardiac myocytes and endothelial cells rapidly activates NFκB, induces heat-shock protein (HSP)-72, a potent intracellular protective protein, and protects cells from simulated ischemia. In in vivo models, estrogens protect against ischemia and trauma/hemorrhage. Estrogens may decrease the expression of soluble epoxide hydrolase, which has deleterious effects on the cardiovascular system through metabolism of epoxyeicosatrienoic acids. Natural (endogenous) estrogens in premenopausal women appear to protect against cardiovascular disease and yet controlled clinical trials have not indicated a benefit from estrogen replacement postmenopause. Much remains to be understood in regards to the many properties of this powerful hormone and how changes in this hormone interact with aging-associated changes. The unexpected negative results of trials of estrogen replacement postmenopause probably arise from our lack of understanding of the many effects of this hormone. PMID:19371207

  7. Estradiol augments while progesterone inhibits arginine transport in human endothelial cells through modulation of cationic amino acid transporter-1.

    PubMed

    Bentur, Ohad S; Schwartz, Doron; Chernichovski, Tamara; Ingbir, Merav; Weinstein, Talia; Chernin, Gil; Schwartz, Idit F

    2015-08-15

    Decreased generation of nitric oxide (NO) by endothelial NO synthase (eNOS) characterizes endothelial dysfunction (ECD). Delivery of arginine to eNOS by cationic amino acid transporter-1 (CAT-1) was shown to modulate eNOS activity. We found in female rats, but not in males, that CAT-1 activity is preserved with age and in chronic renal failure, two experimental models of ECD. In contrast, during pregnancy CAT-1 is inhibited. We hypothesize that female sex hormones regulate arginine transport. Arginine uptake in human umbilical vein endothelial cells (HUVEC) was determined following incubation with either 17β-estradiol (E2) or progesterone. Exposure to E2 (50 and 100 nM) for 30 min resulted in a significant increase in arginine transport and reduction in phosphorylated CAT-1 (the inactive form) protein content. This was coupled with a decrease in phosphorylated MAPK/extracellular signal-regulated kinase (ERK) 1/2. Progesterone (1 and 100 pM for 30 min) attenuated arginine uptake and increased phosphorylated CAT-1, phosphorylated protein kinase Cα (PKCα), and phosphorylated ERK1/2 protein content. GO-6976 (PKCα inhibitor) prevented the progesterone-induced decrease in arginine transport. Coincubation with both progesterone and estrogen for 30 min resulted in attenuated arginine transport. While estradiol increases arginine transport and CAT-1 activity through modulation of constitutive signaling transduction pathways involving ERK, progesterone inhibits arginine transport and CAT-1 via both PKCα and ERK1/2 phosphorylation, an effect that predominates over estradiol.

  8. Vascular Aging in Women: is Estrogen the Fountain of Youth?

    PubMed Central

    Novella, Susana; Dantas, Ana Paula; Segarra, Gloria; Medina, Pascual; Hermenegildo, Carlos

    2012-01-01

    Aging is associated with structural and functional changes in the vasculature, including endothelial dysfunction, arterial stiffening and remodeling, impaired angiogenesis, and defective vascular repair, and with increased prevalence of atherosclerosis. Cardiovascular risk is similar for older men and women, but lower in women during their fertile years. This age- and sex-related difference points to estrogen as a protective factor because menopause is marked by the loss of endogenous estrogen production. Experimental and some clinical studies have attributed most of the protective effects of estrogen to its modulatory action on vascular endothelium. Estrogen promotes endothelial-derived NO production through increased expression and activity of endothelial nitric oxide synthase, and modulates prostacyclin and thromboxane A2 release. The thromboxane A2 pathway is key to regulating vascular tone in females. Despite all the experimental evidence, some clinical trials have reported no cardiovascular benefit from estrogen replacement therapy in older postmenopausal women. The “Timing Hypothesis,” which states that estrogen-mediated vascular benefits occur only before the detrimental effects of aging are established in the vasculature, offers a possible explanation for these discrepancies. Nevertheless, a gap remains in current knowledge of cardiovascular aging mechanisms in women. This review comprises clinical and experimental data on the effects of aging, estrogens, and hormone replacement therapy on vascular function of females. We aim to clarify how menopause and aging contribute jointly to vascular aging and how estrogen modulates vascular response at different ages. PMID:22685434

  9. Epigallocatechin gallate inhibits endothelial exocytosis.

    PubMed

    Yamakuchi, Munekazu; Bao, Clare; Ferlito, Marcella; Lowenstein, Charles J

    2008-07-01

    Consumption of green tea is associated with a decrease in cardiovascular mortality. The beneficial health effects of green tea are attributed in part to polyphenols, organic compounds found in tea that lower blood pressure, reduce body fat, decrease LDL cholesterol, and inhibit inflammation. We hypothesized that epigallocatechin gallate (EGCG), the most abundant polyphenol in tea, inhibits endothelial exocytosis, the initial step in leukocyte trafficking and vascular inflammation. To test this hypothesis, we treated human umbilical-vein endothelial cells with EGCG and other polyphenols, and then measured endothelial exocytosis. We found that EGCG decreases endothelial exocytosis in a concentration-dependent manner, with the effects most prominent after 4 h of treatment. Other catechin polyphenols had no effect on endothelial cells. By inhibiting endothelial exocytosis, EGCG decreases leukocyte adherence to endothelial cells. In searching for the mechanism by which EGCG affects endothelial cells, we found that EGCG increases Akt phosphorylation, eNOS phosphorylation, and nitric oxide (NO) production. NOS inhibition revealed that NO mediates the anti-inflammatory effects of EGCG. Our data suggest that polyphenols can decrease vascular inflammation by increasing the synthesis of NO, which blocks endothelial exocytosis.

  10. Estrogen enhances wound healing in the penis of rats.

    PubMed

    Mowa, C N; Hoch, R; Montavon, C L; Jesmin, S; Hindman, G; Hou, G

    2008-10-01

    Estrogen receptor (ER) alpha and beta and aromatase are expressed in various cell-types and compartments of the penis, including the epidermis of glans penis. Here, we hypothesize that estrogen helps maintain the viability and integrity of glans penis and test the hypothesis by treating lesioned glans penis with either 17beta-estradiol or vehicle only. Estrogen was found to facilitate wound healing and increase vascular endothelial growth factor (VEGF) immunoreactivity compared to control, as revealed by scanning electron microscopy, histology, and immunohistochemistry. We conclude that estrogen plays a role in maintaining glans penis integrity, in part, by facilitating penile healing, possibly via up-regulating VEGF levels.

  11. Neonatal oxytocin treatment modulates oxytocin receptor, atrial natriuretic peptide, nitric oxide synthase and estrogen receptor mRNAs expression in rat heart

    PubMed Central

    Pournajafi-Nazarloo, Hossein; Perry, Adam; Partoo, Leila; Papademeteriou, Eros; Azizi, Feridoun; Carter, C. Sue; Cushing, Bruce S.

    2007-01-01

    Oxytocin (OT) has been implicated in reproductive functions, induction of maternal behavior as well as endocrine and neuroendocrine regulation of the cardiovascular system. Here we demonstrate that neonatal manipulation of OT can modulate the mRNAs expression for OT receptor (OTR), atrial natriuretic peptide (ANP), endothelial nitric oxide synthase (eNOS) and estrogen receptor alpha (ERα) in the heart. On the first day of postnatal life, female and male rats were randomly assigned to receive one of following treatments; (a) 50 µl i.p. injection of 7 µg OT, (b) 0.7 µg of OT antagonist (OTA), or (c) isotonic saline (SAL). Hearts were collected either on postnatal day 1 or day 21 (D1 or D21) and the mRNAs expression of OTR, ANP, inducible NOS (iNOS), eNOS, ERα and estrogen receptor beta (ERβ) were compared by age, treatment, and sex utilizing Real Time PCR. OT treatment significantly increased heart OTR, ANP and eNOS mRNAs expression on D1 in both males and females, ERα increased only in females. While there were significant changes in the relative expression of all types of mRNA between D1 and D21 there were no significant treatment effects observed in D21 animals. OTA treatment significantly decreased basal ANP and eNOS mRNAs expression on D1 in both sexes. The results indicate that during the early postnatal period OT can have an immediate effect on the expression OTR, ANP, eNOS, and ERα mRNAs and that these effects are mitigated by D21. Also with the exception of ERα mRNA, the effects are the same in both sexes. PMID:17537544

  12. Bee Venom Accelerates Wound Healing in Diabetic Mice by Suppressing Activating Transcription Factor-3 (ATF-3) and Inducible Nitric Oxide Synthase (iNOS)-Mediated Oxidative Stress and Recruiting Bone Marrow-Derived Endothelial Progenitor Cells.

    PubMed

    Badr, Gamal; Hozzein, Wael N; Badr, Badr M; Al Ghamdi, Ahmad; Saad Eldien, Heba M; Garraud, Olivier

    2016-10-01

    Multiple mechanisms contribute to impaired diabetic wound healing including impaired neovascularization and deficient endothelial progenitor cell (EPC) recruitment. Bee venom (BV) has been used as an anti-inflammatory agent for the treatment of several diseases. Nevertheless, the effect of BV on the healing of diabetic wounds has not been studied. Therefore, in this study, we investigated the impact of BV on diabetic wound closure in a type I diabetic mouse model. Three experimental groups were used: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice treated with BV. We found that the diabetic mice exhibited delayed wound closure characterized by a significant decrease in collagen production and prolonged elevation of inflammatory cytokines levels in wounded tissue compared to control non-diabetic mice. Additionally, wounded tissue in diabetic mice revealed aberrantly up-regulated expression of ATF-3 and iNOS followed by a marked elevation in free radical levels. Impaired diabetic wound healing was also characterized by a significant elevation in caspase-3, -8, and -9 activity and a marked reduction in the expression of TGF-β and VEGF, which led to decreased neovascularization and angiogenesis of the injured tissue by impairing EPC mobilization. Interestingly, BV treatment significantly enhanced wound closure in diabetic mice by increasing collagen production and restoring the levels of inflammatory cytokines, free radical, TGF-β, and VEGF. Most importantly, BV-treated diabetic mice exhibited mobilized long-lived EPCs by inhibiting caspase activity in the wounded tissue. Our findings reveal the molecular mechanisms underlying improved diabetic wound healing and closure following BV treatment. J. Cell. Physiol. 231: 2159-2171, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Endothelial nitric oxide synthase in the amphibian, Xenopus tropicalis.

    PubMed

    Trajanovska, Sofie; Donald, John A

    2011-04-01

    Nitric oxide (NO) is generated by NO synthase (NOS) of which there are three isoforms: neuronal NOS (nNOS, nos1), inducible NOS (iNOS, nos2), and endothelial NOS (eNOS, nos3). This study utilised the genome of Xenopus tropicalis to sequence a nos3 cDNA and determine if eNOS protein is expressed in blood vessels. A nos3 cDNA was sequenced that encoded a 1177 amino acid protein called XteNOS, which showed closest sequence identity to mammalian eNOS protein. The X. tropicalis nos3 gene and eNOS protein were determined to be an orthologue of mammalian nos3 and eNOS using gene synteny and phylogenetic analyses, respectively. In X. tropicalis, nos3 mRNA expression was highest in lung and skeletal muscle and lower in the liver, gut, kidney, heart and brain. Western analysis of kidney protein using an affinity-purified anti-XteNOS produced a single band at 140kDa. Immunohistochemistry showed XteNOS immunoreactivity in the proximal tubule of the kidney and endocardium of the heart, but not in the endothelium of blood vessels. Thus, X. tropicalis has a nos3 gene that appears not to be expressed in the vascular endothelium.

  14. Dobesilate enhances endothelial nitric oxide synthase-activity in macro- and microvascular endothelial cells

    PubMed Central

    Suschek, Christoph; Kolb, Hubert; Kolb-Bachofen, Victoria

    1997-01-01

    Dobesilate is used for normalizing vascular dysfunction in a number of diseases. In search for an effect on endothelial NO production, macrovascular endothelial cells from rat aorta, microvascular endothelial cells from rat exocrine pancreatic tissue, and capillary endothelial cells from rat islets, were cultured in the presence or absence of Mg-Dobesilate. The activity of constitutive nitric oxide synthase (ecNOS) in resident cells as well as of inducible nitric oxide synthase (iNOS) in cytokine-activated cells was measured indirectly by recording the citrulline concentrations in culture supernatants.In each of the different endothelial cells Mg-Dobesilate incubation (0.25–1 mM) for 24 h led to a significant and concentration-dependent increase in ecNOS-activities. With cytokine-activated endothelial cell cultures only moderate effects were seen with little or no concentration-dependency. Addition of the NOS-inhibitor NG-monomethyl-L-arginine led to a significant suppression of citrulline formation in all cultures as an evidence for the enzyme specificity of these effects.iNOS- and ecNOS-specific reverse transcription and semi-quantitative polymerase chain reaction (RT–PCR) with RNA from resident or cytokine-activated endothelial cells gave no evidence for an increase in NOS-specific mRNA after Mg-Dobesilate-treatment. Furthermore, Dobesilate-mediated enhancement of NO synthesis in resting endothelial cells was not due to iNOS induction in these cells, as no iNOS-specific signal was found by RT–PCR. PMID:9421302

  15. Hypoxia and Reoxygenation Induce Endothelial Nitric Oxide Synthase Uncoupling in Endothelial Cells through Tetrahydrobiopterin Depletion and S-Glutathionylation

    PubMed Central

    2015-01-01

    Ischemia-reperfusion injury is accompanied by endothelial hypoxia and reoxygenation that trigger oxidative stress with enhanced superoxide generation and diminished nitric oxide (NO) production leading to endothelial dysfunction. Oxidative depletion of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin can trigger eNOS uncoupling, in which the enzyme generates superoxide rather than NO. Recently, it has also been shown that oxidative stress can induce eNOS S-glutathionylation at critical cysteine residues of the reductase site that serves as a redox switch to control eNOS coupling. While superoxide can deplete tetrahydrobiopterin and induce eNOS S-glutathionylation, the extent of and interaction between these processes in the pathogenesis of eNOS dysfunction in endothelial cells following hypoxia and reoxygenation remain unknown. Therefore, studies were performed on endothelial cells subjected to hypoxia and reoxygenation to determine the severity of eNOS uncoupling and the role of cofactor depletion and S-glutathionylation in this process. Hypoxia and reoxygenation of aortic endothelial cells triggered xanthine oxidase-mediated superoxide generation, causing both tetrahydrobiopterin depletion and S-glutathionylation with resultant eNOS uncoupling. Replenishing cells with tetrahydrobiopterin along with increasing intracellular levels of glutathione greatly preserved eNOS activity after hypoxia and reoxygenation, while targeting either mechanism alone only partially ameliorated the decrease in NO. Endothelial oxidative stress, secondary to hypoxia and reoxygenation, uncoupled eNOS with an altered ratio of oxidized to reduced glutathione inducing eNOS S-glutathionylation. These mechanisms triggered by oxidative stress combine to cause eNOS dysfunction with shift of the enzyme from NO to superoxide production. Thus, in endothelial reoxygenation injury, normalization of both tetrahydrobiopterin levels and the glutathione pool are needed for maximal

  16. Estrogens and aging skin

    PubMed Central

    Thornton, M. Julie

    2013-01-01

    Estrogen deficiency following menopause results in atrophic skin changes and acceleration of skin aging. Estrogens significantly modulate skin physiology, targeting keratinocytes, fibroblasts, melanocytes, hair follicles and sebaceous glands, and improve angiogenesis, wound healing and immune responses. Estrogen insufficiency decreases defense against oxidative stress; skin becomes thinner with less collagen, decreased elasticity, increased wrinkling, increased dryness and reduced vascularity. Its protective function becomes compromised and aging is associated with impaired wound healing, hair loss, pigmentary changes and skin cancer.   Skin aging can be significantly delayed by the administration of estrogen. This paper reviews estrogen effects on human skin and the mechanisms by which estrogens can alleviate the changes due to aging. The relevance of estrogen replacement, selective estrogen receptor modulators (SERMs) and phytoestrogens as therapies for diminishing skin aging is highlighted. Understanding estrogen signaling in skin will provide a basis for interventions in aging pathologies. PMID:24194966

  17. Endothelial nitric oxide synthase uncoupling: a novel pathway in OSA induced vascular endothelial dysfunction.

    PubMed

    Varadharaj, Saradhadevi; Porter, Kyle; Pleister, Adam; Wannemacher, Jacob; Sow, Angela; Jarjoura, David; Zweier, Jay L; Khayat, Rami N

    2015-02-01

    The mechanism of vascular endothelial dysfunction (VED) and cardiovascular disease in obstructive sleep apnea (OSA) is unknown. We performed a comprehensive evaluation of endothelial nitric oxide synthase (eNOS) function directly in the microcirculatory endothelial tissue of OSA patients who have very low cardiovascular risk status. Nineteen OSA patients underwent gluteal biopsies before, and after effective treatment of OSA. We measured superoxide (O2(•-)) and nitric oxide (NO) in the microcirculatory endothelium using confocal microscopy. We evaluated the effect of the NOS inhibitor l-Nitroarginine-Methyl-Ester (l-NAME) and the NOS cofactor tetrahydrobiopterin (BH4) on endothelial O2(•-) and NO in patient endothelial tissue before and after treatment. We found that eNOS is dysfunctional in OSA patients pre-treatment, and is a source of endothelial O2(•-) overproduction. eNOS dysfunction was reversible with the addition of BH4. These findings provide a new mechanism of endothelial dysfunction in OSA patients and a potentially targetable pathway for treatment of cardiovascular risk in OSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Estrogen and Osteoporosis.

    ERIC Educational Resources Information Center

    Lindsay, Robert

    1987-01-01

    This article reviews the use of estrogen in the prevention and treatment of osteoporosis. Dosage levels, interactions with other factors, side effects, and the mechanism of estrogen action are discussed. (Author/MT)

  19. Estrogen and Osteoporosis.

    ERIC Educational Resources Information Center

    Lindsay, Robert

    1987-01-01

    This article reviews the use of estrogen in the prevention and treatment of osteoporosis. Dosage levels, interactions with other factors, side effects, and the mechanism of estrogen action are discussed. (Author/MT)

  20. NOS3 polymorphisms, cigarette smoking, and cardiovascular disease risk: The Atherosclerosis Risk in Communities study

    USDA-ARS?s Scientific Manuscript database

    Endothelial nitric oxide synthase (NOS3) activity and cigarette smoking significantly influence endothelial function. We sought to determine whether cigarette smoking modified the association between NOS3 polymorphisms and risk of coronary heart disease or stroke. All 1085 incident coronary heart di...

  1. Estrogens and postcoital contraception.

    PubMed

    Notelovitz, M

    1981-07-01

    The contraceptive effect of large doses of estrogens administered postcoitally is not fully understood, although numerous reports have described the use of a 4 to 6 day course of high dose oral diethylstilbestrol (DES), ethinyl estradiol, conjugated estrogens, and combinations of estrogen and progestogen. Because estrogens are effective postovulatory rather than postcoital contraceptives, it is necessary to know the exact time of unprotected intercouse in relation to a woman's menstrual cycle. Depending on the frequency and timing of intercouse, a 5-day course of postcoital estrogen, introduced within 72 hours, yields a pregancy rate of .03-.3%. Failures are usually due to inadequate doses of estrogen, errors in timing, or multiple exposures. A lowering of basal body temperature after postovulatory administration of high doses of estrogen indicates successful intervention. Existence of various conditions such as hypertension and migraine contraindicate the use of postcoital estrogens. DES and possibly other estrogens are associated with teratogenic and potentially carcinogenic effects. 70 to 80% of women taking postcoital estrogens report side effects such as nausea, weight gain and headache. No randomized studies have compared the efficacy, side effects, or safety of the available estrogens. The use of informed coinsent procedures is advised because of the potency of high dose estrogens.

  2. Vascular and Perivascular NO Release and Transport: Biochemical Pathways of NOS1 and NOS3

    PubMed Central

    Chen, Kejing; Popel, Aleksander S.

    2007-01-01

    Nitric oxide (NO) derived from nitric oxide synthase (NOS) is an important paracrine effector that maintains vascular tone. The release of NO mediated by NOS isozymes under various O2 conditions critically determines the NO bioavailability in tissues. Because of experimental difficulties, there has been no direct information on how enzymatic NO production and distribution change around arterioles under various oxygen conditions. In this study, we used computational models based on the analysis of biochemical pathways of enzymatic NO synthesis and the availability of NOS isozymes to quantify the NO production by neuronal NOS (NOS1) and endothelial NOS (NOS3). We compared the catalytic activities of NOS1 and NOS3 and their sensitivities to the concentration of substrate O2. Based on the NO release rates predicted from kinetic models, the geometric distribution of NO sources and mass balance analysis, we predicted the NO concentration profiles around an arteriole under various O2 conditions. The results indicated that NOS1-catalyzed NO production was significantly more sensitive to ambient O2 concentration than that catalyzed by NOS3. Also, the high sensitivity of NOS1 catalytic activity to O2 was associated with significantly reduced NO production and therefore NO concentrations, upon hypoxia. Moreover, the major source determining the distribution of NO was NOS1, which was abundantly expressed in the nerve fibers and mast cells close to arterioles, rather than NOS3, which was expressed in the endothelium. Finally, the perivascular NO concentration predicted by the models under conditions of normoxia was paradoxically at least an order of magnitude lower than a number of experimental measurements, suggesting a higher abundance of NOS1 or NOS3 and/or the existence of other enzymatic or non-enzymatic sources of NO in the microvasculature. PMID:17320763

  3. Endothelial nitric oxide synthase (eNOS) T-786C, 4a4b, and G894T polymorphisms and male infertility: study for idiopathic asthenozoospermia and meta-analysis.

    PubMed

    Song, Pingping; Zou, Shasha; Chen, Tingting; Chen, Jianhua; Wang, Yanan; Yang, Juanjuan; Song, Zhijian; Jiang, Huayu; Shi, Huijuan; Huang, Yiran; Li, Zheng; Shi, Yongyong; Hu, Hongliang

    2015-02-01

    Recent studies on the eNOS gene and male infertility show that expression of eNOS regulates normal spermatogenesis in the testis, and the eNOS gene variants (T-786C, 4a4b, and G894T) are potentially involved in impairment of spermatogenesis and sperm function. Thus, we conducted this association and meta-analysis study to further validate whether variants of those three loci affected the risk of idiopathic asthenozoospermia (AZS) and male infertility. Approximately 340 Chinese idiopathic AZS patients and 342 healthy men were included for this case-control study, genotyped by gel electrophoresis analysis or direct sequencing of PCR products. The eNOS mRNA isolated from the semen of patients was further examined by quantitative real-time PCR. Also, a meta-analysis of association between eNOS gene polymorphisms and male infertility was performed. A significant association was identified on allelic level between 4a4b variant and AZS in our study (chi-squared = 7.53, corrected P = 0.018, odds ratio (OR) = 1.808), while there were no significant difference of T-786C and G894T for asthenozoospermia in both genotype and allele distributions. In addition, expression of eNOS was up-regulated in patients compared with controls (about 2.4-fold, P < 0.001). Furthermore, the results of the meta-analysis support the conclusion that the T-786C and 4a4b loci were associated with male infertility in both Asian and Caucasian populations. Our study provides genetic evidence for the eNOS gene being a risk factor for idiopathic AZS and male infertility. Considering genetic differences among populations and complex pathogenesis of male infertility, more validating studies using independent samples are suggested in the future.

  4. 25-Hydroxycholesterol impairs endothelial function and vasodilation by uncoupling and inhibiting endothelial nitric oxide synthase.

    PubMed

    Ou, Zhi-Jun; Chen, Jing; Dai, Wei-Ping; Liu, Xiang; Yang, Yin-Ke; Li, Yan; Lin, Ze-Bang; Wang, Tian-Tian; Wu, Ying-Ying; Su, Dan-Hong; Cheng, Tian-Pu; Wang, Zhi-Ping; Tao, Jun; Ou, Jing-Song

    2016-10-01

    Endothelial dysfunction is a key early step in atherosclerosis. 25-Hydroxycholesterol (25-OHC) is found in atherosclerotic lesions. However, whether 25-OHC promotes atherosclerosis is unclear. Here, we hypothesized that 25-OHC, a proinflammatory lipid, can impair endothelial function, which may play an important role in atherosclerosis. Bovine aortic endothelial cells were incubated with 25-OHC. Endothelial cell proliferation, migration, and tube formation were measured. Nitric oxide (NO) production and superoxide anion generation were determined. The expression and phosphorylation of endothelial NO synthase (eNOS) and Akt as well as the association of eNOS and heat shock protein (HSP)90 were detected by immunoblot analysis and immunoprecipitation. Endothelial cell apoptosis was monitored by TUNEL staining and caspase-3 activity, and expression of Bcl-2, Bax, cleaved caspase-9, and cleaved caspase-3 were detected by immunoblot analysis. Finally, aortic rings from Sprague-Dawley rats were isolated and treated with 25-OHC, and endothelium-dependent vasodilation was evaluated. 25-OHC significantly inhibited endothelial cell proliferation, migration, and tube formation. 25-OHC markedly decreased NO production and increased superoxide anion generation. 25-OHC reduced the phosphorylation of Akt and eNOS and the association of eNOS and HSP90. 25-OHC also enhanced endothelial cell apoptosis by decreasing Bcl-2 expression and increasing cleaved caspase-9 and cleaved caspase-3 expressions as well as caspase-3 activity. 25-OHC impaired endothelium-dependent vasodilation. These data demonstrated that 25-OHC could impair endothelial function by uncoupling and inhibiting eNOS activity as well as by inducing endothelial cell apoptosis. Our findings indicate that 25-OHC may play an important role in regulating atherosclerosis. Copyright © 2016 the American Physiological Society.

  5. Postmenopausal skin and estrogen.

    PubMed

    Archer, David F

    2012-10-01

    The aging global population continues to drive increasing demand for cosmaceuticals and cosmetic surgery among older men and women. Since the discovery in the 1990s that estrogen receptors are present in skin cells and decline in number from the onset of menopause in women, researchers have explored a number of ways in which estrogen can improve skin condition. Skin is estrogen responsive, and several studies now exist to support the antiaging properties of estrogen replacement therapies in postmenopausal women. Both systemic and topical estrogens appear to have positive effects on hormonal aging, increasing skin collagen content, thickness, elasticity and hydration. Estrogen therapies may also improve wound healing and reduce the incidence of wound complications. This review explores the potential for targeted estrogen replacement as a therapeutic option for long-term skin management in postmenopausal women.

  6. Interlinking of hypoxia and estrogen in thyroid cancer progression.

    PubMed

    Rajoria, S; Hanly, E; Nicolini, A; George, A L; Geliebter, J; Shin, E J; Suriano, R; Carpi, A; Tiwari, R K

    2014-01-01

    Estrogen aids in neo-vascularization of various tumors during hypoxic conditions, however the role of estrogen within the hypoxic environment of thyroid cancer is not known. In a series of experimentations, using human thyroid cancer cells, we observed that estrogen and hypoxia modulate the hypoxia inducible factor-1 (HIF-1) signaling which is abrogated by the anti-estrogen fulvestrant and the HIF-1 inhibitor YC-1 (3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole). Furthermore, we found that the conditioned medium from estrogen treated thyroid cancer cells lead to enhanced migration and tubulogenesis of human umbilical vein endothelial cells (HUVECs) which is abrogated by HIF-1 inhibitor. These findings, in addition to our previous and other scientific literature data, lead us to conclude that estrogen and hypoxia are interlinked in thyroid cancer and can equally modulate epithelial-endothelial cell interactions by mediating key cellular, metabolic and molecular processes of thyroid cancer progression. We believe that the hormonal component and cellular adaptation to oxygen tension of cancer cells are functionally equivalent with a cellular transition that can be exploited clinically for a combinational approach for thyroid cancer treatment involving antiestrogens as well as anti-hypoxic agents.

  7. Functional significance of differential eNOS translocation

    PubMed Central

    Sánchez, Fabiola A.; Savalia, Nirav B.; Durán, Ricardo G.; Lal, Brajesh K.; Boric, Mauricio P.; Durán, Walter N.

    2006-01-01

    Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10−5 M, 10−4 M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10−7 M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation. PMID:16679407

  8. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation.

    PubMed

    Sobrino, Agua; Vallejo, Susana; Novella, Susana; Lázaro-Franco, Macarena; Mompeón, Ana; Bueno-Betí, Carlos; Walther, Thomas; Sánchez-Ferrer, Carlos; Peiró, Concepción; Hermenegildo, Carlos

    2017-04-01

    The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser(473)) and eNOS activity (by the enhanced phosphorylation of Ser(1177), the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation.

  9. Is Estrogen a Therapeutic Target for Glaucoma?

    PubMed Central

    Dewundara, Samantha; Wiggs, Janey; Sullivan, David A.; Pasquale, Louis R.

    2016-01-01

    Objective To provide an overview of the association between estrogen and glaucoma. Methods A literature synthesis of articles published in peer review journals screened through May 05, 2015 using the PubMed database. Key words used were “estrogen and glaucoma,” “reproductive factors and glaucoma,” “estrogen, nitric oxide and eye.” Forty three journal articles were included. Results Markers for lifetime estrogen exposure have been measured by several studies and show that the age of menarche onset, oral contraceptive (OC) use, bilateral oophorectomy, age of menopause onset and duration between menarche to menopause are associated with primary open angle (POAG) risk. The Blue Mountain Eye Study found a significantly increased POAG risk with later (>13 years) compared with earlier (≤12 years) age of menarche. Nurses’ Health Study (NHS) investigators found that OC use of greater than 5 years was associated with a 25% increased risk of POAG. The Mayo Clinic Cohort Study of Oophorectomy and Aging found that women who underwent bilateral oophorectomy before age 43 had an increased risk of glaucoma. The Rotterdam Study found that women who went through menopause before reaching the age of 45 years had a higher risk of open-angle glaucoma (2.6-fold increased risk) while the NHS showed a reduced risk of POAG among women older than 65 who entered menopause after age ≥ 54 years. Increased estrogen states may confer a reduced risk of glaucoma or glaucoma related traits such as reduced intraocular pressure (IOP). Pregnancy, a hyperestrogenemic state, is associated with decreased IOP during the third trimester. Though the role of post-menopausal hormone (PMH) use in the reduction of IOP is not fully conclusive, PMH use may reduce the risk of POAG. From a genetic epidemiologic perspective, estrogen metabolic pathway single nucleotide polymorphisms (SNPs) were associated with POAG in women and polymorphisms in endothelial nitric oxide synthase, a gene receptive to

  10. Is Estrogen a Therapeutic Target for Glaucoma?

    PubMed

    Dewundara, Samantha S; Wiggs, Janey L; Sullivan, David A; Pasquale, Louis R

    2016-01-01

    endothelial nitric oxide synthase, a gene receptive to estrogen regulation, are associated with glaucoma. The study concluded that increasing evidence suggests that lifetime exposure to estrogen may alter the pathogenesis of glaucoma. Estrogen exposure may have a neuroprotective effect on the progression of POAG but further studies need to confirm this finding. The role of sex-specific preventive and therapeutic treatment may be on the horizon.

  11. Polymorphic variations in manganese superoxide dismutase (MnSOD) and endothelial nitric oxide synthase (eNOS) genes contribute to the development of type 2 diabetes mellitus in the Chinese Han population.

    PubMed

    Li, J Y; Tao, F; Wu, X X; Tan, Y Z; He, L; Lu, H

    2015-10-21

    Impaired antioxidant defense increases the oxidative stress and contributes to the development of type 2 diabetes mellitus (T2DM). MnSOD and eNOS are important antioxidant enzymes. This aim of this study was to verify the association of MnSOD and eNOS tagSNPs with T2DM in a Chinese Han population. Four tagSNPs of MnSOD and eight tagSNPs of eNOS were detected using TaqMan technology in 1272 healthy controls and 1234 T2DM patients. All study participants were unrelated members of the Han ethnic group in China. In this study, the frequency of the rs4880 MnSOD single nucleotide polymorphisms (SNP) genotype differed significantly between T2DM patients and controls [allele: P = 0.03, genotype: P = 0.04, odd's ratio (OR) = 1.26; 95% confidence interval (CI) = 1.07-1.49]. The A-T haplotype and G-T haplotype remained significant in T2DM after Bonferroni correction (P = 1.58 x 10(-6) and 8.00 x 10(-4), respectively) with a global p-value of 7.25 x 10(-8). The rs1799983 and rs891512 SNPs of eNOS differed significantly between T2DM patients and controls [rs1799983: corrected allele: P = 2.10 x 10(-3), corrected genotype: P = 6.30 x 10(-3), OR = 1.43 (95%CI = 1.18-1.73); rs891512, corrected allele: P = 3.50 x 10(-3), corrected genotype: P = 9.10 x 10(-3), OR = 1.70 (95%CI = 1.26-2.30)]. Following Bonferroni correction, none of the haplotypes of eNOS were significant in T2DM. These results indicate that common variants in MnSOD and eNOS increased the risk of T2DM in the Chinese Han population.

  12. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat.

    PubMed

    Fujii, Naoto; Meade, Robert D; Alexander, Lacy M; Akbari, Pegah; Foudil-Bey, Imane; Louie, Jeffrey C; Boulay, Pierre; Kenny, Glen P

    2016-02-01

    Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. Copyright © 2016 the American Physiological Society.

  13. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat

    PubMed Central

    Fujii, Naoto; Meade, Robert D.; Alexander, Lacy M.; Akbari, Pegah; Foudil-bey, Imane; Louie, Jeffrey C.; Boulay, Pierre

    2015-01-01

    Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. PMID:26586908

  14. Endothelial dysfunction in morbid obesity.

    PubMed

    Mauricio, Maria Dolores; Aldasoro, Martin; Ortega, Joaquin; Vila, José María

    2013-01-01

    Morbid obesity is a chronic multifunctional disease characterized by an accumulation of fat. Epidemiological studies have shown that obesity is associated with cardiovascular and metabolic disorders. Endothelial dysfunction, as defined by an imbalance between relaxing and contractile endothelial factors, plays a central role in the pathogenesis of these cardiometabolic diseases. Diminished bioavailability of nitric oxide (NO) contributes to endothelial dysfunction and impairs endothelium- dependent vasodilatation. But this is not the only mechanism that drives to endothelial dysfunction. Obesity has been associated with a chronic inflammatory process, atherosclerosis, and oxidative stress. Moreover levels of asymmetrical dimethyl-L-arginine (ADMA), an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), are elevated in obesity. On the other hand, increasing prostanoid-dependent vasoconstriction and decreasing vasodilator prostanoids also lead to endothelial dysfunction in obesity. Other mechanisms related to endothelin-1 (ET-1) or endothelium derived hyperpolarizing factor (EDHF) have been proposed. Bariatric surgery (BS) is a safe and effective means to achieve significant weight loss, but its use is limited only to patients with severe obesity including morbid obesity. BS also proved efficient in endothelial dysfunction reduction improving cardiovascular and metabolic comorbidities associated with morbid obesity such as diabetes, coronary artery disease, nonalcoholic fatty liver disease and cancer. This review will provide a brief overview of the mechanisms that link obesity with endothelial dysfunction, and how weight loss is a cornerstone treatment for cardiovascular comorbidities obesity-related. A better understanding of the mechanisms of obesity-induced endothelial dysfunction may help develop new therapeutic strategies to reduce cardiovascular morbidity and mortality.

  15. GPER: a novel target for non-genomic estrogen action in the cardiovascular system.

    PubMed

    Han, Guichun; Li, Fen; Yu, Xuan; White, Richard E

    2013-05-01

    A key to harnessing the enormous therapeutic potential of estrogens is understanding the diversity of estrogen receptors and their signaling mechanisms. In addition to the classic nuclear estrogen receptors (i.e., ERα and ERβ), over the past decade a novel G-protein-coupled estrogen receptor (GPER) has been discovered in cancer and other cell types. More recently, this non-genomic signaling mechanism has been found in blood vessels, and mediates vasodilatory responses to estrogen and estrogen-like agents; however, downstream signaling events involved acute estrogen action remain unclear. The purpose of this review is to discuss the latest knowledge concerning GPER modulation of cardiovascular function, with a particular emphasis upon how activation of this receptor could mediate acute estrogen effects in the heart and blood vessels (i.e., vascular tone, cell growth and differentiation, apoptosis, endothelial function, myocardial protection). Understanding the role of GPER in estrogen signaling may help resolve some of the controversies associated with estrogen and cardiovascular function. Moreover, a more thorough understanding of GPER function could also open significant opportunities for the development of new pharmacological strategies that would provide the cardiovascular benefits of estrogen while limiting the potentially dangerous side effects.

  16. [Effects of mexidol and sulodexide on the level of specific markers of endothelial dysfunction in animals with experimental diabetes mellitus].

    PubMed

    Tiurenkov, I N; Voronkov, A V; Slietsans, A A; Snigur, G L

    2012-01-01

    Streptozotocin-induced diabetes leads to the development of endothelial dysfunction, as evidenced by decreased expression of endothelial nitric oxide synthase (eNOS) and increased expression of endothelin-1 as specific markers of endothelial disorders. All test substances showed endotelioprotective activity by increasing the concentration of eNOS and reducing the level of endothelin-1. With respect to the degree of impact on the eNOS and endothelin-1 levels, the compounds studied can be rated as follows: sulodexide > meksidol.

  17. Polyphenols in preventing endothelial dysfunction.

    PubMed

    Biegańska-Hensoldt, Sylwia; Rosołowska-Huszcz, Danuta

    2017-03-27

    One of the main causes of mortality in developed countries is atherosclerosis. The pathogenesis of atherosclerosis is associated with endothelial dysfunction. Consumption of food rich in natural antioxidants including polyphenols significantly improves endothelial cells functions. Polyphenols have a beneficial effect on the human body and play an important part in protecting the cardiovascular system. Polyphenols present in food have antioxidant, anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. Catechins cause an increase in the activity of endothelial nitric oxide synthase (eNOS) and increased production of nitric oxide (NO) and decrease in blood pressure. Catechins also reduce platelet adhesion, lower the concentration of C-reactive protein and tumor necrosis factor alpha and interleukin-6. Resveratrol inhibits NADPH oxidase expression, increases the expression of eNOS and NO production as well as decreases the expression of proinflammatory cytokines, and also lowers the concentration of the soluble forms of adhesion molecules - sICAM-1 and sVCAM-1 in blood. Quercetin reduces the blood level of low density lipoprotein cholesterol, lowers blood pressure, reduces the concentration of C-reactive protein and F2-isoprostane level. Curcumin has antagonistic activity to homocysteine. Curcumin increases the expression of eNOS and reduces oxidative DNA damage in rat cardiomyocytes. Numerous attempts are taken for improving the bioavailability of polyphenols in order to increase their use in the body.

  18. Association Patterns of Endothelial Nitric Oxide Synthase Gene (NOS3) Variant Glu298Asp with Blood Pressure and Serum Lipid Levels in Subjects with Coronary Artery Disease from Pakistan.

    PubMed

    Shahid, Saleem Ullah; Rehman, Abdul

    2017-07-01

    Nitric oxide is an important antiatherosclerotic agent. The main determinant of nitric oxide levels is enzyme nitric oxide synthase encoded by the NOS3 gene, the common variants in this gene may be responsible for variations in plasma enzyme levels. The association of NOS3 variants with coronary artery disease (CAD) varies in different ethnicities. The current study aimed to determine the association of NOS3 Glu298Asp (rs1799983) with CAD and blood lipid levels in Pakistani subjects. Six hundred thirty-six samples (412 cases, 224 controls) were genotyped by TaqMan allelic discrimination assay and serum total cholesterol, and High Density Lipoprotein cholesterol (HDL-C)/Low Density Lipoprotein cholesterol (LDL-C) and triglycerides were measured. The genotype frequency was Glu/Glu = 64.6%, Glu/Asp = 30.1%, and Asp/Asp = 5.3% in cases, and Glu/Glu = 68.8%, Glu/Asp = 26.7%, and Asp/Asp = 4.5% in controls. The Asp298 (T) frequency was not significantly higher in cases than controls (20.4% vs 17.9%, P = 0.28) and risk allele was not associated with CAD (OR 1.15 (0.86-1.54), P = 0.33) and the tested lipid traits but had a strong association with blood pressure (for systolic and diastolic P = 1.9×10(--56) and 4×10(--40) , respectively). In conclusion, although Glu298Asp did not show association with CAD and lipid profile in the studied cohort, it may exert its effect through blood pressure; however, the mechanism of this effect needs to be explored in the future. © 2017 John Wiley & Sons Ltd/University College London.

  19. Effects of tamoxifen-loaded solid lipid nanoparticles on the estrogen receptor-α (ER-α) and vascular endothelial growth factor-A (VEGF-A) genes expression in the endometrial tissue of ovariectomized female Sprague-Dawley rats.

    PubMed

    Javid, Saman; Ziamajidi, Nasrin; Foroughi, Shadi; Abbasalipourkabir, Roghayeh

    2017-03-01

    The effect of tamoxifen on endometrial carcinogenesis stems from its estrogen agonist effect. An in vivo study was carried out to compare the effect of tamoxifen-loaded solid lipid nanoparticles and free drug on the ER-α and VEGF-A genes expression. Twenty-four female Sprague-Dawley rats divided into 4 groups of six rats were used for this study. The first and second groups were ovariectomized and given tamoxifen and tamoxifen-loaded SLN respectively for six days continuously. Group 3 served as the untreated ovariectomized control group and group 4 was made up of untreated normal healthy rats. At the end of the study, the rats were sacrificed and study of the genes expression and serum oxidative stress were carried out. The results of this study showed that treatment with tamoxifen-loaded SLN significantly reduced the mRNA levels of ERα and VEGF-A gene and the total oxidant status compared to the ovariectomized control group. The results of this study revealed that encapsulation of tamoxifen in solid lipid nanoparticles may have less adverse effects on the oxidative stress status and incidence of endometrial cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Estrogen-like activity and dual roles in cell signaling of an Agaricus blazei Murrill mycelia-dikaryon extract.

    PubMed

    Dong, Sijun; Furutani, Yoshiyuki; Suto, Yumiko; Furutani, Michiko; Zhu, Yun; Yoneyama, Makoto; Kato, Taichi; Itabe, Hiroyuki; Nishikawa, Toshio; Tomimatsu, Hirofumi; Tanaka, Takeshi; Kasanuki, Hiroshi; Masaki, Tomoh; Kiyama, Ryoiti; Matsuoka, Rumiko

    2012-04-20

    Agaricus blazei (A. blazei) Murrill mycelia-dikaryon has attracted the attention of scientists and clinicians worldwide owing to its potential for the treatment of cancer. However, little is known about its effect on other pathologies. This study sought to extend the potential medical usefulness of A. blazei for preventing vascular damage and to unravel its mechanism of action. The A. blazei extract showed estrogen-like activity in both gene expression profiling and a luciferase assay. Indeed, the extract inhibited oxidized low-density lipoprotein-stimulated activation of Erk1/2, Akt and p38 in HUVECs and macrophage-derived TIB-67 cells. Moreover, the extract enhanced transcription of the glutathione peroxidase 3 (GPX3), α-synuclein (SNCA) and endothelial nitrogen-oxide synthase (eNOS) genes. Furthermore, atherosclerotic lesions in rabbits were reduced by intake of A. blazei powder. Therefore, A. blazei may be useful for preventing atherosclerosis via dual roles in cell signaling, suppression of macrophage development and the recovery of endothelial cells from vascular damage.

  1. Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease

    PubMed Central

    Besler, Christian; Heinrich, Kathrin; Rohrer, Lucia; Doerries, Carola; Riwanto, Meliana; Shih, Diana M.; Chroni, Angeliki; Yonekawa, Keiko; Stein, Sokrates; Schaefer, Nicola; Mueller, Maja; Akhmedov, Alexander; Daniil, Georgios; Manes, Costantina; Templin, Christian; Wyss, Christophe; Maier, Willibald; Tanner, Felix C.; Matter, Christian M.; Corti, Roberto; Furlong, Clement; Lusis, Aldons J.; von Eckardstein, Arnold; Fogelman, Alan M.; Lüscher, Thomas F.; Landmesser, Ulf

    2011-01-01

    Therapies that raise levels of HDL, which is thought to exert atheroprotective effects via effects on endothelium, are being examined for the treatment or prevention of coronary artery disease (CAD). However, the endothelial effects of HDL are highly heterogeneous, and the impact of HDL of patients with CAD on the activation of endothelial eNOS and eNOS-dependent pathways is unknown. Here we have demonstrated that, in contrast to HDL from healthy subjects, HDL from patients with stable CAD or an acute coronary syndrome (HDLCAD) does not have endothelial antiinflammatory effects and does not stimulate endothelial repair because it fails to induce endothelial NO production. Mechanistically, this was because HDLCAD activated endothelial lectin-like oxidized LDL receptor 1 (LOX-1), triggering endothelial PKCβII activation, which in turn inhibited eNOS-activating pathways and eNOS-dependent NO production. We then identified reduced HDL-associated paraoxonase 1 (PON1) activity as one molecular mechanism leading to the generation of HDL with endothelial PKCβII-activating properties, at least in part due to increased formation of malondialdehyde in HDL. Taken together, our data indicate that in patients with CAD, HDL gains endothelial LOX-1– and thereby PKCβII-activating properties due to reduced HDL-associated PON1 activity, and that this leads to inhibition of eNOS-activation and the subsequent loss of the endothelial antiinflammatory and endothelial repair–stimulating effects of HDL. PMID:21701070

  2. Histone Deacetylase-3 antagonizes Aspirin-stimulated Endothelial Nitric Oxide production by reversing Aspirin-induced lysine acetylation of Endothelial Nitric Oxide Synthase

    PubMed Central

    Jung, Saet-Byel; Kim, Cuk-Seong; Naqvi, Asma; Yamamori, Tohru; Mattagajasingh, Ilwola; Hoffman, Timothy A; Cole, Marsha P; Kumar, Ajay; DeRicco, Jeremy S.; Jeon, Byeong Hwa; Irani, Kaikobad

    2010-01-01

    Rationale Low-dose acetylsalicylic acid (aspirin) is widely used in the treatment and prevention of vascular atherothrombosis. Cardiovascular doses of aspirin also reduce systemic blood pressure and improve endothelium-dependent vasorelaxation in patients with atherosclerosis or risk factors for atherosclerosis. Aspirin can acetylate proteins, other than its pharmacological target cyclooxygenase (COX), at lysine residues. The role of lysine acetylation in mediating the effects of low-dose aspirin on the endothelium is not known. Objective To determine the role of lysine acetylation of eNOS in the regulation of endothelial NO production by low-dose aspirin, and to examine whether the lysine deacetylase Histone Deacetylase-3 (HDAC3) antagonizes the effect of low-dose aspirin on endothelial NO production by reversing acetylation of functionally critical eNOS lysine residues. Methods and results Low concentrations of aspirin induce lysine acetylation of eNOS, stimulating eNOS enzymatic activity and endothelial NO production in a cyclooxygenase-1 (COX-1)-independent fashion. Low-dose aspirin in vivo also increases bioavailable vascular NO in an eNOS-dependent and COX-1-independent manner. Low-dose aspirin promotes the binding of eNOS to calmodulin. Lysine 609 in the calmodulin autoinhibitory domain of bovine eNOS mediates aspirin-stimulated binding of eNOS to calmodulin and eNOS-derived NO production. Overexpression of HDAC3 inhibits aspirin-stimulated lysine acetylation of eNOS, increase in eNOS enzymatic activity, eNOS-derived NO, and binding of eNOS to calmodulin. Similarly, downregulation of HDAC3 promotes lysine acetylation of eNOS, and endothelial NO generation. Conclusions Lysine acetylation of eNOS is a post-translational protein modification supporting low-dose aspirin-induced vasoprotection. HDAC3, by deacetylating aspirin-acetylated eNOS, antagonizes aspirin-stimulated endothelial production of NO. PMID:20705923

  3. Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation

    PubMed Central

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023

  4. Stromal cell-derived factor 2 is critical for Hsp90-dependent eNOS activation.

    PubMed

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C; Sessa, William C

    2015-08-18

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell-derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser(1177), a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser(1177) in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. Copyright © 2015, American Association for the Advancement of Science.

  5. Soy Isoflavone Protects Myocardial Ischemia/Reperfusion Injury through Increasing Endothelial Nitric Oxide Synthase and Decreasing Oxidative Stress in Ovariectomized Rats

    PubMed Central

    Tang, Yan; Li, Shuangyue; Zhang, Ping; Zhu, Jinbiao; Meng, Guoliang; Xie, Liping; Yu, Ying; Ji, Yong; Han, Yi

    2016-01-01

    There is a special role for estrogens in preventing and curing cardiovascular disease in women. Soy isoflavone (SI), a soy-derived phytoestrogen, has similar chemical structure to endogenous estrogen-estradiol. We investigate to elucidate the protective mechanism of SI on myocardial ischemia/reperfusion (MI/R) injury. Female SD rats underwent bilateral ovariectomy. One week later, rats were randomly divided into several groups, sham ovariectomy (control group), ovariectomy with MI/R, or ovariectomy with sham MI/R. Other ovariectomy rats were given different doses of SI or 17β-estradiol (E2). Four weeks later, they were exposed to 30 minutes of left coronary artery occlusion followed by 6 or 24 hours of reperfusion. SI administration significantly reduced myocardial infarct size and improved left ventricle function and restored endothelium-dependent relaxation function of thoracic aortas after MI/R in ovariectomized rats. SI also decreased serum creatine kinase and lactate dehydrogenase activity, reduced plasma malonaldehyde, and attenuated oxidative stress in the myocardium. Meanwhile, SI increased phosphatidylinositol 3 kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) signal pathway. SI failed to decrease infarct size of hearts with I/R in ovariectomized rats if PI3K was inhibited. Overall, these results indicated that SI protects myocardial ischemia/reperfusion injury in ovariectomized rats through increasing PI3K/Akt/eNOS signal pathway and decreasing oxidative stress. PMID:27057277

  6. Oleic acid increases mitochondrial reactive oxygen species production and decreases endothelial nitric oxide synthase activity in cultured endothelial cells.

    PubMed

    Gremmels, Hendrik; Bevers, Lonneke M; Fledderus, Joost O; Braam, Branko; van Zonneveld, Anton Jan; Verhaar, Marianne C; Joles, Jaap A

    2015-03-15

    Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction.

  7. Chronic vagus nerve stimulation attenuates vascular endothelial impairments and reduces the inflammatory profile via inhibition of the NF-κB signaling pathway in ovariectomized rats.

    PubMed

    Li, Ping; Liu, Huaipu; Sun, Peng; Wang, Xiaoyu; Wang, Chen; Wang, Ling; Wang, Tinghuai

    2016-02-01

    Vagus nerve stimulation (VNS), a method for activating cholinergic anti-inflammatory pathways, could suppress endothelial activation and minimize tissue injury during inflammation. The aim of this study was to investigate the effects of chronic VNS on endothelial impairments and the inflammatory profile in ovariectomized (OVX) rats. Sprague-Dawley rats (7-8 months old) were randomly assigned to the following four groups: sham-OVX, OVX, OVX+sham-VNS, and OVX+VNS. Throughout the experimental period, the OVX+VNS group received VNS for 3h (20.0 Hz, 1.0 mA, and 10.00 ms pulse width) at the same time every other day. After 12 weeks of VNS, blood samples and thoracic aortas were collected for further analyses. Light microscopy and electron microscopy analyses showed that chronic VNS prevented endothelial swelling, desquamation and even necrosis in the OVX rats. In addition, it obviously improved endothelial function in the OVX rats by restoring the endothelial nitric oxide synthase (e-NOS) and serum endothelin-1 level. Increased expression of cell adhesion molecules (VCAM-1, ICAM-1 and E-selectin) in the thoracic aortas and increases in the levels of circulating cytokines (TNF-α, IL-6, MCP-1, and CINC/KC) were also observed in the OVX rats. Chronic VNS significantly restored these detrimental changes partly by increasing the ACh concentrations in vascular walls and blocking NF-κB pathway activity. The results of this in vivo study have shown that the administration of chronic VNS during, in the early stage of estrogen deficiency, protects OVX rats from endothelial impairments and the inflammatory profile. These findings indicate that activation of the vagus nerve could be a promising supplemental therapy for reducing the risks of suffering from further CVDs in postmenopausal women.

  8. Environmental Estrogens and Obesity

    PubMed Central

    Newbold, Retha R.; Padilla-Banks, Elizabeth; Jefferson, Wendy N.

    2009-01-01

    Many chemicals in the environment, in particular those with estrogenic activity, can disrupt the programming of endocrine signaling pathways that are established during development and result in adverse consequences that may not be apparent until much later in life. Most recently, obesity and diabetes join the growing list of adverse consequences that have been associated with developmental exposure to environmental estrogens during critical stages of differentiation. These diseases are quickly becoming significant public health issues and are fast reaching epidemic proportions worldwide. In this review, we summarize the literature from experimental animal studies documenting an association of environmental estrogens and the development of obesity, and further describe an animal model of exposure to diethylstilbestrol (DES) that has proven useful in studying mechanisms involved in abnormal programming of various differentiating estrogen- target tissues. Other examples of environmental estrogens including the phytoestrogen genistein and the environmental contaminant Bisphenol A are also discussed. Together, these data suggest new targets (i.e., adipocyte differentiation and molecular mechanisms involved in weight homeostasis) for abnormal programming by estrogenic chemicals, and provide evidence that support the scientific hypothesis termed “the developmental origins of adult disease”. The proposal of an association of environmental estrogens with obesity and diabetes expands the focus on the diseases from intervention/treatment to include prevention/avoidance of chemical modifiers especially during critical windows of development. PMID:19433252

  9. The use of a whole animal biophotonic model as a screen for the angiogenic potential of estrogenic compounds

    USDA-ARS?s Scientific Manuscript database

    Vascular endothelial growth factor (VEGF) is essential for normal vascular growth and development during wound repair. VEGF is estrogen responsive and capable of regulating its own receptor, vascular endothelial growth factor receptor-2 (VEGFR-2). Several agricultural pesticides (e.g., methoxychlor)...

  10. Estrogen, schizophrenia and neurodevelopment.

    PubMed

    Seeman, Mary V

    2006-07-01

    Women are relatively protected against schizophrenia. The illness has a similar rate in women and men, but it starts later in women and is less severe. It is tempting to attribute this to the neuroprotective effect of estrogen, but the story is not straightforward and contains many unknowns. Women begin their schizophrenia trajectory later in development compared with men and this probably accounts for their relatively superior prognosis. Estrogen agonists are potential therapeutic agents but need to be proven safe, and the timing of administration may be crucial. This article examines what is known about estrogen and the development of schizophrenia.

  11. Chronic treatment with qiliqiangxin ameliorates aortic endothelial cell dysfunction in diabetic rats.

    PubMed

    Chen, Fei; Wu, Jia-Le; Fu, Guo-Sheng; Mou, Yun; Hu, Shen-Jiang

    2015-03-01

    Qiliqiangxin (QL), a traditional Chinese medicine, has been shown to be beneficial for chronic heart failure. However, whether QL can also improve endothelial cell function in diabetic rats remains unknown. Here, we investigated the effect of QL treatment on endothelial dysfunction by comparing the effect of QL to that of benazepril (Ben) in diabetic Sprague-Dawley rats for 8 weeks. Cardiac function was evaluated by echocardiography and catheterization. Assays for acetylcholine-induced, endothelium-dependent relaxation (EDR), sodium nitroprusside-induced endothelium-independent relaxation, serum nitric oxide (NO), and nitric oxide synthase (NOS) as well as histological analyses were performed to assess endothelial function. Diabetic rats showed significantly inhibited cardiac function and EDR, decreased expression of serum NO and phosphorylation at Ser(1177) on endothelial NOS (eNOS), and impaired endothelial integrity after 8 weeks. Chronic treatment for 8 weeks with either QL or Ben prevented the inhibition of cardiac function and EDR and the decrease in serum NO and eNOS phosphorylation caused by diabetes. Moreover, either QL or Ben suppressed inducible NOS (iNOS) protein levels as well as endothelial necrosis compared with the diabetic rats. Additionally, QL prevented the increase in angiotensin-converting enzyme 1 and angiotensin II receptor type 1 in diabetes. Thus, chronic administration of QL improved serum NO production, EDR, and endothelial integrity in diabetic rat aortas, possibly through balancing eNOS and iNOS activity and decreasing renin-angiotensin system expression.

  12. Endothelial nitric oxide synthase in the microcirculation

    PubMed Central

    Shu, Xiaohong; Keller, T.C. Stevenson; Begandt, Daniela; Butcher, Joshua T.; Biwer, Lauren; Keller, Alexander S.; Columbus, Linda; Isakson, Brant E.

    2015-01-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO) - a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells. PMID:26390975

  13. Endothelial nitric oxide synthase in the microcirculation.

    PubMed

    Shu, Xiaohong; Keller, T C Stevenson; Begandt, Daniela; Butcher, Joshua T; Biwer, Lauren; Keller, Alexander S; Columbus, Linda; Isakson, Brant E

    2015-12-01

    Endothelial nitric oxide synthase (eNOS, NOS3) is responsible for producing nitric oxide (NO)--a key molecule that can directly (or indirectly) act as a vasodilator and anti-inflammatory mediator. In this review, we examine the structural effects of regulation of the eNOS enzyme, including post-translational modifications and subcellular localization. After production, NO diffuses to surrounding cells with a variety of effects. We focus on the physiological role of NO and NO-derived molecules, including microvascular effects on vessel tone and immune response. Regulation of eNOS and NO action is complicated; we address endogenous and exogenous mechanisms of NO regulation with a discussion of pharmacological agents used in clinical and laboratory settings and a proposed role for eNOS in circulating red blood cells.

  14. Activation of endothelial nitric oxide synthase is dependent on its interaction with globular actin in human umbilical vein endothelial cells.

    PubMed

    Mi, Qiongyu; Chen, Nan; Shaifta, Yasin; Xie, Liping; Lu, Hui; Liu, Zhen; Chen, Qi; Hamid, Colleen; Becker, Silke; Ji, Yong; Ferro, Albert

    2011-09-01

    Endothelial nitric oxide synthase (eNOS) has been reported to associate with globular actin, and this association increases eNOS activity. Adenosine, histamine, salbutamol and thrombin cause activation of eNOS through widely different mechanisms. Whether these eNOS agonists can regulate eNOS activity through affecting its association with actin is unknown. As previously reported, we confirmed in cultured human umbilical vein endothelial cells (HUVEC) that histamine and thrombin increased intracellular Ca(2+) whereas adenosine and salbutamol did not, and that these four agonists caused different effects on actin filament structure. Nevertheless, despite their divergent effects on intracellular Ca(2+) and on actin filament structure, we found by immunoprecipitation that adenosine, histamine, salbutamol and thrombin all caused an increase in association between eNOS and globular actin. This increase of association was inhibited by pre-treatment with phalloidin, an actin filament stabilizer. All of these agonists also increased phosphorylation of eNOS on serine residue 1177, eNOS activity, and cyclic guanosine-3', 5'-monophosphate, and these increases were all attenuated by phalloidin. Agonist-induced phosphorylation of eNOS on serine 1177 was attenuated by Akt inhibition, whereas association of eNOS with actin was not. We also found, in HEK-293 cells transfected with the eNOS mutants eNOS-S1177A or eNOS-S1177D, that the association between eNOS and globular actin was decreased as compared to cells transfected with wild-type eNOS. We conclude that association of globular actin with eNOS plays an essential and necessary role in agonist-induced eNOS activation, through enabling its phosphorylation by Akt at serine residue 1177.

  15. Brown Norway rats show impaired nNOS-mediated information transfer in renal autoregulation.

    PubMed

    Wang, Xuemei; Cupples, William A

    2009-01-01

    Nonselective inhibition of NO synthase (NOS) augments myogenic autoregulation of renal blood flow (RBF) and profoundly reduces RBF. Previously in Wistar rats, we showed that augmented autoregulation, but not vasoconstriction, is duplicated by intrarenal inhibition of neuronal NOS (nNOS), whereas intrarenal inhibition of inducible NOS (iNOS) has no effect on RBF or on RBF dynamics. Thus macula densa nNOS transfers information from tubuloglomerular feedback to the afferent arteriole. This information flow requires that macula densa nNOS can sufficiently alter ambient NO concentration, that is, that endothelial NOS (eNOS) and iNOS do not alter local NO concentration. Because the Brown Norway rat often shows exaggerated responses to NOS inhibition and has peculiarities of renal autoregulation that are related to NO, we used this strain to study systemic and renal vascular responses to NOS inhibition. The first experiment showed transient blood pressure reduction by bolus i.v. acetylcholine that was dose-dependent in both strains and substantially prolonged in Brown Norway rats. The depressor response decayed more rapidly after nonselective NOS inhibition and the difference between strains was lost, indicating a greater activity of eNOS in Brown Norway rats. In Brown Norway rats, selective inhibition of iNOS reduced RBF (-16% +/- 7%) and augmented myogenic autoregulation, whereas nNOS inhibition reduced RBF (-25% +/- 4%) and did not augment myogenic autoregulation. The significant responses to intrarenal iNOS inhibition, the reduced modulation of autoregulation by nNOS inhibition, and the enhanced endothelial depressor response suggest that physiological signalling by NO within the kidney is impaired in Brown Norway rats because of irrelevant or inappropriate input of NO by eNOS and iNOS.

  16. Estrogen and Bazedoxifene

    MedlinePlus

    ... neck, and chest) in women who are experiencing menopause (stage of life when menstrual periods become less ... and break easily) in women who have undergone menopause. Estrogen is in a class of medications called ...

  17. Protein kinase D activity controls endothelial nitric oxide synthesis.

    PubMed

    Aicart-Ramos, Clara; Sánchez-Ruiloba, Lucía; Gómez-Parrizas, Mónica; Zaragoza, Carlos; Iglesias, Teresa; Rodríguez-Crespo, Ignacio

    2014-08-01

    Vascular endothelial growth factor (VEGF) regulates key functions of the endothelium, such as angiogenesis or vessel repair in processes involving endothelial nitric oxide synthase (eNOS) activation. One of the effector kinases that become activated in endothelial cells upon VEGF treatment is protein kinase D (PKD). Here, we show that PKD phosphorylates eNOS, leading to its activation and a concomitant increase in NO synthesis. Using mass spectrometry, we show that the purified active kinase specifically phosphorylates recombinant eNOS on Ser1179. Treatment of endothelial cells with VEGF or phorbol 12,13-dibutyrate (PDBu) activates PKD and increases eNOS Ser1179 phosphorylation. In addition, pharmacological inhibition of PKD and gene silencing of both PKD1 and PKD2 abrogate VEGF signaling, resulting in a clear diminished migration of endothelial cells in a wound healing assay. Finally, inhibition of PKD in mice results in an almost complete disappearance of the VEGF-induced vasodilatation, as monitored through determination of the diameter of the carotid artery. Hence, our data indicate that PKD is a new regulatory kinase of eNOS in endothelial cells whose activity orchestrates mammalian vascular tone. © 2014. Published by The Company of Biologists Ltd.

  18. Diabetic HDL-associated myristic acid inhibits acetylcholine-induced nitric oxide generation by preventing the association of endothelial nitric oxide synthase with calmodulin.

    PubMed

    White, James; Guerin, Theresa; Swanson, Hollie; Post, Steven; Zhu, Haining; Gong, Ming; Liu, Jun; Everson, William V; Li, Xiang-An; Graf, Gregory A; Ballard, Hubert O; Ross, Stuart A; Smart, Eric J

    2008-01-01

    In the current study, we examined whether diabetes affected the ability of HDL to stimulate nitric oxide (NO) production. Using HDL isolated from both diabetic humans and diabetic mouse models, we found that female HDL no longer induced NO synthesis, despite containing equivalent amounts of estrogen as nondiabetic controls. Furthermore, HDL isolated from diabetic females and males prevented acetylcholine-induced stimulation of NO generation. Analyses of both the human and mouse diabetic HDL particles showed that the HDLs contained increased levels of myristic acid. To determine whether myristic acid associated with HDL particles was responsible for the decrease in NO generation, myristic acid was added to HDL isolated from nondiabetic humans and mice. Myristic acid-associated HDL inhibited the generation of NO in a dose-dependent manner. Importantly, diabetic HDL did not alter the levels of endothelial NO synthase or acetylcholine receptors associated with the cells. Surprisingly, diabetic HDL inhibited ionomycin-induced stimulation of NO production without affecting ionomycin-induced increases in intracellular calcium. Further analysis indicated that diabetic HDL prevented calmodulin from interacting with endothelial NO synthase (eNOS) but did not affect the activation of calmodulin kinase or calcium-independent mechanisms for stimulating eNOS. These studies are the first to show that a specific fatty acid associated with HDL inhibits the stimulation of NO generation. These findings have important implications regarding cardiovascular disease in diabetic patients.

  19. [Estrogens and vascular thrombosis].

    PubMed

    Colmou, A

    1982-09-01

    The incidence of thromboses among young women has increased with widespread use of oral contraceptives (OCs) due to the significant thromboembolic risk of estrogen. Estrogens intervene at the vascular, platelet, and plasma levels as a function of hormonal variations in the menstrual cycle, increasing the aggregability of the platelets and thrombocytes, accelerating the formation of clots, and decreasing the amount of antithrombin III. Estrogens are used in medicine to treat breast and prostate cancers and in gynecology to treat dysmenorrhea, during the menopause, and in contraception. Smoking, cardiovascular disease and hypertension, hypercholesterolemia, and diabetes are contraindicators to estrogen use. Thrombosis refers to blockage of a blood vessel by a clot or thrombus. Before estrogens are prescribed, a history of phlebitis, obesity, hyperlipidemia, or significant varicosities should be ruled out. A history of venous thrombosis, hyperlipoproteinemia, breast nodules, serious liver condition, allergies to progesterone, and some ocular diseases of vascular origin definitively rule out treatment with estrogens. A family history of infarct, embolism, diabetes, cancer, or vascular accidents at a young age signals a need for greater patient surveillance. All patients receiving estrogens should be carefully observed for signs of hypertension, hypercholesterolemia, hypercoagulability, or diabetes. Nurses have a role to play in carefully eliciting the patient's history of smoking, personal and family medical problems, and previous and current laboratory results, as well as in informing the patients of the risks and possible side effects of OCs, especially for those who smoke. Nurses should educate patients receiving estrogens, especially those with histories of circulatory problems, to avoid standing in 1 position for prolonged periods, avoid heat which is a vasodilator, avoid obesity, excercise regularly, wear appropriate footgear, and follow other good health

  20. The Measurement of Estrogens

    NASA Astrophysics Data System (ADS)

    Holder, Geoff; Makin, Hugh L. J.; Bradlow, H. Leon

    Biologists use the word ‘estrogen' when referring to molecules which have the ability to induce uterine growth or vaginal cornification in the immature or ovariectomized rodent. The word estrogen was derived from two Greek words - oistros meaning frenzy and gennein - to beget. Chemists and biochemists, however, often restrict their use of this term to molecules that contain a characteristic 18-carbon steroid nucleus with an aromatic (phenolic) A-ring, both those that are biologically active estrogens and those without biologic activity but which are of intrinsic interest, such as the estrogen conjugates. This chapter is concerned only with these steroid compounds. The structure and inter-relationship of some common estrogens are given in Fig. 8.1. In addition to the biological estrogens, there are a wide variety of both natural and synthetic compounds which have estrogenic activity when measured by one or another parameter. While many of the assay procedures described in this review are applicable to these compounds, their application to non C18-steroids will not be discussed here. Methodology for these non-steroidal compounds can be found in reviews by Wang et al. (2002), Wu et al. (2004), Muir (2006), and Delmonte and Rader (2006). While not wishing to downgrade the importance of previous work in the estrogen field, the authors have taken a deliberate decision to exclude most publications prior to 1975, not because these do not have value but simply because space is not unlimited and readers of the present chapter might be expected to be seeking information about methodology which is less than 30 years old. Readers seeking pre-1975 information in this area can find it in Oakey and Holder (1995).

  1. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  2. In vitro and in vivo induction and activation of nNOS by LPS in oligodendrocytes

    PubMed Central

    Yao, SY.; Ljunggren-Rose, A.; Chandramohan, N.; Whetsell, W.O.; Sriram, S.

    2014-01-01

    There are currently four known isoforms of nitric oxide synthase (NOS). Of these, neuronal NOS (nNOS) is known to be present exclusively in neurons, endothelial NOS (eNOS) in vascular endothelium, while the inducible form of NOS (iNOS) is known to be activated in oligodendrocytes, astrocytes and microglia. The fourth isoform, mitochondrial NOS (mtNOS), represents a post translational modification of nNOS. Using western blotting and real time-PCR, we show induction and activation of nNOS following culture of oligodendrocyte progenitor cells (OPC) with lipopolysaccharide (LPS). Activation of nNOS results in accumulation of peroxynitrite and tyrosine nitration of proteins in oligodendrocytes resulting in reduced cell viability. Injection of LPS in vivo into the corpus callosum of rats leads to the development of extensive demyelination of the white matter tracts. Immunostaining of regions close to the injection site shows the presence of nNOS, but not iNOS, in oligodendrocytes. Neither iNOS nor nNOS was seen in astrocytes in areas of demyelination. These studies suggest that activation of nNOS in oligodendrocytes leads to oligodendrocyte injury resulting in demyelination. PMID:20724006

  3. Nitric oxide synthase (NOS) in the human umbilical cord vessels. An immunohistochemical study.

    PubMed

    Dikranian, K; Trosheva, M; Nikolov, S; Bodin, P

    1994-06-01

    Localization of nitric oxide synthase (NOS) in endothelial cells of umbilical cord vessels and in cultured human umbilical vein endothelial cells was investigated by light and electron-microscopical (immunogold) immunohistochemistry. We observed localization of NOS-immunoreactivity in the majority (97%) of the endothelial cells of the umbilical vein and in a subpopulation (6.7%) of endothelial cells of the umbilical arteries. NOS was observed as well in the amniotic epithelium and in the cells of Wharton's jelly. Immunogold labelling in human umbilical vein endothelial cells dominated in the cellular matrix and was not associated with cellular organelles. Since human umbilical vessels are unique in lacking innervation, the functional significance of endothelium derived relaxing factor EDRF/NO in the local control of vascular flow is discussed.

  4. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  5. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    PubMed

    Myojo, Masahiro; Nagata, Daisuke; Fujita, Daishi; Kiyosue, Arihiro; Takahashi, Masao; Satonaka, Hiroshi; Morishita, Yoshiyuki; Akimoto, Tetsu; Nagai, Ryozo; Komuro, Issei; Hirata, Yasunobu

    2014-01-01

    Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  6. Telmisartan Activates Endothelial Nitric Oxide Synthase via Ser1177 Phosphorylation in Vascular Endothelial Cells

    PubMed Central

    Myojo, Masahiro; Nagata, Daisuke; Fujita, Daishi; Kiyosue, Arihiro; Takahashi, Masao; Satonaka, Hiroshi; Morishita, Yoshiyuki; Akimoto, Tetsu; Nagai, Ryozo; Komuro, Issei; Hirata, Yasunobu

    2014-01-01

    Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling. PMID:24827148

  7. The Relationship between Estrogen and Nitric Oxide in the Prevention of Cardiac and Vascular Anomalies in the Developing Zebrafish (Danio Rerio)

    PubMed Central

    Sykes, Benjamin G.; Van Steyn, Peter M.; Vignali, Jonathan D.; Winalski, John; Lozier, Julie; Bell, Wade E.; Turner, James E.

    2016-01-01

    It has been known that both estrogen (E2) and nitric oxide (NO) are critical for proper cardiovascular system (CVS) function. It has also been demonstrated that E2 acts as an upstream effector in the nitric oxide (NO) pathway. Results from this study indicate that the use of a nitric oxide synthase (NOS) inhibitor (NOSI) which targets specifically neuronal NOS (nNOS or NOS1), proadifen hydrochloride, caused a significant depression of fish heart rates (HR) accompanied by increased arrhythmic behavior. However, none of these phenotypes were evident with either the inhibition of endothelial NOS (eNOS) or inducible NOS (iNOS) isoforms. These cardiac arrhythmias could also be mimicked by inhibition of E2 synthesis with the aromatase inhibitor (AI), 4-OH-A, in a manner similar to that of nNOSI. In both scenarios, by using an NO donor (DETA-NO) in either NO + nNOSI or E2 + AI co-treatments, fish could be significantly rescued from decreased HR and increased arrhythmias. However, the addition of an NOS inhibitor (L-NAME) to the E2 + AI co-treatment fish prevented the rescue of low heart rates and arrhythmias, which strongly implicates the NO pathway as a downstream E2 targeted molecule for the maintenance of healthy cardiomyocyte contractile conditions in the developing zebrafish. Cardiac arrhythmias could be mimicked by the S-nitrosylation pathway inhibitor DTT (1,4-dithiothreitol) but not by ODQ (1H-[1–3]oxadiazolo[4,3-a]quinoxalin-1-one), the inhibitor of the NO receptor molecule sGC in the cGMP-dependent pathway. In both the nNOSI and AI-induced arrhythmic conditions, 100% of the fish expressed the phenotype, but could be rapidly rescued with maximum survival by a washout with dantrolene, a ryanodine Ca2+ channel receptor blocker, compared to the time it took for rescue using a control salt solution. In addition, of the three NOS isoforms, eNOS was the one most implicated in the maintenance of an intact developing fish vascular system. In conclusion, results from

  8. The Relationship between Estrogen and Nitric Oxide in the Prevention of Cardiac and Vascular Anomalies in the Developing Zebrafish (Danio Rerio).

    PubMed

    Sykes, Benjamin G; Van Steyn, Peter M; Vignali, Jonathan D; Winalski, John; Lozier, Julie; Bell, Wade E; Turner, James E

    2016-10-26

    It has been known that both estrogen (E2) and nitric oxide (NO) are critical for proper cardiovascular system (CVS) function. It has also been demonstrated that E2 acts as an upstream effector in the nitric oxide (NO) pathway. Results from this study indicate that the use of a nitric oxide synthase (NOS) inhibitor (NOSI) which targets specifically neuronal NOS (nNOS or NOS1), proadifen hydrochloride, caused a significant depression of fish heart rates (HR) accompanied by increased arrhythmic behavior. However, none of these phenotypes were evident with either the inhibition of endothelial NOS (eNOS) or inducible NOS (iNOS) isoforms. These cardiac arrhythmias could also be mimicked by inhibition of E2 synthesis with the aromatase inhibitor (AI), 4-OH-A, in a manner similar to that of nNOSI. In both scenarios, by using an NO donor (DETA-NO) in either NO + nNOSI or E2 + AI co-treatments, fish could be significantly rescued from decreased HR and increased arrhythmias. However, the addition of an NOS inhibitor (L-NAME) to the E2 + AI co-treatment fish prevented the rescue of low heart rates and arrhythmias, which strongly implicates the NO pathway as a downstream E2 targeted molecule for the maintenance of healthy cardiomyocyte contractile conditions in the developing zebrafish. Cardiac arrhythmias could be mimicked by the S-nitrosylation pathway inhibitor DTT (1,4-dithiothreitol) but not by ODQ (1H-[1-3]oxadiazolo[4,3-a]quinoxalin-1-one), the inhibitor of the NO receptor molecule sGC in the cGMP-dependent pathway. In both the nNOSI and AI-induced arrhythmic conditions, 100% of the fish expressed the phenotype, but could be rapidly rescued with maximum survival by a washout with dantrolene, a ryanodine Ca(2+) channel receptor blocker, compared to the time it took for rescue using a control salt solution. In addition, of the three NOS isoforms, eNOS was the one most implicated in the maintenance of an intact developing fish vascular system. In conclusion, results from

  9. Removal of estrogens and estrogenicity through drinking water treatment.

    PubMed

    Schenck, Kathleen; Rosenblum, Laura; Wiese, Thomas E; Wymer, Larry; Dugan, Nicholas; Williams, Daniel; Mash, Heath; Merriman, Betty; Speth, Thomas

    2012-03-01

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drinking waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conventional drinking water treatment using a natural water. Bench-scale studies utilizing chlorine, alum coagulation, ferric chloride coagulation, and powdered activated carbon (PAC) were conducted using Ohio River water spiked with three estrogens, 17β-estradiol, 17α-ethynylestradiol, and estriol. Treatment of the estrogens with chlorine, either alone or with coagulant, resulted in approximately 98% reductions in the concentrations of the parent estrogens, accompanied by formation of by-products. The MVLN reporter gene and MCF-7 cell proliferation assays were used to characterize the estrogenic activity of the water before and after treatment. The observed estrogenic activities of the chlorinated samples showed that estrogenicity of the water was reduced commensurate with removal of the parent estrogen. Therefore, the estrogen chlorination by-products did not contribute appreciably to the estrogenic activity of the water. Coagulation alone did not result in significant removals of the estrogens. However, addition of PAC, at a typical drinking water plant dose, resulted in removals ranging from approximately 20 to 80%.

  10. Impact of Hemorheological and Endothelial Factors on Microcirculation

    NASA Astrophysics Data System (ADS)

    Turchetti, Vera; Boschi, Letizia; Donati, Giovanni; Trabalzini, Luca; Forconi, Sandro

    Previous studies showed that endothelial alterations caused by physical stress worsened the hemorheological parameters mainly in patients affected by ischemic vascular diseases: major vascular alterations have been found in patients with very high endothelial dysfunction indexes: these indexes are given by the various substances produced by the endothelium, but it is very difficult to have a value which clearly identifies the real state of the endothelial alteration. The function of the NO, an endogenous vasodilator whose synthesis is catalyzed by NOs, can be determined by the Citrulline/Arginine ratio, which represents the level of activity of the enzyme. A very good index of the endothelial dysfunction is asymmetric dimethylarginine (ADMA), a powerful endogenous inhibitor of NOs; in fact several studies have demonstrated a strong relationship between ischemic vascular disease and high levels of plasmatic ADMA. Our recent studies on heart failure and on ischemic cerebrovascular diseases evaluate endothelial dysfunctions and hemorheological parameters.

  11. Impact of hemorheological and endothelial factors on microcirculation.

    PubMed

    Turchetti, Vera; Boschi, Letizia; Donati, Giovanni; Trabalzini, Luca; Forconi, Sandro

    2006-01-01

    Previous studies showed that endothelial alterations caused by physical stress worsened the hemorheological parameters mainly in patients affected by ischemic vascular diseases: major vascular alterations have been found in patients with very high endothelial dysfunction indexes: these indexes are given by the various substances produced by the endothelium, but it is very difficult to have a value which clearly identifies the real state of the endothelial alteration. The function of the NO, an endogenous vasodilator whose synthesis is catalyzed by NOs, can be determined by the Citrulline/Arginine ratio, which represents the level of activity of the enzyme. A very good index of the endothelial dysfunction is asymmetric dimethylarginine (ADMA), a powerful endogenous inhibitor of NOs; in fact several studies have demonstrated a strong relationship between ischemic vascular disease and high levels of plasmatic ADMA. Our recent studies on heart failure and on ischemic cerebrovascular diseases evaluate endothelial dysfunctions and hemorheological parameters.

  12. Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase.

    PubMed

    Chalupsky, Karel; Cai, Hua

    2005-06-21

    Recent studies demonstrate that oxidative inactivation of tetrahydrobiopterin (H4B) may cause uncoupling of endothelial nitric oxide synthase (eNOS) to produce superoxide (O2*-). H4B was found recyclable from its oxidized form by dihydrofolate reductase (DHFR) in several cell types. Functionality of the endothelial DHFR, however, remains completely unknown. Here we present findings that specific inhibition of endothelial DHFR by RNA interference markedly reduced endothelial H4B and nitric oxide (NO.) bioavailability. Furthermore, angiotensin II (100 nmol/liter for 24 h) caused a H4B deficiency that was mediated by H2O2-dependent down-regulation of DHFR. This response was associated with a significant increase in endothelial O2*- production, which was abolished by eNOS inhibitor N-nitro-L-arginine-methyl ester or H2O2 scavenger polyethylene glycol-conjugated catalase, strongly suggesting H2O2-dependent eNOS uncoupling. Rapid and transient activation of endothelial NAD(P)H oxidases was responsible for the initial burst production of O2* (Rac1 inhibitor NSC 23766 but not an N-nitro-L-arginine-methyl ester-attenuated ESR O2*- signal at 30 min) in response to angiotensin II, preceding a second peak in O2*- production at 24 h that predominantly depended on uncoupled eNOS. Overexpression of DHFR restored NO. production and diminished eNOS production of O2*- in angiotensin II-stimulated cells. In conclusion, these data represent evidence that DHFR is critical for H4B and NO. bioavailability in the endothelium. Endothelial NAD(P)H oxidase-derived H2O2 down-regulates DHFR expression in response to angiotensin II, resulting in H4B deficiency and uncoupling of eNOS. This signaling cascade may represent a universal mechanism underlying eNOS dysfunction under pathophysiological conditions associated with oxidant stress.

  13. Chlorine Gas Exposure Causes Systemic Endothelial Dysfunction by Inhibiting Endothelial Nitric Oxide Synthase–Dependent Signaling

    PubMed Central

    Honavar, Jaideep; Samal, Andrey A.; Bradley, Kelley M.; Brandon, Angela; Balanay, Joann; Squadrito, Giuseppe L.; MohanKumar, Krishnan; Maheshwari, Akhil; Postlethwait, Edward M.; Matalon, Sadis; Patel, Rakesh P.

    2011-01-01

    Chlorine gas (Cl2) exposure during accidents or in the military setting results primarily in injury to the lungs. However, the potential for Cl2 exposure to promote injury to the systemic vasculature leading to compromised vascular function has not been studied. We hypothesized that Cl2 promotes extrapulmonary endothelial dysfunction characterized by a loss of endothelial nitric oxide synthase (eNOS)-derived signaling. Male Sprague Dawley rats were exposed to Cl2 for 30 minutes, and eNOS-dependent vasodilation of aorta as a function of Cl2 dose (0–400 ppm) and time after exposure (0–48 h) were determined. Exposure to Cl2 (250–400 ppm) significantly inhibited eNOS-dependent vasodilation (stimulated by acetycholine) at 24 to 48 hours after exposure without affecting constriction responses to phenylephrine or vasodilation responses to an NO donor, suggesting decreased NO formation. Consistent with this hypothesis, eNOS protein expression was significantly decreased (∼ 60%) in aorta isolated from Cl2–exposed versus air-exposed rats. Moreover, inducible nitric oxide synthase (iNOS) mRNA was up-regulated in circulating leukocytes and aorta isolated 24 hours after Cl2 exposure, suggesting stimulation of inflammation in the systemic vasculature. Despite decreased eNOS expression and activity, no changes in mean arterial blood pressure were observed. However, injection of 1400W, a selective inhibitor of iNOS, increased mean arterial blood pressure only in Cl2–exposed animals, suggesting that iNOS-derived NO compensates for decreased eNOS-derived NO. These results highlight the potential for Cl2 exposure to promote postexposure systemic endothelial dysfunction via disruption of vascular NO homeostasis mechanisms. PMID:21131444

  14. Inhibitor-κB kinase attenuates Hsp90-dependent endothelial nitric oxide synthase function in vascular endothelial cells

    PubMed Central

    Konopinski, Ryszard; Krishnan, Manickam; Roman, Linda; Bera, Alakesh; Hongying, Zheng; Habib, Samy L.; Mohan, Sumathy

    2015-01-01

    Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-β (IKKβ)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKβ on Hsp90. Interestingly, IKKβ binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKβ to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKβ. The pathophysiological relevance of the IKKβ-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2Akita in vivo model. Our study further defines the preferential involvement of α- vs. β-isoforms of Hsp90 in the IKKβ-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90β stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKβ within the cell system that regulates NO production, but they also confirm that the IKKβ-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes. PMID:25652452

  15. The dual role of iNOS in cancer☆

    PubMed Central

    Vanini, Frederica; Kashfi, Khosrow; Nath, Niharika

    2015-01-01

    Nitric oxide (NO) is one of the 10 smallest molecules found in nature. It is a simple gaseous free radical whose predominant functions is that of a messenger through cGMP. In mammals, NO is synthesized by the enzyme nitric oxide synthase (NOS) of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme that regulate neural and vascular function respectively. The third isoform (iNOS, NOS2), is calcium-independent and is inducible. In many tumors, iNOS expression is high, however, the role of iNOS during tumor development is very complex and quite perplexing, with both promoting and inhibiting actions having been described. This review will aim to summarize the dual actions of iNOS-derived NO showing that the microenvironment of the tumor is a contributing factor to these observations and ultimately to cellular outcomes. PMID:26335399

  16. Regulation of eNOS enzyme activity by posttranslational modification.

    PubMed

    Heiss, Elke H; Dirsch, Verena M

    2014-01-01

    The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, cooperativity and competition between the different posttranslational modifications will be elaborated with special emphasis on the susceptibility of eNOS to metabolic cues.

  17. Expression analysis of NOS family and HSP genes during thermal stress in goat (Capra hircus).

    PubMed

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher (P < 0.05) during peak summer, and iNOS and eNOS expressions were also observed to be significantly higher (P < 0.05) during peak winter season as compared with moderate season. The iNOS, eNOS, cNOS, HSP70, and HSP90 were mainly localized in plasma membrane and cytoplasm of PBMCs. To conclude, data generated in the present study indicate the possible involvement of the NOS family genes in amelioration of thermal stress so as to maintain cellular integrity and homeostasis in goats.

  18. Expression analysis of NOS family and HSP genes during thermal stress in goat ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K.; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher ( P < 0.05) during peak summer, and iNOS and eNOS expressions were also observed to be significantly higher ( P < 0.05) during peak winter season as compared with moderate season. The iNOS, eNOS, cNOS, HSP70, and HSP90 were mainly localized in plasma membrane and cytoplasm of PBMCs. To conclude, data generated in the present study indicate the possible involvement of the NOS family genes in amelioration of thermal stress so as to maintain cellular integrity and homeostasis in goats.

  19. Effect of estrogen on the blood supply of pituitary autografts in rats

    PubMed Central

    Lombardero, Matilde; Quintanar-Stephano, Andres; Vidal, Sergio; Horvath, Eva; Kovacs, Kalman; Lloyd, Ricardo V; Scheithauer, Bernd W

    2009-01-01

    Estrogens are known to cause pituitary enlargement and lactotroph proliferation. They also modulate pituitary angiogenesis and induce tumor formation. Pituitary grafts, due to the loss of hypothalamic dopamine, also show lactotroph hyperplasia. We investigated the role of estrogen on rat pituitary autograft vascularization by light and transmission electron microscopy, and assessed prolactin (PRL) blood levels, microvessel density (MVD) and cell proliferation using the BrdU labeling index. All adenohypophysial cell types were identified by immunohistochemistry (streptavidin-biotin-peroxidase complex method). The proangiogenic factors, vascular endothelial growth factor (VEGF), its receptor Flk-1, and hypoxia inducible factor-1α (HIF-1α) were similarly demonstrated. The prevalence of lactotrophs, as well as more intense staining for VEGF, Flk-1 and HIF-1α, was noted in those grafts exposed to estrogen, mainly in the area surrounding the central necrotic core. Immunostaining showed Flk-1 expression increased in endothelial cells of the estrogen-exposed grafts as compared with those unexposed. In contrast to the grafts not exposed to estrogen, in the estrogen-exposed grafts, only fenestrated endothelium could be demonstrated, suggesting that estrogen induces fenestration of newly formed capillaries. There was an increase in blood PRL levels in the estrogen-treated groups as compared with controls. Both MVD and BrdU labeling indices were higher in grafts exposed to estrogen, especially after 4 weeks. Our results suggest that estrogen administration not only enhances the expression of proangiogenic factors in the pituitary grafts but also induces their expression at earlier stages, leading to rapid neoformation of purely fenestrated capillaries. PMID:19207985

  20. Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells

    PubMed Central

    da Silva, Cleide Gonçalves; Specht, Anke; Wegiel, Barbara; Ferran, Christiane; Kaczmarek, Elzbieta

    2009-01-01

    Background Decreased endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) production are critical contributors to endothelial dysfunction and vascular complications observed in many diseases, including diabetes mellitus. Extracellular nucleotides activate eNOS and increase NO generation, however the mechanism of this observation is not fully clarified. Methods and Results To elucidate the signaling pathway(s) leading to nucleotide-mediated eNOS phosphorylation at Ser-1177, human umbilical vein endothelial cells (EC) were treated with several nucleotides including, ATP, UTP, and ADP in the presence or absence of selective inhibitors. These experiments identified P2Y1, P2Y2 and possibly P2Y4 as the purinergic receptors involved in eNOS phosphorylation, and demonstrated that this process was adenosine-independent. Nucleotide-induced eNOS phosphorylation and activity were inhibited by BAPTA-AM (an intracellular free calcium chelator), rottlerin (a protein kinase C (PKC) delta inhibitor) and PKC delta siRNA. In contrast, blockade of AMP-activated protein kinase (AMPK), calcium/calmodulin-dependent kinase (CaMK) II, CaMK kinase (CaMKK), serine/threonine protein kinase B (Akt), protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK) and p38 mitogen-activated protein kinase (MAPK) did not affect nucleotide-mediated eNOS phosphorylation. Conclusions The present study indicates that extracellular nucleotide-mediated eNOS phosphorylation is calcium and PKC delta dependent. This newly identified signaling pathway opens new therapeutic avenues for the treatment of endothelial dysfunction. PMID:19188511

  1. Removal of Estrogens and Estrogenicity through Drinking Water Treatment

    EPA Science Inventory

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drining waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conven...

  2. Removal of Estrogens and Estrogenicity through Drinking Water Treatment

    EPA Science Inventory

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drining waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conven...

  3. Suppressive Role of PPARγ-Regulated Endothelial Nitric Oxide Synthase in Adipocyte Lipolysis.

    PubMed

    Yamada, Yoko; Eto, Masato; Ito, Yuki; Mochizuki, Satoru; Son, Bo-Kyung; Ogawa, Sumito; Iijima, Katsuya; Kaneki, Masao; Kozaki, Koichi; Toba, Kenji; Akishita, Masahiro; Ouchi, Yasuyoshi

    2015-01-01

    Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/-) mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear. The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD) was able to induce non-alcoholic steatohepatitis (NASH) in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes. eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.

  4. Estrogen supplements in menopause.

    PubMed

    Booher, D L

    1990-01-01

    The number of women aged 65 and older is expected to double by the year 2000, increasing the need for effective management of symptoms related to menopause. Contemporary management of menopause addresses the continuum of events associated with the effects of estrogen deprivation on quality and duration of life, including neuroendocrine changes, urogenital atrophy, sexual dysfunction, skin and hair changes, osteoporosis, and cardiovascular disease. The risks and benefits of management strategies, including hormone replacement therapy, must be weighted carefully by both physician and patient. The use of estrogens and progestins, alterative compounds, dosages, routes of administration, and their advantages and disadvantages must be analyzed.

  5. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    PubMed

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  6. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells.

    PubMed

    Min, Jiho; Jin, Yoon-Mi; Moon, Je-Sung; Sung, Min-Sun; Jo, Sangmee Ahn; Jo, Inho

    2006-06-01

    Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression.

  7. Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection.

    PubMed

    Musicki, Biljana; Palese, Michael A; Crone, Julie K; Burnett, Arthur L

    2004-02-01

    The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS(-/-)) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS(-/-) mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (10(9) particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS(-/-) mice and only partially recovered erectile function in castrated eNOS(-/-) mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation.

  8. Estrogen, but not progesterone, induces the activity of nitric oxide synthase within the medial preoptic area in female rats.

    PubMed

    Lima, Fernanda Barbosa; Ota, Fábio Honda; Cabral, Fernanda Jankur; Del Bianco Borges, Bruno; Franci, Celso Rodrigues

    2014-08-26

    The control of gonadotropin-releasing hormone (GnRH) secretion depends on the action of ovarian steroids and several substances, including nitric oxide (NO). NO in the medial preoptic area (MPOA) stimulates the proestrus surge of luteinizing hormone (LH). We studied the effect of estrogen (Tamoxifen-TMX) and progesterone (RU-486) antagonists on mRNA and protein expression of NO synthase (NOS), the enzyme that produces NO, as well as its activity within MPOA. Female rats received s.c. injections of TMX (3mg/animal) on first and second days of the estrous cycle (9 am), RU-486 (2mg/animal) on first, second, (8 am and 5 pm) and third days of the estrous cycle (8 am) or oil (controls) and were killed on the third day (5 pm). Real time-PCR and western blotting were performed to study NOS mRNA and protein expressions. The NOS activity was indirectly assessed by measuring the conversion from [(14)C]-L-arginine into [(14)C]-L-citrulline. TMX significantly decreased neuronal NOS (nNOS) mRNA expression (90%), and the activity of NOS, but did not alter nNOS protein expression. Also, TMX significantly decreased LH, FSH, estrogen and progesterone plasma levels. RU-486 nor affected NOS mRNA and protein expressions neither the NOS activity in the MPOA, but reduced FSH levels. The nitrergic system in the MPOA can be stimulated by estrogen whereas TMX decreased NOS activity and mRNA expression. In conclusion, the involvement of the nitrergic system in the MPOA to induce the surge of LH on proestrus depends on the estrogen action to stimulate the mRNA-nNOS expression and the activity of nNOS but it does not seem to depend on progesterone action.

  9. Insulin transcriptionally regulates argininosuccinate synthase to maintain vascular endothelial function.

    PubMed

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Meininger, Cynthia J; Eichler, Duane C

    2012-04-27

    Diminished vascular endothelial cell nitric oxide (NO) production is a major factor in the complex pathogenesis of diabetes mellitus. In this report, we demonstrate that insulin not only maintains endothelial NO production through regulation of endothelial nitric oxide synthase (eNOS), but also via the regulation of argininosuccinate synthase (AS), which is the rate-limiting step of the citrulline-NO cycle. Using serum starved, cultured vascular endothelial cells, we show that insulin up-regulates AS and eNOS transcription to support NO production. Moreover, we show that insulin enhances NO production in response to physiological cues such as bradykinin. To translate these results to an in vivo model, we show that AS transcription is diminished in coronary endothelial cells isolated from rats with streptozotocin (STZ)-induced diabetes. Importantly, we demonstrate restoration of AS and eNOS transcription by insulin treatment in STZ-diabetic rats, and show that this restoration was accompanied by improved endothelial function as measured by endothelium-dependent vasorelaxation. Overall, this report demonstrates, both in cell culture and whole animal studies, that insulin maintains vascular function, in part, through the maintenance of AS transcription, thus ensuring an adequate supply of arginine to maintain vascular endothelial response to physiological cues. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Eldecalcitol prevents endothelial dysfunction in postmenopausal osteoporosis model rats.

    PubMed

    Serizawa, Kenichi; Yogo, Kenji; Tashiro, Yoshihito; Takeda, Satoshi; Kawasaki, Ryohei; Aizawa, Ken; Endo, Koichi

    2016-02-01

    Postmenopausal women have high incidence of cardiovascular events as estrogen deficiency can cause endothelial dysfunction. Vitamin D is reported to be beneficial on endothelial function, but it remains controversial whether vitamin D is effective for endothelial dysfunction under the treatment for osteoporosis in postmenopausal women. The aim of this study was to evaluate the endothelial protective effect of eldecalcitol (ELD) in ovariectomized (OVX) rats. ELD (20  ng/kg) was orally administrated five times a week for 4 weeks from 1 day after surgery. After that, flow-mediated dilation (FMD) as an indicator of endothelial function was measured by high-resolution ultrasound in the femoral artery of living rats. ELD ameliorated the reduction of FMD in OVX rats. ELD inhibited the increase in NOX4, nitrotyrosine, and p65 and the decrease in dimer/monomer ratio of nitric oxide synthase in OVX rat femoral arteries. ELD also prevented the decrease in peroxisome proliferator-activated receptor gamma (PPARγ) in femoral arteries and cultured endothelial cells. Although PPARγ is known to inhibit osteoblastogenesis, ELD understandably increased bone mineral density of OVX rats without increase in PPARγ in bone marrow. These results suggest that ELD prevented the deterioration of endothelial function under condition of preventing bone loss in OVX rats. This endothelial protective effect of ELD might be exerted through improvement of endothelial nitric oxide synthase uncoupling, which is mediated by an antioxidative effect through normalization of vascular PPARγ/NF-κB signaling.

  11. eNOS Deficiency Predisposes Podocytes to Injury in Diabetes

    PubMed Central

    Yuen, Darren A.; Stead, Bailey E.; Zhang, Yanling; White, Kathryn E.; Kabir, M. Golam; Thai, Kerri; Advani, Suzanne L.; Connelly, Kim A.; Takano, Tomoko; Zhu, Lei; Cox, Alison J.; Kelly, Darren J.; Gibson, Ian W.; Takahashi, Takamune; Harris, Raymond C.

    2012-01-01

    Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS−/− mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS−/− mice, even though it inhibited glomerular capillary enlargement in both. In eNOS−/− mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS−/− mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS−/− glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes. PMID:22997257

  12. Alcohol and Maternal Uterine Vascular Adaptations during Pregnancy – Part I: Effects of Chronic In Vitro Binge-like Alcohol on Uterine Endothelial Nitric Oxide System and Function

    PubMed Central

    Ramadoss, Jayanth; Jobe, Sheikh O.; Magness, Ronald R.

    2014-01-01

    Background Pregnancy-induced utero-placental growth, angiogenic remodeling, and enhanced vasodilation are all partly regulated by estradiol-17β-mediated activation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. However, very little is known about the effects of alcohol on these maternal utero-placental vascular adaptations during pregnancy and its potential role in the pathogenesis of Fetal Alcohol Spectrum Disorders (FASD). In this study, we hypothesized that in vitro chronic binge-like alcohol will decrease uterine arterial endothelial eNOS expression and alter its multi-site phosphorylation activity state via disruption of AKT signaling. To study the direct effects of alcohol on uterine vascular adaptations, we further investigated the effects of alcohol on estradiol-17β-induced uterine angiogenesis in vitro. Methods Uterine artery endothelial cells were isolated from pregnant ewes (gestational day 120-130; term = 147), Fluorescence Activated Cell sorted, validated, and maintained in culture to passage 4. To mimic maternal binge drinking patterns, cells were cultured in the absence or presence of a lower (LD) or higher dose (HD) of alcohol in a compensating sealed humidified chamber system equilibrated with aqueous alcohol for 3 h on 3 consecutive days. Immunoblotting was performed to assess expression of NO system-associated proteins and eNOS multi-site phosphorylation. Following this treatment paradigm, control and binge alcohol treated cells were passaged, grown for two days, and then treated with increasing concentrations of estradiol-17β (0.1, 1, 10, 100 nM) in the absence or presence of LD or HD alcohol to evaluate estradiol-17β-induced angiogenesis index using BrdU Proliferation Assay. Results LD and HD binge-like alcohol decreased uterine arterial eNOS expression (P=0.009). eNOS multi-site phosphorylation activation state was altered: P635eNOS was decreased (P=0.017), P1177 eNOS was not altered, and P495 eNOS exhibited

  13. [Endothelial cell apoptosis in erectile dysfunction].

    PubMed

    Jiang, Rui

    2012-10-01

    Erectile dysfunction (ED) is one of the most common male diseases, which seriously affects the patient's quality of life. The risk factors of ED include aging, diabetes, hypertension, hyperlipidemia, and unhealthy lifestyle, and its exact mechanism remains unclear. The apoptosis of endothelial cells in the corpus cavernosum penis may reduce NOS activity, block NO synthesis, and affect penile erection, and the mechanisms of their apoptosis vary with different causes of ED. This article updates the relationship between the apoptosis of endothelial cells and the development of ED.

  14. Menopause, estrogens and frailty.

    PubMed

    Nedergaard, Anders; Henriksen, Kim; Karsdal, Morten Asser; Christiansen, Claus

    2013-05-01

    The controversy surrounding the results from the Women's Health Initiative (WHI) trials published a decade ago caused a significant decline in the use of menopausal hormone replacement therapy. However, these results have been vehemently contested and several lines of evidence suggest that in perimenopausal and non-obese women, estrogen therapy may indeed be of benefit. There is ample proof that menopause causes a loss of musculoskeletal tissue mass and quality, thereby causing a loss of health and quality of life. There is also solid evidence that hormone replacement therapy in itself prevents most of these effects in connective tissue in itself. Besides the independent, direct effects on the musculoskeletal tissues, estrogen deficiency also reduces the ability to adequately respond and adapt to external mechanical and metabolic stressors, e.g. exercise, which are otherwise the main stimuli that should maintain musculoskeletal integrity and metabolic function. Thus, normophysiological estrogen levels appear to exert a permissive effect on musculoskeletal adaptations to loading, thereby likely improving the outcome of rehabilitation following critical illness, musculoskeletal trauma or orthopedic surgical therapy. These effects add to the evidence supporting the use of estrogen therapy, particularly accelerated gain of functional capacity and independence following musculoskeletal disuse.

  15. Estrogens, Neuroinflammation, and Neurodegeneration

    PubMed Central

    Villa, Alessandro; Vegeto, Elisabetta; Poletti, Angelo

    2016-01-01

    Inflammatory activation of microglia is a hallmark of several disorders of the central nervous system. In addition to protecting the brain against inflammatory insults, microglia are neuroprotective and play a significant role in maintaining neuronal connectivity, but the prolongation of an inflammatory status may limit the beneficial functions of these immune cells. The finding that estrogen receptors are present in monocyte-derived cells and that estrogens prevent and control the inflammatory response raise the question of the role that this sex steroid plays in the manifestation and progression of pathologies that have a clear sex difference in prevalence, such as multiple sclerosis, Parkinson's disease, and Alzheimer's disease. The present review aims to provide a critical review of the current literature on the actions of estrogen in microglia and on the involvement of estrogen receptors in the manifestation of selected neurological disorders. This current understanding highlights a research area that should be expanded to identify appropriate replacement therapies to slow the progression of such diseases. PMID:27196727

  16. Estrogen, inflammation, and platelet phenotype.

    PubMed

    Miller, Virginia M; Jayachandran, Muthuvel; Hashimoto, Kazumori; Heit, John A; Owen, Whyte G

    2008-01-01

    Although exogenous estrogenic therapies increase the risk of thrombosis, the effects of estrogen on formed elements of blood are uncertain. This article examines the genomic and nongenomic actions of estrogen on platelet phenotype that may contribute to increased thrombotic risk. To determine aggregation, secretion, protein expression, and thrombin generation, platelets were collected from experimental animals of varying hormonal status and from women enrolled in the Kronos Early Estrogen Prevention Study. Estrogen receptor beta predominates in circulating platelets. Estrogenic treatment in ovariectomized animals decreased platelet aggregation and adenosine triphosphate (ATP) secretion. However, acute exposure to 17beta-estradiol did not reverse decreases in platelet ATP secretion invoked by lipopolysaccharide. Thrombin generation was positively correlated to the number of circulating microvesicles expressing phosphatidylserine. Assessing the effect of estrogen treatments on blood platelets may lead to new ways of identifying women at risk for adverse thrombotic events with such therapies.

  17. Drug targeting of estrogen receptor signaling in the cardiovascular system: preclinical and clinical studies.

    PubMed

    Sanz-González, Silvia M; Cano, Antonio; Valverde, M A; Hermenegildo, Carlos; Andrés, Vicente

    2004-04-01

    Atherosclerosis and associated coronary heart disease events have lower prevalence in women than in men, especially during young adult years. Although multiple lines of evidence suggest that estrogens contribute to this difference, the efficacy of hormone replacement therapy for the prevention of cardiovascular disease in postmenopausal women is controversial. The protective action of estrogen in the cardiovascular system appears to be mediated indirectly by an effect on serum lipoprotein and triglyceride profiles and on the expression of coagulant and fibrinolytic proteins, and by a direct effect on the vessel wall itself. Estrogen has both rapid effects involving alteration of membrane ionic permeability and activation of membrane-bound enzymes and increases in endothelial cell nitric oxide synthase activity, as well as longer-term effects on gene expression that are mediated, at least in part, by the ligand-activated transcription factors, estrogen receptor alpha and beta. Compounds with pure antiestrogenic activity and selective estrogen receptor modulators that regulate estrogen receptor function in a tissue-specific manner have been developed in an attempt to achieve the cardioprotective effects of estrogens while minimizing the undesirable risks associated with hormone replacement therapy (e.g., endometrial and breast cancer). In this review, we will discuss recent developments on the mechanisms of estrogen action in the cardiovascular system. The results of clinical trials testing the long-term efficacy of hormone replacement therapy for the treatment of cardiovascular disease will also be discussed.

  18. Impact of Lifestyle Intervention on HDL-Induced eNOS Activation and Cholesterol Efflux Capacity in Obese Adolescent

    PubMed Central

    Wesnigk, Jenny; De Guchtenaere, Ann; Fischer, Tina; Schuler, Gerhard; Vrints, Christiaan J.

    2016-01-01

    Background. Endothelial dysfunction occurs in obese children and adolescent and is regarded as a key step in the development of atherosclerosis. Important components for the development of endothelial dysfunction are reduced activity of endothelial nitric oxide synthase (eNOS) and an increase in cholesterol deposition in the vessel wall, due to reduced reverse cholesterol transport (RCT) activity. High density lipoprotein (HDL) exhibits antiatherosclerotic properties including modulation of eNOS activity and cholesterol efflux capacity. Lifestyle intervention programs can modify endothelial dysfunction in obese adolescents, but their impact on HDL-mediated eNOS activation and RCT is unknown so far. Methods. Obese adolescents (15 ± 1 years, BMI > 35 kg/m2) where randomized either to an intervention group (IG, n = 8; restricted diet and exercise) or to a usual care group (UC, n = 8). At the beginning and after 10 months of treatment HDL-mediated eNOS phosphorylation and cholesterol efflux capacity were evaluated. Results. Ten months of treatment resulted in a substantial weight loss (−31%), an improvement of endothelial function, and an increase in HDL-mediated eNOS-Ser1177 phosphorylation and RCT. A correlation between change in eNOS-Ser1177 phosphorylation or RCT and change in endothelial function was noted. Conclusion. A structured lifestyle intervention program improves antiatherosclerotic HDL functions, thereby positively influencing endothelial function. PMID:27965912

  19. Expression and regulation of endothelial nitric oxide synthase by vascular endothelial growth factor in ECV 304 cells.

    PubMed Central

    Park, Jong Seon; Hong, Gu Ru; Baek, Suk Whan; Shin, Dong Gu; Kim, Young Jo; Shim, Bong Sup

    2002-01-01

    Nitric oxide (NO) seems to play a pivotal role in the vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation. This study was designed to investigate the role and intracellular signal pathway of endothelial nitric oxide synthase (eNOS) activation induced by VEGF. ECV 304 cells were treated with VEGF(165) and then cell proliferation, eNOS protein and mRNA expression levels were analyzed to elucidate the functional role of eNOS in cell proliferation induced by VEGF. After exposure of cells to VEGF(165), eNOS activity and cell growth were increased by approximately two-fold in the VEGF(165) -treated cells compared to the untreated cells. In addition, VEGF stimulated eNOS expression at both the mRNA and protein levels in a dose-dependent manner. Phosphatidylinositol-3 kinase (PI-3K) inhibitors were used to assess PI-3K involvement in eNOS regulation. LY294002 was found to attenuate VEGF-stimulated eNOS expression. Wortmannin was not as effective as LY294002, but the reduction effect was detectable. Cells activated by VEGF showed increased ERK1/2 levels. Moreover, the VEGF-induced eNOS expression was reduced by the PD98059, MAPK pathway inhibitor. This suggests that eNOS expression might be regulated by PI-3K and the ERK1/2 signaling pathway. In conclusion, VEGF(165) induces ECV 304 cell proliferation via the NO produced by eNOS. In addition, eNOS may be regulated by the PI-3K or mitogen-activated protein kinase pathway. PMID:11961297

  20. eNOS Protects from Atherosclerosis Despite Relevant Superoxide Production by the Enzyme in apoE−/− Mice

    PubMed Central

    Ponnuswamy, Padmapriya; Schröttle, Angelika; Ostermeier, Eva; Grüner, Sabine; Huang, Paul L.; Ertl, Georg; Hoffmann, Ulrich; Nieswandt, Bernhard; Kuhlencordt, Peter J.

    2012-01-01

    Background All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial- (L/E) and platelet/endothelial- (P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. Principal Findings Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE−/−/eNOS−/−), while P/E-interactions did not differ, compared to apoE−/−. eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE−/− vessels. Conclusion Overt plaque formation, increased vascular inflammation and L/E- interactions are associated with significant reduction of superoxide production in apoE−/−/eNOS−/− vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE−/− atherosclerosis but does not negate the enzyme's strong protective effects. PMID:22291917

  1. Estrogens and development of pulmonary hypertension - Interaction of estradiol metabolism and pulmonary vascular disease

    PubMed Central

    Tofovic, Stevan P.

    2010-01-01

    Severe pulmonary arterial hypertension (PAH) is characterized by clustered proliferation of endothelial cells in the lumina of small size pulmonary arteries resulting in concentric obliteration of the lumina and formation of complex vascular structures known as plexiform lesions. This debilitating disease occurs more frequently in women, yet both animal studies in classical models of PAH and limited clinical data suggest protective effects of estrogens: the estrogen paradox in pulmonary hypertension. Little is known about the role of estrogens in PAH, but one line of evidence strongly suggests that the vascular protective effects of 17β-estradiol (estradiol; E2) are mediated largely by its downstream metabolites. Estradiol is metabolized to 2-hydroxyestradiol (2HE) by CYP1A1/CYP1B1, and 2HE is converted to 2-methoxyestradiol (2ME) by catechol-O-methyl transferase. 2ME is extensively metabolized to 2-methoxyestrone, a metabolite that lacks biologic activity but which may be converted back to 2ME. 2ME has no estrogenic activity and its effects are mediated by estrogen receptors-independent mechanism(s). Notably, in systemic and pulmonary vascular endothelial cells, smooth muscle cells, and fibroblasts 2ME exerts stronger anti-mitotic effects than E2 itself. E2 and 2ME, despite having similar effects on other cardiovascular cells, have opposing effects on endothelial cells; that is, in endothelial cells, E2 is pro-mitogenic, pro-angiogenic and anti- apoptotic, whereas 2ME is antimitogenic, anti-angiogenic and pro-apoptotic. This may have significant ramifications in severe PAH that involves uncontrolled proliferation of monoclonal, apoptosis resistant endothelial cells. Based on its cellular effects, 2ME should be expected to attenuate the progression of disease and provide protection in severe PAH. In contrast, E2, due to its mitogenic, angiogenic, and anti-apoptotic effects (otherwise desirable in normal, quiescent endothelial cells), may even adversely affect

  2. Activation of AP-1 Transcription Factors Differentiates FGF2 and Vascular Endothelial Growth Factor Regulation of Endothelial Nitric-oxide Synthase Expression in Placental Artery Endothelial Cells*

    PubMed Central

    Mata-Greenwood, Eugenia; Liao, Wu-xiang; Wang, Wen; Zheng, Jing; Chen, Dong-bao

    2010-01-01

    FGF2 (fibroblast growth factor 2), but not vascular endothelial growth factor (VEGF), stimulates sustained activation of ERK2/1 for endothelial NOS3 (nitric-oxide synthase 3) protein expression in ovine fetoplacental artery endothelial cells (oFPAEC). We deciphered herein the downstream signaling of ERK2/1 responsible for NOS3 expression by FGF2 in oFPAEC. FGF2, but not VEGF, increased NOS3 mRNA levels without altering its degradation. FGF2, but not VEGF, trans-activated sheep NOS3 promoter, and this was dependent on ERK2/1 activation. FGF2 did not trans-activate NOS3 promoters with deletions upstream of the consensus AP-1 site (TGAGTC A, −678 to −685). Trans-activation of wild-type NOS3 promoter by FGF2 was significantly inhibited when either the AP-1 or the cAMP-response element (CRE)-like sequence (TGCGTCA, −752 to −758) was mutated and was completely blocked when both were mutated. EMSA analyses showed that FGF2, but not VEGF, stimulated AP-1 and CRE DNA-protein complexes primarily composed of JunB and Fra1. Chromatin immunoprecipitation assays confirmed JunB/Fra1 binding to NOS3 promoter AP-1 and CRE elements in intact cells. FGF2, but not VEGF, stimulated JunB and Fra1 expressions; all preceded NOS3 up-regulation and were inhibited by PD98059. Down-regulation of JunB or Fra-1, but not c-Jun, blocked FGF2 stimulation of NOS3 expression and NO production. AP-1 inhibition suppressed FGF2 stimulation of NOS3 expression in human umbilical vein EC and uterine artery endothelial cells. Thus, FGF2 induction of NOS3 expression is mainly mediated by AP-1-dependent transcription involving JunB and Fra1 up-regulation via sustained ERK2/1 activation in endothelial cells. PMID:20371606

  3. Tipping off endothelial tubes: nitric oxide drives tip cells.

    PubMed

    Priya, Mani Krishna; Sahu, Giriraj; Soto-Pantoja, David R; Goldy, Naga; Sundaresan, Abaya Meenakshi; Jadhav, Vivek; Barathkumar, T R; Saran, Uttara; Jaffar Ali, B M; Roberts, David D; Bera, Amal Kanti; Chatterjee, Suvro

    2015-04-01

    Angiogenesis, the formation of new blood vessels from pre-existing vessels, is a complex process that warrants cell migration, proliferation, tip cell formation, ring formation, and finally tube formation. Angiogenesis is initiated by a single leader endothelial cell called "tip cell," followed by vessel elongation by "stalk cells." Tip cells are characterized by their long filopodial extensions and expression of vascular endothelial growth factor receptor-2 and endocan. Although nitric oxide (NO) is an important modulator of angiogenesis, its role in angiogenic sprouting and specifically in tip cell formation is poorly understood. The present study tested the role of endothelial nitric oxide synthase (eNOS)/NO/cyclic GMP (cGMP) signaling in tip cell formation. In primary endothelial cell culture, about 40% of the tip cells showed characteristic sub-cellular localization of eNOS toward the anterior progressive end of the tip cells, and eNOS became phosphorylated at serine 1177. Loss of eNOS suppressed tip cell formation. Live cell NO imaging demonstrated approximately 35% more NO in tip cells compared with stalk cells. Tip cells showed increased level of cGMP relative to stalk cells. Further, the dissection of NO downstream signaling using pharmacological inhibitors and inducers indicates that NO uses the sGC/cGMP pathway in tip cells to lead angiogenesis. Taken together, the present study confirms that eNOS/NO/cGMP signaling defines the direction of tip cell migration and thereby initiates new blood vessel formation.

  4. Estrogenicity of Medicinal Botanicals.

    DTIC Science & Technology

    1998-06-01

    Medicinal botanicals PLANT EXTRACTS have been used for centuries to relieve various gynecological symptoms, and are of increasing interest to those...seeking alternative health care and self-treatment. However, women who have or are at risk for breast cancer pose a particular problem when using such...hops, vitex and cohosh. These studies verify that certain medicinal botanicals demonstrate measurable and significant estrogenic activities in

  5. A Scallop Nitric Oxide Synthase (NOS) with Structure Similar to Neuronal NOS and Its Involvement in the Immune Defense

    PubMed Central

    Jiang, Qiufen; Zhou, Zhi; Wang, Leilei; Wang, Lingling; Yue, Feng; Wang, Jingjing; Song, Linsheng

    2013-01-01

    Background Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. Methodology In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, β-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and β-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot-1, and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot-1, respectively, P < 0.01). Conclusions These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α. PMID:23922688

  6. Inducible and endothelial nitric oxide synthase expression during development of transplant arteriosclerosis in rat aortic grafts.

    PubMed Central

    Akyürek, L. M.; Fellström, B. C.; Yan, Z. Q.; Hansson, G. K.; Funa, K.; Larsson, E.

    1996-01-01

    In the vascular system, distinct isoforms of nitric oxide synthase (NOS) generate nitric oxide (NO), which acts as a biological messenger. Its role in the development of transplant arteriosclerosis (TA) is still unclear. To investigate whether NO is involved in TA, we studied the expression of NOS isoforms, inducible NOS (iNOS) and endothelial NOS (eNOS), by immunohistochemistry and in situ hybridization during the first two post-transplantation months and their relation with cold ischemia (1 to 24 hours) and reperfusion injury using an aortic transplantation model in the rat. We found an increased iNOS expression in the intima and adventitia and a decreased expression in the media, whereas eNOS expression was not significantly altered during the development of TA. Co-localization studies suggested that iNOS-positive cells were vascular smooth muscle cells, monocyte-derived macrophages, and endothelial cells. Prolonged ischemic storage time resulted in an increase in eNOS expression in the neointima. In situ hybridization showed iNOS mRNA expression by vascular cells in the neointima and media. NO produced by iNOS and eNOS may be involved, at least in part, in the pathogenesis of TA in aortic grafts. Additional studies are needed to confirm the modulatory mechanism of NO during the development of TA. Images Figure 3 Figure 4 Figure 6 PMID:8952533

  7. Islet Endothelial Cells Derived From Mouse Embryonic Stem Cells.

    PubMed

    Jain, Neha; Lee, Eun Jung

    2016-01-01

    The islet endothelium comprises a specialized population of islet endothelial cells (IECs) expressing unique markers such as nephrin and α-1 antitrypsin (AAT) that are not found in endothelial cells in surrounding tissues. However, due to difficulties in isolating and maintaining a pure population of these cells, the information on these islet-specific cells is currently very limited. Interestingly, we have identified a large subpopulation of endothelial cells exhibiting IEC phenotype, while deriving insulin-producing cells from mouse embryonic stem cells (mESCs). These cells were identified by the uptake of low-density lipoprotein (LDL) and were successfully isolated and subsequently expanded in endothelial cell culture medium. Further analysis demonstrated that the mouse embryonic stem cell-derived endothelial cells (mESC-ECs) not only express classical endothelial markers, such as platelet endothelial cell adhesion molecule (PECAM1), thrombomodulin, intercellular adhesion molecule-1 (ICAM-1), and endothelial nitric oxide synthase (eNOS) but also IEC-specific markers such as nephrin and AAT. Moreover, mESC-ECs secrete basement membrane proteins such as collagen type IV, laminin, and fibronectin in culture and form tubular networks on a layer of Matrigel, demonstrating angiogenic activity. Further, mESC-ECs not only express eNOS, but also its eNOS expression is glucose dependent, which is another characteristic phenotype of IECs. With the ability to obtain highly purified IECs derived from pluripotent stem cells, it is possible to closely examine the function of these cells and their interaction with pancreatic β-cells during development and maturation in vitro. Further characterization of tissue-specific endothelial cell properties may enhance our ability to formulate new therapeutic angiogenic approaches for diabetes.

  8. Regulation of eNOS-derived superoxide by endogenous methylarginines.

    PubMed

    Druhan, Lawrence J; Forbes, Scott P; Pope, Arthur J; Chen, Chun-An; Zweier, Jay L; Cardounel, Arturo J

    2008-07-08

    The endogenous methylarginines, asymmetric dimethylarginine (ADMA) and N (G)-monomethyl- l-arginine (L-NMMA) regulate nitric oxide (NO) production from endothelial NO synthase (eNOS). Under conditions of tetrahydrobiopterin (BH 4) depletion eNOS also generates (*)O 2 (-); however, the effects of methylarginines on eNOS-derived (*)O 2 (-) generation are poorly understood. Therefore, using electron paramagnetic resonance spin trapping techniques we measured the dose-dependent effects of ADMA and L-NMMA on (*)O 2 (-) production from eNOS under conditions of BH 4 depletion. In the absence of BH 4, ADMA dose-dependently increased NOS-derived (*)O 2 (-) generation, with a maximal increase of 151% at 100 microM ADMA. L-NMMA also dose-dependently increased NOS-derived (*)O 2 (-), but to a lesser extent, demonstrating a 102% increase at 100 microM L-NMMA. Moreover, the native substrate l-arginine also increased eNOS-derived (*)O 2 (-), exhibiting a similar degree of enhancement as that observed with ADMA. Measurements of NADPH consumption from eNOS demonstrated that binding of either l-arginine or methylarginines increased the rate of NADPH oxidation. Spectrophotometric studies suggest, just as for l-arginine and L-NMMA, the binding of ADMA shifts the eNOS heme to the high-spin state, indicative of a more positive heme redox potential, enabling enhanced electron transfer from the reductase to the oxygenase site. These results demonstrate that the methylarginines can profoundly shift the balance of NO and (*)O 2 (-) generation from eNOS. These observations have important implications with regard to the therapeutic use of l-arginine and the methylarginine-NOS inhibitors in the treatment of disease.

  9. Relationships between caveolae and eNOS: everything in proximity and the proximity of everything.

    PubMed

    Goligorsky, Michael S; Li, Hong; Brodsky, Sergey; Chen, Jun

    2002-07-01

    Caveolae, flask-shaped invaginations of the plasma membrane occupying up to 30% of cell surface in capillaries, represent a predominant location of endothelial nitric oxide synthase (eNOS) in endothelial cells. The caveolar coat protein caveolin forms high-molecular-weight, Triton-insoluble complexes through oligomerization mediated by interactions between NH2-terminal residues 61-101. eNOS is targeted to caveolae by cotranslational N-myristoylation and posttranslational palmitoylation. Caveolin-1 coimmunoprecipitates with eNOS; interaction with eNOS occurs via the caveolin-1 scaffolding domain and appears to result in the inhibition of NOS activity. The inhibitory conformation of eNOS is reversed by the addition of excess Ca2+/calmodulin and by Akt-induced phosphorylation of eNOS. Here, we shall dissect the system using the classic paradigm of a reflex loop: 1) the action of afferent elements, such as fluid shear stress and its putative caveolar sensor, on caveolae; 2) the ways in which afferent signals may affect the central element, the activation of the eNOS-nitric oxide system; and 3) several resultant well-established and novel physiologically important effector mechanisms, i.e., vasorelaxation, angiogenesis, membrane fluidity, endothelial permeability, deterrance of inflammatory cells, and prevention of platelet aggregation.

  10. Exercise, Eating, Estrogen, and Osteoporosis.

    ERIC Educational Resources Information Center

    Brown, Jim

    1986-01-01

    Osteoporosis affects millions of people, especially women. Three methods for preventing or managing osteoporosis are recommended: (1) exercise; (2) increased calcium intake; and (3) estrogen replacement therapy. (CB)

  11. Estrogenic effects from household stoves.

    PubMed

    Wu, W Z; Chen, J; Rehmann, K; Schramm, K W; Kettrup

    2002-09-01

    With the application of a genetically modified yeast, estrogen receptor-activating compounds were detected in the soot and emission gas of a wood-burning household stove. The EC50 value of 17beta-estradiol was divided by the EC50 value of soot, and the obtained relative estrogenic value for raw soot was 2.37E-5, indicating that soot was about 100,000 times less estrogenic than 17beta-estradiol. Chemical analysis revealed that alkyl phenol, benzonic acid, and PAHs represented the major constituents in the most potent fractions of the soot. Along with PAHs, other constituents might also contribute to the estrogenicity of soot.

  12. Exercise, Eating, Estrogen, and Osteoporosis.

    ERIC Educational Resources Information Center

    Brown, Jim

    1986-01-01

    Osteoporosis affects millions of people, especially women. Three methods for preventing or managing osteoporosis are recommended: (1) exercise; (2) increased calcium intake; and (3) estrogen replacement therapy. (CB)

  13. Role of Rutin on Nitric Oxide Synthesis in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Zakaria, Zaiton; Chua, Kien Hui; Megat Mohd Nordin, Nor Anita; Abdullah Mahdy, Zaleha

    2014-01-01

    Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a major antiatherogenic factor in the blood vessel. Oxidative stress plays an important role in the pathogenesis of various cardiovascular diseases, including atherosclerosis. Decreased availability of endothelial NO promotes the progression of endothelial dysfunction and atherosclerosis. Rutin is a flavonoid with multiple cardiovascular protective effects. This study aimed to investigate the effects of rutin on eNOS and NO production in cultured human umbilical vein endothelial cells (HUVEC). HUVEC were divided into four groups: control; oxidative stress induction with 180 μM H2O2; treatment with 300 μM rutin; and concomitant induction with rutin and H2O2 for 24 hours. HUVEC treated with rutin produced higher amount of NO compared to control (P < 0.01). In the oxidative stress-induced HUVEC, rutin successfully induced cells' NO production (P < 0.01). Rutin promoted NO production in HUVEC by inducing eNOS gene expression (P < 0.05), eNOS protein synthesis (P < 0.01), and eNOS activity (P < 0.05). Treatment with rutin also led to increased gene and protein expression of basic fibroblast growth factor (bFGF) in HUVEC. Therefore, upregulation of eNOS expression by rutin may be mediated by bFGF. The results showed that rutin may improve endothelial function by augmenting NO production in human endothelial cells. PMID:25093198

  14. Immunohistochemical localization of endothelial and inducible nitric oxide synthase within neurons of cattle with rabies.

    PubMed

    Shin, Taekyun; Weinstock, Daniel; Castro, Marlene D; Hamir, Amir N; Wampler, Thomas; Walter, Mark; Kim, Hyun Young; Acland, Helen

    2004-05-01

    The expression of constitutive endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS) in the brains of cattle with natural rabies was studied. Increased expression of eNOS was detected in neurons of the brain stem and Purkinje cells of cerebellum. By contrast, iNOS was diffusely localized in the cytoplasm of affected neurons, and some inflammatory cells were positive. eNOS and rabies antigen were co-localized in inclusion bodies (Negri bodies) in neurons. The specific localization of eNOS, but not iNOS, in the Negri bodies suggests that eNOS is involved in the formation of rabies virus inclusion bodies.

  15. 2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran promotes endothelial nitric oxide synthase activity in human endothelial cells.

    PubMed

    Ladurner, Angela; Atanasov, Atanas G; Heiss, Elke H; Baumgartner, Lisa; Schwaiger, Stefan; Rollinger, Judith M; Stuppner, Hermann; Dirsch, Verena M

    2012-09-15

    Endothelial nitric oxide synthase (eNOS) mediates important vaso-protective and immunomodulatory effects. Aim of this study was to examine whether lignan derivatives isolated from the roots of the anti-inflammatory medicinal plant Krameria lappacea influence eNOS activity and endothelial nitric oxide (NO) release. The study was performed using cultured human umbilical vein endothelial cells (HUVECs) and HUVEC-derived EA.hy926 cells. Among the eleven isolated compounds only 2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran (DPPB) was able to increase eNOS enzyme activity. DPPB (1-10 μM) treatment for 24 h induced a significant and dose-dependent increase in eNOS activity as determined by the [(14)C]L-arginine/[(14)C]L-citrulline conversion assay. Immunoblotting studies further revealed a time-dependent DPPB-induced increase in eNOS-Ser(1177) and decrease in eNOS-Thr(495) phosphorylation, as well as increased AMPK phosphorylation at Thr(172), whereas Akt phosphorylation at Ser(473) was not affected. Si-RNA-mediated knockdown of AMPK and inhibition of CaMKKβ by STO 609, as well as intracellular Ca(2+) chelation by Bapta AM abolished the stimulating effect of DPPB on eNOS-Ser(1177) and AMPK-Thr(172) phosphorylation. Furthermore, we could show that DPPB increases intracellular Ca(2+) concentrations assessed with the fluorescent dye Fluo-3-AM. DPPB enhances eNOS activity and endothelial NO release by raising intracellular Ca(2+) levels and increases signaling through a CaMKKβ-AMPK dependent pathway.

  16. Endothelial dysfunction in DOCA-salt-hypertensive mice: role of neuronal nitric oxide synthase-derived hydrogen peroxide.

    PubMed

    Silva, Grazielle C; Silva, Josiane F; Diniz, Thiago F; Lemos, Virginia S; Cortes, Steyner F

    2016-06-01

    Endothelial dysfunction is a common problem associated with hypertension and is considered a precursor to the development of micro- and macro-vascular complications. The present study investigated the involvement of nNOS (neuronal nitric oxide synthase) and H2O2 (hydrogen peroxide) in the impaired endothelium-dependent vasodilation of the mesenteric arteries of DOCA (deoxycorticosterone acetate)-salt-hypertensive mice. Myograph studies were used to investigate the endothelium-dependent vasodilator effect of ACh (acetylcholine). The expression and phosphorylation of nNOS and eNOS (endothelial nitric oxide synthase) were studied by Western blot analysis. Immunofluorescence was used to examine the localization of nNOS and eNOS in the endothelial layer of the mesenteric artery. The vasodilator effect of ACh is strongly impaired in mesenteric arteries of DOCA-salt-hypertensive mice. Non-selective inhibition of NOS sharply reduced the effect of ACh in both DOCA-salt-hypertensive and sham mice. Selective inhibition of nNOS and catalase led to a higher reduction in the effect of ACh in sham than in DOCA-salt-hypertensive mice. Production of H2O2 induced by ACh was significantly reduced in vessels from DOCA-salt-hypertensive mice, and it was blunted after nNOS inhibition. The expression of both eNOS and nNOS was considerably lower in DOCA-salt-hypertensive mice, whereas phosphorylation of their inhibitory sites was increased. The presence of nNOS was confirmed in the endothelial layer of mesenteric arteries from both sham and DOCA-salt-hypertensive mice. These results demonstrate that endothelial dysfunction in the mesenteric arteries of DOCA-salt-hypertensive mice is associated with reduced expression and functioning of nNOS and impaired production of nNOS-derived H2O2 Such findings offer a new perspective for the understanding of endothelial dysfunction in hypertension.

  17. Vascular endothelial-cadherin downregulation as a feature of endothelial transdifferentiation in monocrotaline-induced pulmonary hypertension.

    PubMed

    Nikitopoulou, Ioanna; Orfanos, Stylianos E; Kotanidou, Anastasia; Maltabe, Violetta; Manitsopoulos, Nikolaos; Karras, Panagiotis; Kouklis, Panos; Armaganidis, Apostolos; Maniatis, Nikolaos A

    2016-08-01

    Increased pulmonary vascular resistance in pulmonary hypertension (PH) is caused by vasoconstriction and obstruction of small pulmonary arteries by proliferating vascular cells. In analogy to cancer, subsets of proliferating cells may be derived from endothelial cells transitioning into a mesenchymal phenotype. To understand phenotypic shifts transpiring within endothelial cells in PH, we injected rats with alkaloid monocrotaline to induce PH and measured lung tissue levels of endothelial-specific protein and critical differentiation marker vascular endothelial (VE)-cadherin. VE-cadherin expression by immonoblotting declined significantly 24 h and 15 days postinjection to rebound to baseline at 30 days. There was a concomitant increase in transcriptional repressors Snail and Slug, along with a reduction in VE-cadherin mRNA. Mesenchymal markers α-smooth muscle actin and vimentin were upregulated by immunohistochemistry and immunoblotting, and α-smooth muscle actin was colocalized with endothelial marker platelet endothelial cell adhesion molecule-1 by confocal microscopy. Apoptosis was limited in this model, especially in the 24-h time point. In addition, monocrotaline resulted in activation of protein kinase B/Akt, endothelial nitric oxide synthase (eNOS), nuclear factor (NF)-κB, and increased lung tissue nitrotyrosine staining. To understand the etiological relationship between nitrosative stress and VE-cadherin suppression, we incubated cultured rat lung endothelial cells with endothelin-1, a vasoconstrictor and pro-proliferative agent in pulmonary arterial hypertension. This resulted in activation of eNOS, NF-κB, and Akt, in addition to induction of Snail, downregulation of VE-cadherin, and synthesis of vimentin. These effects were blocked by eNOS inhibitor N(ω)-nitro-l-arginine methyl ester. We propose that transcriptional repression of VE-cadherin by nitrosative stress is involved in endothelial-mesenchymal transdifferentiation in experimental PH.

  18. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in association with neovascularization in human primary astrocytoma*

    PubMed Central

    Pan, Jian-wei; Zhan, Ren-ya; Tong, Ying; Zhou, Yong-qing; Zhang, Ming

    2005-01-01

    Objective: To investigate the relationship between the expression of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and angiogenesis in primary astrocytoma. Methods: Thirty-seven primary astrocytomas and 4 astrocytic hyperplasia samples were collected and divided into three groups according to histological grade. The expression of eNOS, VEGF and factor VIII related antigen (FVIIIRAg) were assayed by immunohistochemistry. Microvascular density was assessed by FVIIIRAg immunoreactivity. The intensity of immunoreactivity was graded according to the percentage of positive tumor cells. Results: No eNOS and VEGF were expressed in the astrocytes and vascular endothelium in astrocytic hyperplasia. The expression of eNOS or VEGF was light in low-grade astrocytoma and strong in glioblastoma. eNOS expression in astrocytoma was very positively correlated with VEGF. eNOS and VEGF expression in anaplastic astrocytoma was median in contrast to the low grade astrocytoma and glioblastoma. Lower microvascular density was found in low grade astrocytoma than that in higher grade malignant ones. The expressions of eNOS and VEGF were correlated with microvascular density and tumor malignancy. Conclusion: This finding suggests that eNOS and VEGF may have cooperative effect in tumor angiogenesis and play an important role in the pathogenesis of primary astrocytoma. PMID:15973775

  19. Internalization of eNOS via caveolae regulates PAF-induced inflammatory hyperpermeability to macromolecules.

    PubMed

    Sánchez, Fabiola A; Kim, David D; Durán, Ricardo G; Meininger, Cynthia J; Durán, Walter N

    2008-10-01

    Endothelial nitric oxide (NO) synthase (eNOS) is thought to regulate microvascular permeability via NO production. We tested the hypotheses that the expression of eNOS and eNOS endocytosis by caveolae are fundamental for appropriate signaling mechanisms in inflammatory endothelial permeability to macromolecules. We used bovine coronary postcapillary venular endothelial cells (CVECs) because these cells are derived from the microvascular segment responsible for the transport of macromolecules in inflammation. We stimulated CVECs with platelet-activating factor (PAF) at 100 nM and measured eNOS phosphorylation, NO production, and CVEC monolayer permeability to FITC-dextran 70 KDa (Dx-70). PAF translocated eNOS from plasma membrane to cytosol, induced changes in the phosphorylation state of the enzyme, and increased NO production from 4.3+/-3.8 to 467+/-22.6 nM. PAF elevated CVEC monolayer permeability to FITC-Dx-70 from 3.4+/-0.3 x 10(-6) to 8.5+/-0.4 x 10(-6) cm/s. The depletion of endogenous eNOS with small interfering RNA abolished PAF-induced hyperpermeability, demonstrating that the expression of eNOS is required for inflammatory hyperpermeability responses. The inhibition of the caveolar internalization by blocking caveolar scission using transfection of dynamin dominant-negative mutant, dyn2K44A, inhibited PAF-induced hyperpermeability to FITC-Dx-70. We interpret these data as evidence that 1) eNOS is required for hyperpermeability to macromolecules and 2) the internalization of eNOS via caveolae is an important mechanism in the regulation of endothelial permeability. We advance the novel concept that eNOS internalization to cytosol is a signaling mechanism for the onset of microvascular hyperpermeability in inflammation.

  20. Additive effects of low concentrations of estradiol-17β and progesterone on nitric oxide production by human vascular endothelial cells through shared signaling pathways.

    PubMed

    Pang, Yefei; Thomas, Peter

    2017-01-01

    Potential cardiovascular benefits of low-dose formulations of estrogens and progesterone (P4) for treating climacteric symptoms in postmenopausal women remain unclear because information is lacking on their combined vascular effects. Protective effects of low concentrations (5nM) of P4 and estradiol-17β (E2), alone and in combination (P4+E2), were investigated in a nongenomic model of vascular protection which measured acute increases in nitric oxide (NO) production by cultured human umbilical vein endothelial cells (HUVECs). Treatment with 5nM P4+E2 for twenty minutes significantly increased NO production and endothelial NO synthase (eNOS) phosphorylation, whereas 5nM treatments with either steroid alone were ineffective. The 5nM P4+E2 treatment also increased phosphorylation of ERK and Akt, mimicking the effects of higher concentrations of P4 and E2 alone. Pre-treatment with inhibitors of PI3K (wortmannin), Akt (ML-9), and MAP kinase (AZD6244 and U0126) completely blocked the NO response to 5nM P4+E2. Combined 5nM treatments with specific estrogen and progesterone receptor agonists showed an involvement of membrane progesterone receptor alpha (mPRα, also known as PAQR7), G protein-coupled estrogen receptor 1 (GPER), and estrogen receptor alpha (ERα), but not ERβ, in P4+E2 stimulation of NO production. P4+E2 also exerted genomic actions, increasing mPRα, GPER, cyclooxygenase-1, and prostacyclin-synthase mRNA levels. Taken together, the results show that a low concentration of P4+E2 rapidly increases NO production in HUVECs through mPRα, ERα, and GPER and involves common signaling pathways, PI3K/Akt and MAP kinase. These in vitro findings suggest that low doses of E2 and P4 may also have some beneficial cardiovascular effects in vivo when administered as hormone replacement therapy (HRT) for post-menopausal women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [The effects of pronuciferine on NO and NOS production in cultured human umbilical vein endothelium cells].

    PubMed

    Xiao, Hua; Chen, Aihua; Ji, Aimin; Li, Zhiliang

    2005-06-01

    To investigate the effects of Pronuciferine on nitric oxide (NO), total nitric oxide synthase (tNOS) and inducible nitric oxide synthase (iNOS) production in cultured Human Umbilical Vein Endothelium Cells (HUVECs). Pronuciferine was extracted from plumula nelumbinis. The experiments were performed in HUVECs in vitro. Cell-morphology was observed by light microscope. Cells viability was assessed by MTT assay. NO, tNOS and iNOS were measured by Colorimetry. Cell- morphology and viability weren't affected by Pronuciferine. Pronuciferine significantly increased the level of NO and the activity of tNOS, but had no effect on the activity of iNOS. Pronuciferine increases the level of NO by the enhancement of the activity of tNOS. It may have the protection on endothelial function.

  2. Overexpression of estrogen receptor-alpha in the endometrial carcinoma cell line Ishikawa: inhibition of growth and angiogenic factors.

    PubMed

    Ali, Syed Hamid; O'Donnell, Amy L; Mohamed, Seema; Mousa, Shaker; Dandona, Paresh

    2004-12-01

    A high level of estrogen receptor-alpha (ER-alpha) is believed to be favorable in the prognosis and treatment of endometrial, ovarian, and breast cancer. High levels of ER-alpha have been shown to inhibit the growth and invasive, metastatic potential of breast cancer cell lines. To bring about these inhibitory effects, ER-alpha probably acts through other cellular factors involved in the regulation of cell growth. To investigate the role of high levels ER-alpha in growth inhibition of endometrial cancer cells. A human ER-alpha cDNA was stably overexpressed in an endometrial cancer cell line, namely, Ishikawa. ER-alpha-overexpressing, parent, and control Ishikawa cells were grown in vitro and their growth rates were compared by cell count. ER-alpha-overexpressing and parent Ishikawa cells were also grown in vitro as tumors in a chicken chorioallantoic membrane (CAM) model, and tumor growth and angiogenesis was measured. Finally, levels of angiogenesis-modulating factors, nitric oxide synthase (NOS), and vascular endothelial growth factor (VEGF) were examined in relation to ER overexpression. The growth of Ishikawa cells was found inhibited in culture as well as in the CAM model. Angiogenesis of CAM tumors was also found inhibited in ER-overexpressing cells. Angiogenic factor VEGF was inhibited whereas the activity of NOS was found elevated following ER overexpression. Our work on the Ishikawa cell line indicates that high levels of ER-alpha in endometrial cancer may inhibit cancer growth by modulating angiogenic factors, thereby limiting the blood supply to the growing tumor. Our results support the earlier data from other groups that have shown a positive correlation between high ER content and better prognosis of endometrial cancers.

  3. Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4

    PubMed Central

    Dumitrescu, Cristian; Biondi, Roberto; Xia, Yong; Cardounel, Arturo J.; Druhan, Lawrence J.; Ambrosio, Giuseppe; Zweier, Jay L.

    2007-01-01

    Coronary vasodilation is impaired in the postischemic heart with a loss of endothelial nitric oxide synthase (eNOS) activity, but the mechanisms underlying ischemia-induced eNOS dysfunction are not understood. For nitric oxide (NO) synthesis, eNOS requires the redox-sensitive cofactor tetrahydrobiopterin (BH4); however, the role of BH4 in ischemia-induced endothelial dysfunction remains unknown. Therefore, isolated rat hearts were subjected to varying durations of ischemia, and the alterations in NOS-dependent vasodilation were measured and correlated with assays of eNOS activity and cardiac BH4 concentrations. Ischemia time-dependently decreased cardiac BH4 content with 85, 95, or 97% irreversible degradation after 30, 45, or 60 min of ischemia, respectively. Paralleling the decreases in BH4, reductions of eNOS activity were seen of 58, 86, or 92%, and NOS-derived superoxide production was greatly increased. Addition of 10 μM BH4 enhanced eNOS activity in nonischemic hearts and partially restored activity after ischemia. It also suppressed NOS-derived superoxide production. Impaired coronary flow during postischemic reperfusion was improved by BH4 infusion. Thus, BH4 depletion contributes to postischemic eNOS dysfunction, and BH4 treatment is effective in partial restoration of endothelium-dependent coronary flow. Supplementation of BH4 may therefore be an important therapeutic approach to reverse endothelial dysfunction in postischemic tissues. PMID:17848522

  4. Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis

    PubMed Central

    Lahdenranta, Johanna; Hagendoorn, Jeroen; Padera, Timothy P.; Hoshida, Tohru; Nelson, Gregory; Kashiwagi, Satoshi; Jain, Rakesh K.; Fukumura, Dai

    2009-01-01

    Lymphatic metastasis is a critical determinant of cancer prognosis. Recently, several lymphangiogenic molecules such as vafscular endothelial growth factor (VEGF)-C and -D were identified. However, the mechanistic understanding of lymphatic metastasis is still in infancy. Nitric oxide (NO) plays a crucial role in regulating blood vessel growth and function as well as lymphatic vessel function. NOS expression correlates with lymphatic metastasis. However, causal relationship between NOS and lymphatic metastasis has not been documented. To this end, we first show that both VEGF receptor-2 and -3 stimulation activate eNOS in lymphatic endothelial cells and that NO donors induce proliferation and/or survival of cultured lymphatic endothelial cells in a dose dependent manner. We find that an NOS inhibitor L-NMMA blocked regeneration of lymphatic vessels. Using intravital microscopy that allows us to visualize the steps of lymphatic metastasis, we show that genetic deletion of eNOS as well as NOS blockade attenuates peritumor lymphatic hyperplasia of VEGF-C-overexpressing T241 fibrosarcomas and decreases the delivery of metastatic tumor cells to the draining lymph nodes. Genetic deletion of eNOS in the host also leads to a decrease in T241 tumor cell dissemination to the lymph nodes and macroscopic lymph node metastasis of B16F10 melanoma. These findings indicate that eNOS mediates VEGF-C induced lymphangiogenesis and, consequently, plays a critical role in lymphatic metastasis. Our findings explain the correlation between NOS and lymphatic metastasis seen in a number of human tumors and open the door for potential therapies exploiting NO signaling to treat diseases of the lymphatic system. PMID:19318557

  5. [Regulation of uterine blood flow. I. Functions of estrogen and estrogen receptor α/β in the uterine vascular endothelium during pregnancy].

    PubMed

    Mayra, Pastore R; Rosalina, Villalón L; López, Gladys; Iruretagoyena, Jesús; Magness, Ronald

    Estrogen and classical estrogen receptors (ERs), ER-α and ER-β, have been shown to be partially responsible for short and long term uterine endothelial adaptations during pregnancy. The molecular and structural differences, together with the various effects caused by these receptors in cells and tissues, suggest that their function varies depending upon estrogen and estrogen receptor signaling. In this review, we discuss the role of estrogen and its classic receptors in the cardiovascular adaptations during pregnancy and the expression of ERs in vivo and in vitro in the uterine artery endothelium during the ovarian cycle and pregnancy, while comparing their expression in arterial endothelium from reproductive and non-reproductive tissues. These themes integrate current knowledge of this broad scientific field with various interpretations and hypothesis that related estrogenic effects by either one or both ERs. This review also includes the relationship with vasodilator and angiogenic adaptations required to modulate the dramatic physiological increase to the uteroplacental perfusion observed during normal pregnancy.

  6. Endothelial nitric oxide synthase interactions with G-protein-coupled receptors.

    PubMed Central

    Marrero, M B; Venema, V J; Ju, H; He, H; Liang, H; Caldwell, R B; Venema, R C

    1999-01-01

    The endothelial nitric oxide synthase (eNOS) is activated in response to stimulation of endothelial cells by a number of vasoactive substances including, bradykinin (BK), angiotensin II (Ang II), endothelin-1 (ET-1) and ATP. In the present study we have used in vitro activity assays of purified eNOS and in vitro binding assays with glutathione S-transferase fusion proteins to show that the capacity to bind and inhibit eNOS is a common feature of membrane-proximal regions of intracellular domain 4 of the BK B2, the Ang II AT1 and the ET-1 ETB receptors, but not of the ATP P2Y2 receptor. Phosphorylation of serine or tyrosine residues in the eNOS-interacting region of the B2 receptor results in a loss of eNOS inhibition due to a decrease in the binding affinity of the receptor domain for the eNOS enzyme. Furthermore, the B2 receptor is transiently phosphorylated on tyrosine residues in cultured endothelial cells in response to BK stimulation. Phosphorylation occurs during the time in which eNOS transiently dissociates from the receptor accompanied by a transient increase in nitric oxide production. Taken together, these data support the hypotheses that eNOS is regulated in endothelial cells by reversible and inhibitory interactions with G-protein-coupled receptors and that these interactions can be modulated by receptor phosphorylation. PMID:10510297

  7. Estrogen receptors in breast carcinoma.

    PubMed

    Huaman, A

    1979-11-01

    On the basis of estrogen receptor assays, breast carcinomas are presently classified as estrogen-dependent tumors, which respond to endocrine therapy, and autonomous tumors, for which endocrine therapy is useless. This paper presents a short review of the biochemical principles of estrogen dependence, the procedures used to determine estrogen receptors, and the clinical applications of the findings of these assay procedures. Biobhemically, the estroogen dependence of normal breast cells is explained as a biochemical reaction occurring between the circulating estradiol and the breast cell, which occurs in 3 steps: 1) circulating estradiol penetrates the cellular membrane by passive diffusion, followed by 2) combining of estradiol with the estrogen-binding protein (estrophilin) and formation of an estrogen receptor complex which undergoes activation and translocation into the nucleus, to result in 3) the activated steroid receptor which combines with the nuclear charomatin and stimulates ribonucleic acid synthesis for the formation of estradiol binding proteins or estradiol receptors. The cytosol method of Wittliff et al. is described in brief and entails radioactive competitive analysis; the other available laboratory procedure is immunofluorescence of tumor sections. Quantification of estrogen receptor content can be used clinically to decide on ablative endocrine therapy, to determine the effectiveness of anti-estrogen administration, to determine the primary site of metastatic carcinoma, and as a screenng device.

  8. Inhibition of matrix metalloproteinase-2 improves endothelial function and prevents hypertension in insulin-resistant rats

    PubMed Central

    Nagareddy, PR; Rajput, PS; Vasudevan, H; McClure, B; Kumar, U; MacLeod, KM; McNeill, JH

    2012-01-01

    BACKGROUND AND PURPOSE Insulin resistance is often found to be associated with high blood pressure. We propose that in insulin-resistant hypertension, endothelial dysfunction is the consequence of increased activity of vascular MMP-2. As MMP-2 proteolytically cleaves a number of extracellular matrix proteins, we hypothesized that MMP-2 impairs endothelial function by proteolytic degradation of endothelial NOS (eNOS) or its cofactor, heat shock protein 90 (HSP90). EXPERIMENTAL APPROACH We tested our hypothesis in bovine coronary artery endothelial cells and fructose-fed hypertensive rats (FHR), a model of acquired systolic hypertension and insulin resistance. KEY RESULTS Treatment of FHRs with the MMP inhibitor doxycycline, preserved endothelial function as well as prevented the development of hypertension, suggesting that MMPs impair endothelial function. Furthermore, incubating endothelial cells in vitro with a recombinant MMP-2 decreased NO production in a dose-dependent manner. Using substrate cleavage assays and immunofluorescence microscopy studies, we found that MMP-2 not only cleaves and degrades HSP90, an eNOS cofactor but also co-localizes with both eNOS and HSP90 in endothelial cells, suggesting that MMPs functionally interact with the eNOS system. Treatment of FHRs with doxycycline attenuated the decrease in eNOS and HSP90 expression but did not improve insulin sensitivity. CONCLUSIONS AND IMPLICATIONS Our data suggest that increased activity of MMP-2 in FHRs impairs endothelial function and promotes hypertension. Inhibition of MMP-2 could be a potential therapeutic strategy for the management of hypertension. PMID:21740410

  9. Estrogen therapy for postmenopausal osteoporosis.

    PubMed

    Fitzpatrick, Lorraine A

    2006-08-01

    Osteoporosis is a worldwide problem that results in fractures that lead to disability and high costs to society. Estrogen therapy is frequently utilized for postmenopausal symptoms, but also has proven protective effects on the skeleton. The main action of estrogen at the cellular level is to inhibit the osteoclast by increasing levels of osteoprotegerin (OPG). OPG binds to the receptor activator of NFkB and prevents osteoclast differentiation, activity and survival. Numerous trials have demonstrated the positive effect estrogen has on the improvement of bone mineral density, and lower doses have also proven efficacious with fewer side effects. Both observational and randomized clinical trials have demonstrated the ability of estrogen treatment to prevent fractures. Topics that remain controversial include the appropriate length of estrogen treatment for postmenopausal women and the appropriate follow-up after treatment discontinuation.

  10. Endothelial nitric oxide synthase is protective in the initiation of caerulein-induced acute pancreatitis in mice.

    PubMed

    DiMagno, Matthew J; Williams, John A; Hao, Yibai; Ernst, Stephen A; Owyang, Chung

    2004-07-01

    The effect of inhibiting nitric oxide (NO) synthase (NOS) or enhancing NO on the course of acute pancreatitis (AP) is controversial, in part because three NOS isoforms exist: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). We investigated whether inhibition or selective gene deletion of NOS isoforms modified the initiation phase of caerulein-induced AP in mice and explored whether this affected pancreatic microvascular blood flow (PMBF). We investigated the effects of nonspecific NOS inhibition with N(omega)-nitro-l-arginine (l-NNA; 10 mg/kg ip) or targeted deletion of eNOS, nNOS, or iNOS genes on the initiation phase of caerulein-induced AP in mice using in vivo and in vitro models. Western blot analysis was performed to assess eNOS phosphorylation status, an indicator of enzyme activity, and microsphere studies were used to measure PMBF. l-NNA and eNOS deletion, but not nNOS or iNOS deletion, increased pancreatic trypsin activity and serum lipase during the initiation phase of in vivo caerulein-induced AP. l-NNA and eNOS did not affect trypsin activity in caerulein-hyperstimulated isolated acini, suggesting that nonacinar events mediate the effect of NOS blockade in vivo. The initiation phase of AP in wild-type mice was associated with eNOS Thr(495) residue dephosphorylation, which accompanies eNOS activation, and a 178% increase in PMBF; these effects were absent in eNOS-deleted mice. Thus eNOS is the main isoform influencing the initiation of caerulein-induced AP. eNOS-derived NO exerts a protective effect through actions on nonacinar cell types, most likely endothelial cells, to produce greater PMBF.

  11. Risks of estrogens and progestogens.

    PubMed

    L'Hermite, M

    1990-09-01

    The risks and benefits of specific types of postmenopausal estrogens and progestogens are explored: those affecting serum lipids, clotting elements, hepatic proteins synthesis, blood pressure, glucose tolerance, endometrial, breast and cervical cancer. Ethinyl estradiol taken orally is the only estrogen likely to cause gall bladder disease. It also induces liver protein synthesis when taken orally or vaginally. Natural estrogens do not heighten coagulation factors, and may shift towards fibrinolysis. Both ethinyl estradiol and equine estrogens may increase blood pressure, while natural estrogens may decrease it. Similarly natural estrogens induce prostacyclin synthesis, while ethinyl estradiol activates both prostacyclin and thromboxanes. Progestagens, especially so the norprogestins, disturb carbohydrate metabolism and tend to reverse the beneficial effects of estrogens on serum lipids, a 40-70% reduction in risk of mortality from coronary heart disease. A meta- analysis of 23 studies concluded that menopausal estrogens do not increase the risk of breast cancer by a measurable degree, except in high doses and in those predisposed by family history. There is an increased risk of endometrial carcinoma for those taking unopposed estrogens for more than 3-6 years. This can be attenuated by taking combined estrogen-progestins, which will eventually result in absence of bleeding, or a 12-day progestogen course every 4-6 cycles. Oral micronized progesterone decreases blood pressure. The relative androgenic effects of progestins other than the norprogesterone derivatives are less significant. As an alternative to taking a progestogen, a woman could have regular endometrial sampling or abdominal or vaginal sonograms to detect endometrial cancer.

  12. Differential NOS expression in freshwater and aestivating Protopterus dolloi (lungfish): heart vs kidney readjustments.

    PubMed

    Amelio, Daniela; Garofalo, Filippo; Brunelli, Elvira; Loong, Ai May; Wong, Wai Peng; Ip, Yuen Kwong; Tota, Bruno; Cerra, Maria Carmela

    2008-02-01

    African lungfish Protopterus dolloi is an obligatory air-breather, which aestivates in a cocoon during the dry season. Aestivation associates with functional modifications in many tissues and organs, including heart and kidney. Due to its pleiotropic modulatory effects, nitric oxide (NO), generated by nitric oxide synthases (NOSs), may coordinate organ rearrangement, allowing adaptive adjustments under stressful environmental conditions. By immunofluorescence, Western blotting and NADPH-diaphorase, we examined cardiac and renal localization and activity of NOSs isoforms in both freshwater (FW) and aestivating [6 days (6DA) and 40 days (40DA) of estivation] P. dolloi. In heart and kidney endothelial NOS (eNOS) is the major isoform with respect to inducible and neuronal NOS (iNOS and nNOS, respectively). Cardiac eNOS locates in the epicardium, the trabecular endothelial endocardium, and myocardiocytes of both FW and aestivating fish. Western blotting revealed that cardiac eNOS expression increases in 6DA, but decreases in 40DA fish. In FW fish kidney eNOS is present in vascular endothelial cells and in podocytes of renal corpuscles. In tubular epithelial cells it is restricted to the apical pole. With aestivation, both renal localization and expression of eNOS increase. NADPH-diaphorase revealed an enhancement of cardiac and renal NOS activities during aestivation. Results suggest that in P. dolloi NO contributes, in an autocrine-paracrine fashion, to cardiac and renal readjustments during aestivation. Our findings are of evolutionary interest, since they document for the first time the presence of a NOS system in a ancestral fish, indicative of deep phylogenetic roots of NO bio-synthesis.

  13. Selective Estrogen Receptor Modulators

    PubMed Central

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  14. [Regulation of uterine blood flow. II. Functions of estrogen and estrogen receptor α/β in genomic and non-genomic actions of the uterine endothelium].

    PubMed

    Mayra, Pastore R; Rosalina, Villalón L; López, Gladys; Iruretagoyena, Jesús; Magness, Ronald

    2014-06-01

    Pregnancy is marked by changes and cardiovascular adaptations that are important for the maintenance and growth of the placenta and fetus. During this period, the uterine vascular adaptations manifest changes that can be classified as short or long term and they related to adaptations for vasodilation, angiogenic or remodeling. Estrogen and the classical estrogen receptors (ERs), ER-α and ER-β, have been shown to be partially responsible for facilitating this dramatic increase in uterine blood flow needed during pregnancy. This literature review discusses the basis for structural diversity and functional selectivity of ERs by estrogen, the role of ERs on the genomic and non-genomic effects in endothelial cells of uterine arteries (UAEC). These themes integrate scientific knowledge about the molecular regulation of UAEC to maintain the physiological increase in uteroplacental perfusion observed during normal pregnancy.

  15. HDL-associated estradiol stimulates endothelial NO synthase and vasodilation in an SR-BI–dependent manner

    PubMed Central

    Gong, Ming; Wilson, Melinda; Kelly, Thomas; Su, Wen; Dressman, James; Kincer, Jeanie; Matveev, Sergey V.; Guo, Ling; Guerin, Theresa; Li, Xiang-An; Zhu, Weifei; Uittenbogaard, Annette; Smart, Eric J.

    2003-01-01

    Cardiovascular diseases remain the leading cause of death in the United States. Two factors associated with a decreased risk of developing cardiovascular disease are elevated HDL levels and sex — specifically, a decreased risk is found in premenopausal women. HDL and estrogen stimulate eNOS and the production of nitric oxide, which has numerous protective effects in the vascular system including vasodilation, antiadhesion, and anti-inflammatory effects. We tested the hypothesis that HDL binds to its receptor, scavenger receptor class B type I (SR-BI), and delivers estrogen to eNOS, thereby stimulating the enzyme. HDL isolated from women stimulated eNOS, whereas HDL isolated from men had minimal activity. Studies with ovariectomized and ovariectomized/estrogen replacement mouse models demonstrated that HDL-associated estradiol stimulation of eNOS is SR-BI dependent. Furthermore, female HDL, but not male HDL, promoted the relaxation of muscle strips isolated from C57BL/6 mice but not SR-BI null mice. Finally, HDL isolated from premenopausal women or postmenopausal women receiving estradiol replacement therapy stimulated eNOS, whereas HDL isolated from postmenopausal women did not stimulate eNOS. We conclude that HDL-associated estrodial is capable of the stimulating eNOS. These studies establish a new paradigm for examining the cardiovascular effects of HDL and estrogen. PMID:12750408

  16. The NOS Challenge

    ERIC Educational Resources Information Center

    Quigley, Cassie; Buck, Gayle; Akerson, Valarie

    2011-01-01

    "The picture of a scientist is me!" exclaims first grader Kendra during a nature of science (NOS) lesson. She drew a picture of a scientist and explained that she was going to be a scientist when she grew up because she "loved to observe like a scientist." Kendra's experience was a part of a 30-day unit designed specifically for first graders.…

  17. The NOS Challenge

    ERIC Educational Resources Information Center

    Quigley, Cassie; Buck, Gayle; Akerson, Valarie

    2011-01-01

    "The picture of a scientist is me!" exclaims first grader Kendra during a nature of science (NOS) lesson. She drew a picture of a scientist and explained that she was going to be a scientist when she grew up because she "loved to observe like a scientist." Kendra's experience was a part of a 30-day unit designed specifically for first graders.…

  18. Key role of endothelium in the eNOS-dependent cardioprotection with exercise training.

    PubMed

    Farah, C; Nascimento, A; Bolea, G; Meyer, G; Gayrard, S; Lacampagne, A; Cazorla, O; Reboul, C

    2017-01-01

    Modulation of endothelial nitric oxide synthase (eNOS) activation is recognized as a main trigger of the cardioprotective effects of exercise training on heart vulnerability to ischemia-reperfusion (IR). However, this enzyme is expressed both in coronary endothelial cells and cardiomyocytes and the contribution of each one to such cardioprotection has never been challenged. The aim of this study was to investigate the role of eNOS from the cardiomyocytes vs. the endothelium in the exercise cardioprotection. Male Wistar rats were assigned to a chronic aerobic training (Ex) (vs. sedentary group; Sed) and we investigated the role of eNOS in the effects of exercise on sensitivity to IR or anoxia-reoxygenation (A/R) at whole heart, isolated cardiomyocytes and left coronary artery (LCA) levels. We observed that exercise increased eNOS activation (Ser1177 phosphorylation) and protein S-nitrosylation in whole heart but not at cardiomyocyte level, suggesting the specific target of endothelial cells by exercise. Consistently, in isolated cardiomyocytes submitted to the A/R procedure, exercise reduced cell death and improved cells contractility, but independently of the eNOS pathway. Next, to evaluate the contribution of endothelial cells in exercise cardioprotection, LCA were isolated before and after an IR procedure performed on Langendorff hearts. Exercise improved basal relaxation sensitivity to acetylcholine and markedly reduced the alteration of endothelium-dependent coronary relaxation induced by IR. Furthermore, inactivation of coronary endothelial cells activity just before IR, obtained with a bolus of Triton X-100, totally suppressed cardioprotective effects of exercise on both left ventricular functional recovery after IR and infarct size, whereas no effect of Triton X-100 was observed in Sed group. In conclusion, these results show that coronary endothelial cells rather than cardiomyocytes play a key role in the eNOS-dependent cardioprotection of exercise.

  19. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation.

    PubMed Central

    Zakhary, R; Gaine, S P; Dinerman, J L; Ruat, M; Flavahan, N A; Snyder, S H

    1996-01-01

    Heme oxygenase 2 (HO-2), which synthesizes carbon monoxide (CO), has been localized by immunohistochemistry to endothelial cells and adventitial nerves of blood vessels. HO-2 is also localized to neurons in autonomic ganglia, including the petrosal, superior cervical, and nodose ganglia, as well as ganglia in the myenteric plexus of the intestine. Enzyme studies demonstrated that tin protoporphyrin-9 is a selective inhibitor of HO with approximately 10-fold selectivity for HO over endothelial nitric oxide synthase (NOS) and soluble guanylyl cyclase. Inhibition of HO activity by tin protoporphyrin 9 reverses the component of endothelial-derived relaxation of porcine distal pulmonary arteries not reversed by an inhibitor of NOS. Thus, CO, like NO, may have endothelial-derived relaxing activity. The similarity of NOS and HO-2 localizations and functions in blood vessels and the autonomic nervous system implies complementary and possibly coordinated physiologic roles for these two mediators. Images Fig. 1 Fig. 2 Fig. 3 PMID:8570637

  20. Mechanical perturbations trigger endothelial nitric oxide synthase activity in human red blood cells

    PubMed Central

    Nagarajan, Shunmugan; Raj, Rajendran Kadarkarai; Saravanakumar, Venkatesan; Balaguru, Uma Maheswari; Behera, Jyotirmaya; Rajendran, Vinoth Kumar; Shathya, Yogarajan; Ali, B. Mohammed Jaffar; Sumantran, Venil; Chatterjee, Suvro

    2016-01-01

    Nitric oxide (NO), a vascular signaling molecule, is primarily produced by endothelial NO synthase. Recently, a functional endothelial NO synthase (eNOS) was described in red blood cells (RBC). The RBC-eNOS contributes to the intravascular NO pool and regulates physiological functions. However the regulatory mechanisms and clinical implications of RBC-eNOS are unknown. The present study investigated regulation and functions of RBC-eNOS under mechanical stimulation. This study shows that mechanical stimuli perturb RBC membrane, which triggers a signaling cascade to activate the eNOS. Extracellular NO level, estimated by the 4-Amino-5-Methylamino-2′, 7′-Difluorofluorescein Diacetate probe, was significantly increased under mechanical stimuli. Immunostaining and western blot studies confirmed that the mechanical stimuli phosphorylate the serine 1177 moiety of RBC-eNOS, and activates the enzyme. The NO produced by activation of RBC-eNOS in vortexed RBCs promoted important endothelial functions such as migration and vascular sprouting. We also show that mechanical perturbation facilitates nitrosylation of RBC proteins via eNOS activation. The results of the study confirm that mechanical perturbations sensitize RBC-eNOS to produce NO, which ultimately defines physiological boundaries of RBC structure and functions. Therefore, we propose that mild physical perturbations before, after, or during storage can improve viability of RBCs in blood banks. PMID:27345770

  1. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice.

    PubMed

    Xie, Xiaona; Sun, Wanchun; Wang, Jun; Li, Xiaoou; Liu, Xiaofeng; Liu, Ning

    2017-01-01

    Diabetes is one of high-risk factors for cardiovascular disease. Improvement of endothelial dysfunction in diabetes reduces vascular complications. However, the underlying mechanism needs to be uncovered. This study was conducted to elucidate whether and how thromboxane A2 receptor (TPr) activation contributes to endothelial dysfunction in diabetes. Exposure of human umbilical vein endothelial cells (HUVECs) to either TPr agonists, two structurally related thromboxane A2 (TxA2) mimetics, significantly reduced phosphorylations of endothelial nitric oxide synthase (eNOS) at Ser(1177) and Akt at Ser(473). These effects were abolished by pharmacological or genetic inhibitors of TPr. TPr-induced suppression of eNOS and Akt phosphorylation was accompanied by upregulation of PTEN (phosphatase and tension homolog deleted on chromosome 10) and Ser(380)/Thr(382/383) PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation. The small GTPase, Rho, was also activated by TPr stimulation, and pretreatment of HUVECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued TPr-impaired Akt-eNOS signaling. In mice, streptozotocin-induced diabetes was associated with aortic PTEN upregulation, PTEN-Ser(380)/Thr(382/383) phosphorylation, and dephosphorylation of Akt (at Ser(473)) and eNOS (at Ser(1177)). Importantly, administration of TPr antagonist blocked these changes. We conclude that TPr activation impairs endothelial function by selectively inactivating the ROCK-PTEN-Akt-eNOS pathway in diabetic mice.

  2. Contribution of central nervous system endothelial nitric oxide synthase to neurohumoral activation in heart failure rats.

    PubMed

    Biancardi, Vinicia C; Son, Sook J; Sonner, Patrick M; Zheng, Hong; Patel, Kaushik P; Stern, Javier E

    2011-09-01

    Neurohumoral activation, a hallmark in heart failure (HF), is linked to the progression and mortality of HF patients. Thus, elucidating its precise underlying mechanisms is of critical importance. Other than its classic peripheral vasodilatory actions, the gas NO is a pivotal neurotransmitter in the central nervous system control of the circulation. While accumulating evidence supports a contribution of blunted NO function to neurohumoral activation in HF, the precise cellular sources, and NO synthase (NOS) isoforms involved, remain unknown. Here, we used a multidisciplinary approach to study the expression, cellular distribution, and functional relevance of the endothelial NOS isoform within the hypothalamic paraventricular nucleus in sham and HF rats. Our results show high expression of endothelial NOS in the paraventricular nucleus (mostly confined to astroglial cells), which contributes to constitutive NO bioavailability, as well as tonic inhibition of presympathetic neuronal activity and sympathoexcitatory outflow from the paraventricular nucleus. A diminished endothelial NOS expression and endothelial NOS-derived NO availability were found in the paraventricular nucleus of HF rats, resulting, in turn, in blunted NO inhibitory actions on neuronal activity and sympathoexcitatory outflow. Taken together, our study supports blunted central nervous system endothelial NOS-derived NO as a pathophysiological mechanism underlying neurohumoral activation in HF.

  3. Estrogen, testosterone, and gender differences.

    PubMed

    Dluzen, Dean E

    2005-08-01

    The purpose of this report is to gain some current perspective on the definition, bases, and trends for research associated with gender differences. To accomplish this goal an analysis on the number of citations from a 1994-2004 Medline search with the terms estrogen, testosterone, gender differences, sex differences as well as the combinations of these terms was performed. Other combinations of terms included separate searches of estrogen, testosterone, and their combination within males or females, and an analysis of gender and sex differences with the terms human and animal. The salient results from this survey include: (1) An overall greater ratio of estrogen:testosterone citations when these terms were searched alone or in combination with gender differences; (2) an overall greater ratio of testosterone:estrogen citations when these terms were combined with sex differences or conducted separately within males or females, although this trend was shifting toward decreased testosterone and increased estrogen citation numbers toward the latter years of the survey; (3) a trend for increasing numbers of estrogen and gender differences citations over the period of the survey; (4) a clear indication for the term gender differences to be associated with the search term human; and (5) a very small number of citations when the terms estrogen and testosterone were combined. Interpretations and implications of these results are discussed.

  4. Protein modification elicited by oxidized low-density lipoprotein (LDL) in endothelial cells: protection by (-)-epicatechin.

    PubMed

    Steffen, Yvonne; Jung, Tobias; Klotz, Lars-Oliver; Schewe, Tankred; Grune, Tilman; Sies, Helmut

    2007-04-01

    The action of oxidatively modified low-density lipoprotein (oxLDL) on vascular endothelial cells has been proposed to be a crucial process leading to endothelial dysfunction and atherogenesis. OxLDL was shown here to elicit oxidative stress in bovine aortic endothelial cells or human umbilical vein endothelial cells, as judged by an increase in 2',7'-dichlorofluorescein fluorescence and elevated levels of carbonylated, nitrated, and 2-hydroxynonenal-coupled proteins. These effects were sensitive to apocynin, indicating involvement of NADPH oxidase. A 170-kDa polypeptide carbonylated upon exposure of cells to oxLDL was identified by immunoprecipitation as EGF receptor. Immunocytochemical visualization by confocal microscopy revealed the highest levels of modified proteins in the perinuclear region. Exposure of endothelial cells to oxLDL led to modulation of the expression levels of *NO synthases; the endothelial isoform (eNOS) was down-regulated via proteasomal degradation, whereas the inducible isoform (iNOS) was up-regulated in an enzymatically active state. eNOS protein was found to be both carbonylated and nitrated upon exposure of cells to oxLDL. iNOS contributed to the generation of modified proteins as judged by the effects of the selective inhibitor L-NIO. These oxLDL-elicited changes in vascular endothelial cells described were suppressed by (-)-epicatechin, a dietary polyphenol, which inhibited NADPH oxidase activity in these cells.

  5. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  6. Estrogen receptor signaling during vertebrate development

    PubMed Central

    Bondesson, Maria; Hao, Ruixin; Lin, Chin-Yo; Williams, Cecilia; Gustafsson, Jan-Åke

    2014-01-01

    Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. PMID:24954179

  7. Suppression of endothelial nitric oxide synthase expression and endothelial cell proliferation by an intronic 27-ntmiRNA and it's a novel link to AP-1.

    PubMed

    Li, Yumei; Yan, Limei; Zhang, Wenyu; Hu, Nan; Chen, Wei; Wang, Hui; Kang, Min; Ou, Hesheng

    2015-01-01

    This study aims to investigate the role of activator protein 1 (AP-1) in the effects of 27nt-miRNA on expression of endothelial nitric oxide synthase (eNOS) gene and proliferation of endothelial cells. Cell proliferation was analyzed by cell number counting, colony formation assay and MTT assay. Cell migration and invasion was detected by transwell assay and invasion assay. Expression of eNOS and AP-1 was measured by real-time RT-PCR (mRNA level) and Western blotting (protein level). Luciferase reporter assay was performed to detect the binding of 27nt-miRNA to AP-1. Overexpression of 27nt-miRNA significantly inhibited endothelial cells proliferation, invasion and migration in vitro. And, eNOS and AP-1 expression at mRNA and protein levels were down-regulated by overexpression of 27nt-miRNA. Interestingly, overexpression of AP-1 protein partially restored eNOS expression and endothelial cell proliferation. Furthermore, the luciferase reporter assay demonstrated that AP-1 was a direct target of 27nt-miRNA. These data demonstrate that overexpression of 27nt-miRNA inhibits endothelial cell proliferation, invasion, migration, eNOS expression and AP-1 expression. Moreover, AP-1, a direct target of 27nt-miRNA, reverses the inhibitory effects of 27nt-miRNA. Thus, the effects of 27nt-miRNA might be acted through targeting AP-1.

  8. Resveratrol Ameliorates High Glucose and High-Fat/Sucrose Diet-Induced Vascular Hyperpermeability Involving Cav-1/eNOS Regulation

    PubMed Central

    Peng, Xiao lin; Qu, Wei; Wang, Lin zhi; Huang, Bin qing; Ying, Chen jiang; Sun, Xiu fa; Hao, Li ping

    2014-01-01

    Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects of Res on amelioration of endothelial hyperpermeability and the role of caveolin-1 (Cav-1)/endothelial nitric oxide synthase (eNOS) pathway. Adult male Wistar rats were treated with a normal or high-fat/sucrose diet (HFS) with or without Res for 13 weeks. HFS and in vitro treatment with high glucose increased hyperpermeability in rat aorta, heart, liver and kidney and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Application of Res reversed the changes in eNOS and Cav-1 expressions in aorta and heart of rats fed HFS and in BAECs incubated with high glucose. Res stimulated the formation of NO inhibited by high glucose in BAECs. Beta-Cyclodextrin (β-CD), caveolae inhibitor, showed the better beneficial effect than Res alone to up-regulate eNOS phosphorylative levels, while NG-Nitro-77 L-arginine methyl ester (L-NAME), eNOS inhibitor, had no effect on Cav-1 expression. Our studies suggested that HFS and in vitro treatment with high glucose caused endothelial hyperpermeability, which were ameliorated by Res at least involving Cav-1/eNOS regulation. PMID:25419974

  9. Resveratrol ameliorates high glucose and high-fat/sucrose diet-induced vascular hyperpermeability involving Cav-1/eNOS regulation.

    PubMed

    Peng, Xiao Lin; Qu, Wei; Wang, Lin Zhi; Huang, Bin Qing; Ying, Chen Jiang; Sun, Xiu Fa; Hao, Li Ping

    2014-01-01

    Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects of Res on amelioration of endothelial hyperpermeability and the role of caveolin-1 (Cav-1)/endothelial nitric oxide synthase (eNOS) pathway. Adult male Wistar rats were treated with a normal or high-fat/sucrose diet (HFS) with or without Res for 13 weeks. HFS and in vitro treatment with high glucose increased hyperpermeability in rat aorta, heart, liver and kidney and cultured bovine aortic endothelial cells (BAECs), respectively, which was attenuated by Res treatment. Application of Res reversed the changes in eNOS and Cav-1 expressions in aorta and heart of rats fed HFS and in BAECs incubated with high glucose. Res stimulated the formation of NO inhibited by high glucose in BAECs. Beta-Cyclodextrin (β-CD), caveolae inhibitor, showed the better beneficial effect than Res alone to up-regulate eNOS phosphorylative levels, while NG-Nitro-77 L-arginine methyl ester (L-NAME), eNOS inhibitor, had no effect on Cav-1 expression. Our studies suggested that HFS and in vitro treatment with high glucose caused endothelial hyperpermeability, which were ameliorated by Res at least involving Cav-1/eNOS regulation.

  10. Diverse Functions of Endothelial NO Synthases System: NO and EDH

    PubMed Central

    Godo, Shigeo

    2016-01-01

    Abstract: Endothelium-dependent relaxations are predominantly regulated by nitric oxide (NO) in large conduit arteries and by endothelium-dependent hyperpolarization (EDH) in small resistance vessels. Although the nature of EDH factors varies depending on species and vascular beds, we have previously demonstrated that endothelial NO synthases (eNOS)-derived hydrogen peroxide (H2O2) is an EDH factor in animals and humans. This vessel size-dependent contribution of NO and EDH is, at least in part, attributable to the diverse roles of endothelial NOSs system; in large conduit arteries, eNOS mainly serves as a NO-generating system to elicit soluble guanylate cyclase–cyclic guanosine monophosphate-mediated relaxations, whereas in small resistance vessels, it serves as a superoxide-generating system to cause EDH/H2O2-mediated relaxations. Endothelial caveolin-1 may play an important role for the diverse roles of NOSs. Although reactive oxygen species are generally regarded harmful, the physiological roles of H2O2 have attracted much attention as accumulating evidence has shown that endothelium-derived H2O2 contributes to cardiovascular homeostasis. The diverse functions of endothelial NOSs system with NO and EDH/H2O2 could account for a compensatory mechanism in the setting of endothelial dysfunction. In this review, we will briefly summarize the current knowledge on the diverse functions of endothelial NOSs system: NO and EDH/H2O2. PMID:26647119

  11. Early Determinants of H2O2-Induced Endothelial Dysfunction

    PubMed Central

    Boulden, Beth M.; Widder, Julian D.; Allen, Jon C.; Smith, Debra A.; Al-Baldawi, Ruaa N.; Harrison, David G.; Dikalov, Sergey I.; Jo, Hanjoong; Dudley, Samuel C.

    2006-01-01

    Reactive oxygen species (ROS) can stimulate nitric oxide (NO•) production from the endothelium by transient activation of endothelial nitric oxide synthase (eNOS). With continued or repeated exposure, NO• production is reduced, however. We investigated the early determinants of this decrease in NO• production. Following an initial H2O2 exposure, endothelial cells responded by increasing NO• production measured electrochemically. NO• concentrations peaked by 10 min with a slow reduction over 30 min. The decrease in NO• at 30 min was associated with a 2.7 fold increase O2•− production (p<0.05) and a 14 fold reduction of the eNOS cofactor, tetrahydrobiopterin (BH4, p<0.05). Used as a probe for endothelial dysfunction, the integrated NO• production over 30 min upon repeat H2O2 exposure was attenuated by 2.1 fold (p=0.03). Endothelial dysfunction could be prevented by BH4 cofactor supplementation, by scavenging O2•− or peroxynitrite (ONOO−), or by inhibiting the NADPH oxidase. Hydroxyl radical (•OH) scavenging did not have an effect. In summary, early H2O2-induced endothelial dysfunction was associated with a decreased BH4 level and increased O2•− production. Dysfunction required O2•−, ONOO−, or a functional NADPH oxidase. Repeated activation of the NADPH oxidase by ROS may act as a feed forward system to promote endothelial dysfunction. PMID:16895801

  12. Diverse Functions of Endothelial NO Synthases System: NO and EDH.

    PubMed

    Shimokawa, Hiroaki; Godo, Shigeo

    2016-05-01

    Endothelium-dependent relaxations are predominantly regulated by nitric oxide (NO) in large conduit arteries and by endothelium-dependent hyperpolarization (EDH) in small resistance vessels. Although the nature of EDH factors varies depending on species and vascular beds, we have previously demonstrated that endothelial NO synthases (eNOS)-derived hydrogen peroxide (H2O2) is an EDH factor in animals and humans. This vessel size-dependent contribution of NO and EDH is, at least in part, attributable to the diverse roles of endothelial NOSs system; in large conduit arteries, eNOS mainly serves as a NO-generating system to elicit soluble guanylate cyclase-cyclic guanosine monophosphate-mediated relaxations, whereas in small resistance vessels, it serves as a superoxide-generating system to cause EDH/H2O2-mediated relaxations. Endothelial caveolin-1 may play an important role for the diverse roles of NOSs. Although reactive oxygen species are generally regarded harmful, the physiological roles of H2O2 have attracted much attention as accumulating evidence has shown that endothelium-derived H2O2 contributes to cardiovascular homeostasis. The diverse functions of endothelial NOSs system with NO and EDH/H2O2 could account for a compensatory mechanism in the setting of endothelial dysfunction. In this review, we will briefly summarize the current knowledge on the diverse functions of endothelial NOSs system: NO and EDH/H2O2.

  13. Sepiapterin improves angiogenesis of pulmonary artery endothelial cells with in utero pulmonary hypertension by recoupling endothelial nitric oxide synthase

    PubMed Central

    Du, Jianhai; Xu, Hao; Bakhutashvili, Ivane; Eis, Annie; Shi, Yang; Pritchard, Kirkwood A.; Konduri, Girija G.

    2011-01-01

    Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased blood vessel density that contributes to increased pulmonary vascular resistance. Previous studies showed that uncoupled endothelial nitric oxide (NO) synthase (eNOS) activity and increased NADPH oxidase activity resulted in marked decreases in NO bioavailability and impaired angiogenesis in PPHN. In the present study, we hypothesize that loss of tetrahydrobiopterin (BH4), a critical cofactor for eNOS, induces uncoupled eNOS activity and impairs angiogenesis in PPHN. Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with PPHN (HTFL-PAEC) or control lambs (NFL-PAEC) were used to investigate the cellular mechanisms impairing angiogenesis in PPHN. Cellular mechanisms were examined with respect to BH4 levels, GTP-cyclohydrolase-1 (GCH-1) expression, eNOS dimer formation, and eNOS-heat shock protein 90 (hsp90) interactions under basal conditions and after sepiapterin (Sep) supplementation. Cellular levels of BH4, GCH-1 expression, and eNOS dimer formation were decreased in HTFL-PAEC compared with NFL-PAEC. Sep supplementation decreased apoptosis and increased in vitro angiogenesis in HTFL-PAEC and ex vivo pulmonary artery sprouting angiogenesis. Sep also increased cellular BH4 content, NO production, eNOS dimer formation, and eNOS-hsp90 association and decreased the superoxide formation in HTFL-PAEC. These data demonstrate that Sep improves NO production and angiogenic potential of HTFL-PAEC by recoupling eNOS activity. Increasing BH4 levels via Sep supplementation may be an important therapy for improving eNOS function and restoring angiogenesis in PPHN. PMID:21622842

  14. The epigenetics of estrogen

    PubMed Central

    Zhao, Zaorui; Fan, Lu

    2011-01-01

    Epigenetic processes have been implicated in everything from cell proliferation to maternal behavior. Epigenetic alterations, including histone alterations and DNA methylation, have also been shown to play critical roles in the formation of some types of memory, and in the modulatory effects that factors, such as stress, drugs of abuse and environmental stimulation, have on the brain and memory function. Recently, we demonstrated that the ability of the sex-steroid hormone 17β-estradiol (E2) to enhance memory formation is dependent on histone acetylation and DNA methylation, a finding that has important implications for understanding how hormones influence cognition in adulthood and aging. In this article, we provide an overview of the literature demonstrating that epigenetic processes and E2 influence memory, describe our findings indicating that epigenetic alterations regulate E2-induced memory enhancement, and discuss directions for future work on the epigenetics of estrogen. PMID:21593594

  15. Asymmetric Dimethylarginine, Endothelial Dysfunction and Renal Disease

    PubMed Central

    Aldámiz-Echevarría, Luis; Andrade, Fernando

    2012-01-01

    l-Arginine (Arg) is oxidized to l-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review. PMID:23109853

  16. 3-Methylcholanthrene/Aryl-Hydrocarbon Receptor-Mediated Hypertension Through eNOS Inactivation.

    PubMed

    Chang, Chih-Cheng; Hsu, Yung-Ho; Chou, Hsiu-Chu; Lee, Yuan-Chii G; Juan, Shu-Hui

    2017-05-01

    Endothelial nitric oxide synthase (eNOS) modulates vascular blood pressure and is predominantly expressed in endothelial cells and activated through the protein kinase B (Akt/PKB)-dependent pathway. We previously reported that 3-methylcholanthrene (3MC) activates the aryl hydrocarbon receptor (AhR) and reduces PI3K/Akt phosphorylation. This study investigated the mechanism underlying the downregulatory effects of 3-MC on nitric oxide (NO) production occurring through the AhR/RhoA/Akt-mediated mechanism. The mechanism underlying the effects of 3-MC on eNOS activity and blood pressure was examined in vitro and in vivo through genetic and pharmacological approaches. Results indicated that 3-MC modified heat shock protein 90 (HSP90), caveolin-1, dynein, and eNOS mRNA and protein expression through the AhR/RhoA-dependent mechanism in mouse cerebral vascular endothelial cells (MCVECs) and that 3-MC reduced eNOS phosphorylation through the AhR/RhoA-mediated inactivation of Akt1. The upregulation of dynein expression was associated with decreased eNOS dimer formation (eNOS dimer; an activated form of the enzyme). Coimmunoprecipitation assay results indicated that 3-MC significantly reduced the interaction between eNOS and its regulatory proteins, including Akt1 and HSP90, but increased the interaction between eNOS and caveolin-1. Immunofluorescence and Western blot analysis revealed that 3-MC reduced the amount of membrane-bound activated eNOS, and a modified Griess assay revealed that 3-MC concomitantly reduced NO production. However, simvastatin reduced 3-MC-mediated murine hypertension. Our study results indicate that AhR, RhoA, and eNOS have major roles in blood pressure regulation. Statin intervention might provide a potential therapeutic approach for reducing hypertension caused by 3-MC. J. Cell. Physiol. 232: 1020-1029, 2017. © 2016 Wiley Periodicals, Inc.

  17. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System

    PubMed Central

    Menazza, Sara; Murphy, Elizabeth

    2016-01-01

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to two nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue specific co-activators and co-repressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as GPER to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long term effects. The kinase signaling pathways can also mediate transcriptional changes, and can synergize with the estrogen receptor to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER-membrane signaling mechanisms. PMID:26838792

  18. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System.

    PubMed

    Menazza, Sara; Murphy, Elizabeth

    2016-03-18

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.

  19. eNOS/iNOS and endoplasmic reticulum stress-induced apoptosis in the placentas of patients with preeclampsia

    PubMed Central

    Du, L; He, F; Kuang, L; Tang, W; Li, Y; Chen, D

    2017-01-01

    Disruption of nitric oxide pathway and endoplasmic reticulum (ER) stress had been observed in preeclampsia (PE). However, the correlation and overall detailed expression profiles of ER stress-related markers and endothelial nitric oxide synthase/inducible nitric oxide synthase (eNOS/iNOS) in patients with PE were poorly understood. In this study, placental protein expression of ER stress-related markers as well as eNOS/iNOS in normotensive control (n=32) and PE pregnancies (n=32) was examined by western blot. In addition, apoptosis was detected by terminal deoxynucleotidyl transferase-mediated nick-end labelling (TUNEL) staining in placentas. Compared with control, we found elevated ER stress response was agreeable with iNOS upregulation in placenta tissue of PE patients. Placental protein expression of ER stress-related markers, including GRP78, GRP94, p-PERK, eIF2a, p-eIF2a, XBP1, CHOP, Ire1, p-Ire1 and iNOS, was higher, and eNOS expression was lower in PE (P<0.05 for all); however, the expression of ATF6 and PERK was similar in the PE and control groups. Upregulation of CHOP and iNOS was consistent of apoptosis increasing indicated by TUNEL staining and caspase 4 expression upregulation in PE placenta. Our datas suggest that the exaggerated ER stress response and upregulated iNOS are probably associated with increased apoptosis in placenta of PE patients and may contribute to the pathophysiology of PE. PMID:27030287

  20. [Uterine estrogen sulfotransferase and estrogen sulfatase in embryo implantation].

    PubMed

    Loza Arredondo, M C; González Juarez, N A

    1994-11-01

    The relation conjugated/unconjugated estrogens associated with reproductive processes has brought about the interest to study the biological role and regulation of the estrogen sulfotransferase and estrogen sulfatase which participate in the formation and hydrolysis of estrogen 3-sulfates, respectively. In this paper, both activities were measured through the reciprocal conversion of 3H-estrone sulfate and 3H-unconjugated estrogen during in vitro incubation with implantation sites (SI) and non-implanted sites (SNI) from the rat uterus, during the process of embryo implantation. Contrasting enzyme activities were found in these tissues. While sulfotransferase activity was higher in SI than in SNI (0.205 vs 0.144 pmol of E1S formed/mg protein/h, the inverse was found for the sulfatase (1.470 vs 1.977 pmol of E1 formed/mg protein/h). These results indicate the presence of both enzymes in the rat uterus and suggest the existence of a mechanism in SI that locally regulate the concentration of free and sulfoconjugated estrogens in which these enzymes participate.

  1. Regulation of staphylococcal enterotoxin B-elicited nitric oxide production by endothelial cells.

    PubMed Central

    LeClaire, R D; Kell, W M; Sadik, R A; Downs, M B; Parker, G W

    1995-01-01

    The effect of staphylococcal enterotoxin B (SEB)-elicited inducible nitric oxide synthase (iNOS) in mouse endothelial cells was investigated. Results showed that SEB stimulated the same level of NO production in gamma interferon (IFN-gamma)-primed cells as did trichloroacetic acid-extracted lipopolysaccharide. The kinetics of induced NO production and expression of mRNA for iNOS differed markedly in endothelial and macrophage cells. Induced endothelial nitrite production was transient and was 15 to 20% of that generated by macrophage cells; mRNA levels peaked by 2 h and then steadily declined, whereas macrophage message levels continually increased. The ability of endothelial cells to produce SEB-induced NO depended on priming with IFN-gamma, although detectable mRNA could be elicited by SEB alone. Induction of endothelial iNOS mRNA was inhibited by cycloheximide, which indicated a requirement for de novo protein synthesis. Niacinamide and interleukin-10 significantly reduced SEB-induced endothelial NO production. Both are reported to affect IFN-gamma-induced class II major histocompatibility complex (MHC) expression on antigen-presenting cells. Niacinamide reduced iNOS mRNA levels and markedly reduced IFN-gamma induction of endothelial class II MHC surface antigen. Interleukin-10 did not consistently reduce iNOS mRNA expression and had no effect on IFN-gamma induction of endothelial class II MHC surface antigen. These results suggest that SEB interacts with IFN-gamma-primed endothelial cells to elicit induced NO and that this induction can be effectively modulated at the receptor or transcriptional level. PMID:7529748

  2. Piper sarmentosum increases nitric oxide production in oxidative stress: a study on human umbilical vein endothelial cells.

    PubMed

    Ugusman, Azizah; Zakaria, Zaiton; Hui, Chua Kien; Nordin, Nor Anita Megat Mohd

    2010-07-01

    Nitric oxide produced by endothelial nitric oxide synthase (eNOS) possesses multiple anti-atherosclerotic properties. Hence, enhanced expression of eNOS and increased Nitric oxide levels may protect against the development of atherosclerosis. Piper sarmentosum is a tropical plant with antioxidant and anti-inflammatory activities. This study aimed to investigate the effects of Piper sarmentosum on the eNOS and Nitric oxide pathway in cultured human umbilical vein endothelial cells (HUVECs). HUVECS WERE DIVIDED INTO FOUR GROUPS: control, treatment with 180 microM hydrogen peroxide (H(2)O(2)), treatment with 150 microg/mL aqueous extract of Piper sarmentosum, and concomitant treatment with aqueous extract of PS and H(2)O(2) for 24 hours. Subsequently, HUVECs were harvested and eNOS mRNA expression was determined using qPCR. The eNOS protein level was measured using ELISA, and the eNOS activity and Nitric oxide level were determined by the Griess reaction. Human umbilical vein endothelial cells treated with aqueous extract of Piper sarmentosum showed a marked induction of Nitric oxide. Treatment with PS also resulted in increased eNOS mRNA expression, eNOS protein level and eNOS activity in HUVECs. Aqueous extract of Piper sarmentosum may improve endothelial function by promoting NO production in HUVECs.

  3. Contribution of insulin and Akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure.

    PubMed

    Symons, J David; McMillin, Shawna L; Riehle, Christian; Tanner, Jason; Palionyte, Milda; Hillas, Elaine; Jones, Deborah; Cooksey, Robert C; Birnbaum, Morris J; McClain, Donald A; Zhang, Quan-Jiang; Gale, Derrick; Wilson, Lloyd J; Abel, E Dale

    2009-05-08

    Impaired insulin signaling via phosphatidylinositol 3-kinase/Akt to endothelial nitric oxide synthase (eNOS) in the vasculature has been postulated to lead to arterial dysfunction and hypertension in obesity and other insulin resistant states. To investigate this, we compared insulin signaling in the vasculature, endothelial function, and systemic blood pressure in mice fed a high-fat (HF) diet to mice with genetic ablation of insulin receptors in all vascular tissues (TTr-IR(-/-)) or mice with genetic ablation of Akt1 (Akt1-/-). HF mice developed obesity, impaired glucose tolerance, and elevated free fatty acids that was associated with endothelial dysfunction and hypertension. Basal and insulin-mediated phosphorylation of extracellular signal-regulated kinase 1/2 and Akt in the vasculature was preserved, but basal and insulin-stimulated eNOS phosphorylation was abolished in vessels from HF versus lean mice. In contrast, basal vascular eNOS phosphorylation, endothelial function, and blood pressure were normal despite absent insulin-mediated eNOS phosphorylation in TTr-IR(-/-) mice and absent insulin-mediated eNOS phosphorylation via Akt1 in Akt1-/- mice. In cultured endothelial cells, 6 hours of incubation with palmitate attenuated basal and insulin-stimulated eNOS phosphorylation and NO production despite normal activation of extracellular signal-regulated kinase 1/2 and Akt. Moreover, incubation of isolated arteries with palmitate impaired endothelium-dependent but not vascular smooth muscle function. Collectively, these results indicate that lower arterial eNOS phosphorylation, hypertension, and vascular dysfunction following HF feeding do not result from defective upstream signaling via Akt, but from free fatty acid-mediated impairment of eNOS phosphorylation.

  4. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    PubMed Central

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  5. Androgen and estrogen receptor mediated mechanisms of testosterone action in male rat pelvic autonomic ganglia

    PubMed Central

    Purves-Tyson, T.D.; Arshi, M.S.; Handelsman, D. J.; Cheng, Y.; Keast, J. R.

    2007-01-01

    Although male reproductive function is primarily androgen dependent, many studies suggest that estrogens have direct actions on the male reproductive organs. Pelvic autonomic neurons provide the motor control of the internal reproductive organs and the penis and various properties of these neurons are affected by endogenous androgens. However, the possible role of estrogens at this site has not been examined. Here we have investigated the significance of estrogens produced by aromatisation of testosterone in the physiological actions of androgens on adult male rat pelvic ganglion neurons. RT-PCR studies showed that aromatase and both estrogen receptors (ERα and ERβ) are expressed in these ganglia. Western blotting also showed that aromatase is expressed in male pelvic ganglia. Using immunohistochemical visualisation, ERα was predominantly expressed by nitric oxide synthase (NOS)-positive parasympathetic pelvic ganglion neurons. In vivo studies showed that the decrease in pelvic ganglion soma size caused by gonadectomy could be prevented by administration of testosterone (T) or dihydrotestosterone (DHT), but not 17β-estradiol (E2), showing that this maintenance action of testosterone is mediated entirely by androgenic mechanisms. However, in vitro studies of cultured pelvic ganglion neurons revealed that T, DHT and E each stimulated the growth of longer and more complex neurites in both noradrenergic and cholinergic NOS-expressing neurons. The effects of T were attenuated by either androgen or estrogen receptor antagonists, or by inhibition of aromatase. Together these studies demonstrate that estrogens are likely to be synthesised in the male pelvic ganglia, produced from testosterone by local aromatase. The effects of androgens on axonal growth are likely to be at least partly mediated by estrogenic mechanisms, which may be important for understanding disease-, aging- and injury-induced plasticity in this part of the nervous system. PMID:17629410

  6. Umbilical Cord Blood NOS1 as a Potential Biomarker of Neonatal Encephalopathy.

    PubMed

    Lei, Jun; Paules, Cristina; Nigrini, Elisabeth; Rosenzweig, Jason M; Bahabry, Rudhab; Farzin, Azadeh; Yang, Samuel; Northington, Frances J; Oros, Daniel; McKenney, Stephanie; Johnston, Michael V; Graham, Ernest M; Burd, Irina

    2017-01-01

    There are no definitive markers to aid in diagnosis of neonatal encephalopathy (NE). The purpose of our study was (1) to identify and evaluate the utility of neuronal nitric oxide synthase (NOS1) in umbilical cord blood as a NE biomarker and (2) to identify the source of NOS1 in umbilical cord blood. This was a nested case-control study of neonates >35 weeks of gestation. ELISA for NOS1 in umbilical cord blood was performed. Sources of NOS1 in umbilical cord were investigated by immunohistochemistry, western blot, ELISA, and quantitative PCR. Furthermore, umbilical cords of full-term neonates were subjected to 1% hypoxia ex vivo. NOS1 was present in umbilical cord blood and increased in NE cases compared with controls. NOS1 was expressed in endothelial cells of the umbilical cord vein, but not in artery or blood cells. In ex vivo experiments, hypoxia was associated with increased levels of NOS1 in venous endothelial cells of the umbilical cord as well as in ex vivo culture medium. This is the first study to investigate an early marker of NE. NOS1 is elevated with hypoxia, and further studies are needed to investigate it as a valuable tool for early diagnosis of neonatal brain injury.

  7. Fish populations surviving estrogen pollution.

    PubMed

    Wedekind, Claus

    2014-02-10

    Among the most common pollutants that enter the environment after passing municipal wastewater treatment are estrogens, especially the synthetic 17α-ethinylestradiol that is used in oral contraceptives. Estrogens are potent endocrine disruptors at concentrations frequently observed in surface waters. However, new genetic analyses suggest that some fish populations can be self-sustaining even in heavily polluted waters. We now need to understand the basis of this tolerance.

  8. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    SciTech Connect

    Murakami, Hisashi; Murakami, Ryuichiro . E-mail: ryuichi@med.nagoya-u.ac.jp; Kambe, Fukushi; Cao, Xia; Takahashi, Ryotaro; Asai, Toru; Hirai, Toshihisa; Numaguchi, Yasushi; Okumura, Kenji; Seo, Hisao; Murohara, Toyoaki

    2006-03-24

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor {alpha}.

  9. The Estrogen Receptor-β Expression in De Quervain's Disease.

    PubMed

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-11-04

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy.

  10. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells

    PubMed Central

    Muid, Suhaila; Froemming, Gabriele R. Anisah; Rahman, Thuhairah; Ali, A. Manaf; Nawawi, Hapizah M.

    2016-01-01

    Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a

  11. Endothelial Nitric Oxide Synthase Prevents Heparanase Induction and the Development of Proteinuria.

    PubMed

    Garsen, Marjolein; Rops, Angelique L; Li, Jinhua; van Beneden, Katrien; van den Branden, Christiane; Berden, Jo Hm; Rabelink, Ton J; van der Vlag, Johan

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) deficiency exacerbates proteinuria and renal injury in several glomerular diseases, but the underlying mechanism is not fully understood. We recently showed that heparanase is essential for the development of experimental diabetic nephropathy and glomerulonephritis, and hypothesize that heparanase expression is regulated by eNOS. Here, we demonstrate that induction of adriamycin nephropathy (AN) in C57BL/6 eNOS-deficient mice leads to an increased glomerular heparanase expression accompanied with overt proteinuria, which was not observed in the AN-resistant wild type counterpart. In vitro, the eNOS inhibitor asymmetric dimethylarginine (ADMA) induced heparanase expression in cultured mouse glomerular endothelial cells. Moreover, ADMA enhanced transendothelial albumin passage in a heparanase-dependent manner. We conclude that eNOS prevents heparanase induction and the development of proteinuria.

  12. Endothelial Nitric Oxide Synthase Prevents Heparanase Induction and the Development of Proteinuria

    PubMed Central

    Garsen, Marjolein; Rops, Angelique L.; Li, Jinhua; van Beneden, Katrien; van den Branden, Christiane; Berden, Jo HM; Rabelink, Ton J.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) deficiency exacerbates proteinuria and renal injury in several glomerular diseases, but the underlying mechanism is not fully understood. We recently showed that heparanase is essential for the development of experimental diabetic nephropathy and glomerulonephritis, and hypothesize that heparanase expression is regulated by eNOS. Here, we demonstrate that induction of adriamycin nephropathy (AN) in C57BL/6 eNOS-deficient mice leads to an increased glomerular heparanase expression accompanied with overt proteinuria, which was not observed in the AN-resistant wild type counterpart. In vitro, the eNOS inhibitor asymmetric dimethylarginine (ADMA) induced heparanase expression in cultured mouse glomerular endothelial cells. Moreover, ADMA enhanced transendothelial albumin passage in a heparanase-dependent manner. We conclude that eNOS prevents heparanase induction and the development of proteinuria. PMID:27505185

  13. [Endothelial cell adhesion molecules].

    PubMed

    Ivanov, A N; Norkin, I A; Puchin'ian, D M; Shirokov, V Iu; Zhdanova, O Iu

    2014-01-01

    The review presents current data concerning the functional role of endothelial cell adhesion molecules belonging to different structural families: integrins, selectins, cadherins, and the immunoglobulin super-family. In this manuscript the regulatory mechanisms and factors of adhesion molecules expression and distribution on the surface of endothelial cells are discussed. The data presented reveal the importance of adhesion molecules in the regulation of structural and functional state of endothelial cells in normal conditions and in pathology. Particular attention is paid to the importance of these molecules in the processes of physiological and pathological angiogenesis, regulation of permeability of the endothelial barrier and cell transmigration.

  14. Gene variations of nitric oxide synthase regulate the effects of a saturated fat rich meal on endothelial function

    USDA-ARS?s Scientific Manuscript database

    Objective: Endothelial nitric oxide synthase gene variations have been linked to a higher risk for cardiovascular diseases by unknown mechanisms. Our aim was to determine if two SNPs located in NOS3 (E298D and i19342) interfere with microvascular endothelial function (MEF) and/or oxidative stress du...

  15. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells

    PubMed Central

    Jiang, Jun; Lü, Jian-Ming; Chai, Hong; Wang, Xinwen; Lin, Peter H.; Yao, Qizhi

    2010-01-01

    Resistin is a newly discovered adipocyte-derived cytokine that may play an important role in insulin resistance, diabetes, adipogenesis, inflammation, and cardiovascular disease. However, it is largely unknown whether resistin impairs endothelial functions by affecting the endothelial nitric oxide synthase (eNOS) system. In this study, we determined the effect of human recombinant resistin protein on eNOS expression and regulation in human coronary artery endothelial cells (HCAECs). When cells were treated with clinically relevant concentrations of resistin (40 or 80 ng/ml) for 24 h, the levels of eNOS mRNA, protein, and activity and eNOS mRNA stability were significantly reduced. Cellular nitric oxide levels were also decreased. In addition, the cellular levels of reactive oxygen species (ROS), including superoxide anion, were significantly increased in resistin-treated HCAECs. Mitochondrial membrane potential and the activities of catalase and superoxide dismutase were reduced. Three antioxidants, seleno-l-methionine, ginsenoside Rb1, and MnTBAP (superoxide dismutase mimetic), effectively blocked resistin-induced eNOS downregulation. Meanwhile, resistin activated the mitogen-activated protein kinases p38 and c-Jun NH2-terminal kinase (JNK), and the specific p38 inhibitor SB-239063 effectively blocked resistin-induced ROS production and eNOS downregulation. Furthermore, immunoreactivity of resistin was increased in atherosclerotic regions of human aorta and carotid arteries. Thus resistin directly induces eNOS downregulation through overproduction of ROS and activation of p38 and JNK in HCAECs. Resistin-induced mitochondrial dysfunction and imbalance in cellular redox enzymes may be the underlying mechanisms of oxidative stress. PMID:20435848

  16. Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension.

    PubMed

    Shaul, P W; Yuhanna, I S; German, Z; Chen, Z; Steinhorn, R H; Morin, F C

    1997-05-01

    Nitric oxide (NO), produced by endothelial (e) NO synthase (NOS), is critically involved in the cardiopulmonary transition from fetal to neonatal life. We have previously shown that NO-dependent relaxation is attenuated in intrapulmonary arteries from fetal lambs with pulmonary hypertension (PHT) created by prenatal ligation of the ductus arteriosus. In the present study, we determined whether this is due to altered pulmonary eNOS expression. eNOS and neuronal NOS (nNOS) protein expression were assessed in lungs from near-term control lambs and PHT lambs that underwent ductal ligation 10 days earlier. eNOS protein expression was decreased 49% in PHT lung. In contrast, nNOS protein abundance was unchanged. NOS enzymatic activity was also diminished in PHT vs. control lung (60 +/- 3 vs. 110 +/- 7 fmol.mg protein-1.min-1, respectively). Paralleling the declines in eNOS protein and NOS enzymatic activity, eNOS mRNA abundance was decreased 64% in PHT lung. Thus pulmonary eNOS gene expression is attenuated in the lamb model of fetal PHT. Because NO modulates both vasodilation and vascular smooth muscle growth, diminished eNOS expression may contribute to both the abnormal vasoreactivity and the excessive muscularization of the pulmonary circulation in fetal PHT.

  17. Vascular nitric oxide: Beyond eNOS.

    PubMed

    Zhao, Yingzi; Vanhoutte, Paul M; Leung, Susan W S

    2015-10-01

    As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  18. eNOS uncoupling in the cerebellum after BBB disruption by exposure to Phoneutria nigriventer spider venom.

    PubMed

    Soares, Edilene Siqueira; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice

    2015-09-15

    Numerous studies have shown that the venom of Phoneutria nigriventer (PNV) armed-spider causes excitotoxic signals and blood-brain barrier breakdown (BBBb) in rats. Nitric oxide (NO) is a signaling molecule which has a role in endothelium homeostasis and vascular health. The present study investigated the relevance of endothelial NO synthase (eNOS) uncoupling to clinical neurotoxic evolution induced by PNV. eNOS immunoblotting of cerebellum lysates processed through low-temperature SDS-PAGE revealed significant increased monomerization of the enzyme at critical periods of severe envenoming (1-2 h), whereas eNOS dimerization reversal paralleled to amelioration of animals condition (5-72 h). Moreover, eNOS uncoupling was accompanied by increased expression in calcium-sensing calmodulin protein and calcium-binding calbindin-D28 protein in cerebellar neurons. It is known that greater eNOS monomers than dimers implies the inability of eNOS to produce NO leading to superoxide production and endothelial/vascular barrier dysfunction. We suggest that transient eNOS deactivation and disturbances in calcium handling reduce NO production and enhance production of free radicals thus contributing to endothelial dysfunction in the cerebellum of envenomed rats. In addition, eNOS uncoupling compromises the enzyme capacity to respond to shear stress contributing to perivascular edema and it is one of the mechanisms involved in the BBBb promoted by PNV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear.

    PubMed

    Joshi, Mandar S; Mineo, Chieko; Shaul, Philip W; Bauer, John Anthony

    2007-09-01

    Human endothelial nitric oxide synthase (NOS3) gene polymorphism at Exon 7 (Glu298Asp) has been linked to vascular endothelial dysfunction, but the mechanisms are not defined. Shear is a key modulator of NOS3 function in vivo and association with caveolae is important for the control of NOS3 protein activity. Here we tested the hypothesis that altered enrichment of NOS3 in the caveolar membrane defines Glu298Asp genotype-specific responses and NOS3 activity. Basal caveolar membrane enrichment was carried out to quantitate the NOS3 enrichment in caveolae. Cells were subjected to shear and NOS3 protein levels, phosphorylation, enzyme function were investigated. Variant genotypes had lower NOx production pre- and post-shear, but no genotype-dependent alterations in pNOS3 were observed. Asp variants had significantly lower NOS3 enrichment in the caveolar membrane fraction. Further, immunoprecipitation studies demonstrated that Asp variants had substantially less NOS3/Cav-1 association (approximately 40%) during static conditions. Furthermore, acute shear causes impaired NOS3/Cav-1 dissociation in Asp variants. The results from immunoprecipitation studies were in complete agreement with caveolar membrane preparation findings. Collectively, these data demonstrate functional consequences of the Glu298Asp NOS3 variation and further define disruption of NOS3 caveolar localization and shear-induced mobilization as the primary mechanism responsible for these differences.

  20. Estrogenic flavonoids: structural requirements for biological activity.

    PubMed

    Miksicek, R J

    1995-01-01

    A systematic survey of polycyclic phenols has been performed to identify members of this chemical group with estrogenic activity. Twelve compounds were found to be able to stimulate the transcriptional activity of the human estrogen receptor expressed in cultured cells by transient transfection. These natural estrogens belong to several distinct, but chemically related classes including chalcones, flavanones, flavones, flavonols, and isoflavones. Selected examples of estrogenic flavonoids were further analyzed to determine their biological potencies and their relative affinities for binding to the estrogen receptor. These data are interpreted with respect to the molecular structure of polycyclic phenols required for hormonal activity as nonsteroidal estrogens.

  1. CaM Kinase II-dependent pathophysiological signalling in endothelial cells.

    PubMed

    Cai, Hua; Liu, Depei; Garcia, Joe G N

    2008-01-01

    Calcium/calmodulin-dependent protein kinase II (CaM Kinase II) is a known modulator of cardiac pathophysiology. The present review uniquely focuses on novel CaM Kinase II-mediated endothelial cell signalling which, under pathophysiological conditions, may indirectly modulate cardiac functions via alterations in endothelial or endocardial responses. CaM Kinase II has four different isoforms and various splicing variants for each isoform. The endothelial cell CaM Kinase II isoforms are sensitive to KN93 and a threonine 286-mutated inhibitory peptide. In macrovascular endothelial cells derived from aortas, CaM Kinase II mediates redox-sensitive upregulation of endothelial nitric oxide synthase (eNOS) gene expression by hydrogen peroxide (H2O2) and oscillatory shear stress, and a rapid activation of eNOS in response to bradykinin. In endothelial cells derived from lung microvessels, CaM Kinase II mediates barrier dysfunction, particularly when activated by thrombin. In brain capillary endothelial cells, CaM Kinase II lies upstream of voltage-gated potassium channels and hypoxia-induced cell swelling. In both macrovascular and microvascular endothelial cells, CaM Kinase II mediates actin cytoskeleton reorganization via distinct p38 MAPK/HSP27 and ERK1/2/MLCK signalling pathways, respectively. Although understanding of endothelium-specific CaM Kinase II signalling is nascent, data accumulated so far have demonstrated a potentially significant role of CaM Kinase II in endothelial cell pathophysiology.

  2. Endothelial dysfunction in cold-induced hypertensive rats.

    PubMed

    Zhu, Zhiming; Zhu, Shanjun; Zhu, Jijun; van der Giet, Markus; Tepel, Martin

    2002-02-01

    Endothelial dysfunction can be observed in preatherosclerotic conditions. However, its pathogenetic role in hypertension is still controversial. Endothelial-dependent changes of blood pressure (BP) and expression of endothelial nitric oxide synthase (eNOS) were evaluated in cold-induced hypertensive rats. Wistar rats were exposed to cold stress for 8 weeks. Exposure to cold stress significantly increased the systolic BP in rats. The infusion of acetylcholine significantly lowered mean arterial BP in control rats by 48 +/- 2% and by 32 +/- 1% in cold-induced hypertensive rats. The acetylcholine-induced reduction of mean arterial BP was significantly attenuated in cold-induced hypertensive rats (control rats, 45 +/- 2 mm Hg; cold-induced hypertensive rats, 34 +/- 3 mm Hg; P < .05). Administration of N(G)-nitro-L-arginine-methyl ester for 1 week significantly increased BP in control rats, whereas no effect could be observed in cold-induced hypertensive rats. In cold-induced hypertensive rats eNOS in aortic vessels was significantly reduced compared to control rats. In this nongenetic, nonsurgical animal model of cold-induced hypertensive rats an endothelial dysfunction can be observed due to reduced eNOS.

  3. Estrogens and selective estrogen receptor modulators in acromegaly.

    PubMed

    Duarte, Felipe H; Jallad, Raquel S; Bronstein, Marcello D

    2016-11-01

    Despite recent advances in acromegaly treatment by surgery, drugs, and radiotherapy, hormonal control is still not achieved by some patients. The impairment of IGF-1 generation by estrogens in growth hormone deficient patients is well known. Patients on oral estrogens need higher growth hormone doses in order to achieve normal IGF-1 values. In the past, estrogens were one of the first drugs used to treat acromegaly. Nevertheless, due to the high doses used and the obvious side effects in male patients, this strategy was sidelined with the development of more specific drugs, as somatostatin receptor ligands and dopamine agonists. In the last 15 years, the antagonist of growth hormone receptor became available, making possible IGF-1 control of the majority of patients on this particular drug. However, due to its high cost, pegvisomant is still not available in many centers around the world. In this setting, the effect of estrogens and also of selective estrogen receptor modulators on IGF-1 control was reviewed, and proved to be an ancillary tool in the management of acromegaly. This review describes data concerning their efficacy and place in the treatment algorithm of acromegaly.

  4. Glucocorticoids and estrogens modulate the NF-κB pathway differently in the micro- and macrovasculature.

    PubMed

    Edgar, Abarca-Rojano; Judith, Pacheco-Yépez; Elisa, Drago-Serrano Maria; Rafael, Campos-Rodríguez

    2013-12-01

    Estrogens and glucocorticoids have synergistic effects in the micro and macrovasculature of endothelial cells (ECs), having pro-inflammatory effects in the former and inhibiting the expression of adhesion molecules in the latter. The molecular basis of these effects in the endothelium has not yet been clarified. We postulate that the ECs of the micro- and macrovasculature have different non-genomic mechanisms that regulate levels of preexisting complexes of glucocorticoids and estrogens with their respective receptors. Since these receptors are regulated by NF-κB, their expression could be critical to the activation of a pro- or anti-inflammatory response. In the macrovasculature the synergistic effects of estrogens and glucocorticoids on ECs may be through the inhibition of NF-κB, leading to the inhibition of the expression of inflammatory molecules. It seems likely that glucocorticoid-receptor and estrogen-receptor complexes directly bind to NF-κB proteins in the macrovasculature, resulting in the inhibition of an excessive proinflammatory response. Further insights into these processes may help clarify the role of the endothelial cells of different vascular beds during the inflammatory response and chronic inflammation, and thus contribute to the design of more effective therapeutic strategies for the prevention of diseases related to inflammation, including atherosclerosis, systemic lupus erythematosus and rheumatoid arthritis.

  5. Salvianolic acid B improves vascular endothelial function in diabetic rats with blood glucose fluctuations via suppression of endothelial cell apoptosis.

    PubMed

    Ren, Younan; Tao, Shanjun; Zheng, Shuguo; Zhao, Mengqiu; Zhu, Yuanmei; Yang, Jieren; Wu, Yuanjie

    2016-11-15

    Vascular endothelial cell injury is an initial event in atherosclerosis. Salvianolic acid B (Sal B), a main bioactive component in the root of Salvia miltiorrhiza, has vascular protective effect in diabetes, but the underlying mechanisms remain unclear. The present study investigated the effect of Sal B on vascular endothelial function in diabetic rats with blood glucose fluctuations and the possible mechanisms implicated. The results showed that diabetic rats developed marked endothelial dysfunction as exhibited by impaired acetylcholine induced vasodilation. Supplementation with Sal B resulted in an evident improvement of endothelial function. Phosphorylation (Ser 1177) of endothelial nitric oxide synthase (eNOS) was significantly restored in Sal B treated diabetic rats, accompanied by an evident recovery of NO metabolites. Sal B effectively reduced vascular endothelial cell apoptosis, with Bcl-2 protein up-regulated and Bax protein down-regulated markedly. Treatment with Sal B led to an evident amelioration of oxidative stress in diabetic rats as manifested by enhanced antioxidant capacity and decreased contents of malondialdehyde in aortas. Protein levels of NOX2 and NOX4, two main isoforms of NADPH oxidase known as the major source of reactive oxygen species in the vasculature, were markedly decreased in Sal B treated groups. In addition, treatment with Sal B led to an evident decrease of serum lipids. Taken together, this study indicates that Sal B is capable of improving endothelial function in diabetic rats with blood glucose fluctuations, of which the underlying mechanisms might be related to suppression of endothelial cell apoptosis and stimulation of eNOS phosphorylation (Ser 1177).

  6. Formononetin promotes angiogenesis through the estrogen receptor alpha-enhanced ROCK pathway

    PubMed Central

    Li, Shang; Dang, Yuanye; Zhou, Xuelin; Huang, Bin; Huang, Xiaohui; Zhang, Zherui; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man

    2015-01-01

    Formononetin is an isoflavone that has been shown to display estrogenic properties and induce angiogenesis activities. However, the interrelationship between the estrogenic properties and angiogenesis activities of formononetin are not well defined. In the present study, docking and enzymatic assay demonstrated that formononetin displayed direct binding to the ligand-binding domain (LBD) of estrogen receptor alpha (ERα) with an agonistic property. Results from Human Umbilical Vein Endothelial Cells (HUVEC) by using real-time migration xCELLigence system, immunofluorescence and western blotting provided strong evidences of formononetin induced endothelial cell migration and dramatic actin cytoskeleton spatial modification through ERα-enhanced-ROCK-II/MMP2/9 signaling pathways. In addition, results from co-immunoprecipitation suggested formononetin induced cell migration via recruiting of ERα/ROCK-II activated complex formation. More interestingly, in zebrafish embryo we observed that formononetin significantly promoted angiogenic sproutings in the subintestinal vessels (SIVs) that could be completely abolished by ROCK inhibitor. In this study, we elucidated the underlying mechanisms that formononetin produced proangiogenesis effects through an ERα-enhanced ROCK-II signaling pathways. Results from the present study also expand our knowledge about the enigmatic underlying mechanisms of phytoestrogenic compounds in the promotion of angiogenesis in relation to ERα and ROCK interaction in endothelial cells and their relationship with actin assembly and cell migration. PMID:26568398

  7. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase.

    PubMed

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved

  8. Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling.

    PubMed

    Fetterman, Jessica L; Holbrook, Monica; Flint, Nir; Feng, Bihua; Bretón-Romero, Rosa; Linder, Erika A; Berk, Brittany D; Duess, Mai-Ann; Farb, Melissa G; Gokce, Noyan; Shirihai, Orian S; Hamburg, Naomi M; Vita, Joseph A

    2016-04-01

    Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase

    PubMed Central

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved

  10. Influence of coronary artery diameter on eNOS protein content

    NASA Technical Reports Server (NTRS)

    Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.

    2003-01-01

    The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.

  11. Influence of coronary artery diameter on eNOS protein content

    NASA Technical Reports Server (NTRS)

    Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.

    2003-01-01

    The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.

  12. Effect of Excessive Potassium Iodide on Rat Aorta Endothelial Cells.

    PubMed

    Zhang, Man; Zou, Xiaoyan; Lin, Xinying; Bian, Jianchao; Meng, Huicui; Liu, Dan

    2015-08-01

    The aim of the current study was to investigate the effect of excess iodine on rat aorta endothelial cells and the potential underlying mechanisms. Rat aorta endothelial cells were cultured with iodide ion (3506, 4076, 4647, 5218, 5789, 6360, 6931, and 7512 mg/L) for 48 h. Morphological changes of cells were observed with microscope after Wright-Giemsa staining and acridine orange staining. Cell proliferation was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell apoptosis was assessed with flow cytometry. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), endothelial nitric oxide synthase (eNOS), induced nitric oxide synthase (iNOS), and concentrations of malondialdehyde (MDA), glutathione (GSH), and protein carbonyl in culture medium were determined with colorimetric method. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was detected by enzyme linked immunosorbent assay. The results showed that excess iodine induced abnormal morphologic changes of cells, inhibited cell proliferation, and increased apoptosis rate. Iodine also reduced the activity of SOD, GSH-Px, and concentrations of GSH and increased the concentrations of MDA and protein carbonyl in a dose-dependent manner. Moreover, excess iodine decreased the activity of eNOS and increased the activity of iNOS and the expression of ICAM-1 and VCAM-1 in culture medium. Our results suggested that excess iodine exposure increased oxidative stress, caused damage of vascular endothelial cells, and altered the expression of adhesion factors and the activity of NOS. These changes may explain the mechanisms underlying excess iodine-induced vascular injury.

  13. Association of NOS2 and NOS3 gene polymorphisms with susceptibility to type 2 diabetes mellitus and diabetic nephropathy in the Chinese Han population.

    PubMed

    Chen, Feng; Li, Yu-Mei; Yang, Lin-Qing; Zhong, Cai-Gao; Zhuang, Zhi-Xiong

    2016-07-01

    Inducible nitric oxide synthase (NOS2) and endothelial nitric oxide synthase (NOS3) gene play important roles in the susceptibility to type 2 diabetes mellitus (T2DM). The present study aims to detect the potential association of NOS2 and NOS3 gene polymorphisms with the susceptibility toT2DM and diabetic nephropathy (DN) in the Chinese Han population. Four hundred and ninety T2DM patients and 485 healthy controls were enrolled in this case-control study. The genotypes of NOS2 and NOS3 gene polymorphisms were analyzed by the polymerase chain reaction (PCR)-ligase detection reaction (LDR) method. Our data demonstrated that the NOS2 rs2779248 and NOS2 rs1137933 genetic polymorphisms were significantly associated with the increased susceptibility to T2DM in the heterozygote comparison, dominant model, and allele contrast; and NOS3 rs3918188 genetic polymorphism was significantly associated with the increased susceptibility to T2DM in the homozygote comparison and recessive model. The allele-C and genotype-TC of NOS2 rs2779248, allele-A and genotype-GA of NOS2 rs1137933 and genotype-AA of NOS3 rs3918188 genetic polymorphisms might be the risk factors for increasing the susceptibility to T2DM. And a significant haplotype effect of NOS2 rs10459953/C- rs1137933/G- rs2779248/T was found between T2DM cases and controls. Moreover, NOS3 rs1800783 polymorphism was significantly associated with the increased susceptibility to DN in the heterozygote comparison, recessive model and allele contrast. At last, a positive correlation of family history of diabetes with NOS3 rs11771443 polymorphism was found in DN. These preliminary findings indicate that the NOS2 rs2779248, NOS2 rs1137933, and NOS3 rs3918188 genetic polymorphisms are potentially related to the susceptibility to T2DM, and the rs1800783 polymorphism might be considered as genetic risk factors for diabetic nephropathy, and family history of diabetes was closely associated with rs11771443 polymorphism in DN, and the

  14. Liraglutide ameliorates palmitate-induced endothelial dysfunction through activating AMPK and reversing leptin resistance.

    PubMed

    Li, Nana; Zhao, Yihe; Yue, Yingying; Chen, Liming; Yao, Zhi; Niu, Wenyan

    2016-09-09

    Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, is an antidiabetic drug. It has been shown to improve endothelial dysfunction, but the mechanism remains somewhat unclear. Leptin can also improve endothelial function. Cardiovascular disease (CVD) is linked to hyperleptinemia, and leptin resistance, how liraglutide influences the effect of leptin on endothelial function, is never reported. We used palmitic acid (PA) to mimic hyperlipidemia in endothelial cells to explore the cardio-protective mechanism of liraglutide and its impact on the role of leptin. Human umbilical vein endothelial cells (HUVECs) were incubated with PA for 16 h and then were treated with liraglutide for 30 min. PA elevated not only phosphorylation of JNK and IKKα/β, but also the expression of IL-6 in HUVECs. These effects of PA were reversed by liraglutide. In addition, liraglutide increased phosphorylation of eNOS, AMPK, and the release of NO but had no effect on PKC phosphorylation. In addition, leptin elevated eNOS phosphorylation but was abrogated by PA. However, in the presence of liraglutide, leptin regained its function of elevating eNOS phosphorylation. Last, we found that liraglutide inhibited PA-elevated SOCS3, which is a marker of leptin resistance. GLP-1 impairs endothelial inflammatory signals, improves endothelial function, and reverses leptin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Beer elicits vasculoprotective effects through Akt/eNOS activation.

    PubMed

    Vilahur, Gemma; Casani, Laura; Mendieta, Guiomar; Lamuela-Raventos, Rosa M; Estruch, Ramon; Badimon, Lina

    2014-12-01

    There is controversy regarding the effect of alcohol beverage intake in vascular vasodilatory function in peripheral arteries. The effects of beer intake in coronary vasodilation remain unknown. We investigated whether regular beer intake (alcohol and alcohol-free) protects against hypercholesterolaemia-induced coronary endothelial dysfunction and the mechanisms behind this effect. Pigs were fed 10 days: (i) a Western-type hypercholesterolaemic diet (WD); (ii) WD+low-dose beer (12·5 g alcohol/day); (iii) WD+moderate-dose beer (25 g alcohol/day); or (iv) WD+moderate-dose alcohol-free-beer (0·0 g alcohol/day). Coronary responses to endothelium-dependent vasoactive drugs (acetylcholine: receptor mediated; calcium ionophore-A23189: nonreceptor mediated), endothelium-independent vasoactive drug (SNP) and L-NMMA (NOS-antagonist) were evaluated in the LAD coronary artery by flow Doppler. Coronary Akt/eNOS activation, MCP-1 expression, oxidative DNA damage and superoxide production were assessed. Lipid profile, lipoproteins resistance to oxidation and urinary isoxanthohumol concentration were evaluated. Alcoholic and nonalcoholic beer intake prevented WD-induced impairment of receptor- and non-receptor-operated endothelial-dependent coronary vasodilation. All animals displayed a similar vasodilatory response to SNP and L-NMMA blunted all endothelial-dependent vasorelaxation responses. Haemodynamic parameters remained unchanged. Coronary arteries showed lower DNA damage and increased Akt/eNOS axis activation in beer-fed animals. Animals taking beer showed HDL with higher antioxidant capacity, higher LDL resistance to oxidation and increased isoxanthohumol levels. Weight, lipids levels, liver enzymes and MCP-1 expression were not affected by beer intake. Non-alcoholic-related beer components protect against hyperlipemia-induced coronary endothelial dysfunction by counteracting vascular oxidative damage and preserving the Akt/eNOS pathway. Light-to-moderate beer

  16. Exercise does not activate the β3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice.

    PubMed

    Kleindienst, Adrien; Battault, Sylvain; Belaidi, Elise; Tanguy, Stephane; Rosselin, Marie; Boulghobra, Doria; Meyer, Gregory; Gayrard, Sandrine; Walther, Guillaume; Geny, Bernard; Durand, Gregory; Cazorla, Olivier; Reboul, Cyril

    2016-07-01

    Obesity and diabetes are associated with higher cardiac vulnerability to ischemia-reperfusion (IR). The cardioprotective effect of regular exercise has been attributed to β3-adrenergic receptor (β3AR) stimulation and increased endothelial nitric oxide synthase (eNOS) activation. Here, we evaluated the role of the β3AR-eNOS pathway and NOS isoforms in exercise-induced cardioprotection of C57Bl6 mice fed with high fat and sucrose diet (HFS) for 12 weeks and subjected or not to exercise training during the last 4 weeks (HFS-Ex). HFS animals were more sensitive to in vivo and ex vivo IR injuries than control (normal diet) and HFS-Ex mice. Cardioprotection in HFS-Ex mice was not associated with increased myocardial eNOS activation and NO metabolites storage, possibly due to the β3AR-eNOS pathway functional loss in their heart. Indeed, a selective β3AR agonist (BRL37344) increased eNOS activation and had a protective effect against IR in control, but not in HFS hearts. Moreover, iNOS expression, nitro-oxidative stress (protein s-nitrosylation and nitrotyrosination) and ROS production during early reperfusion were increased in HFS, but not in control mice. Exercise normalized iNOS level and reduced protein s-nitrosylation, nitrotyrosination and ROS production in HFS-Ex hearts during early reperfusion. The iNOS inhibitor 1400 W reduced in vivo infarct size in HFS mice to control levels, supporting the potential role of iNOS normalization in the cardioprotective effects of exercise training in HFS-Ex mice. Although the β3AR-eNOS pathway is defective in the heart of HFS mice, regular exercise can protect their heart against IR by reducing iNOS expression and nitro-oxidative stress.

  17. Estrogen and Progestin (Hormone Replacement Therapy)

    MedlinePlus

    ... depression. Estrogen also prevents thinning of the bones (osteoporosis) in menopausal women. Progestin is added to estrogen ... you are taking this medication for prevention of osteoporosis. Follow all dietary and exercise recommendations, as both ...

  18. Mixture interactions of xenoestrogens with endogenous estrogens.

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. These environmental estrogens originate from various sources including concentrated animal feedlot operations (CAFO), m...

  19. Mixture interactions of xenoestrogens with endogenous estrogens.

    EPA Science Inventory

    There is growing concern of exposure to fish, wildlife, and humans to water sources contaminated with estrogens and the potential impact on reproductive health. These environmental estrogens originate from various sources including concentrated animal feedlot operations (CAFO), m...

  20. Enhanced noscapine delivery using estrogen-receptor-targeted nanoparticles for breast cancer therapy.

    PubMed

    Madan, Jitender; Gundala, Sushma R; Kasetti, Yoganjaneyulu; Bharatam, Prasad V; Aneja, Ritu; Katyal, Anju; Jain, Upendra K

    2014-07-01

    Noscapine (Nos), an orally available plant-derived antitussive alkaloid, is in phase II clinical trials for cancer chemotherapy. It has extensively been shown to inhibit tumor growth in nude mice bearing human xenografts of hematopoietic, breast, lung, ovarian, brain, and prostate origin. However, high tumor-suppressive Nos dosages encumber the development of oral controlled-release formulations because of a short biological half-life (<2 h), poor absorption, low aqueous solubility, and extensive first-pass metabolism. Here, we present the design, fabrication, optimization, characterization, and biological evaluation of estrone-conjugated noscapine-loaded gelatin nanoparticles (Nos-ES-GN) for targeting estrogen-receptor-positive breast cancer MCF-7 cells. Gelatin nanoparticles (GN) were a uniformly compact size, stable at physiological pH, and showed a drug entrapment efficiency of 66.1±5.9 and 65.2±5.6% for Nos-GN and Nos-ES-GN, respectively. The secondary structure of gelatin nanocoacervates was predicted using circular dichroism and in-silico molecular modeling. Our data suggest that ethanol-fabricated GN retained the α-helical content of gelatin, whereas acetone favored the formation of random coils. The conjugation of estrone to Nos-GN did not affect the release rate of the drug, and both formulations followed first-order release kinetics with an initial burst, followed by a slow release. The IC50 value of Nos-ES-GN was 21.2 μmol/l, which was ∼50% lower than the free drug (43.3 μmol/l), suggesting targeted drug delivery. Our cell uptake study carried out in an estrogen-receptor-positive (MCF-7) and negative (MDA-MB-231) cancer cell lines showed greater accumulation of Nos-ES-GN in MCF-7 cells instead of MDA-MB-231 cells. Our data indicated that estrone-conjugated nanoparticles may potentially be used for targeting breast cancer cells.

  1. Ozone exposure induces iNOS expression and tyrosine nitration in rat aorta.

    PubMed

    Sánchez-González, Dolores J; Moro, María A; Castillo-Henkel, Carlos; Herrera-González, Norma; Hernández-Pando, Rogelio; Larios-Medina, Francisco J; Cobilt, Rafael; Blanco, José A; Pedraza-Chaverrí, José; Villanueva, Cleva

    2004-05-01

    The aim was to study whether ozone affects vascular endothelium by causing inducible nitric oxide synthase (iNOS) expression and tyrosine nitration. We also studied biomarkers of endothelial function. Male Wistar rats were exposed to ozone (0.25ppm, 4h/day) or filtered air (control, ozone <0.05ppm). After ozone exposure, blood samples were taken to measure 6-keto prostaglandin F1α (6-keto PGF1α), dehydro-thromboxane B(2) (DH-TxB(2)), endothelin-1 and NO(2)(-)/NO(3)(-) (NO(x)(-)). iNOS and nitrotyrosine were detected in aorta by immunohistochemistry. Nitrotyrosine was also detected by immunoelectromicroscopy. Control aortae failed to show either iNOS or nitrotyrosine. Time-dependent positive iNOS and nitrotyrosine cells were observed in exposed animals. Except for NO(x)(-), endothelial markers decreased after 14 days of ozone exposure (P<0.05). After 28 days of ozone, 6-keto PGF1α remained low (P<0.05) while DH-TxB(2) increased (P<0.05). It is concluded that ozone causes endothelial dysfunction manifested early with peroxynitrite formation and lately with changes in endothelial markers.

  2. Diminished Neurogenic Femoral Artery Vasoconstrictor Response in a Zucker Obese Rat Model: Differential Regulation of NOS and COX Derivatives

    PubMed Central

    Martínez, Ana Cristina; Hernández, Medardo; Novella, Susana; Martínez, María Pilar; Pagán, Rosa María; Hermenegildo, Carlos; García-Sacristán, Albino; Prieto, Dolores; Benedito, Sara

    2014-01-01

    Objective Peripheral arterial disease is one of the macrovascular complications of type 2 diabetes mellitus. This study addresses femoral artery regulation in a prediabetic model of obese Zucker rats (OZR) by examining cross-talk between endothelial and neural factors. Methods and Results Arterial preparations from lean (LZR) and OZR were subjected to electrical field stimulation (EFS) on basal tone. Nitric oxide synthase (NOS) and cyclooxygenase (COX) isoform expression patterns were determined by immunohistochemical labelling and Western blotting. Results indicate significantly reduced noradrenergic contractions in preparations from OZR compared with those of LZR. Functional inhibition of endothelial NOS (eNOS) indicated a predominant role of this isoform in LZR and its modified activity in OZR. Neural (nNOS) and inducible NOS (iNOS) were activated and their expression was higher in femoral arteries from OZR. Neurotransmission modulated by large-conductance Ca2+-activated (BKCa) or voltage-dependent (KV) K+ channels did not seem compromised in the obese animals. Endothelial COX-1 and COX-2 were expressed in LZR and an additional adventitial location of COX-2 was also observed in OZR, explaining the higher COX-2 protein levels detected in this group. Prostanoids derived from both isoforms helped maintain vasoconstriction in LZR while in OZR only COX-2 was active. Superoxide anion inhibition reduced contractions in endothelium-intact arteries from OZR. Conclusions Endothelial dysfunction led to reduced neurogenic vasoconstriction in femoral arteries from OZR. In a setting of obesity, NO-dependent nNOS and iNOS dilation activity could be an alternative mechanism to offset COX-2- and reactive oxygen species-mediated vasoconstriction, along with impaired endothelial NO relaxation. PMID:25216050

  3. Investigating the Role of NOS2 in Breast Cancer | Center for Cancer Research

    Cancer.gov

    Inducible nitric oxide synthase (NOS2) is often elevated in breast tumors that lack expression of the estrogen receptor (ER) and predicts a poor prognosis for patients with these tumors. However, it is unclear whether NOS2 directly contributes to ER-negative breast cancer aggressiveness or how NOS2 expression is controlled within the tumor microenvironment. To tease apart the regulatory pathways upstream and downstream of NOS2, David Wink, Jr., Ph.D., Senior Investigator in CCR’s Radiation Biology Branch, along with colleagues from CCR’s Pediatric Oncology Branch, Laboratory of Human Carcinogenesis, and Laboratory of Experimental Immunology and from the Prostate Cancer Institute in Ireland, carried out studies in cell culture and mouse models.

  4. Cellular and Molecular Biology of Aging Endothelial Cells

    PubMed Central

    Donato, Anthony J.; Morgan, R. Garrett; Walker, Ashley E.; Lesniewski, Lisa A.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage have been shown to trigger cell senescence via the p53/p21 pathway that results in increased inflammatory signaling in arteries from older adults. This review will discuss the current

  5. Cellular and molecular biology of aging endothelial cells.

    PubMed

    Donato, Anthony J; Morgan, R Garrett; Walker, Ashley E; Lesniewski, Lisa A

    2015-12-01

    Cardiovascular disease (CVD) is the leading cause of death in the United States and aging is a major risk factor for CVD development. One of the major age-related arterial phenotypes thought to be responsible for the development of CVD in older adults is endothelial dysfunction. Endothelial function is modulated by traditional CVD risk factors in young adults, but advancing age is independently associated with the development of vascular endothelial dysfunction. This endothelial dysfunction results from a reduction in nitric oxide bioavailability downstream of endothelial oxidative stress and inflammation that can be further modulated by traditional CVD risk factors in older adults. Greater endothelial oxidative stress with aging is a result of augmented production from the intracellular enzymes NADPH oxidase and uncoupled eNOS, as well as from mitochondrial respiration in the absence of appropriate increases in antioxidant defenses as regulated by relevant transcription factors, such as FOXO. Interestingly, it appears that NFkB, a critical inflammatory transcription factor, is sensitive to this age-related endothelial redox change and its activation induces transcription of pro-inflammatory cytokines that can further suppress endothelial function, thus creating a vicious feed-forward cycle. This review will discuss the two macro-mechanistic processes, oxidative stress and inflammation, that contribute to endothelial dysfunction with advancing age as well as the cellular and molecular events that lead to the vicious cycle of inflammation and oxidative stress in the aged endothelium. Other potential mediators of this pro-inflammatory endothelial phenotype are increases in immune or senescent cells in the vasculature. Of note, genomic instability, telomere dysfunction or DNA damage has been shown to trigger cell senescence via the p53/p21 pathway and result in increased inflammatory signaling in arteries from older adults. This review will discuss the current state

  6. [Research Progress of NOS3 Participation in Regulatory Mechanisms of Cardiovascular Diseases].

    PubMed

    Sun, Ting; Chi, Qingjia; Wang, Guixue

    2016-02-01

    Cardiovascular disease has been a major threat to human's health and lives for many years. It is of great importance to explore the mechanisms and develop strategies to prevent the pathogenesis. Generally, cardiovascular disease is associated with endothelial dysfunction, which is closely related to the nitric oxide (NO)-mediated vasodilatation. The release of NO is regulated by NOS3 gene in mammals' vascular system. A great deal of evidences have shown that the polymorphism and epigenetic of NOS3 gene play vital roles in the pathological process of cardiovascular disease. To gain insights into the role of NOS3 in the cardiovascular diseases, we reviewed the molecular mechanisms underlying the development of cardiovascular diseases in this paper, including the uncoupling of NOS3 protein, epigenetic and polymorphism of NOS3 gene. The review can also offer possible strategies to prevent and treat cardiovascular diseases.

  7. Possible relation between the NOS3 gene GLU298ASP polymorphism and bladder cancer in Turkey.

    PubMed

    Verim, Levent; Toptas, Bahar; Ozkan, Nazli Ezgi; Cacina, Canan; Turan, Saime; Korkmaz, Gurbet; Yaylim, Ilhan

    2013-01-01

    Endothelial nitric oxide synthase (eNOS), encoded by the NOS3 gene, has been suggested to play an important role in uncontrolled cell growth in several cancer types. The objective of this study was to evaluate the role of the NOS3 Glu298Asp polymorphism in bladder cancer susceptibility in a Turkish population. We determined the genotypes of 66 bladder cancer cases and 88 healthy controls. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. A significant association for NOS3 Glu298Asp heterozygotes genotypes and T allely were found between healthy controls and bladder cancer, respectively (p<0.001: p=0.002). There were no significant associations between any genotypes and the stage, grade, and histological type of bladder cancer. Our study suggested an increased risk role of NOS3 GT genotype in bladder cancer susceptibility in our Turkish population.

  8. Estrogen actions in the cardiovascular system.

    PubMed

    Mendelsohn, M E

    2009-01-01

    This brief review summarizes the current state of the field for estrogen receptor actions in the cardiovascular system and the cardiovascular effects of hormone replacement therapy (HRT). It is organized into three parts: a short Introduction and overview of the current view of how estrogen works on blood vessels; a summary of the current status of clinical information regarding HRT and cardiovascular effects; and an update on state-of-the-art mouse models of estrogen action using estrogen receptor knockout mice.

  9. Estrogen in the limbic system.

    PubMed

    ter Horst, Gert J

    2010-01-01

    Estrogens are a group of steroid hormones that function as the primary female sex hormone. Estrogens not only have an important role in the regulation of the estrous or menstrual cycle but also control, for example, bone formation, the cardiovascular system, and cognitive functions. Estradiol (E2), the main representative of the group, is highly lipophylic and can easily pass the blood-brain barrier to modulate neuronal activity. Particularly the limbic system, a group of tightly interconnected forebrain areas controlling mood and emotion, is rich in estrogen receptors. To date two cytoplasmatic and/or nuclear estrogen receptors named ER-alpha (ERalpha) and ER-beta (ERbeta) have been identified. In the brain, ERalpha plays a critical role in regulating reproductive neuroendocrine behavior and function. ERbeta appears to play an important role in nonreproductive behaviors, such as learning and memory, anxiety, and mood. Five splice variants of ERbeta, named Erb1, Erb2, Erb1d3, Erb2d3, and Erb1d4, have been identified with possibly different biological activities. There is evidence of a thus far not definitely characterized membrane-linked ER receptor named mER-X. In this review, the anatomy of the limbic system and the distribution of estrogen receptors (ERs) are described in relation to coping with stress and the higher prevalence of stress-related psychiatric disorders in women. Effects of cyclic estrogen administration and chronic stress on recovery and neuronal plasticity are illustrated with own results. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Fish populations surviving estrogen pollution

    PubMed Central

    2014-01-01

    Among the most common pollutants that enter the environment after passing municipal wastewater treatment are estrogens, especially the synthetic 17α-ethinylestradiol that is used in oral contraceptives. Estrogens are potent endocrine disruptors at concentrations frequently observed in surface waters. However, new genetic analyses suggest that some fish populations can be self-sustaining even in heavily polluted waters. We now need to understand the basis of this tolerance. See research article: http://www.biomedcentral.com/1741-7007/12/1 PMID:24512617

  11. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Barton, Matthias

    2016-07-01

    It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Endothelial nitric oxide synthase levels and their response to exercise in patients with slow coronary flow

    PubMed Central

    Taşolar, Hakan; Aktürk, Erdal; Eyyüpkoca, Ferhat; Cansel, Mehmet; Yağmur, Jülide; Pekdemir, Hasan; Karakuş, Yasin; Özyalin, Fatma; Altun, Burak

    2013-01-01

    Summary Background Endothelial dysfunction plays a key role in the aetiopathogenesis of slow coronary flow (SCF) even if there is no obstructive epicardial lesion. Reduced plasma levels of endothelial nitric oxide synthase (eNOS) are an important indicator of endothelial dysfunction. We aimed to determine plasma levels of eNOS and their relationship with exercise in patients with SCF. Methods Twenty-two patients with SCF in at least one coronary artery and 17 healthy individuals were included in this study. The TIMI frame count method was used to determine SCF. Plasma levels of eNOS before and after effort were determined in the patient and control groups. Results Basal eNOS levels in the patient group were lower than in the control group (p = 0.040), and plasma eNOS levels after exercise decreased more significantly in the patient group compared to the control group (p = 0.002). Median decreases of eNOS in response to exercise were higher in the SCF group than in the control group (p < 0.001), and the decrease observed in the control group was not statistically significant (p = 0.35). There were significantly negative correlations between TIMI frame count and plasma levels of eNOS at baseline and after exercise (r = –0.51, p = 0.015, r = –0.58, p = 0.005, respectively). Moreover, there was also a positive correlation between the rate–pressure product and plasma levels of eNOS after exercise in patients with SCF (r = 0.494, p = 0.019). Conclusion Our findings indicate an important pathophysiological relationship between the severity of SCF in which endothelial dysfunction plays a role in its pathogenesis and the level of circulating plasma levels of eNOS. PMID:24337211

  13. Folic acid modulates eNOS activity via effects on posttranslational modifications and protein–protein interactions☆

    PubMed Central

    Taylor, Sarah Y.; Dixon, Hannah M.; Yoganayagam, Shobana; Price, Natalie; Lang, Derek

    2013-01-01

    Folic acid enhances endothelial function and improves outcome in primary prevention of cardiovascular disease. The exact intracellular signalling mechanisms involved remain elusive and were therefore the subject of this study. Particular focus was placed on folic acid-induced changes in posttranslational modifications of endothelial nitric oxide synthase (eNOS). Cultured endothelial cells were exposed to folic acid in the absence or presence of phosphatidylinositol-3' kinase/Akt (PI3K/Akt) inhibitors. The phosphorylation status of eNOS was determined via western blotting. The activities of eNOS and PI3K/Akt were evaluated. The interaction of eNOS with caveolin-1, Heat-Shock Protein 90 and calmodulin was studied using co-immunoprecipitation. Intracellular localisation of eNOS was investigated using sucrose gradient centrifugation and confocal microscopy. Folic acid promoted eNOS dephosphorylation at negative regulatory sites, and increased phosphorylation at positive regulatory sites. Modulation of phosphorylation status was concomitant with increased cGMP concentrations, and PI3K/Akt activity. Inhibition of PI3K/Akt revealed specific roles for this kinase pathway in folic acid-mediated eNOS phosphorylation. Regulatory protein and eNOS protein associations were altered in favour of a positive regulatory effect in the absence of bulk changes in intracellular eNOS localisation. Folic acid-mediated eNOS activation involves the modulation of eNOS phosphorylation status at multiple residues and positive changes in important protein–protein interactions. Such intracellular mechanisms may in part explain improvements in clinical vascular outcome following folic acid treatment. PMID:23796957

  14. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS.

    PubMed

    Elms, Shawn; Chen, Feng; Wang, Yusi; Qian, Jin; Askari, Bardia; Yu, Yanfang; Pandey, Deepesh; Iddings, Jennifer; Caldwell, Ruth B; Fulton, David J R

    2013-09-01

    Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role.

  15. Kaempferia parviflora ethanolic extract promoted nitric oxide production in human umbilical vein endothelial cells.

    PubMed

    Wattanapitayakul, Suvara K; Suwatronnakorn, Maneewan; Chularojmontri, Linda; Herunsalee, Angkana; Niumsakul, Somchit; Charuchongkolwongse, Suphan; Chansuvanich, Nuchattra

    2007-04-04

    The rhizomes of Kaempferia parviflora (KP) (Zingiberaceae) have been used in Thai traditional medicine for health promotion and for the treatment of digestive disorders and gastric ulcer. This study investigated effect of KP on endothelial function. Studies in human umbilical vein endothelial cells (HUVEC) showed that KP dose-dependently increased nitrite concentrations in culture media after 48 h incubation. eNOS mRNA and protein expression were also enhanced. The induction of eNOS mRNA was detected at 4 h and plateau at 48 h while iNOS expression was not observed. These data demonstrate that KP has a great potential for a supplemental use in vascular endothelial health promotion.

  16. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites.

    PubMed

    Farah, C; Kleindienst, A; Bolea, G; Meyer, G; Gayrard, S; Geny, B; Obert, P; Cazorla, O; Tanguy, S; Reboul, Cyril

    2013-11-01

    Exercise is an efficient strategy for myocardial protection against ischemia-reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-L-arginine methyl ester, L-NAME or N5-(1-iminoethyl)-L-ornithine, L-NIO] or tetrahydrobiopterin (BH₄). Exercise training protected hearts against IR injury and this effect was abolished by L-NAME or by L-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O₂·- to form peroxynitrite (ONOO⁻), which is cytotoxic.

  17. Compensatory lung growth in NOS3 knockout mice suggests synthase isoform redundancy.

    PubMed

    Pokall, Stefan; Maldonado, Arturo R; Klanke, Charles A; Katayama, Shuichi; Morris, Lee M; Vuletin, Jose F; Lim, Foong-Yen; Crombleholme, Timothy M

    2012-04-01

    Nitric oxide synthase 3 (NOS3) produces nitric oxide (NO) in endothelial cells, which stimulates cyclic guanosine monophosphate (cGMP) production and thereby mediates pulmonary vasodilation. Inhibition of cGMP enzymatic cleavage by sildenafil might be involved in lung growth stimulating processes in pulmonary hypoplasia. The aim of this study was to discover insights into the transcriptional regulation of NOS3 in a mouse model of compensatory lung growth (CLG). CLG was studied in wild type animals (WT) and NOS3 knockout mice (NOS3-/-) by dry weight, DNA, and protein quantification as well as relative quantification of NOS mRNA. All assessments were done on adult female mice, 10 days after left pneumonectomy (PNX) or sham thoracotomy. Weight ratios of right NOS3-/- lungs were no different than controls. There was a compensatory increase in DNA and a noncompensating increase in protein ratios in NOS3-/- mice compared with controls. Pharmacological knockdown with the pan-NOS inhibitor l-NAME (nitro-arginine methyl ester) reduced CLG by only 8% compared with the d-NAME treated control mice. Relative quantification of lung mRNA revealed no up-regulation of NOS3 expression in WT lungs after PNX, but NOS3-/- lungs showed a 2.6-fold higher inducible NOS2 expression compared with shams. These data suggest that NOS3 loss of function alone does not impair CLG in mice, possibly because of redundancy mechanisms involving NOS2. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Syringaresinol causes vasorelaxation by elevating nitric oxide production through the phosphorylation and dimerization of endothelial nitric oxide synthase

    PubMed Central

    Chung, Byung-Hee; Kim, Sookon; Kim, Jong-Dai; Lee, Jung Joon; Baek, Yi-Yong; Jeoung, Dooil; Lee, Hansoo; Choe, Jongseon; Ha, Kwon-Soo; Won, Moo-Ho; Kwon, Young-Guen

    2012-01-01

    Nitric oxide (NO) produced by endothelial NO synthase (eNOS) plays an important role in vascular functions, including vasorelaxation. We here investigated the pharmacological effect of the natural product syringaresinol on vascular relaxation and eNOS-mediated NO production as well as its underlying biochemical mechanism in endothelial cells. Treatment of aortic rings from wild type, but not eNOS-/- mice, with syringaresinol induced endothelium-dependent relaxation, which was abolished by addition of the NOS inhibitor NG-monomethyl-L-arginine. Treatment of human endothelial cells and mouse aortic rings with syringaresinol increased NO production, which was correlated with eNOS phosphorylation via the activation of Akt and AMP kinase (AMPK) as well as elevation of intracellular Ca2+ levels. A phospholipase C (PLC) inhibitor blocked the increases in intracellular Ca2+ levels, AMPK-dependent eNOS phosphorylation, and NO production, but not Akt activation, in syringaresinol-treated endothelial cells. Syringaresinol-induced AMPK activation was inhibited by co-treatment with PLC inhibitor, Ca2+ chelator, calmodulin antagonist, and CaMKKβ siRNA. This compound also increased eNOS dimerization, which was inhibited by a PLC inhibitor and a Ca2+-chelator. The chemicals that inhibit eNOS phosphorylation and dimerization attenuated vasorelaxation and cGMP production. These results suggest that syringaresinol induces vasorelaxation by enhancing NO production in endothelial cells via two distinct mechanisms, phosphatidylinositol 3-kinase/Akt- and PLC/Ca2+/CaMKKβ-dependent eNOS phosphorylation and Ca2+-dependent eNOS dimerization. PMID:22170035

  19. Characterization of cationic amino acid transporters and expression of endothelial nitric oxide synthase in human placental microvascular endothelial cells.

    PubMed

    Dye, J F; Vause, S; Johnston, T; Clark, P; Firth, J A; D'Souza, S W; Sibley, C P; Glazier, J D

    2004-01-01

    We investigated the expression and activity of arginine transporters and endothelial nitric oxide synthase (eNOS) in human placental microvascular endothelial cells (HPMEC). Using RT-PCR amplification products for eNOS, CAT1, CAT2A, CAT2B, CAT4, 4F2hc (CD98), rBAT and the light chains y+LAT1, y+LAT2, and b0+T1 were detected in HPMEC, but not B0+. Immunohistochemistry and Western blotting confirmed the presence of 4F2hc and CAT1 protein in HPMEC. 4F2hc-light chain dimers were indicated by a shift in molecular mass detected under nonreducing conditions. L-Arginine transport into HPMEC was independent of Na+ or Cl- and was inhibited by the neutral amino acid glutamine, but not by cystine. The Ki for glutamine inhibition was greater in the absence of Na+. Kinetic analysis supported a two-transporter model attributed to system y+L and system y+. Expression of eNOS in HPMEC was detectable by immunohistochemistry and ELISA but not by Western blotting. Activity of eNOS in HPMEC, measured over 48 h, either as the basal production of nitric oxide (NO) or as the accumulation of intracellular cGMP was not detectable. We conclude that HPMEC transport cationic amino acids by systems y+ and y+L and that basal eNOS expression and activity in these cells is low.

  20. Estrogen upregulates cyclooxygenase-1 gene expression in ovine fetal pulmonary artery endothelium.

    PubMed Central

    Jun, S S; Chen, Z; Pace, M C; Shaul, P W

    1998-01-01

    Prostacyclin (PGI2) is a key mediator of pulmonary vasodilation in the perinatal period and its synthesis in the pulmonary vasculature increases markedly during late gestation due to enhanced expression of the rate-limiting enzyme cyclooxygenase-1 (COX-1). The hormone estrogen may play a role in COX-1 upregulation since fetal estrogen levels rise dramatically during late gestation and estrogen enhances PGI2 synthesis in nonpulmonary vascular cells. We therefore studied the direct effects of estrogen on COX-1 expression in ovine fetal pulmonary artery endothelial cells (PAEC). Exposure to estradiol-17beta (E2beta, 10(-)10 to 10(-)6 M) caused a dose-related increase in COX-1 mRNA expression that was evident after 48 h and maximal at 10(-)8 M (fourfold increase). COX-1 mRNA stability was unchanged, suggesting that the upregulation is mediated at the level of transcription. E2beta treatment (10(-)8 M for 48 h) also caused a threefold increase in COX-1 protein expression and a threefold increase in PGI2 synthesis stimulated by bradykinin, the calcium ionophore A23187, or arachidonic acid. The estrogen receptor (ER) antagonist ICI 182,780 fully reversed the effects of the hormone on COX-1 protein expression and on arachidonic acid-stimulated PGI2 synthesis, and ER expression was evident in the PAEC by immunoblot analysis. These findings indicate that physiologic levels of estrogen cause upregulation of COX-1 expression and PGI2 synthesis in fetal PAEC via activation of PAEC ER. This process may play a critical role in optimizing the capacity for PGI2-mediated pulmonary vasodilation at birth, and it may also be involved in estrogen responsiveness in other vascular beds. PMID:9649571

  1. ACTIVATION OF VASCULAR ENDOTHELIAL NITRIC OXIDE SYNTHASE AND HEME OXYGENASE-1 EXPRESSION BY ELECTROPHILIC NITRO-FATTY ACIDS

    PubMed Central

    Khoo, Nicholas K.H.; Rudolph, Volker; Cole, Marsha P.; Golin-Bisello, Franca; Schopfer, Francisco J.; Woodcock, Steven R.; Batthyany, Carlos; Freeman, Bruce A.

    2010-01-01

    Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated byproducts of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yield electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO2) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO2 via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO2-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO2-FAs stimulated the phosphorylation of eNOS at Ser1179. These post-translational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO2-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders. PMID:19857569

  2. Benidipine, a dihydropyridine-calcium channel blocker, inhibits lysophosphatidylcholine-induced endothelial injury via stimulation of nitric oxide release.

    PubMed

    Matsubara, Masahiro; Yao, Kozo; Hasegawa, Kazuhide

    2006-01-01

    Benidipine hydrochloride (benidipine), which is a long-lasting dihydropyridine calcium channel blocker, exerts antihypertensive action via inhibition of Ca(2+) influx through L-type voltage-dependent calcium channels. In addition, benidipine is shown to restore endothelial function. However, the mechanisms whereby benidipine has protective effects on endothelium are poorly defined. Nitric oxide (NO), which is produced by endothelial NO synthase (eNOS), plays important roles in endothelial function. In this study, we examined effects of benidipine on NO production from human umbilical vein endothelial cells. Benidipine (0.3-10 microM) augmented eNOS expression and total eNOS enzymatic activities. Benidipine also promoted the production of NO and the accumulation of cGMP, a second messenger of NO. Lysophosphatidylcholine (lysoPC), a component of oxidized low-density lipoproteins, induced caspase-3 activation followed by apoptosis of endothelial cells. Benidipine (0.3-10 microM) prevented lysoPC-induced caspase-3 activation, which was canceled by Nomega-nitro-L-arginine-methyl ester (L-NAME) (250-2500 microM), an inhibitor of NOS. Moreover, diethylenetetraamine NONOate (30-100 microM), a NO donor, inhibited the caspase-3 activation. These results suggested that the increase in NO production by benidipine might be involved in the inhibition of caspase induction. The direct enhancement of endothelial NO release by benidipine may be in part responsible for amelioration of endothelial dysfunction.

  3. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice.

    PubMed

    Stein, Sokrates; Schäfer, Nicola; Breitenstein, Alexander; Besler, Christian; Winnik, Stephan; Lohmann, Christine; Heinrich, Kathrin; Brokopp, Chad E; Handschin, Christoph; Landmesser, Ulf; Tanner, Felix C; Lüscher, Thomas F; Matter, Christian M

    2010-06-01

    Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-kappaB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-kappaB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation.

  4. Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo.

    PubMed

    Ashina, Kohei; Tsubosaka, Yoshiki; Nakamura, Tatsuro; Omori, Keisuke; Kobayashi, Koji; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2015-01-01

    Histamine is a mediator of allergic inflammation released mainly from mast cells. Although histamine strongly increases vascular permeability, its precise mechanism under in vivo situation remains unknown. We here attempted to reveal how histamine induces vascular hyperpermeability focusing on the key regulators of vascular permeability, blood flow and endothelial barrier. Degranulation of mast cells by antigen-stimulation or histamine treatment induced vascular hyperpermeability and tissue swelling in mouse ears. These were abolished by histamine H1 receptor antagonism. Intravital imaging showed that histamine dilated vasculature, increased blood flow, while it induced hyperpermeability in venula. Whole-mount staining showed that histamine disrupted endothelial barrier formation of venula indicated by changes in vasc