Science.gov

Sample records for endothelial shear stress

  1. Effects of shear stress on endothelial progenitor cells.

    PubMed

    Obi, Syotaro; Yamamoto, Kimiko; Ando, Joji

    2014-10-01

    Endothelial progenitor cells (EPCs) are adult stem cells that play a central role in neovascularization. EPCs are mobilized from bone marrow into peripheral blood, attach to existing endothelial cells, and then transmigrate across the endothelium into tissues, where they proliferate, differentiate, and form new blood vessels. In the process, EPCs are exposed to shear stress, a biomechanical force generated by flowing blood and tissue fluid flow. When cultured EPCs are exposed to controlled levels of shear stress in a flow-loading device, their bioactivities in terms of proliferation, anti-apoptosis, migration, production of bioactive substances, anti-thrombosis, and tube formation increase markedly. Expression of endothelial marker genes and proteins by EPCs also increases in response to shear stress, and they differentiate into mature endothelial cells. Great advances have been made in elucidating the mechanisms by which mature endothelial cells sense and respond to shear stress, but not in EPCs. Further study of EPC responses to shear stress will be necessary to better understand the physiological and pathophysiological roles of EPCs and to apply EPCs to new therapies in the field of regenerative medicine. PMID:25992410

  2. Fluid shear, intercellular stress, and endothelial cell alignment

    PubMed Central

    Steward, Robert; Tambe, Dhananjay; Hardin, C. Corey; Krishnan, Ramaswamy

    2015-01-01

    Endothelial cell alignment along the direction of laminar fluid flow is widely understood to be a defining morphological feature of vascular homeostasis. While the role of associated signaling and structural events have been well studied, associated intercellular stresses under laminar fluid shear have remained ill-defined and the role of these stresses in the alignment process has remained obscure. To fill this gap, we report here the tractions as well as the complete in-plane intercellular stress fields measured within the human umbilical vein endothelial cell (HUVEC) monolayer subjected to a steady laminar fluid shear of 1 Pa. Tractions, intercellular stresses, as well as their time course, heterogeneity, and anisotropy, were measured using monolayer traction microscopy and monolayer stress microscopy. Prior to application of laminar fluid flow, intercellular stresses were largely tensile but fluctuated dramatically in space and in time (317 ± 122 Pa). Within 12 h of the onset of laminar fluid flow, the intercellular stresses decreased substantially but continued to fluctuate dramatically (142 ± 84 Pa). Moreover, tractions and intercellular stresses aligned strongly and promptly (within 1 h) along the direction of fluid flow, whereas the endothelial cell body aligned less strongly and substantially more slowly (12 h). Taken together, these results reveal that steady laminar fluid flow induces prompt reduction in magnitude and alignment of tractions and intercellular stress tensor components followed by the retarded elongation and alignment of the endothelial cell body. Appreciably smaller intercellular stresses supported by cell-cell junctions logically favor smaller incidence of gap formation and thus improved barrier integrity. PMID:25652451

  3. A multi-shear perfusion bioreactor for investigating shear stress effects in endothelial cell constructs.

    PubMed

    Rotenberg, Menahem Y; Ruvinov, Emil; Armoza, Anna; Cohen, Smadar

    2012-08-01

    Tissue engineering research is increasingly relying on the use of advanced cultivation technologies that provide rigorously-controlled cell microenvironments. Herein, we describe the features of a micro-fabricated Multi-Shear Perfusion Bioreactor (MSPB) designed to deliver up to six different levels of physiologically-relevant shear stresses (1-13 dyne cm(-2)) to six cell constructs simultaneously, during a single run. To attain a homogeneous fluid flow within each construct, flow-distributing nets photo-etched with a set of openings for fluid flow were placed up- and down-stream from each construct. Human umbilical vein endothelial cells (HUVECs) seeded in alginate scaffolds within the MSPB and subjected to three different levels of shear stress for 24 h, responded accordingly by expressing three different levels of the membranal marker Intercellular Adhesion Molecule 1 (ICAM-1) and the phosphorylated endothelial nitric oxide synthetase (eNOS). A longer period of cultivation, 17 d, under two different levels of shear stress resulted in different lengths of cell sprouts within the constructs. Collectively, the HUVEC behaviour within the different constructs confirms the feasibility of using the MSPB system for simultaneously imposing different shear stress levels, and for validating the flow regime in the bioreactor vessel as assessed by the computational fluid dynamic (CFD) model. PMID:22622237

  4. Impact of bifurcation dual stenting on endothelial shear stress

    PubMed Central

    Chen, Henry Y.; Koo, Bon-Kwon

    2015-01-01

    Despite advances in percutaneous coronary interventions and the introduction of drug eluding stents, in-stent restenosis and stent thrombosis remain a clinically significant problem for bifurcations. The aim of this study is to determine the effect of dual bifurcation stenting on hemodynamic parameters known to influence restenosis and thrombosis. We hypothesized that double stenting, especially with a longer side branch (SB) stent, likely has a negative effect on wall shear stress (WSS), WSS gradient (WSSG), and oscillatory shear index (OSI). To test this hypothesis, we developed computational models of dual stents at bifurcations and non-Newtonian blood simulations. The models were then interfaced, meshed, and solved in a validated finite-element package. Longer and shorter stents at the SB and provisional stenting were compared. It was found that stents placed in the SB at a bifurcation lowered WSS, but elevated WSSG and OSI. Dual stenting with longer SB stent had the most adverse impact on SB endothelial WSS, WSSG, and OSI, with low WSS region up to 50% more than the case with shorter SB stent. The simulations also demonstrated flow disturbances resulting from SB stent struts protruding into the main flow field near the carina, which may have implications on stent thrombosis. The simulations predict a negative hemodynamic role for SB stenting, which is exaggerated with a longer stent, consistent with clinical trial findings that dual-stenting is comparable or inferior to provisional stenting. PMID:26183473

  5. Shear stress reduces protease activated receptor-1 expression in human endothelial cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Shear stress has been shown to regulate several genes involved in the thrombotic and proliferative functions of endothelial cells. Thrombin receptor (protease-activated receptor-1: PAR-1) increases at sites of vascular injury, which suggests an important role for PAR-1 in vascular diseases. However, the effect of shear stress on PAR-1 expression has not been previously studied. This work investigates effects of shear stress on PAR-1 gene expression in both human umbilical vein endothelial cells (HUVECs) and microvascular endothelial cells (HMECs). Cells were exposed to different shear stresses using a parallel plate flow system. Northern blot and flow cytometry analysis showed that shear stress down-regulated PAR-1 messenger RNA (mRNA) and protein levels in both HUVECs and HMECs but with different thresholds. Furthermore, shear-reduced PAR-1 mRNA was due to a decrease of transcription rate, not increased mRNA degradation. Postshear stress release of endothelin-1 in response to thrombin was reduced in HUVECs and HMECs. Moreover, inhibitors of potential signaling pathways applied during shear stress indicated mediation of the shear-decreased PAR-1 expression by protein kinases. In conclusion, shear stress exposure reduces PAR-1 gene expression in HMECs and HUVECs through a mechanism dependent in part on protein kinases, leading to altered endothelial cell functional responses to thrombin.

  6. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells

    PubMed Central

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M.; Eguchi, Satoru; Brown, Michael D.

    2015-01-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31+/CD42a−) and activated (CD62E+) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting mitochondrial

  7. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells.

    PubMed

    Koo, Andrew; Dewey, C Forbes; García-Cardeña, Guillermo

    2013-01-15

    The endothelial glycocalyx, a glycosaminoglycan layer located on the apical surface of vascular endothelial cells, has been shown to be important for several endothelial functions. Previous studies have documented that the glycocalyx is highly abundant in the mouse common carotid region, where the endothelium is exposed to laminar shear stress, and it is resistant to atherosclerosis. In contrast, the glycocalyx is scarce or absent in the mouse internal carotid sinus region, an area exposed to nonlaminar shear stress and highly susceptible to atherosclerosis. On the basis of these observations, we hypothesized that the expression of components of the endothelial glycocalyx is differentially regulated by distinct hemodynamic environments. To test this hypothesis, human endothelial cells were exposed to shear stress waveforms characteristic of atherosclerosis-resistant or atherosclerosis-susceptible regions of the human carotid, and the expression of several components of the glycocalyx was assessed. These experiments revealed that expression of several components of the endothelial glycocalyx is differentially regulated by distinct shear stress waveforms. Interestingly, we found that heparan sulfate expression is increased and evenly distributed on the apical surface of endothelial cells exposed to the atheroprotective waveform and is irregularly present in cells exposed to the atheroprone waveform. Furthermore, expression of a heparan sulfate proteoglycan, syndecan-1, is also differentially regulated by the two waveforms, and its suppression mutes the atheroprotective flow-induced cell surface expression of heparan sulfate. Collectively, these data link distinct hemodynamic environments to the differential expression of critical components of the endothelial glycocalyx.

  8. [Promotion of Function of Endothelial Progenitor Cells with Shexiang Baoxin Pill Treatment under Shear Stress].

    PubMed

    Li, Gang; Chen, Yang; Wu, Jiang

    2015-08-01

    The aim of this study was to investigate whether shear stress could promote function of endothelial progenitor cells (EPCs) with Shexiang Baoxin Pill (SBP) treatment in vitro, and to study whether shear stress contributed to vascular injury repair by EPCs. EPCs were isolated and characterized; EPCs' proliferation, migration, adhesion, tube formation and eNOS protein level in vitro were investigated by culturing confluent EPCs in 4 mg/mL SBP under physiological shear stress (15 dyne/cm2) for up to 24 hours. Afterwards, EPCs were transfused into rats after wire-induced carotid artery injury augmented re-endothelialization. The results showed that, compared to the SBP group, the shear stress+SBP group obviously enhanced EPCs proliferation, migration, adhesion, tube formation and eNOS protein expression in vitro (P<0.01). After one week, immunofluorescence staining showed that endothelial regeneration rate obviously enhanced in shear stress+SBP group (P<0.01). The present study demonstrates that shear stress can promote function of endothelial progenitor cells treated with SBP, which improves the vascular injury repair potentials of EPCs. PMID:26710458

  9. Human brain microvascular endothelial cells resist elongation due to shear stress.

    PubMed

    Reinitz, Adam; DeStefano, Jackson; Ye, Mao; Wong, Andrew D; Searson, Peter C

    2015-05-01

    Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier.

  10. Relationship between Microtubule Network Structure and Intracellular Transport in Cultured Endothelial Cells Affected by Shear Stress

    NASA Astrophysics Data System (ADS)

    Kudo, Susumu; Ikezawa, Kenji; Ikeda, Mariko; Tanishita, Kazuo

    Endothelial cells (ECs) that line the inner surface of blood vessels are barriers to the transport of various substances into or from vessel walls, and are continuously exposed to shear stress induced by blood flow in vivo. Shear stress affects the cytoskeleton (e.g., microtubules, microfilaments, intermediate filaments), and affects the transport of macromolecules. Here, the relationship between the microtubule network structure and this transport process for albumin uptake within cultured aortic endothelial cells affected by shear stress was studied. Based on fluorescent images of albumin uptake obtained by using confocal laser scanning microscopy (CLSM), both the microtubule network and albumin uptake in ECs were disrupted by colchicine and were affected by shear stress loading.

  11. Online quantitative phase imaging of vascular endothelial cells under fluid shear stress utilizing digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Odenthal-Schnittler, Maria; Schnittler, Hans Joachim; Kemper, Björn

    2016-03-01

    We have explored the utilization of quantitative phase imaging with digital holographic microscopy (DHM) as a novel tool for quantifying the dynamics of morphologic parameters (morphodynamics) of confluent endothelial cell layers under fluid shear stress conditions. Human umbilical vein endothelial cells (HUVECs) were exposed to fluid shear stress in a transparent cone/plate flow device (BioTech-Flow-System) and imaged with a modular setup for quantitative DHM phase imaging for up to 48 h. The resulting series of quantitative phase image sequences were analyzed for the average surface roughness of the cell layers and cell alignment. Our results demonstrate that quantitative phase imaging is a powerful and reliable tool to quantify the dynamics of morphological adaptation of endothelial cells to fluid shear stress.

  12. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

    PubMed

    Fey, Theres; Schubert, Kai Michael; Schneider, Holger; Fein, Evelyn; Kleinert, Eike; Pohl, Ulrich; Dendorfer, Andreas

    2016-08-01

    Podosomes are dynamic cytoskeletal membrane structures with local adhesive and proteolytic activity. They are critically involved in angiogenesis and vascular adaptive growth. Here, we studied in HUVECs and murine small vessels whether shear stress controls podosome assembly and local proteolytic activity. Podosomes were characterized by immunohistochemistry, and their proteolytic activity was assessed as degradation imprints in fluorescent gelatin that was used as growth substrate. Compared with controls (10 dyn/cm(2)), the number of podosomes formed per time was doubled when cells were exposed to low shear stress (0.3 dyn/cm(2)) or even increased 5-fold under static conditions. This was a result of an enhanced expression of VEGF after reduction of shear stress. Consequently, enhanced podosome formation could be prevented by a VEGF receptor antagonist as well by interruption of VEGF signaling via inhibition of PI3K, Src, or p38. Increase of podosome assembly went along with significantly augmented cell motility. In vivo experiments in mouse arteries confirmed increased endothelial podosome numbers when shear stress was abolished by vessel occlusion. We conclude that shear stress, by reducing VEGF release, inhibits podosome assembly. Hence, endothelial cell-mediated matrix proteolysis and migratory activity are inhibited, thereby stabilizing the structure of the vessel wall.-Fey, T., Schubert, K. M., Schneider, H., Fein, E., Kleinert, E., Pohl, U., Dendorfer, A. Impaired endothelial shear stress induces podosome assembly via VEGF up-regulation.

  13. Cooperative effects of matrix stiffness and fluid shear stress on endothelial cell behavior.

    PubMed

    Kohn, Julie C; Zhou, Dennis W; Bordeleau, François; Zhou, Allen L; Mason, Brooke N; Mitchell, Michael J; King, Michael R; Reinhart-King, Cynthia A

    2015-02-01

    Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm(2). Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.

  14. Cooperative Effects of Matrix Stiffness and Fluid Shear Stress on Endothelial Cell Behavior

    PubMed Central

    Kohn, Julie C.; Zhou, Dennis W.; Bordeleau, François; Zhou, Allen L.; Mason, Brooke N.; Mitchell, Michael J.; King, Michael R.; Reinhart-King, Cynthia A.

    2015-01-01

    Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm2. Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health. PMID:25650915

  15. A Shearing-Stretching Device That Can Apply Physiological Fluid Shear Stress and Cyclic Stretch Concurrently to Endothelial Cells.

    PubMed

    Meza, Daphne; Abejar, Louie; Rubenstein, David A; Yin, Wei

    2016-03-01

    Endothelial cell (EC) morphology and functions can be highly impacted by the mechanical stresses that the cells experience in vivo. In most areas in the vasculature, ECs are continuously exposed to unsteady blood flow-induced shear stress and vasodilation-contraction-induced tensile stress/strain simultaneously. Investigations on how ECs respond to combined shear stress and tensile strain will help us to better understand how an altered mechanical environment affects EC mechanotransduction, dysfunction, and associated cardiovascular disease development. In the present study, a programmable shearing and stretching device that can apply dynamic fluid shear stress and cyclic tensile strain simultaneously to cultured ECs was developed. Flow and stress/strain conditions in the device were simulated using a fluid structure interaction (FSI) model. To characterize the performance of this device and the effect of combined shear stress-tensile strain on EC morphology, human coronary artery ECs (HCAECs) were exposed to concurrent shear stress and cyclic tensile strain in the device. Changes in EC morphology were evaluated through cell elongation, cell alignment, and cell junctional actin accumulation. Results obtained from the numerical simulation indicated that in the "in-plane" area of the device, both fluid shear stress and biaxial tensile strain were uniform. Results obtained from the in vitro experiments demonstrated that shear stress, alone or combined with cyclic tensile strain, induced significant cell elongation. While biaxial tensile strain alone did not induce any appreciable change in EC elongation. Fluid shear stress and cyclic tensile strain had different effects on EC actin filament alignment and accumulation. By combining various fluid shear stress and cyclic tensile strain conditions, this device can provide a physiologically relevant mechanical environment to study EC responses to physiological and pathological mechanical stimulation. PMID:26810848

  16. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency

    PubMed Central

    Zhang, Ji

    2013-01-01

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm2 at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay. PMID:23851277

  17. Association of SIRT1 expression with shear stress induced endothelial progenitor cell differentiation.

    PubMed

    Cheng, Bin-Bin; Yan, Zhi-Qiang; Yao, Qing-Ping; Shen, Bao-Rong; Wang, Ji-Yao; Gao, Li-Zhi; Li, Yu-Qing; Yuan, Hai-Tao; Qi, Ying-Xin; Jiang, Zong-Lai

    2012-12-01

    Shear stress imposed by blood flow is crucial for differentiation of endothelial progenitor cells (EPCs). Histone deacetylase SIRT1 has been shown to play a pivotal role in many physiological processes. However, association of SIRT1 expression with shear stress-induced EPC differentiation remains to be elucidated. The present study was designed to determine the effect of SIRT1 on EPC differentiation induced by shear stress, and to seek the underlying mechanisms. Human umbilical cord blood-derived EPCs were exposed to laminar shear stress of 15 dyn/cm(2) by parallel plate flow chamber system. Shear stress enhanced EPC differentiation toward endothelial cells (ECs) while inhibited to smooth muscle cells (SMCs). The expressions of phospho-Akt, SIRT1 and histone H3 acetylation (Ac-H3) in EPCs were detected after exposure to shear stress for 2, 6, 12, and 24 h, respectively. Shear stress significantly activated Akt phosphorylation, augmented SIRT1 expression and downregulated Ac-H3. SIRT1 siRNA in EPCs diminished the expression of EC markers, but increased the expression of SMC markers, and resulted in upregulation of Ac-H3. Whereas, resveratrol, an activator of SIRT1, had the opposite effects on both EPC differentiation and histone H3 acetylation. Wortmannin, an inhibitor of PI3-kinase, suppressed endothelial differentiation of EPCs, decreased SIRT1, and upregulated Ac-H3 expression. In addition, SIRT1 promoted tube formation of EPCs in matrix gels. These results provided a mechanobiological basis of shear stress-induced EPC differentiation into ECs and suggest that PI3k/Akt-SIRT1-Ac-H3 pathway is crucial in such a process.

  18. Suppression of endothelial t-PA expression by prolonged high laminar shear stress

    SciTech Connect

    Ulfhammer, Erik; Carlstroem, Maria; Bergh, Niklas; Larsson, Pia; Karlsson, Lena; Jern, Sverker

    2009-02-06

    Primary hypertension is associated with an impaired capacity for acute release of endothelial tissue-type plasminogen activator (t-PA), which is an important local protective response to prevent thrombus extension. As hypertensive vascular remodeling potentially results in increased vascular wall shear stress, we investigated the impact of shear on regulation of t-PA. Cultured human endothelial cells were exposed to low ({<=}1.5 dyn/cm{sup 2}) or high (25 dyn/cm{sup 2}) laminar shear stress for up to 48 h in two different experimental models. Using real-time RT-PCR and ELISA, shear stress was observed to time and magnitude-dependently suppress t-PA transcript and protein secretion to approximately 30% of basal levels. Mechanistic experiments revealed reduced nuclear protein binding to the t-PA specific CRE element (EMSA) and an almost completely abrogated shear response with pharmacologic JNK inhibition. We conclude that prolonged high laminar shear stress suppresses endothelial t-PA expression and may therefore contribute to the enhanced risk of arterial thrombosis in hypertensive disease.

  19. Sox18 preserves the pulmonary endothelial barrier under conditions of increased shear stress.

    PubMed

    Gross, Christine M; Aggarwal, Saurabh; Kumar, Sanjiv; Tian, Jing; Kasa, Anita; Bogatcheva, Natalia; Datar, Sanjeev A; Verin, Alexander D; Fineman, Jeffrey R; Black, Stephen M

    2014-11-01

    Shear stress secondary to increased pulmonary blood flow (PBF) is elevated in some children born with congenital cardiac abnormalities. However, the majority of these patients do not develop pulmonary edema, despite high levels of permeability inducing factors. Previous studies have suggested that laminar fluid shear stress can enhance pulmonary vascular barrier integrity. However, little is known about the mechanisms by which this occurs. Using microarray analysis, we have previously shown that Sox18, a transcription factor involved in blood vessel development and endothelial barrier integrity, is up-regulated in an ovine model of congenital heart disease with increased PBF (shunt). By subjecting ovine pulmonary arterial endothelial cells (PAEC) to laminar flow (20 dyn/cm(2) ), we identified an increase in trans-endothelial resistance (TER) across the PAEC monolayer that correlated with an increase in Sox18 expression. Further, the TER was also enhanced when Sox18 was over-expressed and attenuated when Sox18 expression was reduced, suggesting that Sox18 maintains the endothelial barrier integrity in response to shear stress. Further, we found that shear stress up-regulates the cellular tight junction protein, Claudin-5, in a Sox18 dependent manner, and Claudin-5 depletion abolished the Sox18 mediated increase in TER in response to shear stress. Finally, utilizing peripheral lung tissue of 4 week old shunt lambs with increased PBF, we found that both Sox18 and Claudin-5 mRNA and protein levels were elevated. In conclusion, these novel findings suggest that increased laminar flow protects endothelial barrier function via Sox18 dependent up-regulation of Claudin-5 expression. PMID:24677020

  20. Sox18 preserves the pulmonary endothelial barrier under conditions of increased shear stress

    PubMed Central

    Gross, Christine M.; Aggarwal, Saurabh; Kumar, Sanjiv; Tian, Jing; Kasa, Anita; Bogatcheva, Natalia; Datar, Sanjeev A.; Verin, Alexander D.; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    Shear stress secondary to increased pulmonary blood flow (PBF) is elevated in some children born with congenital cardiac abnormalities. However, the majority of these patients do not develop pulmonary edema, despite high levels of permeability inducing factors. Previous studies have suggested that laminar fluid shear stress can enhance pulmonary vascular barrier integrity. However, little is known about the mechanisms by which this occurs. Using microarray analysis, we have previously shown that Sox18, a transcription factor involved in blood vessel development and endothelial barrier integrity, is up-regulated in an ovine model of congenital heart disease with increased PBF (shunt). By subjecting ovine pulmonary arterial endothelial cells (PAEC) to laminar flow (20 dyn/cm2), we identified an increase in trans-endothelial resistance (TER) across the PAEC monolayer that correlated with an increase in Sox18 expression. Further, the TER was also enhanced when Sox18 was over-expressed and attenuated when Sox18 expression was reduced, suggesting that Sox18 maintains the endothelial barrier integrity in response to shear stress. Further, we found that shear stress up-regulates the cellular tight junction protein, Claudin-5, in a Sox18 dependent manner, and Claudin-5 depletion abolished the Sox18 mediated increase in TER in response to shear stress. Finally, utilizing peripheral lung tissue of 4 week old shunt lambs with increased PBF, we found that both Sox18 and Claudin-5 mRNA and protein levels were elevated. In conclusion, these novel findings suggest that increased laminar flow protects endothelial barrier function via Sox18 dependent up-regulation of Claudin-5 expression. PMID:24677020

  1. Shear stress-induced redistribution of the glycocalyx on endothelial cells in vitro.

    PubMed

    Bai, Ke; Wang, Wen

    2014-04-01

    The glycocalyx is the inner most layer of the endothelium that is in direct contact with the circulating blood. Shear stress affects its synthesis and reorganization. This study focuses on changes in the spatial distribution of the glycocalyx caused by shear stimulation and its recovery following the removal of the shear stress. Sialic acid components of the glycocalyx on human umbilical vain endothelial cells are observed using confocal microscopy. The percentage area of the cell membrane covered by the glycocalyx, as well as the average fluorescence intensity ratio between the apical and edge areas of the cell is used to assess the spatial distribution of the glycocalyx on the cell membrane. Our results show that following 24 h shear stimulation, the glycocalyx relocates near the edge of endothelial cells (i.e., cell-cell junction regions). Following the removal of the shear stress, the glycocalyx redistributes and gradually appears in the apical region of the cell membrane. This redistribution is faster in the early hours (<4 h) after shear stimulation than that in the later stage (e.g., between 8 and 24 h). We further investigate the recovery of the glycocalyx after its enzyme degradation under either static or shear flow conditions. Our results show that following 24 h recovery under shear flow, the glycocalyx reappears predominantly near the edge of endothelial cells. Static and shear flow conditions result in notable changes in the spatial recovery of the glycocalyx, but the difference is not statistically significant. We hypothesize that newly synthesized glycocalyx is not structurally well developed. Its weak interaction with flow results in less than significant redistribution, contrary to what has been observed for a well-developed glycocalyx layer.

  2. Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.

    PubMed

    Fleming, Ingrid; Fisslthaler, Beate; Dixit, Madhulika; Busse, Rudi

    2005-09-15

    The application of fluid shear stress to endothelial cells elicits the formation of nitric oxide (NO) and phosphorylation of the endothelial NO synthase (eNOS). Shear stress also elicits the enhanced tyrosine phosphorylation of endothelial proteins, especially of those situated in the vicinity of cell-cell contacts. Since a major constituent of these endothelial cell-cell contacts is the platelet endothelial cell adhesion molecule-1 (PECAM-1) we assessed the role of PECAM-1 in the activation of eNOS. In human endothelial cells, shear stress induced the tyrosine phosphorylation of PECAM-1 and enhanced the association of PECAM-1 with eNOS. Endothelial cell stimulation with shear stress elicited the phosphorylation of Akt and eNOS as well as of the AMP-activated protein kinase (AMPK). While the shear-stress-induced tyrosine phosphorylation of PECAM-1 as well as the serine phosphorylation of Akt and eNOS were abolished by the pre-treatment of cells with the tyrosine kinase inhibitor PP1 the phosphorylation of AMPK was unaffected. Down-regulation of PECAM-1 using a siRNA approach attenuated the shear-stress-induced phosphorylation of Akt and eNOS, as well as the shear-stress-induced accumulation of cyclic GMP levels while the shear-stress-induced phosphorylation of AMPK remained intact. A comparable attenuation of Akt and eNOS (but not AMPK) phosphorylation and NO production was also observed in endothelial cells generated from PECAM-1-deficient mice. These data indicate that the shear-stress-induced activation of Akt and eNOS in endothelial cells is modulated by the tyrosine phosphorylation of PECAM-1 whereas the shear-stress-induced phosphorylation of AMPK is controlled by an alternative signaling pathway. PMID:16118242

  3. The adaptive remodeling of endothelial glycocalyx in response to fluid shear stress.

    PubMed

    Zeng, Ye; Tarbell, John M

    2014-01-01

    The endothelial glycocalyx is vital for mechanotransduction and endothelial barrier integrity. We previously demonstrated the early changes in glycocalyx organization during the initial 30 min of shear exposure. In the present study, we tested the hypothesis that long-term shear stress induces further remodeling of the glycocalyx resulting in a robust layer, and explored the responses of membrane rafts and the actin cytoskeleton. After exposure to shear stress for 24 h, the glycocalyx components heparan sulfate, chondroitin sulfate, glypican-1 and syndecan-1, were enhanced on the apical surface, with nearly uniform spatial distributions close to baseline levels that differed greatly from the 30 min distributions. Heparan sulfate and glypican-1 still clustered near the cell boundaries after 24 h of shear, but caveolin-1/caveolae and actin were enhanced and concentrated across the apical aspects of the cell. Our findings also suggest the GM1-labelled membrane rafts were associated with caveolae and glypican-1/heparan sulfate and varied in concert with these components. We conclude that remodeling of the glycocalyx to long-term shear stress is associated with the changes in membrane rafts and the actin cytoskeleton. This study reveals a space- and time- dependent reorganization of the glycocalyx that may underlie alterations in mechanotransduction mechanisms over the time course of shear exposure.

  4. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2015-10-01

    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.

  5. Quantitative morphodynamics of endothelial cells within confluent cultures in response to fluid shear stress.

    PubMed

    Dieterich, P; Odenthal-Schnittler, M; Mrowietz, C; Krämer, M; Sasse, L; Oberleithner, H; Schnittler, H J

    2000-09-01

    To evaluate shear stress-induced effects on cultured cells we have extended the mechanical setup of a multichannel in vitro rheological system and developed software allowing entire processing control and image data analysis. The values of cell motility, degree of orientation (alignment), and cell elongation were correlated as a function of time (morphodynamics). Collective and individual endothelial cells within confluent cultures displayed a shear stress-dependent characteristic phase behavior of the following time course: resting conditions (phase I), change of motility (phase II), onset of alignment (phase III), and finally cell elongation (phase IV). Especially cell motility was characterized by a randomized zigzag movement around mean trajectories (fluctuations) together with mean cell locomotion. Onset of shear stress caused a down-regulation of fluctuations of 30% within <10 min and simultaneously increased locomotion velocities preferring the flow direction (phase II). After a lag period of 10 to 20 min cells orientated in the direction of flow (phase III) without significant cell elongation, which finally occurs within hours (phase IV). These data provide first evidence that cells within confluent endothelial monolayers respond to shear stress with a characteristic phase behavior. PMID:10968992

  6. Endothelial dysfunction following prolonged sitting is mediated by a reduction in shear stress.

    PubMed

    Restaino, Robert M; Walsh, Lauren K; Morishima, Takuma; Vranish, Jennifer R; Martinez-Lemus, Luis A; Fadel, Paul J; Padilla, Jaume

    2016-03-01

    We and others have recently reported that prolonged sitting impairs endothelial function in the leg vasculature; however, the mechanism(s) remain unknown. Herein, we tested the hypothesis that a sustained reduction in flow-induced shear stress is the underlying mechanism by which sitting induces leg endothelial dysfunction. Specifically, we examined whether preventing the reduction in shear stress during sitting would abolish the detrimental effects of sitting on popliteal artery endothelial function. In 10 young healthy men, bilateral measurements of popliteal artery flow-mediated dilation were performed before and after a 3-h sitting period during which one foot was submerged in 42°C water (i.e., heated) to increase blood flow and thus shear stress, whereas the contralateral leg remained dry and served as internal control (i.e., nonheated). During sitting, popliteal artery mean shear rate was reduced in the nonheated leg (pre-sit, 42.9 ± 4.5 s(-1); and 3-h sit, 23.6 ± 3.3 s(-1); P < 0.05) but not in the heated leg (pre-sit, 38.9 ± 3.4 s(-1); and 3-h sit, 63.9 ± 16.9 s(-1); P > 0.05). Popliteal artery flow-mediated dilation was impaired after 3 h of sitting in the nonheated leg (pre-sit, 7.1 ± 1.4% vs. post-sit, 2.8 ± 0.9%; P < 0.05) but not in the heated leg (pre-sit: 7.3 ± 1.5% vs. post-sit, 10.9 ± 1.8%; P > 0.05). Collectively, these data suggest that preventing the reduction of flow-induced shear stress during prolonged sitting with local heating abolishes the impairment in popliteal artery endothelial function. Thus these findings are consistent with the hypothesis that sitting-induced leg endothelial dysfunction is mediated by a reduction in shear stress. PMID:26747508

  7. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  8. Nature's rheologists: Lymphatic endothelial cells control migration in response to shear stress

    NASA Astrophysics Data System (ADS)

    Fuller, Gerald; Dunn, Alex; Surya, Vinay

    2015-03-01

    Endothelial cells (ECs) line the inner surface of blood and lymphatic vessels and are sensitive to fluid flow as part of their physiological function. EC organization, migration and vessel development are profoundly influenced by shear stresses, with important implications in cardiovascular disease and tumor metastasis. How ECs sense fluid flow is a central and unanswered question in cardiovascular biology. We developed a high-throughput live-cell flow chamber that models the gradients in wall shear stress experienced by ECs in vivo. Live-cell imaging allows us to probe cellular responses to flow, most notably EC migration, which has a key role in vessel remodeling. We find that most EC subtypes, including ECs from the venous, arterial, and microvascular systems, migrate in the flow direction. In contrast, human lymphatic microvascular ECs (hLMVECs) migrate against flow and up spatial gradients in wall shear stress. Further experiments reveal that hLMVECs are sensitive to the magnitude, direction, and the local spatial gradients in wall shear stress. Lastly, recent efforts have aimed to link this directional migration to spatial gradients in cell-mediated small molecule emission that may be linked to the gradient in wall shear stress.

  9. The Effect of Fluid Shear Stress on Endothelial Cell Adhesiveness to Polymer Surfaces with Wettability Gradient.

    PubMed

    Lee; Lee; Khang; Lee

    2000-10-01

    In this study, the adhesive strength of endothelial cells (ECs) attached on polymer surfaces with different hydrophilicity was investigated using wettability gradient polyethylene (PE) surfaces prepared by corona discharge treatment from a knife-type electrode whose power increases gradually along the sample length. The EC-attached wettability gradient surfaces were mounted on parallel-plate flow chambers in a flow system prepared for cell adhesiveness test. Three different shear stresses (150, 200, and 250 dyne/cm(2)) were applied to the flow chambers and each shear stress was maintained for 120 min to investigate the effect of shear stress and surface hydrophilicity on the EC adhesion strength. It was observed that the ECs were adhered more onto the positions with moderate hydrophilicity of the wettability gradient surface than onto the more hydrophobic or hydrophilic positions. The maximum adhesion of the cells appeared at around water contact angles of 55 degrees. The EC adhesion strength was higher on the hydrophilic positions than on the hydrophobic ones. However, the maximum adhesion strength of the cells also appeared at around water contact angles of 55 degrees. More than 90% of the adhered cells remained on that position after applying the shear stress, 250 dyne/cm(2) for 2 h, whereas the cells were completely detached on the hydrophobic position (water contact angle, about 86 degrees ) within 10 min after applying the same shear stress. It seems that surface hydrophilicity plays a very important role for cell adhesion strength. Copyright 2000 Academic Press.

  10. Spatially and temporally resolved quantification of endothelial cell modification in response to shear stress

    NASA Astrophysics Data System (ADS)

    Lambert, Lori; Pipinos, Iraklis; Baxter, Timothy; Leighton, Richard; Wei, Timothy

    2015-11-01

    This talk contains a resport on in vivo measurements made over a confluent layer of bovine endothelial cells in a microchannel. The ultimate goal of the experiments is to understand and model cellular response to fluid stresses and the ensuing transport across the endothelial layer. High resolution μ PTV measurements were made to quantify the cellular response to steady shear rates of 5, 10 and 20 dynes/cm2. Surface topography, shear and pressure distributions were calculated from sets of velocity fields made in planes parallel to the wall. For each experiment, measurements were made in three-hour intervals for eighteen hours. To validate the methodology, the pH of the medium was varied so that the health of the cells would vary. Clear differences in topography and cell orientation were found. Implications for future experiments and research will be discussed.

  11. Transmission of steady and oscillatory fluid shear stress across epithelial and endothelial surface structures

    NASA Astrophysics Data System (ADS)

    Han, Yuefeng; Ganatos, Peter; Weinbaum, Sheldon

    2005-03-01

    The glycocalyx on the apical surface of vascular endothelial cells and the microvilli and cilia on kidney epithelial cells have been modeled as surface layers with a hexagonal arrangement of structural elements. These elements have been proposed to serve a mechanosensory function in the initiation of intracellular signaling by fluid shear stress. In this paper we examine the response of these surface layers when steady or oscillating shear is applied at their outer edge. In the case of steady shear, our results show that the deflection of the structural elements is proportional to the product of the applied shear stress and their length L and inversely proportional to the natural damped vibration frequency of the structural element ωc. A fluid velocity boundary layer develops at the outer edge of the surface layers when the dimensionless Brinkman parameter α =L/√KP , where KP is the Darcy permeability, is asymptotically large. In the case of oscillating shear, we find that the motions of both the fluid and structural elements are in a quasisteady state at physiological conditions. No attenuation or phase shift of the torque is induced by the hydrodynamic drag when the applied frequency ω <ωc or ωr(=ω/ωc)<1. However, the velocity at the tips of the structural element is π /2 out of phase with the applied shear in this frequency range, due to the elastic recoil of the element. Furthermore, the fluid velocity at the tips can also be out of phase with the applied shear at large α if the closely spaced structural elements of the glycocalyx on endothelial cells or microvilli on proximal tubule cells transport substantial fluid with them.

  12. Influence of thickness and permeability of endothelial surface layer on transmission of shear stress in capillaries

    NASA Astrophysics Data System (ADS)

    Zhang, SongPeng; Zhang, XiangJun; Tian, Yu; Meng, YongGang; Lipowsky, Herbert

    2015-07-01

    The molecular coating on the surface of microvascular endothelium has been identified as a barrier to transvascular exchange of solutes. With a thickness of hundreds of nanometers, this endothelial surface layer (ESL) has been treated as a porous domain within which fluid shear stresses are dissipated and transmitted to the solid matrix to initiate mechanotransduction events. The present study aims to examine the effects of the ESL thickness and permeability on the transmission of shear stress throughout the ESL. Our results indicate that fluid shear stresses rapidly decrease to insignificant levels within a thin transition layer near the outer boundary of the ESL with a thickness on the order of ten nanometers. The thickness of the transition zone between free fluid and the porous layer was found to be proportional to the square root of the Darcy permeability. As the permeability is reduced ten-fold, the interfacial fluid and solid matrix shear stress gradients increase exponentially two-fold. While the interfacial fluid shear stress is positively related to the ESL thickness, the transmitted matrix stress is reduced by about 50% as the ESL thickness is decreased from 500 to 100 nm, which may occur under pathological conditions. Thus, thickness and permeability of the ESL are two main factors that determine flow features and the apportionment of shear stresses between the fluid and solid phases of the ESL. These results may shed light on the mechanisms of force transmission through the ESL and the pathological events caused by alterations in thickness and permeability of the ESL.

  13. Measurement of shear stress-mediated intracellular calcium dynamics in human dermal lymphatic endothelial cells

    PubMed Central

    Jafarnejad, M.; Cromer, W. E.; Kaunas, R. R.; Zhang, S. L.; Zawieja, D. C.

    2015-01-01

    The shear stress applied to lymphatic endothelial cells (LEC) by lymph flow changes dramatically under normal conditions as well as in response to disease conditions and immune reactions. In general, LEC are known to regulate the contraction frequency and strength of lymphatic pumping in response to shear stress. Intracellular calcium concentration ([Ca2+]i) is an important factor that regulates lymphatic contraction characteristics. In this study, we measured changes in the [Ca2+]i under different shear stress levels and determined the source of this calcium signal. Briefly, human dermal LEC were cultured in custom-made microchannels for 3 days before loading with 2 µM fura-2 AM, a ratiometric calcium dye to measure [Ca2+]i. Step changes in shear stress resulted in a rapid increase in [Ca2+]i followed by a gradual return to the basal level and sometimes below the initial baseline (45.2 ± 2.2 nM). The [Ca2+]i reached a peak at 126.2 ± 5.6 nM for 10 dyn/cm2 stimulus, whereas the peak was only 71.8 ± 5.4 nM for 1 dyn/cm2 stimulus, indicating that the calcium signal depends on the magnitude of shear stress. Removal of the extracellular calcium from the buffer or pharmocological blockade of calcium release-activated calcium (CRAC) channels significantly reduced the peak [Ca2+]i, demonstrating a role of extracellular calcium entry. Inhibition of endoplasmic reticulum (ER) calcium pumps showed the importance of intracellular calcium stores in the initiation of this signal. In conclusion, we demonstrated that the shear-mediated calcium signal is dependent on the magnitude of the shear and involves ER store calcium release and extracellular calcium entry. PMID:25617358

  14. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2015-10-01

    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force. PMID:26297225

  15. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.

    PubMed

    Amaya, Ronny; Pierides, Alexis; Tarbell, John M

    2015-01-01

    Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4%) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.

  16. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression

    PubMed Central

    Amaya, Ronny; Pierides, Alexis; Tarbell, John M.

    2015-01-01

    Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle – SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4 %) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease. PMID:26147292

  17. Fluid shear stress modulates cell migration induced by sphingosine 1-phosphate and vascular endothelial growth factor.

    PubMed

    Hughes, Shannon K; Wacker, Bradley K; Kaneda, Megan M; Elbert, Donald L

    2005-08-01

    The rational design of drug delivery systems requires the ability to predict the environment-specific responses of target cells to the delivered drug. Here we describe the in vitro effects of fluid shear stress, vascular endothelial growth factor (VEGF), and sphingosine 1-phosphate (S1P) on the migration of human umbilical vein endothelial cells (HUVEC). Endothelial cell migration into a scrape wound was enhanced in S1P- or VEGF-stimulated HUVEC by the addition of fluid shear stress. In both cases, scrape wound closure rates were near a maximal value that was not exceeded when cells were exposed to all three factors. We also found that cell migration into a scrape wound due to S1P stimulation was correlated with the S1P1 mRNA concentration, in systems where cell migration was not already near maximal. The present work represents our initial steps toward predicting cell migration based upon the activation state of the receptors and enzymes involved in the chemokinetic response. These results also illustrate the importance of context-dependent analysis of cell signaling cascades.

  18. Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells

    PubMed Central

    Mahler, Gretchen J.; Frendl, Christopher M.; Cao, Qingfeng; Butcher, Jonathan T.

    2015-01-01

    Understanding the role of mechanical forces on cell behavior is critical for tissue engineering, regenerative medicine, and disease initiation studies. Current hemodynamic bioreactors are largely limited to 2D substrates or the application of general flow conditions at a tissue level, which eliminates the investigation of some essential physiological and pathological responses. One example is the mesenchymal transformation of endothelial cells in response to shear stress. Endothelial to mesenchymal transformation (EndMT) is a valve morphogenic mechanism associated with aortic valve disease initiation. The aortic valve experiences oscillatory shear on the disease-susceptible fibrosa, and the role of hemodynamics on adult EndMT is unknown. The goal of this work was to develop and characterize a microfluidic bioreactor that applies physiologically relevant laminar or oscillatory shear stresses to endothelial cells and permits the quantitative analysis of 3D cell-extracellular matrix (ECM) interactions. In this study, porcine aortic valve endothelial cells were seeded onto 3D collagen I gels and exposed to different magnitudes of steady or oscillatory shear stress for 48 hours. Cells elongated and aligned perpendicular to laminar, but not oscillatory shear. Low steady shear stress (2 dyne/cm2) and oscillatory shear stress upregulated EndMT- (ACTA2, Snail, TGFB1) and inflammation- (ICAM1, NFKB1) related gene expression, EndMT-related (αSMA) protein expression, and matrix invasion when compared with static controls or cells exposed to high steady shear (10 and 20 dyne/cm2). Our system enables direct testing of the role of shear stress on endothelial cell mesenchymal transformation in a dynamic, 3D environment and shows that hemodynamics regulate EndMT in adult valve endothelial cells. PMID:24898772

  19. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    NASA Technical Reports Server (NTRS)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; Jo, Hanjoong

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  20. Serial analysis of the vascular endothelial transcriptome under static and shear stress conditions.

    PubMed

    Chu, Tian Jiao; Peters, David G

    2008-07-15

    We have utilized serial analysis of gene expression (SAGE) to analyze the response of human coronary artery endothelial cells (HCAECs) to laminar shear stress (LSS). Primary cultures of HCAECs were exposed to 15 dyn/cm(2) LSS for 24 h in a parallel plate flow chamber and compared with identical same passage cells cultured under static conditions. The expression levels of a number of functional categories of genes were reduced by shear stress including those encoding proteins involved in cell proliferation (CDC10, CDC20, CDC23, CCND1, CCNB1), angiogenesis (ANGPTL4, CTGF, CYR61, ENG, EPAS1, EGFR, LGALS3, PGK1, and SPARC), extracellular matrix and cell-matrix adhesion (EFEMP1, LOXL2, P4HB, FBN1, FN1, ITGA5, ITGAE, ITGAV, ILK, LAMR1) and ATP synthesis (ATP5G3, ATP5J2, ATP5L, ATP5D). We also observed an increase in the LSS-responsive expression of genes encoding stress response proteins, including HMOX1, which is significant since HMOX1 may have anti-inflammatory and vasodilatory vascular effects. The autosomal dominant polycystic kidney disease (ADPKD) genes PKD1 and PKD2 were also elevated by LSS. ADPKD is associated with vascular malfunction, including the impairment of vasoreactive processes. To our knowledge, this is the first SAGE-based analysis of the shear stress-responsive endothelial cell transcriptome. These immortal data provide a resource for further analyses of the molecular mechanisms underlying the biological response to LSS and contribute to the expanding collection of publicly available SAGE data. PMID:18505769

  1. Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access.

    PubMed

    Franzoni, Marco; Cattaneo, Irene; Longaretti, Lorena; Figliuzzi, Marina; Ene-Iordache, Bogdan; Remuzzi, Andrea

    2016-01-01

    Intimal hyperplasia (IH) is the first cause of failure of an arteriovenous fistula (AVF). The aim of the present study was to investigate the effects on endothelial cells (ECs) of shear stress waveforms derived from AVF areas prone to develop IH. We used a cone-and-plate device to obtain real-time control of shear stress acting on EC cultures. We exposed human umbilical vein ECs for 48 h to different shear stimulations calculated in a side-to-end AVF model. Pulsatile unidirectional flow, representative of low-risk stenosis areas, induced alignment of ECs and actin fiber orientation with flow. Shear stress patterns of reciprocating flow, derived from high-risk stenosis areas, did not affect EC shape or cytoskeleton organization, which remained similar to static cultures. We also evaluated flow-induced EC expression of genes known to be involved in cytoskeletal remodeling and expression of cell adhesion molecules. Unidirectional flow induced a significant increase in Kruppel-like factor 2 mRNA expression, whereas it significantly reduced phospholipase D1, α4-integrin, and Ras p21 protein activator 1 mRNA expression. Reciprocating flow did not increase Kruppel-like factor 2 mRNA expression compared with static controls but significantly increased mRNA expression of phospholipase D1, α4-integrin, and Ras p21 protein activator 1. Reciprocating flow selectively increased monocyte chemoattractant protein-1 and IL-8 production. Furthermore, culture medium conditioned by ECs exposed to reciprocating flows selectively increased smooth muscle cell proliferation compared with unidirectional flow. Our results indicate that protective vascular effects induced in ECs by unidirectional pulsatile flow are not induced by reciprocating shear forces, suggesting a mechanism by which oscillating flow conditions may induce the development of IH in AVF and vascular access dysfunction. PMID:26497959

  2. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2013-03-01

    Endothelial cells (ECs) sense shear stress and transduce blood flow information into functional responses that play important roles in vascular homeostasis and pathophysiology. A unique feature of shear-stress-sensing is the involvement of many different types of membrane-bound molecules, including receptors, ion channels and adhesion proteins, but the mechanisms remain unknown. Because cell membrane properties affect the activities of membrane-bound proteins, shear stress might activate various membrane-bound molecules by altering the physical properties of EC membranes. To determine how shear stress influences the cell membrane, cultured human pulmonary artery ECs were exposed to shear stress and examined for changes in membrane lipid order and fluidity by Laurdan two-photon imaging and FRAP measurements. Upon shear stress stimulation, the lipid order of EC membranes rapidly decreased in an intensity-dependent manner, and caveolar membrane domains changed from the liquid-ordered state to the liquid-disordered state. Notably, a similar decrease in lipid order occurred when the artificial membranes of giant unilamellar vesicles were exposed to shear stress, suggesting that this is a physical phenomenon. Membrane fluidity increased over the entire EC membranes in response to shear stress. Addition of cholesterol to ECs abolished the effects of shear stress on membrane lipid order and fluidity and markedly suppressed ATP release, which is a well-known EC response to shear stress and is involved in shear-stress Ca(2+) signaling. These findings indicate that EC membranes directly respond to shear stress by rapidly decreasing their lipid phase order and increasing their fluidity; these changes could be linked to shear-stress-sensing and response mechanisms. PMID:23378020

  3. Endothelial cell and model membranes respond to shear stress by rapidly decreasing the order of their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2013-03-01

    Endothelial cells (ECs) sense shear stress and transduce blood flow information into functional responses that play important roles in vascular homeostasis and pathophysiology. A unique feature of shear-stress-sensing is the involvement of many different types of membrane-bound molecules, including receptors, ion channels and adhesion proteins, but the mechanisms remain unknown. Because cell membrane properties affect the activities of membrane-bound proteins, shear stress might activate various membrane-bound molecules by altering the physical properties of EC membranes. To determine how shear stress influences the cell membrane, cultured human pulmonary artery ECs were exposed to shear stress and examined for changes in membrane lipid order and fluidity by Laurdan two-photon imaging and FRAP measurements. Upon shear stress stimulation, the lipid order of EC membranes rapidly decreased in an intensity-dependent manner, and caveolar membrane domains changed from the liquid-ordered state to the liquid-disordered state. Notably, a similar decrease in lipid order occurred when the artificial membranes of giant unilamellar vesicles were exposed to shear stress, suggesting that this is a physical phenomenon. Membrane fluidity increased over the entire EC membranes in response to shear stress. Addition of cholesterol to ECs abolished the effects of shear stress on membrane lipid order and fluidity and markedly suppressed ATP release, which is a well-known EC response to shear stress and is involved in shear-stress Ca(2+) signaling. These findings indicate that EC membranes directly respond to shear stress by rapidly decreasing their lipid phase order and increasing their fluidity; these changes could be linked to shear-stress-sensing and response mechanisms.

  4. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro.

    PubMed

    Yamamoto, Kimiko; Sokabe, Takaaki; Watabe, Tetsuro; Miyazono, Kohei; Yamashita, Jun K; Obi, Syotaro; Ohura, Norihiko; Matsushita, Akiko; Kamiya, Akira; Ando, Joji

    2005-04-01

    Pluripotent embryonic stem (ES) cells are capable of differentiating into all cell lineages, but the molecular mechanisms that regulate ES cell differentiation have not been sufficiently explored. In this study, we report that shear stress, a mechanical force generated by fluid flow, can induce ES cell differentiation. When Flk-1-positive (Flk-1(+)) mouse ES cells were subjected to shear stress, their cell density increased markedly, and a larger percentage of the cells were in the S and G(2)-M phases of the cell cycle than Flk-1(+) ES cells cultured under static conditions. Shear stress significantly increased the expression of the vascular endothelial cell-specific markers Flk-1, Flt-1, vascular endothelial cadherin, and PECAM-1 at both the protein level and the mRNA level, but it had no effect on expression of the mural cell marker smooth muscle alpha-actin, blood cell marker CD3, or the epithelial cell marker keratin. These findings indicate that shear stress selectively promotes the differentiation of Flk-1(+) ES cells into the endothelial cell lineage. The shear stressed Flk-1(+) ES cells formed tubelike structures in collagen gel and developed an extensive tubular network significantly faster than the static controls. Shear stress induced tyrosine phosphorylation of Flk-1 in Flk-1(+) ES cells that was blocked by a Flk-1 kinase inhibitor, SU1498, but not by a neutralizing antibody against VEGF. SU1498 also abolished the shear stress-induced proliferation and differentiation of Flk-1(+) ES cells, indicating that a ligand-independent activation of Flk-1 plays an important role in the shear stress-mediated proliferation and differentiation by Flk-1(+) ES cells. PMID:15576436

  5. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade.

    PubMed Central

    Ohno, M; Cooke, J P; Dzau, V J; Gibbons, G H

    1995-01-01

    The endothelium has the capacity to modulate vascular structure in response to hemodynamic stimuli. We tested the hypothesis that exposure of the endothelium to increased laminar shear stress induces the expression of TGF beta 1 via a signal transduction pathway modulated by K+ channel currents. Although TGF beta 1 is normally secreted in a latent, inactive form, exposure of cultured endothelial cells to steady laminar shear stress (20 dynes/cm2) induced increased generation of biologically active TGF beta 1. This increase in active TGF beta 1 was associated with a sustained increase in TGF beta 1 mRNA expression within 2 h of stimulation. TGF beta 1 mRNA levels increased in direct proportion to the intensity of the shear stress within the physiologic range. The effect of shear stress on TGF beta 1 mRNA expression was regulated at the transcriptional level as defined by nuclear run-off studies and transient transfection of a TGF beta 1 promoter-reporter gene construct. Blockade of endothelial K+ channels with tetraethylammonium significantly inhibited: activation of TGF beta 1 gene transcription; increase in steady state mRNA levels; and generation of active TGF beta 1 in response to shear stress. These data suggest that endothelial K+ channels and autocrine-paracrine TGF beta 1 may be involved in the mechanotransduction mechanisms mediating flow-induced vascular remodeling. Images PMID:7883983

  6. Endothelial cell alignment as a result of anisotropic strain and flow induced shear stress combinations

    PubMed Central

    Sinha, Ravi; Le Gac, Séverine; Verdonschot, Nico; van den Berg, Albert; Koopman, Bart; Rouwkema, Jeroen

    2016-01-01

    Endothelial cells (ECs) are continuously exposed in vivo to cyclic strain and shear stress from pulsatile blood flow. When these stimuli are applied in vitro, ECs adopt an appearance resembling their in vivo state, most apparent in their alignment (perpendicular to uniaxial strain and along the flow). Uniaxial strain and flow perpendicular to the strain, used in most in vitro studies, only represent the in vivo conditions in straight parts of vessels. The conditions present over large fractions of the vasculature can be better represented by anisotropic biaxial strains at various orientations to flow. To emulate these biological complexities in vitro, we have developed a medium-throughput device to screen for the effects on cells of variously oriented anisotropic biaxial strains and flow combinations. Upon the application of only strains for 24 h, ECs (HUVECs) aligned perpendicular to the maximum principal strain and the alignment was stronger for a higher maximum:minimum principal strain ratio. A 0.55 Pa shear stress, when applied alone or with strain for 24 h, caused cells to align along the flow. Studying EC response to such combined physiological mechanical stimuli was not possible with existing platforms and to our best knowledge, has not been reported before. PMID:27404382

  7. LDL decreases the membrane compliance and cell adhesion of endothelial cells under fluid shear stress.

    PubMed

    Wei, Dangheng; Chen, Yongpeng; Tang, Chaojun; Huang, Hua; Liu, Lushan; Wang, Zuo; Li, Ruming; Wang, Guixue

    2013-03-01

    Atherosclerosis is an inflammatory disease of large and medium sized arteriole walls that is precipitated by elevated levels of low-density lipoprotein (LDL) cholesterol in the blood. However, the mechanisms that lead to the initiation of atherosclerosis are not fully understood. In this study, endothelial cells (ECs) were incubated with LDL for 24 h, and then the lipid was detected with Oil Red O staining and cholesterol ester was assayed with high-performance liquid chromatography (HPLC). F-actin was examined by fluorescence microscopy and the viscoelasticity of ECs was investigated using the micropipette aspiration technique. Then, a parallel-plate flow chamber device was used to observe the adhesion and retention of ECs under shear stress. The results demonstrated that elevated LDL significantly increased the cellular lipid content and induced the rearrangement of cytoskeletal F-actin. The initial rapid deformability (l/K 1 + l/K 2) was reduced by elevated cellular LDL levels, while membrane viscosity (μ) was increased by LDL accumulation. After treatment with 150 mg L(-1) LDL for 24 h, the adhesion of ECs under fluid shear stress was significantly decreased (p < 0.05). These results suggested that LDL induced cellular lipid accumulation and cytoskeleton reorganization which increased the cellular stiffness and decreased the adhesion of ECs.

  8. Hydrostatic pressure and shear stress affect endothelin-1 and nitric oxide release by endothelial cells in bioreactors.

    PubMed

    Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio

    2014-01-01

    Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation.

  9. Deep transcriptomic profiling reveals the similarity between endothelial cells cultured under static and oscillatory shear stress conditions.

    PubMed

    Qiao, Congzhen; Meng, Fan; Jang, Inhwan; Jo, Hanjoong; Chen, Y Eugene; Zhang, Jifeng

    2016-09-01

    Atherosclerosis is a multifactorial disease that preferentially develops in specific regions in the arterial tree. This characteristic is mainly attributed to the unique pattern of hemodynamic shear stress in vivo. High laminar shear stress (LS) found in straight lumen exerts athero-protective effects. Low or oscillatory shear stress (OS) present in regions of lesser curvature and arterial bifurcations predisposes arterial intima to atherosclerosis. Shear stress-regulated endothelial function plays an important role in the process of atherosclerosis. Most in vitro research studies focusing on the molecular mechanisms of endothelial function are performed in endothelial cells (ECs) under cultured static (ST) condition. Some findings, however, are not recapitulated in subsequent translational studies, mostly likely due to the missing biomechanical milieu. Here, we profiled the whole transcriptome of primary human coronary arterial endothelial cells (HCAECs) under different shear stress conditions with RNA sequencing. Among 16,313 well-expressed genes, we detected 8,177 that were differentially expressed in OS vs. LS conditions and 9,369 in ST vs. LS conditions. Notably, only 1,618 were differentially expressed in OS vs. ST conditions. Hierarchical clustering of ECs demonstrated a strong similarity between ECs under OS and ST conditions at the transcriptome level. Subsequent pairwise heat mapping and principal component analysis gave further weight to the similarity. At the individual gene level, expressional analysis of representative well-known genes as well as novel genes showed a comparable amount at mRNA and protein levels in ECs under ST and OS conditions. In conclusion, the present work compared the whole transcriptome of HCAECs under different shear stress conditions at the transcriptome level as well as at the individual gene level. We found that cultured ECs are significantly different from those under LS conditions. Thus using cells under ST conditions is

  10. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress

    PubMed Central

    Chen, Henry Y.; Sinha, Anjan K.; Choy, Jenny S.; Zheng, Hai; Sturek, Michael; Bigelow, Brian; Bhatt, Deepak L.

    2011-01-01

    Stent can cause flow disturbances on the endothelium and compliance mismatch and increased stress on the vessel wall. These effects can cause low wall shear stress (WSS), high wall shear stress gradient (WSSG), oscillatory shear index (OSI), and circumferential wall stress (CWS), which may promote neointimal hyperplasia (IH). The hypothesis is that stent-induced abnormal fluid and solid mechanics contribute to IH. To vary the range of WSS, WSSG, OSI, and CWS, we intentionally mismatched the size of stents to that of the vessel lumen. Stents were implanted in coronary arteries of 10 swine. Intravascular ultrasound (IVUS) was used to size the coronary arteries and stents. After 4 wk of stent implantation, IVUS was performed again to determine the extent of IH. In conjunction, computational models of actual stents, the artery, and non-Newtonian blood were created in a computer simulation to yield the distribution of WSS, WSSG, OSI, and CWS in the stented vessel wall. An inverse relation (R2 = 0.59, P < 0.005) between WSS and IH was found based on a linear regression analysis. Linear relations between WSSG, OSI, and IH were observed (R2 = 0.48 and 0.50, respectively, P < 0.005). A linear relation (R2 = 0.58, P < 0.005) between CWS and IH was also found. More statistically significant linear relations between the ratio of CWS to WSS (CWS/WSS), the products CWS × WSSG and CWS × OSI, and IH were observed (R2 = 0.67, 0.54, and 0.56, respectively, P < 0.005), suggesting that both fluid and solid mechanics influence the extent of IH. Stents create endothelial flow disturbances and intramural wall stress concentrations, which correlate with the extent of IH formation, and these effects were exaggerated with mismatch of stent/vessel size. These findings reveal the importance of reliable vessel and stent sizing to improve the mechanics on the vessel wall and minimize IH. PMID:21926337

  11. Endothelial shear stress estimation in the human carotid artery based on Womersley versus Poiseuille flow.

    PubMed

    Schwarz, Janina C V; Duivenvoorden, Raphaël; Nederveen, Aart J; Stroes, Erik S G; VanBavel, Ed

    2015-03-01

    Endothelial shear stress (ESS) dynamics are a major determinant of atherosclerosis development. The frequently used Poiseuille method to estimate ESS dynamics has important limitations. Therefore, we investigated whether Womersley flow may provide a better alternative for estimation of ESS while requiring equally simple hemodynamic parameters. Common carotid blood flow, centerline velocity, lumen diameter and mean wall thickness (MWT) were measured with 3T-MRI in 45 subjects at three different occasions. Mean ESS and two measures of pulsatility [shear pulsatility index (SPI) and oscillatory shear index (OSI)] were estimated based on Poiseuille and Womersley flow and compared to the more complex velocity gradient modelling method. The association between ESS and MWT was tested with multiple linear regression analysis; interscan reproducibility was assessed using intraclass correlation coefficients (ICC). Mean ESS and pulsatility indices based on Womersley flow (ESSwq β = -0.18, P = 0.04; SPIwq β = 0.24, P = 0.02; OSIwq β = 0.18, P = 0.045), showed equally good correlations with carotid MWT as the velocity gradient method (ESSvg β = -0.23, P = 0.01; SPIvg β = 0.21, P = 0.02; OSIvg β = 0.07, P = 0.47). This in contrast to the Poiseuille flow method that only showed a good correlation for mean ESS (ESSpq β = -0.18, P = 0.04; SPIpq β = 0.14, P = 0.14; OSIpq β = 0.04, P = 0.69). Womersley and Poiseuille methods had high intraclass correlation coefficients indicating good interscan reproducibility (both ICC = 0.84, 95% confidence interval 0.75-0.90). Estimation of ESS dynamics based on Womersley flow modelling is superior to Poiseuille flow modelling and has good interscan reproducibility.

  12. [Comparison of adhesion of different endothelial cells under shear stress load in the flow field in vitro].

    PubMed

    Xiao, Zhenghua; Zhang, Bengui; Zhang, Eryong; Xu, Weilin; Shi, Yingkang; Guo, Yingqiang

    2011-02-01

    This study was aimed to compare the differences of adhesion properties of endothelial cells (EC) from arteries (AEC), veins (VEC) and capillaries (MVEC) under shear stress condition, and to explore whether they can get the same adhesive ability as graft in similar shear stress conditions. With mended parallel plate flow apparatus and peristalsis pump providing fluid shear stress used, endothelial culture models were established in vitro with the same environmental factors as steady culture. To compare the adhesion among three kinds of endothelial cells under dynamic condition and static condition, the dynamic change of cytoskeletal actin filaments and the effects of different adhesive proteins coated on the adhesion of EC to the glass were studied. The cultured endothelial cells under flow conditions were extended and arranged along the direction of flow. The adhesive ability from high to low under static condition were AEC, MVEC and VEC (VEC compared with AEC or MVEC, P < 0.05), sequentially. The adhesion of endothelial cells from variety sources under dynamic culture condition was significantly increased than that of the static groups. The ratio of cell retention was not significantly different between AEC and MVEC. But VEC was significantly different (P < 0.05) compared with AEC or MVEC. The actin filaments (F-actin) were bundled together and arranged along the direction of flow after fluid culture. Dense peripheral band (DPB) gradually disappeared and distinct stress fibers were formed, which even interconnected to form a whole in the MVEC. The adhesion of AEC, VEC and MVEC under shear stress conditions are more significantly increased than those under the static culture conditions, and the MVEC can achieve the same adhesion as AEC.

  13. [Crucial roles of PECAM-1 in shear stress sensing of vascular endothelial cells].

    PubMed

    Masuda, Michitaka; Kogata, Naoko; Mochizuki, Naoki

    2004-11-01

    Fluid shear stress (FSS) induces many forms of responses, including phosphorylation of ERK in endothelial cells (ECs). We have earlier reported that FSS and hyper-osmotic shock rapidly induce tyrosine phosphorylation of PECAM-1 (CD31). The phosphorylated PECAM-1 acts as a plasma membrane anchoring site for SHP2, a protein tyrosine phosphatase involved in the signal transmission from receptor tyrosine kinases to ERK. Osmotic shock also induces transient ERK activation in ECs. The osmotic-shock-induced ERK activation but not p38 MAP kinase activation was dependent on the PECAM-1 engagement and was blocked by its downregulation. When magnetic beads coated with antibodies against the extracellular domain of PECAM-1 were attached to ECs and tugged by magnetic force, PECAM-1 associated with the beads was tyrosine phosphorylated. ERK was also phosphorylated in these cells. Binding of the beads by itself or pulling on the cell surface using poly-L-lysine coated beads did not induce phosphorylation of PECAM-1 and ERK. These results suggest that PECAM-1 is a mechanotransduction molecule. PMID:15502396

  14. Selective inhibition of agonist-induced but not shear stress-dependent release of endothelial autacoids by thapsigargin.

    PubMed Central

    Macarthur, H.; Hecker, M.; Busse, R.; Vane, J. R.

    1993-01-01

    1. The effects of the Ca(2+)-ATPase inhibitor, thapsigargin, on the shear stress-dependent and on the agonist-stimulated release of endothelium-derived relaxing factor, i.e. nitric oxide (NO), and prostacyclin (PGI2) were studied in bovine and human cultured endothelial cells as well as in endothelium-intact arterial segments of the rabbit. 2. Preincubation with thapsigargin (1 microM for 10 min) had no effect on the shear stress-dependent release of NO from bovine aortic endothelial cells grown on beads, but abolished the release of NO induced by ADP, bradykinin, ionomycin or poly-L-lysine. Similarly, thapsigargin completely abrogated the agonist-stimulated PGI2 release from these cells, but had no effect on the shear stress-dependent release of PGI2. 3. The acetylcholine-induced release of NO from the luminally perfused thoracic aorta and femoral artery of the rabbit was suppressed by pretreatment with thapsigargin (1 microM). In contrast, thapsigargin did not affect the shear stress-dependent release of NO from the femoral artery. 4. Administration of thapsigargin to these vascular preparations or to cultured endothelial cells alone produced a substantial release of both NO and PGI2. This release declined towards previous values after washout of thapsigargin. 5. In human and bovine cultured endothelial cells, thapsigargin (1-1000 nM) caused a dose-dependent sustained rise in [Ca2+]i, an effect that was abolished in the absence of extracellular Ca2+. Stimulation of these cells with bradykinin, histamine, ADP or ionomycin after previous exposure to thapsigargin (30-1000 nM) no longer caused an increase in [Ca2+]i.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8428199

  15. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity

    SciTech Connect

    Weber, Martina; Baker, Meredith B.; Moore, Jeffrey P.; Searles, Charles D.

    2010-03-19

    Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24 h, 15 dynes/cm{sup 2}) identified 13 miRNAs whose expression was significantly upregulated (p < 0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p = 0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO{sup {center_dot}}) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO{sup {center_dot}} pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.

  16. Effect of aqueous tobacco smoke extract and shear stress on PECAM-1 expression and cell motility in human uterine endothelial cells.

    PubMed

    Soghomonians, Arlen; Thirkill, Twanda L; Mariano, Natalie F; Barakat, Abdul I; Douglas, Gordon C

    2004-10-01

    Tobacco smoke constituents have several adverse effects on endothelial cells. Exposure to tobacco smoke during pregnancy is associated with adverse effects on pregnancy outcome possibly related to endothelial dysfunction. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an important regulator of endothelial function. This study tests the idea that an aqueous extract of cigarette smoke alters the expression of PECAM-1 in uterine endothelial cells. Human uterine microvascular endothelial cells were cultured in cigarette smoke-conditioned medium (CSM) under arterial physiological flow conditions (shear or frictional stress in the range 7.5-15 dyne/cm(2)) and the expression of PECAM-1 was assessed by immunofluorescence microscopy and Western blotting. Thick reticular PECAM-1-associated bands found at cell-cell junctions in static cultures became significantly thinner or disappeared when the cells were exposed to shear stress or to CSM for 24 h. This diminution at cell junctions was accompanied by increased punctate cytoplasmic/cell surface staining. Under shear stress conditions, PECAM-1 was equally distributed between cell surface and intracellular sites. In contrast, when cells were exposed to both shear stress and CSM, PECAM-1 was predominantly localized to the cell surface. It was shown that shear stress increased endothelial cell migration and that CSM abrogated this effect. These results suggest that, under shear stress conditions, PECAM-1 is not predominantly concentrated at intercellular junctions in uterine endothelial cells. Exposure of cells to unidentified soluble components of cigarette smoke leads to alterations in PECAM-1 distribution that may cause endothelial dysfunction. If this occurs in vivo it could contribute to the adverse effects on pregnancy outcome associated with exposure to cigarette smoke.

  17. Modeling of [Formula: see text]-mediated calcium signaling in vascular endothelial cells induced by fluid shear stress and ATP.

    PubMed

    Li, Long-Fei; Xiang, Cheng; Qin, Kai-Rong

    2015-10-01

    The calcium signaling plays a vital role in flow-dependent vascular endothelial cell (VEC) physiology. Variations in fluid shear stress and ATP concentration in blood vessels can activate dynamic responses of cytosolic-free [Formula: see text] through various calcium channels on the plasma membrane. In this paper, a novel dynamic model has been proposed for transient receptor potential vanilloid 4 [Formula: see text]-mediated intracellular calcium dynamics in VECs induced by fluid shear stress and ATP. Our model includes [Formula: see text] signaling pathways through P2Y receptors and [Formula: see text] channels (indirect mechanism) and captures the roles of the [Formula: see text] compound channels in VEC [Formula: see text] signaling in response to fluid shear stress (direct mechanism). In particular, it takes into account that the [Formula: see text] compound channels are regulated by intracellular [Formula: see text] and [Formula: see text] concentrations. The simulation studies have demonstrated that the dynamic responses of calcium concentration produced by the proposed model correlate well with the existing experimental observations. We also conclude from the simulation studies that endogenously released ATP may play an insignificant role in the process of intracellular [Formula: see text] response to shear stress.

  18. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.

    PubMed

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin C; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knockdown of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium.

  19. Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin–apatite composite layer on titanium

    PubMed Central

    He, Fupo; Wang, Xiupeng; Maruyama, Osamu; Kosaka, Ryo; Sogo, Yu; Ito, Atsuo; Ye, Jiandong

    2013-01-01

    Apatite (Ap), laminin–apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin–apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml−1) or albumin (800 μg ml−1). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin–apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin–apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin–apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials. PMID:23407573

  20. The effect of shear stress on human endothelial cells seeded on cylindrical viscoelastic conduits: an investigation of gene expression.

    PubMed

    Vara, Dina S; Punshon, Geoffrey; Sales, Kevin M; Hamilton, George; Seifalian, Alexander M

    2006-11-01

    The present study assesses the effect of physiological shear stress on gene expression from human ECs (endothelial cells) seeded on a small-diameter cylindrical bypass graft constructed from nanocomposite based on poly(carbonate-silsesquioxane-bridge-urea)urethane. ECs were seeded on to 5-mm-diameter conduits, placed in a physiological flow circuit and exposed to 1 or 4 h of shear stress at 1.4+/-0.3 Pa. Subsets of conduits were incubated at 37 degrees C and 5% CO2/95% O2 for a further 4 h to determine if gene expression returned to basal levels. PCR was conducted for glyceraldehyde-3-phosphate dehydrogenase, TGFbeta-1 (transforming growth factor beta-1), COL-1 (collagen-1) and PECAM-1 (platelet/EC adhesion molecule-1). Increases in gene expression were seen following flow in nanocomposite conduits. These were significant at 4 h for TGFbeta-1, COL-1 and PECAM-1. After a 4 h recovery period, there were no significant differences in gene intensity, suggesting that this change is transient. These data prove that mRNA can be obtained from ECs seeded on tubular conduits and exposed to shear stress and that gene-expression studies can be successfully carried out. We believe this is a substantial improvement on studies based on flat sheets.

  1. Biological factors in plasma from diabetes mellitus patients enhance hyperglycaemia and pulsatile shear stress-induced endothelial cell apoptosis.

    PubMed

    Liu, X F; Yu, J Q; Dalan, R; Liu, A Q; Luo, K Q

    2014-05-01

    People suffering from Diabetes Mellitus (DM) are prone to an array of vascular complications leading to end organ damage. The hallmark of these vascular complications is endothelium dysfunction, which is caused by endothelial cell (EC) apoptosis. Although the endothelial cell (EC) dysfunction induced by hyperglycaemia and fluid shear stress has been studied, the effects of biological factors in the blood of DM patients on EC integrity have not been reported in the in vitro models that mimic the physiological pulsatile nature of the vascular system. This study reports the development of a hemodynamic lab-on-a-chip system to investigate this issue. The pulsatile flow was applied to a monolayer of endothelial cells expressing a fluorescence resonance energy transfer (FRET)-based biosensor that changes colour from green to blue in response to caspase-3 activation during apoptosis. Plasma samples from healthy volunteers and DM patients were compared to identify biological factors that are critical to endothelial disruption. Three types of microchannels were designed to simulate the blood vessels under healthy and partially blocked pathological conditions. The results showed that EC apoptosis rates increased with increasing glucose concentration and levels of shear stress. The rates of apoptosis further increased by a factor of 1.4-2.3 for hyperglycaemic plasma under all dynamic conditions. Under static conditions, little difference was detected in the rate of EC apoptosis between experiments using plasma from DM patients and glucose medium, suggesting that the effects of hyperglycaemia and biological factors on the induction of EC apoptosis are all shear flow-dependent. A proteomics study was then conducted to identify biological factors, demonstrating that the levels of eight proteins, including haptoglobin and clusterin, were significantly down-regulated, while six proteins, including apolipoprotein C-III, were significantly up-regulated in the plasma of DM patients

  2. Parallel-plate flow chamber and continuous flow circuit to evaluate endothelial progenitor cells under laminar flow shear stress.

    PubMed

    Lane, Whitney O; Jantzen, Alexandra E; Carlon, Tim A; Jamiolkowski, Ryan M; Grenet, Justin E; Ley, Melissa M; Haseltine, Justin M; Galinat, Lauren J; Lin, Fu-Hsiung; Allen, Jason D; Truskey, George A; Achneck, Hardean E

    2012-01-01

    The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses. Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs. This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts. The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12).

  3. Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion

    PubMed Central

    Chen, Henry Y.; Moussa, Issam D.; Davidson, Charles; Kassab, Ghassan S.

    2012-01-01

    In-stent restenosis and stent thrombosis remain clinically significant problems for bifurcation lesions. The objective of this study is to determine the haemodynamic effect of the side branch (SB) on main branch (MB) stenting. We hypothesize that the presence of a SB has a negative effect on MB wall shear stress (WSS), wall shear stress gradient (WSSG) and oscillatory shear index (OSI); and that the bifurcation diameter ratio (SB diameter/MB diameter) and angle are important contributors. We further hypothesized that stent undersizing exaggerates the negative effects on WSS, WSSG and OSI. To test these hypotheses, we developed computational models of stents and non-Newtonian blood. The models were then interfaced, meshed and solved in a validated finite-element package. Stents at bifurcation models were created with 30° and 70° bifurcation angles and bifurcations with diameter ratios of SB/MB = 1/2 and 3/4. It was found that stents placed in the MB at a bifurcation lowered WSS dramatically, while elevating WSSG and OSI. Undersizing the stent exaggerated the decrease in WSS, increase in WSSG and OSI, and disturbed the flow between the struts and the vessel wall. Stenting the MB at bifurcations with larger SB/MB ratios or smaller SB angles (30°) resulted in lower WSS, higher WSSG and OSI. Stenosis at the SB lowered WSS and elevated WSSG and OSI. These findings highlight the effects of major biomechanical factors in MB stenting on endothelial WSS, WSSG, OSI and suggests potential mechanisms for the potentially higher adverse clinical events associated with bifurcation stenting. PMID:22112654

  4. Shear Stress-induced Redistribution of Vascular Endothelial-Protein-tyrosine Phosphatase (VE-PTP) in Endothelial Cells and Its Role in Cell Elongation*

    PubMed Central

    Mantilidewi, Kemala Isnainiasih; Murata, Yoji; Mori, Munemasa; Otsubo, Chihiro; Kotani, Takenori; Kusakari, Shinya; Ohnishi, Hiroshi; Matozaki, Takashi

    2014-01-01

    Vascular endothelial cells (ECs) are continuously exposed to shear stress (SS) generated by blood flow. Such stress plays a key role in regulation of various aspects of EC function including cell proliferation and motility as well as changes in cell morphology. Vascular endothelial-protein-tyrosine phosphatase (VE-PTP) is an R3-subtype PTP that possesses multiple fibronectin type III-like domains in its extracellular region and is expressed specifically in ECs. The role of VE-PTP in EC responses to SS has remained unknown, however. Here we show that VE-PTP is diffusely localized in ECs maintained under static culture conditions, whereas it undergoes rapid accumulation at the downstream edge of the cells relative to the direction of flow in response to SS. This redistribution of VE-PTP triggered by SS was found to require its extracellular and transmembrane regions and was promoted by integrin engagement of extracellular matrix ligands. Inhibition of actin polymerization or of Cdc42, Rab5, or Arf6 activities attenuated the SS-induced redistribution of VE-PTP. VE-PTP also underwent endocytosis in the static and SS conditions. SS induced the polarized distribution of internalized VE-PTP. Such an effect was promoted by integrin engagement of fibronectin but prevented by inhibition of Cdc42 activity or of actin polymerization. In addition, depletion of VE-PTP by RNA interference in human umbilical vein ECs blocked cell elongation in the direction of flow induced by SS. Our results suggest that the polarized redistribution of VE-PTP in response to SS plays an important role in the regulation of EC function by blood flow. PMID:24451369

  5. MicroRNA-101 mediates the suppressive effect of laminar shear stress on mTOR expression in vascular endothelial cells

    SciTech Connect

    Chen, Kui; Fan, Wendong; Wang, Xing; Ke, Xiao; Wu, Guifu; Hu, Chengheng

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Laminar shear stress upregulates miR-101 expression in vascular endothelial cells. Black-Right-Pointing-Pointer miR-101 represses mTOR expression through a specific 3 Prime UTR binding site. Black-Right-Pointing-Pointer Overexpression of miR-101 inhibits G1/S transition and endothelial cell proliferation. Black-Right-Pointing-Pointer Blockade of miR-101 attenuates the suppressive effect of laminar flow on mTOR expression. -- Abstract: Shear stress associated with blood flow plays an important role in regulating gene expression and cell function in endothelial cells (ECs). MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that negatively regulate the expression of target genes by binding to the mRNA 3 Prime -untranslated region (3 Prime UTR) at the posttranscriptional level involved in diverse cellular processes. This study demonstrates that microRNA-101 in response to laminar shear stress (LSS) is involved in the flow regulation of gene expression in ECs. qRT-PCR analysis showed that miR-101 expression was significantly upregulated in human umbilical vein endothelial cells (HUVECs) exposed to 12 dyn/cm{sup 2} laminar shear stress for 12 h. We found that transfection of miR-101 significantly decreased the luciferase activity of plasmid reporter containing the 3 Prime UTR of mammalian target of rapamycin (mTOR) gene. Western analysis revealed that the protein level of mTOR was significantly reduced in ECs transfected with miR-101. Furthermore, miR-101 overexpression induced cell cycle arrest at the G1/S transition and suppressed endothelial cell proliferation. Finally, transfection of miR-101 inhibitors attenuated the suppressive effects of LSS on mTOR expression, which identified the efficacy of loss-of-function of miR-101 in laminar flow-treated ECs. In conclusion, we have demonstrated that upregulation of miR-101 in response to LSS contributes to the suppressive effects of LSS on mTOR expression and EC

  6. Nuclear envelope proteins Nesprin2 and LaminA regulate proliferation and apoptosis of vascular endothelial cells in response to shear stress.

    PubMed

    Han, Yue; Wang, Lu; Yao, Qing-Ping; Zhang, Ping; Liu, Bo; Wang, Guo-Liang; Shen, Bao-Rong; Cheng, Binbin; Wang, Yingxiao; Jiang, Zong-Lai; Qi, Ying-Xin

    2015-05-01

    The dysfunction of vascular endothelial cells (ECs) influenced by flow shear stress is crucial for vascular remodeling. However, the roles of nuclear envelope (NE) proteins in shear stress-induced EC dysfunction are still unknown. Our results indicated that, compared with normal shear stress (NSS), low shear stress (LowSS) suppressed the expression of two types of NE proteins, Nesprin2 and LaminA, and increased the proliferation and apoptosis of ECs. Targeted small interfering RNA (siRNA) and gene overexpression plasmid transfection revealed that Nesprin2 and LaminA participate in the regulation of EC proliferation and apoptosis. A protein/DNA array was further used to detect the activation of transcription factors in ECs following transfection with target siRNAs and overexpression plasmids. The regulation of AP-2 and TFIID mediated by Nesprin2 and the activation of Stat-1, Stat-3, Stat-5 and Stat-6 by LaminA were verified under shear stress. Furthermore, using Ingenuity Pathway Analysis software and real-time RT-PCR, the effects of Nesprin2 or LaminA on the downstream target genes of AP-2, TFIID, and Stat-1, Stat-3, Stat-5 and Stat-6, respectively, were investigated under LowSS. Our study has revealed that NE proteins are novel mechano-sensitive molecules in ECs. LowSS suppresses the expression of Nesprin2 and LaminA, which may subsequently modulate the activation of important transcription factors and eventually lead to EC dysfunction.

  7. Hemodynamic Shear Stress via ROS Modulates PCSK9 Expression in Human Vascular Endothelial and Smooth Muscle Cells and Along the Mouse Aorta

    PubMed Central

    Ding, Zufeng; Wang, Xianwei; Deng, Xiaoyan; Fan, Yubo; Sun, Changqing; Wang, Yannian

    2015-01-01

    Abstract Aims: To investigate a possible link between hemodynamic shear stress, reactive oxygen species (ROS) generation, and proprotein convertase subtilisin/kexin type 9 (PCSK9) expression. Results: Using a parallel-plate flow chamber, we observed that PCSK9 expression in vascular smooth muscle cells (SMCs) and endothelial cells (ECs) reached maximal value at low shear stress (3–6 dynes/cm2), and then began to decline with an increase in shear stress. PCSK9 expression increased when cells were treated with lipopolysaccharide. PCSK9 expression was always greater in SMCs than in ECs. ROS generation followed the same pattern as PCSK9 expression. Aortic branching and aorta–iliac bifurcation regions of mouse aorta that express low shear stress were also found to have greater PCSK9 expression (vs. other regions). To determine a relationship between ROS and PCSK9 expression, ECs and SMCs were treated with ROS inhibitors diphenylene-iodonium chloride and apocynin, and both markedly reduced PCSK9 expression. Relationship between PCSK9 and ROS was further studied in p47phox and gp91phox knockout mice; both mice strains revealed low PCSK9 levels in serum and mRNA levels in aorta–iliac bifurcation regions (vs. wild-type mice). Other studies showed that ROS and NF-κB activation plays a bridging role in PCSK9 expression via lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Innovation: Low shear stress induces PCSK9 expression, which is mediated by NADPH oxidase-dependent ROS production. Conclusions: This study provides evidence that low shear stress enhances PCSK9 expression in concert with ROS generation in vascular ECs and SMCs. ROS seem to regulate PCSK9 expression. We propose that PCSK9-ROS interaction may be important in the development of atherosclerosis in arterial channels with low shear stress. Antioxid. Redox Signal. 22, 760–771. PMID:25490141

  8. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Sorescu, George; Boyd, Nolan; Shiojima, Ichiro; Walsh, Kenneth; Du, Jie; Jo, Hanjoong

    2002-01-01

    Recently, we have shown that shear stress stimulates NO(*) production by the protein kinase B/Akt (Akt)-dependent mechanisms in bovine aortic endothelial cells (BAEC) (Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H. (2001) J. Appl. Physiol. 91, 1574-1581). Akt has been believed to regulate shear-dependent production of NO(*) by directly phosphorylating endothelial nitric-oxide synthase (eNOS) at the Ser(1179) residue (eNOS-S(1179)), but a critical evaluation using specific inhibitors or dominant negative mutants (Akt(AA) or Akt(AAA)) has not been reported. In addition, other kinases, including protein kinase A (PKA) and AMP kinase have also shown to phosphorylate eNOS-S(1179). Here, we show that shear-dependent phosphorylation of eNOS-S(1179) is mediated by an Akt-independent, but a PKA-dependent, mechanism. Expression of Akt(AA) or Akt(AAA) in BAEC by using recombinant adenoviral constructs inhibited phosphorylation of eNOS-S(1179) if cells were stimulated by vascular endothelial growth factor (VEGF), but not by shear stress. As shown before, expression of Akt(AA) inhibited shear-dependent NO(*) production, suggesting that Akt is still an important regulator in NO production. Further studies showed that a selective inhibitor of PKA, H89, inhibited shear-dependent phosphorylation of eNOS-S(1179) and NO(*) production. In contrast, H89 did not inhibit phosphorylation of eNOS-S(1179) induced by expressing a constitutively active Akt mutant (Akt(Myr)) in BAEC, showing that the inhibitor did not affect the Akt pathway. 8-Bromo-cAMP alone phosphorylated eNOS-S(1179) within 5 min without activating Akt, in an H89-sensitive manner. Collectively, these results demonstrate that shear stimulates phosphorylation of eNOS-S(1179) in a PKA-dependent, but Aktindependent manner, whereas the NO(*) production is regulated by the mechanisms dependent on both PKA and Akt. A coordinated interaction

  9. Traction Forces of Endothelial Cells under Slow Shear Flow

    PubMed Central

    Perrault, Cecile M.; Brugues, Agusti; Bazellieres, Elsa; Ricco, Pierre; Lacroix, Damien; Trepat, Xavier

    2015-01-01

    Endothelial cells are constantly exposed to fluid shear stresses that regulate vascular morphogenesis, homeostasis, and disease. The mechanical responses of endothelial cells to relatively high shear flow such as that characteristic of arterial circulation has been extensively studied. Much less is known about the responses of endothelial cells to slow shear flow such as that characteristic of venous circulation, early angiogenesis, atherosclerosis, intracranial aneurysm, or interstitial flow. Here we used a novel, to our knowledge, microfluidic technique to measure traction forces exerted by confluent vascular endothelial cell monolayers under slow shear flow. We found that cells respond to flow with rapid and pronounced increases in traction forces and cell-cell stresses. These responses are reversible in time and do not involve reorientation of the cell body. Traction maps reveal that local cell responses to slow shear flow are highly heterogeneous in magnitude and sign. Our findings unveil a low-flow regime in which endothelial cell mechanics is acutely responsive to shear stress. PMID:26488643

  10. Shear stress and circumferential stretch by pulsatile flow direct vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels.

    PubMed

    Kim, Dong Hwa; Heo, Su-Jin; Kang, Yun Gyeong; Shin, Ji Won; Park, So Hee; Shin, Jung-Woog

    2016-03-01

    Understanding the response of mesenchymal stem cells (MSCs) in the dynamic biomechanical vascular environment is important for vascular regeneration. Native vessel biomechanical stimulation in vitro is thought to be the most important contributor to successful endothelial differentiation of MSCs. However, the appropriate biomechanical stimulation conditions for differentiating MSCs into ECs have not been fully investigated. To accomplish an in vivo-like loading environment, a loading system was designed to apply flow induced stress and induce hMSC differentiation in vascular cells. Culturing MSCs on tubular scaffolds under flow-induced shear stress (2.5 dyne/cm(2)) for 4 days results in increased mRNA levels of EC markers (vWF, CD31, VE-cadherin and E-selectin) after one day. Furthermore, we investigated the effects of 2.5 dyne/cm(2) shear stress followed by 3% circumferential stretch for 3 days, and an additional 5% circumferential stretch for 4 days on hMSC differentiation into ECs. EC marker protein levels showed a significant increase after applying 5% stretch, while SMC markers were not present at levels sufficient for detection. Our results demonstrate that the expression of several hMSC EC markers cultured on double-layered tubular scaffolds were upregulated at the mRNA and protein levels with the application of fluid shear stress and cyclic circumferential stretch.

  11. Shear stress and circumferential stretch by pulsatile flow direct vascular endothelial lineage commitment of mesenchymal stem cells in engineered blood vessels.

    PubMed

    Kim, Dong Hwa; Heo, Su-Jin; Kang, Yun Gyeong; Shin, Ji Won; Park, So Hee; Shin, Jung-Woog

    2016-03-01

    Understanding the response of mesenchymal stem cells (MSCs) in the dynamic biomechanical vascular environment is important for vascular regeneration. Native vessel biomechanical stimulation in vitro is thought to be the most important contributor to successful endothelial differentiation of MSCs. However, the appropriate biomechanical stimulation conditions for differentiating MSCs into ECs have not been fully investigated. To accomplish an in vivo-like loading environment, a loading system was designed to apply flow induced stress and induce hMSC differentiation in vascular cells. Culturing MSCs on tubular scaffolds under flow-induced shear stress (2.5 dyne/cm(2)) for 4 days results in increased mRNA levels of EC markers (vWF, CD31, VE-cadherin and E-selectin) after one day. Furthermore, we investigated the effects of 2.5 dyne/cm(2) shear stress followed by 3% circumferential stretch for 3 days, and an additional 5% circumferential stretch for 4 days on hMSC differentiation into ECs. EC marker protein levels showed a significant increase after applying 5% stretch, while SMC markers were not present at levels sufficient for detection. Our results demonstrate that the expression of several hMSC EC markers cultured on double-layered tubular scaffolds were upregulated at the mRNA and protein levels with the application of fluid shear stress and cyclic circumferential stretch. PMID:26800691

  12. Aerobic exercise acutely prevents the endothelial dysfunction induced by mental stress among subjects with metabolic syndrome: the role of shear rate.

    PubMed

    Sales, Allan R K; Fernandes, Igor A; Rocha, Natália G; Costa, Lucas S; Rocha, Helena N M; Mattos, João D M; Vianna, Lauro C; Silva, Bruno M; Nóbrega, Antonio C L

    2014-04-01

    Mental stress induces transient endothelial dysfunction, which is an important finding for subjects at cardiometabolic risk. Thus, we tested whether aerobic exercise prevents this dysfunction among subjects with metabolic syndrome (MetS) and whether an increase in shear rate during exercise plays a role in this phenomenon. Subjects with MetS participated in two protocols. In protocol 1 (n = 16), endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Subjects then underwent a mental stress test followed by either 40 min of leg cycling or rest across two randomized sessions. FMD was assessed again at 30 and 60 min after exercise or rest, with a second mental stress test in between. Mental stress reduced FMD at 30 and 60 min after the rest session (baseline: 7.7 ± 0.4%, 30 min: 5.4 ± 0.5%, and 60 min: 3.9 ± 0.5%, P < 0.05 vs. baseline), whereas exercise prevented this reduction (baseline: 7.5 ± 0.4%, 30 min: 7.2 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline). Protocol 2 (n = 5) was similar to protocol 1 except that the first period of mental stress was followed by either exercise in which the brachial artery shear rate was attenuated via forearm cuff inflation or exercise without a cuff. Noncuffed exercise prevented the reduction in FMD (baseline: 7.5 ± 0.7%, 30 min: 7.0 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline), whereas cuffed exercise failed to prevent this reduction (baseline: 7.5 ± 0.6%, 30 min: 5.4 ± 0.8%, and 60 min: 4.1 ± 0.9%, P < 0.05 vs. baseline). In conclusion, exercise prevented mental stress-induced endothelial dysfunction among subjects with MetS, and an increase in shear rate during exercise mediated this effect.

  13. Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway.

    PubMed Central

    Schwachtgen, J L; Houston, P; Campbell, C; Sukhatme, V; Braddock, M

    1998-01-01

    The primary response transcription factor, early growth response-1 (Egr-1), is rapidly activated by a variety of extracellular stimuli. Egr-1 binds to a sequence found in the promoters of genes involved in vascular injury, such as PDGF-A and tissue factor, and trans-activates their expression in endothelial cells in response to fluid shear stress. Here we show that egr-1 mRNA is increased after 30 min of flow in human aortic endothelial cell and HeLa cell cultures. Transient transfection of HeLa cells with reporter gene constructs driven by the murine or human egr-1 5' flanking sequence revealed a five- and ninefold induction, respectively, in transcriptional activity after exposure to a shear stress of 5 dynes/cm2 for 3 h. Deletion of sequences in the murine promoter containing two AP1 sites and an inhibitory Egr-1 binding sequence, did not reduce shear stress inducibility. However, progressive deletion of five serum response elements, reduced both the basal promoter activity and its capacity to be activated by shear stress. Further examination indicated that the three upstream serum response elements are predominantly responsible for shear stress activation of the egr-1 promoter. Treatment of cells with PD98059, a specific inhibitor of mitogen-activated protein kinase-1 inhibited shear stress activation of egr-1. We suggest that egr-1 activation by shear stress involves activation of Elk-1 but not c-jun activity. These data, which are consistent with previous findings for shear mediated signaling via the mitogen-activated protein kinase cascade, now implicate shear modulation of the Egr-1 transcription factor in this pathway. PMID:9616225

  14. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase.

    PubMed

    Sorescu, George P; Song, Hannah; Tressel, Sarah L; Hwang, Jinah; Dikalov, Sergey; Smith, Debra A; Boyd, Nolan L; Platt, Manu O; Lassègue, Bernard; Griendling, Kathy K; Jo, Hanjoong

    2004-10-15

    Atherosclerosis is an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions including oscillatory shear stress (OS). OS exposure induces endothelial expression of bone morphogenic protein 4 (BMP4), which in turn may activate intercellular adhesion molecule-1 (ICAM-1) expression and monocyte adhesion. OS is also known to induce monocyte adhesion by producing reactive oxygen species (ROS) from reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, raising the possibility that BMP4 may stimulate the inflammatory response by ROS-dependent mechanisms. Here we show that ROS scavengers blocked ICAM-1 expression and monocyte adhesion induced by BMP4 or OS in endothelial cells (ECs). Similar to OS, BMP4 stimulated H2O2 and O2- production in ECs. Next, we used ECs obtained from p47phox-/- mice (MAE-p47-/-), which do not produce ROS in response to OS, to determine the role of NADPH oxidases. Similar to OS, BMP4 failed to induce monocyte adhesion in MAE-p47-/-, but it was restored when the cells were transfected with p47phox plasmid. Moreover, OS-induced O2- production was blocked by noggin (a BMP antagonist), suggesting a role for BMP. Furthermore, OS increased gp91phox (nox2) and nox1 mRNA levels while decreasing nox4. In contrast, BMP4 induced nox1 mRNA expression, whereas nox2 and nox4 were decreased or not affected, respectively. Also, OS-induced monocyte adhesion was blocked by knocking down nox1 with the small interfering RNA (siRNA). Finally, BMP4 siRNA inhibited OS-induced ROS production and monocyte adhesion. Together, these results suggest that BMP4 produced in ECs by OS stimulates ROS release from the nox1-dependent NADPH oxidase leading to inflammation, a critical early atherogenic step. PMID:15388638

  15. MAPKs (ERK1/2, p38) and AKT can be phosphorylated by shear stress independently of platelet endothelial cell adhesion molecule-1 (CD31) in vascular endothelial cells.

    PubMed

    Sumpio, Bauer E; Yun, Sangseob; Cordova, Alfredo C; Haga, Masae; Zhang, Jin; Koh, Yongbok; Madri, Joseph A

    2005-03-25

    PECAM-1 (CD31) is a member of the Ig superfamily of cell adhesion molecules and is expressed on endothelial cells (EC) as several circulating blood elements including platelets, polymorphonuclear leukocytes, monocytes, and lymphocytes. PECAM-1 tyrosine phosphorylation has been observed following mechanical stimulation of EC but its role in mechanosensing is still incompletely understood. The aim of this study was to investigate the involvement of PECAM-1 in signaling cascades in response to fluid shear stress (SS) in vascular ECs. PECAM-1-deficient (KO) and PECAM-reconstituted murine microvascular ECs, 50 and 100% confluent bovine aortic EC (BAEC), and human umbilical vein EC (HUVEC) transfected with antisense PECAM-1 oligonucleotides were exposed to oscillatory SS (14 dynes/cm2) for 0, 5, 10, 30 or 60 min. The tyrosine phosphorylation level of PECAM-1 immunoprecipitated from SS-stimulated PECAM-reconstituted, but not PECAM-1-KO, murine ECs increased. Although PECAM-1 was phosphorylated in 100% confluent BAEC and HUVEC, its phosphorylation level in 50% confluent BAECs or HUVEC was not detected by SS. Likewise PECAM-1 phosphorylation was robust in the wild type and scrambled-transfected HUVEC but not in the PECAM-1 antisense-HUVEC. ERK(1/2), p38 MAPK, and AKT were activated by SS in all cell types tested, including the PECAM-1-KO murine ECs, 50% confluent BAECs, and HUVEC transfected with antisense PECAM-1. This suggests that PECAM-1 may not function as a major mechanoreceptor for activation of MAPK and AKT in ECs and that there are likely to be other mechanoreceptors in ECs functioning to detect shear stress and trigger intercellular signals. PMID:15668248

  16. Shear-Induced Nitric Oxide Production by Endothelial Cells.

    PubMed

    Sriram, Krishna; Laughlin, Justin G; Rangamani, Padmini; Tartakovsky, Daniel M

    2016-07-12

    We present a biochemical model of the wall shear stress-induced activation of endothelial nitric oxide synthase (eNOS) in an endothelial cell. The model includes three key mechanotransducers: mechanosensing ion channels, integrins, and G protein-coupled receptors. The reaction cascade consists of two interconnected parts. The first is rapid activation of calcium, which results in formation of calcium-calmodulin complexes, followed by recruitment of eNOS from caveolae. The second is phosphorylation of eNOS by protein kinases PKC and AKT. The model also includes a negative feedback loop due to inhibition of calcium influx into the cell by cyclic guanosine monophosphate (cGMP). In this feedback, increased nitric oxide (NO) levels cause an increase in cGMP levels, so that cGMP inhibition of calcium influx can limit NO production. The model was used to predict the dynamics of NO production by an endothelial cell subjected to a step increase of wall shear stress from zero to a finite physiologically relevant value. Among several experimentally observed features, the model predicts a highly nonlinear, biphasic transient behavior of eNOS activation and NO production: a rapid initial activation due to the very rapid influx of calcium into the cytosol (occurring within 1-5 min) is followed by a sustained period of activation due to protein kinases. PMID:27410748

  17. The gene expression of human endothelial cells is modulated by subendothelial extracellular matrix proteins: short-term response to laminar shear stress.

    PubMed

    Chlupac, Jaroslav; Filova, Elena; Havlikova, Jana; Matejka, Roman; Riedel, Tomas; Houska, Milan; Brynda, Eduard; Pamula, Elzbieta; Rémy, Murielle; Bareille, Reine; Fernandez, Philippe; Daculsi, Richard; Bourget, Chantal; Bacakova, Lucie; Bordenave, Laurence

    2014-08-01

    Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm(2) for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, β1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they

  18. The Gene Expression of Human Endothelial Cells Is Modulated by Subendothelial Extracellular Matrix Proteins: Short-Term Response to Laminar Shear Stress

    PubMed Central

    Filova, Elena; Havlikova, Jana; Matejka, Roman; Riedel, Tomas; Houska, Milan; Brynda, Eduard; Pamula, Elzbieta; Rémy, Murielle; Bareille, Reine; Fernandez, Philippe; Daculsi, Richard; Bourget, Chantal; Bacakova, Lucie; Bordenave, Laurence

    2014-01-01

    Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm2 for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, β1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they enhanced

  19. A Piezoelectric Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  20. Shear stress induced stimulation of mammalian cell metabolism

    NASA Technical Reports Server (NTRS)

    Mcintire, L. V.; Frangos, J. A.; Eskin, S. G.

    1988-01-01

    A flow apparatus was developed for the study of the metabolic response of anchorage dependent cells to a wide range of steady and pulsatile shear stresses under well controlled conditions. Human umbilical vein endothelial cell monolayers were subjected to steady shear stresses of up to 24 dynes/sq cm, and the production of prostacyclin was determined. The onset of flow led to a burst in prostacyclin production which decayed to a long term steady state rate (SSR). The SSR of cells exposed to flow was greater than the basal release level, and increased linearly with increasing shear stress. It is demonstrated that shear stresses in certain ranges may not be detrimental to mammalian cell metabolism. In fact, throughout the range of shear stresses studied, metabolite production is maximized by maximizing shear stress.

  1. A piezoelectric shear stress sensor

    NASA Astrophysics Data System (ADS)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-04-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress, suppressing effects of normal stress components, by applying opposite poling vectors to the piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces where it demonstrated high sensitivity to shear stress (91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-33%PT, d31=-1330 pC/N). The sensor also exhibited negligible sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is up to 800 Hz.

  2. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion

    NASA Technical Reports Server (NTRS)

    Hwang, Jinah; Saha, Aniket; Boo, Yong Chool; Sorescu, George P.; McNally, J. Scott; Holland, Steven M.; Dikalov, Sergei; Giddens, Don P.; Griendling, Kathy K.; Harrison, David G.; Jo, Hanjoong

    2003-01-01

    Arterial regions exposed to oscillatory shear (OS) in branched arteries are lesion-prone sites of atherosclerosis, whereas those of laminar shear (LS) are relatively well protected. Here, we examined the hypothesis that OS and LS differentially regulate production of O2- from the endothelial NAD(P)H oxidase, which, in turn, is responsible for their opposite effects on a critical atherogenic event, monocyte adhesion. We used aortic endothelial cells obtained from C57BL/6 (MAE-C57) and p47phox-/- (MAE-p47-/-) mice, which lack a component of NAD(P)H oxidase. O2- production was determined by dihydroethidium staining and an electron spin resonance using an electron spin trap methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine. Chronic exposure (18 h) to an arterial level of OS (+/- 5 dynes/cm2) increased O2- (2-fold) and monocyte adhesion (3-fold) in MAE-C57 cells, whereas chronic LS (15 dynes/cm2, 18 h) significantly decreased both monocyte adhesion and O2- compared with static conditions. In contrast, neither LS nor OS were able to induce O2- production and monocyte adhesion to MAE-p47-/-. Treating MAE-C57 with a cell-permeable superoxide dismutase compound, polyethylene glycol-superoxide dismutase, also inhibited OS-induced monocyte adhesion. In addition, over-expressing p47phox in MAE-p47-/- restored OS-induced O2- production and monocyte adhesion. These results suggest that chronic exposure of endothelial cells to OS stimulates O2- and/or its derivatives produced from p47phox-dependent NAD(P)H oxidase, which, in turn, leads to monocyte adhesion, an early and critical atherogenic event.

  3. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Boyd, Nolan L.; Park, Heonyong; Yi, Hong; Boo, Yong Chool; Sorescu, George P.; Sykes, Michelle; Jo, Hanjoong

    2003-01-01

    Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.

  4. [Exercise-induced shear stress: Physiological basis and clinical impact].

    PubMed

    Rodríguez-Núñez, Iván; Romero, Fernando; Saavedra, María Javiera

    2016-01-01

    The physiological regulation of vascular function is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the major risk factors for cardiovascular disease, where an imbalance between synthesis of vasodilator and vasoconstrictor molecules is one of its main mechanisms. In this context, the shear stress is one of the most important mechanical stimuli to improve vascular function, due to endothelial mechanotransduction, triggered by stimulation of various endothelial mechanosensors, induce signaling pathways culminating in increased bioavailability of vasodilators molecules such as nitric oxide, that finally trigger the angiogenic mechanisms. These mechanisms allow providing the physiological basis for the effects of exercise on vascular health. In this review it is discussed the molecular mechanisms involved in the vascular response induced by shear stress and its impact in reversing vascular injury associated with the most prevalent cardiovascular disease in our population. PMID:27118039

  5. [Exercise-induced shear stress: Physiological basis and clinical impact].

    PubMed

    Rodríguez-Núñez, Iván; Romero, Fernando; Saavedra, María Javiera

    2016-01-01

    The physiological regulation of vascular function is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the major risk factors for cardiovascular disease, where an imbalance between synthesis of vasodilator and vasoconstrictor molecules is one of its main mechanisms. In this context, the shear stress is one of the most important mechanical stimuli to improve vascular function, due to endothelial mechanotransduction, triggered by stimulation of various endothelial mechanosensors, induce signaling pathways culminating in increased bioavailability of vasodilators molecules such as nitric oxide, that finally trigger the angiogenic mechanisms. These mechanisms allow providing the physiological basis for the effects of exercise on vascular health. In this review it is discussed the molecular mechanisms involved in the vascular response induced by shear stress and its impact in reversing vascular injury associated with the most prevalent cardiovascular disease in our population.

  6. Shear-Induced Nitric Oxide Production by Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Sriram, Krishna; Laughlin, Justin G.; Rangamani, Padmini; Tartakovsky, Daniel M.

    2016-07-01

    We present a biochemical model of the wall shear stress (WSS)-induced activation of endothelial nitric oxide synthase (eNOS) in an endothelial cell (EC). The model includes three key mechanotransducers: mechanosensing ion channels, integrins and G-protein-coupled receptors. The reaction cascade consists of two interconnected parts. The first is rapid activation of calcium, which results in formation of calcium-calmodulin complexes, followed by recruitment of eNOS from caveolae. The second is phosphoryaltion of eNOS by protein kinases PKC and AKT. The model also includes a negative feedback loop due to inhibition of calcium influx into the cell by cyclic guanosine monophosphate (cGMP). In this feedback, increased nitric oxide (NO) levels cause an increase in cGMP levels, so that cGMP inhibition of calcium influx can limit NO production. The model was used to predict the dynamics of NO production by an EC subjected to a step increase of WSS from zero to a finite physiologically relevant value. Among several experimentally observed features, the model predicts a highly nonlinear, biphasic transient behavior of eNOS activation and NO production: a rapid initial activation due to the very rapid influx of calcium into the cytosol (occurring within 1 to 5 minutes) is followed by a sustained period of activation due to protein kinases.

  7. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature.

    PubMed

    Sabine, Amélie; Bovay, Esther; Demir, Cansaran Saygili; Kimura, Wataru; Jaquet, Muriel; Agalarov, Yan; Zangger, Nadine; Scallan, Joshua P; Graber, Werner; Gulpinar, Elgin; Kwak, Brenda R; Mäkinen, Taija; Martinez-Corral, Inés; Ortega, Sagrario; Delorenzi, Mauro; Kiefer, Friedemann; Davis, Michael J; Djonov, Valentin; Miura, Naoyuki; Petrova, Tatiana V

    2015-10-01

    Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.

  8. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature

    PubMed Central

    Sabine, Amélie; Bovay, Esther; Demir, Cansaran Saygili; Kimura, Wataru; Jaquet, Muriel; Agalarov, Yan; Zangger, Nadine; Scallan, Joshua P.; Graber, Werner; Gulpinar, Elgin; Kwak, Brenda R.; Mäkinen, Taija; Martinez-Corral, Inés; Ortega, Sagrario; Delorenzi, Mauro; Kiefer, Friedemann; Davis, Michael J.; Djonov, Valentin; Miura, Naoyuki; Petrova, Tatiana V.

    2015-01-01

    Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease. PMID:26389677

  9. Shear stress-induced transcriptional regulation via hybrid promoters as a potential tool for promoting angiogenesis.

    PubMed

    Silberman, Michal; Barac, Yaron D; Yahav, Hava; Wolfovitz, Efrat; Einav, Shmuel; Resnick, Nitzan; Binah, Ofer

    2009-01-01

    Among the key effects of fluid shear stress on vascular endothelial cells is modulation of gene expression. Promoter sequences termed shear stress response elements (SSREs) mediate the responsiveness of endothelial genes to shear stress. While previous studies showed that shear stress responsiveness is mediated by a single SSRE, these endogenous promoters often encode for multiple SSREs. Moreover, hybrid promoters encoding a single SSRE rarely respond to shear stress at the same magnitude as the endogenous promoter. Thus, to better understand the interplay between the various SSREs, and between SSREs and endothelial-specific sequences (ESS), we generated a series of constructs regulated by SSREs cassettes alone, or in combination with ESS, and tested their response to shear stress and endothelial specific expression. Among these constructs, the most responsive promoter (NR1/2) encoded a combination of two GAGACC/SSREs, the Sp1/Egr1 sequence, as well as a TPA response element (TRE). This construct was four- to five-fold more responsive to shear stress than a promoter encoding a single SSRE. The expression of constructs containing other SSRE combinations was unaffected or suppressed by shear stress. Addition of ESS derived from the Tie2 promoter, either 5' or 3' to NR1/2 resulted in shear stress transcriptional suppression, yet retained endothelial specific expression. Thus, the combination and localization order of the various SSREs in a single promoter is crucial in determining the pattern and degree of shear stress responsiveness. These shear stress responsive cassettes may prove beneficial in our attempt to time the expression of an endothelial transgene in the vasculature.

  10. Computer-controlled microcirculatory support system for endothelial cell culture and shearing.

    PubMed

    Song, Jonathan W; Gu, Wei; Futai, Nobuyuki; Warner, Kristy A; Nor, Jacques E; Takayama, Shuichi

    2005-07-01

    Endothelial cells (ECs) lining the inner lumen of blood vessels are continuously subjected to hemodynamic shear stress, which is known to modify EC morphology and biological activity. This paper describes a self-contained microcirculatory EC culture system that efficiently studies such effects of shear stress on EC alignment and elongation in vitro. The culture system is composed of elastomeric microfluidic cell shearing chambers interfaced with computer-controlled movement of piezoelectric pins on a refreshable Braille display. The flow rate is varied by design of channels that allow for movement of different volumes of fluid per variable-speed pump stroke. The integrated microfluidic valving and pumping system allowed primary EC seeding and differential shearing in multiple compartments to be performed on a single chip. The microfluidic flows caused ECs to align and elongate significantly in the direction of flow according to their exposed levels of shear stress. This microfluidic system overcomes the small flow rates and the inefficiencies of previously described microfluidic and macroscopic systems respectively to conveniently perform parallel studies of EC response to shear stress. PMID:15987102

  11. Effects of the changes in the wall shear stresses (WSS) acting on endothelial cells (EC) during the enlargement of Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie

    2005-03-01

    The changes in the spatial and temporal distribution of the WSS and gradients of WSS during the enlargement of AAAs are important to understand the etiology and progression of this vascular disease, since they affect the wall structural integrity, primarily via the changes induced on the shape, functions and metabolism of the endothelial cells. PIV measurements were performed in aneurysm models, while changing systematically their size and geometry. Two regions with distinct patterns of WSS were identified. The region of flow detachment extends over the proximal half and is characterized by oscillatory WSS of very low mean. The region of flow reattachment, located distally, is dominated by large, negative WSS and sustained gradients of WSS that result from the impact of the vortex ring on the wall. Cultured EC were subjected to these two types of stimuli in vitro. The permeability of the endothelium was found to be largely increased in the flow detachment region. Endothelium cell-cell adhesion, proliferation and apoptosis were also affected by the high gradients of WSS.

  12. Shear stress facilitates tissue-engineered odontogenesis.

    PubMed

    Honda, M J; Shinohara, Y; Sumita, Y; Tonomura, A; Kagami, H; Ueda, M

    2006-07-01

    Numerous studies have demonstrated the effect of shear stress on osteoblasts, but its effect on odontogenic cells has never been reported. In this study, we focused on the effect of shear stress on facilitating tissue-engineered odontogenesis by dissociated single cells. Cells were harvested from the porcine third molar tooth at the early stage of crown formation, and the isolated heterogeneous cells were seeded on a biodegradable polyglycolic acid fiber mesh. Then, cell-polymer constructs with and without exposure to shear stress were evaluated by in vitro and in vivo studies. In in vitro studies, the expression of both epithelial and mesenchymal odontogenic-related mRNAs was significantly enhanced by shear stress for 2 h. At 12 h after exposure to shear stress, the expression of amelogenin, bone sialoprotein and vimentin protein was significantly enhanced compared with that of control. Moreover, after 7 days, alkaline phosphatase activity exhibited a significant increase without any significant effect on cell proliferation in vitro. In vivo, enamel and dentin tissues formed after 15 weeks of in vivo implantation in constructs exposure to in vitro shear stress for 12 h. Such was not the case in controls. We concluded that shear stress facilitates odontogenic cell differentiation in vitro as well as the process of tooth tissue engineering in vivo.

  13. Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite.

    PubMed

    Jones, Charles I; Han, Zhaosheng; Presley, Tennille; Varadharaj, Saradhadevi; Zweier, Jay L; Ilangovan, Govindasamy; Alevriadou, B Rita

    2008-07-01

    Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.

  14. Impact of Bi-Axial Shear on Atherogenic Gene Expression by Endothelial Cells.

    PubMed

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Thomas, Jonathan M; Sharp, M Keith; Berson, R Eric; Haribabu, Bodduluri

    2016-10-01

    This study demonstrated the effects of the directionality of oscillatory wall shear stress (WSS) on proliferation and proatherogenic gene expression (I-CAM, E-Selectin, and IL-6) in the presence of inflammatory mediators leukotriene B4 (LTB4) and bacterial lipopolysaccharide (LPS) from endothelial cells grown in an orbiting culture dish. Computational fluid dynamics (CFD) was applied to quantify the flow in the dish, while an analytical solution representing an extension of Stokes second problem was used for validation. Results indicated that WSS magnitude was relatively constant near the center of the dish and oscillated significantly (0-0.9 Pa) near the side walls. Experiments showed that LTB4 dominated the shear effects on cell proliferation and area. Addition of LPS didn't change proliferation, but significantly affected cell area. The expression of I-CAM1, E-Selectin and IL-6 were altered by directional oscillatory shear index (DOSI, a measure of the biaxiality of oscillatory shear), but not shear magnitude. The significance of DOSI was further reinforced by the strength of its interactions with other atherogenic factors. Hence, directionality of shear appears to be an important factor in regulating gene expression and provides a potential explanation of the propensity for increased vascular lesions in regions in the arteries with oscillating biaxial flow.

  15. Determining Shear Stress Distribution in a Laminate

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.

    2010-01-01

    A "simplified shear solution" method approximates the through-thickness shear stress distribution within a composite laminate based on an extension of laminated beam theory. The method does not consider the solution of a particular boundary value problem; rather, it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply-level stresses can be efficiently determined from global load resultants at a given location in a structure and used to evaluate the margin of safety on a ply-by-ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. The method has been incorporated within the HyperSizer commercial structural sizing software to improve its predictive capability for designing composite structures. The HyperSizer structural sizing software is used extensively by NASA to design composite structures. In the case of through-thickness shear loading on panels, HyperSizer previously included a basic, industry-standard, method for approximating the resulting shear stress distribution in sandwich panels. However, no such method was employed for solid laminate panels. The purpose of the innovation is to provide an approximation of the through-thickness shear stresses in a solid laminate given the through-thickness shear loads (Qx and Qy) on the panel. The method was needed for implementation within the HyperSizer structural sizing software so that the approximated ply-level shear stresses could be utilized in a failure theory to assess the adequacy of a panel design. The simplified shear solution method was developed based on extending and generalizing bi-material beam theory to plate-like structures. It is assumed that the through-thickness shear stresses arise due to local bending of the laminate induced by the through-thickness shear load, and by imposing

  16. Examination of the role of transient receptor potential vanilloid type 4 in endothelial responses to shear forces

    PubMed Central

    Baratchi, Sara; Tovar-Lopez, Francisco J.; Khoshmanesh, Khashayar; Grace, Megan S.; Darby, William; Almazi, Juhura; Mitchell, Arnan; McIntyre, Peter

    2014-01-01

    Shear stress is the major mechanical force applied on vascular endothelial cells by blood flow, and is a crucial factor in normal vascular physiology and in the development of some vascular pathologies. The exact mechanisms of cellular mechano-transduction in mammalian cells and tissues have not yet been elucidated, but it is known that mechanically sensitive receptors and ion channels play a crucial role. This paper describes the use of a novel and efficient microfluidic device to study mechanically-sensitive receptors and ion channels in vitro, which has three independent channels from which recordings can be made and has a small surface area such that fewer cells are required than for conventional flow chambers. The contoured channels of the device enabled examination of a range of shear stresses in one field of view, which is not possible with parallel plate flow chambers and other previously used devices, where one level of flow-induced shear stress is produced per fixed flow-rate. We exposed bovine aortic endothelial cells to different levels of shear stress, and measured the resulting change in intracellular calcium levels ([Ca2+]i) using the fluorescent calcium sensitive dye Fluo-4AM. Shear stress caused an elevation of [Ca2+]i that was proportional to the level of shear experienced. The response was temperature dependant such that at lower temperatures more shear stress was required to elicit a given level of calcium signal and the magnitude of influx was reduced. We demonstrated that shear stress-induced elevations in [Ca2+]i are largely due to calcium influx through the transient receptor potential vanilloid type 4 ion channel. PMID:25379102

  17. Morphological analysis of tumor cell/endothelial cell interactions under shear flow.

    PubMed

    Chotard-Ghodsnia, Roxana; Haddad, Oualid; Leyrat, Anne; Drochon, Agnès; Verdier, Claude; Duperray, Alain

    2007-01-01

    In the process of hematogenous cancer metastasis, tumor cells (TCs) must shed into the blood stream, survive in the blood circulation, migrate through the vascular endothelium (extravasation) and proliferate in the target organs. However, the precise mechanisms by which TCs penetrate the endothelial cell (EC) junctions remain one of the least understood aspects of TC extravasation. This question has generally been addressed under static conditions, despite the important role of flow induced mechanical stress on the circulating cell-endothelium interactions. Moreover, flow studies were generally focused on transient or firm adhesion steps of TC-EC interactions and did not consider TCs spreading or extravasation. In this paper, we used a parallel-plate flow chamber to investigate TC-EC interactions under flow conditions. An EC monolayer was cultured on the lower plate of the flow chamber to model the endothelial barrier. Circulating TCs were introduced into the flow channel under a well-defined flow field and TC cell shape changes on the EC monolayer were followed in vitro with live phase contrast and fluorescence microscopy. Two spreading patterns were observed: radial spreading which corresponds to TC extravasation, and axial spreading where TCs formed a mosaic TC-EC monolayer. By investigating the changes in area and minor/major aspect ratio, we have established a simple quantitative basis for comparing spreading modes under various shear stresses. Contrary to radial spreading, the extent of axial spreading was increased by shear stress.

  18. Nonlocal Shear Stress for Homogeneous Fluids

    NASA Astrophysics Data System (ADS)

    Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2008-05-01

    It has been suggested that for fluids in which the rate of strain varies appreciably over length scales of the order of the intermolecular interaction range, the viscosity must be treated as a nonlocal property of the fluid. The shear stress can then be postulated to be a convolution of this nonlocal viscosity kernel with the strain rate over all space. In this Letter, we confirm that this postulate is correct by a combination of analytical and numerical methods for an atomic fluid out of equilibrium. Furthermore, we show that a gradient expansion of the nonlocal constitutive equation gives a reasonable approximation to the shear stress in the small wave vector limit.

  19. Shear Stress-Triggered Nitric Oxide Release From Schlemm's Canal Cells

    PubMed Central

    Ashpole, Nicole E.; Overby, Darryl R.; Ethier, C. Ross; Stamer, W. Daniel

    2014-01-01

    Purpose. Endothelial nitric oxide (NO) synthase is regulated by shear stress. At elevated intraocular pressures when the Schlemm's canal (SC) begins to collapse, shear stress is comparable with that in large arteries. We investigated the relationship between NO production and shear stress in cultured human SC cells. Methods. Schlemm's canal endothelial cells isolated from three normal and two glaucomatous human donors were seeded into Ibidi flow chambers at confluence, cultured for 7 days, and subjected to steady shear stress (0.1 or 10 dynes/cm2) for 6, 24, or 168 hours. Cell alignment with flow direction was monitored, and NO production was measured using 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) and Griess reagents. Human trabecular meshwork (TM) and umbilical vein endothelial cells (HUVECs) were used as controls. Results. Normal SC strains aligned with the direction of flow by 7 days. Comparing 0.1 vs. 10 dynes/cm2, NO levels increased by 82% at 24 hours and 8-fold after 7 days by DAF-FM, and similar results were obtained with Griess reagent. Shear responses by SC cells at 24 hours were comparable with HUVECs, and greater than TM cells, which appeared shear-insensitive. Nitric oxide production by SC cells was detectable as early as 6 hours and was inhibited by 100 μM nitro-L-arginine methyl ester. Two glaucomatous SC cell strains were either unresponsive or lifted from the plate in the face of shear. Conclusions. Shear stress triggers NO production in human SC cells, similar to other vascular endothelia. Increased shear stress and NO production during SC collapse at elevated intraocular pressures may in part mediate IOP homeostasis. PMID:25395486

  20. Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-Bo; Li, Yu-Qing; Gao, Quan-Chao; Cheng, Bin-Bin; Shen, Bao-Rong; Yan, Zhi-Qiang; Jiang, Zong-Lai

    2011-12-01

    The adhesion of endothelial progenitor cells (EPCs) on endothelial cells (ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases. Here, the rolling and adhesion behavior of EPCs on ECs was studied numerically. A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow. The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model. The effect of tumor necrosis factor alpha (TNF- α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally. A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs. Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiffness of the cell and shear rate of the flow. It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered. Experimental results demonstrate that TNF- α enhanced the expressions of VCAM, ICAM, P-selectin and E-selectin in ECs, which supports the numerical results that the rolling velocity of EPC on TNF- α treated EC substrate decreases obviously compared with its velocity on the untreated one. It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell, an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.

  1. Low shear stress gravel-bed river

    USGS Publications Warehouse

    Milhous, Robert T.

    1997-01-01

    A low stress gravel bed river is a river where the cross-sectional average dimensionless shear stress (??*) rarely exceeds 0.047. That is the case for the Gunnison River below Delta in Western Colorado. The cross-sectional average ??* in the Gunnison River has not exceeded 0.047, except at one cross section during one year, in the 87 years of record. A ??* of 0.047 is the critical ??* in the bed-load equation considered to be most applicable to gravel/cobble bed rivers (the Meyer-Peter, Mueller equation). According to this equation, there has been no bed-material movement in the Gunnison River since 1920; in fact there has been bed-material movement and this movement is biologically important. Bed-material is moved when the ??* is 0.016 or larger. Streamflows that cause a ??* of at least 0.016 maintain the aquatic habitat in a low shear stress river.

  2. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    PubMed

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed.

  3. Experimental and computational validation of Hele-Shaw stagnation flow with varying shear stress

    NASA Astrophysics Data System (ADS)

    Tefft, Brandon J.; Kopacz, Adrian M.; Liu, Wing Kam; Liu, Shu Q.

    2013-12-01

    An in vitro flow model system with continuous variation of fluid shear stress can be used to test cell responses to a range of shear stresses. In this investigation, we validated such a flow system computationally for steady and unsteady flow conditions and experimentally for steady flow conditions. The unsteady flow validation is important for studying cells such as endothelial cells that experience unsteady flow conditions in their native environment. The system is capable of exposing cells in different regions of the chamber to steady or unsteady shear stress conditions with average values ranging linearly from 0 to 30 dyn/cm. These tests and analyses demonstrate that the variable-width parallel plate flow system can be used to test the influence of a range of steady and unsteady fluid shear stress levels on cell activities.

  4. Flexible Micropost Arrays for Shear Stress Measurement

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  5. Stent implantation influence wall shear stress evolution

    NASA Astrophysics Data System (ADS)

    Bernad, S. I.; Totorean, A. F.; Bosioc, A. I.; Petre, I.; Bernad, E. S.

    2016-06-01

    Local hemodynamic factors are known affect the natural history of the restenosis critically after coronary stenting of atherosclerosis. Stent-induced flows disturbance magnitude dependent directly on the strut design. The impact of flow alterations around struts vary as the strut geometrical parameters change. Our results provide data regarding the hemodynamic parameters for the blood flow in both stenosed and stented coronary artery under physiological conditions, namely wall shear stress and pressure drop.

  6. Shear Stress Sensing using Elastomer Micropillar Arrays

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.

    2013-01-01

    The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.

  7. A microfluidic cell culture system for monitoring of sequential changes in endothelial cells after heat stress.

    PubMed

    Tazawa, Hidekatsu; Sato, Kenjiro; Tsutiya, Atsuhiro; Tokeshi, Manabu; Ohtani-Kaneko, Ritsuko

    2015-08-01

    Endothelial damage induced by a highly elevated body temperature is crucial in some diseases including viral hemorrhagic fevers. Here, we report the heat-induced sequential changes of endothelial cells under shear stress, which were determined with a microfluidic culture system. Although live cell imaging showed only minor changes in the appearance of heat-treated cells, Hsp70 mRNA expression analysis demonstrated that the endothelial cells in channels of the system responded well to heat treatment. F-actin staining also revealed clear changes in the bundles of actin filaments after heat treatment. Well-organized bundles of actin filaments in control cells disappeared in heat-treated cells cultured in the channel. Furthermore, the system enabled detection of sequential changes in plasminogen activator inhibitor-1 (PAI-1) secretion from endothelial cells. PAI-1 concentration in the effluent solution was significantly elevated for the first 15min after initiation of heat treatment, and then decreased subsequently. This study provides fundamental information on heat-induced endothelial changes under shear stress and introduces a potent tool for analyzing endothelial secretions. PMID:26044666

  8. A microfluidic cell culture system for monitoring of sequential changes in endothelial cells after heat stress.

    PubMed

    Tazawa, Hidekatsu; Sato, Kenjiro; Tsutiya, Atsuhiro; Tokeshi, Manabu; Ohtani-Kaneko, Ritsuko

    2015-08-01

    Endothelial damage induced by a highly elevated body temperature is crucial in some diseases including viral hemorrhagic fevers. Here, we report the heat-induced sequential changes of endothelial cells under shear stress, which were determined with a microfluidic culture system. Although live cell imaging showed only minor changes in the appearance of heat-treated cells, Hsp70 mRNA expression analysis demonstrated that the endothelial cells in channels of the system responded well to heat treatment. F-actin staining also revealed clear changes in the bundles of actin filaments after heat treatment. Well-organized bundles of actin filaments in control cells disappeared in heat-treated cells cultured in the channel. Furthermore, the system enabled detection of sequential changes in plasminogen activator inhibitor-1 (PAI-1) secretion from endothelial cells. PAI-1 concentration in the effluent solution was significantly elevated for the first 15min after initiation of heat treatment, and then decreased subsequently. This study provides fundamental information on heat-induced endothelial changes under shear stress and introduces a potent tool for analyzing endothelial secretions.

  9. Shear stress cleaning for surface departiculation

    NASA Technical Reports Server (NTRS)

    Musselman, R. P.; Yarbrough, T. W.

    1986-01-01

    A cleaning technique widely used by the nuclear utility industry for removal of radioactive surface contamination has proven effective at removing non-hazardous contaminant particles as small as 0.1 micrometer. The process employs a controlled high velocity liquid spray inside a vapor containment enclosure to remove particles from a surface. The viscous drag force generated by the cleaning fluid applies a shear stress greater than the adhesion force that holds small particles to a substrate. Fluid mechanics and field tests indicate general cleaning parameters.

  10. Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions.

    PubMed

    Wittmer, J P; Xu, H; Baschnagel, J

    2015-02-01

    We revisit the relation between the shear-stress relaxation modulus G(t), computed at finite shear strain 0<γ≪1, and the shear-stress autocorrelation functions C(t)|(γ) and C(t)|(τ) computed, respectively, at imposed strain γ and mean stress τ. Focusing on permanent isotropic spring networks it is shown theoretically and computationally that in general G(t)=C(t)|(τ)=C(t)|(γ)+G(eq) for t>0 with G(eq) being the static equilibrium shear modulus. G(t) and C(t)|(γ) thus must become different for solids and it is impossible to obtain G(eq) alone from C(t)|(γ) as often assumed. We comment briefly on self-assembled transient networks where G(eq)(f) must vanish for a finite scission-recombination frequency f. We argue that G(t)=C(t)|(τ)=C(t)|(γ) should reveal an intermediate plateau set by the shear modulus G(eq)(f=0) of the quenched network.

  11. Arterial Shear Stress Reduces Eph-B4 Expression in Adult Human Veins

    PubMed Central

    Model, Lynn S.; Hall, Michael R.; Wong, Daniel J.; Muto, Akihito; Kondo, Yuka; Ziegler, Kenneth R.; Feigel, Amanda; Quint, Clay; Niklason, Laura; Dardik, Alan

    2014-01-01

    Vein graft adaptation to the arterial environment is characterized by loss of venous identity, with reduced Ephrin type-B receptor 4 (Eph-B4) expression but without increased Ephrin-B2 expression. We examined changes of vessel identity of human saphenous veins in a flow circuit in which shear stress could be precisely controlled. Medium circulated at arterial or venous magnitudes of laminar shear stress for 24 hours; histologic, protein, and RNA analyses of vein segments were performed. Vein endothelium remained viable and functional, with platelet endothelial cell adhesion molecule (PECAM)-expressing cells on the luminal surface. Venous Eph-B4 expression diminished (p = .002), Ephrin-B2 expression was not induced (p = .268), and expression of osteopontin (p = .002) was increased with exposure to arterial magnitudes of shear stress. Similar changes were not found in veins placed under venous flow or static conditions. These data show that human saphenous veins remain viable during ex vivo application of shear stress in a bioreactor, without loss of the venous endothelium. Arterial magnitudes of shear stress cause loss of venous identity without gain of arterial identity in human veins perfused ex vivo. Shear stress alone, without immunologic or hormonal influence, is capable of inducing changes in vessel identity and, specifically, loss of venous identity. PMID:25191151

  12. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia.

    PubMed

    Baeyens, Nicolas; Larrivée, Bruno; Ola, Roxana; Hayward-Piatkowskyi, Brielle; Dubrac, Alexandre; Huang, Billy; Ross, Tyler D; Coon, Brian G; Min, Elizabeth; Tsarfati, Maya; Tong, Haibin; Eichmann, Anne; Schwartz, Martin A

    2016-09-26

    Morphogenesis of the vascular system is strongly modulated by mechanical forces from blood flow. Hereditary hemorrhagic telangiectasia (HHT) is an inherited autosomal-dominant disease in which arteriovenous malformations and telangiectasias accumulate with age. Most cases are linked to heterozygous mutations in Alk1 or Endoglin, receptors for bone morphogenetic proteins (BMPs) 9 and 10. Evidence suggests that a second hit results in clonal expansion of endothelial cells to form lesions with poor mural cell coverage that spontaneously rupture and bleed. We now report that fluid shear stress potentiates BMPs to activate Alk1 signaling, which correlates with enhanced association of Alk1 and endoglin. Alk1 is required for BMP9 and flow responses, whereas endoglin is only required for enhancement by flow. This pathway mediates both inhibition of endothelial proliferation and recruitment of mural cells; thus, its loss blocks flow-induced vascular stabilization. Identification of Alk1 signaling as a convergence point for flow and soluble ligands provides a molecular mechanism for development of HHT lesions. PMID:27646277

  13. Concurrent shear stress and chemical stimulation of mechano-sensitive cells by discontinuous dielectrophoresis.

    PubMed

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Mitchell, Arnan; McIntyre, Peter; Khoshmanesh, Khashayar

    2016-03-01

    Microfluidic platforms enable a variety of physical or chemical stimulation of single or multiple cells to be examined and monitored in real-time. To date, intracellular calcium signalling research is, however, predominantly focused on observing the response of cells to a single mode of stimulation; consequently, the sensitising/desensitising of cell responses under concurrent stimuli is not well studied. In this paper, we provide an extended Discontinuous Dielectrophoresis procedure to investigate the sensitising of chemical stimulation, over an extensive range of shear stress, up to 63 dyn/cm(2), which encompasses shear stresses experienced in the arterial and venus systems (10 to 60 dyn/cm(2)). Furthermore, the TRPV4-selective agonist GSK1016790A, a form of chemical stimulation, did not influence the ability of the cells' to remain immobilised under high levels of shear stress; thus, enabling us to investigate shear stress stimulation on agonism. Our experiments revealed that shear stress sensitises GSK1016790A-evoked intracellular calcium signalling of cells in a shear-stimulus dependent manner, as observed through a reduction in the cellular response time and an increase in the pharmacological efficacy. Consequently, suggesting that the role of TRPV4 may be underestimated in endothelial cells-which experience high levels of shear stress. This study highlights the importance of conducting studies at high levels of shear stress. Additionally, our approach will be valuable for examining the effect of high levels of shear on different cell types under different conditions, as presented here for agonist activation. PMID:27099646

  14. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation

    PubMed Central

    Rodríguez, Iván; González, Marcelo

    2014-01-01

    Physiological vascular function regulation is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the main risk factors of cardiovascular pathology, where the imbalance between the synthesis of vasodilator and vasoconstrictor molecules is common in the development of vascular disorders in systemic and placental circulation. In the placenta, an organ without autonomic innervations, the local control of vascular tone is critical for maintenance of fetal growth and mechanisms that underlie shear stress response induced by blood flow are essential during pregnancy. In this field, shear stress induced by moderate exercise is one of the most important mechanisms to improve vascular function through nitric oxide synthesis and stimulation of mechanical response of endothelial cells triggered by ion channels, caveolae, endothelial NO synthase, and vascular endothelial growth factor, among others. The demand for oxygen and nutrients by tissues and organs, especially in placentation and pregnancy, determines blood flow parameters, and physiological adaptations of vascular beds for covering metabolic requirements. In this regard, moderate exercise versus sedentarism shows potential benefits for improving vascular function associated with the enhancement of molecular mechanisms induced by shear stress. In this review, we collect evidence about molecular bases of physiological response to shear stress in order to highlight the relevance of moderate exercise-training for vascular health in adult and fetal life. PMID:25278895

  15. Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation.

    PubMed

    Rodríguez, Iván; González, Marcelo

    2014-01-01

    Physiological vascular function regulation is essential for cardiovascular health and depends on adequate control of molecular mechanisms triggered by endothelial cells in response to mechanical and chemical stimuli induced by blood flow. Endothelial dysfunction is one of the main risk factors of cardiovascular pathology, where the imbalance between the synthesis of vasodilator and vasoconstrictor molecules is common in the development of vascular disorders in systemic and placental circulation. In the placenta, an organ without autonomic innervations, the local control of vascular tone is critical for maintenance of fetal growth and mechanisms that underlie shear stress response induced by blood flow are essential during pregnancy. In this field, shear stress induced by moderate exercise is one of the most important mechanisms to improve vascular function through nitric oxide synthesis and stimulation of mechanical response of endothelial cells triggered by ion channels, caveolae, endothelial NO synthase, and vascular endothelial growth factor, among others. The demand for oxygen and nutrients by tissues and organs, especially in placentation and pregnancy, determines blood flow parameters, and physiological adaptations of vascular beds for covering metabolic requirements. In this regard, moderate exercise versus sedentarism shows potential benefits for improving vascular function associated with the enhancement of molecular mechanisms induced by shear stress. In this review, we collect evidence about molecular bases of physiological response to shear stress in order to highlight the relevance of moderate exercise-training for vascular health in adult and fetal life. PMID:25278895

  16. In Vitro Recapitulation of Functional Microvessels for the Study of Endothelial Shear Response, Nitric Oxide and [Ca2+]i

    PubMed Central

    He, Pingnian; Liu, Yuxin

    2015-01-01

    Microfluidic technologies enable in vitro studies to closely simulate in vivo microvessel environment with complexity. Such method overcomes certain constrains of the statically cultured endothelial monolayers and enables the cells grow under physiological range of shear flow with geometry similar to microvessels in vivo. However, there are still existing knowledge gaps and lack of convincing evidence to demonstrate and quantify key biological features of the microfluidic microvessels. In this paper, using advanced micromanufacturing and microfluidic technologies, we presented an engineered microvessel model that mimicked the dimensions and network structures of in vivo microvessels with a long-term and continuous perfusion capability, as well as high-resolution and real-time imaging capability. Through direct comparisons with studies conducted in intact microvessels, our results demonstrated that the cultured microvessels formed under perfused conditions recapitulated certain key features of the microvessels in vivo. In particular, primary human umbilical vein endothelial cells were successfully cultured the entire inner surfaces of the microchannel network with well-developed junctions indicated by VE-cadherin staining. The morphological and proliferative responses of endothelial cells to shear stresses were quantified under different flow conditions which was simulated with three-dimensional shear dependent numerical flow model. Furthermore, we successfully measured agonist-induced changes in intracellular Ca2+ concentration and nitric oxide production at individual endothelial cell levels using fluorescence imaging. The results were comparable to those derived from individually perfused intact venules. With in vivo validation of its functionalities, our microfluidic model demonstrates a great potential for biological applications and bridges the gaps between in vitro and in vivo microvascular research. PMID:25965067

  17. Control of shear stress in the epicardial coronary arteries of humans: impairment by atherosclerosis.

    PubMed

    Vita, J A; Treasure, C B; Ganz, P; Cox, D A; Fish, R D; Selwyn, A P

    1989-11-01

    Altered arterial wall shear stress may adversely affect vascular endothelium and contribute to atherogenesis. This study examined the hypothesis that, in humans, dilation of normal coronary arteries with increased flow limits increases in shear stress and that loss of flow-mediated dilation in atherosclerosis results in failure to control shear stress. Coronary blood flow was increased by infusing adenosine (0.022 to 2.2 mg/min) through a 2.5F Doppler flow catheter positioned in the middle segment of the left anterior descending coronary artery in 8 patients with mild atherosclerosis but no flow-limiting stenosis and in 10 patients with entirely smooth coronary arteries. Quantitative angiography and coronary flow velocity were used to estimate shear stress in a proximal segment of the left anterior descending artery exposed to increased flow, but not to adenosine. The peak increase in blood flow was the same in smooth (371 +/- 65%) and irregular (377 +/- 50%) arteries. However, at peak flow, dilation was greater in smooth segments (16.3 +/- 2.7%) than in irregular segments (2.0 +/- 1.5%) (p less than 0.001). In each patient, smooth segments dilated with increasing shear stress (slope 7.4 +/- 0.9%), whereas irregular segments dilated less (slope 0.9 +/- 0.6%) and showed greater increases in shear stress (p less than 0.01). The peak increase in shear stress was less in smooth (189 +/- 23%) than in irregular (365 +/- 52%) segments (p less than 0.01). These results suggest a control mechanism in normal coronary arteries whereby increases in shear stress stimulate vasodilation and thus limit further increases in this force at the endothelial surface.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Exercise-Mediated Wall Shear Stress Increases Mitochondrial Biogenesis in Vascular Endothelium

    PubMed Central

    Kim, Boa; Lee, Hojun; Kawata, Keisuke; Park, Joon-Young

    2014-01-01

    Objective Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs) using in vitro and in vivo complementary studies. Methods and Results Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2) for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (ΔΨm). Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta) and muscle feed (femoral artery) arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds. Conclusion Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function. PMID:25375175

  19. Wall shear stress estimates in coronary artery constrictions

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Crawford, D. W.

    1992-01-01

    Wall shear stress estimates from laminar boundary layer theory were found to agree fairly well with the magnitude of shear stress levels along coronary artery constrictions obtained from solutions of the Navier Stokes equations for both steady and pulsatile flow. The relatively simple method can be used for in vivo estimates of wall shear stress in constrictions by using a vessel shape function determined from a coronary angiogram, along with a knowledge of the flow rate.

  20. Colors Of Liquid Crystals Used To Measure Surface Shear Stresses

    NASA Technical Reports Server (NTRS)

    Reda, D. C.; Muratore, J. J., Jr.

    1996-01-01

    Developmental method of mapping shear stresses on aerodynamic surfaces involves observation, at multiple viewing angles, of colors of liquid-crystal surface coats illuminated by white light. Report describing method referenced in "Liquid Crystals Indicate Directions Of Surface Shear Stresses" (ARC-13379). Resulting maps of surface shear stresses contain valuable data on magnitudes and directions of skin friction forces associated with surface flows; data used to refine mathematical models of aerodynamics for research and design purposes.

  1. Tumor Necrosis Factor Related Apoptosis Inducing Ligand (Trail) in endothelial response to biomechanical and biochemical stresses in arteries.

    PubMed

    D'Auria, F; Centurione, L; Centurione, M A; Angelini, A; Di Pietro, R

    2015-11-01

    Shear stress is determined by three physical components described in a famous triad: blood flow, blood viscosity and vessel geometry. Through the direct action on endothelium, shear stress is able to radically interfere with endothelial properties and the physiology of the vascular wall. Endothelial cells (ECs) have also to sustain biochemical stresses represented by chemokines, growth factors, cytokines, complement, hormones, nitric oxide (NO), oxygen and reactive oxygen species (ROS). Many growth factors, cytokines, chemokines, hormones, and chemical substances, like NO, act and regulate endothelium functions and homeostasis. Among these cytokines Tumor Necrosis Factor Related Apoptosis Inducing Ligand (TRAIL) has been assigned a regulatory role in ECs physiology and physiopathology. Thus, the aim of this review is to provide a general overview of the endothelial response pathways after different types of biomechanical and biochemical stress in in vitro models and to analyze the crucial role of TRAIL under pathological conditions of the cardiocirculatory system like atherosclerosis, coronary artery disease, and diabetes.

  2. Temporal oscillations of the shear stress and scattered light in a shear-banding--shear-thickening micellar solution.

    PubMed

    Azzouzi, H; Decruppe, J P; Lerouge, S; Greffier, O

    2005-08-01

    The results of optical and rheological experiments performed on a viscoelastic solution (cetyltrimethylammonium bromide + sodium salicylate in water) are reported. The flow curve has a horizontal plateau extending between two critical shear rates characteristic of heterogeneous flows formed by two layers of fluid with different viscosities. These two bands which also have different optical anisotropy are clearly seen by direct observation in polarized light. At the end of the plateau, apparent shear thickening is observed in a narrow range of shear rates; in phase oscillations of the shear stress and of the first normal stress difference are recorded in a shearing device operating under controlled strain. The direct observation of the annular gap of a Couette cell in a direction perpendicular to a plane containing the vorticity shows that the turbidity of the whole sample also undergoes time dependent variations with the same period as the shear stress. However no banding is observed during the oscillations and the flow remains homogeneous.

  3. Temporal oscillations of the shear stress and scattered light in a shear-banding-shear-thickening micellar solution

    NASA Astrophysics Data System (ADS)

    Azzouzi, H.; Decruppe, J. P.; Lerouge, S.; Greffier, O.

    2005-08-01

    The results of optical and rheological experiments performed on a viscoelastic solution (cetyltrimethylammonium bromide + sodium salicylate in water) are reported. The flow curve has a horizontal plateau extending between two critical shear rates characteristic of heterogeneous flows formed by two layers of fluid with different viscosities. These two bands which also have different optical anisotropy are clearly seen by direct observation in polarized light. At the end of the plateau, apparent shear thickening is observed in a narrow range of shear rates; in phase oscillations of the shear stress and of the first normal stress difference are recorded in a shearing device operating under controlled strain. The direct observation of the annular gap of a Couette cell in a direction perpendicular to a plane containing the vorticity shows that the turbidity of the whole sample also undergoes time dependent variations with the same period as the shear stress. However no banding is observed during the oscillations and the flow remains homogeneous.

  4. Adjustable shear stress erosion and transport flume

    DOEpatents

    Roberts, Jesse D.; Jepsen, Richard A.

    2002-01-01

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  5. Two-axis direct fluid shear stress sensor

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh (Inventor); Scott, Michael A. (Inventor); Adcock, Edward E. (Inventor)

    2011-01-01

    A micro sized multi-axis semiconductor skin friction/wall shear stress induced by fluid flow. The sensor design includes a shear/strain transduction gimble connected to a force collecting plate located at the flow boundary surface. The shear force collecting plate is interconnected by an arm to offset the tortional hinges from the fluid flow. The arm is connected to the shear force collecting plate through dual axis torsional hinges with piezoresistive torsional strain gauges. These gauges are disposed on the tortional hinges and provide a voltage output indicative of applied shear stress acting on the force collection plate proximate the flow boundary surface. Offsetting the torsional hinges creates a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from small shear stress, or small displacement of the collecting plate. The design also isolates the torsional sensors from exposure to the fluid flow.

  6. Passive wireless wall shear stress sensors

    NASA Astrophysics Data System (ADS)

    Sells, Jeremy

    The design and realization of the first ever passive wireless wall shear stress sensors are presented. The sensors are capable of directly measuring shear forces, 4 mPa to 4 Pa, created at the solid-fluid boundary of a flow. To capture the spatially small structures of a turbulent flow, a micromachined, variable-capacitor floating element sensor is designed. Passive wireless capability is achieved with the addition of an inductive coil and interrogating antenna. These sensors will enable characterization of complex flow phenomena. The primary benefit of the system is that the sensors operate without the need of a direct electrical connection. This simplifies installation of the sensors and enables their placement in locations where the rest of the system either will not fit or cannot survive. By using a passive wireless technique, a power source is not required, extending the life of the sensor and simplifying fabrication. The system makes use of frequency separation, allowing one interrogating antenna to query multiple sensors configured as an array simultaneously. Two generations of the wireless sensor are presented. The design, fabrication, packaging, and characterization of two first-generation sensors have dynamic ranges of 37 and 52 dB. Following this work, specific design improvements were identified and integrated into a second-generation sensor design, resulting in an improvement to 62 dB dynamic range and an order of magnitude reduction in parasitic capacitance and humidity sensitivity. Ideas for a third generation are presented, but realization of this design is left for future work.

  7. Microvascular permeability to water is independent of shear stress, but dependent on flow direction

    PubMed Central

    Adamson, R. H.; Sarai, R. K.; Altangerel, A.; Clark, J. F.; Weinbaum, S.

    2013-01-01

    Endothelial cells in a cultured monolayer change from a “cobblestone” configuration when grown under static conditions to a more elongated shape, aligned with the direction of flow, after exposure to sustained uniform shear stress. Sustained blood flow acts to protect regions of large arteries from injury. We tested the hypothesis that the stable permeability state of individually perfused microvessels is also characteristic of flow conditioning. In individually perfused rat mesenteric venular microvessels, microvascular permeability, measured as hydraulic conductivity (Lp), was stable [mean 1.0 × 10−7 cm/(s × cmH2O)] and independent of shear stress (3–14 dyn/cm2) for up to 3 h. Vessels perfused opposite to the direction of normal blood flow exhibited a delayed Lp increase [ΔLp was 7.6 × 10−7 cm/(s × cmH2O)], but the increase was independent of wall shear stress. Addition of chondroitin sulfate and hyaluronic acid to perfusates increased the shear stress range, but did not modify the asymmetry in response to flow direction. Increased Lp in reverse-perfused vessels was associated with numerous discontinuities of VE-cadherin and occludin, while both proteins were continuous around the periphery of forward-perfused vessels. The results are not consistent with a general mechanism for graded shear-dependent permeability increase, but they are consistent with the idea that a stable Lp under normal flow contributes to prevention of edema formation and also enables physiological regulation of shear-dependent small solute permeabilities (e.g., glucose). The responses during reverse flow are consistent with reports that disturbed flows result in a less stable endothelial barrier in venular microvessels. PMID:23417864

  8. Tubular shear stress and phenotype of renal proximal tubular cells.

    PubMed

    Essig, Marie; Friedlander, Gérard

    2003-06-01

    Phenotypic alterations resulting from flow-induced mechanical strains is a growing field of research in many cell types such as vascular endothelial and smooth muscle cells, chondrocytes, and osteocytes. Because renal mass reduction is followed by a dramatic increase in GFR in the remaining nephron, modulation of tubular cell phenotype by flow-induced mechanical strains could be one of the events initiating the deleterious pathways that lead to the destruction of renal parenchyma after renal mass reduction. This study demonstrates that increased flow induced, in vitro and in vivo, a reinforcement of the apical domain of actin cytoskeleton and an inhibition of plasminogen activator expression. These effects of flow on plasminogen activator expression were prevented by blocking the reorganization of actin cytoskeleton and were associated with an increase in a shear-stress responsive element binding activity. These results confirm that tubular flow affects the phenotype of renal epithelial cells and suggest that flow-induced mechanical strains could be one determinant of tubulointerstitial lesions during the progression of renal diseases. PMID:12761236

  9. An in-plane cantilever for wall shear stress measurement

    NASA Astrophysics Data System (ADS)

    Allen, N. J.; Sims-Williams, D. B.; Wood, D.

    2012-07-01

    A sensor capable of measuring small shear stresses in wind tunnel applications is presented. The sensor utilizes an in-plane cantilever concept for shear stress measurement, designed to minimize intrusiveness into the airflow and allow easy incorporation into wind tunnel test models. The sensor operates independently of input voltage, and can measure <1 Pa shear stresses with a sensitivity of 8.6 (mV V-1) Pa. Altering the geometry of the sensor has a direct effect on the sensitivity and so can be used to adapt the sensor for different applications.

  10. Design and Validation of a Novel Bioreactor to Subject Aortic Valve Leaflets to Side-Specific Shear Stress

    PubMed Central

    Sun, Ling; Rajamannan, Nalini M.; Sucosky, Philippe

    2014-01-01

    Hemodynamic stresses are presumed to play an important role in the development of calcific aortic valve disease (CAVD). The elucidation of the shear stress mechanisms involved in the pathogenesis of CAVD has been hampered by the complexity of the native unsteady and side-specific valvular flow environment. To address this gap, this article describes the design and validation of a novel device to expose leaflet samples to time-dependent side-specific shear stress. The device built on a double cone-and-plate geometry was dimensioned based on our previous single-sided shear stress device that minimizes secondary flow effects inherent to this geometry. A fluid–structure interaction (FSI) model was designed to predict the actual shear stress produced on a tissue sample mounted in the new device. Staining was performed on porcine leaflets conditioned in the new bioreactor to assess endothelial integrity and cellular apoptosis. The FSI results demonstrated good agreement between the target (native) and the actual side-specific shear stress produced on a tissue sample. No significant difference in endothelial integrity and cellular apoptosis was detected between samples conditioned for 96 h and fresh controls. This new device will enable the investigation of valvular response to normal and pathologic hemodynamics and the potential mechano-etiology of CAVD. PMID:21455792

  11. NFKB1 promoter variation implicates shear-induced NOS3 gene expression and endothelial function in prehypertensives and stage I hypertensives.

    PubMed

    Park, Joon-Young; Farrance, Iain K G; Fenty, Nicola M; Hagberg, James M; Roth, Stephen M; Mosser, David M; Wang, Min Qi; Jo, Hanjoong; Okazaki, Toshihiko; Brant, Steven R; Brown, Michael D

    2007-10-01

    In endothelial cells, NF-kappaB is an important intracellular signaling molecule by which changes in wall shear stress are transduced into the nucleus to initiate downstream endothelial nitric oxide synthase (NOS3) gene expression. We investigated whether NF-kappa light-chain gene enhancer in B cells 1 (NFKB1) promoter polymorphism ((-94)NFKB1 I/D, where I is the insertion allele and D is the deletion allele) was associated with 1) NOS3 gene expression in endothelial cells under physiological levels of unidirectional laminar shear stress (LSS) and 2) endothelial function in prehypertensive and stage I hypertensive individuals before and after a 6-mo supervised endurance exercise intervention. Competitive EMSAs revealed that proteins present in the nuclei of endothelial cells preferentially bound to the I allele NFKB1 promoter compared with the D allele. Reporter gene assays showed that the I allele promoter had significantly higher activity than the D allele. In agreement with these observations, homozygous II genotype cells had higher p50 expression levels than homozygous DD genotype cells. Cells with the homozygous II genotype showed a greater increase in NOS3 protein expression than did homozygous DD genotype cells under LSS. Functional experiments on volunteers confirmed higher baseline reactive hyperemic forearm blood flow, and, furthermore, the subgroup analysis revealed that DD homozygotes were significantly less prevalent in the exercise responder group compared with II and ID genotypes. We conclude that the (-94)NFKB1 I/D promoter variation contributes to the modulation of vascular function and adaptability to exercise-induced flow shear stress, most likely due to differences in NFKB1 gene transactivity. PMID:17644577

  12. Aortic wall shear stress in Marfan syndrome.

    PubMed

    Geiger, Julia; Arnold, Raoul; Herzer, Lena; Hirtler, Daniel; Stankovic, Zoran; Russe, Max; Langer, Mathias; Markl, Michael

    2013-10-01

    The aim of this study was to quantify changes in thoracic aortic wall shear stress (WSS) in asymptomatic patients with Marfan syndrome (MFS) compared with healthy controls. WSS in the thoracic aorta was quantified based on time-resolved 3D phase contrast MRI with three-directional velocity encoding (4D flow MRI, temporal resolution ∼44 ms, spatial resolution ∼2.5 mm) in 24 patients with confirmed MFS (age = 18 ± 12 years) and in 12 older healthy volunteers (age = 25 ± 3 years). Diameters of the thoracic aorta normalized to body surface area were similar for both groups. Peak systolic velocity, absolute WSS, time-averaged WSS, circumferential WSS, peak systolic WSS, and WSS eccentricity were calculated in eight analysis planes distributed along the thoracic aorta. Plane-wise comparison revealed significant differences between MFS patients and volunteers in the proximal ascending aorta for peak systolic velocities (1.11 ± 0.23 m/s vs. 1.34 ± 0.18 m/s, P = 0.004) and circumferential WSS (0.14 ± 0.03 N/m(2) vs. 0.11 ± 0.02 N/m(2), P = 0.007). WSS eccentricity was altered in most of the ascending aorta and proximal arch (P = 0.009-0.020). MFS patients demonstrated segmental differences in peak systolic WSS with a significantly higher WSS at the inner curvature in the proximal ascending aorta and at the anterior part in the more distal ascending aorta (P < 0.01). These findings indicate differences in WSS associated with MFS despite similar aortic dimensions compared to controls.

  13. Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response

    NASA Astrophysics Data System (ADS)

    Bird, R. B.; Giacomin, A. J.; Schmalzer, A. M.; Aumnate, C.

    2014-02-01

    We examine the simplest relevant molecular model for large-amplitude shear (LAOS) flow of a polymeric liquid: the suspension of rigid dumbbells in a Newtonian solvent. We find explicit analytical expressions for the shear rate amplitude and frequency dependences of the first and third harmonics of the alternating shear stress response. We include a detailed comparison of these predictions with the corresponding results for the simplest relevant continuum model: the corotational Maxwell model. We find that the responses of both models are qualitatively similar. The rigid dumbbell model relies entirely on the dumbbell orientation to explain the viscoelastic response of the polymeric liquid, including the higher harmonics in large-amplitude oscillatory shear flow. Our analysis employs the general method of Bird and Armstrong ["Time-dependent flows of dilute solutions of rodlike macromolecules," J. Chem. Phys. 56, 3680 (1972)] for analyzing the behavior of the rigid dumbbell model in any unsteady shear flow. We derive the first three terms of the deviation of the orientational distribution function from the equilibrium state. Then, after getting the "paren functions," we use these for evaluating the shear stress for LAOS flow. We find the shapes of the shear stress versus shear rate loops predicted to be reasonable.

  14. Determination of the Shear Stress Distribution in a Laminate from the Applied Shear Resultant--A Simplified Shear Solution

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.

    2007-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  15. Simplified Shear Solution for Determination of the Shear Stress Distribution in a Composite Panel from the Applied Shear Resultant

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.; Collier, Craig S.

    2008-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate or panel based on laminated beam theory. The method does not consider the solution of a particular boundary value problem; rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  16. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2011-01-01

    A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  17. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2007-01-01

    The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  18. Production of functional proteins: balance of shear stress and gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2004-01-01

    The present invention provides a method for production of functional proteins including hormones by renal cells in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-a-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  19. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    NASA Astrophysics Data System (ADS)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  20. Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism

    NASA Technical Reports Server (NTRS)

    Boo, Yong Chool; Hwang, Jinah; Sykes, Michelle; Michell, Belinda J.; Kemp, Bruce E.; Lum, Hazel; Jo, Hanjoong

    2002-01-01

    Shear stress stimulates nitric oxide (NO) production by phosphorylating endothelial NO synthase (eNOS) at Ser(1179) in a phosphoinositide-3-kinase (PI3K)- and protein kinase A (PKA)-dependent manner. The eNOS has additional potential phosphorylation sites, including Ser(116), Thr(497), and Ser(635). Here, we studied these potential phosphorylation sites in response to shear, vascular endothelial growth factor (VEGF), and 8-bromocAMP (8-BRcAMP) in bovine aortic endothelial cells (BAEC). All three stimuli induced phosphorylation of eNOS at Ser(635), which was consistently slower than that at Ser(1179). Thr(497) was rapidly dephosphorylated by 8-BRcAMP but not by shear and VEGF. None of the stimuli phosphorylated Ser(116). Whereas shear-stimulated Ser(635) phosphorylation was not affected by phosphoinositide-3-kinase inhibitors wortmannin and LY-294002, it was blocked by either treating the cells with a PKA inhibitor H89 or infecting them with a recombinant adenovirus-expressing PKA inhibitor. These results suggest that shear stress stimulates eNOS by two different mechanisms: 1) PKA- and PI3K-dependent and 2) PKA-dependent but PI3K-independent pathways. Phosphorylation of Ser(635) may play an important role in chronic regulation of eNOS in response to mechanical and humoral stimuli.

  1. Effects of Exercise Intensity on Postexercise Endothelial Function and Oxidative Stress

    PubMed Central

    McClean, Conor; Harris, Ryan A.; Brown, Malcolm; Brown, John C.; Davison, Gareth W.

    2015-01-01

    Purpose. To measure endothelial function and oxidative stress immediately, 90 minutes, and three hours after exercise of varying intensities. Methods. Sixteen apparently healthy men completed three exercise bouts of treadmill running for 30 minutes at 55% V˙O2max (mild); 20 minutes at 75% V˙O2max (moderate); or 5 minutes at 100% V˙O2max (maximal) in random order. Brachial artery flow-mediated dilation (FMD) was assessed with venous blood samples drawn for measurement of endothelin-1 (ET-1), lipid hydroperoxides (LOOHs), and lipid soluble antioxidants. Results. LOOH increased immediately following moderate exercise (P < 0.05). ET-1 was higher immediately after exercise and 3 hours after exercise in the mild trial compared to maximal one (P < 0.05). Transient decreases were detected for ΔFMD/ShearAUC from baseline following maximal exercise, but it normalised at 3 hours after exercise (P < 0.05). Shear rate was higher immediately after exercise in the maximal trial compared to mild exercise (P < 0.05). No changes in baseline diameter, peak diameter, absolute change in diameter, or FMD were observed following any of the exercise trials (P > 0.05). Conclusions. Acute exercise at different intensities elicits varied effects on oxidative stress, shear rate, and ET-1 that do not appear to mediate changes in endothelial function measured by FMD. PMID:26583061

  2. Interfacial shear stress measurement using high spatial resolution multiphase PIV

    NASA Astrophysics Data System (ADS)

    André, Matthieu A.; Bardet, Philippe M.

    2015-06-01

    In multiphase flows, form drag and viscous shear stress transfer momentum between phases. For numerous environmental and man-made flows, it is of primary importance to predict this transfer at a liquid-gas interface. In its general expression, interfacial shear stress involves local velocity gradients as well as surface velocity, curvature, and surface tension gradients. It is therefore a challenging quantity to measure experimentally or compute numerically. In fact, no experimental work to date has been able to directly resolve all the terms contributing to the shear stress in the case of curved and moving surfaces. In an attempt to fully resolve the interface shear stress when surface tension gradients are negligible, high-resolution particle image velocimetry (PIV) data are acquired simultaneously on both sides of a water-air interface. The flow consists of a well-conditioned uniform and homogeneous water jet discharging in quiescent air, which exhibits two-dimensional surface waves as a result of a shear layer instability below the surface. PIV provides velocity fields in both phases, while planar laser-induced fluorescence is used to track the interface and obtain its curvature. To compute the interfacial shear stress from the data, several processing schemes are proposed and compared, using liquid and/or gas phase data. Vorticity at the surface, which relates to the shear stress through the dynamic boundary condition at the surface, is also computed and provides additional strategies for estimating the shear. The various schemes are in agreement within the experimental uncertainties, validating the methodology for experimentally resolving this demanding quantity.

  3. Prediction of plantar shear stress distribution by artificial intelligence methods.

    PubMed

    Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L

    2009-09-01

    Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models. PMID:19725696

  4. Elevated Shear Stress in Arteriovenous Fistulae: Is There Mechanical Homeostasis?

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Aliseda, Alberto

    2011-11-01

    Arteriovenous fistulae are created surgically to provide access for dialysis in patients with renal failure. The current hypothesis is that the rapid remodeling occurring after the fistula creation is in part a process to restore the mechanical stresses to some preferred level (i.e. mechanical homeostasis). Given that nearly 50% of fistulae require an intervention after one year, understanding the altered hemodynamic stress is important in improving clinical outcomes. We perform numerical simulations of four patient-specific models of functioning fistulae reconstructed from 3D Doppler ultrasound scans. Our results show that the vessels are subjected to `normal' shear stresses away from the anastomosis; about 1 Pa in the veins and about 2.5 Pa in the arteries. However, simulations show that part of the anastomoses are consistently subjected to very high shear stress (>10Pa) over the cardiac cycle. These elevated values shear stresses are caused by the transitional flows at the anastomoses including flow separation and quasiperiodic vortex shedding. This suggests that the remodeling process lowers shear stress in the fistula but that it is limited as evidenced by the elevated shear at the anastomoses. This constant insult on the arterialized venous wall may explain the process of late fistula failure in which the dialysis access become occluded after years of use. Supported by an R21 Grant from NIDDK (DK081823).

  5. Shear stress induces osteogenic differentiation of human mesenchymal stem cells

    PubMed Central

    Yourek, Gregory; McCormick, Susan M; Mao, Jeremy J; Reilly, Gwendolen C

    2014-01-01

    Aim To determine whether fluid flow-induced shear stress affects the differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs) into osteogenic cells. Materials & methods hMSCs cultured with or without osteogenic differentiation medium were exposed to fluid flow-induced shear stress and analyzed for alkaline phosphatase activity and expression of osteogenic genes. Results Immediately following shear stress, alkaline phosphatase activity in osteogenic medium was significantly increased. At days 4 and 8 of culture the mRNA expression of bone morphogenetic protein-2 and osteopontin was significantly higher in hMSCs subjected to shear stress than those cultured in static conditions. However, hMSCs cultured in osteogenic differentiation medium were less responsive in gene expression of alkaline phosphatase and bone morphogenetic protein-2. Conclusion These data demonstrate that shear stress stimulates hMSCs towards an osteoblastic phenotype in the absence of chemical induction, suggesting that certain mechanical stresses may serve as an alternative to chemical stimulation of stem cell differentiation. PMID:20868327

  6. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium.

    PubMed Central

    Malek, A M; Gibbons, G H; Dzau, V J; Izumo, S

    1993-01-01

    Fluid shear stress has been shown to be an important regulator of vascular structure and function through its effect on the endothelial cell. We have explored the effect of shear stress on the expression of the heparin-binding growth factors platelet-derived growth factor B chain (PDGF-B) and basic fibroblast growth factor (bFGF) in bovine aortic endothelial cells using a purpose-built cone-plate viscometer. Using morphometric analysis, we have mimicked the endothelial cell shape changes encountered in vivo in response to shear stress and correlated these with changes in gene expression. Steady laminar shear stress of 15 and 36 dyn/cm2 both resulted in endothelial cell shape change, but the higher shear stress induced greater and more uniform alignment in the direction of flow and nuclear protrusion after 24 h. Steady laminar shear stress of both 15 and 36 dyn/cm2 induced a significant 3.9- and 4.2-fold decrease, respectively, in PDGF-B mRNA at 9 h. In contrast, steady laminar shear of 15 dyn/cm2 induced a mild and transient 1.5-fold increase in bFGF mRNA while shear of 36 dyn/cm2 induced a significant 4.8-fold increase at 6 h of shear which remained at 2.9-fold at 9 h. Pulsatile and turbulent shear stress showed the same effect as steady laminar shear stress (all at 15 dyn/cm2 time-average magnitude) on PDGF-B and bFGF mRNA content. Cyclic stretch (20% strain, 20/min) of cells grown on silicone substrate did not significantly affect either PDGF-B or bFGF mRNA levels. These results suggest that expression of each peptide growth factor gene is differentially regulated by fluid shear stress in the vascular endothelial cell. These results may have implications on vascular structure and function in response to hemodynamic forces and present a model for the study of transduction of mechanical stimuli into altered gene expression. Images PMID:8408655

  7. Using a co-culture microsystem for cell migration under fluid shear stress.

    PubMed

    Yeh, Chia-Hsien; Tsai, Shen-Hsing; Wu, Li-Wha; Lin, Yu-Cheng

    2011-08-01

    We have successfully developed a microsystem to co-cultivate two types of cells with a minimum defined gap of 50 μm, and to quantitatively study the impact of fluid shear stress on the mutual influence of cell migration velocity and distance. We used the hydrostatic pressure to seed two different cells, endothelial cells (ECs) and smooth muscle cells (SMCs), on opposite sides of various gap sizes (500 μm, 200 μm, 100 μm, and 50 μm). After cultivating the cells for 12 h and peeling the co-culture microchip from the culture dish, we studied the impacts of gap size on the migration of either cell type in the absence or presence of fluid shear stress (7 dyne cm(-2) and 12 dyne cm(-2)) influence. We found that both gap size and shear stress have profound influence on cell migration. Smaller gap sizes (100 μm and 50 μm) significantly enhanced cell migration, suggesting a requirement of an effective concentration of released factor(s) by either cell type in the gap region. Flow-induced shear stress delayed the migration onset of either cell type in a dose-dependent manner regardless of the gap size. Moreover, shear stress-induced decrease of cell migration becomes evident when the gap size was 500 μm. We have developed a co-culture microsystem for two kinds of cells and overcome the conventional difficulties in observation and mixed culture, and it would have more application for bio-manipulation and tissue repair engineering.

  8. Using a co-culture microsystem for cell migration under fluid shear stress.

    PubMed

    Yeh, Chia-Hsien; Tsai, Shen-Hsing; Wu, Li-Wha; Lin, Yu-Cheng

    2011-08-01

    We have successfully developed a microsystem to co-cultivate two types of cells with a minimum defined gap of 50 μm, and to quantitatively study the impact of fluid shear stress on the mutual influence of cell migration velocity and distance. We used the hydrostatic pressure to seed two different cells, endothelial cells (ECs) and smooth muscle cells (SMCs), on opposite sides of various gap sizes (500 μm, 200 μm, 100 μm, and 50 μm). After cultivating the cells for 12 h and peeling the co-culture microchip from the culture dish, we studied the impacts of gap size on the migration of either cell type in the absence or presence of fluid shear stress (7 dyne cm(-2) and 12 dyne cm(-2)) influence. We found that both gap size and shear stress have profound influence on cell migration. Smaller gap sizes (100 μm and 50 μm) significantly enhanced cell migration, suggesting a requirement of an effective concentration of released factor(s) by either cell type in the gap region. Flow-induced shear stress delayed the migration onset of either cell type in a dose-dependent manner regardless of the gap size. Moreover, shear stress-induced decrease of cell migration becomes evident when the gap size was 500 μm. We have developed a co-culture microsystem for two kinds of cells and overcome the conventional difficulties in observation and mixed culture, and it would have more application for bio-manipulation and tissue repair engineering. PMID:21695290

  9. Shear Stress Sensing with Elastic Microfence Structures

    NASA Technical Reports Server (NTRS)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; Jiang, Xiaoning; Wohl, Christopher J.

    2015-01-01

    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  10. Rubbing salt into wounded endothelium: sodium potentiates proatherogenic effects of TNF-α under non-uniform shear stress.

    PubMed

    Wild, J; Soehnlein, O; Dietel, B; Urschel, K; Garlichs, C D; Cicha, I

    2014-07-01

    Increased consumption of sodium is a risk factor for hypertension and cardiovascular diseases. In vivo studies indicated that high dietary sodium may have a direct negative influence on endothelium. We investigated the effects of high sodium on the endothelial activation during early steps of atherogenesis. Endothelial cells (HUVECs) grown in a model of arterial bifurcations were exposed to shear stress in the presence of normal or high (+ 30 mmol/l) sodium. Adherent THP-1 cells, and the adhesion molecule expression were quantified. Sodium channel blockers, pathways' inhibitors, and siRNA against tonicity-responsive enhancer binding protein (TonEBP) were used to identify the mechanisms of sodium effects on endothelium. ApoE-deficient mice on low-fat diet received water containing normal or high salt (8% w/v) for four weeks, and the influence of dietary salt on inflammatory cell adhesion in the common carotid artery and carotid bifurcation was measured by intravital microscopy. In vitro, high sodium dramatically increased the endothelial responsiveness to tumour necrosis factor-α under non-uniform shear stress. Sodium-induced increase in monocytic cell adhesion was mediated by reactive oxygen species and the endothelial nitric oxygen synthase, and was sensitive to the knockdown of TonEBP. The results were subsequently confirmed in the ApoE-deficient mice. As compared with normal-salt group, high-salt intake significantly enhanced the adhesion of circulating CD11b+ cells to carotid bifurcations, but not to the straight segment of common carotid artery. In conclusion, elevated sodium has a direct effect on endothelial activation under atherogenic shear stress in vitro and in vivo, and promotes the endothelial-leukocyte interactions even in the absence of increased lipid concentrations. PMID:24573382

  11. Determination of surface shear stress with the naphthalene sublimation technique

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Greeley, Ronald

    1987-01-01

    Aeolian entrainment and transport are functions of surface shear stress and particle characteristics. Measuring surface shear stress is difficult, however, where logarithmic wind profiles are not found, such as regions around large roughness elements. An outline of a method whereby shear stress can be mapped on the surface around an object is presented. The technique involves the sublimation of naphthalene (C10H8) which is a function of surface shear stress and surface temperature. This technique is based on the assumption that the transfer of momentum, heat and mass are analogous (Reynolds analogy). If the Reynolds analogy can be shown to be correct for a given situation, then knowledge of the diffusion of one property allows the determination of the others. The analytical framework and data acquisition for the method are described. The technique was tested in the Planetary Geology Wind Tunnel. Results show that the naphthalene sublimation technique is a reasonably accurate method for determining shear stress, particularly around objects where numerous point values are needed.

  12. Gyrokinetic Simulation of Residual Stress from Diamagnetic Velocity Shears

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2010-11-01

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the parallel velocity (and parallel velocity itself) vanishes. Previously [1] we demonstrated with gyrokinetic (GYRO) simulations that TAM pinching from the diamagnetic level shear in the ExB velocity could provide the residual stress needed for spontaneous toroidal rotation. Here we show that the shear in the diamagnetic velocities themselves provide comparable residual stress (and level of stabilization). The sign of the residual stress, quantified by the ratio of TAM flow to ion power flow (M/P), depends on the signs of the various velocity shears as well as ion (ITG) versus electron (TEM) mode directed turbulence. The residual stress from these temperature and density gradient diamagnetic velocity shears is demonstrated in global gyrokinetic simulation of ``null'' rotation DIIID discharges by matching M/P profiles within experimental error. 8pt [1] R.E. Waltz, G.M. Staebler, J. Candy, and F.L. Hinton, Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009).

  13. Molecular origins of higher harmonics in large-amplitude oscillatory shear flow: Shear stress response

    NASA Astrophysics Data System (ADS)

    Gilbert, P. H.; Giacomin, A. J.

    2016-10-01

    Recent work has focused on deepening our understanding of the molecular origins of the higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. For instance, these higher harmonics have been explained by just considering the orientation distribution of rigid dumbbells suspended in a Newtonian solvent. These dumbbells, when in dilute suspension, form the simplest relevant molecular model of polymer viscoelasticity, and this model specifically neglects interactions between the polymer molecules [R. B. Bird et al., "Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response," J. Chem. Phys. 140, 074904 (2014)]. In this paper, we explore these interactions by examining the Curtiss-Bird model, a kinetic molecular theory designed specifically to account for the restricted motions that arise when polymer chains are concentrated, thus interacting and specifically, entangled. We begin our comparison using a heretofore ignored explicit analytical solution [X.-J. Fan and R. B. Bird, "A kinetic theory for polymer melts. VI. Calculation of additional material functions," J. Non-Newtonian Fluid Mech. 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ɛ, for which several special cases arise: ɛ = 0 corresponds to reptation, ɛ > 1/8 to rod-climbing, 1/5 ≤ ɛ ≤ 3/4 to reasonable predictions for shear-thinning in steady simple shear flow, and ɛ = 1 to the dilute solution without hydrodynamic interaction. In this paper, we examine the shapes of the shear stress versus shear rate loops for the special cases ɛ = (" separators=" 0 , 1 / 8 , 3 / 8 , 1 ) , and we compare these with those of rigid dumbbell and reptation model predictions.

  14. A Multichannel Dampened Flow System for Studies on Shear Stress-Mediated Mechanotransduction

    PubMed Central

    Voyvodic, Peter L.; Min, Daniel; Baker, Aaron B.

    2012-01-01

    Shear stresses are powerful regulators of cellular function and potent mediators of the development of vascular disease. We have designed and optimized a system allowing the application of flow to cultured cells in a multichannel format. By using a multichannel peristaltic pump, flow can be driven continuously in the system for long-term studies in multiple isolated flow loops. A key component of the system is a dual-chamber pulse dampener that removes the pulsatility of the flow without the need for having an open system or elevated reservoir. We optimized the design parameters of the pulse dampening chambers for the maximum reduction in flow pulsation while minimizing the fluid needed for each isolated flow channel. Human umbilical vein endothelial cells (HUVECs) were exposed to steady and pulsatile shear stress using the system. We found that cells under steady flow had a marked increased production of eNOS and formation of actin stress fibers in comparison to those under pulsatile flow conditions. Overall, the results confirm the utility of the device as a practical means to apply shear stress to cultured cells in the multichannel format and provide steady, long term flow to microfluidic devices. PMID:22836694

  15. A multichannel dampened flow system for studies on shear stress-mediated mechanotransduction.

    PubMed

    Voyvodic, Peter L; Min, Daniel; Baker, Aaron B

    2012-09-21

    Shear stresses are powerful regulators of cellular function and potent mediators of the development of vascular disease. We have designed and optimized a system allowing the application of flow to cultured cells in a multichannel format. By using a multichannel peristaltic pump, flow can be driven continuously in the system for long-term studies in multiple isolated flow loops. A key component of the system is a dual-chamber pulse dampener that removes the pulsatility of the flow without the need for having an open system or elevated reservoir. We optimized the design parameters of the pulse dampening chambers for the maximum reduction in flow pulsation while minimizing the fluid needed for each isolated flow channel. Human umbilical vein endothelial cells (HUVECs) were exposed to steady and pulsatile shear stress using the system. We found that cells under steady flow had a marked increased production of eNOS and formation of actin stress fibers in comparison to those under pulsatile flow conditions. Overall, the results confirm the utility of the device as a practical means to apply shear stress to cultured cells in the multichannel format and provide steady, long term flow to microfluidic devices.

  16. Impact of wall shear stress and ligand avidity on binding of anti-CD146-coated nanoparticles to murine tumor endothelium under flow.

    PubMed

    Thomann, Stefan; Baek, Sunhwa; Ryschich, Eduard

    2015-11-24

    The endothelial phenotype of tumor blood vessels differs from the liver and forms an important base for endothelium-specific targeting by antibody-coated nanoparticles. Although differences of shear stress and ligand avidity can modulate the nanoparticle binding to endothelium, these mechanisms are still poorly studied. This study analyzed the binding of antibody-coated nanoparticles to tumor and liver endothelium under controlled flow conditions and verified this binding in tumor models in vivo. Binding of anti-CD146-coated nanoparticles, but not of antibody was significantly reduced under increased wall shear stress and the degree of nanoparticle binding correlated with the avidity of the coating. The intravascular wall shear stress favors nanoparticle binding at the site of higher avidity of endothelial epitope which additionally promotes the selectivity to tumor endothelium. After intravenous application in vivo, pegylated self-coated nanoparticles showed specific binding to tumor endothelium, whereas the nanoparticle binding to the liver endothelium was very low. This study provides a rationale that selective binding of mAb-coated nanoparticles to tumor endothelium is achieved by two factors: higher expression of endothelial epitope and higher nanoparticle shearing from liver endothelium. The combination of endothelial marker targeting and the use of shear stress-controlled nanoparticle capture can be used for selective intratumoral drug delivery.

  17. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.

    PubMed

    Kornuta, Jeffrey A; Nepiyushchikh, Zhanna; Gasheva, Olga Y; Mukherjee, Anish; Zawieja, David C; Dixon, J Brandon

    2015-11-01

    Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels.

  18. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis

    PubMed Central

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-01-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  19. Bed Shear Stress in Channels with Emergent Vegetation

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Kerger, F.; Nepf, H. M.

    2014-12-01

    The shear stress at the bed of a channel influences important benthic processes such as sediment transport. Several methods exist to estimate the bed shear stress in open channel flow, but most of these are not appropriate for vegetated channels due to the impact of vegetation on the velocity profile and turbulence production. This study proposes a new model to estimate the bed shear stress in both vegetated and bare channels. The model is based on the observation that, for both bare and vegetated channels, within a viscous sub-layer at the bed, the viscous stress decreases linearly with increasing distance from the bed, resulting in a parabolic velocity profile at the bed. For emergent canopies of sufficient density, the thickness of this linear-stress layer is set by the stem diameter, leading to a simple estimate for bed shear stress. For bare channels, the model describes the velocity profile in the overlap region of the Law of the Wall. The model is supported by high-resolution experiments. Furthermore, the changes in turbulence isotropy and integral length across a range of vegetation density, from bare bed to dense canopy, have been explored.

  20. A Rotary Flow Channel for Shear Stress Sensor Calibration

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Scott, Michael A.

    2004-01-01

    A proposed shear sensor calibrator consists of a rotating wheel with the sensor mounted tangential to the rim and positioned in close proximity to the rim. The shear stress generated by the flow at the sensor position is simply tau(sub omega) = (mu)r(omega)/h, where mu is the viscosity of the ambient gas, r the wheel radius, omega the angular velocity of the wheel, and h the width of the gap between the wheel rim and the sensor. With numerical values of mu = 31 (mu)Pa s (neon at room temperature), r = 0.5 m, omega = 754 /s (7200 rpm), and h = 50.8 m, a shear stress of tau(sub omega) = 231 Pa can be generated. An analysis based on one-dimensional flow, with the flow velocity having only an angular component as a function of the axial and radial coordinates, yields corrections to the above simple formula for the curvature of the wheel, flatness of the sensor, and finite width of the wheel. It is assumed that the sensor mount contains a trough (sidewalls) to render a velocity release boundary condition at the edges of the rim. The Taylor number under maximum flow conditions is found to be 62.3, sufficiently low to obviate flow instability. The fact that the parameters entering into the evaluation of the shear stress can be measured to high accuracy with well-defined uncertainties makes the proposed calibrator suitable for a physical standard for shear stress calibration.

  1. Biological effects of dynamic shear stress in cardiovascular pathologies and devices

    PubMed Central

    Girdhar, Gaurav; Bluestein, Danny

    2010-01-01

    Altered and highly dynamic shear stress conditions have been implicated in endothelial dysfunction leading to cardiovascular disease, and in thromboembolic complications in prosthetic cardiovascular devices. In addition to vascular damage, the pathological flow patterns characterizing cardiovascular pathologies and blood flow in prosthetic devices induce shear activation and damage to blood constituents. Investigation of the specific and accentuated effects of such flow-induced perturbations on individual cell-types in vitro is critical for the optimization of device design, whereby specific design modifications can be made to minimize such perturbations. Such effects are also critical in understanding the development of cardiovascular disease. This review addresses limitations to replicate such dynamic flow conditions in vitro and also introduces the idea of modified in vitro devices, one of which is developed in the authors' laboratory, with dynamic capabilities to investigate the aforementioned effects in greater detail. PMID:18331179

  2. “Go With the Flow”: How Krüppel-Like Factor 2 Regulates the Vasoprotective Effects of Shear Stress

    PubMed Central

    Nayak, Lalitha; Lin, Zhiyong

    2011-01-01

    Abstract Laminar shear stress is known to confer potent anti-inflammatory, antithrombotic, and antiadhesive effects by differentially regulating endothelial gene expression. The identification of Krüppel-like factor 2 as a flow-responsive molecule has greatly advanced our understanding of molecular mechanisms governing vascular homeostasis. This review summarizes the current understanding of Krüppel-like factor 2 action in endothelial gene expression and function. Antioxid. Redox Signal. 15, 1449–1461. PMID:20919941

  3. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia

    PubMed Central

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  4. Nitrative Stress Participates in Endothelial Progenitor Cell Injury in Hyperhomocysteinemia.

    PubMed

    Dong, Yu; Sun, Qi; Liu, Teng; Wang, Huanyuan; Jiao, Kun; Xu, Jiahui; Liu, Xin; Liu, Huirong; Wang, Wen

    2016-01-01

    In order to investigate the role of nitrative stress in vascular endothelial injury in hyperhomocysteinemia (HHcy), thirty healthy adult female Wistar rats were randomly divided into three groups: control, hyperhomocysteinemia model, and hyperhomocysteinemia with FeTMPyP (peroxynitrite scavenger) treatment. The endothelium-dependent dilatation of thoracic aorta in vitro was determined by response to acetylcholine (ACh). The histological changes in endothelium were assessed by HE staining and scanning electron microscopy (SEM). The expression of 3-nitrotyrosine (NT) in thoracic aorta was demonstrated by immunohistochemistry and immunofluorescence, and the number of circulating endothelial progenitor cells (EPCs) was quantified by flow cytometry. Hyperhomocysteinemia caused significant endothelial injury and dysfunction including vasodilative and histologic changes, associated with higher expression of NT in thoracic aorta. FeTMPyP treatment reversed these injuries significantly. Further, the effect of nitrative stress on cultured EPCs in vitro was investigated by administering peroxynitrite donor (3-morpholino-sydnonimine, SIN-1) and peroxynitrite scavenger (FeTMPyP). The roles of nitrative stress on cell viability, necrosis and apoptosis were evaluated with 3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium (MTT) assay, lactate dehydrogenase (LDH) release assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. Also, the phospho-eNOS expression and tube formation in Matrigel of cultured EPCs was detected. Our data showed that the survival of EPCs was much lower in SIN-1 group than in vehicle group, both the apoptosis and necrosis of EPCs were much more severe, and the p-eNOS expression and tube formation in Matrigel were obviously declined. Subsequent pretreatment with FeTMPyP reversed these changes. Further, pretreatment with FeTMPyP reversed homocysteine-induced EPC injury. In conclusion, this study indicates that

  5. Pressure and wall shear stress in blood hammer - Analytical theory.

    PubMed

    Mei, Chiang C; Jing, Haixiao

    2016-10-01

    We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pressure and wall shear stress. To examine the effects on local plaque formation we also allow the blood vessel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison with existing water hammer experiments. PMID:27474207

  6. Pressure and wall shear stress in blood hammer - Analytical theory.

    PubMed

    Mei, Chiang C; Jing, Haixiao

    2016-10-01

    We describe an analytical theory of blood hammer in a long and stiffened artery due to sudden blockage. Based on the model of a viscous fluid in laminar flow, we derive explicit expressions of oscillatory pressure and wall shear stress. To examine the effects on local plaque formation we also allow the blood vessel radius to be slightly nonuniform. Without resorting to discrete computation, the asymptotic method of multiple scales is utilized to deal with the sharp contrast of time scales. The effects of plaque and blocking time on blood pressure and wall shear stress are studied. The theory is validated by comparison with existing water hammer experiments.

  7. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes

    SciTech Connect

    Huang, Chunfa; Bruggeman, Leslie A.; Hydo, Lindsey M.; Miller, R. Tyler

    2012-06-10

    The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD{sub 1}, and PLD{sub 2} to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD{sub 1} but not PLD{sub 2}. The inhibition of shear stress-induced c-Src phosphorylation by PP{sub 2} (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.

  8. Mass Transport and Shear Stress as Mediators of Flow Effects on Atherosclerotic Plaque Origin and Growth

    NASA Astrophysics Data System (ADS)

    Gorder, Riley; Aliseda, Alberto

    2009-11-01

    The carotid artery bifurcation (CAB) is one of the leading site for atherosclerosis, a major cause of mortality and morbidity in the developed world. The specific mechanisms by which perturbed flow at the bifurcation and in the carotid bulge promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered dominant factors. Shear stress causes restructuring of endothelial cells at the arterial wall which changes the wall's permeability. Long residence times are associated with enhanced mass transport through increased diffusion of lipids and white blood cells into the arterial wall. Although momentum and mass transfer are traditionally coupled by correlations similar to Reynolds Analogy, the complex flow patterns present in this region due to the pulsatile, transitional, detached flow associated with the complex geometry makes the validity of commonly accepted assumptions uncertain. We create solid models of the CAB from MRI or ultrasound medical images, build flow phantoms on clear polyester resin and use an IOR matching, blood mimicking, working fluid. Using PIV and dye injection techniques the shear stress and scalar transport are experimentally investigated. Our goal is to establish a quantitative relationship between momentum and mass transfer under a wide range of physiologically normal and pathological conditions.

  9. Computational Fluid Dynamics Analysis to Determine Shear Stresses and Rates in a Centrifugal Left Ventricular Assist Device

    PubMed Central

    Selgrade, Brian Paul; Truskey, George A.

    2014-01-01

    Axial flow left ventricular assist devices (LVADs) are a significant improvement in mechanical circulatory support. However, patients with these devices experience degradation of large von Willebrand factor (vWF) multimers, which is associated with bleeding and may be caused by high shear stresses within the LVAD. In this study, we used computational fluid mechanics to determine the wall shear stresses, shear rates, and residence times in a centrifugal LVAD and assess the impact on these variables caused by changing impeller speed and changing from a shrouded to a semi-open impeller. In both LVAD types, shear rates were well over 10 000/s in several regions. This is high enough to degrade vWF, but it is unclear if residence times, which were below 5 ms in high-shear regions, are long enough to allow vWF cleavage. Additionally, wall shear stresses were below the threshold stress of 10 Pa only in the outlet tube so it is feasible to endothelialize this region to enhance its biocompatibility. PMID:22360826

  10. Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates.

    PubMed

    Salek, M Mehdi; Sattari, Pooria; Martinuzzi, Robert J

    2012-03-01

    The appearance of highly resistant bacterial biofilms in both community and hospitals environments is a major challenge in modern clinical medicine. The biofilm structural morphology, believed to be an important factor affecting the behavioral properties of these "super bugs", is strongly influenced by the local hydrodynamics over the microcolonies. Despite the common use of agitated well plates in the biology community, they have been used rather blindly without knowing the flow characteristics and influence of the rotational speed and fluid volume in these containers. The main purpose of this study is to characterize the flow in these high-throughput devices to link local hydrodynamics to observed behavior in cell cultures. In this work, the flow and wall shear stress distribution in six-well culture plates under planar orbital translation is simulated using Computational Fluid Dynamics (CFD). Free surface, flow pattern and wall shear stress for two shaker speeds (100 and 200 rpm) and two volumes of fluid (2 and 4 mL) were investigated. Measurements with a non-intrusive optical shear stress sensor and High Frame-rate Particle Imaging Velocimetry (HFPIV) are used to validate CFD predictions. An analytical model to predict the free surface shape is proposed. Results show a complex three-dimensional flow pattern, varying in both time and space. The distribution of wall shear stress in these culture plates has been related to the topology of flow. This understanding helps explain observed endothelial cell orientation and bacterial biofilm distributions observed in culture dishes. The results suggest that the mean surface stress field is insufficient to capture the underlying dynamics mitigating biological processes. PMID:22042624

  11. Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates.

    PubMed

    Salek, M Mehdi; Sattari, Pooria; Martinuzzi, Robert J

    2012-03-01

    The appearance of highly resistant bacterial biofilms in both community and hospitals environments is a major challenge in modern clinical medicine. The biofilm structural morphology, believed to be an important factor affecting the behavioral properties of these "super bugs", is strongly influenced by the local hydrodynamics over the microcolonies. Despite the common use of agitated well plates in the biology community, they have been used rather blindly without knowing the flow characteristics and influence of the rotational speed and fluid volume in these containers. The main purpose of this study is to characterize the flow in these high-throughput devices to link local hydrodynamics to observed behavior in cell cultures. In this work, the flow and wall shear stress distribution in six-well culture plates under planar orbital translation is simulated using Computational Fluid Dynamics (CFD). Free surface, flow pattern and wall shear stress for two shaker speeds (100 and 200 rpm) and two volumes of fluid (2 and 4 mL) were investigated. Measurements with a non-intrusive optical shear stress sensor and High Frame-rate Particle Imaging Velocimetry (HFPIV) are used to validate CFD predictions. An analytical model to predict the free surface shape is proposed. Results show a complex three-dimensional flow pattern, varying in both time and space. The distribution of wall shear stress in these culture plates has been related to the topology of flow. This understanding helps explain observed endothelial cell orientation and bacterial biofilm distributions observed in culture dishes. The results suggest that the mean surface stress field is insufficient to capture the underlying dynamics mitigating biological processes.

  12. Senescence-Induced Oxidative Stress Causes Endothelial Dysfunction.

    PubMed

    Bhayadia, Raj; Schmidt, Bernhard M W; Melk, Anette; Hömme, Meike

    2016-02-01

    Age is a risk factor for cardiovascular disease, suggesting a causal relationship between age-related changes and vascular damage. Endothelial dysfunction is an early pathophysiological hallmark in the development of cardiovascular disease. Senescence, the cellular equivalent of aging, was proposed to be involved in endothelial dysfunction, but functional data showing a causal relationship are missing.Endothelium-dependent vasodilation was measured in aortic rings ex vivo. We investigated aortas from aged C57Bl/6 mice (24-28 months), in which p16 (INK4a) and p19 (ARF) expression, markers of stress-induced senescence, were significantly induced compared to young controls (4-6 months). To reflect telomere shortening in human aging, we investigated aortas from telomerase deficient (Terc(-/-)) mice of generation 3 (G3). Endothelium-dependent vasodilation in aged wildtype and in Terc(-/-) G3 mice was impaired. A combination of the superoxide dismutase mimetic 1-Oxyl-2,2,6, 6-tetramethyl-4-hydroxypiperidine (TEMPOL) and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin significantly improved endothelium-dependent vasodilation in aged wildtype and Terc(-/-) G3 mice compared to untreated controls. We show that both, aging and senescence induced by telomere shortening, cause endothelial dysfunction that can be restored by antioxidants, indicating a role for oxidative stress. The observation that cellular senescence is a direct signalling event leading to endothelial dysfunction holds the potential to develop new targets for the prevention of cardiovascular disease.

  13. Estimation of bed shear stresses in the pearl river estuary

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Wu, Jia-xue

    2015-03-01

    Mean and fluctuating velocities were measured by use of a pulse coherent acoustic Doppler profiler (PC-ADP) and an acoustic Doppler velocimeter in the tidal bottom boundary layer of the Pearl River Estuary. The bed shear stresses were estimated by four different methods: log profile (LP), eddy correlation (EC), turbulent kinetic energy (TKE), and inertial dissipation (ID). The results show that (a) all four methods for estimating bed stresses have advantages and disadvantages, and they should be applied simultaneously to obtain reliable frictional velocity and to identify potential sources of errors; (b) the LP method was found to be the most suitable to estimate the bed stresses in non-stratified, quasi-steady, and homogeneous flows; and (c) in the estuary where the semi-diurnal tidal current is dominant, bed shear stresses exhibit a strong quarter-diurnal variation.

  14. Transient shear banding in a simple yield stress fluid.

    PubMed

    Divoux, Thibaut; Tamarii, David; Barentin, Catherine; Manneville, Sébastien

    2010-05-21

    We report a large set of experimental data which demonstrates that a simple yield stress fluid, i.e., which does not present aging or thixotropy, exhibits transient shear banding before reaching a steady state characterized by a homogeneous, linear velocity profile. The duration of the transient regime decreases as a power law with the applied shear rate γ. This power-law behavior, observed here in carbopol dispersions, does not depend on the gap width and on the boundary conditions for a given sample preparation. For γ≲0.1  s(-1), heterogeneous flows could be observed for as long as 10(5)  s. These local dynamics account for the ultraslow stress relaxation observed at low shear rates. PMID:20867072

  15. A Two-Axis Direct Fluid Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Adcock, Edward E.; Scott, Michael A.; Bajikar, Sateesh S.

    2010-01-01

    This innovation is a miniature or micro sized semiconductor sensor design that provides two axis direct non-intrusive measurement of skin friction or wall shear stress in fluid flow. The sensor is fabricated by micro-electro-mechanical system (MEMS) technology, enabling small size and low cost reproductions. The sensors have been fabricated by utilizing MEMS fabrication processes to bond a sensing element wafer to a fluid coupling wafer. This layering technique provides for an out of plane dimension that is on the same order of length as the inplane dimensions. The sensor design has the following characteristics: a shear force collecting plate with dimensions that can be tailored to various application specific requirements such as spatial resolution, temporal resolution and shear force range and resolution. This plate is located coplanar to both the sensor body and flow boundary, and is connected to a dual axis gimbal structure by a connecting column or lever arm. The dual axis gimbal structure has torsional hinges with embedded piezoresistive torsional strain gauges which provide a voltage output that is correlated to the applied shear stress (and excitation current) on force collection plate that is located on the flow boundary surface (hence the transduction method). This combination of design elements create a force concentration and resolution structure that enables the generation of a large stress on the strain gauge from the small shear stress on the flow boundary wall. This design as well as the use of back side electrical contacts establishes a non-intrusive method to quantitatively measure the shear force vector on aerodynamic bodies.

  16. Production of Functional Proteins: Balance of Shear Stress and Gravity

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Haysen, James Howard (Inventor)

    2005-01-01

    The present invention provides for a method of culturing cells and inducing the expression of at least one gene in the cell culture. The method provides for contacting the cell with a transcription factor decoy oligonucleotide sequence directed against a nucleotide sequence encoding a shear stress response element.

  17. Incomplete restoration of homeostatic shear stress within arteriovenous fistulae.

    PubMed

    McGah, Patrick M; Leotta, Daniel F; Beach, Kirk W; Eugene Zierler, R; Aliseda, Alberto

    2013-01-01

    Arteriovenous fistulae are surgically created to provide adequate access for dialysis patients suffering from end-stage renal disease. It has long been hypothesized that the rapid blood vessel remodeling occurring after fistula creation is, in part, a process to restore the mechanical stresses to some preferred level, i.e., mechanical homeostasis. We present computational hemodynamic simulations in four patient-specific models of mature arteriovenous fistulae reconstructed from 3D ultrasound scans. Our results suggest that these mature fistulae have remodeled to return to ''normal'' shear stresses away from the anastomoses: about 1.0 Pa in the outflow veins and about 2.5 Pa in the inflow arteries. Large parts of the anastomoses were found to be under very high shear stresses >15 Pa, over most of the cardiac cycle. These results suggest that the remodeling process works toward restoring mechanical homeostasis in the fistulae, but that the process is limited or incomplete, even in mature fistulae, as evidenced by the elevated shear at or near the anastomoses. Based on the long term clinical viability of these dialysis accesses, we hypothesize that the elevated nonhomeostatic shear stresses in some portions of the vessels were not detrimental to fistula patency. PMID:23363216

  18. Liquid Crystals Indicate Directions Of Surface Shear Stresses

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.

    1996-01-01

    Report consisting of main text of U.S. Patent 5,394,752 presents detailed information on one aspect of method of using changes in colors of liquid-crystal coatings to indicate instantaneous directions of flow-induced shear stresses (skin friction) on aerodynamic surfaces.

  19. The Need for a Shear Stress Calibration Standard

    NASA Technical Reports Server (NTRS)

    Scott, Michael A.

    2004-01-01

    By surveying current research of various micro-electro mechanical systems (MEMS) shear stress sensor development efforts we illustrate the wide variety of methods used to test and characterize these sensors. The different methods of testing these sensors make comparison of results difficult in some cases, and also this comparison is further complicated by the different formats used in reporting the results of these tests. The fact that making these comparisons can be so difficult at times clearly illustrates a need for standardized testing and reporting methodologies. This need indicates that the development of a national or international standard for the calibration of MEMS shear stress sensors should be undertaken. As a first step towards the development of this standard, two types of devices are compared and contrasted. The first type device is a laminar flow channel with two different versions considered: the first built with standard manufacturing techniques and the second with advanced precision manufacturing techniques. The second type of device is a new concept for creating a known shear stress consisting of a rotating wheel with the sensor mounted tangentially to the rim and positioned in close proximity to the rim. The shear stress generated by the flow at the sensor position is simply tau = (mu)r(omega)/h, where mu is the viscosity of the ambient gas, r the wheel radius, omega the angular velocity of the wheel, and h the width of the gap between the wheel rim and the sensor. Additionally, issues related to the development of a standard for shear stress calibration are identified and discussed.

  20. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to endothelial dysfunction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Endoplasmic reticulum (ER) stress is implicated as one of the mechanisms for pathophysiology of various cardiometabolic syndromes, including insulin resistance and endothelial dysfunction. ...

  1. Shear stress related blood damage in laminar couette flow.

    PubMed

    Paul, Reinhard; Apel, Jörn; Klaus, Sebastian; Schügner, Frank; Schwindke, Peter; Reul, Helmut

    2003-06-01

    Artificial organs within the blood stream are generally associated with flow-induced blood damage, particularly hemolysis of red blood cells. These damaging effects are known to be dependent on shear forces and exposure times. The determination of a correlation between these flow-dependent properties and actual hemolysis is the subject of this study. For this purpose, a Couette device has been developed. A fluid seal based on fluorocarbon is used to separate blood from secondary external damage effects. The shear rate within the gap is controlled by the rotational speed of the inner cylinder, and the exposure time by the amount of blood that is axially pumped through the device per given time. Blood damage is quantified by the index of hemolysis (IH), which is calculated from photometric plasma hemoglobin measurements. Experiments are conducted at exposure times from texp=25 - 1250 ms and shear rates ranging from tau=30 up to 450 Pa ensuring Taylor-vortex free flow characteristics. Blood damage is remarkably low over a broad range of shear rates and exposure times. However, a significant increase in blood damage can be observed for shear stresses of tau>or= 425 Pa and exposure times of texp>or= 620 ms. Maximum hemolysis within the investigated range is IH=3.5%. The results indicate generally lower blood damage than reported in earlier studies with comparable devices, and the measurements clearly indicate a rather abrupt (i.e., critical levels of shear stresses and exposure times) than gradual increase in hemolysis, at least for the investigated range of shear rates and exposure times. PMID:12780506

  2. Arrest stress of uniformly sheared wet granular matter

    NASA Astrophysics Data System (ADS)

    Ebrahimnazhad Rahbari, S. H.; Brinkmann, M.; Vollmer, J.

    2015-06-01

    We conduct extensive independent numerical experiments considering frictionless disks without internal degrees of freedom (rotation, etc.) in two dimensions. We report here that for a large range of the packing fractions below random-close packing, all components of the stress tensor of wet granular materials remain finite in the limit of zero shear rate. This is direct evidence for a fluid-to-solid arrest transition. The offset value of the shear stress characterizes plastic deformation of the arrested state which corresponds to dynamic yield stress of the system. Based on an analytical line of argument, we propose that the mean number of capillary bridges per particle, ν , follows a nontrivial dependence on the packing fraction, ϕ , and the capillary energy, ɛ . Most noticeably, we show that ν is a generic and universal quantity which does not depend on the driving protocol. Using this universal quantity, we calculate the arrest stress, σa, analytically based on a balance of the energy injection rate due to the external force driving the flow and the dissipation rate accounting for the rupture of capillary bridges. The resulting prediction of σa is a nonlinear function of the packing fraction, ϕ , and the capillary energy, ɛ . This formula provides an excellent, parameter-free prediction of the numerical data. Corrections to the theory for small and large packing fractions are connected to the emergence of shear bands and of contributions to the stress from repulsive particle interactions, respectively.

  3. The Role of Shear Failure on Stress Characterization

    NASA Astrophysics Data System (ADS)

    Chan, A. W.; Hauser, M.; Couzens-Schultz, B. A.; Gray, G.

    2014-09-01

    Leak-off pressure and lost circulation data are generally thought to be reflective of minimum stress. We propose an alternative interpretation should be considered where the data may reflect a shear failure along zones of pre-existing weakness rather than opening of tensile fractures against the minimum stress. This mechanism has been discussed in a small number of borehole stability and hydraulic fracture papers, but has not been widely applied to leak-off test or lost circulation interpretation. In this paper, we will revisit and expand the concept introduced recently by Couzens-Schultz and Chan (J Struct Geol, doi: 10.1016/j.jsg.2010.06.013, 2010) based on abnormally low leak-off tests in an active thrust belt to the analysis of lost circulation observations in modern-day deltaic environments. In the Gulf of Mexico, lost circulations historically are interpreted as a representation of the minimum horizontal stress due to initiating or reopening of a fracture in tensile mode. However, shear failure or fault reactivation can occur at pressures well below the minimum far-field stress that is typically considered a safe upper bound for mud pressure if pre-existing planes of weakness such as faults or fracture networks exist. We demonstrated a mud loss event is shown to be inconsistent with the tensile failure mode in a normal stress environment, but in good agreement with expectations for shear failure along pre-existing faults.

  4. Arrest stress of uniformly sheared wet granular matter.

    PubMed

    Rahbari, S H Ebrahimnazhad; Brinkmann, M; Vollmer, J

    2015-06-01

    We conduct extensive independent numerical experiments considering frictionless disks without internal degrees of freedom (rotation, etc.) in two dimensions. We report here that for a large range of the packing fractions below random-close packing, all components of the stress tensor of wet granular materials remain finite in the limit of zero shear rate. This is direct evidence for a fluid-to-solid arrest transition. The offset value of the shear stress characterizes plastic deformation of the arrested state which corresponds to dynamic yield stress of the system. Based on an analytical line of argument, we propose that the mean number of capillary bridges per particle, ν, follows a nontrivial dependence on the packing fraction, ϕ, and the capillary energy, ɛ. Most noticeably, we show that ν is a generic and universal quantity which does not depend on the driving protocol. Using this universal quantity, we calculate the arrest stress, σ(a), analytically based on a balance of the energy injection rate due to the external force driving the flow and the dissipation rate accounting for the rupture of capillary bridges. The resulting prediction of σ(a) is a nonlinear function of the packing fraction, ϕ, and the capillary energy, ɛ. This formula provides an excellent, parameter-free prediction of the numerical data. Corrections to the theory for small and large packing fractions are connected to the emergence of shear bands and of contributions to the stress from repulsive particle interactions, respectively.

  5. Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Salsac, A.-V.; Sparks, S. R.; Chomaz, J.-M.; Lasheras, J. C.

    2006-08-01

    The changes in the evolution of the spatial and temporal distribution of the wall shear stresses (WSS) and gradients of wall shear stresses (GWSS) at different stages of the enlargement of an abdominal aortic aneurysm (AAA) are important in understanding the aetiology and progression of this vascular disease since they affect the wall structural integrity, primarily via the changes induced on the shape, functions and metabolism of the endothelial cells. Particle image velocimetry (PIV) measurements were performed in in vitro aneurysm models, while changing their geometric parameters systematically. It has been shown that, even at the very early stages of the disease, i.e. increase in the diameter ≤ 50%, the flow separates from the wall and a large vortex ring, usually followed by internal shear layers, is created. These lead to the generation of WSS that drastically differ in mean and fluctuating components from the healthy vessel. Inside the AAA, the mean WSS becomes negative along most of the aneurysmal wall and the magnitude of the WSS can be as low as 26% of the value in a healthy abdominal aorta.

  6. Characterization of fractures subjected to normal and shear stress

    NASA Astrophysics Data System (ADS)

    Choi, Min-Kwang

    Results from a series of laboratory experiments to determine fracture specific stiffness, for a fracture subjected to shear and normal stress, are presented and analyzed. The experimental work focuses on the determination of relations between normal and shear fracture specific stiffness and between spatial distribution of fracture specific stiffness and fluid flow through the fracture The ratio of shear to normal fracture specific stiffness is experimentally investigated on a fracture subjected to shear as well as normal stress. Synthetic fractures made of gypsum and lucite were prepared with different fracture surface conditions: either well-mated or non-mated. For well-mated fracture surfaces, asperities were created by casting gypsum against sandpaper. A block of gypsum was cast against the sandpaper and then a second block was cast against the first block such that the two contact surfaces were well-mated. The surface roughness was controlled by using the sandpapers with different average grit size. Non-mated fracture surfaces were fabricated with two lucite blocks that were polished (lucite PL) or sand-blasted (lucite SB) along their contact surface. In the experiments, each specimen was subjected to normal and shear loading while the fracture was probed with transmitted and reflected compressional and shear waves. Shear and normal fracture specific stiffnesses were calculated using the displacement discontinuity theory. For non-mated fractures, the stiffness ratio was not sensitive to the application of shear stress and, as normal stress increased, approached a theoretical ratio which was determined assuming that the transmission of compressional and shear waves was equal. The stiffness ratio obtained from well-mated fractures ranged from 0.5 to 1.4, which deviated from the conventional assumption that shear and normal fracture specific stiffness are equal. The stiffness ratio increased with increasing surface roughness and with increasing shear stress. For

  7. Sensor for Boundary Shear Stress in Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Chang, Zensheu; Trease, Brian P.; Kerenyi, Kornel; Widholm, Scott E.; Ostlund, Patrick N.

    2012-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex and lead to low-fidelity results. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear stress, normal stress, and their fluctuations are attractive alternatives. However, most direct-measurement shear sensors are bulky in size or not compatible to fluid flow. A sensor has been developed that consists of a floating plate with folded beam support and an optical grid on the back, combined with a high-resolution optical position probe. The folded beam support makes the floating plate more flexible in the sensing direction within a small footprint, while maintaining high stiffness in the other directions. The floating plate converts the shear force to displacement, and the optical probe detects the plate s position with nanometer resolution by sensing the pattern of the diffraction field of the grid through a glass window. This configuration makes the sensor compatible with liquid flow applications.

  8. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  9. Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress

    NASA Technical Reports Server (NTRS)

    Go, Y. M.; Boo, Y. C.; Park, H.; Maland, M. C.; Patel, R.; Pritchard, K. A. Jr; Fujio, Y.; Walsh, K.; Darley-Usmar, V.; Jo, H.

    2001-01-01

    Laminar shear stress activates c-Jun NH(2)-terminal kinase (JNK) by the mechanisms involving both nitric oxide (NO) and phosphatidylinositide 3-kinase (PI3K). Because protein kinase B (Akt), a downstream effector of PI3K, has been shown to phosphorylate and activate endothelial NO synthase, we hypothesized that Akt regulates shear-dependent activation of JNK by stimulating NO production. Here, we examined the role of Akt in shear-dependent NO production and JNK activation by expressing a dominant negative Akt mutant (Akt(AA)) and a constitutively active mutant (Akt(Myr)) in bovine aortic endothelial cells (BAEC). As expected, pretreatment of BAEC with the PI3K inhibitor (wortmannin) prevented shear-dependent stimulation of Akt and NO production. Transient expression of Akt(AA) in BAEC by using a recombinant adenoviral construct inhibited the shear-dependent stimulation of NO production and JNK activation. However, transient expression of Akt(Myr) by using a recombinant adenoviral construct did not induce JNK activation. This is consistent with our previous finding that NO is required, but not sufficient on its own, to activate JNK in response to shear stress. These results and our previous findings strongly suggest that shear stress triggers activation of PI3K, Akt, and endothelial NO synthase, leading to production of NO, which (along with O(2-), which is also produced by shear) activates Ras-JNK pathway. The regulation of Akt, NO, and JNK by shear stress is likely to play a critical role in its antiatherogenic effects.

  10. Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells.

    PubMed

    Alon, Ronen; Ley, Klaus

    2008-10-01

    The arrest of rolling leukocytes on various target vascular beds is mediated by specialized leukocyte integrins and their endothelial immunoglobulin superfamily (IgSF) ligands. These integrins are kept in largely inactive states and undergo in situ activation upon leukocyte-endothelial contact by both biochemical and mechanical signals from flow-derived shear forces. In vivo and in vitro studies suggest that leukocyte integrin activation involves conformational alterations through inside-out signaling followed by ligand-induced rearrangements accelerated by external forces. This activation process takes place within fractions of seconds by in situ signals transduced to the rolling leukocyte as it encounters specialized endothelial-displayed chemoattractants, collectively termed arrest chemokines. In neutrophils, selectin rolling engagements trigger intermediate affinity integrins to support reversible adhesions before chemokine-triggered arrest. Different leukocyte subsets appear to use different modalities of integrin activation during rolling and arrest at distinct endothelial sites.

  11. Oxidative Stress-Dependent Coronary Endothelial Dysfunction in Obese Mice.

    PubMed

    Gamez-Mendez, Ana María; Vargas-Robles, Hilda; Ríos, Amelia; Escalante, Bruno

    2015-01-01

    Obesity is involved in several cardiovascular diseases including coronary artery disease and endothelial dysfunction. Endothelial Endothelium vasodilator and vasoconstrictor agonists play a key role in regulation of vascular tone. In this study, we evaluated coronary vascular response in an 8 weeks diet-induced obese C57BL/6 mice model. Coronary perfusion pressure in response to acetylcholine in isolated hearts from obese mice showed increased vasoconstriction and reduced vasodilation responses compared with control mice. Vascular nitric oxide assessed in situ with DAF-2 DA showed diminished levels in coronary arteries from obese mice in both basal and acetylcholine-stimulated conditions. Also, released prostacyclin was decreased in heart perfusates from obese mice, along with plasma tetrahydrobiopterin level and endothelium nitric oxide synthase dimer/monomer ratio. Obesity increased thromboxane A2 synthesis and oxidative stress evaluated by superoxide and peroxynitrite levels, compared with control mice. Obese mice treated with apocynin, a NADPH oxidase inhibitor, reversed all parameters to normal levels. These results suggest that after 8 weeks on a high-fat diet, the increase in oxidative stress lead to imbalance in vasoactive substances and consequently to endothelial dysfunction in coronary arteries.

  12. Shear stress, reactive oxygen species, and arterial structure and function.

    PubMed

    Matlung, Hanke L; Bakker, Erik N T P; VanBavel, Ed

    2009-07-01

    Shear stress is well known to be a key factor in the regulation of small-artery tone and structure. Although nitric oxide is a major endothelium-derived factor involved in short- and long-term regulation of vascular caliber, it is clear that other mechanisms also can be involved. This review discusses the evidence for endothelium-derived reactive oxygen species (ROS) as mediators for shear-dependent arterial tone and remodeling. The work focuses on resistance vessels, because their caliber determines local perfusion. However, work on large vessels is included where needed. Attention is given to the shear-stress levels and profiles that exist in the arterial system and the differential effects of steady and oscillating shear on NO and ROS production. We furthermore address the relation between microvascular tone and remodeling and the effect of ROS and inflammation on the activity of remodeling enzymes such as matrix metalloproteinases and transglutaminases. We conclude that future work should address the role of H(2)O(2) as an endothelium-derived factor mediating tone and influencing structure of small arteries over the long term.

  13. Evaluation of the time dependent surface shear stress in turbulent flows

    NASA Technical Reports Server (NTRS)

    Sandborn, V. A.

    1979-01-01

    The time dependent surface shear stress has been evaluated using surface heat transfer measurements. For fully developed turbulent pipe and open channel water flows, and incompressible and compressible turbulent boundary layer air flows the measurements indicate the absolute magnitude of the surface shear stress fluctuations will be greater than two times the mean values. The root-mean-square shear stress fluctuations were of the order of 0.2 to 0.4 times the mean surface shear values. Due to these large surface shear stress fluctuations and the nonlinear relation between heat transfer and shear stress, a special technique has been developed to evaluate the measurements. It was found that the non-linear averaging errors for a hot film-surface shear stress gauge in a fully developed pipe flow was of the order of 10 percent at low velocities. A hot wire-surface shear stress gauge was employed for measurements of turbulent boundary layers in air.

  14. Non-motile primary cilia as fluid shear stress mechanosensors.

    PubMed

    Nauli, Surya M; Jin, Xingjian; AbouAlaiwi, Wissam A; El-Jouni, Wassim; Su, Xuefeng; Zhou, Jing

    2013-01-01

    Primary cilia are sensory organelles that transmit extracellular signals into intracellular biochemical responses. Structural and functional defects in primary cilia are associated with a group of human diseases, known as ciliopathies, with phenotypes ranging from cystic kidney and obesity to blindness and mental retardation. Primary cilia mediate mechano- and chemosensation in many cell types. The mechanosensory function of the primary cilia requires the atypical G-protein-coupled receptor polycystin-1 and the calcium-permeable nonselective cation channel polycystin-2. Mechanical stimulations such as fluid-shear stress of the primary cilia initiate intracellular calcium rise, nitric oxide release, and protein modifications. In this review, we describe a set of protocols for cell culture to promote ciliation, mechanical stimulations of the primary cilia, and measurements of calcium rise and nitric oxide release induced by fluid shear stress. PMID:23522462

  15. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress.

    PubMed

    Rukhlenko, Oleksii S; Dudchenko, Olga A; Zlobina, Ksenia E; Guria, Georgy Th

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines.

  16. Structure-Enhanced Yield Shear Stress in Electrorheological Fluids

    NASA Astrophysics Data System (ADS)

    Tao, R.; Lan, Y. C.; Xu, X.

    A new technology, compression-assisted aggregation, is developed to enhance the strength of electrorheological (ER) fluids. The yield shear stress of ER fluids depends on the fluid microstructure. The unassisted electric-field induced ER structure mainly consists of single chains, whose weak points are at their ends. This new technology produces a structure consisting of robust thick columns with strong ends. As the weak points of the original ER structure are greatly enforced, the new structure makes ER fluids super-strong: At a moderate electric field and moderate pressure the yield shear stress of ER fluids at 35% volume fraction exceeds 100 kPa, well above any requirement for major industrial applications.

  17. Inverse method for estimating shear stress in machining

    NASA Astrophysics Data System (ADS)

    Burns, T. J.; Mates, S. P.; Rhorer, R. L.; Whitenton, E. P.; Basak, D.

    2016-01-01

    An inverse method is presented for estimating shear stress in the work material in the region of chip-tool contact along the rake face of the tool during orthogonal machining. The method is motivated by a model of heat generation in the chip, which is based on a two-zone contact model for friction along the rake face, and an estimate of the steady-state flow of heat into the cutting tool. Given an experimentally determined discrete set of steady-state temperature measurements along the rake face of the tool, it is shown how to estimate the corresponding shear stress distribution on the rake face, even when no friction model is specified.

  18. Wall shear stress measurements using a new transducer

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.

    1986-01-01

    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  19. Mathematical Modeling of Intravascular Blood Coagulation under Wall Shear Stress

    PubMed Central

    Rukhlenko, Oleksii S.; Dudchenko, Olga A.; Zlobina, Ksenia E.; Guria, Georgy Th.

    2015-01-01

    Increased shear stress such as observed at local stenosis may cause drastic changes in the permeability of the vessel wall to procoagulants and thus initiate intravascular blood coagulation. In this paper we suggest a mathematical model to investigate how shear stress-induced permeability influences the thrombogenic potential of atherosclerotic plaques. Numerical analysis of the model reveals the existence of two hydrodynamic thresholds for activation of blood coagulation in the system and unveils typical scenarios of thrombus formation. The dependence of blood coagulation development on the intensity of blood flow, as well as on geometrical parameters of atherosclerotic plaque is described. Relevant parametric diagrams are drawn. The results suggest a previously unrecognized role of relatively small plaques (resulting in less than 50% of the lumen area reduction) in atherothrombosis and have important implications for the existing stenting guidelines. PMID:26222505

  20. Calculation of turbulent shear stress in supersonic boundary layer flows

    NASA Technical Reports Server (NTRS)

    Sun, C. C.; Childs, M. E.

    1974-01-01

    An analysis of turbulent boundary layer flow characteristics and the computational procedure used are discussed. The integrated mass and momentum flux profiles and differentials of the integral quantities are used in the computations so that local evaluation of the streamwise velocity gradient is not necessary. The computed results are compared with measured shear stress data obtained by using hot wire anemometer and laser velocimeter techniques. The flow measurements were made upstream and downstream of an adiabatic unseparated interaction of an oblique shock wave with the turbulent boundary layer on the flat wall of a two dimensional wind tunnel. A comparison of the numerical analysis and actual measurements is made and the effects of small differences in mean flow profiles on the computed shear stress distributions are discussed.

  1. Non-volcanic tremor driven by large transient shear stresses.

    PubMed

    Rubinstein, Justin L; Vidale, John E; Gomberg, Joan; Bodin, Paul; Creager, Kenneth C; Malone, Stephen D

    2007-08-01

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude M(w) = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface-effectively a frictional failure response to the driving stress.

  2. Non-volcanic tremor driven by large transient shear stresses

    USGS Publications Warehouse

    Rubinstein, J.L.; Vidale, J.E.; Gomberg, J.; Bodin, P.; Creager, K.C.; Malone, S.D.

    2007-01-01

    Non-impulsive seismic radiation or 'tremor' has long been observed at volcanoes and more recently around subduction zones. Although the number of observations of non-volcanic tremor is steadily increasing, the causative mechanism remains unclear. Some have attributed non-volcanic tremor to the movement of fluids, while its coincidence with geodetically observed slow-slip events at regular intervals has led others to consider slip on the plate interface as its cause. Low-frequency earthquakes in Japan, which are believed to make up at least part of non-volcanic tremor, have focal mechanisms and locations that are consistent with tremor being generated by shear slip on the subduction interface. In Cascadia, however, tremor locations appear to be more distributed in depth than in Japan, making them harder to reconcile with a plate interface shear-slip model. Here we identify bursts of tremor that radiated from the Cascadia subduction zone near Vancouver Island, Canada, during the strongest shaking from the moment magnitude Mw = 7.8, 2002 Denali, Alaska, earthquake. Tremor occurs when the Love wave displacements are to the southwest (the direction of plate convergence of the overriding plate), implying that the Love waves trigger the tremor. We show that these displacements correspond to shear stresses of approximately 40 kPa on the plate interface, which suggests that the effective stress on the plate interface is very low. These observations indicate that tremor and possibly slow slip can be instantaneously induced by shear stress increases on the subduction interface - effectively a frictional failure response to the driving stress. ??2007 Nature Publishing Group.

  3. Pulse shear stress for anaerobic membrane bioreactor fouling control.

    PubMed

    Yang, Jixiang; Spanjers, Henri; van Lier, Jules B

    2011-01-01

    Increase of shear stress at membrane surfaces is a generally applied strategy to minimize membrane fouling. It has been reported that a two-phase flow, better known as slug flow, is an effective way to increase shear stress. Hence, slug flow was introduced into an anaerobic membrane bioreactor for membrane fouling control. Anaerobic suspended sludge was cultured in an anaerobic membrane bioreactor (AMBR) operated with a side stream inside-out tubular membrane unit applying sustainable flux flow regimes. The averaged particle diameter decreased from 20 to 5 microm during operation of the AMBR. However, the COD removal efficiency did not show any significant deterioration, whereas the specific methanogenic activity (SMA) increased from 0.16 to 0.41 gCOD/g VSS/day. Nevertheless, the imposed gas slug appeared to be insufficient for adequate fouling control, resulting in rapidly increasing trans membrane pressures (TMP) operating at a flux exceeding 16 L/m2/h. Addition of powdered activated carbon (PAC) enhanced the effect of slug flow on membrane fouling. However, the combined effect was still considered as not being significant. The tubular membrane was subsequently equipped with inert inserts for creating a locally increased shear stress for enhanced fouling control. Results show an increase in the membrane flux from 16 L/m2/h to 34 L/m2/h after the inserts were mounted in the membrane tube. PMID:22097007

  4. Rheological investigations of ferrofluids with a shear stress controlled rheometer.

    PubMed

    Shahnazian, Hamid; Odenbach, Stefan

    2008-05-21

    The appearance of field- and shear-dependent changes of viscosity-the magnetoviscous effect-is correlated to the formation of chains and structures of magnetic nanoparticles. Moreover, the formation of these structures leads to the appearance of viscoelastic effects or other non-Newtonian features in ferrofluids in the presence of a magnetic field. In order to describe these phenomena, different theoretical approaches have been developed which explain the mechanism of these effects with different assumptions. One point in which these models differ, and which has to be clarified, is the appearance of yield stress and its dependence on magnetic field strength. With this aim, a stress controlled rheometer has been designed to prove the existence of this very small field-dependent yield stress for ferrofluids. The results presented here show a dependence of the yield stress on the magnetic field strength as well as on the interparticle interaction and particle size distribution. Finally, yield stress experiments have been performed for different geometries of the shear cell in order to get more information about the microstructure formed by the magnetic particles. PMID:21694266

  5. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction

    PubMed Central

    Toh, Yi-Chin; Voldman, Joel

    2011-01-01

    Shear stress is a ubiquitous environmental cue experienced by stem cells when they are being differentiated or expanded in perfusion cultures. However, its role in modulating self-renewing stem cell phenotypes is unclear, since shear is usually only studied in the context of cardiovascular differentiation. We used a multiplex microfluidic array, which overcomes the limitations of macroperfusion systems in shear application throughput and precision, to initiate a comprehensive, quantitative study of shear effects on self-renewing mouse embryonic stem cells (mESCs), where shear stresses varying by >1000 times (0.016–16 dyn/cm2) are applied simultaneously. When compared with static controls in the presence or absence of a saturated soluble environment (i.e., mESC-conditioned medium), we ascertained that flow-induced shear stress specifically up-regulates the epiblast marker Fgf5. Epiblast-state transition in mESCs involves heparan sulfate proteoglycans (HSPGs), which have also been shown to transduce shear stress in endothelial cells. By disrupting (with sulfation inhibitors and heparinase) and partially reconstituting (with heparin) HSPG function, we show that mESCs also mechanically sense shear stress via HSPGs to modulate Fgf5 expression. This study demonstrates that self-renewing mESCs possess the molecular machinery to sense shear stress and provides quantitative shear application benchmarks for future scalable stem cell culture systems.—Toh, Y.-C., Voldman, J. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. PMID:21183594

  6. Mechanical properties of jammed packings of frictionless spheres under an applied shear stress

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Tong, Hua; Xu, Ning

    2014-11-01

    By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution.

  7. Molecular Origins of Higher Harmonics in Large-Amplitude Oscillatory Shear Flow: Shear Stress Response

    NASA Astrophysics Data System (ADS)

    Gilbert, Peter; Giacomin, A. Jeffrey; Schmalzer, Andrew; Bird, R. B.

    Recent work has focused on understanding the molecular origins of higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. These higher harmonics have been explained using only the orientation distribution of a dilute suspension of rigid dumbbells in a Newtonian fluid, which neglects molecular interactions and is the simplest relevant molecular model of polymer viscoelasticity [R.B. Bird et al., J Chem Phys, 140, 074904 (2014)]. We explore these molecular interactions by examining the Curtiss-Bird model, a kinetic molecular theory that accounts for restricted polymer motions arising when chains are concentrated [Fan and Bird, JNNFM, 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ɛ, for which several special cases arise: ɛ =0 corresponds to reptation, ɛ > 1 1 8 8 to rod-climbing, 1 1 2 2 >= ɛ >= 3 3 4 4 to reasonable shear-thinning predictions in steady simple shear flow, and ɛ =1 to a dilute solution of chains. We examine the shapes of the shear stress versus shear rate loops for the special cases, ɛ = 0 , 1 0 , 1 8 , 3 3 8 8 8 , 3 3 8 8 , 1 , of the Curtiss-Bird model, and we compare these with those

  8. Imaging shear stress distribution and evaluating the stress concentration factor of the human eye

    NASA Astrophysics Data System (ADS)

    Joseph Antony, S.

    2015-03-01

    Healthy eyes are vital for a better quality of human life. Historically, for man-made materials, scientists and engineers use stress concentration factors to characterise the effects of structural non-homogeneities on their mechanical strength. However, such information is scarce for the human eye. Here we present the shear stress distribution profiles of a healthy human cornea surface in vivo using photo-stress analysis tomography, which is a non-intrusive and non-X-ray based method. The corneal birefringent retardation measured here is comparable to that of previous studies. Using this, we derive eye stress concentration factors and the directional alignment of major principal stress on the surface of the cornea. Similar to thermometers being used for monitoring the general health in humans, this report provides a foundation to characterise the shear stress carrying capacity of the cornea, and a potential bench mark for validating theoretical modelling of stresses in the human eye in future.

  9. ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs

    NASA Astrophysics Data System (ADS)

    Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori

    This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.

  10. Wall shear stress indicators in abnormal aortic geometries

    NASA Astrophysics Data System (ADS)

    Prahl Wittberg, Lisa; van Wyk, Stevin; Fuchs, Laszlo; Gutmark, Ephraim; Gutmark-Little, Iris

    2015-11-01

    Cardiovascular disease, such as atherosclerosis, occurs at specific locations in the arterial tree. Characterizing flow and forces at these locations is crucial to understanding the genesis of disease. Measures such as time average wall shear stress, oscillatory shear index, relative residence time and temporal wall shear stress gradients have been shown to identify plaque prone regions. The present paper examines these indices in three aortic geometries obtained from patients whose aortas are deformed due to a genetic pathology and compared to one normal geometry. This patient group is known to be prone to aortic dissection and our study aims to identify early indicators that will enable timely intervention. Data obtained from cardiac magnetic resonance imaging is used to reconstruct the aortic arch. The local unsteady flow characteristics are calculated, fully resolving the flow field throughout the entire cardiac cycle. The Quemada model is applied to account for the non-Newtonian properties of blood, an empirical model valid for different red blood cell loading. The impact of the deformed aortic geometries is analyzed to identify flow patterns that could lead to arterial disease at certain locations.

  11. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  12. Spatiotemporal evolution of a fault shear stress patch due to viscoelastic interseismic fault zone rheology

    NASA Astrophysics Data System (ADS)

    Sone, Hiroki; Uchide, Takahiko

    2016-08-01

    We conducted numerical studies to explore how shear stress anomalies on fault planes (shear stress patches) evolve spatiotemporally during the interseismic period under the influence of viscoelastic rheology assigned to fault zones of finite thickness. 2-D viscoelastic models consisting of a fault zone and host rock were sheared to simulate shear stress accumulation along fault zones due to tectonic loading. No fault slip along a distinct fault planes is implied in the model, thus all fault shear motion is accommodated by distributed deformation in the viscoelastic fault zone. Results show that magnitudes of shear stress patches evolve not only temporally, but also spatially, especially when the stress anomaly is created by a geometrical irregularity (asperity) along the interface of an elastic host rock and viscoelastic fault zone. Such shear stress anomalies diffuse spatially so that the spatial dimension of the shear stress patch appears to grow over time. Models with varying fault zone viscoelastic properties and varying fault zone viscosity both show that such spatial diffusion of shear stress is enhanced by increasing the contribution of the viscous behavior. The absolute rate at which shear stress patches grow spatially is generally not influenced by the size of the shear stress patch. Therefore shear stress patches with smaller dimensions will appear to grow quicker, in the relative sense, compared to larger stress patches. These results suggest that the minimum dimensions of shear stress patches that can exist along a fault could be governed by the effective viscosity of the fault zone. Therefore patterns of accumulated shear stress could vary along faults when viscous properties are heterogeneous, for instance due to depth or material heterogeneity, which has implications on how earthquake rupture behavior could vary along faults.

  13. Endothelial dysfunction and preeclampsia: role of oxidative stress

    PubMed Central

    Sánchez-Aranguren, Lissette C.; Prada, Carlos E.; Riaño-Medina, Carlos E.; Lopez, Marcos

    2014-01-01

    Preeclampsia (PE) is an often fatal pathology characterized by hypertension and proteinuria at the 20th week of gestation that affects 5–10% of the pregnancies. The problem is particularly important in developing countries in where the incidence of hypertensive disorders of pregnancy is higher and maternal mortality rates are 20 times higher than those reported in developed countries. Risk factors for the development of PE include obesity, insulin resistance and hyperlipidemia that stimulate inflammatory cytokine release and oxidative stress leading to endothelial dysfunction (ED). However, how all these clinical manifestations concur to develop PE is still not very well understood. The related poor trophoblast invasion and uteroplacental artery remodeling described in PE, increases reactive oxygen species (ROS), hypoxia and ED. Here we aim to review current literature from research showing the interplay between oxidative stress, ED and PE to the outcomes of current clinical trials aiming to prevent PE with antioxidant supplementation. PMID:25346691

  14. Application and improvement of Raupach's shear stress partitioning model

    NASA Astrophysics Data System (ADS)

    Walter, B. A.; Lehning, M.; Gromke, C.

    2012-12-01

    Aeolian processes such as the entrainment, transport and redeposition of sand, soil or snow are able to significantly reshape the earth's surface. In times of increasing desertification and land degradation, often driven by wind erosion, investigations of aeolian processes become more and more important in environmental sciences. The reliable prediction of the sheltering effect of vegetation canopies against sediment erosion, for instance, is a clear practical application of such investigations to identify suitable and sustainable counteractive measures against wind erosion. This study presents an application and improvement of a theoretical model presented by Raupach (Boundary-Layer Meteorology, 1992, Vol.60, 375-395 and Journal of Geophysical Research, 1993, Vol.98, 3023-3029) which allows for quantifying the sheltering effect of vegetation against sediment erosion. The model predicts the shear stress ratios τS'/τ and τS''/τ. Here, τS is the part of the total shear stress τ that acts on the ground beneath the plants. The spatial peak τS'' of the surface shear stress is responsible for the onset of particle entrainment whereas the spatial mean τS' can be used to quantify particle mass fluxes. The precise and accurate prediction of these quantities is essential when modeling wind erosion. Measurements of the surface shear stress distributions τS(x,y) on the ground beneath live vegetation canopies (plant species: lolium perenne) were performed in a controlled wind tunnel environment to determine the model parameters and to evaluate the model performance. Rigid, non-porous wooden blocks instead of the plants were additionally tested for the purpose of comparison, since previous wind tunnel studies used exclusively artificial plant imitations for their experiments on shear stress partitioning. The model constant c, which is needed to determine the total stress τ for a canopy of interest and which remained rather unspecified to date, was found to be c ≈ 0

  15. Liposome clusters with shear stress-induced membrane permeability.

    PubMed

    Yoshimoto, Makoto; Tamura, Ryota; Natsume, Tomotaka

    2013-09-01

    Clusters of negatively charged liposomes were prepared by the addition of Ca(2+) and characterized in their structure and membrane permeability under shear stress. The liposomes mainly used were composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 20 mol% negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) and 30 mol% cholesterol. The liposomes with mean diameter of 193 nm were aggregated into the clusters with a distribution peak at about 1.5 μm in the 50mM Tris buffer solution of pH 8.5 at the lipid and Ca(2+) concentrations of 1.0mM and 40 mM, respectively. More than 90% of liposomes were redispersed at the Ca(2+) concentration of 80 mM. POPG-rich liposomes (POPC/POPG/cholesterol=5:65:30 [lipid]=1.0mM) were irreversibly aggregated at [Ca(2+)]≥ 10 mM, indicating the significant contribution of POPC to the reversible clustering of liposomes. The membranes of liposome clusters were impermeable to 5(6)-carboxyfluorescein (CF) in the static liquid system at 25°C due to the decrease in specific surface area of the liposomal system. In the shear flow, in clear contrast, continuous membrane permeation of CF was observed at the shear rate of 1.5 × 10(3)s(-1), exhibiting comparable membrane permeability to the non-clustered liposomes. The theoretical analysis of modified DLVO potential indicated that liposome membranes were not in contact with each other within the clusters. Therefore, the liposome clusters are structurally flexible under the applied shear stress, providing sufficient lipid membrane-water interfacial area for the permeation of CF. The results obtained would be important to control the formation of liposome clusters and their permeabilization for biochemical and biomedical applications.

  16. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.

    PubMed

    Tang, Zhonglan; Akiyama, Yoshikatsu; Itoga, Kazuyoshi; Kobayashi, Jun; Yamato, Masayuki; Okano, Teruo

    2012-10-01

    A new approach to quantitatively estimate the interaction between cells and material has been proposed by using a microfluidic system, which was made of poly(dimethylsiloxane) (PDMS) chip bonding on a temperature-responsive cell culture surface consisted of poly(N-isopropylacrylamide) (PIPAAm) grafted tissue culture polystyrene (TCPS) (PIPAAm-TCPS) having five parallel test channels for cell culture. This construction allows concurrently generating five different shear forces to apply to cells in individual microchannels having various resistance of each channel and simultaneously gives an identical cell incubation condition to all test channels. NIH/3T3 mouse fibroblast cells (MFCs) and bovine aortic endothelial cells (BAECs) were well adhered and spread on all channels of PIPAAm-TCPS at 37 °C. In our previous study, reducing culture temperature below the lower critical solution temperature (LCST) of PIPAAm (32 °C), cells detach themselves from hydrated PIPAAm grafted surfaces spontaneously. In this study, cell detachment process from hydrated PIPAAm-TCPS was promoted by shear forces applied to cells in microchannels. Shear stress-dependent cell detachment process from PIPAAm-TCPS was evaluated at various shear stresses. Either MFCs or BAECs in the microchannel with the strongest shear stress were found to be detached from the substrate more quickly than those in other microchannels. A cell transformation rate constant C(t) and an intrinsic cell detachment rate constant k(0) were obtained through studying the effect of shear stress on cell detachment with a peeling model. The proposed device and quantitative analysis could be used to assess the possible interaction between cells and PIPAAm layer with a potential application to design a cell sheet culture surface for tissue engineering. PMID:22818649

  17. Chronic pulsatile shear stress alters insulin-like growth factor-I (IGF-I) binding protein release in vitro.

    PubMed

    Elhadj, Selim; Akers, R Michael; Forsten-Williams, Kimberly

    2003-02-01

    Insulin-like growth factor-I (IGF-I) is a potent smooth muscle cell mitogen indicated to have a role in vascular disease. IGF-I stimulates proliferation via receptor activation but its activity is mediated by IGF binding proteins (IGFBPs). Since hemodynamics have been linked to vascular proliferative disorders, we studied how pulsatile low (5 +/- 2 dynes/cm2) and high (23 +/- 8 dynes/cm2) shear stresses impacted IGFBP metabolism in bovine aortic endothelial cells using the Cellmax capillary system. We modeled the pulsatile flow in our system using the Womersley model for flow inside a rigid tube and harmonic analysis revealed that the flow was sinusoidal with a frequency of approximately 0.3 Hz for both shear stress treatments. Laminar flow was confirmed and the phase lag between the pressure and the flow found to be insignificant. Thus, our study provides a necessary characterization of this in vitro system as well as an investigation into how shear impacts the IGF axis. We found a significant difference in IGFBP distribution between treatments and, given that IGFBPs regulate IGF-I activity and that IGF-I-independent activities have been suggested for IGFBP-3, suggest that shear stress may indirectly regulate IGF-I activity, and, by extension, the effect of IGF-I on vascular pathologies. PMID:12627824

  18. Role of fluid shear stress in regulating VWF structure, function and related blood disorders.

    PubMed

    Gogia, Shobhit; Neelamegham, Sriram

    2015-01-01

    Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα-VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure-function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries. PMID:26600266

  19. Role of fluid shear stress in regulating VWF structure, function and related blood disorders

    PubMed Central

    Gogia, Shobhit; Neelamegham, Sriram

    2015-01-01

    Von Willebrand factor (VWF) is the largest glycoprotein in blood. It plays a crucial role in primary hemostasis via its binding interaction with platelet and endothelial cell surface receptors, other blood proteins and extra-cellular matrix components. This protein is found as a series of repeat units that are disulfide bonded to form multimeric structures. Once in blood, the protein multimer distribution is dynamically regulated by fluid shear stress which has two opposing effects: it promotes the aggregation or self-association of multiple VWF units, and it simultaneously reduces multimer size by facilitating the force-dependent cleavage of the protein by various proteases, most notably ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type repeats, motif 1 type 13). In addition to these effects, fluid shear also controls the solution and substrate-immobilized structure of VWF, the nature of contact between blood platelets and substrates, and the biomechanics of the GpIbα–VWF bond. These features together regulate different physiological and pathological processes including normal hemostasis, arterial and venous thrombosis, von Willebrand disease, thrombotic thrombocytopenic purpura and acquired von Willebrand syndrome. This article discusses current knowledge of VWF structure–function relationships with emphasis on the effects of hydrodynamic shear, including rapid methods to estimate the nature and magnitude of these forces in selected conditions. It shows that observations made by many investigators using solution and substrate-based shearing devices can be reconciled upon considering the physical size of VWF and the applied mechanical force in these different geometries. PMID:26600266

  20. Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development.

    PubMed

    Chouinard-Pelletier, Guillaume; Jahnsen, Espen D; Jones, Elizabeth A V

    2013-01-01

    Vascular development is believed to occur first by vasculogenesis followed by angiogenesis. Though angiogenesis is the formation of new vessels, we found that vascular density actually decreases during this second stage. The onset of the decrease coincided with the entry of erythroblasts into circulation. We therefore measured the level of shear stress at various developmental stages and found that it was inversely proportional to vascular density. To investigate whether shear stress was inhibitory to angiogenesis, we altered shear stress levels either by preventing erythroblasts from entering circulation ("low" shear stress) or by injection of a starch solution to increase the blood plasma viscosity ("high" shear stress). By time-lapse microscopy, we show that reverse intussusception (merging of two vessels) is inversely proportional to the level of shear stress. We also found that angiogenesis (both sprouting and splitting) was inversely proportional to shear stress levels. These effects were specific to the arterial or venous plexus however, such that the effect on reverse intussusception was present only in the arterial plexus and the effect on sprouting only in the venous plexus. We cultured embryos under altered shear stress in the presence of either DAPT, a Notch inhibitor, or DMH1, an inhibitor of the bone morphogenetic protein (BMP) pathway. DAPT treatment phenocopied the inhibition of erythroblast circulation ("low" shear stress) and the effect of DAPT treatment could be partially rescued by injection of starch. Inhibition of the BMP signaling prevented the reduction in vascular density that was observed when starch was injected to increase shear stress levels.

  1. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    SciTech Connect

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  2. Permeability of fault gouge under confining pressure and shear stress.

    USGS Publications Warehouse

    Morrow, C.A.; Shi, L.Q.; Byerlee, J.D.

    1984-01-01

    The permeability of both clay-rich and non-clay gouges, as well as several pure clays, was studied as a function of confining pressures from 5 to 200 MPa and shear strain to 10. Permeability ranged over 4 orders of magnitude, from around 10-22 to 10-18 m2 (1 darcy = 0.987 X 10-12 m2). Grain size was an important factor in determining permeability, particularly for the clay-rich samples. The permeabilities of the non-clay samples were not significantly different than those of the clays. Strength of the saturated samples under drained (low pore pressure) conditions did not correlate with high or low permeability. However, the low permeabilities of these gouges could be a factor in the measured low shear stresses along fault regions if excess pore pressures were created as a result of shearing or compaction, and this pressure was unable to dissipate through a thick section of the material.-from Authors

  3. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    SciTech Connect

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  4. Prune melanoidins protect against oxidative stress and endothelial cell death.

    PubMed

    Posadino, Anna Maria; Cossu, Annalisa; Piga, Antonio; Madrau, Monica Assunta; Del Caro, Alessandra; Colombino, Maria; Paglietti, Bianca; Rubino, Salvatore; Iaccarino, Ciro; Crosio, Claudia; Sanna, Bastiano; Pintus, Gianfranco

    2011-06-01

    The health-promoting effects of fruit and vegetable consumption are thought to be due to phytochemicals contained in fresh plant material. Whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed plums (prunes) were isolated and their presence confirmed by hydroxymethylfurfural content and browning index. Oxidative-induced endothelial cell (EC) damage is the trigger for the development of cardiovascular diseases (CVD); therefore the potential protective effect of prune melanoidins on hydrogen peroxide-induced oxidative cell damage was investigated on human endothelial ECV304 cells. Cytoplasmic and mitochondrial redox status was assessed by using the novel, redox-sensitive, ratiometric fluorescent protein sensor (roGFP), while mitochondrial membrane potential (MMP) was investigated with the fluorescent dye, JC-1. Treatment of ECV304 cells with hydrogen peroxide dose-dependently induced both mitochondrial and cytoplasmic oxidation, in addition to MMP dissipation, with ensuing cell death. Pretreatment of ECV304 with prune melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide elicited phenomena, clearly indicating that these polymers protect human EC against oxidative stress.

  5. A review of Reynolds stress models for turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.

    1995-01-01

    A detailed review of recent developments in Reynolds stress modeling for incompressible turbulent shear flows is provided. The mathematical foundations of both two-equation models and full second-order closures are explored in depth. It is shown how these models can be systematically derived for two-dimensional mean turbulent flows that are close to equilibrium. A variety of examples are provided to demonstrate how well properly calibrated versions of these models perform for such flows. However, substantial problems remain for the description of more complex turbulent flows where there are large departures from equilibrium. Recent efforts to extend Reynolds stress models to nonequilibrium turbulent flows are discussed briefly along with the major modeling issues relevant to practical naval hydrodynamics applications.

  6. Endovascular Treatment of Thoracic Aortic Dissection: Hemodynamic Shear Stress Study

    NASA Astrophysics Data System (ADS)

    Tang, Yik Sau; Lai, Siu Kai; Cheng, Stephen Wing Keung; Chow, Kwok Wing

    2012-11-01

    Thoracic Aortic Dissection (TAD), a life threatening cardiovascular disease, occurs when blood intrudes into the layers of the aortic wall, creating a new artificial channel (the false lumen) beside the original true lumen. The weakened false lumen wall may expand, enhancing the risk of rupture and resulting in high mortality. Endovascular treatment involves the deployment of a stent graft into the aorta, thus blocking blood from entering the false lumen. Due to the irregular geometry of the aorta, the stent graft, however, may fail to conform to the vessel curvature, and would create a ``bird-beak'' configuration, a wedge-shaped domain between the graft and the vessel wall. Computational fluid dynamics analysis is employed to study the hemodynamics of this pathological condition. With the `beaking' configuration, the local hemodynamic shear stress will drop below the threshold of safety reported earlier in the literature. The oscillating behavior of the shear stress might lead to local inflammation, atherosclerosis and other undesirable consequences. Supported by the Innovation and Technology Fund of the Hong Kong Government.

  7. Dynamic response of wall shear stress on the stenosed artery.

    PubMed

    Sen, S; Chakravarty, S

    2009-10-01

    The present study deals with an appropriate mathematical model of an artery in the presence of constriction in which the generated wall shear stress due to blood flow is analysed. The geometry of the stenosed arterial segment in the diseased state, causing malfunction of the cardiovascular system, is formed mathematically. The flowing blood contained in the stenosed artery is treated as non-Newtonian and the flow is considered to be two-dimensional. The motion of the arterial wall and its effect on local fluid mechanics is not ruled out from the present pursuit. The flow analysis applies the time-dependent, two-dimensional incompressible nonlinear Navier-Stokes equations for non-Newtonian fluids. The flow-field can be obtained primarily following the radial coordinate transformation, using the appropriate boundary conditions and finally adopting a suitable finite difference scheme numerically. The influences of flow unsteadiness, the arterial wall distensibility and the presence of stenosis on the flow-field and the wall shear stresses are quantified in order to indicate the susceptibility to atherosclerotic lesions and thereby to validate the applicability of the present theoretical model. PMID:19294542

  8. A Flow Adhesion Assay to Study Leucocyte Recruitment to Human Hepatic Sinusoidal Endothelium Under Conditions of Shear Stress

    PubMed Central

    Shetty, Shishir; Weston, Christopher J.; Adams, David H.; Lalor, Patricia F.

    2014-01-01

    Leucocyte infiltration into human liver tissue is a common process in all adult inflammatory liver diseases. Chronic infiltration can drive the development of fibrosis and progression to cirrhosis. Understanding the molecular mechanisms that mediate leucocyte recruitment to the liver could identify important therapeutic targets for liver disease. The key interaction during leucocyte recruitment is that of inflammatory cells with endothelium under conditions of shear stress. Recruitment to the liver occurs within the low shear channels of the hepatic sinusoids which are lined by hepatic sinusoidal endothelial cells (HSEC). The conditions within the hepatic sinusoids can be recapitulated by perfusing leucocytes through channels lined by human HSEC monolayers at specific flow rates. In these conditions leucocytes undergo a brief tethering step followed by activation and firm adhesion, followed by a crawling step and subsequent transmigration across the endothelial layer. Using phase contrast microscopy, each step of this 'adhesion cascade' can be visualized and recorded followed by offline analysis. Endothelial cells or leucocytes can be pretreated with inhibitors to determine the role of specific molecules during this process. PMID:24686418

  9. SY 15-2 ENDOTHELIAL EPIGENETICS AND ITS ROLE IN MEDIATING BIOMECHANICAL STRESS OF HYPERTENSION.

    PubMed

    Davies, Peter F; Manduchi, Elisabetta; Stoeckert, Christian J; Jiang, Yi-Zhou

    2016-09-01

    endothelial gene expression in vivo and in vitro include: (i) regions of stable differentially methylated DNA in swine and mouse endothelial genomes that are arterial site-specific and map to atherosusceptibility, (ii) disturbed flow (but not undisturbed flow) applied to endothelial cells in vitro that induces DNA methylation through DNA methyltransferase enrichment of gene promoter regions; the resulting hypermethylation suppresses gene expression, (iii) histone acetylation / deacetylation and methylation that create histone marks that enable or suppress gene expression by controlling access of transcription factors to chromatin DNA, and (iv) short microRNAs and long noncoding RNAs that interact with highly specific binding sites of newly synthesized mRNA to promote its degradation and thus suppress transcription. Flow-mediated epigenomic responses intersect with cis and trans factor regulation to maintain endothelial function in a shear-stressed or pressure-stressed environment and may contribute to localized endothelial dysfunctions that promote localized vascular pathology.The Encyclopedia of DNA Elements (ENCODE) and the International Human Epigenome Consortia (IHEC) have uncovered thousands of putative epigenetic regulatory sites in non-coding regions of the genome. Methylation of cytosine nucleosides in DNA both at/near gene promoter regions as well as at some distance upstream is a potent epigenetic suppressor of transcription. Recently, complete methylated DNA immunoprecipitation sequencing (MeDIP-seq) of regions of arterial endothelium associated with disturbed vs undisturbed flow in vivo in pigs has identified many differentially methylated DNA profiles enriched in exons and 5'UTR sequences of annotated genes, 60 of which are linked to cardiovascular disease. Furthermore, in human arterial endothelial cells in culture we have demonstrated DNA methylation plasticity to be regulated by disturbed flow resulting in suppression (hypermethylation) or stimulation

  10. Relationship between types of surface shear stress profiles and membrane fouling.

    PubMed

    Chan, C C V; Bérubé, P R; Hall, E R

    2011-12-01

    Shear stress has been recognized as an important parameter in controlling particle back-transport from membrane surfaces. However, little is known of the relationship between transient shear conditions induced by air sparging and fouling control near membrane surfaces. In this paper, the different types of surface shear stress profiles that had beneficial effects on minimizing reversible surface fouling were examined. The relationship between different statistical shear parameters (e.g. time-averaged shear, standard deviation of shear and amplitude of shear) and fouling control that have been used by others were examined as well. It was found that the fouling rate for membranes subjected to transient shear conditions was lower than for membranes subjected to constant shear conditions. The magnitude, duration and frequency of the shear conditions were found to have an impact on the fouling rate of membranes. It was also found that although some statistical shear parameters could generally be used to relate shear and fouling, they were inadequate to relate surface shear stress to fouling, for all transient shear conditions examined.

  11. A failure criterion for laminates governed by free edge interlaminar shear stress

    NASA Astrophysics Data System (ADS)

    Joo, J. W.; Sun, C. T.

    1992-01-01

    Interlaminar shear stresses in balanced and symmetric laminates with free edges and failure due to these stresses were studied. It was shown that the average interlaminar shear stress near the free edge is linearly related to the mismatch of the extension-shear coupling of the top and bottom sublaminates separated by the interface of interest. A simple failure criterion based on the mismatch of the extension shear coupling was introduced to predict laminate failure stress and strain. The validity of this criterion was verified by experiments using AS4/3501-6 graphite/epoxy composite laminates.

  12. Analysis of bonded joints. [shear stress and stress-strain diagrams

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1975-01-01

    A refined elastic analysis of bonded joints which accounts for transverse shear deformation and transverse normal stress was developed to obtain the stresses and displacements in the adherends and in the bond. The displacements were expanded in terms of polynomials in the thicknesswise coordinate; the coefficients of these polynomials were functions of the axial coordinate. The stress distribution was obtained in terms of these coefficients by using strain-displacement and stress-strain relations. The governing differential equations were obtained by integrating the equations of equilibrium, and were solved. The boundary conditions (interface or support) were satisfied to complete the analysis. Single-lap, flush, and double-lap joints were analyzed, along with the effects of adhesive properties, plate thicknesses, material properties, and plate taper on maximum peel and shear stresses in the bond. The results obtained by using the thin-beam analysis available in the literature were compared with the results obtained by using the refined analysis. In general, thin-beam analysis yielded reasonably accurate results, but in certain cases the errors were high. Numerical investigations showed that the maximum peel and shear stresses in the bond can be reduced by (1) using a combination of flexible and stiff bonds, (2) using stiffer lap plates, and (3) tapering the plates.

  13. Endothelial Plasticity: Shifting Phenotypes through Force Feedback

    PubMed Central

    Krenning, Guido; Barauna, Valerio G.; Krieger, José E.; Harmsen, Martin C.; Moonen, Jan-Renier A. J.

    2016-01-01

    The endothelial lining of the vasculature is exposed to a large variety of biochemical and hemodynamic stimuli with different gradients throughout the vascular network. Adequate adaptation requires endothelial cells to be highly plastic, which is reflected by the remarkable heterogeneity of endothelial cells in tissues and organs. Hemodynamic forces such as fluid shear stress and cyclic strain are strong modulators of the endothelial phenotype and function. Although endothelial plasticity is essential during development and adult physiology, proatherogenic stimuli can induce adverse plasticity which contributes to disease. Endothelial-to-mesenchymal transition (EndMT), the hallmark of endothelial plasticity, was long thought to be restricted to embryonic development but has emerged as a pathologic process in a plethora of diseases. In this perspective we argue how shear stress and cyclic strain can modulate EndMT and discuss how this is reflected in atherosclerosis and pulmonary arterial hypertension. PMID:26904133

  14. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells.

    PubMed

    Huang, Bin; Chen, Chang-Ting; Chen, Chi-Shia; Wang, Yun-Ming; Hsieh, Hsyue-Jen; Wang, Danny Ling

    2015-09-01

    Laminar shear flow triggers a signaling cascade that maintains the integrity of endothelial cells (ECs). Hydrogen sulfide (H2S), a new gasotransmitter is regarded as an upstream regulator of nitric oxide (NO). Whether the H2S-generating enzymes are correlated to the enzymes involved in NO production under shear flow conditions remains unclear as yet. In the present study, the cultured ECs were subjected to a constant shear flow (12 dyn/cm(2)) in a parallel flow chamber system. We investigated the expression of three key enzymes for H2S biosynthesis, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercapto-sulfurtransferase (3-MST). Shear flow markedly increased the level of 3-MST. Shear flow enhanced the production of H2S was determined by NBD-SCN reagent that can bind to cysteine/homocystein. Exogenous treatment of NaHS that can release gaseous H2S, ECs showed an increase of phosphorylation in Akt(S473), ERK(T202/Y204) and eNOS(S1177). This indicated that H2S can trigger the NO-production signaling cascade. Silencing of CSE, CBS and 3-MST genes by siRNA separately attenuated the phosphorylation levels of Akt(S473) and eNOS(S1177) under shear flow conditions. The particular mode of shear flow increased H2S production. The interplay between H2S and NO-generating enzymes were discussed in the present study. PMID:26212441

  15. Oxidative stress modulates nucleobase transport in microvascular endothelial cells.

    PubMed

    Bone, Derek B J; Antic, Milica; Vilas, Gonzalo; Hammond, James R

    2014-09-01

    Purine nucleosides and nucleobases play key roles in the physiological response to vascular ischemia/reperfusion events. The intra- and extracellular concentrations of these compounds are controlled, in part, by equilibrative nucleoside transporter subtype 1 (ENT1; SLC29A1) and by equilibrative nucleobase transporter subtype 1 (ENBT1). These transporters are expressed at the membranes of numerous cell types including microvascular endothelial cells. We studied the impact of reactive oxygen species on the function of ENT1 and ENBT1 in primary (CMVEC) and immortalized (HMEC-1) human microvascular endothelial cells. Both cell types displayed similar transporter expression profiles, with the majority (>90%) of 2-chloro[(3)H]adenosine (nucleoside) uptake mediated by ENT1 and [(3)H]hypoxanthine (nucleobase) uptake mediated by ENBT1. An in vitro mineral oil-overlay model of ischemia/reperfusion had no effect on ENT1 function, but significantly reduced ENBT1 Vmax in both cell types. This decrease in transport function was mimicked by the intracellular superoxide generator menadione and could be reversed by the superoxide dismutase mimetic MnTMPyP. In contrast, neither the extracellular peroxide donor TBHP nor the extracellular peroxynitrite donor 3-morpholinosydnonimine (SIN-1) affected ENBT1-mediated [(3)H]hypoxanthine uptake. SIN-1 did, however, enhance ENT1-mediated 2-chloro[(3)H]adenosine uptake. Our data establish HMEC-1 as an appropriate model for study of purine transport in CMVEC. Additionally, these data suggest that the generation of intracellular superoxide in ischemia/reperfusion leads to the down-regulation of ENBT1 function. Modification of purine transport by oxidant stress may contribute to ischemia/reperfusion induced vascular damage and should be considered in the development of therapeutic strategies.

  16. Wrinkling Phenomena of Thin Flat Plates Subjected to Shear Stresses

    NASA Technical Reports Server (NTRS)

    Bollenrath, F

    1931-01-01

    This report covers a series of tests on thin flat elastic strips restrained at two parallel edges and subjected to shear by conversely directed stresses. Theoretical treatments, particularly those of Lilly, Southwell and Skan, and Timoshenko are briefly outlined. The problem to be solved by these tests was to find out whether, and to what extent the conditions and assumptions upon which the calculations are based are complied with in the tests. Three materials were used: celluloid, duralumin, brass. Owing to the high elastic deformability of celluloid, it was not only possible to observe the beginning but also to ascertain the type of deflection. The test data on celluloid was affirmed by the experiments with duralumin and brass.

  17. [Medical significance of endothelial glycocalyx].

    PubMed

    Frati-Munari, Alberto C

    2013-01-01

    Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. It has several physiological roles: shear stress mechanotransduction to the endothelial cells, regulation of fluids and macromolecules vascular permeability, of coagulation cascade activation and fibrinolysis, and protects the endothelium from platelets and leukocytes adhesion. In general, glycocalyx protects vascular wall against pathogenic insults. The glycocalyx may be damaged by abnormal shear stress, reactive oxygen species, hypernatremia, hyperglycemia, hypercholesterolemia and inflammatory molecules, resulting in endothelial dysfunction, enhanced vascular permeability, lipoproteins leakage to subendothelial space, activation of plasma coagulation, and increased adherence of platelets and leukocytes to the endothelial cells. Shredding of glycocalyx appears as an important initial step in the pathophysiology of vascular diseases.

  18. MicroRNA-30 mediates anti-inflammatory effects of shear stress and KLF2 via repression of angiopoietin 2.

    PubMed

    Demolli, Shemsi; Doebele, Carmen; Doddaballapur, Anuradha; Lang, Victoria; Fisslthaler, Beate; Chavakis, Emmanouil; Vinciguerra, Manlio; Sciacca, Sergio; Henschler, Reinhard; Hecker, Markus; Savant, Soniya; Augustin, Hellmut G; Kaluza, David; Dimmeler, Stefanie; Boon, Reinier A

    2015-11-01

    MicroRNAs are endogenously expressed small noncoding RNAs that regulate gene expression. Laminar blood flow induces atheroprotective gene expression in endothelial cells (ECs) in part by upregulating the transcription factor KLF2. Here, we identified KLF2- and flow-responsive miRs that affect gene expression in ECs. Bioinformatic assessment of mRNA expression patterns identified the miR-30-5p seed sequence to be highly enriched in mRNAs that are downregulated by KLF2. Indeed, KLF2 overexpression and shear stress stimulation in vitro and in vivo increased the expression of miR-30-5p family members. Furthermore, we identified angiopoietin 2 (Ang2) as a target of miR-30. MiR-30 overexpression reduces Ang2 levels, whereas miR-30 inhibition by LNA-antimiRs induces Ang2 expression. Consistently, miR-30 reduced basal and TNF-α-induced expression of the inflammatory cell–cell adhesion molecules E-selectin, ICAM1 and VCAM1, which was rescued by stimulation with exogenous Ang2. In summary, KLF2 and shear stress increase the expression of the miR-30-5p family which acts in an anti-inflammatory manner in ECs by impairing the expression of Ang2 and inflammatory cell–cell adhesion molecules. The upregulation of miR-30-5p family members may contribute to the atheroprotective effects of shear stress.

  19. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet

    PubMed Central

    Yap, Choon Hwai; Saikrishnan, Neelakantan; Tamilselvan, Gowthami

    2011-01-01

    Aortic valve (AV) calcification is a highly prevalent disease with serious impact on mortality and morbidity. Although exact causes and mechanisms of AV calcification are unclear, previous studies suggest that mechanical forces play a role. Since calcium deposits occur almost exclusively on the aortic surfaces of AV leaflets, it has been hypothesized that adverse patterns of fluid shear stress on the aortic surface of AV leaflets promote calcification. The current study characterizes AV leaflet aortic surface fluid shear stresses using Laser Doppler velocimetry and an in vitro pulsatile flow loop. The valve model used was a native porcine valve mounted on a suturing ring and preserved using 0.15% glutaraldehyde solution. This valve model was inserted in a mounting chamber with sinus geometries, which is made of clear acrylic to provide optical access for measurements. To understand the effects of hemodynamics on fluid shear stress, shear stress was measured across a range of conditions: varying stroke volumes at the same heart rate and varying heart rates at the same stroke volume. Systolic shear stress magnitude was found to be much higher than diastolic shear stress magnitude due to the stronger flow in the sinuses during systole, reaching up to 20 dyn/cm2 at mid-systole. Upon increasing stroke volume, fluid shear stresses increased due to stronger sinus fluid motion. Upon increasing heart rate, fluid shear stresses decreased due to reduced systolic duration that restricted the formation of strong sinus flow. Significant changes in the shear stress waveform were observed at 90 beats/ min, most likely due to altered leaflet dynamics at this higher heart rate. Overall, this study represents the most well-resolved shear stress measurements to date across a range of conditions on the aortic side of the AV. The data presented can be used for further investigation to understand AV biological response to shear stresses. PMID:21416247

  20. Predicting boundary shear stress and sediment transport over bed forms

    USGS Publications Warehouse

    McLean, S.R.; Wolfe, S.R.; Nelson, J.M.

    1999-01-01

    To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of the internal boundary layer with semiempirical structure functions to predict the velocity at the crest of a bedform, where the flow is most similar to a uniform boundary layer. Significantly, the methodology is directed toward making specific predictions only at the bed-form crest, and as a result it avoids the difficulty and questionable validity of spatial averaging. The model provides an accurate estimate of the skin friction at the crest where transport rates are highest. Simple geometric constraints can be used to derive the mean transport rates as long as bed load is dominant.To estimate bed-load sediment transport rates in flows over bed forms such as ripples and dunes, spatially averaged velocity profiles are frequently used to predict mean boundary shear stress. However, such averaging obscures the complex, nonlinear interaction of wake decay, boundary-layer development, and topographically induced acceleration downstream of flow separation and often leads to inaccurate estimates of boundary stress, particularly skin friction, which is critically important in predicting bed-load transport rates. This paper presents an alternative methodology for predicting skin friction over 2D bed forms. The approach is based on combining the equations describing the mechanics of

  1. Measurement of wall shear stress in a pulsatile pipe flow system using micro-pillar shear sensor (MPS3)

    NASA Astrophysics Data System (ADS)

    Raghav, Vrishank; Garcia, Christine; Gnanamanickam, Ebenezer; Yoganathan, Ajit; GT-Embry-Riddle Collaboration

    2014-11-01

    The measurement of unsteady wall shear stress (WSS) in a pulsatile flow system is quite a challenge in experimental fluid mechanics. Recent developments in micro fabrication techniques have resulted in a novel measurement technique called the micro-pillar shear stress sensor (MPS3). It is a micro-pillar mounted on the surface of interest, which deflects an amount proportional to the shear stress it experiences. This technique has been widely used, validated and applied to measure turbulent WSS in several flow configurations. In this work, the MPS3 technique is used to measure WSS for a pulsatile fully developed pipe flow. The main objective here is to validate this technique for pulsatile pipe flow applications. For this purpose the WSS measurements obtained are compared with those obtained from analytical womersley solutions of the pulsatile flow system in the laminar flow regime. Statistical metrics will be used to better understand the measured WSS through the time period of the pulsatile flow.

  2. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries.

    PubMed

    Luong, Le; Duckles, Hayley; Schenkel, Torsten; Mahmoud, Marwa; Tremoleda, Jordi L; Wylezinska-Arridge, Marzena; Ali, Majid; Bowden, Neil P; Villa-Uriol, Mari-Cruz; van der Heiden, Kim; Xing, Ruoyu; Gijsen, Frank J; Wentzel, Jolanda; Lawrie, Allan; Feng, Shuang; Arnold, Nadine; Gsell, Willy; Lungu, Angela; Hose, Rodney; Spencer, Tim; Halliday, Ian; Ridger, Victoria; Evans, Paul C

    2016-07-01

    Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.

  3. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries.

    PubMed

    Luong, Le; Duckles, Hayley; Schenkel, Torsten; Mahmoud, Marwa; Tremoleda, Jordi L; Wylezinska-Arridge, Marzena; Ali, Majid; Bowden, Neil P; Villa-Uriol, Mari-Cruz; van der Heiden, Kim; Xing, Ruoyu; Gijsen, Frank J; Wentzel, Jolanda; Lawrie, Allan; Feng, Shuang; Arnold, Nadine; Gsell, Willy; Lungu, Angela; Hose, Rodney; Spencer, Tim; Halliday, Ian; Ridger, Victoria; Evans, Paul C

    2016-07-01

    Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response. PMID:27075869

  4. Surface temperatures and glassy state investigations in tribology, part 3. [limiting shear stress rheological model

    NASA Technical Reports Server (NTRS)

    Bair, S.; Winer, W. O.

    1980-01-01

    Research related to the development of the limiting shear stress rheological model is reported. Techniques were developed for subjecting lubricants to isothermal compression in order to obtain relevant determinations of the limiting shear stress and elastic shear modulus. The isothermal compression limiting shear stress was found to predict very well the maximum traction for a given lubricant. Small amounts of side slip and twist incorporated in the model were shown to have great influence on the rising portion of the traction curve at low slide-roll ratio. The shear rheological model was also applied to a Grubin-like elastohydrodynamic inlet analysis for predicting film thicknesses when employing the limiting shear stress model material behavior.

  5. Intracellular pH changes in human aortic smooth muscle cells in response to fluid shear stress

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; Patrick, C. W. Jr; McIntire, L. V.

    1997-01-01

    The smooth muscle cell (SMC) layers of human arteries may be exposed to blood flow after endothelium denudation, for example, following balloon angioplasty treatment. These SMCs are also constantly subjected to pressure driven transmural fluid flow. Flow-induced shear stress can alter SMC growth and metabolism. Signal transduction mechanisms involved in these flow effects on SMCs are still poorly understood. In this work, the hypothesis that shear stress alters the intracellular pH (pHi) of SMC is examined. When exposed to venous and arterial levels of shear stress, human aortic smooth muscle cells (hASMC) undergo alkalinization. The alkalinization plateau persisted even after 20 min of cell exposure to flow. Addition of amiloride (10 micromoles) or its 5-(N-ethyl-N-isopropyl) analog (EIPA, 10 micromoles), both Na+/H+ exchanger inhibitors, attenuated intracellular alkalinization, suggesting the involvement of the Na+/H+ exchanger in this response. The same concentrations of these inhibitors did not show an effect on pHi of hASMCs in static culture. 4-Acetamido-4'-isothio-cyanatostilbene-2,2'-disulfonic acid (SITS, 1 mM), a Cl-/HCO3- exchange inhibitor, affected the pHi of hASMCs both in static and flow conditions. Our results suggest that flow may perturb the Na+/H+ exchanger leading to an alkalinization of hASMCs, a different response from the flow-induced acidification seen with endothelial cells at the same levels of shear stress. Understanding the flow-induced signal transduction pathways in the vascular cells is of great importance in the tissue engineering of vascular grafts. In the case of SMCs, the involvement of pHi changes in nitric oxide production and proliferation regulation highlights further the significance of such studies.

  6. Flow-Mediated Endothelial Mechanotransduction

    PubMed Central

    Davies, Peter F.

    2011-01-01

    Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and the mechanotransduction mechanisms that lead to biophysical, biochemical, and gene regulatory responses of endothelial cells to hemodynamic shear stresses are reviewed. PMID:7624393

  7. Fluid Shear Stress Increases Neutrophil Activation via Platelet-Activating Factor

    PubMed Central

    Mitchell, Michael J.; Lin, Kimberly S.; King, Michael R.

    2014-01-01

    Leukocyte exposure to hemodynamic shear forces is critical for physiological functions including initial adhesion to the endothelium, the formation of pseudopods, and migration into tissues. G-protein coupled receptors on neutrophils, which bind to chemoattractants and play a role in neutrophil chemotaxis, have been implicated as fluid shear stress sensors that control neutrophil activation. Recently, exposure to physiological fluid shear stresses observed in the microvasculature was shown to reduce neutrophil activation in the presence of the chemoattractant formyl-methionyl-leucyl-phenylalanine. Here, however, human neutrophil preexposure to uniform shear stress (0.1–2.75 dyn/cm2) in a cone-and-plate viscometer for 1–120 min was shown to increase, rather than decrease, neutrophil activation in the presence of platelet activating factor (PAF). Fluid shear stress exposure increased PAF-induced neutrophil activation in terms of L-selectin shedding, αMβ2 integrin activation, and morphological changes. Neutrophil activation via PAF was found to correlate with fluid shear stress exposure, as neutrophil activation increased in a shear stress magnitude- and time-dependent manner. These results indicate that fluid shear stress exposure increases neutrophil activation by PAF, and, taken together with previous observations, differentially controls how neutrophils respond to chemoattractants. PMID:24853753

  8. Studies on stress distribution in pavements subjected to surface shear forces

    PubMed Central

    KIMURA, Tsutomu

    2014-01-01

    It has been pointed out by some researchers1,2) that road pavements are subjected to vertical stress due to vehicles on them as well as shear stress at the time of braking or acceleration of vehicles. In this paper, the results of elastic analysis to obtain the rigorous solution for an elastic two-layer system subjected to surface shear stress are described and it is shown that the effect of shear stresses applied at the surface gives rise to fairly large stresses in the system. On the basis of these findings, the author attempts to explain why pavement failure takes place frequently at places such as crossings and curved parts where pavements are subjected to high magnitude of surface shear stresses. PMID:24522154

  9. Contact Pressure and Shear Stress Analysis on Conforming Contact Problem

    NASA Astrophysics Data System (ADS)

    Nagatani, Haruo; Imou, Akitoshi

    Two methods to solve a conforming contact problem are proposed. First method is general and can be applicable to the contact case between elastic arbitrary shape bodies. For verification FEA is performed on the convex-concave sphere contact, and the result of this method is well corresponding to the FEA result. However, the accuracy deteriorates when the mesh aspect ratio is extremely large. This phenomenon is caused by the usage of numerical integration for the calculation of influence coefficient. The second method is devised to avoid this problem, while this improved method is applicable only to the case when the contact area can be considered to be on a cylinder surface. By using this method, the contact pressure can be obtained without the deterioration even in the case of edge load occurring between ball bearing race shoulder and ball. The results of the contact pressure and the shear stress that is necessary for bearing life estimation are compared with the FEA result, which showed well correspondence.

  10. Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow.

    PubMed

    Arzani, Amirhossein; Shadden, Shawn C

    2016-01-01

    Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to investigate WSS magnitude, angle, and vector changes in space and time in complex blood flow. Abdominal aortic aneurysm (AAA) was chosen as a setting to explore WSS quantification. Patient-specific computational fluid dynamics (CFD) simulations were performed in six AAAs. New WSS parameters are introduced, and the pointwise correlation among these, and more traditional WSS parameters, was explored. WSS magnitude had positive correlation with spatial/temporal gradients of WSS magnitude. This motivated the definition of relative WSS gradients. WSS vectorial gradients were highly correlated with magnitude gradients. A mix WSS spatial gradient and a mix WSS temporal gradient are proposed to equally account for variations in the WSS angle and magnitude in single measures. The important role that WSS plays in regulating near wall transport, and the high correlation among some of the WSS parameters motivates further attention in revisiting the traditional approaches used in WSS characterizations. PMID:26592536

  11. Sediment transport and shear stress partitioning in a vegetated flow

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, Caroline; Venditti, J. G.

    2015-04-01

    Vegetation is a common feature in natural coastal and riverine water ways, interacting with both the water flow and sediment transport. However, the physical processes governing these interactions are still poorly understood, which makes it difficult to predict sediment transport and morphodynamics in a vegetated environment. We performed a simple experiment to study how sediment transport responds to the presence of flexible, single-blade vegetation, and how this response is influenced by the vegetation density. We found that the skin friction and sediment transport are reduced in a plant patch, and that this effect is larger for denser vegetation. We then evaluated several methods to calculate the skin friction in a vegetated flow, which is the key to sediment transport prediction. Among these, the inversion of bed load transport formulas and the Einstein and Banks (1950) methods appeared to produce the most reasonable values of the skin friction. Finally, we suggest using the parameter α, which is the ratio of the skin friction computed by these methods to the total bed shear stress, to make more realistic sediment transport predictions in morphodynamic models.

  12. NOX4-dependent Hydrogen peroxide promotes shear stress-induced SHP2 sulfenylation and eNOS activation.

    PubMed

    Sánchez-Gómez, Francisco J; Calvo, Enrique; Bretón-Romero, Rosa; Fierro-Fernández, Marta; Anilkumar, Narayana; Shah, Ajay M; Schröder, Katrin; Brandes, Ralf P; Vázquez, Jesús; Lamas, Santiago

    2015-12-01

    Laminar shear stress (LSS) triggers signals that ultimately result in atheroprotection and vasodilatation. Early responses are related to the activation of specific signaling cascades. We investigated the participation of redox-mediated modifications and in particular the role of hydrogen peroxide (H2O2) in the sulfenylation of redox-sensitive phosphatases. Exposure of vascular endothelial cells to short periods of LSS (12 dyn/cm(2)) resulted in the generation of superoxide radical anion as detected by the formation of 2-hydroxyethidium by HPLC and its subsequent conversion to H2O2, which was corroborated by the increase in the fluorescence of the specific peroxide sensor HyPer. By using biotinylated dimedone we detected increased total protein sulfenylation in the bovine proteome, which was dependent on NADPH oxidase 4 (NOX4)-mediated generation of peroxide. Mass spectrometry analysis allowed us to identify the phosphatase SHP2 as a protein susceptible to sulfenylation under LSS. Given the dependence of FAK activity on SHP2 function, we explored the role of FAK under LSS conditions. FAK activation and subsequent endothelial NO synthase (eNOS) phosphorylation were promoted by LSS and both processes were dependent on NOX4, as demonstrated in lung endothelial cells isolated from NOX4-null mice. These results support the idea that LSS elicits redox-sensitive signal transduction responses involving NOX4-dependent generation of hydrogen peroxide, SHP2 sulfenylation, and ulterior FAK-mediated eNOS activation.

  13. Mechanotransduction of shear stress occurs through changes in VE-cadherin and PECAM-1 tension: implications for cell migration.

    PubMed

    Conway, Daniel E; Schwartz, Martin A

    2015-01-01

    Recent work has shown that cadherins at cell-cell junctions bear tensile forces. Using novel FRET-based tension sensors, we showed first that in response to shear stress, endothelial cells rapidly reduce mechanical tension on vascular endothelial (VE)-cadherin. Second, we observed a simultaneous increase in tension on platelet endothelial cell adhesion molecule (PECAM)-1, induced by an interaction with vimentin. In this commentary, we discuss how our results fit with existing data on cadherins as important mediators of mechanotransduction, in particular, in cell migration where mechanical tension across cadherins may communicate the direction of movement. The ability of PECAM-1 to bear mechanical tension may also be important in other PECAM-1 functions, such as leukocyte transmigration through the endothelium. Additionally, our observation that vimentin expression was required for PECAM-1 tension and mechanotransduction of fluid flow suggests that intermediate filaments are capable of transmitting tension. Overall, our results argue against models where an external force is passively transferred across the cytoskeleton, and instead suggest that cells actively respond to extracellular forces by modulating tension across junctional proteins.

  14. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier

    PubMed Central

    Mairey, Emilie; Genovesio, Auguste; Donnadieu, Emmanuel; Bernard, Christine; Jaubert, Francis; Pinard, Elisabeth; Seylaz, Jacques; Olivo-Marin, Jean-Christophe; Nassif, Xavier; Duménil, Guillaume

    2006-01-01

    Neisseria meningitidis is a commensal bacterium of the human nasopharynx. Occasionally, this bacterium reaches the bloodstream and causes meningitis after crossing the blood–brain barrier by an unknown mechanism. An immunohistological study of a meningococcal sepsis case revealed that neisserial adhesion was restricted to capillaries located in low blood flow regions in the infected organs. This study led to the hypothesis that drag forces encountered by the meningococcus in the bloodstream determine its attachment site in vessels. We therefore investigated the ability of N. meningitidis to bind to endothelial cells in the presence of liquid flow mimicking the bloodstream with a laminar flow chamber. Strikingly, average blood flows reported for various organs strongly inhibited initial adhesion. As cerebral microcirculation is known to be highly heterogeneous, cerebral blood velocity was investigated at the level of individual vessels using intravital imaging of rat brain. In agreement with the histological study, shear stress levels compatible with meningococcal adhesion were only observed in capillaries, which exhibited transient reductions in flow. The flow chamber assay revealed that, after initial attachment, bacteria resisted high blood velocities and even multiplied, forming microcolonies resembling those observed in the septicemia case. These results argue that the combined mechanical properties of neisserial adhesion and blood microcirculation target meningococci to transiently underperfused cerebral capillaries and thus determine disease development. PMID:16864659

  15. Disturbed shear stress reduces Klf2 expression in arterial-venous fistulae in vivo

    PubMed Central

    Yamamoto, Kota; Protack, Clinton D; Kuwahara, Go; Tsuneki, Masayuki; Hashimoto, Takuya; Hall, Michael R; Assi, Roland; Brownson, Kirstyn E; Foster, Trenton R; Bai, Hualong; Wang, Mo; Madri, Joseph A; Dardik, Alan

    2015-01-01

    Laminar shear stress (SS) induces an antiproliferative and anti-inflammatory endothelial phenotype and increases Klf2 expression. We altered the diameter of an arteriovenous fistula (AVF) in the mouse model to determine whether increased fistula diameter produces disturbed SS in vivo and if acutely increased disturbed SS results in decreased Klf2 expression. The mouse aortocaval fistula model was performed with 22, 25, or 28 gauge needles to puncture the aorta and the inferior vena cava. Duplex ultrasound was used to examine the AVF and its arterial inflow and venous outflow, and SS was calculated. Arterial samples were examined with western blot, immunohistochemistry, and immunofluorescence analysis for proteins and qPCR for RNA. Mice with larger diameter fistulae had diminished survival but increased AVF patency. Increased SS magnitudes and range of frequencies were directly proportional to the needle diameter in the arterial limb proximal to the fistula but not in the venous limb distal to the fistula, with 22-gauge needles producing the most disturbed SS in vivo. Klf2 mRNA and protein expression was diminished in the artery proximal to the fistula in proportion to increasing SS. Increased fistula diameter produces increased SS magnitude and frequency, consistent with disturbed SS in vivo. Disturbed SS is associated with decreased mRNA and protein expression of Klf2. Disturbed SS and reduced Klf2 expression near the fistula are potential therapeutic targets to improve AVF maturation. PMID:25780089

  16. Quantification of disturbed wall shear stress patterns in complex cardiovascular flows

    NASA Astrophysics Data System (ADS)

    Arzani, Amirhossein; Shadden, Shawn C.

    2014-11-01

    Wall shear stress (WSS) affects the cardiovascular system in numerous ways, and is thought to play an important role in the pathology of many cardiovascular diseases. The (endothelial) cells lining the inner wall of blood vessels, and perhaps the cells inside the vessel wall, can actively sense WSS and respond both chemically and mechanically. The complexity of WSS in cardiovascular flows extends both spatially and temporally. Furthermore, WSS has magnitude and direction. These facets make simple quantification of WSS in cardiovascular applications difficult. In this study we propose a framework to quantify measures such as WSS angle gradient, WSS magnitude gradient, WSS angle time derivative and WSS magnitude time derivative. We will explain the relation of these parameters to the tensorial WSS gradient and WSS vector time derivative, and propose a new methodology to unify these concepts into a single measure. The correlation between these metrics and more common WSS metrics used in the literature will be demonstrated. For demonstration, these methods will be used for the quantification of complex blood flow inside abdominal aortic aneurysms.

  17. Recapitulating physiological and pathological shear stress and oxygen to model vasculature in health and disease

    NASA Astrophysics Data System (ADS)

    Abaci, Hasan Erbil; Shen, Yu-I.; Tan, Scott; Gerecht, Sharon

    2014-05-01

    Studying human vascular disease in conventional cell cultures and in animal models does not effectively mimic the complex vascular microenvironment and may not accurately predict vascular responses in humans. We utilized a microfluidic device to recapitulate both shear stress and O2 levels in health and disease, establishing a microfluidic vascular model (μVM). Maintaining human endothelial cells (ECs) in healthy-mimicking conditions resulted in conversion to a physiological phenotype namely cell elongation, reduced proliferation, lowered angiogenic gene expression and formation of actin cortical rim and continuous barrier. We next examined the responses of the healthy μVM to a vasotoxic cancer drug, 5-Fluorouracil (5-FU), in comparison with an in vivo mouse model. We found that 5-FU does not induce apoptosis rather vascular hyperpermeability, which can be alleviated by Resveratrol treatment. This effect was confirmed by in vivo findings identifying a vasoprotecting strategy by the adjunct therapy of 5-FU with Resveratrol. The μVM of ischemic disease demonstrated the transition of ECs from a quiescent to an activated state, with higher proliferation rate, upregulation of angiogenic genes, and impaired barrier integrity. The μVM offers opportunities to study and predict human ECs with physiologically relevant phenotypes in healthy, pathological and drug-treated environments.

  18. Wall Morphology, Blood Flow and Wall Shear Stress: MR Findings in Patients with Peripheral Artery Disease

    PubMed Central

    Galizia, Mauricio S.; Barker, Alex; Liao, Yihua; Collins, Jeremy; Carr, James; McDermott, Mary; Markl, Michael

    2014-01-01

    Objectives: To investigate the influence of atherosclerotic plaques on femoral haemodynamics assessed by 2D phase contrast (PC) MRI with three-directional velocity encoding. Methods: During one year, patients with peripheral artery disease and an ankle brachial index <1.00 were enrolled. After IRB approval and written informed consent, 44 patients (age=70±12 years) underwent common femoral artery MRI. Patients with contraindications for MRI were excluded. Sequences included 2D time-of-flight, proton-density, T1-, and T2-weighted MRI. ECG-gated 2D PC-MRI with 3D velocity encoding was acquired. A radiologist classified images in five categories. Blood flow, velocity, and WSS along the vessel circumference were quantified from the PC-MRI data. Results: The acquired images were of good quality for interpretation. There were no image quality problems related to poor ECG-gating or slice positioning. Velocities, oscillatory shear stress, and total flow were similar between patients with normal arteries and wall thickening/plaque. Patients with plaques demonstrated regionally increased peak systolic WSS and enhanced WSS eccentricity. Conclusions: Combined multi-contrast morphological imaging of the peripheral arterial wall with PC-MRI with 3 directional velocity encoding is a feasible technique. Further study is needed to determine whether flow is an appropriate marker for altered endothelial cell function, vascular remodelling, and plaque progression. PMID:24326757

  19. Estimation of the shear stress on the surface of an aortic valve leaflet.

    PubMed

    Weston, M W; LaBorde, D V; Yoganathan, A P

    1999-01-01

    The limited durability of xenograft heart valves and the limited supply of allografts have sparked interest in tissue engineered replacement valves. A bioreactor for tissue engineered valves must operate at conditions that optimize the biosynthetic abilities of seeded cells while promoting their adherence to the leaflet matrix. An important parameter is shear stress, which is known to influence cellular behavior and may thus be crucial in bioreactor optimization. Therefore, an accurate estimate of the shear stress on the leaflet surface would not only improve our understanding of the mechanical environment of aortic valve leaflets, but it would also aid in bioreactor design. To estimate the shear stress on the leaflet surface, two-component laser-Doppler velocimetry measurements have been conducted inside a transparent polyurethane valve with a trileaflet structure similar to the native aortic valve. Steady flow rates of 7.5, 15.0, and 22.5 L/min were examined to cover the complete range possible during the cardiac cycle. The laminar shear stresses were calculated by linear regression of four axial velocity measurements near the surface of the leaflet. The maximum shear stress recorded was 79 dyne/cm2, in agreement with boundary layer theory and previous experimental and computational studies. This study has provided a range of shear stresses to be explored in bioreactor design and has defined a maximum shear stress at which cells must remain adherent upon a tissue engineered construct.

  20. Research on measurement of bed shear stress under wave-current interaction

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Xia, Yun-feng; Ma, Bing-he; Hao, Si-yu; Zhang, Shi-zhao; Du, De-jun

    2015-06-01

    The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave-current effect, and confirm that the method of measuring bed shear stress under wave-current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave-current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.

  1. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress.

    PubMed

    Yao, Yu; Rabodzey, Aleksandr; Dewey, C Forbes

    2007-08-01

    Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports that modifying the amount of the glycocalyx affects both short-term and long-term shear responses significantly. It is well established that after 24 h of laminar flow, endothelial cells align in the direction of flow and their proliferation is suppressed. We report here that by removing the glycocalyx by using the specific enzyme heparinase III, endothelial cells no longer align under flow after 24 h and they proliferate as if there were no flow present. In addition, confluent endothelial cells respond rapidly to flow by decreasing their migration speed by 40% and increasing the amount of vascular endothelial cadherin in the cell-cell junctions. These responses are not observed in the cells treated with heparinase III. Heparan sulfate proteoglycans (a major component of the glycocalyx) redistribute after 24 h of flow application from a uniform surface profile to a distinct peripheral pattern with most molecules detected above cell-cell junctions. We conclude that the presence of the glycocalyx is necessary for the endothelial cells to respond to fluid shear, and the glycocalyx itself is modulated by the flow. The redistribution of the glycocalyx also appears to serve as a cell-adaptive mechanism by reducing the shear gradients that the cell surface experiences.

  2. Red blood cell damage by shear stress for different blood types

    NASA Astrophysics Data System (ADS)

    Arwatz, Gilad; Bedkowski, Katherine; Smits, Alexander

    2011-11-01

    In surgical practice, blood damage caused by medical devices is often a limiting factor in the duration of an acute procedure or in chronic exposures such as hemodialysis. In order to establish guidelines for designing medical devices, a study was conducted to determine the relationship between shear stress and damage to red blood cells using a concentric Couette device. By measuring the hemolysis level for various shear stresses and exposure times, a non-dimensional relationship between shear stress and blood damage for different blood types was established. Funding provided by Princeton University's Project X.

  3. On the axial and interfacial shear stresses due to thermal mismatch in hybrid composites

    SciTech Connect

    Rossettos, J.N.; Shen, X.

    1994-12-31

    An analytical model is formulated which attempts to account for the axial and the interfacial shear stresses which can develop in hybrid fiber composites due to the mismatch in coefficients of thermal expansion and Youngs modulus. A finite width hybrid composite monolayer with alternating high modulus and low modulus fibers is considered. To properly account for the interfacial shear between fiber and matrix, a modified shear lag model is used, which permits extensional deformation in the matrix in the fiber direction. Typical stresses due solely to temperature changes are calculated, and show steep boundary layer edge stresses at free corners.

  4. Method for measuring surface shear stress magnitude and direction using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C. (Inventor)

    1995-01-01

    A method is provided for determining surface shear magnitude and direction at every point on a surface. The surface is covered with a shear stress sensitive liquid crystal coating and illuminated by white light from a normal direction. A video camera is positioned at an oblique angle above the surface to observe the color of the liquid crystal at that angle. The shear magnitude and direction are derived from the color information. A method of calibrating the device is also provided.

  5. Plantar shear stress distributions in diabetic patients with and without neuropathy

    PubMed Central

    Yavuz, Metin

    2014-01-01

    Background The exact pathology of diabetic foot ulcers remains to be resolved. Evidence suggests that plantar shear forces play a major role in diabetic ulceration. Unfortunately, only a few manuscripts exist on the clinical implications of plantar shear. The purpose of this study was to compare global and regional peak plantar stress values in three groups; diabetic patients with neuropathy, diabetic patients without neuropathy and healthy control subjects. Methods Fourteen diabetic neuropathic patients, 14 non-neuropathic diabetic control and 11 non-diabetic control subjects were recruited. Subjects walked on a custom-built stress plate that quantified plantar pressures and shear. Four stress variables were analyzed; peak pressure, peak shear, peak pressure-time and shear-time integral. Findings Global peak values of peak shear (p=0.039), shear-time integral (p=0.002) and pressure-time integral (p=0.003) were significantly higher in the diabetic neuropathic group. Local peak shear stress and shear-time integral were also significantly higher in diabetic neuropathic patients compared to both control groups, in particular, at the hallux and central forefoot. Local peak pressure and pressure-time integral were significantly different between the three groups at the medial and lateral forefoot. Interpretation Plantar shear and shear-time integral magnitudes were elevated in diabetic patients with peripheral neuropathy, which indicates the potential clinical significance of these factors in ulceration. It is thought that further investigation of plantar shear would lead to a better understanding of ulceration pathomechanics, which in turn will assist researchers in developing more effective preventive devices and strategies. PMID:24332719

  6. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    NASA Astrophysics Data System (ADS)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  7. Visualization and Measurement of Surface Shear Stress Vector Distributions Using Liquid Crystal Coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Wilder, Michael C.

    1998-01-01

    When a shear-sensitive liquid crystal coating is illuminated from the normal direction by white light and observed from an oblique above-plane view angle, its color-change response to shear depends on both shear stress vector magnitude and the direction of the applied shear vector relative to the observer's in-plane line of sight. At any point, the maximum color change is always seen or measured when the local shear vector is aligned with, and directed away from, the observer; the magnitude of the color change at this vector/observer aligned orientation scales directly with shear stress magnitude. Conversely, any point exposed to a shear vector with a component directed toward the observer exhibits a noncolor-change response, always characterized by a rusty red or brown color, independent of both shear magnitude and direction. Based on this knowledge, full-surface shear stress vector visualization and measurement methodologies were formulated and successfully demonstrated. The present paper reviews the observations and measurements that led to the development of these methodologies and applications of both are discussed.

  8. Nitric Oxide, Oxidative Stress, and p66Shc Interplay in Diabetic Endothelial Dysfunction

    PubMed Central

    Greco, Simona; Capogrossi, Maurizio C.; Gaetano, Carlo

    2014-01-01

    Increased oxidative stress and reduced nitric oxide (NO) bioavailability play a causal role in endothelial cell dysfunction occurring in the vasculature of diabetic patients. In this review, we summarized the molecular mechanisms underpinning diabetic endothelial and vascular dysfunction. In particular, we focused our attention on the complex interplay existing among NO, reactive oxygen species (ROS), and one crucial regulator of intracellular ROS production, p66Shc protein. PMID:24734227

  9. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    SciTech Connect

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-15

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium ExB velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or ''profile shear'' in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) ExB and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a ''null'' toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the ExB shear and parallel velocity (Coriolis force) pinching components from the larger ''diffusive'' parallel velocity shear driven component and

  10. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques.

    PubMed

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-01-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events. PMID:27255968

  11. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    NASA Astrophysics Data System (ADS)

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-06-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events.

  12. Disturbed flow mediated modulation of shear forces on endothelial plane: A proposed model for studying endothelium around atherosclerotic plaques

    PubMed Central

    Balaguru, Uma Maheswari; Sundaresan, Lakshmikirupa; Manivannan, Jeganathan; Majunathan, Reji; Mani, Krishnapriya; Swaminathan, Akila; Venkatesan, Saravanakumar; Kasiviswanathan, Dharanibalan; Chatterjee, Suvro

    2016-01-01

    Disturbed fluid flow or modulated shear stress is associated with vascular conditions such as atherosclerosis, thrombosis, and aneurysm. In vitro simulation of the fluid flow around the plaque micro-environment remains a challenging approach. Currently available models have limitations such as complications in protocols, high cost, incompetence of co-culture and not being suitable for massive expression studies. Hence, the present study aimed to develop a simple, versatile model based on Computational Fluid Dynamics (CFD) simulation. Current observations of CFD have shown the regions of modulated shear stress by the disturbed fluid flow. To execute and validate the model in real sense, cell morphology, cytoskeletal arrangement, cell death, reactive oxygen species (ROS) profile, nitric oxide production and disturbed flow markers under the above condition were assessed. Endothelium at disturbed flow region which had been exposed to low shear stress and swirling flow pattern showed morphological and expression similarities with the pathological disturbed flow environment reported previously. Altogether, the proposed model can serve as a platform to simulate the real time micro-environment of disturbed flow associated with eccentric plaque shapes and the possibilities of studying its downstream events. PMID:27255968

  13. Theory to Predict Shear Stress on Cells in Turbulent Blood Flow

    PubMed Central

    Morshed, Khandakar Niaz; Bark Jr., David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally. PMID:25171175

  14. Theory to predict shear stress on cells in turbulent blood flow.

    PubMed

    Morshed, Khandakar Niaz; Bark, David; Forleo, Marcio; Dasi, Lakshmi Prasad

    2014-01-01

    Shear stress on blood cells and platelets transported in a turbulent flow dictates the fate and biological activity of these cells. We present a theoretical link between energy dissipation in turbulent flows to the shear stress that cells experience and show that for the case of physiological turbulent blood flow: (a) the Newtonian assumption is valid, (b) turbulent eddies are universal for the most complex of blood flow problems, and (c) shear stress distribution on turbulent blood flows is possibly universal. Further we resolve a long standing inconsistency in hemolysis between laminar and turbulent flow using the theoretical framework. This work demonstrates that energy dissipation as opposed to bulk shear stress in laminar or turbulent blood flow dictates local mechanical environment of blood cells and platelets universally.

  15. An equilibrium method for prediction of transverse shear stresses in a thick laminated plate

    NASA Technical Reports Server (NTRS)

    Chaudhuri, R. Z.

    1986-01-01

    First two equations of equilibrium are utilized to compute the transverse shear stress variation through thickness of a thick laminated plate after in-plane stresses have been computed using an assumed quadratic displacement triangular element based on transverse inextensibility and layerwise constant shear angle theory (LCST). Centroid of the triangle is the point of exceptional accuracy for transverse shear stresses. Numerical results indicate close agreement with elasticity theory. An interesting comparison between the present theory and that based on assumed stress hybrid finite element approach suggests that the latter does not satisfy the condition of free normal traction at the edge. Comparison with numerical results obtained by using constant shear angle theory suggests that LCST is close to the elasticity solution while the CST is closer to classical (CLT) solution. It is also demonstrated that the reduced integration gives faster convergence when the present theory is applied to a thin plate.

  16. Quantification of Interfibrillar Shear Stress in Aligned Soft Collagenous Tissues via Notch Tension Testing

    NASA Astrophysics Data System (ADS)

    Szczesny, Spencer E.; Caplan, Jeffrey L.; Pedersen, Pal; Elliott, Dawn M.

    2015-10-01

    The mechanical function of soft collagenous tissues is largely determined by their hierarchical organization of collagen molecules. While collagen fibrils are believed to be discontinuous and transfer load through shearing of the interfibrillar matrix, interfibrillar shear stresses have never been quantified. Scaling traditional shear testing procedures down to the fibrillar length scale is impractical and would introduce substantial artifacts. Here, through the use of a novel microscopic variation of notch tension testing, we explicitly demonstrate the existence of interfibrillar shear stresses within tendon fascicles and provide the first measurement of their magnitude. Axial stress gradients along the sample length generated by notch tension testing were measured and used to calculate a value of 32 kPa for the interfibrillar shear stress. This estimate is comparable to the interfibrillar shear stress predicted by previous multiscale modeling of tendon fascicles, which supports the hypothesis that fibrils are discontinuous and transmit load through interfibrillar shear. This information regarding the structure-function relationships of tendon and other soft collagenous tissues is necessary to identify potential causes for tissue impairment with degeneration and provide the foundation for developing regenerative repair strategies or engineering biomaterials for tissue replacement.

  17. A High shear stress segment along the San Andreas Fault: Inferences based on near-field stress direction and stress magnitude observations in the Carrizo Plain Area

    SciTech Connect

    Castillo, D. A.,; Younker, L.W.

    1997-01-30

    Nearly 200 new in-situ determinations of stress directions and stress magnitudes near the Carrizo plain segment of the San Andreas fault indicate a marked change in stress state occurring within 20 km of this principal transform plate boundary. A natural consequence of this stress transition is that if the observed near-field ``fault-oblique`` stress directions are representative of the fault stress state, the Mohr-Coulomb shear stresses resolved on San Andreas sub-parallel planes are substantially greater than previously inferred based on fault-normal compression. Although the directional stress data and near-hydrostatic pore pressures, which exist within 15 km of the fault, support a high shear stress environment near the fault, appealing to elevated pore pressures in the fault zone (Byerlee-Rice Model) merely enhances the likelihood of shear failure. These near-field stress observations raise important questions regarding what previous stress observations have actually been measuring. The ``fault-normal`` stress direction measured out to 70 km from the fault can be interpreted as representing a comparable depth average shear strength of the principal plate boundary. Stress measurements closer to the fault reflect a shallower depth-average representation of the fault zone shear strength. If this is true, only stress observations at fault distances comparable to the seismogenic depth will be representative of the fault zone shear strength. This is consistent with results from dislocation monitoring where there is pronounced shear stress accumulation out to 20 km of the fault as a result of aseismic slip within the lower crust loading the upper locked section. Beyond about 20 km, the shear stress resolved on San Andreas fault-parallel planes becomes negligible. 65 refs., 15 figs.

  18. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers.

    PubMed

    Zhou, Ying; Yu, Hai; Wanless, Erica J; Jameson, Graeme J; Franks, George V

    2009-08-15

    Flocs were produced by adding three cationic polymers (10% charge density, 3.0x10(5) g/mol molecular weight; 40% charge density, 1.1x10(5) g/mol molecular weight; and 100% charge density, 1.2x10(5) g/mol molecular weight) to 90 nm diameter silica particles. The shear yield stresses of the consolidated sediment beds from settled and centrifuged flocs were determined via the vane technique. The polymer charge density plays an important role in influencing the shear yield stresses of sediment beds. The shear yield stresses of sediment beds from flocs induced by the 10% charged polymer were observed to increase with an increase in polymer dose, initial solid concentration and background electrolyte concentration at all volume fractions. In comparison, polymer dose has a marginal effect on the shear yield stresses of sediment beds from flocs induced by the 40% and 100% charged polymers. The shear yield stresses of sediments from flocs induced by the 40% charged polymer are independent of salt concentration whereas the addition of salt decreases the shear yield stresses of sediments from flocs induced by the 100% charged polymer. When flocculated at the optimum dose for each polymer (12 mg/g silica for the 10% charged polymer at 0.03 M NaCl, 12 mg/g for 40% and 2 mg/g for 100%), shear yield stress increases as polymer charge increases. The effects observed are related to the flocculation mechanism (bridging, patch attraction or charge neutralisation) and the magnitude of the adhesive force. Comparison of shear and compressive yield stresses show that the network is only slightly weaker in shear than in compression. This is different than many other systems (mainly salt and pH coagulation) which have shear yield stress much less than compressive yield stress. The existing models relating the power law exponent of the volume fraction dependence of the shear yield stress to the network fractal structure are not satisfactory to predict all the experimental behaviour.

  19. Shear Stress in Nickel and Ni-60Co under One-Dimensional Shock Loading

    SciTech Connect

    Workman, A.; Wallwork, A.; Meziere, Y. J. E.; Millett, J. C. F.; Bourne, N. K.

    2006-07-28

    The dynamic response of pure nickel (Ni), and its alloy, Ni-60Co (by weight %), has been investigated during one-dimensional shock loading. Few materials' properties are different and the only significantly altered feature is the reduced stacking fault energy (SFE) for the Ni-60Co. This paper considers the effect of this reduced SFE on the shear strength. Data (in terms of shock stress, particle velocity and shock velocity) are also presented. The influence on the shear stress, {tau} of cobalt additions in nickel are then investigated and presented. Results indicate that the lateral stress is increasing in both materials with the increasing impact stress. The shear stress was found to be higher in the nickel than in the Ni-60Co. The progressive decrease of the lateral stress noted during loading indicates a complex mechanism of deformation behind the shock front.

  20. Bed Shear Stress under Complex Flow Conditions - The Case of Megech River, Ethiopia

    NASA Astrophysics Data System (ADS)

    Mehari, Michael; Dessie, Mekete; Abate, Mengiste

    2014-05-01

    Bed shear stress is a fundamental variable in river studies to link flow conditions to sediment transport. It is, however, difficult to estimate this variable accurately, particularly in complex flow conditions. This study compares shear stress estimated from the log profile, the depth-slope product and outputs from a two-dimensional hydraulic model. Vertical velocity profile observations from Megech River (one of the main rivers flowing into Lake Tana, upper Blue Nile Basin, Ethiopia) using SEBA Mini current meter M1attached with signal counter Z6-SEBA HAD under typical field conditions are used to evaluate the precision of different methods for estimating local boundary shear stress from velocity measurements. Results show that the velocity profile approach gives consistently lesser shear stress estimates. A comparison of the shear stress distributions derived using the two-dimensional hydraulic model and those estimated using the 1D reach-averaged equation (i.e. the depth-slope product) shows a close correspondence. Mean shear stresses determined using local depth and mean channel slope are only 14% greater than those values determined for the same data using local predictions of both depth and energy slope. As the overall mean shear stress provides a useful index of flow strength, this comparison suggests a good level of confidence in using the reach averaged one-dimensional equation, for which data can easily be collected from cross sectional surveys. However, the variance of the modelled shear stress distribution shows some differences by a factor of 3 to that calculated using the mean channel slope because of the larger uncertainity associated with point depth measurements. Although such models using 1D reach averaged equations are limited to different channel characteristics adhering to diverse model assumptions, they can still provide a useful tool for river-rehabilitation design and assessment, including sediment transport studies.

  1. Fluid Shear Stress Sensitizes Cancer Cells to Receptor-Mediated Apoptosis via Trimeric Death Receptors

    PubMed Central

    Mitchell, Michael J.

    2013-01-01

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor (TNF) apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer (NK) cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to receptor-mediated apoptosis has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlated with the application of fluid shear stress, and TRAIL-induced apoptosis increased in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis was not affected by the application fluid shear stress. Interestingly, fluid shear stress did not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments revealed that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear force can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents. PMID:25110459

  2. Activation and shedding of platelet glycoprotein IIb/IIIa under non-physiological shear stress.

    PubMed

    Chen, Zengsheng; Mondal, Nandan K; Ding, Jun; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J

    2015-11-01

    The purpose of this study was to investigate the influence of non-physiological high shear stress on activation and shedding of platelet GP IIb/IIIa receptors. The healthy donor blood was exposed to three levels of high shear stresses (25, 75, 125 Pa) from the physiological to non-physiological status with three short exposure time (0.05, 0.5, 1.5 s), created by a specific blood shearing system. The activation and shedding of the platelet GPIIb/IIIa were analyzed using flow cytometry and enzyme-linked immunosorbent assay. In addition, platelet P-selectin expression of sheared blood, which is a marker for activated platelets, was also analyzed. The results from the present study showed that the number of activated platelets, as indicated by the surface GPIIb/IIIa activation and P-selectin expression, increased with increasing the shear stress level and exposure time. However, the mean fluorescence of GPIIb/IIIa on the platelet surface, decreased with increasing the shear stress level and exposure time. The reduction of GPIIb/IIIa on the platelet surface was further proved by the reduction of further activated platelet GPIIb/IIIa surface expression induced by ADP and the increase in GPIIb/IIIa concentration in microparticle-free plasma with increasing the applied shear stress and exposure time. It is clear that non-physiological shear stress induce a paradoxical phenomenon, in which both activation and shedding of the GPIIb/IIIa on the platelet surface occur simultaneously. This study may offer a new perspective to explain the reason of both increased thrombosis and bleeding events in patients implanted with high shear blood-contacting medical devices. PMID:26160282

  3. Effect of Varying Fluid Shear Stress on Cancer Stem Cell Viability & Protein Expression

    NASA Astrophysics Data System (ADS)

    Domier, Ria; Kim, Yonghyun; Dozier, David; Triantafillu, Ursula

    2013-11-01

    Cancer stem cells cultured in vitro in stirred bioreactors are exposed to shear stress. By observing the effect of shear stress on cancer stem cell viability, laboratory cell growth could be optimized. In addition, metastasized cancer stem cells in vivo are naturally exposed to shear stress, a factor influencing stem cell differentiation, while circulating in the bloodstream. Changes in protein expression after exposure to shear stress could allow for identification and targeting of circulating cancer cells. In this study, blood flow through capillaries was simulated by using a syringe pump to inject suspensions of Kasumi-1 leukemia stem cells into model blood vessels composed of PEEK tubing 125 microns in diameter. The Hagen-Poisseuille equation was used to solve for operating flow rates based on specified amounts of shear stress. After exposure, cell counts and viabilities were observed using an optical microscope and proteins were analyzed using Western blotting. It was observed that at a one minute exposure to stress, cell viability increased as the amount of shear was increased from 10 to 60 dynes per square centimeter. Results from this research are applicable to optimization of large-scale stem cell growth in bioreactors as well as to the design of targeted cancer therapies. Funding from NSF REU grant #1062611 is gratefully acknowledged.

  4. Transverse shear stresses and their sensitivity coefficients in multilayered composite panels

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.; Peters, Jeanne M.

    1994-01-01

    A computational procedure is presented for the accurate determination of transverse shear stresses and their sensitivity coefficients in flat multilayered composite panels subjected to mechanical and thermal loads. The sensitivity coefficients measure the sensitivity of the transverse shear stresses to variations in the different lamination and material parameters of the panel. The panel is discretized by using either a three-field mixed finite element model based on a two-dimensional first- order shear deformation plate theory or a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the laminate. The evaluation of transverse shear stresses can be conveniently divided into two phases. The first phase consists of using a superconvergent recovery technique for evaluating the in-plane stresses in the different layers. In the second phase, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of the transverse shear stresses. The effectiveness of the computational procedure is demonstrated by means of numerical examples of multilayered cross-ply panels subjected to transverse loading, uniform temperature change, and uniform temperature gradient through the thickness of the panel. In each case the standard of the comparison is taken to be the exact solution of the three dimensional thermoelasticity equations of the panel.

  5. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  6. Application of Entropy Concept for Shear Stress Distribution in Laminar Pipe Flow

    NASA Astrophysics Data System (ADS)

    Choo, Yeon Moon; Choo, Tai Ho; Jung, Donghwi; Seon, Yun Gwan; Kim, Joong Hoon

    2016-04-01

    In the river fluid mechanics, shear stress is calculated from frictional force caused by viscosity and fluctuating velocity. Traditional shear stress distribution equations have been widely used because of their simplicity. However, they have a critical limitation of requiring energy gradient which is generally difficult to estimate in practice. Especially, measuring velocity/velocity gradient on the boundary layer is difficult in practice. It requires point velocity throughout the entire cross section to calculate velocity gradient. This study proposes shear stress distribution equations for laminar flow based on entropy theory using mean velocity and entropy coefficient. The proposed equations are demonstrated and compared with measured shear stress distribution using Nikuradse's data. Results showed that the coefficient of determination is around 0.99 indicating that the proposed method well describes the true shear stress distribution. Therefore, it was proved that shear stress distribution can be easily and accurately estimated by using the proposed equations. (This research was supported by a gran(13AWMP-B066744-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean Government)

  7. ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs

    NASA Astrophysics Data System (ADS)

    Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi

    This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.

  8. Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress

    PubMed Central

    Vairappan, Balasubramaniyan

    2015-01-01

    This review describes the recent developments in the pathobiology of endothelial dysfunction (ED) in the context of cirrhosis with portal hypertension and defines novel strategies and potential targets for therapy. ED has prognostic implications by predicting unfavourable early hepatic events and mortality in patients with portal hypertension and advanced liver diseases. ED characterised by an impaired bioactivity of nitric oxide (NO) within the hepatic circulation and is mainly due to decreased bioavailability of NO and accelerated degradation of NO with reactive oxygen species. Furthermore, elevated inflammatory markers also inhibit NO synthesis and causes ED in cirrhotic liver. Therefore, improvement of NO availability in the hepatic circulation can be beneficial for the improvement of endothelial dysfunction and associated portal hypertension in patients with cirrhosis. Furthermore, therapeutic agents that are identified in increasing NO bioavailability through improvement of hepatic endothelial nitric oxide synthase (eNOS) activity and reduction in hepatic asymmetric dimethylarginine, an endogenous modulator of eNOS and a key mediator of elevated intrahepatic vascular tone in cirrhosis would be interesting therapeutic approaches in patients with endothelial dysfunction and portal hypertension in advanced liver diseases. PMID:25848469

  9. Dynamic Deformation and Recovery Response of Red Blood Cells to a Cyclically Reversing Shear Flow: Effects of Frequency of Cyclically Reversing Shear Flow and Shear Stress Level

    PubMed Central

    Watanabe, Nobuo; Kataoka, Hiroyuki; Yasuda, Toshitaka; Takatani, Setsuo

    2006-01-01

    Dynamic deformation and recovery responses of red blood cells (RBCs) to a cyclically reversing shear flow generated in a 30-μm clearance, with the peak shear stress of 53, 108, 161, and 274 Pa at the frequency of 1, 2, 3, and 5 Hz, respectively, were studied. The RBCs' time-varying velocity varied after the glass plate velocity without any time lag, whereas the L/W change, where L and W were the major and minor axes of RBCs' ellipsoidal shape, exhibited a rapid increase and gradual decay during the deformation and recovery phase. The time of minimum L/W occurrence lagged behind the zero-velocity time of the glass plate (zero stress), and the delay time normalized to the one-cycle duration remained constant at 8.0%. The elongation of RBCs at zero stress time became larger with the reversing frequency. A simple mechanical model consisting of an elastic linear element during a rapid elongation period and a parallel combination of elements such as a spring and dashpot during the nonlinear recovery phase was suggested. The dynamic response behavior of RBCs under a cyclically reversing shear flow was different from the conventional shape change where a steplike force was applied to and completely released from the RBCs. PMID:16766612

  10. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation

    PubMed Central

    Hood, Elizabeth D.; Chorny, Michael; Greineder, Colin F.; Alferiev, Ivan; Levy, Robert J.; Muzykantov, Vladimir R.

    2015-01-01

    Endothelial-targeted delivery of antioxidant enzymes, catalase and superoxide dismutase (SOD), is promising strategy for protecting organs and tissues from inflammation and oxidative stress. Here we describe Protective Antioxidant Carriers for Endothelial Targeting (PACkET), the first carriers capable of targeted endothelial delivery of both catalase and SOD. PACkET formed through controlled precipitation loaded ~30% enzyme and protected it from proteolytic degradation, whereas attachment of PECAM monoclonal antibodies to surface of the enzyme-loaded carriers, achieved without adversely affecting their stability and functionality, provided targeting. Isotope tracing and microscopy showed that PACkET exhibited specific endothelial binding and internalization in vitro. Endothelial targeting of PACkET was validated in vivo by specific (vs IgG-control) accumulation in the pulmonary vasculature after intravenous injection achieving 33% of injected dose at 30 min. Catalase loaded PACkET protects endothelial cells from killing by H2O2 and alleviated the pulmonary edema and leukocyte infiltration in mouse model of endotoxin-induced lung injury, whereas SOD-loaded PACkET mitigated cytokine-induced endothelial pro-inflammatory activation and endotoxin-induced lung inflammation. These studies indicate that PACkET offers a modular approach for vascular targeting of therapeutic enzymes. PMID:24480537

  11. A new technique for the measurement of surface shear stress vectors using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muratore, J. J., Jr.

    1994-01-01

    Research has recently shown that liquid crystal coating (LCC) color-change response to shear depends on both shear stress magnitude and direction. Additional research was thus conducted to extend the LCC method from a flow-visualization tool to a surface shear stress vector measurement technique. A shear-sensitive LCC was applied to a planar test surface and illuminated by white light from the normal direction. A fiber optic probe was used to capture light scattered by the LCC from a point on the centerline of a turbulent, tangential-jet flow. Both the relative shear stress magnitude and the relative in-plane view angle between the sensor and the centerline shear vector were systematically varied. A spectrophotometer was used to obtain scattered-light spectra which were used to quantify the LCC color (dominant wavelength) as a function of shear stress magnitude and direction. At any fixed shear stress magnitude, the minimum dominant wavelength was measured when the shear vector was aligned with and directed away from the observer; changes in the relative in-plane view angle to either side of this vector/observer aligned position resulted in symmetric Gaussian increases in measured dominant wavelength. Based on these results, a vector measurement methodology, involving multiple oblique-view observations of the test surface, was formulated. Under present test conditions, the measurement resolution of this technique was found to be +/- 1 deg for vector orientations and +/- 5% for vector magnitudes. An approach t o extend the present methodology to full-surface applications is proposed.

  12. Fluid Flow Stimulates Tissue Plasminogen Activator Secretion by Cultured Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Diamond, S. L.; Eskin, S. G.; McIntire, L. V.

    1989-03-01

    Wall shear stress generated by blood flow may regulate the expression of fibrinolytic proteins by endothelial cells. Tissue plasminogen activator (tPA) and plasminogen activator inhibitor, type 1 (PAI-1) secretion by cultured human endothelial cells were not affected by exposure to venous shear stress (4 dynes/cm2). However, at arterial shear stresses of 15 and 25 dynes/cm2, the tPA secretion rate was 2.1 and 3.0 times greater, respectively, than the basal tPA secretion rate. PAI-1 secretion was unaffected by shear stress over the entire physiological range.

  13. Effect of oxygen and shear stress on molecular weight of hyaluronic acid.

    PubMed

    Duan, Xu-Jie; Yang, Li; Zhang, Xu; Tan, Wen-Song

    2008-04-01

    Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effect on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only (1.22+/-0.02) x 106 Da. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of (2.19+/- 0.05) x 106 Da at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

  14. Two dimensional mechanical correlation analysis on nonlinear oscillatory shear flow of yield stress fluids

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Wang, Jun; Yu, Wei

    2016-08-01

    Large amplitude oscillation shear (LAOS) is used to investigate the yielding and flow behavior of yield stress materials. Considering the problems in determination of the yield stress from the apparent dynamic moduli and relative harmonic intensity using Fourier Transform Rheology, we proposed a new approach based on 2D mechanical correlation spectra (2D-MCS) to quantify the yield stress. We have proved that the nonlinear synchronous self-correlation intensity as functions of stress/strain amplitude can be used to determine the yield stress unambiguously from the change of scaling exponent. The yield stresses from 2D-MCS analysis are well consistent with those from the stress ramp experiments.

  15. Effect of cell size and shear stress on bacterium growth rate

    NASA Astrophysics Data System (ADS)

    Fadlallah, Hadi; Jarrahi, Mojtaba; Herbert, Éric; Peerhossaini, Hassan; PEF Team

    2015-11-01

    Effect of shear stress on the growth rate of Synechocystis and Chlamydomonas cells is studied. An experimental setup was prepared to monitor the growth rate of the microorganisms versus the shear rate inside a clean room, under atmospheric pressure and 20 °C temperature. Digital magnetic agitators are placed inside a closed chamber provided with airflow, under a continuous uniform light intensity over 4 weeks. In order to study the effect of shear stress on the growth rate, different frequencies of agitation are tested, 2 vessels filled with 150 ml of each specie were placed on different agitating system at the desired frequency. The growth rate is monitored daily by measuring the optical density and then correlate it to the cellular concentration. The PH was adjusted to 7 in order to maintain the photosynthetic activity. Furthermore, to measure the shear stress distribution, the flow velocity field was measured using PIV. Zones of high and low shear stress were identified. Results show that the growth rate is independent of the shear stress magnitude, mostly for Synechocystis, and with lower independency for Chlamydomonas depending on the cell size for each species.

  16. Orbital fluid shear stress promotes osteoblast metabolism, proliferation and alkaline phosphates activity in vitro

    SciTech Connect

    Aisha, M.D.; Nor-Ashikin, M.N.K.; Sharaniza, A.B.R.; Nawawi, H.; Froemming, G.R.A.

    2015-09-10

    Prolonged disuse of the musculoskeletal system is associated with reduced mechanical loading and lack of anabolic stimulus. As a form of mechanical signal, the multidirectional orbital fluid shear stress transmits anabolic signal to bone forming cells in promoting cell differentiation, metabolism and proliferation. Signals are channeled through the cytoskeleton framework, directly modifying gene and protein expression. For that reason, we aimed to study the organization of Normal Human Osteoblast (NHOst) cytoskeleton with regards to orbital fluid shear (OFS) stress. Of special interest were the consequences of cytoskeletal reorganization on NHOst metabolism, proliferation, and osteogenic functional markers. Cells stimulated at 250 RPM in a shaking incubator resulted in the rearrangement of actin and tubulin fibers after 72 h. Orbital shear stress increased NHOst mitochondrial metabolism and proliferation, simultaneously preventing apoptosis. The ratio of RANKL/OPG was reduced, suggesting that orbital shear stress has the potential to inhibit osteoclastogenesis and osteoclast activity. Increase in ALP activity and OCN protein production suggests that stimulation retained osteoblast function. Shear stress possibly generated through actin seemed to hold an anabolic response as osteoblast metabolism and functional markers were enhanced. We hypothesize that by applying orbital shear stress with suitable magnitude and duration as a non-drug anabolic treatment can help improve bone regeneration in prolonged disuse cases. - Highlights: • OFS stress transmits anabolic signals to osteoblasts. • Actin and tubulin fibers are rearranged under OFS stress. • OFS stress increases mitochondrial metabolism and proliferation. • Reduced RANKL/OPG ratio in response to OFS inhibits osteoclastogenesis. • OFS stress prevents apoptosis and stimulates ALP and OCN.

  17. Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells.

    PubMed

    Tsuneki, Hiroshi; Sekizaki, Naoto; Suzuki, Takashi; Kobayashi, Shinjiro; Wada, Tsutomu; Okamoto, Tadashi; Kimura, Ikuko; Sasaoka, Toshiyasu

    2007-07-01

    Hyperglycemia-induced oxidative stress plays a crucial role in the pathogenesis of vascular complications in diabetes. Although some clinical evidences suggest the use of an antioxidant reagent coenzyme Q10 in diabetes with hypertension, the direct effect of coenzyme Q10 on the endothelial functions has not been examined. In the present study, we therefore investigated the protective effect of coenzyme Q10 against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVEC). HUVEC exposed to high glucose (30 mM) exhibited abnormal properties, including the morphological and biochemical features of apoptosis, overproduction of reactive oxygen species, activation of protein kinase Cbeta2, and increase in endothelial nitric oxide synthase expression. Treatment with coenzyme Q10 strongly inhibited these changes in HUVEC under high glucose condition. In addition, coenzyme Q10 inhibited high glucose-induced cleavage of poly(ADP-ribose) polymerase, an endogenous caspase-3 substrate. These results suggest that coenzyme Q10 prevents reactive oxygen species-induced apoptosis through inhibition of the mitochondria-dependent caspase-3 pathway. Moreover, consistent with previous reports, high glucose caused upregulation of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in HUVEC, and promoted the adhesion of U937 monocytic cells. Coenzyme Q10 displayed potent inhibitory effects against these endothelial abnormalities. Thus, we provide the first evidence that coenzyme Q10 has a beneficial effect in protecting against the endothelial dysfunction by high glucose-induced oxidative stress in vitro.

  18. Oxidative stress and apoptosis induced by iron oxide nanoparticles in cultured human umbilical endothelial cells.

    PubMed

    Zhu, Mo-Tao; Wang, Yun; Feng, Wei-Yue; Wang, Bing; Wang, Meng; Ouyang, Hong; Chai, Zhi-Fang

    2010-12-01

    Recent epidemiologic researches indicate that exposure to ultrafine particles (nanoparticles) is an independent risk factor for several cardiovascular diseases. The induction of endothelial injuries is hypothesized to be an attractive mechanism involved in these cardiovascular diseases. To investigate this hypothesis, the widely used iron nanomaterials, ferric oxide (Fe2O3) and ferriferrous oxide (Fe3O4) nanoparticles were incubated with human umbilical endothelial cells (ECV304 cells) at different concentrations of 2, 20, 100 microg/mL. The cell viability, the rate of apoptosis, the apoptotic nuclear morphology and the mitochondria membrane potential were measured to estimate the cell necrosis and apoptosis caused by the nanoparticle exposure. The stimulation of superoxide anion (O2*-) and nitric oxide (NO) were examined to evaluate the stress responses of endothelial cells. Our results indicated that both the Fe2O3 and Fe3O4 nanoparticles could generate oxidative stress as well as the significant increase of nitric oxide in ECV304 cells. The loss of mitochondria membrane potential and the apoptotic chromatin condensation in the nucleus were observed as the early signs of apoptosis. It is inferred the stress response might be an important mechanism involving in endothelial cells apoptosis and death, and these injuries in endothelial cells might play a key role in downstream cardiovascular diseases such as atheroscelerosis, hypertension and myocardial infarction (MI).

  19. Force control of endothelium permeability in mechanically stressed pulmonary micro-vascular endothelial cells.

    PubMed

    Wang, Bin; Caluch, Adam; Fodil, Redouane; Féréol, Sophie; Zadigue, Patricia; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2012-01-01

    Mechanical factors play a key role in the pathogenesis of Acute Respiratory Distress Syndrome (ARDS) and Ventilator-Induced Lung Injury (VILI) as contributing to alveolo-capillary barrier dysfunction. This study aims at elucidating the role of the cytoskeleton (CSK) and cell-matrix adhesion system in the stressed endothelium and more precisely in the loss of integrity of the endothelial barrier. We purposely develop a cellular model made of a monolayer of confluent Human Pulmonary Microvascular Endothelial Cells (HPMVECs) whose cytoskeleton (CSK) is directly exposed to sustained cyclic mechanical stress for 1 and 2 h. We used RGD-coated ferromagnetic beads and measured permeability before and after stress application. We find that endothelial permeability increases in the stressed endothelium, hence reflecting a loss of integrity. Structural and mechanical results suggest that this endothelial barrier alteration would be due to physically-founded discrepancies in latero-basal reinforcement of adhesion sites in response to the global increase in CSK stiffness or centripetal intracellular forces. Basal reinforcement of adhesion is presently evidenced by the marked redistribution of αvβ3 integrin with cluster formation in the stressed endothelium. PMID:22766716

  20. Relation between wall shear stress and carotid artery wall thickening MRI versus CFD.

    PubMed

    Cibis, Merih; Potters, Wouter V; Selwaness, Mariana; Gijsen, Frank J; Franco, Oscar H; Arias Lorza, Andres M; de Bruijne, Marleen; Hofman, Albert; van der Lugt, Aad; Nederveen, Aart J; Wentzel, Jolanda J

    2016-03-21

    Wall shear stress (WSS), a parameter associated with endothelial function, is calculated by computational fluid dynamics (CFD) or phase-contrast (PC) MRI measurements. Although CFD is common in WSS (WSSCFD) calculations, PC-MRI-based WSS (WSSMRI) is more favorable in population studies; since it is straightforward and less time consuming. However, it is not clear if WSSMRI and WSSCFD show similar associations with vascular pathology. Our aim was to test the associations between wall thickness (WT) of the carotid arteries and WSSMRI and WSSCFD. The subjects (n=14) with an asymptomatic carotid plaque who underwent MRI scans two times within 4 years of time were selected from the Rotterdam Study. We compared WSSCFD and WSSMRI at baseline and follow-up. Baseline WSSMRI and WSSCFD values were divided into 3 categories representing low, medium and high WSS tertiles. WT of each tertile was compared by a one-way ANOVA test. The WSSMRI and WSSCFD were 0.50±0.13Pa and 0.73±0.25Pa at baseline. Although WSSMRI was underestimated, a significant regression was found between WSSMRI and WSSCFD (r(2)=0.71). No significant difference was found between baseline and follow-up WSS by CFD and MRI-based calculations. The WT at baseline was 1.36±0.16mm and did not change over time. The WT was 1.55±0.21mm in low, 1.33±0.20mm in medium and 1.21±0.21mm in the high WSSMRI tertiles. Similarly, the WT was 1.49±0.21mm in low, 1.33±0.20mm in medium and 1.26±0.21mm in high WSSCFD tertiles. We found that WSSMRI and WSSCFD were inversely related with WT. WSSMRI and WSSCFD patterns were similar although MRI-based calculations underestimated WSS.

  1. The Role of Shear Stress in Arteriovenous Fistula Maturation and Failure: A Systematic Review

    PubMed Central

    Browne, Leonard D.; Bashar, Khalid; Griffin, Philip; Kavanagh, Eamon G.; Walsh, Stewart R.; Walsh, Michael T.

    2015-01-01

    Introduction Non-maturation and post-maturation venous stenosis are the primary causes of failure within arteriovenous fistulae (AVFs). Although the exact mechanisms triggering failure remain unclear, abnormal hemodynamic profiles are thought to mediate vascular remodelling and can adversely impact on fistula patency. Aim The review aims to clarify the role of shear stress on outward remodelling during maturation and evaluate the evidence supporting theories related to the localisation and development of intimal hyperplasia within AVFs. Methods A systematic review of studies comparing remodelling data with hemodynamic data obtained from computational fluid dynamics of AVFs during and after maturation was conducted. Results Outward remodelling occurred to reduce or normalise the level of shear stress over time in fistulae with a large radius of curvature (curved) whereas shear stress was found to augment over time in fistulae with a small radius of curvature (straight) coinciding with minimal to no increases in lumen area. Although this review highlighted that there is a growing body of evidence suggesting low and oscillating shear stress may stimulate the initiation and development of intimal medial thickening within AVFs. Further lines of evidence are needed to support the disturbed flow theory and outward remodelling findings before surgical configurations and treatment strategies are optimised to conform to them. This review highlighted that variation between the time of analysis, classification of IH, resolution of simulations, data processing techniques and omission of various shear stress metrics prevented forming pooling of data amongst studies. Conclusion Standardised measurements and data processing techniques are needed to comprehensively evaluate the relationship between shear stress and intimal medial thickening. Advances in image acquisition and flow quantifications coupled with the increasing prevalence of longitudinal studies commencing from fistula

  2. Modelling of porphyroclasts in simple shear and the role of stress variations at grain boundaries

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher J. L.; Evans, Lynn; Delle Piane, Claudio

    2009-11-01

    Grain-scale numerical experiments involving simple shear of a two-phase non-linear viscous material are described and compared with mineral fish or lozenge-shaped porphyroclasts, such as muscovite. Two types of 2D models are considered; either a single elongate grain or two parallel elongate grains, in both cases supported by a weaker polygonal grain matrix. The relative viscosities of the contrasting grain structures were systematically varied, allowing us to observe the effects of non-linear viscous rheology on the resulting microstructure and flow patterns. The results show that the finite rotation of the hard elongate grain was similar within any one experiment, but was largely influenced by viscosity contrast, the geometry of the model and the imposed shear strain. Models involving single elongate hard grains show increasing instability at their ends and less strain compatibility with the deforming matrix grains, as the viscosity contrast is increased. In the paired grain models the greatest variation in the matrix grain microstructure is seen in the region where the two hard grains are oriented at a high-angle to the direction of shear. Finally, we consider the changes in intragranular stress by comparing microstructural observations using different viscosities with the distribution of stress in space and during progressive shear. In the plane approximately parallel to the maximum principal stress direction ( σ1), a localised change of stress occurs across and along the interface between the hard and soft grains. Variations in the mean stress at these boundaries are directly attributable to changes in the minimum principal stress. We propose that with shear strains greater than γ = 2 it is the minimum principal stress that can control diffusion processes at the grain boundary rather than mean stress. In conclusion we suggest that our models have the potential for providing useful insights into why metamorphic reactions can occur at the interface between a

  3. Exploring the Role of Shear Stress and Severe Turbulence in Downstream Fish Passage

    SciTech Connect

    Cada, G.; Carlson, T.; Ferguson, J.; Richmond, M.; Sale, M.

    1999-07-06

    Fish may be exposed to damaging levels of fluid shear stress and turbulence while passing through hydroelectric power plants. The generally assumed locations for such potential damage are the turbine and draft tube passages, although it is possible that fish are also injured during passage over the spillway or through sluiceways and fish bypass outfalls. Unless mitigated, fluid-induced injuries and mortality could frustrate efforts to develop advanced, fish-friendly turbines or to provide safe alternate downstream passages. The effects of shear stress and turbulence on fish are poorly understood, in part because of the difficulties in conceptualizing these phenomena, determining their magnitudes and distribution within hydroelectric systems, and then recreating them in a controlled laboratory environment. We define the fluid phenomena that are relevant to the assessment of effects on fish. The magnitudes of fluid stresses associated with man-altered aquatic environments are often considerably higher than those found in natural environments (e.g., normal river flows). However, levels of shear stresses that occur during flash floods appear to be comparable to those expected within a turbine. Past studies of the effects of shear stress on fish are of limited value, mainly because of their narrow scope and lack of instrumentation to measure velocities on appropriately small scales. A laboratory experiment to study the effects of shear stress and turbulence on fish is described.

  4. Shear wave transducer for stress measurements in boreholes

    DOEpatents

    Mao, Nai-Hsien

    1987-01-01

    A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.

  5. [Oxidative stress in endothelial cells and in diabetes type 2].

    PubMed

    Eckers, A; Altschmied, J; Haendeler, J

    2012-02-01

    Reactive oxygen species (ROS) are important signaling molecules in human cells. At physiological concentrations, they can for instance protect against apoptosis and act as secondary messengers in many different signaling pathways. Disturbance of redox homeostasis, i.e., the physiological balance between ROS generation and degradation, leads to not only increased ROS levels, so-called oxidative stress, but also results in damage to macromolecules and promotes the development of diseases and accelerates the aging process. The organism has various enzyme systems at hand to eliminate excess ROS. Their inactivation or degradation under conditions of oxidative stress is tightly linked to endothelial dysfunction due to endothelial cell apoptosis, a loss of telomerase activity, and telomere shortening. Restricted endothelial function causes cardiovascular diseases and diabetes type 2.

  6. Propagation of shear waves in viscoelastic heterogeneous layer overlying an initially stressed half space

    NASA Astrophysics Data System (ADS)

    Chatterjee, Mita; Dhua, Sudarshan; Chattopadhyay, Amares

    2015-12-01

    The present paper is concerned with the propagation of shear waves in an isotropic, viscoelastic, heterogeneous layer lying over a homogeneous half space under initial stress. For the layer the inhomogeneity associated to rigidity, internal friction and density is assumed to be linear function of depth. The dispersion equation of shear waves has been obtained in closed form. The dimensionless phase velocity and damping velocity have been plotted against dimensionless wave number for different values of inhomogeneity parameter and initial stress. The effects of inhomogeneity and initial stress have been shown in the dispersion curves.

  7. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry.

    PubMed

    Patel, Jasmine D; Ebert, Michael; Stokes, Ken; Ward, Robert; Anderson, James M

    2003-01-01

    Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.

  8. Yield shear stress model of magnetorheological fluids based on exponential distribution

    NASA Astrophysics Data System (ADS)

    Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin

    2014-06-01

    The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe3O4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors.

  9. Rheometry of granular materials in cylindrical Couette cells: Anomalous stress caused by gravity and shear

    NASA Astrophysics Data System (ADS)

    Gutam, Kamala Jyotsna; Mehandia, Vishwajeet; Nott, Prabhu R.

    2013-07-01

    The cylindrical Couette device is commonly employed to study the rheology of fluids, but seldom used for dense granular materials. Plasticity theories used for granular flows predict a stress field that is independent of the shear rate, but otherwise similar to that in fluids. In this paper we report detailed measurements of the stress as a function of depth, and show that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. In the static state, a part of the weight of the material is transferred to the walls by a downward vertical shear stress, bringing about the well-known Janssen saturation of the stress in vertical columns. When the material is sheared, the vertical shear stress changes sign, and the magnitudes of all components of the stress rise rapidly with depth. These qualitative features are preserved over a range of the Couette gap and shear rate, for smooth and rough walls and two model granular materials. To explain the anomalous rheological response, we consider some hypotheses that seem plausible a priori, but show that none survive after careful analysis of the experimental observations. We argue that the anomalous stress is due to an anisotropic fabric caused by the combined actions of gravity, shear, and frictional walls, for which we present indirect evidence from our experiments. A general theoretical framework for anisotropic plasticity is then presented. The detailed mechanics of how an anisotropic fabric is brought about by the above-mentioned factors is not clear, and promises to be a challenging problem for future investigations.

  10. Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress

    NASA Technical Reports Server (NTRS)

    Seidel, Charles L.

    1998-01-01

    The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure

  11. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.

    PubMed

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3'-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  12. Adhesion and stress relaxation forces between melanoma and cerebral endothelial cells.

    PubMed

    Végh, Attila G; Fazakas, Csilla; Nagy, Krisztina; Wilhelm, Imola; Molnár, Judit; Krizbai, István A; Szegletes, Zsolt; Váró, György

    2012-02-01

    Mechanical parameters play a crucial role in proper cellular functions. This article examines the process of the appearance and breaking of adhesion forces during contact between the confluent cerebral endothelial cell layer and a melanoma cell attached to a tipless cantilever. This adhesion is the initial phase of melanoma transmigration through the endothelial cell layer. Taking the force measurement, if the contact was prolonged for several seconds, a decrease in the load force was observed, which corresponds to stress relaxation of the cells. The dependence of adhesion force and stress relaxation on dwell time showed a saturation-like behavior. These stress relaxation curves could be fitted with the sum of two exponentials, suggesting that two independent processes take place simultaneously. The breakup of the adhesion during the retraction of the cantilever with the attached melanoma cell is not continuous but shows jumps. Between living endothelial and melanoma cells, a minimum jump size of about 20 pN could be determined. The minimum jump is independent of the dwell time and load force. It seems to be the elementary binding force between these two cell types. In case of fixed endothelial cells, the adhesion force was strongly decreased and the jumps disappeared, whereas the stress relaxation did not show considerable change upon fixation. PMID:22038122

  13. Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress

    PubMed Central

    San Cheang, Wai; Yuen Ngai, Ching; Yen Tam, Ye; Yu Tian, Xiao; Tak Wong, Wing; Zhang, Yang; Wai Lau, Chi; Chen, Zhen Yu; Bian, Zhao-Xiang; Huang, Yu; Ping Leung, Fung

    2015-01-01

    Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3’-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients. PMID:25976123

  14. Experimental investigation of the wall shear stress in a circular impinging jet

    NASA Astrophysics Data System (ADS)

    El Hassan, M.; Assoum, H. H.; Martinuzzi, R.; Sobolik, V.; Abed-Meraim, K.; Sakout, A.

    2013-07-01

    The influence of the large-scale vortical structures on the wall shear stress in a circular impinging jet is investigated experimentally for a Reynolds number of 1260. Time-resolved particle image velocimetry and polarographic measurements are performed simultaneously. It is found that the instantaneous wall shear stress is strongly dependent on the vortex dynamics, particularly for different parts of the transverse vortex. The influence of the vortex ring, the secondary and tertiary vortices on the ejection/sweep process near the wall is the main mechanism involved in the wall shear stress variation. In the region of the boundary layer separation, the wall shear stress amplitude increases just upstream of the separation and dramatically decreases in the recirculation zone downstream from the separation. The interaction between primary and secondary structures and their pairing process with the tertiary structure affects the sweep/ejection process near the wall and subsequently the wall shear stress variation. A comparison between the Finite Time Lyapunov Exponent (FTLE) method and the phase average technique is performed. It is shown that both methods describe the flow dynamics in the impinging region of the vortex ring. However, the FTLE method is more suitable for describing the unsteady separation of the boundary layer.

  15. Large scale structures in a turbulent boundary layer and their imprint on wall shear stress

    NASA Astrophysics Data System (ADS)

    Pabon, Rommel; Barnard, Casey; Ukeiley, Lawrence; Sheplak, Mark

    2015-11-01

    Experiments were performed on a turbulent boundary layer developing on a flat plate model under zero pressure gradient flow. A MEMS differential capacitive shear stress sensor with a 1 mm × 1 mm floating element was used to capture the fluctuating wall shear stress simultaneously with streamwise velocity measurements from a hot-wire anemometer traversed in the wall normal direction. Near the wall, the peak in the cross correlation corresponds to an organized motion inclined 45° from the wall. In the outer region, the peak diminishes in value, but is still significant at a distance greater than half the boundary layer thickness, and corresponds to a structure inclined 14° from the wall. High coherence between the two signals was found for the low-frequency content, reinforcing the belief that large scale structures have a vital impact on wall shear stress. Thus, estimation of the wall shear stress from the low-frequency velocity signal will be performed, and is expected to be statistically significant in the outer boundary layer. Additionally, conditionally averaged mean velocity profiles will be presented to assess the effects of high and low shear stress. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138.

  16. Migration arising from gradients in shear stress: Particle distributions in Poiseuille flow

    NASA Technical Reports Server (NTRS)

    Leighton, D. T., Jr.

    1988-01-01

    Experimental evidence for the existence of shear induced migration processes is reviewed and the mechanism by Leighton and Acrivos (1987b) is described in detail. The proposed mechanism is shown to lead to the existence of an additional shear induced migration in the presence of gradients in shear stress such as would be found in Poiseuille flow, and which may be used to predict the amplitude of the observed short-term viscosity increase. The concentration and velocity profiles which result from such a migration are discussed in detail and are compared to the experimental observations of Karnis, Goldsmith and Mason (1966).

  17. Rheological regional properties of brain tissue studied under cyclic creep/ recovery shear stresses

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Lounis, M.; Khelidj, B.; Bessai, N.

    2015-04-01

    The rheological properties of brain tissue were studied by repeated creep-recovery shear tests under static conditions for different regions. Corpus callosum CC, Thalamus Th and Corona radiata CR. Non-linear viscoelastic model was also proposed to characterize the transient/steady states of shear creep results. From the creep-recovery data it was obvious that the brain tissues show high regional anisotropy. However. the both samples exhibit fluid viscoelastic properties in the first shear stress cycle of 100 Pa, while this behaviour evolutes to solid viscoelastic with cyclic effect.

  18. Effects of fluid shear stress on polyelectrolyte multilayers by neutron scattering studies

    SciTech Connect

    Singh, Saurabh; Junghans, Ann; Watkins, Erik; Kapoor, Yash; Toomey, Ryan; Majewski, Jaroslaw

    2015-02-17

    The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For the highest shear rate applied (ca. 6800 s–1) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. Furthermore, a theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.

  19. Tumor cell cycle arrest induced by shear stress: Roles of integrins and Smad

    PubMed Central

    Chang, Shun-Fu; Chang, Cheng Allen; Lee, Ding-Yu; Lee, Pei-Ling; Yeh, Yu-Ming; Yeh, Chiuan-Ren; Cheng, Cheng-Kung; Chien, Shu; Chiu, Jeng-Jiann

    2008-01-01

    Interstitial flow in and around tumor tissue affects the mechanical microenvironment to modulate tumor cell growth and metastasis. We investigated the roles of flow-induced shear stress in modulating cell cycle distribution in four tumor cell lines and the underlying mechanisms. In all four cell lines, incubation under static conditions for 24 or 48 h led to G0/G1 arrest; in contrast, shear stress (12 dynes/cm2) induced G2/M arrest. The molecular basis of the shear effect was analyzed, and the presentation on molecular mechanism is focused on human MG63 osteosarcoma cells. Shear stress induced increased expressions of cyclin B1 and p21CIP1 and decreased expressions of cyclins A, D1, and E, cyclin-dependent protein kinases (Cdk)-1, -2, -4, and -6, and p27KIP1 as well as a decrease in Cdk1 activity. Using specific antibodies and small interfering RNA, we found that the shear-induced G2/M arrest and corresponding changes in G2/M regulatory protein expression and activity were mediated by αvβ3 and β1 integrins through bone morphogenetic protein receptor type IA-specific Smad1 and Smad5. Shear stress also down-regulated runt-related transcription factor 2 (Runx2) binding activity and osteocalcin and alkaline phosphatase expressions in MG63 cells; these responses were mediated by αvβ3 and β1 integrins through Smad5. Our findings provide insights into the mechanism by which shear stress induces G2/M arrest in tumor cells and inhibits cell differentiation and demonstrate the importance of mechanical microenvironment in modulating molecular signaling, gene expression, cell cycle, and functions in tumor cells. PMID:18310319

  20. Fracture transmissivity as a function of normal and shear stress: First results in Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Cuss, Robert J.; Milodowski, Antoni; Harrington, Jon F.

    Fracture transmissivity has been investigated along an idealised fracture for the influence of normal stress and for the transient behaviour during a slow shear experiment. A linear trend for the relationship between effective stress and transmissivity has been proposed for normal loads between 1 and 5 MPa; as effective stress increases transmissivity decreases. Transmissivity was very low throughout the complete spectrum of effective stresses examined and was close to the permeability for intact Opalinus Clay, suggesting that the fracture had effectively closed. During active shearing at a constant normal load, fracture transmissivity was seen to initially reduce, probably due to clear smearing. A series of flux events were seen, with transmissivity increasing by a factor of four. Some of the flux events corresponded with dilation, whilst others did not. This suggests that the opening flow paths were localised and did not result in bulk dilatancy. During the course of the shear test the sample formed its own series of fractures and a complex pattern of deformation occurred along the fracture surface to a depth of less than 1 mm. The impression of the end of the injection hole clearly shows that the block underwent at least 5 mm of the total 6 mm of shear displacement. The injection of fluorescein showed that flow along the fracture was not uniformly radial, as one might expect for such an experimental geometry. At the time of injection there were a number of dominant flow features, mainly in the direction of shear and only perpendicular on one side of the fracture surface. Flow occurred along the original fracture surface as well as the newly formed shear surface, indicating multiple pathways in a complex manner. The evolution of fracture transmissivity is very complex, even along initially planar surfaces. Fracture transmissivity has been seen to be a function of normal stress and porewater pressure, and has also been seen to be a dynamic feature during shear.

  1. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.

  2. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway.

    PubMed

    Choy, Ker-Woon; Mustafa, Mohd Rais; Lau, Yeh Siang; Liu, Jian; Murugan, Dharmani; Lau, Chi Wai; Wang, Li; Zhao, Lei; Huang, Yu

    2016-09-15

    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway. PMID:27449753

  3. The Effects of Hemodynamic Shear Stress on Stemness of Acute Myelogenous Leukemia (AML)

    NASA Astrophysics Data System (ADS)

    Raddatz, Andrew; Triantafillu, Ursula; Kim, Yonghyun (John)

    2015-11-01

    Cancer stem cells (CSCs) have recently been identified as the root cause of tumors generated from cancer cell populations. This is because these CSCs are drug-resistant and have the ability to self-renew and differentiate. Current methods of culturing CSCs require much time and money, so cancer cell culture protocols, which maximize yield of CSCs are needed. It was hypothesized that the quantity of Acute myelogenous leukemia stem cells (LSCs) would increase after applying shear stress to the leukemia cells based on previous studies with breast cancer in bioreactors. The shear stress was applied by pumping the cells through narrow tubing to mimic the in vivo bloodstream environment. In support of the hypothesis, shear stress was found to increase the amount of LSCs in a given leukemia population. This work was supported by NSF REU Site Award 1358991.

  4. An integrated temperature-compensated flexible shear-stress sensor microarray with concentrated leading-wire

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Liu, Wu; Zhang, Weiping; Sun, Yongming; Chen, Honghai

    2016-02-01

    Flexible shear stress sensor is quite important for characterizing curved surface flows. In this work, a novel integrated shear stress sensor microarray is designed with twenty parallel channels, which share the concentrated leading-wire to transmit the ground signal. Electrical pads in rows are easily connected to the circuits with two separate Wheatstone bridges and constant-temperature-difference mode operation is provided for the hot-wires. Temperature crosstalk between adjacent hot-wires is prevented well and the effectiveness of the temperature compensated circuits is verified. Relatively large output response is obtained as the shear stress varies and the sensitivity of the sensors is measured about 0.086 V2/Pa1/3 with nonlinearity lower than 1%, revealing high performance characteristic of the sensors.

  5. On determining wall shear stress in spatially developing two-dimensional wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Johansson, T. Gunnar; White, Christopher M.; Naughton, Jonathan W.

    2014-01-01

    A full momentum integral-based method for determining wall shear stress is presented. The method is mathematically exact and has the advantage of having no explicit streamwise gradient terms. It is applicable for flows that change rapidly in the streamwise direction and, in particular, to flows with ill-defined outer boundary conditions or when the measurement grid does not extend over the whole boundary layer thickness. The method is applied to two different experimental plane turbulent wall jet data sets for which independent estimates of wall shear stress were known, and the different results compare favorably. Complications owing to experimental limitations and measurement error in determining wall shear stress from the proposed method are presented, and mitigating strategies are described.

  6. Accuracy and grid convergence of wall shear stress measured by lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Kang, Xiuying; Dun, Zhiya

    2014-04-01

    Based on a two-dimensional Poiseuille and Wormersley flow, accuracy and grid convergence of velocity, shear stress and wall shear stress (WSS) measurements were investigated using the single-relaxation-time (SRT) and multiple-relaxation-time (MRT) lattice Boltzmann models under various open and wall boundary conditions. The results showed that grid convergence of shear stress and WSS are not consistent with that of velocity when flow channels are not aligned to the grids, and strongly rely on the used wall boundary conditions. And the MRT model is slightly superior to the SRT when simulating the complicated border flow. Moreover the WSS should be approximately calculated on the fluid nodes closest to walls under the curved boundary (CB) condition but not for the bounce-back (BB) boundary scheme. As applications, distributions of WSS in a wavy-walled channel and distensible carotid artery were simulated which would much more depend on local roughness of vessel intima than channel diameters.

  7. An integrated temperature-compensated flexible shear-stress sensor microarray with concentrated leading-wire.

    PubMed

    Tang, Jian; Liu, Wu; Zhang, Weiping; Sun, Yongming; Chen, Honghai

    2016-02-01

    Flexible shear stress sensor is quite important for characterizing curved surface flows. In this work, a novel integrated shear stress sensor microarray is designed with twenty parallel channels, which share the concentrated leading-wire to transmit the ground signal. Electrical pads in rows are easily connected to the circuits with two separate Wheatstone bridges and constant-temperature-difference mode operation is provided for the hot-wires. Temperature crosstalk between adjacent hot-wires is prevented well and the effectiveness of the temperature compensated circuits is verified. Relatively large output response is obtained as the shear stress varies and the sensitivity of the sensors is measured about 0.086 V(2)/Pa(1/3) with nonlinearity lower than 1%, revealing high performance characteristic of the sensors. PMID:26931882

  8. Advanced oxidation protein products induce endothelial-to-mesenchymal transition in human renal glomerular endothelial cells through induction of endoplasmic reticulum stress.

    PubMed

    Liang, Xiujie; Duan, Na; Wang, Yue; Shu, Shuangshuang; Xiang, Xiaohong; Guo, Tingting; Yang, Lei; Zhang, Shaojie; Tang, Xun; Zhang, Jun

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) in renal glomerular endothelial cells plays a critical role in the pathogenesis of diabetic nephropathy (DN). Furthermore, advanced oxidation protein products (AOPPs) have been shown to contribute to the progression of DN. However, whether AOPPs induce EndMT in renal glomerular endothelial cells remains unclear. Thus, we investigated the effect of AOPPs on human renal glomerular endothelial cells (HRGECs) and the mechanisms underlying the effects. Our results showed that AOPP treatment lowered the expression of vascular endothelial cadherin, CD31, and claudin 5 and induced the overexpression of α-smooth muscle actin, vimentin, and fibroblast-specific protein 1, which indicated that AOPPs induced EndMT in HRGECs. Furthermore, AOPP stimulation increased the expression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein-homologous protein, which suggested that AOPPs triggered endoplasmic reticulum (ER) stress in HRGECs. Notably, the aforementioned AOPP effects were reversed following the treatment of cells with salubrinal, an inhibitor of ER stress, whereas the effects were reproduced after exposure to thapsigargin, an inducer of ER stress. Collectively, our results indicate that AOPPs trigger EndMT in HRGECs through the induction of ER stress. These findings suggest novel therapeutic strategies for inhibiting renal fibrosis by targeting ER stress.

  9. Advanced oxidation protein products induce endothelial-to-mesenchymal transition in human renal glomerular endothelial cells through induction of endoplasmic reticulum stress.

    PubMed

    Liang, Xiujie; Duan, Na; Wang, Yue; Shu, Shuangshuang; Xiang, Xiaohong; Guo, Tingting; Yang, Lei; Zhang, Shaojie; Tang, Xun; Zhang, Jun

    2016-01-01

    Endothelial-to-mesenchymal transition (EndMT) in renal glomerular endothelial cells plays a critical role in the pathogenesis of diabetic nephropathy (DN). Furthermore, advanced oxidation protein products (AOPPs) have been shown to contribute to the progression of DN. However, whether AOPPs induce EndMT in renal glomerular endothelial cells remains unclear. Thus, we investigated the effect of AOPPs on human renal glomerular endothelial cells (HRGECs) and the mechanisms underlying the effects. Our results showed that AOPP treatment lowered the expression of vascular endothelial cadherin, CD31, and claudin 5 and induced the overexpression of α-smooth muscle actin, vimentin, and fibroblast-specific protein 1, which indicated that AOPPs induced EndMT in HRGECs. Furthermore, AOPP stimulation increased the expression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein-homologous protein, which suggested that AOPPs triggered endoplasmic reticulum (ER) stress in HRGECs. Notably, the aforementioned AOPP effects were reversed following the treatment of cells with salubrinal, an inhibitor of ER stress, whereas the effects were reproduced after exposure to thapsigargin, an inducer of ER stress. Collectively, our results indicate that AOPPs trigger EndMT in HRGECs through the induction of ER stress. These findings suggest novel therapeutic strategies for inhibiting renal fibrosis by targeting ER stress. PMID:26861949

  10. Crack initiation observation and local stress analysis in shear fracture tests of ultra-high strength steels

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Takada, Kenji; Sugimoto, Nao

    2016-08-01

    To investigate the local strain and stress at the crack initiation position in shear fracture test pieces of ultra-high strength steels, a butterfly shear fracture specimen was employed. The crack initiation position and propagation direction were observed during shear fracture tests by high speed cameras and investigated through analysing the fracture surface by scanning electron microscope. Further, the finite element method was employed and the stress-triaxiality at the crack initiation position was investigated. It can be obtained that the crack initiated at the position where the stress state is close to uniaxial tensile state or plane strain state more than pure shear stress state.

  11. Mercury Exposure and Endothelial Dysfunction: An Interplay Between Nitric Oxide and Oxidative Stress.

    PubMed

    Omanwar, Swati; Fahim, M

    2015-01-01

    Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.

  12. Estimation of the bed shear stress in vegetated and bare channels with smooth beds

    NASA Astrophysics Data System (ADS)

    Yang, Judy Q.; Kerger, Francois; Nepf, Heidi M.

    2015-05-01

    The shear stress at the bed of a channel influences important benthic processes such as sediment transport. Several methods exist to estimate the bed shear stress in bare channels without vegetation, but most of these are not appropriate for vegetated channels due to the impact of vegetation on the velocity profile and turbulence production. This study proposes a new model to estimate the bed shear stress in both vegetated and bare channels with smooth beds. The model, which is supported by measurements, indicates that for both bare and vegetated channels with smooth beds, within a viscous sublayer at the bed, the viscous stress decreases linearly with increasing distance from the bed, resulting in a parabolic velocity profile at the bed. For bare channels, the model describes the velocity profile in the overlap region of the Law of the Wall. For emergent canopies of sufficient density (frontal area per unit canopy volume a≥4.3 m-1), the thickness of the linear-stress layer is set by the stem diameter, leading to a simple estimate for bed shear stress.

  13. Shear Stress Transmission Model for the Flagellar Rotary Motor

    PubMed Central

    Mitsui, Toshio; Ohshima, Hiroyuki

    2008-01-01

    Most bacteria that swim are propelled by flagellar filaments, which are driven by a rotary motor powered by proton flux. The mechanism of the flagellar motor is discussed by reforming the model proposed by the present authors in 2005. It is shown that the mean strength of Coulomb field produced by a proton passing the channel is very strong in the Mot assembly so that the Mot assembly can be a shear force generator and induce the flagellar rotation. The model gives clear calculation results in agreement with experimental observations, e g., for the charasteristic torque-velocity relationship of the flagellar rotation. PMID:19325821

  14. Theory and Practice of Shear/Stress Strain Gage Hygrometry

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fenner, Ralph L.

    2006-01-01

    Mechanical hygrometry has progressed during the last several decades from crude hygroscopes to state-of-the art strain-gage sensors. The strain-gage devices vary from different metallic beams to strain-gage sensors using cellulose crystallite elements, held in full shear restraint. This old technique is still in use but several companies are now actively pursuing development of MEMS miniaturized humidity sensors. These new sensors use polyimide thin film for water vapor adsorption and desorption. This paper will provide overview about modern humidity sensors.

  15. Gyrokinetic simulation of momentum transport with residual stress from diamagnetic level velocity shears

    NASA Astrophysics Data System (ADS)

    Waltz, R. E.; Staebler, G. M.; Solomon, W. M.

    2011-04-01

    Residual stress refers to the remaining toroidal angular momentum (TAM) flux (divided by major radius) when the shear in the equilibrium fluid toroidal velocity (and the velocity itself) vanishes. Previously [Waltz et al., Phys. Plasmas 14, 122507 (2007); errata 16, 079902 (2009)], we demonstrated with GYRO [Candy and Waltz, J. Comp. Phys. 186, 545 (2003)] gyrokinetic simulations that TAM pinching from (ion pressure gradient supported or diamagnetic level) equilibrium E ×B velocity shear could provide some of the residual stress needed to support spontaneous toroidal rotation against normal diffusive loss. Here we show that diamagnetic level shear in the intrinsic drift wave velocities (or "profile shear" in the ion and electron density and temperature gradients) provides a comparable residual stress. The individual signed contributions of these small (rho-star level) E ×B and profile velocity shear rates to the turbulence level and (rho-star squared) ion energy transport stabilization are additive if the rates are of the same sign. However because of the additive stabilization effect, the contributions to the small (rho-star cubed) residual stress is not always simply additive. If the rates differ in sign, the residual stress from one can buck out that from the other (and in some cases reduce the stabilization.) The residual stress from these diamagnetic velocity shear rates is quantified by the ratio of TAM flow to ion energy (power) flow (M/P) in a global GYRO core simulation of a "null" toroidal rotation DIII-D [Mahdavi and Luxon, Fusion Sci. Technol. 48, 2 (2005)] discharge by matching M/P profiles within experimental uncertainty. Comparison of global GYRO (ion and electron energy as well as particle) transport flow balance simulations of TAM transport flow in a high-rotation DIII-D L-mode quantifies and isolates the E ×B shear and parallel velocity (Coriolis force) pinching components from the larger "diffusive" parallel velocity shear driven component and

  16. Shear-stress fluctuations in self-assembled transient elastic networks.

    PubMed

    Wittmer, J P; Kriuchevskyi, I; Cavallo, A; Xu, H; Baschnagel, J

    2016-06-01

    Focusing on shear-stress fluctuations, we investigate numerically a simple generic model for self-assembled transient networks formed by repulsive beads reversibly bridged by ideal springs. With Δt being the sampling time and t_{☆}(f)∼1/f the Maxwell relaxation time (set by the spring recombination frequency f), the dimensionless parameter Δx=Δt/t_{☆}(f) is systematically scanned from the liquid limit (Δx≫1) to the solid limit (Δx≪1) where the network topology is quenched and an ensemble average over m-independent configurations is required. Generalizing previous work on permanent networks, it is shown that the shear-stress relaxation modulus G(t) may be efficiently determined for all Δx using the simple-average expression G(t)=μ_{A}-h(t) with μ_{A}=G(0) characterizing the canonical-affine shear transformation of the system at t=0 and h(t) the (rescaled) mean-square displacement of the instantaneous shear stress as a function of time t. This relation is compared to the standard expression G(t)=c[over ̃](t) using the (rescaled) shear-stress autocorrelation function c[over ̃](t). Lower bounds for the m configurations required by both relations are given.

  17. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  18. Shear-stress fluctuations in self-assembled transient elastic networks

    NASA Astrophysics Data System (ADS)

    Wittmer, J. P.; Kriuchevskyi, I.; Cavallo, A.; Xu, H.; Baschnagel, J.

    2016-06-01

    Focusing on shear-stress fluctuations, we investigate numerically a simple generic model for self-assembled transient networks formed by repulsive beads reversibly bridged by ideal springs. With Δ t being the sampling time and t(f ) ˜1 /f the Maxwell relaxation time (set by the spring recombination frequency f ), the dimensionless parameter Δ x =Δ t /t(f ) is systematically scanned from the liquid limit (Δ x ≫1 ) to the solid limit (Δ x ≪1 ) where the network topology is quenched and an ensemble average over m -independent configurations is required. Generalizing previous work on permanent networks, it is shown that the shear-stress relaxation modulus G (t ) may be efficiently determined for all Δ x using the simple-average expression G (t ) =μA-h (t ) with μA=G (0 ) characterizing the canonical-affine shear transformation of the system at t =0 and h (t ) the (rescaled) mean-square displacement of the instantaneous shear stress as a function of time t . This relation is compared to the standard expression G (t ) =c ˜(t ) using the (rescaled) shear-stress autocorrelation function c ˜(t ) . Lower bounds for the m configurations required by both relations are given.

  19. Shear-stress fluctuations in self-assembled transient elastic networks.

    PubMed

    Wittmer, J P; Kriuchevskyi, I; Cavallo, A; Xu, H; Baschnagel, J

    2016-06-01

    Focusing on shear-stress fluctuations, we investigate numerically a simple generic model for self-assembled transient networks formed by repulsive beads reversibly bridged by ideal springs. With Δt being the sampling time and t_{☆}(f)∼1/f the Maxwell relaxation time (set by the spring recombination frequency f), the dimensionless parameter Δx=Δt/t_{☆}(f) is systematically scanned from the liquid limit (Δx≫1) to the solid limit (Δx≪1) where the network topology is quenched and an ensemble average over m-independent configurations is required. Generalizing previous work on permanent networks, it is shown that the shear-stress relaxation modulus G(t) may be efficiently determined for all Δx using the simple-average expression G(t)=μ_{A}-h(t) with μ_{A}=G(0) characterizing the canonical-affine shear transformation of the system at t=0 and h(t) the (rescaled) mean-square displacement of the instantaneous shear stress as a function of time t. This relation is compared to the standard expression G(t)=c[over ̃](t) using the (rescaled) shear-stress autocorrelation function c[over ̃](t). Lower bounds for the m configurations required by both relations are given. PMID:27415324

  20. Low shear stress induces M1 macrophage polarization in murine thin-cap atherosclerotic plaques.

    PubMed

    Seneviratne, Anusha N; Cole, Jennifer E; Goddard, Michael E; Park, Inhye; Mohri, Zahra; Sansom, Stephen; Udalova, Irina; Krams, Rob; Monaco, Claudia

    2015-12-01

    Macrophages, a significant component of atherosclerotic plaques vulnerable to acute complications, can be pro-inflammatory (designated M1), regulatory (M2), lipid- (Mox) or Heme-induced (Mhem). We showed previously that low (LSS) and oscillatory (OSS) shear stress cause thin-cap fibroatheroma and stable smooth muscle cell-rich plaque formation respectively in ApoE-knockout (ApoE(-/-)) mice. Here we investigated whether different shear stress conditions relate to specific changes in macrophage polarization and plaque morphology by applying a shear stress-altering cast to the carotid arteries of high fat-fed ApoE(-/-) mice. The M1 markers iNOS and IRF5 were highly expressed in macrophage-rich areas of LSS lesions compared to OSS lesions 6weeks after cast placement, while the M2 marker Arginase-1, and Mox/Mhem markers HO-1 and CD163 were elevated in OSS lesions. Our data indicates shear stress could be an important determinant of macrophage polarization in atherosclerosis, with low shear promoting M1 programming.

  1. Interface shear stresses during ambulation with a below-knee prosthetic limb.

    PubMed

    Sanders, J E; Daly, C H; Burgess, E M

    1992-01-01

    Shear stresses on a residual limb in a prosthetic socket are considered clinically to contribute to tissue breakdown in below-knee amputees. When applied simultaneously with normal stresses, they can cause injury within the skin or can generate an abrasion on the surface. To gain insight into shear stresses and parameters that affect them, interface stresses were recorded on below-knee amputee subjects during walking trials. On the tibial flares, resultant shear ranged from 5.6 kPa to 39.0 kPa, while on the posterior surface it ranged from 5.0 kPa to 40.7 kPa. During stance phase, anterior resultant shears on a socket were directed toward the apex while posterior resultant shears were directed downward approximately perpendicular to the ground. Waveform shapes were usually double-peaked, with the first peak at 25% to 40% into stance phase and the second peak at 65% to 85% into stance. Application of these results to residual limb tissue mechanics and prosthetic design is discussed.

  2. Salidroside Improves Homocysteine-Induced Endothelial Dysfunction by Reducing Oxidative Stress

    PubMed Central

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  3. Salidroside improves homocysteine-induced endothelial dysfunction by reducing oxidative stress.

    PubMed

    Leung, Sin Bond; Zhang, Huina; Lau, Chi Wai; Huang, Yu; Lin, Zhixiu

    2013-01-01

    Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction. PMID:23589720

  4. Optical studies of oxidative stress in pulmonary artery endothelial cells

    NASA Astrophysics Data System (ADS)

    Ghanian, Zahra; Sepehr, Reyhaneh; Eis, Annie; Kondouri, Ganesh; Ranji, Mahsa

    2015-03-01

    Reactive oxygen species (ROS) play an essential role in facilitating signal transduction processes within the cell and modulating the injuries. However, the generation of ROS is tightly controlled both spatially and temporally within the cell, making the study of ROS dynamics particularly difficult. This study present a novel protocol to quantify the dynamic of the mitochondrial superoxide as a precursor of reactive oxygen species. To regulate the mitochondrial superoxide level, metabolic perturbation was induced by administration of potassium cyanide (KCN). The presented method was able to monitor and measure the superoxide production rate over time. Our results demonstrated that the metabolic inhibitor, potassium cyanide (KCN) induced a significant increase in the rate of superoxide production in mitochondria of fetal pulmonary artery endothelial cells (FPAEC). Presented method sets the stage to study different ROS mediated injuries in vitro.

  5. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires

    USGS Publications Warehouse

    Moody, J.A.; Dungan, Smith J.; Ragan, B.W.

    2005-01-01

    [1] Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40??-550??C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (275??C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures 2.0 N m-2) between 175?? and 275??C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275??C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire. Copyright 2005 by the American Geophysical Union.

  6. Dynamic deformation capability of a red blood cell under a cyclically reciprocating shear stress.

    PubMed

    Watanabe, N; Yasuda, T; Kataoka, H; Takatani, S

    2004-01-01

    Red blood cells (RBCs) in the cardiovascular devices are exposed to varying degree of the shear stress from all the directions. However the RBCs' deformability or the deformation capability under such a shear stress is not well understood. In this study, we designed and built a system that can induce a cyclically reciprocating shear stress to a RBC suspension. The arm of the cyclically reciprocating shear stress device was attached to the upper piece of the parallel glass plates between which a suspension of human RBCs (1% hematocrit whole blood diluted in a 32 weight% dextran phosphate buffer solution) was contained. The cyclic reciprocating motion of the upper glass plate of 3.0 mm stroke length was produced using a slider-crank shaft mechanism that was linked to an eccentric cam-motor system. Each rotation of the motor produced a 3.0 mm stroke each in the forward and backward direction of the slider block. The clearance between the two glass plates was adjusted to 30 micrometer. The cyclic reciprocating glass plate apparatus was attached to a light microscope stage (IX71 Olympus with x40 objective lens) for illumination with a 350 watt metal halide light source. A high speed camera (MEMREMCAM fx-K3 Nac, 5000 frames per second with shutter kept open) was attached to the microscope to capture the deformation process of the RBCs under cyclic shear stress. The preliminary result indicated that the correlation between the amplitude of the maximum shear stress and the RBCs' deformability. This indicates a potential application of the cyclic reciprocating device to evaluate the temporal response of the RBCs deformability prior to its destruction. The future study will focus on the study of the relative velocity of the erythrocytes with respect to the velocity of the reciprocating plate. PMID:17271457

  7. Mode selective generation of guided waves by systematic optimization of the interfacial shear stress profile

    NASA Astrophysics Data System (ADS)

    Yazdanpanah Moghadam, Peyman; Quaegebeur, Nicolas; Masson, Patrice

    2015-01-01

    Piezoelectric transducers are commonly used in structural health monitoring systems to generate and measure ultrasonic guided waves (GWs) by applying interfacial shear and normal stresses to the host structure. In most cases, in order to perform damage detection, advanced signal processing techniques are required, since a minimum of two dispersive modes are propagating in the host structure. In this paper, a systematic approach for mode selection is proposed by optimizing the interfacial shear stress profile applied to the host structure, representing the first step of a global optimization of selective mode actuator design. This approach has the potential of reducing the complexity of signal processing tools as the number of propagating modes could be reduced. Using the superposition principle, an analytical method is first developed for GWs excitation by a finite number of uniform segments, each contributing with a given elementary shear stress profile. Based on this, cost functions are defined in order to minimize the undesired modes and amplify the selected mode and the optimization problem is solved with a parallel genetic algorithm optimization framework. Advantages of this method over more conventional transducers tuning approaches are that (1) the shear stress can be explicitly optimized to both excite one mode and suppress other undesired modes, (2) the size of the excitation area is not constrained and mode-selective excitation is still possible even if excitation width is smaller than all excited wavelengths, and (3) the selectivity is increased and the bandwidth extended. The complexity of the optimal shear stress profile obtained is shown considering two cost functions with various optimal excitation widths and number of segments. Results illustrate that the desired mode (A0 or S0) can be excited dominantly over other modes up to a wave power ratio of 1010 using an optimal shear stress profile.

  8. Effect of bubble flow velocity on drag-force and shear stress working on submerged hollow fibre membrane.

    PubMed

    Nagaoka, H; Kurosaka, M; Shibata, N; Kobayashi, M

    2006-01-01

    This study is aimed at elucidating the mechanism by which rising air bubbles induce shear stress on hollow fibre membrane surfaces. Shear stress on hollow fibre membrane surfaces (laterally-set and vertically-set) caused by aeration was measured directly using a two-direction load sensor. In the laterally-set hollow fibre module, time-averaged upward-direction shear stress on the membrane surface was compared to theoretical shear stress values considering the effect of water flow on membrane surface. Measured time-average shear stress values were almost 200 times larger than theoretical values implying strong interactions between bubbles and solid surface. In the vertically-set membrane module, velocity measurement of bubble flow using laser Doppler velocimeter revealed that drag force working on membrane surface was closely related to upward-direction water velocity. Also fluctuation of drag force and shear force on membrane surface was found to be related to velocity fluctuation (turbulence).

  9. Wall shear stress in the development of in-stent restenosis revisited. A critical review of clinical data on shear stress after intracoronary stent implantation.

    PubMed

    Jenei, Csaba; Balogh, Emília; Szabó, Gábor Tamás; Dézsi, Csaba András; Kőszegi, Zsolt

    2016-01-01

    The average wall shear stress (WSS) is in 1 Pa range in coronary arteries, while the stretching effect of an implanted coronary stent can generate up to 3 × 105 times higher circumferential stress in the vessel wall. It is widely accepted that WSS plays a critical role in the development of restenosis after coronary stent implantation, but relevant clinical endpoint studies are lack-ing. Fluid dynamics modeling suggests an association between WSS and intimal hyperplasia, however, such an association is not established when the compensating healing process becomes an overshoot phenomenon. This review summarizes available clinical results and concepts of potential clinical importance. PMID:27439365

  10. Evaluation of the effect of stent strut profile on shear stress distribution using statistical moments

    PubMed Central

    Mejia, Juan; Ruzzeh, Bilal; Mongrain, Rosaire; Leask, Richard; Bertrand, Olivier F

    2009-01-01

    Background In-stent restenosis rates have been closely linked to the wall shear stress distribution within a stented arterial segment, which in turn is a function of stent design. Unfortunately, evaluation of hemodynamic performance can only be evaluated with long term clinical trials. In this work we introduce a set of metrics, based on statistical moments, that can be used to evaluate the hemodynamic performance of a stent in a standardized way. They are presented in the context of a 2D flow study, which analyzes the impact of different strut profiles on the wall shear stress distribution for stented coronary arteries. Results It was shown that the proposed metrics have the ability to evaluate hemodynamic performance quantitatively and compare it to a common standard. In the context of the simulations presented here, they show that stent's strut profile significantly affect the shear stress distribution along the arterial wall. They also demonstrates that more streamlined profiles exhibit better hemodynamic performance than the standard square and circular profiles. The proposed metrics can be used to compare results from different research groups, and provide an improved method of quantifying hemodynamic performance in comparison to traditional techniques. Conclusion The strut shape found in the latest generations of stents are commonly dictated by manufacturing limitations. This research shows, however, that strut design can play a fundamental role in the improvement of the hemodynamic performance of stents. Present results show that up to 96% of the area between struts is exposed to wall shear stress levels above the critical value for the onset of restenosis when a tear-drop strut profile is used, while the analogous value for a square profile is 19.4%. The conclusions drawn from the non-dimensional metrics introduced in this work show good agreement with an ordinary analysis of the wall shear stress distribution based on the overall area exposed to

  11. Optimization of multiplane μPIV for wall shear stress and wall topography characterization

    NASA Astrophysics Data System (ADS)

    Rossi, Massimiliano; Lindken, Ralph; Westerweel, Jerry

    2010-02-01

    Multiplane μPIV can be utilized to determine the wall shear stress and wall topology from the measured flow over a structured surface. A theoretical model was developed to predict the measurement error for the surface topography and shear stress, based on a theoretical analysis of the precision in PIV measurements. The main parameters that affect the accuracy of the measurement are identified. The effect of different parameter settings is studied by means of Monte Carlo simulations, and the results are compared with an experimental test case. The results are used to determine the recommended parameter settings for this measurement approach.

  12. Representation of turbulent shear stress by a product of mean velocity differences

    NASA Technical Reports Server (NTRS)

    Braun, W. H.

    1977-01-01

    A quadratic form in the mean velocity for the turbulent shear stress is presented. It is expressed as the product of two velocity differences whose roots are the maximum velocity in the flow and a cutoff velocity below which the turbulent shear stress vanishes. Application to pipe and channel flows yields the centerline velocity as a function of pressure gradient, as well as the velocity profile. The flat plate, boundary-layer problem is solved by a system of integral equations to obtain friction coefficient, displacement thickness, and momentum-loss thickness. Comparisons are made with experiment.

  13. Surface Shear Stress Around a Single Flexible Live Plant and a Rigid Cylinder

    NASA Astrophysics Data System (ADS)

    Walter, B. A.; Gromke, C.; Leonard, K. C.; Clifton, A.; Lehning, M.

    2010-12-01

    The sheltering effect of vegetation against soil erosion and snow transport has direct implications on land degradation and local water storage as snow in many arid and semi arid regions. Plants influence the erosion, transport and redeposition of soil and snow by the wind through momentum absorption, local stress concentration, trapping particles in motion and reducing the area of sediment exposed to the wind. The shear stress distributions on the ground beneath plant canopies determine the onset and magnitude of differential soil and snow erosion on rough or vegetated surfaces, but this has been studied exclusively with artificial and rigid vegetation elements thus far. Real plants have highly irregular structures that can be extremely flexible and porous. They align with the flow at higher wind speeds, resulting in considerable changes to the drag and flow regimes relative to rigid imitations of comparable size. We present measurements in the SLF atmospheric boundary layer wind tunnel of the surface shear stress distribution around a live grass plant (Lolium Perenne) and a solid cylinder of comparable size. Irwin sensors are used to measure pressure differences close to the surface which can be calibrated with surface shear stress velocities. The basal to frontal area index of the plant and the cylinder as well as the Reynolds number of the two experimental setups have been checked for similarity and show good agreement. Distinctive differences between the shear stress pattern around the plant and the cylinder can be attributed to the influence of the plant’s porosity and flexibility. The sheltered zone behind the plant is narrower in cross-stream and longer in streamwise direction than that of the cylinder. For the plant, the lowest shear stresses in the sheltered zone are 50% lower than the mean surface shear stress (τ = 0.15 N/m2) in the undisturbed flow. The sheltering was higher behind the cylinder with values reduced by 70% relative to background.

  14. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.

    PubMed

    Ai, Hainan; Xu, Jingwei; Huang, Wei; He, Qiang; Ni, Bingjie; Wang, Yinliang

    2016-01-01

    Sewer biofilms play an important role in the biotransformation of substances for methane and sulfide emission in sewer networks. The dynamic flows and the particular shear stress in sewers are the key factors determining the growth of the sewer biofilm. In this work, the development of sewer biofilm with varying shear stress is specifically investigated to gain a comprehensive understanding of the sewer biofilm dynamics. Sewer biofilms were cultivated in laboratory-scale gravity sewers under different hydraulic conditions with the corresponding shell stresses are 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively. The evolution of the biofilm thickness were monitored using microelectrodes, and the variation in total solids (TS) and extracellular polymer substance (EPS) levels in the biofilm were also measured. The results showed that the steady-state biofilm thickness were highly related to the corresponding shear stresses with the biofilm thickness of 2.4 ± 0.1 mm, 2.7 ± 0.1 mm and 2.2 ± 0.1 mm at shear stresses of 1.12 Pa, 1.29 Pa and 1.45 Pa, respectively, which the chemical oxygen demand concentration is 400 mg/L approximately. Based on these observations, a kinetic model for describing the development of sewer biofilms was developed and demonstrated to be capable of reproducing all the experimental data. PMID:27054728

  15. Shear-Stress Partitioning in Live Plant Canopies and Modifications to Raupach's Model

    NASA Astrophysics Data System (ADS)

    Walter, Benjamin; Gromke, Christof; Lehning, Michael

    2012-08-01

    The spatial peak surface shear stress {tau _S^'' on the ground beneath vegetation canopies is responsible for the onset of particle entrainment and its precise and accurate prediction is essential when modelling soil, snow or sand erosion. This study investigates shear-stress partitioning, i.e. the fraction of the total fluid stress on the entire canopy that acts directly on the surface, for live vegetation canopies (plant species: Lolium perenne) using measurements in a controlled wind-tunnel environment. Rigid, non-porous wooden blocks instead of the plants were additionally tested for the purpose of comparison since previous wind-tunnel studies used exclusively artificial plant imitations for their experiments on shear-stress partitioning. The drag partitioning model presented by Raupach (Boundary-Layer Meteorol 60:375-395, 1992) and Raupach et al. (J Geophys Res 98:3023-3029, 1993), which allows the prediction of the total shear stress τ on the entire canopy as well as the peak {(tau _S ^''/tau )^{1/2}} and the average {(tau _S^'/tau )^{1/2}} shear-stress ratios, is tested against measurements to determine the model parameters and the model's ability to account for shape differences of various roughness elements. It was found that the constant c, needed to determine the total stress τ and which was unspecified to date, can be assumed a value of about c = 0.27. Values for the model parameter m, which accounts for the difference between the spatial surface average {tau _S^' and the peak {tau _S ^'' shear stress, are difficult to determine because m is a function of the roughness density, the wind velocity and the roughness element shape. A new definition for a parameter a is suggested as a substitute for m. This a parameter is found to be more closely universal and solely a function of the roughness element shape. It is able to predict the peak surface shear stress accurately. Finally, a method is presented to determine the new a parameter for different kinds

  16. An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, Majid; Shariati, Mahmoud

    2016-04-01

    This paper presents a new investigation for propagation of stress wave in a nanobeam based on modified couple stress theory. Using Euler-Bernoulli beam theory, Timoshenko beam theory, and Reddy beam theory, the effect of shear deformation is investigated. This nonclassical model contains a material length scale parameter to capture the size effect and the Poisson effect is incorporated in the current model. Governing equations of motion are obtained by Hamilton's principle and solved explicitly. This solution leads to obtain two phase velocities for shear deformable beams in different directions. Effects of shear deformation, material length scale parameter, and Poisson's ratio on the behavior of these phase velocities are investigated and discussed. The results also show a dual behavior for phase velocities against Poisson's ratio.

  17. Estimates of Shear Stress and Measurements of Water Levels in the Lower Fox River near Green Bay, Wisconsin

    USGS Publications Warehouse

    Westenbroek, Stephen M.

    2006-01-01

    Turbulent shear stress in the boundary layer of a natural river system largely controls the deposition and resuspension of sediment, as well as the longevity and effectiveness of granular-material caps used to cover and isolate contaminated sediments. This report documents measurements and calculations made in order to estimate shear stress and shear velocity on the Lower Fox River, Wisconsin. Velocity profiles were generated using an acoustic Doppler current profiler (ADCP) mounted on a moored vessel. This method of data collection yielded 158 velocity profiles on the Lower Fox River between June 2003 and November 2004. Of these profiles, 109 were classified as valid and were used to estimate the bottom shear stress and velocity using log-profile and turbulent kinetic energy methods. Estimated shear stress ranged from 0.09 to 10.8 dynes per centimeter squared. Estimated coefficients of friction ranged from 0.001 to 0.025. This report describes both the field and data-analysis methods used to estimate shear-stress parameters for the Lower Fox River. Summaries of the estimated values for bottom shear stress, shear velocity, and coefficient of friction are presented. Confidence intervals about the shear-stress estimates are provided.

  18. Shear stress behavior in mesoscale simulations of granular materials

    NASA Astrophysics Data System (ADS)

    Fujino, Don; Lomov, Ilya; Antoun, Tarabay; Vitali, Efrem

    2012-03-01

    3D mesoscale simulations of shock propagation in porous solids and powders have been performed with the Eulerian hydrocode GEODYN. The results indicate that voids can have a profound effect on the stress state in the material behind the shock front. The simulations can explain experimentally observed wave profiles that are difficult to interpret in the context of the classical elastic-plastic theory. In particular, a quasielastic precursor is observed in reshock simulations. This effect persists even at extremely low porosity values, down to 0.1% by volume. Stress relaxation is pronounced in simulations involving wave propagation, but is not observed in uniform ramp loading. In this sense, the relaxation phenomenon is non-local in nature and classic continuum models are inadequate for its description. Simulations show that the response of highly porous powders is dominated by deviatoric stress relaxation in the shock regime. We propose an enhancement which can be easily integrated into most existing porous material continuum models for modeling the shockinduced relaxation phenomena observed in the mesoscale simulation. The model calculates the microkinetic energy generated by dynamic loading and stores it as an internal state variable. The rate of production and dissipation of microkinetic energy and other model parameters are calibrated based on the mesoscale results. The augmented continuum model represents the deviatoric stress behavior observed under different regimes of dynamic loading.

  19. Shear Stress Behavior in Mesoscale Simulations of Granular Materials

    NASA Astrophysics Data System (ADS)

    Fujino, Don; Lomov, Ilya; Vitali, Efrem; Antoun, Tarabay

    2011-06-01

    3D mesoscale simulations of shock propagation in porous solids and powder have been performed with the hydrocode GEODYN. The results indicate that voids can have a profound effect on the stress state in the material behind the shock front. The simulations can explain experimentally observed quasielastic precursors in reshock profiles that are difficult to interpret in the context of the classical elastic-plastic theory. This effect persists even at extremely low porosity values, down to 0.01% by volume. Stress relaxation is pronounced in simulations involving wave propagation, but is not observed in uniform ramp loading. Thus this relaxation mechanism is non-local in nature and continuum models may not be inadequate for its description. Simulations show that response of highly porous powders are dominated by deviatoric stress relaxation in the shock regime. We propose an enhancement which can be easily integrated into most existing porous material continuum models for modeling the shock-induced relaxation phenomena observed in the mesoscale simulation. The model calculates microkinetic energy generated by dynamic loading and store it as an internal state variable. The rate of production and dissipation of microkinetic energy is calibrated based on the mesoscale results. The augmented continuum model represent deviatoric stress behavior observed under different loading regimes.

  20. Measurement of turbulent wall shear-stress using micro-pillars

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, E. P.; Nottebrock, B.; Große, S.; Sullivan, J. P.; Schröder, W.

    2013-12-01

    In experimental fluid mechanics, measuring spatially and temporally resolved wall shear-stress (WSS) has proved a challenging problem. The micro-pillar shear-stress sensor (MPS3) has been developed with the goal of filling this gap in measurement techniques. The MPS3 comprises an array of flexible micro-pillars flush mounted on the wall of a wall-bounded flow field. The deflection of these micro-pillars in the presence of a shear field is a direct measure of the WSS. This paper presents the MPS3 development work carried out by RWTH Aachen University and Purdue University. The sensor concept, static and dynamic characterization and data reduction issues are discussed. Also presented are demonstrative experiments where the MPS3 was used to measure the WSS in both water and air. The salient features of the measurement technique, sensor development issues, current capabilities and areas for improvement are highlighted.

  1. Evaluation of Transverse Thermal Stresses in Composite Plates Based on First-Order Shear Deformation Theory

    NASA Technical Reports Server (NTRS)

    Rolfes, R.; Noor, A. K.; Sparr, H.

    1998-01-01

    A postprocessing procedure is presented for the evaluation of the transverse thermal stresses in laminated plates. The analytical formulation is based on the first-order shear deformation theory and the plate is discretized by using a single-field displacement finite element model. The procedure is based on neglecting the derivatives of the in-plane forces and the twisting moments, as well as the mixed derivatives of the bending moments, with respect to the in-plane coordinates. The calculated transverse shear stiffnesses reflect the actual stacking sequence of the composite plate. The distributions of the transverse stresses through-the-thickness are evaluated by using only the transverse shear forces and the thermal effects resulting from the finite element analysis. The procedure is implemented into a postprocessing routine which can be easily incorporated into existing commercial finite element codes. Numerical results are presented for four- and ten-layer cross-ply laminates subjected to mechanical and thermal loads.

  2. Correlation between Generated Shear Stress and Generated Permittivity for the Electrorheological Response of Colloidal Silica Suspensions.

    PubMed

    Saimoto; Satoh; Konno

    1999-11-01

    Electrorheological response was experimentally studied by the use of silicone oil suspensions containing submicrometer-sized and supermicrometer-sized silica particles with different amounts of adsorbed water. The simultaneous measurements of dielectric permittivity and shear stress of the suspensions were carried out after the application of alternating current voltage under steady shear in ranges of shear rate (150-1400 s(-1)), electric field strength (0-4 kV/mm), its frequency (30-1000 Hz), and particle volume fraction (0.1-0.3). For the particles with small amounts of adsorbed water, steady shear stress was attained within several minutes after the application of electric field. The steady-state data for both the particles at each electric field strength showed that the shear stress generated by the application of electric field, Deltatau, varied correlatively with the generated permittivity, Deltaepsilon(r) (= epsilon(r) - epsilon(r,oil)), where epsilon(r) and epsilon(r,oil) are the permittivities of the suspension and the silicon oil, respectively. Under a wide variety of experimental conditions, the steady-state data for both the particle sizes could be correlated with a simple relationship, Deltatau ~ (Deltaepsilon(r)E)(2), where E is electric field strength. For the particles with large amounts of adsorbed water, steady state was not attained, and the evolutions of shear stress and permittivity of the suspensions were measured after the application of electric field. Remarkably, the transient values of Deltatau varied with (Deltaepsilon(r)E)(2) and fell along the same correlation line as the steady-state data. Copyright 1999 Academic Press.

  3. Microflow-induced shear stress on biomaterial wall by ultrasound-induced encapsulated microbubble oscillation

    NASA Astrophysics Data System (ADS)

    Hu, Ji-Wen; Qian, Sheng-You; Sun, Jia-Na; Lü, Yun-Bin; Hu, Ping

    2015-09-01

    A model of an ultrasound-driven encapsulated microbubble (EMB) oscillation near biomaterial wall is presented and used for describing the microflow-induced shear stress on the wall by means of a numerical method. The characteristic of the model lies in the explicit treatment of different types of wall for the EMB responses. The simulation results show that the radius-time change trends obtained by our model are consistent with the existing models and experimental results. In addition, the effect of the elastic wall on the acoustic EMB response is stronger than that of the rigid wall, and the shear stress on the elastic wall is larger than that of the rigid wall. The closer the EMB to the wall, the greater the shear stress on the wall. The substantial shear stress on the wall surface occurs inside a circular zone with a radius about two-thirds of the bubble radius. This paper may be of interest in the study of potential damage mechanisms to the microvessel for drug and gene delivery due to sonoporation. Projects supported by the National Natural Science Foundation of China (Grant Nos. 11174077 and 11474090), the Natural Science Foundation of Hunan Province, China (Grant No. 13JJ3076), the Science Research Program of Education Department of Hunan Province, China (Grant No. 14A127), and the Doctoral Fund of University of South China (Grant No. 2011XQD46).

  4. Flexible tactile sensor for shear stress measurement using transferred sub-µm-thick Si piezoresistive cantilevers

    NASA Astrophysics Data System (ADS)

    Noda, Kentaro; Onoe, Hiroaki; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2012-11-01

    We propose a flexible tactile sensor using sub-µm-thick Si piezoresistive cantilevers for shear stress detection. The thin Si piezoresistive cantilevers were fabricated on the device layer of a silicon on insulator (SOI) wafer. By using an adhesion-based transfer method, only these thin and fragile cantilevers were transferred from the rigid handling layer of the SOI wafer to the polydimethylsiloxane layer without damage. Because the thin Si cantilevers have high durability of bending, the proposed sensor can be attached to a thin rod-type structure serving as the finger of a robotic hand. The cantilevers were arrayed in orthogonal directions to measure the X and Y directional components of applied shear stresses independently. We evaluated the bending durability of our flexible tactile sensor and confirmed that the sensor can be attached to a rod with a radius of 10 mm. The sensitivity of the flexible tactile sensor attached to a curved surface was 1.7 × 10-6 Pa-1 on average for a range of shear stresses from -1.8 × 103 to 1.8 × 103 Pa applied along its surface. It independently detected the X and Y directional components of the applied shear stresses.

  5. Direct Measurement Sensor of the Boundary Shear Stress in Fluid Flow

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Kerenyi, Kornel; Lih, Shyh-Shiuh; Sherrit, Stewart; Trease, Brian P.; Widholm, Scott

    2010-01-01

    The flow fields and boundary erosion that are associated with scour at bridge piers are very complex. Direct measurement of the boundary shear stress and boundary pressure fluctuations in experimental scour research has always been a challenge and high spatial resolution and fidelity have been almost impossible. Most researchers have applied an indirect process to determine shear stress using precise measured velocity profiles. Laser Doppler Anemometry and Particle Image Velocimetry are common techniques used to accurately measure velocity profiles. These methods are based on theoretical assumptions to estimate boundary shear stress. In addition, available turbulence models cannot very well account for the effect of bed roughness which is fundamentally important for any CFD simulation. The authors have taken on the challenge to advance the magnitude level to which direct measurements of the shear stress in water flow can be performed. This paper covered the challenges and the efforts to develop a higher accuracy and small spatial resolution sensor. Also, preliminary sensor designs and test results are presented.

  6. A numerical and experimental study of a dynamic resonant shear stress sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Xu

    A new dynamic resonant wall shear stress sensor based on an oscillating sensor element operating near its resonant frequency has been investigated both numerically and experimentally. The experimental results of this study showed that, with a change in the mean shear stress acting on the sensor surface, measurable sensor sensitivity in the oscillation amplitude occurs for both open loop and closed loop control of the sensor. This is definitive experimental evidence that a resonant system can be made sensitive to wall shear stress and it is suggested that the concept of a dynamic resonant wall shear stress sensor would work. Furthermore, these results agree qualitatively with numerical results in boundary layer flow and provide a rigorous basis upon which further development of the dynamic resonant sensor can be pursued. At the same time, the sensor's working principle was numerically investigated and sensor parameters effects (oscillating amplitude, oscillating frequency; and sensor size), pressure gradient effects were also numerical estimated. In the end three dimensional effects that include aspect ratio effects, inflow angle effects and gap effects were also discussed by building three-dimensional dynamic models in Fluent.

  7. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  8. The effect of roughness elements on wind erosion: The importance of surface shear stress distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Representation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Drag partitioning schemes are used to account for roughness by scaling the soil entrainment threshold by the ratio of shear stress on roughness elements to that on the veg...

  9. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D.; Naughton, Jonathan; Lindberg, William R.

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  10. Field observations of bed shear stress and sediment resuspension on continental shelves, Alaska and California

    USGS Publications Warehouse

    Drake, D.E.; Cacchione, D.A.

    1986-01-01

    Bed shear stress was estimated using wave and current measurements obtained with the GEOPROBE bottom-tripod system during resuspension events in Norton Sound, Alaska, and on the northern California shelf. The boundary-layer model of Grant and Madsen (1979, Journal of Geophysical Research, 84, 1797-1808) was used to compute the bed shear stress under combined wave-generated and quasi-steady currents. Resuspension events were identified by sudden, large increases in light scattering at 1.9 m above the sea floor. The shear-stress values were used to compute the Shields parameter (??). The results for Norton Sound are in excellent agreement with the Shields threshold criterion; the data for the California shelf plot somewhat above the Shields threshold curve, though generally within the scatter envelope. Although the surface sediments in each area contain substantial fine-grained fractions (mean diameters were 0.007 cm in Norton Sound and 0.002 cm on the California shelf), the results do not indicate significant cohesion, because the sediment was entrained at bed shear-stress values close to those predicted by the modified Shields curve for cohesionless fine-grained particles. We suspect that frequent wave stirring and observed plowing of the surface sediment by benthonic animals maintain a high water content and contribute to the ease with which these materials are resuspended. ?? 1986.

  11. Development of a MEMS dual-axis differential capacitance floating element shear stress sensor

    SciTech Connect

    Barnard, Casey; Griffin, Benjamin

    2015-09-01

    A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.

  12. Diagnostics of boundary layer transition by shear stress sensitive liquid crystals

    NASA Astrophysics Data System (ADS)

    Shapoval, E. S.

    2016-10-01

    Previous research indicates that the problem of boundary layer transition visualization on metal models in wind tunnels (WT) which is a fundamental question in experimental aerodynamics is not solved yet. In TsAGI together with Khristianovich Institute of Theoretical and Applied Mechanics (ITAM) a method of shear stress sensitive liquid crystals (LC) which allows flow visualization was proposed. This method allows testing several flow conditions in one wind tunnel run and does not need covering the investigated model with any special heat-insulating coating which spoils the model geometry. This coating is easily applied on the model surface by spray or even by brush. Its' thickness is about 40 micrometers and it does not spoil the surface quality. At first the coating obtains some definite color. Under shear stress the LC coating changes color and this change is proportional to shear stress. The whole process can be visually observed and during the tests it is recorded by camera. The findings of the research showed that it is possible to visualize boundary layer transition, flow separation, shock waves and the flow image on the whole. It is possible to predict that the proposed method of shear stress sensitive liquid crystals is a promise for future research.

  13. Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium.

    PubMed

    Sommer, Gerhard; Haspinger, Daniel Ch; Andrä, Michaela; Sacherer, Michael; Viertler, Christian; Regitnig, Peter; Holzapfel, Gerhard A

    2015-10-01

    One goal of cardiac research is to perform numerical simulations to describe/reproduce the mechanoelectrical function of the human myocardium in health and disease. Such simulations are based on a complex combination of mathematical models describing the passive mechanical behavior of the myocardium and its electrophysiology, i.e., the activation of cardiac muscle cells. The problem in developing adequate constitutive models is the shortage of experimental data suitable for detailed parameter estimation in specific functional forms. A combination of shear and biaxial extension tests with different loading protocols on different specimen orientations is necessary to capture adequately the direction-dependent (orthotropic) response of the myocardium. In most experimental animal studies, where planar biaxial extension tests on the myocardium have been conducted, the generated shear stresses were neither considered nor discussed. Hence, in this study a method is presented which allows the quantification of shear deformations and related stresses. It demonstrates an approach for experimenters as to how the generation of these shear stresses can be minimized during mechanical testing. Experimental results on 14 passive human myocardial specimens, obtained from nine human hearts, show the efficiency of this newly developed method. Moreover, the influence of the clamping technique of the specimen, i.e., the load transmission between the testing device and the tissue, on the stress response is determined by testing an isotropic material (Latex). We identified that the force transmission between the testing device and the specimen by means of hooks and cords does not influence the performed experiments. We further showed that in-plane shear stresses definitely exist in biaxially tested human ventricular myocardium, but can be reduced to a minimum by preparing the specimens in an appropriate manner. Moreover, we showed whether shear stresses can be neglected when performing

  14. Some constraints on levels of shear stress in the crust from observations and theory.

    USGS Publications Warehouse

    McGarr, A.

    1980-01-01

    In situ stress determinations in North America, southern Africa, and Australia indicate that on the average the maximum shear stress increases linearly with depth to at least 5.1 km measured in soft rock, such as shale and sandstone, and to 3.7 km in hard rock, including granite and quartzite. Regression lines fitted to the data yield gradients of 3.8 MPa/km and 6.6 MPa/km for soft and hard rock, respectively. Generally, the maximum shear stress in compressional states of stress for which the least principal stress is oriented near vertically is substantially greater than in extensional stress regimes, with the greatest principal stress in a vertical direction. The equations of equilibrium and compatibility can be used to provide functional constrains on the state of stress. If the stress is assumed to vary only with depth z in a given region, then all nonzero components must have the form A + Bz, where A and B are constants which generally differ for the various components. - Author

  15. Boldine protects endothelial function in hyperglycemia-induced oxidative stress through an antioxidant mechanism.

    PubMed

    Lau, Yeh Siang; Tian, Xiao Yu; Huang, Yu; Murugan, Dharmani; Achike, Francis I; Mustafa, Mohd Rais

    2013-02-01

    Increased oxidative stress is involved in the pathogenesis and progression of diabetes. Antioxidants are therapeutically beneficial for oxidative stress-associated diseases. Boldine ([s]-2,9-dihydroxy-1,10-dimethoxyaporphine) is a major alkaloid present in the leaves and bark of the boldo tree (Peumus boldus Molina), with known an antioxidant activity. This study examined the protective effects of boldine against high glucose-induced oxidative stress in rat aortic endothelial cells (RAEC) and its mechanisms of vasoprotection related to diabetic endothelial dysfunction. In RAEC exposed to high glucose (30 mM) for 48 h, pre-treatment with boldine reduced the elevated ROS and nitrotyrosine formation, and preserved nitric oxide (NO) production. Pre-incubation with β-NAPDH reduced the acetylcholine-induced endothelium-dependent relaxation; this attenuation was reversed by boldine. Compared with control, endothelium-dependent relaxation in the aortas of streptozotocin (STZ)-treated diabetic rats was significantly improved by both acute (1 μM, 30 min) and chronic (20mg/kg/daily, i.p., 7 days) treatment with boldine. Intracellular superoxide and peroxynitrite formation measured by DHE fluorescence or chemiluminescence assay were higher in sections of aortic rings from diabetic rats compared with control. Chronic boldine treatment normalized ROS over-production in the diabetic group and this correlated with reduction of NAD(P)H oxidase subunits, NOX2 and p47(phox). The present study shows that boldine reversed the increased ROS formation in high glucose-treated endothelial cells and restored endothelial function in STZ-induced diabetes by inhibiting oxidative stress and thus increasing NO bioavailability. PMID:23178655

  16. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    PubMed

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (p<0,001) while aqueous extract (50 microg/ml) by 43% (p<0,01). The ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production in monocytes by 76% (p<0,01). Effective concentrations (25-100 microg/ml) were well below the cytotoxic levels of the extracts which started at 1 mg/ml as assessed by LDH leakage and trypan blue exclusion. Penetration of some active substances into the cells was necessary for inhibition to take place as juged from the effect of preincubation time. These results demonstrate that artichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  17. Self-reported racial discrimination and endothelial reactivity to acute stress in women.

    PubMed

    Wagner, Julie A; Tennen, Howard; Finan, Patrick H; Ghuman, Nimrta; Burg, Matthew M

    2013-08-01

    This study investigated the effect of self-reported racial discrimination on endothelial responses to acute laboratory mental stress among post-menopausal women. One-hundred thirteen women (n = 94 self-identified as White and n = 19 self-identified as racial/ethnic minority), 43% with type 2 diabetes, reported lifetime experiences of racial/ethnic discrimination. Repeated assessments of flow-mediated dilation were performed at baseline, immediately after 5 min of mental arithmetic and at 20-min recovery. Both White and racial/ethnic minority women reported lifetime discrimination, with rates significantly higher among minorities. Self-reported lifetime discrimination was associated with attenuated flow-mediated dilation at recovery. Confounding variables, including clinical characteristics, mood, personality traits, other life stressors and general distress, did not better account for the effect of racial discrimination. Neither race/ethnicity nor diabetes status moderated the effect. The perceived stressfulness of the mental arithmetic was not associated with the endothelial response. In conclusion, self-reported lifetime discrimination is associated with attenuated endothelial recovery from acute mental stress. Elucidating the effects of discrimination and the biological mechanisms through which it affects the vasculature may suggest interventions to improve health.

  18. Application of a Reynolds stress turbulence model to the compressible shear layer

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Balakrishnan, L.

    1990-01-01

    Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number.

  19. Effects of fluid shear stress on polyelectrolyte multilayers by neutron scattering studies

    DOE PAGES

    Singh, Saurabh; Junghans, Ann; Watkins, Erik; Kapoor, Yash; Toomey, Ryan; Majewski, Jaroslaw

    2015-02-17

    The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For themore » highest shear rate applied (ca. 6800 s–1) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. Furthermore, a theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.« less

  20. Reynolds stress flow shear and turbulent energy transfer in reversed field pinch configuration

    NASA Astrophysics Data System (ADS)

    Vianello, Nicola; Spolaore, Monica; Serianni, Gianluigi; Regnoli, Giorgio; Spada, Emanuele; Antoni, Vanni; Bergsåker, Henric; Drake, James R.

    2003-10-01

    The role of Reynolds Stress tensor on flow generation in turbulent fluids and plasmas is still an open question and the comprehension of its behavior may assist the understanding of improved confinement scenario. It is generally believed that shear flow generation may occur by an interaction of the turbulent Reynolds stress with the shear flow. It is also generally believed that this mechanism may influence the generation of zonal flow shears. The evaluation of the complete Reynolds Stress tensor requires contemporary measurements of its electrostatic and magnetic part: this requirement is more restrictive for Reversed Field Pinch configuration where magnetic fluctuations are larger than in tokamak . A new diagnostic system which combines electrostatic and magnetic probes has been installed in the edge region of Extrap-T2R reversed field pinch. With this new probe the Reynolds stress tensor has been deduced and its radial profile has been reconstructed on a shot to shot basis exploring differen plasma conditions. These profiles have been compared with the naturally occurring velocity flow profile, in particular during Pulsed Poloidal Current Drive experiment, where a strong variation of ExB flow radial profile has been registered. The study of the temporal evolution of Reynolds stress reveals the appearance of strong localized bursts: these are considered in relation with global MHD relaxation phenomena, which naturally occur in the core of an RFP plasma sustaining its configuration.

  1. Effect of solid contents on the controlled shear stress rheological properties of different types of sludge.

    PubMed

    Li, Ting; Wang, Yili; Dong, Yujing

    2012-01-01

    Controlled shear stress (CSS) test was used to study the effect of solid contents on the corresponding rheological parameters for sludge. Three types of sludge with or without conditioning, including activated sludge (AS), anaerobic digested sludge (ADS), and water treatment residuals (WTRs), were collected for the CSS test. Results showed that the yield stress and the cohesion energy of the sludge networks were improved with increased total suspending solid (TSS) contents in most cases. For the conditioned AS/ADS and the raw WTRs, exponential law was observed in the relationships between cohesion energy of material networks or yield stress and the TSS contents, whereas for the conditioned WTRs, only exponential law dependence was found between the parameters of shear modulus or critical strain and the TSS contents.

  2. Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure

    NASA Astrophysics Data System (ADS)

    Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe

    2014-09-01

    In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.

  3. Effect of simulated microgravity on osteocytes responding to fluid shear stress

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Sun, Lian-Wen; Wu, Xin-Tong; Wang, Xiao-Nan; Fan, Yu-Bo

    2013-03-01

    Osteocytes, as most abundant cells and major mechanical sensor in bone, play an important role in the mechanism of microgravity-induced bone loss. The response of osteocytes to fluid flow stress under simulated microgravity was investigated in this study. MLO-Y4, an osteocyte-like cell line, was cultured under simulated microgravity condition for 5 days. Then cells were sheared at 15 dyn/cm2 in flow chamber. After 15 min shear, nitric oxide (NO) was examined by Griess Reagent and prostaglandin E2 (PGE2) by ELISA. After 6 h shear, alkaline phosphatase (ALP) was examined by PNPP, osteocalcin (OC) and procollagen type I N propeptide (PINP) by ELISA. Cells were divided into four groups: CON (1 G with no shear), CON-S (1 G with shear), SM (simulated microgravity with no shear) and SM-S (simulated microgravity with shear). The results showed that (1) NO, ALP activity, OC and PINP increased significantly while PGE2 showed no change in SM compared with CON. (2) NO, PGE2, ALP activity and PINP increased significantly while OC decreased significantly in CON-S compared with CON. (3) NO in SM-S had no significant difference compared to SM, PGE2 and OC increased while ALP activity and PINP decreased significantly in SM-S compared with SM. (4) The increasing amplitude of PGE2 and OC, the decreasing amplitude of ALP activity in SM-S to SM was lower than that in CON-S to CON. In addition, some changes of F-actin cytoskeleton were observed by confocal microscopy. All results indicated that the response induced by fluid shear in osteocytes could be inhibited by simulated microgravity, namely the mechanosensibility of osteocytes decreased under simulated microgravity. This may partly contribute to the mechanism of microgravity-induced osteoporosis and will be helpful to find out effective description.

  4. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress.

    PubMed

    Mukohda, Masashi; Stump, Madeliene; Ketsawatsomkron, Pimonrat; Hu, Chunyan; Quelle, Frederick W; Sigmund, Curt D

    2016-01-01

    Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress

  5. Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response

    PubMed Central

    Uzer, Gunes; Manske, Sarah L; Chan, M Ete; Chiang, Fu-Pen; Rubin, Clinton T; Frame, Mary D; Judex, Stefan

    2012-01-01

    The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration – fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1g and 60Hz, peak fluid shear stresses acting on the cell layer reached 0.5Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that the eventual identification of the physical mechanism(s) requires a detailed quantification of the cellular mechanical environment. PMID:23074384

  6. The anti-cancer drug, doxorubicin, causes oxidant stress-induced endothelial dysfunction.

    PubMed

    Wolf, Matthew B; Baynes, John W

    2006-02-01

    The anticancer drug doxorubicin (DOX) is toxic to target cells, but also causes endothelial dysfunction and edema, secondary to oxidative stress in the vascular wall. Thus, the mechanism of action of this drug may involve chemotoxicity to both cancer cells and to the endothelium. Indeed, we found that the permeability of monolayers of bovine pulmonary artery endothelial cells (BPAEC) to albumin was increased by approximately 10-fold above control, following 24-h exposure to clinically relevant concentrations of DOX (up to 1 microM). DOX also caused >4-fold increases in lactate dehydrogenase leakage and large decreases in ATP and reduced glutathione (GSH) in BPAECs, which paralleled the increases in endothelial permeability. A large part of the ATP loss could be attributed to DOX-induced hydrogen peroxide production which inhibited key thiol-enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PDH). Depletion of reduced nicotinamide adenine dinucleotide phosphate (NADPH) appeared to be a major factor leading to DOX-induced GSH depletion. At low concentrations, the sulfhydryl reagent, iodoacetate (IA), inhibited GAPDH, caused a decrease in ATP and increased permeability, without inhibiting G6PDH or decreasing GSH. These results, coupled with those of previous work on a related quinone, menadione, suggest that depletion of either GSH or ATP may lead independently to endothelial dysfunction during chemotherapy, contributing to the cardiotoxicity and other systemic side-effects of the drug.

  7. Glutamine treatment attenuates hyperglycemia-induced mitochondrial stress and apoptosis in umbilical vein endothelial cells

    PubMed Central

    Safi, Sher Zaman; Batumalaie, Kalaivani; Mansor, Marzida; Chinna, Karuthan; Mohan, Syam; Kumar, Selva; Karimian, Hamed; Qvist, Rajes; Ashraf, Muhammad Aqeel; Yan, Garcie Ong Siok

    2015-01-01

    OBJECTIVE: The aim of this study was to determine the in vitro effect of glutamine and insulin on apoptosis, mitochondrial membrane potential, cell permeability, and inflammatory cytokines in hyperglycemic umbilical vein endothelial cells. MATERIALS AND METHODS: Human umbilical vein endothelial cells were grown and subjected to glutamine and insulin to examine the effects of these agents on the hyperglycemic state. Mitochondrial function and the production of inflammatory cytokines were assessed using fluorescence analysis and multiple cytotoxicity assays. Apoptosis was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. RESULTS: Glutamine maintains the integrity of the mitochondria by reducing the cell permeability and cytochrome c levels and increasing the mitochondrial membrane potential. The cytochrome c level was significantly (p<0.005) reduced when the cells were treated with glutamine. An apoptosis assay revealed significantly reduced apoptosis (p<0.005) in the glutamine-treated cells. Moreover, glutamine alone or in combination with insulin modulated inflammatory cytokine levels. Interleukin-10, interleukin-6, and vascular endothelial growth factor were up-regulated while tumor necrosis factor-α was down-regulated after treatment with glutamine. CONCLUSIONS: Glutamine, either alone or in combination with insulin, can positively modulate the mitochondrial stress and cell permeability in umbilical vein endothelial cells. Glutamine regulates the expression of inflammatory cytokines and maintains the balance of the mitochondria in a cytoprotective manner. PMID:26247670

  8. Measuring bed shear stress along vegetated river beds using FST-hemispheres.

    PubMed

    Bockelmann-Evans, B N; Davies, R; Falconer, R A

    2008-09-01

    The measurement of the bed shear stress along vegetated river beds is essential for accurately predicting the water level, velocity and solute and sediment transport fluxes in computational hydroenvironmental models. Details are given herein of an experimental and theoretical study to determine the bed boundary shear stress along vegetated river beds introducing a novel field measuring method, namely the FliessWasserStammtisch (FST)-hemispheres. Although investigations have been conducted previously for sedimentary channels using the FST-hemispheres, this preliminary study is thought to be the first time that such hemispheres have been used to investigate the bed shear stresses in vegetated channels. FST-hemispheres were first developed by Statzner and Müller [1989. Standard hemispheres as indicators of flow characteristics in lotic benthos research. Freshwater Biology 21, 445-459] to act as an integrated indicator of the gross hydrodynamic stresses present near the bed. Test and validation data were found to be at least of the same order of magnitude for the stresses predicted from literature for sedimentary channels, with this study establishing the commencement of a database of calibrated FST-hemisphere laboratory data for vegetated channel beds. In a series of experiments, depths ranging from 0.1 to 0.28 m were considered, equating directly to comparable conditions in small rivers or streams. The results of this study provide a basis for enabling the FST-hemispheres to be used to evaluate the boundary shear stress for a wider range of applications in the future, including vegetated river beds.

  9. Cell-Activation by Shear Stresses in Abdominal Aortic Aneurysms (AAA)

    NASA Astrophysics Data System (ADS)

    Salsac, Anne-Virginie; Sparks, Steven; Chomaz, Jean-Marc; Lasheras, Juan C.

    2003-11-01

    Increasing experimental evidence indicates that low and oscillatory shear stresses promote proliferative, thrombotic, adhesive and inflammatory-mediated degenerative conditions throughout the wall of the aorta. These degenerative conditions have been shown to be involved in the pathogenesis of AAAs, a permanent, localized dilatation of the abdominal aorta. The purpose of this study is to measure both the magnitude and the duration of the shear stresses acting on both the arterial walls and on the blood cells inside AAAs, and to characterize their changes as the AAA enlarges. We conducted a parametric in-vitro study of the pulsatile blood flow in elastic models of AAAs while systematically varying the blood flow parameters, and the geometry of the aneurysm's bulging. The instantaneous flow characteristic inside the AAA was measured using DPIV at a sampling rate of 15 Hertz. A "cell-activation parameter" defined as the integral of the product of the magnitude of the shear stress and the time during which the stress acts was computed along each of the blood cell pathlines. The Lagrangian tracking of the blood cells shows that a large majority of them are subjected first to very high level of shear-induced "cell-activation" while later on they are entrained in regions of stasis where their residence time can increase up to several cardiac cycles. This cell-activation followed by the entrainment in low shear regions creates the optimal cell-adhesive and inflammatory-mediated degenerative conditions that are postulated to play an important role in the etiology and progressive enlargement of AAAs.

  10. Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung

    PubMed Central

    Dingemans, Jozef; Monsieurs, Pieter; Yu, Sung-Huan; Crabbé, Aurélie; Förstner, Konrad U.; Malfroot, Anne

    2016-01-01

    ABSTRACT Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. PMID:27486191

  11. Acid Sphingomyelinase Promotes Endothelial Stress Response in Systemic Inflammation and Sepsis

    PubMed Central

    Chung, Ha-Yeun; Hupe, Daniel C; Otto, Gordon P; Sprenger, Marcel; Bunck, Alexander C; Dorer, Michael J; Bockmeyer, Clemens L; Deigner, Hans-Peter; Gräler, Markus H; Claus, Ralf A

    2016-01-01

    The pathophysiology of sepsis involves activation of acid sphingomyelinase (SMPD1) with subsequent generation of the bioactive mediator ceramide. We herein evaluate the hypothesis that the enzyme exerts biological effects in endothelial stress response. Plasma-secreted sphingomyelinase activity, ceramide generation and lipid raft formation were measured in human microcirculatory endothelial cells (HMEC-1) stimulated with serum obtained from sepsis patients. Clustering of receptors relevant for signal transduction was studied by immunostaining. The role of SMPD1 for macrodomain formation was tested by pharmacological inhibition. To confirm the involvement of the stress enzyme, direct inhibitors (amino bisphosphonates) and specific downregulation of the gene was tested with respect to ADAMTS13 expression and cytotoxicity. Plasma activity and amount of SMPD1 were increased in septic patients dependent on clinical severity. Increased breakdown of sphingomyelin to ceramide in HMECs was observed following stimulation with serum from sepsis patients in vitro. Hydrolysis of sphingomyelin, clustering of receptor complexes, such as the CD95L/Fas-receptor, as well as formation of ceramide enriched macrodomains were abrogated using functional inhibitors (desipramine and NB6). Strikingly, the stimulation of HMECs with serum obtained from sepsis patients or mixture of proinflammatory cytokines resulted in cytotoxicity and ADAMTS13 downregulation which was abrogated using desipramine, amino bisphosphonates and genetic inhibitors. SMPD1 is involved in the dysregulation of ceramide metabolism in endothelial cells leading to macrodomain formation, cytotoxicity and downregulation of ADAMTS13 expression. Functional inhibitors, such as desipramine, are capable of improving endothelial stress response during sepsis and might be considered as a pharmacological treatment strategy to obtain a favorable outcome. PMID:27341515

  12. Basal shear stress under alpine glaciers: insights from experiments using the iSOSIA and Elmer/Ice models

    NASA Astrophysics Data System (ADS)

    Brædstrup, C. F.; Egholm, D. L.; Ugelvig, S. V.; Pedersen, V. K.

    2016-02-01

    Shear stress at the base of glaciers exerts a significant control on basal sliding and hence also glacial erosion in arctic and high-altitude areas. However, the inaccessible nature of glacial beds complicates empirical studies of basal shear stress, and little is therefore known of its spatial and temporal distribution. In this study we seek to improve our understanding of basal shear stress using a higher-order numerical ice model (iSOSIA). In order to test the validity of the higher-order model, we first compare the detailed distribution of basal shear stress in iSOSIA and in a three-dimensional full-Stokes model (Elmer/Ice). We find that iSOSIA and Elmer/Ice predict similar first-order stress and velocity patterns, and that differences are restricted to local variations at length scales of the order of the grid resolution. In addition, we find that subglacial shear stress is relatively uniform and insensitive to subtle changes in local topographic relief. Following the initial comparison studies, we use iSOSIA to investigate changes in basal shear stress as a result of landscape evolution by glacial erosion. The experiments with landscape evolution show that subglacial shear stress decreases as glacial erosion transforms preglacial V-shaped valleys into U-shaped troughs. These findings support the hypothesis that glacial erosion is most efficient in the early stages of glacial landscape development.

  13. VCAM-1-targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonance imaging in vitro.

    PubMed

    Yang, Hong; Zhao, Fenglong; Li, Ying; Xu, Mingming; Li, Li; Wu, Chunhui; Miyoshi, Hirokazu; Liu, Yiyao

    2013-01-01

    Multifunctional nanomaterials with unique magnetic and luminescent properties have broad potential in biological applications. Because of the overexpression of vascular cell adhesion molecule-1 (VCAM-1) receptors in inflammatory endothelial cells as compared with normal endothelial cells, an anti-VCAM-1 monoclonal antibody can be used as a targeting ligand. Herein we describe the development of multifunctional core-shell Fe(3)O(4)@SiO2 nanoparticles with the ability to target inflammatory endothelial cells via VCAM-1, magnetism, and fluorescence imaging, with efficient magnetic resonance imaging contrast characteristics. Superparamagnetic iron oxide and fluorescein isothiocyanate (FITC) were loaded successfully inside the nanoparticle core and the silica shell, respectively, creating VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles that were characterized by scanning electron microscopy, transmission electron microscopy, fluorescence spectrometry, zeta potential assay, and fluorescence microscopy. The VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles typically had a diameter of 355 ± 37 nm, showed superparamagnetic behavior at room temperature, and cumulative and targeted adhesion to an inflammatory subline of human umbilical vein endothelial cells (HUVEC-CS) activated by lipopolysaccharide. Further, our data show that adhesion of VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles to inflammatory HUVEC-CS depended on both shear stress and duration of exposure to stress. Analysis of internalization into HUVEC-CS showed that the efficiency of delivery of VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles was also significantly greater than that of nontargeted Fe(3)O(4)@SiO2(FITC)-NH2 nanoparticles. Magnetic resonance images showed that the superparamagnetic iron oxide cores of the VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles could also act as a contrast agent for magnetic resonance imaging. Taken together, the cumulative adhesion and uptake potential of

  14. VCAM-1-targeted core/shell nanoparticles for selective adhesion and delivery to endothelial cells with lipopolysaccharide-induced inflammation under shear flow and cellular magnetic resonance imaging in vitro.

    PubMed

    Yang, Hong; Zhao, Fenglong; Li, Ying; Xu, Mingming; Li, Li; Wu, Chunhui; Miyoshi, Hirokazu; Liu, Yiyao

    2013-01-01

    Multifunctional nanomaterials with unique magnetic and luminescent properties have broad potential in biological applications. Because of the overexpression of vascular cell adhesion molecule-1 (VCAM-1) receptors in inflammatory endothelial cells as compared with normal endothelial cells, an anti-VCAM-1 monoclonal antibody can be used as a targeting ligand. Herein we describe the development of multifunctional core-shell Fe(3)O(4)@SiO2 nanoparticles with the ability to target inflammatory endothelial cells via VCAM-1, magnetism, and fluorescence imaging, with efficient magnetic resonance imaging contrast characteristics. Superparamagnetic iron oxide and fluorescein isothiocyanate (FITC) were loaded successfully inside the nanoparticle core and the silica shell, respectively, creating VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles that were characterized by scanning electron microscopy, transmission electron microscopy, fluorescence spectrometry, zeta potential assay, and fluorescence microscopy. The VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles typically had a diameter of 355 ± 37 nm, showed superparamagnetic behavior at room temperature, and cumulative and targeted adhesion to an inflammatory subline of human umbilical vein endothelial cells (HUVEC-CS) activated by lipopolysaccharide. Further, our data show that adhesion of VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles to inflammatory HUVEC-CS depended on both shear stress and duration of exposure to stress. Analysis of internalization into HUVEC-CS showed that the efficiency of delivery of VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles was also significantly greater than that of nontargeted Fe(3)O(4)@SiO2(FITC)-NH2 nanoparticles. Magnetic resonance images showed that the superparamagnetic iron oxide cores of the VCAM-1-targeted Fe(3)O(4)@SiO2(FITC) nanoparticles could also act as a contrast agent for magnetic resonance imaging. Taken together, the cumulative adhesion and uptake potential of

  15. Platelet endothelial cell adhesion molecule-1 and mechanotransduction in vascular endothelial cells.

    PubMed

    Fujiwara, K

    2006-04-01

    Endothelial cells are known to respond to mechanical forces such as fluid shear stress and cyclic stretch, but elucidating the mechanism for mechanosensing has been difficult. Experimental data indicate that there are probably several sensing mechanisms. We have recently proposed a novel mechanoresponse mechanism that involves platelet endothelial cell adhesion molecule-1 (PECAM-1). When endothelial cells are stimulated by fluid shear stress, PECAM-1 is tyrosine phosphorylated and activates the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling cascade. The same signalling events occurred when we applied pulling force directly on PECAM-1 on the endothelial cell surface using magnetic beads coated with antibodies against the external domain of PECAM-1. These results appear to indicate that PECAM-1 is a mechanotransduction molecule. To our knowledge, this is the first mammalian molecule that is shown to respond to mechanical force directly exerted to it. PMID:16594905

  16. Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels.

    PubMed

    Kostenko, Victoria; Salek, Mohammad Mehdi; Sattari, Pooria; Martinuzzi, Robert John

    2010-08-01

    Bacterial infections in the blood system are usually associated with blood flow oscillation generated by some cardiovascular pathologies and insertion of indwelling devices. The influence of hydrodynamically induced shear stress fluctuations on the Staphylococcus aureus biofilm morphology and tolerance to antibiotics was investigated. Fluctuating shear stresses of physiologically relevant levels were generated in wells of a six-well microdish agitated by an orbital shaker. Numerical simulations were performed to determine the spatial distribution and local fluctuation levels of the shear stress field on the well bottom. It is found that the local biofilm deposition and morphology correlate strongly with shear stress fluctuations and maximum magnitude levels. Tolerance to killing by antibiotics correlates with morphotype and is generally higher in high shear regions. PMID:20528928

  17. P2Y₂ and Gq/G₁₁ control blood pressure by mediating endothelial mechanotransduction.

    PubMed

    Wang, ShengPeng; Iring, András; Strilic, Boris; Albarrán Juárez, Julián; Kaur, Harmandeep; Troidl, Kerstin; Tonack, Sarah; Burbiel, Joachim C; Müller, Christa E; Fleming, Ingrid; Lundberg, Jon O; Wettschureck, Nina; Offermanns, Stefan

    2015-08-01

    Elevated blood pressure is a key risk factor for developing cardiovascular diseases. Blood pressure is largely determined by vasodilatory mediators, such as nitric oxide (NO), that are released from the endothelium in response to fluid shear stress exerted by the flowing blood. Previous work has identified several mechanotransduction signaling processes that are involved in fluid shear stress-induced endothelial effects, but how fluid shear stress initiates the response is poorly understood. Here, we evaluated human and bovine endothelial cells and found that the purinergic receptor P2Y2 and the G proteins Gq/G11 mediate fluid shear stress-induced endothelial responses, including [Ca2+]i transients, activation of the endothelial NO synthase (eNOS), phosphorylation of PECAM-1 and VEGFR-2, as well as activation of SRC and AKT. In response to fluid shear stress, endothelial cells released ATP, which activates the purinergic P2Y2 receptor. Mice with induced endothelium-specific P2Y2 or Gq/G11 deficiency lacked flow-induced vasodilation and developed hypertension that was accompanied by reduced eNOS activation. Together, our data identify P2Y2 and Gq/G11 as a critical endothelial mechanosignaling pathway that is upstream of previously described mechanotransduction processes and demonstrate that P2Y2 and Gq/G11 are required for basal endothelial NO formation, vascular tone, and blood pressure. PMID:26168216

  18. Hemodynamic analysis in an idealized artery tree: differences in wall shear stress between Newtonian and non-Newtonian blood models.

    PubMed

    Weddell, Jared C; Kwack, JaeHyuk; Imoukhuede, P I; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model. PMID:25897758

  19. African Trypanosome-Induced Blood-Brain Barrier Dysfunction under Shear Stress May Not Require ERK Activation.

    PubMed

    Sumpio, Brandon J; Chitragari, Gautham; Moriguchi, Takeshi; Shalaby, Sherif; Pappas-Brown, Valeria; Khan, Asif M; Sekaran, Shamala Devi; Sumpio, Bauer E; Grab, Dennis J

    2015-03-01

    African trypanosomes are tsetse fly transmitted protozoan parasites responsible for human African trypanosomiasis, a disease characterized by a plethora of neurological symptoms and death. How the parasites under microvascular shear stress (SS) flow conditions in the brain cross the blood-brain barrier (BBB) is not known. In vitro studies using static models comprised of human brain microvascular endothelial cells (BMEC) show that BBB activation and crossing by trypanosomes requires the orchestration of parasite cysteine proteases and host calcium-mediated cell signaling. Here, we examine BMEC barrier function and the activation of extracellular signal-regulated kinase (ERK)1/2 and ERK5, mitogen-activated protein kinase family regulators of microvascular permeability, under static and laminar SS flow and in the context of trypanosome infection. Confluent human BMEC were cultured in electric cell-substrate impedance sensing (ECIS) and parallel-plate glass slide chambers. The human BMEC were exposed to 2 or 14 dyn/cm(2) SS in the presence or absence of trypanosomes. Real-time changes in transendothelial electrical resistance (TEER) were monitored and phosphorylation of ERK1/2 and ERK5 analyzed by immunoblot assay. After reaching confluence under static conditions human BMEC TEER was found to rapidly increase when exposed to 2 dyn/cm(2) SS, a condition that mimics SS in brain postcapillary venules. Addition of African trypanosomes caused a rapid drop in human BMEC TEER. Increasing SS to 14 dyn/cm(2), a condition mimicking SS in brain capillaries, led to a transient increase in TEER in both control and infected human BMEC. However, no differences in ERK1/2 and ERK5 activation were found under any condition tested. African trypanosomiasis alters BBB permeability under low shear conditions through an ERK1/2 and ERK5 independent pathway. PMID:27053915

  20. Hemodynamic Analysis in an Idealized Artery Tree: Differences in Wall Shear Stress between Newtonian and Non-Newtonian Blood Models

    PubMed Central

    Weddell, Jared C.; Kwack, JaeHyuk; Imoukhuede, P. I.; Masud, Arif

    2015-01-01

    Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model. PMID:25897758

  1. The Effect of Shear and Deviatoric Stress on Permeability Evolution in Fractured Diorite and Novaculite

    NASA Astrophysics Data System (ADS)

    Faoro, I.; Elsworth, D.; Marone, C.; Niemeijer, A.

    2006-12-01

    The evolution of the permeability in fractured rocks, subject to changing stress conditions is a complex issue. In this contribution, we report on experiments in which rock surfaces were sheared under controlled pore pressure and true-triaxial stress conditions while permeability was monitored via flow parallel to the shear direction. Direct shear tests were performed in a pressure vessel under drained conditions on samples of novaculite and of diorite (Coso Geothermal field, CA). Smoothed-faced, prismatic blocks were roughened by grinding with 60# grit, assembled face-to-face, and jacketed within a sealed membrane. Normal stress was applied by a hydraulic ram, and confining- and pore-pressures were maintained via high precision servo- controlled pressure intensifiers. The sample pairs are sheared to 18 mm of final displacement at 5 μm/sec, at room temperature, and at effective normal stresses ranging from 5 to 20 MPa. Permeability evolution is measured throughout shearing via flow of distilled water from an upstream reservoir at 0.1 MPa and discharged at atmospheric pressure. The permeability of the smooth fracture in novaculite varied only slightly with applied effective normal stress (0.5×10^{-14} m2 at 5 MPa, 10^{-14} m2 at 10 MPa and 10^{-14} m2 at 20 MPa). The corresponding hydraulic apertures were respectively 20 μm, 15 μm and 13 μm. In all three tests, permeability dropped one order of magnitude upon shearing. Steady state values for permeability and shear strength were typically reached after ~ 10 mm of load point displacement. An associated reduction of ~10 μm was observed in the hydraulic apertures. Similar behavior was recorded in the diorite sample but only at the highest effective normal stresses. The initial permeability of ~10^{-13 m2 dropped four orders of magnitude before reaching a steady state value. This corresponds to a reduction in hydraulic aperture of ~23 μm, reaching a steady state magnitude of ~1.5 μm. At lower effective normal

  2. [Effect of physical exercise on endothelial function, indicators of inflammation and oxidative stress].

    PubMed

    Skrypnik, Damian; Bogdański, Paweł; Madry, Edyta; Pupek-Musialik, Danuta; Walkowiak, Jarosław

    2014-02-01

    Endothelium plays an important role in regulation of the activity of inflammation and oxidative stress. Numerous studies have shown that physical training affects endothelial function. It is proven that regular physical activity reduces the seventy of inflammation and the risk of cardiovascular events. Changes observed in effect of physical activity include increase in production of nitric oxide (NO), a decrease of plaque volume, a decrease in vascular wall viscosity and an increase in diastolic coronary perfusion. It has been shown that exercise reduces cardiovascular risk in subjects with diabetes, metabolic syndrome, coronary heart disease and hypertension, as well as in healthy people. In above populations the benefits result from improved endothelial function. It has been proven that regular physical activity improves enzymatic antioxidant systems and the immune response. It is a result of the stimulating effect of muscle tissue micro-injuries and recruitment of various cell types of the inflammatory response and their migration deeper into the tissues. The biggest changes in the immune response are observed in prolonged aerobic exercise. Physical activity has a significant impact on endothelial function, intensity of inflammatory processes and exponents of oxidative stress. There is a need for further researches, in particular in order to determine the optimal model of training.

  3. Triolein and trilinolein ameliorate oxidized low-density lipoprotein-induced oxidative stress in endothelial cells.

    PubMed

    Luo, Ting; Deng, Ze-yuan; Li, Xiao-ping; Rao, Huan; Fan, Ya-wei

    2014-05-01

    Uptake of oxidized low-density lipoprotein by endothelial cells is a critical step for the initiation of atherosclerosis. Triacylglycerol uptake in these cells is understood to be a part of the process. The present investigation, comparison among the effects of simple acylglycerol, including tristearin, triolein, and trilinolein, upon oxidized low-density lipoprotein -induced oxidative stress was undertaken. Results indicated that trilinolein (78 % ± 0.02) and triolein (90 % ± 0.01) increased cell viability of endothelial cells exposed to oxidized low-density lipoprotein, whereas tristearin decreased the cell viability (55 % ± 0.03) (P < 0.05). Oxidized low-density lipoprotein treatment significantly increased apoptosis (23 %), compared to cells simultaneously exposed to trilinolein (19 %) or triolein (16 %), where apoptosis was reduced (P < 0.05). On the other hand, exposure to tristearin further increased oxidized low-density lipoprotein -induced cell apoptosis (34 %). Treatment with trilinolein or triolein on oxidized low-density lipoprotein -stimulated endothelial cells inhibited the expression of ICAM-1 and E-selectin mRNA. Moreover, both trilinolein and triolein demonstrated a strong antioxidant response to oxidative stress caused by oxidized low-density lipoprotein. Taken together, the results indicate trilinolein and triolein possess anti-inflammatory properties, which are mediated via the antioxidant defense system.

  4. Nature of stress accommodation in sheared granular material: Insights from 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Mair, Karen; Hazzard, James F.

    2007-07-01

    Active faults often contain distinct accumulations of granular wear material. During shear, this granular material accommodates stress and strain in a heterogeneous manner that may influence fault stability. We present new work to visualize the nature of contact force distributions during 3D granular shear. Our 3D discrete numerical models consist of granular layers subjected to normal loading and direct shear, where gouge particles are simulated by individual spheres interacting at points of contact according to simple laws. During shear, we observe the transient microscopic processes and resulting macroscopic mechanical behavior that emerge from interactions of thousands of particles. We track particle translations and contact forces to determine the nature of internal stress accommodation with accumulated slip for different initial configurations. We view model outputs using novel 3D visualization techniques. Our results highlight the prevalence of transient directed contact force networks that preferentially transmit enhanced stresses across our granular layers. We demonstrate that particle size distribution (psd) controls the nature of the force networks. Models having a narrow (i.e. relatively uniform) psd exhibit discrete pipe-like force clusters with a dominant and focussed orientation oblique to but in the plane of shear. Wider psd models (e.g. power law size distributions D = 2.6) also show a directed contact force network oblique to shear but enjoy a wider range of orientations and show more out-of-plane linkages perpendicular to shear. Macroscopic friction level, is insensitive to these distinct force network morphologies, however, force network evolution appears to be linked to fluctuations in macroscopic friction. Our results are consistent with predictions, based on recent laboratory observations, that force network morphologies are sensitive to grain characteristics such as particle size distribution of a sheared granular layer. Our numerical

  5. Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress.

    PubMed

    Benard, Nicolas; Coisne, Damien; Donal, Erwan; Perrault, Robert

    2003-07-01

    The stimulation of endothelial cells by arterial wall shear stress (WSS) plays a central role in restenosis. The fluid-structure interaction between stent wire and blood flow alters the WSS, particularly between stent struts. We have designed an in vitro model of struts of an intra-vascular prosthesis to study blood flow through a 'stented' section. The experimental artery consisted of a transparent square section test vein, which reproduced the strut design (100x magnifying power). A programmable pump was used to maintain a steady blood flow. Particle image velocimetry method was used to measure the flow between and over the stent branches, and to quantify WSS. Several prosthesis patterns that were representative of the total stent strut geometry were studied in a greater detail. We obtained WSS values of between -1.5 and 1.5Pa in a weak SS area which provided a source of endothelial stimulation propitious to restenosis. We also compared two similar patterns located in two different flow areas (one at the entry of the stent and one further downstream). We only detected a slight difference between the weakest SS levels at these two sites. As the endothelial proliferation is greatly influenced by the SS, knowledge of the SS modification induced by the stent implantation could be of importance for intra-vascular prostheses design optimisation and thus can help to reduce the restenosis incidence rate. PMID:12757808

  6. Rod climbing and normal stresses in heavy crude oils at low shears

    SciTech Connect

    Nunez, G.A. ); Ribeiro, G.S.; Arney, M.S.; Feng, J.; Joseph, D.D. )

    1994-09-01

    This paper gives the results of a study of the nonlinear viscoelastic behavior of three heavy crude oils from California and Venezuela. A linear combination of normal stress coefficients at zero shear is expressed in terms of the quantity (the climbing constant) used to measure the height rise on a rotating rod. Measurements of the climbing constants are given for the crude oils. Values of both the first and second normal stress coefficients at zero shear are determined by the climbing constant when another combination of the two coefficients is known. In principle, the required information can be obtained by back extrapolation of the first normal stress difference, by back extrapolation of the dynamic modulus or by back extrapolation of the ratio of the second to first normal stress difference. Back extrapolation of data can be achieved when measurements are available at shear rates low enough to enter onto the second-order plateau of the functions generated by different instruments. Examination of previously published data for well-characterized solutions suggests that second-order rheology is most readily obtained in rod climbing.

  7. Scale-up of high shear granulation based on the internal stress measurement.

    PubMed

    Watano, Satoru; Okamoto, Takumi; Sato, Yoshinobu; Osako, Yoshifumi

    2005-04-01

    Scale-up of wet granulation in a vertical high shear mixer was conducted. Pharmaceutical excipient powders composed of lactose, cornstarch and micro-crystallinecellulose, and hydroxypropylcellulose as a binder were mixed together and then granulated with purified water under various operating conditions and vessel scales. A novel internal stress measurement system was developed and stress of normal and tangential directions that granules received from the agitator blade during the granulation was continuously measured. The results indicated that granules received stress mainly from the tangential direction, which also showed the largest value near at the vessel wall. The effects of the agitator tip speed and the centrifugal acceleration on the measured stress was investigated. It was found that the tip speed of the agitator blade could be the main factor for the granule growth. The physical properties such as strength, size distribution and compressibility of granules prepared by changing the operating conditions and the vessel scales were evaluated and the scale-up characteristics of high shear granulation were investigated experimentally. The results showed that these physical properties had linear correlations with the tip speed. It was finally concluded that the scale-up of high shear granulation could be well conducted by means of the tip speed of the agitator blade. PMID:15802830

  8. Modeling bed shear-stress fluctuations in a shallow tidal channel

    NASA Astrophysics Data System (ADS)

    Mathis, R.; Marusic, I.; Cabrit, O.; Jones, N. L.; Ivey, G. N.

    2014-05-01

    Recently, Mathis et al. (2013) developed a model for predicting the instantaneous fluctuations of the wall shear-stress in turbulent boundary layers. This model is based on an inner-outer scale interaction mechanism, incorporating superposition, and amplitude-modulation effects, and the only input required for the model is a time series measurement of the streamwise velocity signal taken in the logarithmic region of the flow. The present study applies this new approach for the first time to environmental flows, for which the near-bed information is typically inaccessible. The data used here are acoustic Doppler velocimeter time series measurements from a shallow tidal channel (Suisun Slough in North San Francisco Bay). We first extract segments of data sharing properties with canonical turbulent boundary layers. The wall (bed) shear-stress model is then applied to these selected data. Statistical and spectral analysis demonstrates that the field data predictions are consistent with laboratory and DNS results. The model is also applied to the whole available data set to demonstrate, even for situations far from the canonical boundary layer case, its ability to preserve the overall Reynolds number trend. The predicted instantaneous bed stress is highly skewed and amplitude modulated with the variations in the large-scale streamwise velocity. Finally, the model is compared to conventional methods employed to predict the bed shear-stress. A large disparity is observed, but the present model is the only one able to predict both the correct spectral content and the probability density function.

  9. Spatio-Temporal Surface Shear-Stress Variability in Live Plant Canopies and Cube Arrays

    NASA Astrophysics Data System (ADS)

    Walter, Benjamin; Gromke, Christof; Leonard, Katherine C.; Manes, Costantino; Lehning, Michael

    2012-05-01

    This study presents spatiotemporally-resolved measurements of surface shear-stress τ s in live plant canopies and rigid wooden cube arrays to identify the sheltering capability against sediment erosion of these different roughness elements. Live plants have highly irregular structures that can be extremely flexible and porous resulting in considerable changes to the drag and flow regimes relative to rigid imitations mainly used in other wind-tunnel studies. Mean velocity and kinematic Reynolds stress profiles show that well-developed natural boundary layers were generated above the 8 m long wind-tunnel test section covered with the roughness elements at four different roughness densities ( λ = 0, 0.017, 0.08, 0.18). Speed-up around the cubes caused higher peak surface shear stress than in experiments with plants at all roughness densities, demonstrating the more effective sheltering ability of the plants. The sheltered areas in the lee of the plants are significantly narrower with higher surface shear stress than those found in the lee of the cubes, and are dependent on the wind speed due to the plants ability to streamline with the flow. This streamlining behaviour results in a decreasing sheltering effect at increasing wind speeds and in lower net turbulence production than in experiments with cubes. Turbulence intensity distributions suggest a suppression of horseshoe vortices in the plant case. Comparison of the surface shear-stress measurements with sediment erosion patterns shows that the fraction of time a threshold skin friction velocity is exceeded can be used to assess erosion of, and deposition on, that surface.

  10. Effects of helium on inflammatory and oxidative stress-induced endothelial cell damage.

    PubMed

    Smit, Kirsten F; Kerindongo, Raphaela P; Böing, Anita; Nieuwland, Rienk; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-09-10

    Helium induces preconditioning in human endothelium protecting against postischemic endothelial dysfunction. Circulating endothelial microparticles are markers of endothelial dysfunction derived in response to injury. Another noble gas, xenon, protected human umbilical vein endothelial cells (HUVEC) against inflammatory stress in vitro. We hypothesised that helium protects the endothelium in vitro against inflammatory and oxidative stress. HUVEC were isolated from fresh umbilical cords and grown upon confluence. Cells were subjected to starving medium for 12h before the experiment and treated for either 3 × 5 min or 1 × 30 min with helium (5% CO2, 25% O2, 70% He) or control gas (5% CO2, 25% O2, 70% N2) in a specialised gas chamber. Subsequently, cells were stimulated with TNF-α (40 ng/ml for 24h or 10 ng/ml for 2h) or H2O2 (500 μM for 2h) or left untreated. Adhesion molecule expression was analysed using real-time quantitative polymerase chain reaction. Caspase-3 expression and viability of the cells was measured by flowcytometry. Microparticles were investigated by nanoparticle tracking analysis. Helium had no effect on adhesion molecule expression after TNF-α stimulation but in combination with oxidative stress decreased cell viability (68.9 ± 1.3% and 58 ± 1.9%) compared to control. Helium further increased TNF-α induced release of caspase-3 containing particles compared to TNF-α alone (6.4 × 10(6) ± 1.1 × 10(6) and 2.9 × 10(6) ± 0.7 × 10(6), respectively). Prolonged exposure of helium increased microparticle formation (2.4 × 10(9) ± 0.5 × 10(9)) compared to control (1.7 × 10(9) ± 0.2 × 10(9)). Summarized, helium increases inflammatory and oxidative stress-induced endothelial damage and is thus not biologically inert. A possible noxious effects on the cellular level causing alterations in microparticle formation both in number and content should be acknowledged.

  11. Effects of helium on inflammatory and oxidative stress-induced endothelial cell damage.

    PubMed

    Smit, Kirsten F; Kerindongo, Raphaela P; Böing, Anita; Nieuwland, Rienk; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-09-10

    Helium induces preconditioning in human endothelium protecting against postischemic endothelial dysfunction. Circulating endothelial microparticles are markers of endothelial dysfunction derived in response to injury. Another noble gas, xenon, protected human umbilical vein endothelial cells (HUVEC) against inflammatory stress in vitro. We hypothesised that helium protects the endothelium in vitro against inflammatory and oxidative stress. HUVEC were isolated from fresh umbilical cords and grown upon confluence. Cells were subjected to starving medium for 12h before the experiment and treated for either 3 × 5 min or 1 × 30 min with helium (5% CO2, 25% O2, 70% He) or control gas (5% CO2, 25% O2, 70% N2) in a specialised gas chamber. Subsequently, cells were stimulated with TNF-α (40 ng/ml for 24h or 10 ng/ml for 2h) or H2O2 (500 μM for 2h) or left untreated. Adhesion molecule expression was analysed using real-time quantitative polymerase chain reaction. Caspase-3 expression and viability of the cells was measured by flowcytometry. Microparticles were investigated by nanoparticle tracking analysis. Helium had no effect on adhesion molecule expression after TNF-α stimulation but in combination with oxidative stress decreased cell viability (68.9 ± 1.3% and 58 ± 1.9%) compared to control. Helium further increased TNF-α induced release of caspase-3 containing particles compared to TNF-α alone (6.4 × 10(6) ± 1.1 × 10(6) and 2.9 × 10(6) ± 0.7 × 10(6), respectively). Prolonged exposure of helium increased microparticle formation (2.4 × 10(9) ± 0.5 × 10(9)) compared to control (1.7 × 10(9) ± 0.2 × 10(9)). Summarized, helium increases inflammatory and oxidative stress-induced endothelial damage and is thus not biologically inert. A possible noxious effects on the cellular level causing alterations in microparticle formation both in number and content should be acknowledged. PMID:26096659

  12. Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells.

    PubMed

    Li, Lin-Mei; Wang, Wei; Zhang, Shu-Hui; Chen, Shi-Jing; Guo, Shi-Shang; Français, Olivier; Cheng, Jie-Ke; Huang, Wei-Hua

    2011-12-15

    Electrochemical techniques based on ultramicroelectrodes (UMEs) play a significant role in real-time monitoring of chemical messengers' release from single cells. Conversely, precise monitoring of cells in vitro strongly depends on the adequate construction of cellular physiological microenvironment. In this paper, we developed a multilayer microdevice which integrated high aspect ratio poly(dimethylsiloxane) (PDMS) microfluidic device for long-term automated perfusion culture of cells without shear stress and an independently addressable microelectrodes array (IAMEA) for electrochemical monitoring of the cultured cells in real time. Novel design using high aspect ratio between circular "moat" and ring-shaped micropillar array surrounding cell culture chamber combined with automated "circular-centre" and "bottom-up" perfusion model successfully provided continuous fresh medium and a stable and uniform microenvironment for cells. Two weeks automated culture of human umbilical endothelial cell line (ECV304) and neuronal differentiation of rat pheochromocytoma (PC12) cells have been realized using this device. Furthermore, the quantal release of dopamine from individual PC12 cells during their culture or propagation process was amperometrically monitored in real time. The multifunctional microdevice developed in this paper integrated cellular microenvironment construction and real-time monitoring of cells during their physiological process, and would possibly provide a versatile platform for cell-based biomedical analysis.

  13. Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon.

    PubMed

    Szczesny, Spencer E; Elliott, Dawn M

    2014-06-01

    Despite the critical role tendons play in transmitting loads throughout the musculoskeletal system, little is known about the microstructural mechanisms underlying their mechanical function. Of particular interest is whether collagen fibrils in tendon fascicles bear load independently or if load is transferred between fibrils through interfibrillar shear forces. We conducted multiscale experimental testing and developed a microstructural shear lag model to explicitly test whether interfibrillar shear load transfer is indeed the fibrillar loading mechanism in tendon. Experimental correlations between fascicle macroscale mechanics and microscale interfibrillar sliding suggest that fibrils are discontinuous and share load. Moreover, for the first time, we demonstrate that a shear lag model can replicate the fascicle macroscale mechanics as well as predict the microscale fibrillar deformations. Since interfibrillar shear stress is the fundamental loading mechanism assumed in the model, this result provides strong evidence that load is transferred between fibrils in tendon and possibly other aligned collagenous tissues. Conclusively establishing this fibrillar loading mechanism and identifying the involved structural components should help develop repair strategies for tissue degeneration and guide the design of tissue engineered replacements. PMID:24530560

  14. Oxidative stress in retinal pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells.

    PubMed

    Atienzar-Aroca, Sandra; Flores-Bellver, Miguel; Serrano-Heras, Gemma; Martinez-Gil, Natalia; Barcia, Jorge M; Aparicio, Silvia; Perez-Cremades, Daniel; Garcia-Verdugo, Jose M; Diaz-Llopis, Manuel; Romero, Francisco J; Sancho-Pelluz, Javier

    2016-08-01

    The retinal pigment epithelium (RPE), a monolayer located between the photoreceptors and the choroid, is constantly damaged by oxidative stress, particularly because of reactive oxygen species (ROS). As the RPE, because of its physiological functions, is essential for the survival of the retina, any sustained damage may consequently lead to loss of vision. Exosomes are small membranous vesicles released into the extracellular medium by numerous cell types, including RPE cells. Their cargo includes genetic material and proteins, making these vesicles essential for cell-to-cell communication. Exosomes may fuse with neighbouring cells influencing their fate. It has been observed that RPE cells release higher amounts of exosomes when they are under oxidative stress. Exosomes derived from cultured RPE cells were isolated by ultracentrifugation and quantified by flow cytometry. VEGF receptors (VEGFR) were analysed by both flow cytometry and Western blot. RT-PCR and qPCR were conducted to assess mRNA content of VEGFRs in exosomes. Neovascularization assays were performed after applying RPE exosomes into endothelial cell cultures. Our results showed that stressed RPE cells released a higher amount of exosomes than controls, with a higher expression of VEGFR in the membrane, and enclosed an extra cargo of VEGFR mRNA. Angiogenesis assays confirmed that endothelial cells increased their tube formation capacity when exposed to stressed RPE exosomes. PMID:26999719

  15. Probing the adhesion of particles to responsive polymer coatings with hydrodynamic shear stresses

    NASA Astrophysics Data System (ADS)

    Toomey, Ryan; Efe, Gulnur

    2015-03-01

    Lower critical solution temperature (LCST) polymers in confined geometries have found success in applications that benefit from reversible modulation of surface properties, including drug delivery, separations, tissue cultures, and chromatography. In this talk, we present the adhesion of polystyrene microspheres to cross-linked poly(N-isopropylacrylamide), or poly(NIPAAm) coatings, as studied with a spinning disk method. This method applies a linear range of hydrodynamic shear forces to physically adsorbed microspheres along the radius of a coated disk. Quantification of detachment is accomplished by optical microscopy to evaluate the minimum shear stress to remove adherent particles. Experiments were performed to assess the relationship between the surface chemistry of the microsphere, the thickness and cross-link density of the poly(NIPAAm) coating, the adsorption (or incubation) time, and the temperature on the detachment profiles of the microspheres. Results show that both the shear modulus and slow dynamic processes in the poly(NIPAAm) films strongly influence the detachment shear stresses. Moreover, whether an adsorbed microsphere can be released (through a modulation in the swelling of the poly(NIPAAm) coating by temperature) depends on both the surface chemistry of the microsphere and the extent of the adsorption time. Finally, the results show that the structure of the poly(NIPAAm) coating can significantly affect performance, which may explain several of the conflicting findings that have been reported in the literature.

  16. Mechanical loading by fluid shear stress of myotube glycocalyx stimulates growth factor expression and nitric oxide production.

    PubMed

    Juffer, Petra; Bakker, Astrid D; Klein-Nulend, Jenneke; Jaspers, Richard T

    2014-07-01

    Skeletal muscle fibers have the ability to increase their size in response to a mechanical overload. Finite element modeling data suggest that mechanically loaded muscles in vivo may experience not only tensile strain but also shear stress. However, whether shear stress affects biological pathways involved in muscle fiber size adaptation in response to mechanical loading is unknown. Therefore, our aim was twofold: (1) to determine whether shear stress affects growth factor expression and nitric oxide (NO) production by myotubes, and (2) to explore the mechanism by which shear stress may affect myotubes in vitro. C2C12 myotubes were subjected to a laminar pulsating fluid flow (PFF; mean shear stress 0.4, 0.7 or 1.4 Pa, 1 Hz) or subjected to uni-axial cyclic strain (CS; 15 % strain, 1 Hz) for 1 h. NO production during 1-h PFF or CS treatment was quantified using Griess reagent. The glycocalyx was degraded using hyaluronidase, and stretch-activated ion channels (SACs) were blocked using GdCl3. Gene expression was analyzed immediately after 1-h PFF (1.4 Pa, 1 Hz) and at 6 h post-PFF treatment. PFF increased IGF-I Ea, MGF, VEGF, IL-6, and COX-2 mRNA, but decreased myostatin mRNA expression. Shear stress enhanced NO production in a dose-dependent manner, while CS induced no quantifiable increase in NO production. Glycocalyx degradation and blocking of SACs ablated the shear stress-stimulated NO production. In conclusion, shear stress activates signaling pathways involved in muscle fiber size adaptation in myotubes, likely via membrane-bound mechanoreceptors. These results suggest that shear stress exerted on myofiber extracellular matrix plays an important role in mechanotransduction in muscle.

  17. Characterizing Wave- and Current-Induced Bottom Shear Stress: U.S. Middle Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Dalyander, S.; Butman, B.

    2011-12-01

    The combined action of waves and currents at the seabed creates bottom shear stress, impacting local geology, habitat, and anthropogenic use. In this study, a methodology is developed to characterize the magnitude of benthic disturbance based on spatially and seasonally-resolved statistics (mean, standard deviation, 95th percentile) of wave-current bottom shear stress. The frequency of stress forcing is used to distinguish regions dominated by storms (return interval longer than 33 hours) from those dominated by the tides (periods shorter than 33 hours). In addition, the relative magnitude of the contribution to stress from waves, tides, and storm-driven currents is investigated by comparing wave stress, tidal current stress, and stress from the residual current (currents with tides removed), as well as through cross-correlation of wave and current stress. The methodology is applied to numerical model time-series data for the Middle Atlantic Bight (MAB) off the U.S. East Coast for April 2010 to April 2011; currents are provided from the Integrated Ocean Observing System (IOOS) operational hydrodynamic forecast Experimental System for Predicting Shelf and Slope Optics (ESPreSSO) and waves are provided from a Simulating WAves Nearshore (SWAN) hindcast developed for this project. Spatial resolution of the model is about 5 km and time-series wave and current data are at 1 and 2-hours respectively. Regions of the MAB delineated by stress characteristics include a tidally-dominated shallow region with relative high stress southeast of Massachusetts over Nantucket Shoals; a coastal band extending offshore to about 30 m water depth dominated by waves; a region dominated by waves and wind-driven currents offshore of the Outer Banks of North Carolina; and a low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the "Mud Patch". Comparison of the stress distribution with surface sediment texture data shows that

  18. Icariin promotes angiogenic differentiation and prevents oxidative stress-induced autophagy in endothelial progenitor cells.

    PubMed

    Tang, Yubo; Jacobi, Angela; Vater, Corina; Zou, Lijin; Zou, Xuenong; Stiehler, Maik

    2015-06-01

    Reduced tissue levels of endothelial progenitor cells (EPCs) and functional impairment of endothelium are frequently observed in patients with diabetes and cardiovascular disease. The vascular endothelium is specifically sensitive to oxidative stress, and this is one of the mechanisms that causes widespread endothelial dysfunction in most cardiovascular diseases and disorders. Hence attention has increasingly been paid to enhance mobilization and differentiation of EPCs for therapeutic purposes. The aim of this study was to investigate whether Icariin, a natural bioactive component known from traditional Chinese Medicine, can induce angiogenic differentiation and inhibit oxidative stress-induced cell dysfunction in bone marrow-derived EPCs (BM-EPCs), and, if so, through what mechanisms. We observed that treatment of BM-EPCs with Icariin significantly promoted cell migration and capillary tube formation, substantially abrogated hydrogen peroxide (H2 O2 )-induced apoptotic and autophagic programmed cell death that was linked to the reduced intracellular reactive oxygen species levels and restored mitochondrial membrane potential. Icariin downregulated endothelial nitric oxide synthase 3, as well as nicotinamide-adenine dinucleotide phosphate-oxidase expression upon H2 O2 induction. These antiapoptotic and antiautophagic effects of Icariin are possibly mediated by restoring the loss of mammalian target of rapamycin /p70S6K/4EBP1 phosphorylation as well as attenuation of ATF2 and ERK1/2 protein levels after H2 O2 treatment. In summary, favorable modulation of the angiogenesis and redox states in BM-EPCs make Icariin a promising proangiogenic agent both enhancing vasculogenesis and protecting against endothelial dysfunction.

  19. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells.

    PubMed

    Richter, Beatrice; Haller, Jacqueline; Haffner, Dieter; Leifheit-Nestler, Maren

    2016-09-01

    Chronic kidney disease (CKD) is a state of Klotho deficiency and excess of the phosphaturic hormone fibroblast growth factor 23 (FGF23). Both dysregulations were shown to be associated with endothelial dysfunction in humans, but direct vascular effects of FGF23 remain largely elusive. In vitro experiments were performed to assess the effects of FGF23 (10 ng/mL) in relation to its co-receptor Klotho on nitric oxide (NO) synthesis and reactive oxygen species (ROS) formation and detoxification in human coronary artery endothelial cells (HCAEC). Membrane-bound Klotho is expressed in HCAEC, and FGF23 increases the expression of the Klotho shedding protease ADAM17, and consequently the secretion of soluble Klotho. FGF23 activates FGF receptor 1 and stimulates NO release via Akt-dependent activation of endothelial NO synthase (eNOS). Both FGF receptor (FGFR)-dependent ROS formation via activation of NADPH oxidase 2 (Nox2) as well as ROS degradation via superoxide dismutase 2 (SOD2) and catalase (CAT) is stimulated by FGF23. Pre-incubation with a Klotho inhibitor blunts the FGF23-stimulated Akt-eNOS activation and NO synthesis, and decreases ROS degradation by blocking SOD2 and CAT enzymes, whereas FGF23-stimulated ROS synthesis via Nox2 is unaffected, resulting in low NO bioavailability and increased oxidative stress. Our data indicate that in the presence of Klotho, FGF23 induces NO release in HCAEC and its stimulating effects on ROS production are counterbalanced by increased ROS degradation. In states of Klotho deficiency, e.g., CKD, FGF23-mediated NO synthesis is blunted and ROS formation overrules ROS degradation. Thus, FGF23 excess may primarily promote oxidative stress and thus endothelial dysfunction. PMID:27448998

  20. Characterizing wave- and current- induced bottom shear stress: U.S. middle Atlantic continental shelf

    USGS Publications Warehouse

    Dalyander, P. Soupy; Butman, Bradford; Sherwood, Christopher R.; Signell, Richard P.; Wilkin, John L.

    2013-01-01

    Waves and currents create bottom shear stress, a force at the seabed that influences sediment texture distribution, micro-topography, habitat, and anthropogenic use. This paper presents a methodology for assessing the magnitude, variability, and driving mechanisms of bottom stress and resultant sediment mobility on regional scales using numerical model output. The analysis was applied to the Middle Atlantic Bight (MAB), off the U.S. East Coast, and identified a tidally-dominated shallow region with relatively high stress southeast of Massachusetts over Nantucket Shoals, where sediment mobility thresholds are exceeded over 50% of the time; a coastal band extending offshore to about 30 m water depth dominated by waves, where mobility occurs more than 20% of the time; and a quiescent low stress region southeast of Long Island, approximately coincident with an area of fine-grained sediments called the “Mud Patch”. The regional high in stress and mobility over Nantucket Shoals supports the hypothesis that fine grain sediment winnowed away in this region maintains the Mud Patch to the southwest. The analysis identified waves as the driving mechanism for stress throughout most of the MAB, excluding Nantucket Shoals and sheltered coastal bays where tides dominate; however, the relative dominance of low-frequency events varied regionally, and increased southward toward Cape Hatteras. The correlation between wave stress and local wind stress was lowest in the central MAB, indicating a relatively high contribution of swell to bottom stress in this area, rather than locally generated waves. Accurate prediction of the wave energy spectrum was critical to produce good estimates of bottom shear stress, which was sensitive to energy in the long period waves.

  1. Dependence of fungal characteristics on seed morphology and shear stress in bioreactors.

    PubMed

    Lu, Hongzhong; Li, Chao; Tang, Wenjun; Wang, Zejian; Xia, Jianye; Zhang, Siliang; Zhuang, Yingping; Chu, Ju; Noorman, Henk

    2015-05-01

    The fungal morphology during submerged cultivations has a profound influence on the overall performance of bioreactors. In this research, glucoamylase production by Aspergillus niger has been taken as a model to improve more insights. The morphology engineering could be conducted effectively by changing the seed morphology, as well as specific power input. During the fed-batch cultivations, pellet formation under milder shear stress field helped to reduce the broth viscosity, thus relieving oxygen limitation and promoting the enzyme production. Furthermore, we found that the relation between the shear stress field, which was characterized by energy dissipation rate/circulation function (EDCF), and enzyme activity was consistent with quadratic parabola, which threw light on the process optimization and scale-up for industrial enzyme production.

  2. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.

    PubMed

    Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst

    2016-02-01

    A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future.

  3. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.

    PubMed

    Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst

    2016-02-01

    A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future. PMID:26626828

  4. [Physical activity and endothelial dysfunction in type 2 diabetic patients: the role of nitric oxide and oxidative stress].

    PubMed

    Brinkmann, Christian; Schwinger, Robert H G; Brixius, Klara

    2011-06-01

    Type 2 diabetic patients have an increased level of systemic free radicals, which severely restrict the bioavailability of endothelium-derived nitric oxide (NO) and thus contribute to the development of an endothelial dysfunction. This review analyses the influence of physical training on molecular development mechanisms of the endothelial dysfunction and determines the significance of regular physical exercise for the endothelial function in type 2 diabetic patients. Systematic training reinforces the endogenic antioxidative capacity and results in a reduction in oxidative stress. Training - also combined with a change in diet - furthermore reduces hyperglycaemic blood sugar levels, thus curbing a major source of free radicals in diabetes. Moreover, physical exercise enhances vascular NO synthesis through an increased availability/activity of endothelial NO synthases (eNOS). Endurance, as well as resistance training with submaximal intensity or a combination of both forms of training is suitable to effectively improve the endothelial function in type 2 diabetic patients in the long term. PMID:21360292

  5. Shear stress influences the pluripotency of murine embryonic stem cells in stirred suspension bioreactors.

    PubMed

    Gareau, Tia; Lara, Giovanna G; Shepherd, Robert D; Krawetz, Roman; Rancourt, Derrick E; Rinker, Kristina D; Kallos, Michael S

    2014-04-01

    Pluripotent embryonic stem cells (ESCs) have been used increasingly in research as primary material for various tissue-engineering applications. Pluripotency, or the ability to give rise to all cells of the body, is an important characteristic of ESCs. Traditional methods use leukaemia inhibitory factor (LIF) to maintain murine embryonic stem cell (mESC) pluripotency in static and bioreactor cultures. When LIF is removed from mESCs in static cultures, pluripotency genes are downregulated and the cultures will spontaneously differentiate. Recently we have shown the maintenance of pluripotency gene expression of mESCs in stirred suspension bioreactors during differentiation experiments in the absence of LIF. This is undesired in a differentiation experiment, where the goal is downregulation of pluripotency gene expression and upregulation of gene expression characteristic to the differentiation. Thus, the objective of this study was to examine how effectively different levels of shear stress [100 rpm (6 dyne/cm(2) ), 60 rpm (3 dyne/cm(2) )] maintained and influenced pluripotency in suspension bioreactors. The pluripotency markers Oct-4, Nanog, Sox-2 and Rex-1 were assessed using gene expression profiles and flow-cytometry analysis and showed that shear stress does maintain and influence the gene expression of certain pluripotency markers. Some significant differences between the two levels of shear stress were seen and the combination of shear stress and LIF was observed to synergistically increase the expression of certain pluripotency markers. Overall, this study provides a better understanding of the environmental conditions within suspension bioreactors and how these conditions affect the pluripotency of mESCs.

  6. A Fiber Optic Sensor Sensitive To Normal Pressure And Shear Stress

    NASA Astrophysics Data System (ADS)

    Cuomo, Frank W.; Kidwell, Robert S.; Hu, Andong

    1986-11-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  7. Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Bajikar, Sateesh S.; Scott, Michael A.; Adcock, Edward E.

    2011-01-01

    This miniature or micro-sized semiconductor sensor design provides direct, nonintrusive measurement of skin friction or wall shear stress in fluid flow situations in a two-axis configuration. The sensor is fabricated by microelectromechanical system (MEMS) technology, enabling small size and multiple, low-cost reproductions. The sensors may be fabricated by bonding a sensing element wafer to a fluid-coupling element wafer. Using this layered machine structure provides a truly three-dimensional device.

  8. Imaging the cellular response to transient shear stress using time-resolved digital holography

    NASA Astrophysics Data System (ADS)

    Arita, Yoshihiko; Antkowiak, Maciej; Gunn-Moore, Frank; Dholakia, Kishan

    2014-02-01

    Shear stress has been recognized as one of the biophysical methods by which to permeabilize plasma membranes of cells. In particular, high pressure transient hydrodynamic flows created by laser-induced cavitation have been shown to lead to the uptake of fluorophores and plasmid DNA. While the mechanism and dynamics of cavitation have been extensively studied using a variety of time-resolved imaging techniques, the cellular response to the cavitation bubble and cavitation induced transient hydrodynamic flows has never been shown in detail. We use time-resolved quantitative phase microscopy to study cellular response to laser-induced cavitation bubbles. Laser-induced breakdown of an optically trapped polystyrene nanoparticle (500nm in diameter) irradiated with a single nanosecond laser pulse at 532nm creates transient shear stress to surrounding cells without causing cell lysis. A bi-directional transient displacement of cytoplasm is observed during expansion and collapse of the cavitation bubble. In some cases, cell deformation is only observable at the microsecond time scale without any permanent change in cell shape or optical thickness. On a time scale of seconds, the cellular response to shear stress and cytoplasm deformation typically leads to retraction of the cellular edge most exposed to the flow, rounding of the cell body and, in some cases, loss of cellular dry mass. These results give a new insight into the cellular response to laser-induced shear stress and related plasma membrane permeabilization. This study also demonstrates that laser-induced breakdown of an optically trapped nanoparticle offers localized cavitation (70 μm in diameter), which interacts with a single cell.

  9. Habitually exercising older men do not demonstrate age-associated vascular endothelial oxidative stress.

    PubMed

    Pierce, Gary L; Donato, Anthony J; LaRocca, Thomas J; Eskurza, Iratxe; Silver, Annemarie E; Seals, Douglas R

    2011-12-01

    We tested the hypothesis that older men who perform habitual aerobic exercise do not demonstrate age-associated vascular endothelial oxidative stress compared with their sedentary peers. Older exercising men (n=13, 62±2 years) had higher (P<0.05) physical activity (79±7 vs. 30±6 MET hours per week) and maximal exercise oxygen consumption (42±1 vs. 29±1 mL kg(-1) per minute) vs. sedentary men (n=28, 63±1 years). Brachial artery flow-mediated dilation (FMD), a measure of vascular endothelial function, was greater (P<0.05) in the exercising vs. sedentary older men (6.3±0.5 vs. 4.9±0.4%Δ) and not different than young controls (n=20, 25±1 years, 7.1±0.5%Δ). In vascular endothelial cells sampled from the brachial artery, nitrotyrosine, a marker of oxidative stress, was 51% lower in the exercising vs. sedentary older men (0.38±0.06 vs. 0.77±0.10 AU). This was associated with lower endothelial expression of the oxidant enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p47(phox) subunit, 0.33±0.05 vs. 0.61±0.09 AU) and the redox-sensitive transcription factor nuclear factor kappa B (NFκB) (p65 subunit, 0.36±0.05 vs. 0.72±0.09 AU). Expression of the antioxidant enzyme manganese superoxide dismutase (SOD) (0.57±0.13 vs. 0.30±0.04 AU) and activity of endothelium-bound extracellular SOD were greater (6.4±0.5 vs. 5.0±0.6 U mL(-1) per minute) in the exercising men (both P<0.05), but differences no longer were significant after correcting for adiposity and circulating metabolic factors. Overall, values for the young controls differed with those for the sedentary, but not the exercising older men. Older men who exercise regularly do not demonstrate vascular endothelial oxidative stress, and this may be a key molecular mechanism underlying their reduced risk of cardiovascular diseases.

  10. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ott, C. Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  11. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Frangos, J. A.

    1999-01-01

    Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

  12. Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses.

    PubMed

    Cada, Glenn; Loar, James; Garrison, Laura; Fisher, Richard; Neitzel, Duane

    2006-06-01

    Severe fluid forces are believed to be a source of injury and mortality to fish that pass through hydroelectric turbines. A process is described by which laboratory bioassays, computational fluid dynamics models, and field studies can be integrated to evaluate the significance of fluid shear stresses that occur in a turbine. Areas containing potentially lethal shear stresses were identified near the stay vanes and wicket gates, runner, and in the draft tube of a large Kaplan turbine. However, under typical operating conditions, computational models estimated that these dangerous areas comprise less than 2% of the flow path through the modeled turbine. The predicted volumes of the damaging shear stress zones did not correlate well with observed fish mortality at a field installation of this turbine, which ranged from less than 1% to nearly 12%. Possible reasons for the poor correlation are discussed. Computational modeling is necessary to develop an understanding of the role of particular fish injury mechanisms, to compare their effects with those of other sources of injury, and to minimize the trial and error previously needed to mitigate those effects. The process we describe is being used to modify the design of hydroelectric turbines to improve fish passage survival. PMID:16485161

  13. Activation of the Caenorhabditis elegans Degenerin Channel by Shear Stress Requires the MEC-10 Subunit.

    PubMed

    Shi, Shujie; Luke, Cliff J; Miedel, Mark T; Silverman, Gary A; Kleyman, Thomas R

    2016-07-01

    Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. elegans degenerin channels are sensitive to LSS. MEC-10 is required for a robust LSS response as the response was largely blunted in oocytes expressing homomeric MEC-4 or MEC-4d channels. We examined a series of MEC-10/MEC-4 chimeras to identify specific domains (amino terminus, first transmembrane domain, and extracellular domain) and sites (residues 130-132 and 134-137) within MEC-10 that are required for a robust response to shear stress. In addition, the LSS response was largely abolished by MEC-10 mutations encoded by a touch-insensitive mec-10 allele, providing a correlation between the channel's responses to two different mechanical forces. Our findings suggest that MEC-10 has an important role in the channel's response to mechanical forces. PMID:27189943

  14. Sensor for Direct Measurement of the Boundary Shear Stress in Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution laser optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  15. Quantifying Uncertainty in Inferred Viscosity and Basal Shear Stress Over Ice Streams

    NASA Astrophysics Data System (ADS)

    Lilien, D.; Joughin, I.; Smith, B. E.

    2015-12-01

    Basal friction and ice viscosity are both essential controls on glacier motion that cannot be measured by remote sensing. In order to initialize models, it is common practice to use inverse methods to determine the basal shear stress over grounded ice and the viscosity of floating ice. It is difficult to quantify the uncertainty in the inferred parameters due to the computational expense of the procedure, the choice of regularization parameter, and the errors in the various measurements used as input, as well as differences in inversion method. Various methods can be used to perform the inversion, and these differing procedures cause discrepancies in the inferred properties of the ice streams. Additionally, the inferred parameters depend on the sophistication of the approximation for ice flow that is used, e.g. full-Stokes or the shallow-shelf approximation. We analyze the impact the choices of modeling procedure and inversion method have on inferred ice properties. To do this we perform a number of inversions for basal shear stress and for ice shelf viscosity over Smith, Pope, and Kohler Glaciers in West Antarctica and assess the sensitivity to modelers' choices. We use both a three dimensional full-Stokes model and a two dimensional shallow-shelf model, with both Robin and adjoint type inversion procedures, to infer basal shear stress and ice viscosity. We compare the results of these different methods and evaluate their implication on uncertainty in the unknown parameters.

  16. Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Bassani, J. L.; Erdogan, F.

    1978-01-01

    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

  17. Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Bassani, J. L.; Erdogan, F.

    1979-01-01

    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks is considered. For the semi-infinite crack the problem is solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses are calculated. For finite cracks the problem is reduced to a pair of integral equations. Numerical results are obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles.

  18. The effect of turbulent viscous shear stress on red blood cell hemolysis.

    PubMed

    Yen, Jen-Hong; Chen, Sheng-Fu; Chern, Ming-Kai; Lu, Po-Chien

    2014-06-01

    Non-physiologic turbulent flow occurs in medical cardiovascular devices resulting in hemodynamic stresses that may damage red blood cells (RBC) and cause hemolysis. Hemolysis was previously thought to result from Reynolds shear stress (RSS) in turbulent flows. A more recent hypothesis suggests that turbulent viscous shear stresses (TVSS) at spatial scales similar in size to RBCs are related to their damage. We applied two-dimensional digital particle image velocimetry to measure the flow field of a free-submerged axisymmetric jet that was utilized to hemolyze porcine RBCs in selected locations. Assuming a dynamic equilibrium for the sub-grid scale (SGS) energy flux between the resolved and the sub-grid scales, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields. The SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then TVSS were estimated. Our results showed the hemolytic threshold of the Reynolds stresses was up to 517 Pa, and the TVSSs were at least an order of magnitude less than the RSS. The results provide further insight into the relationship between turbulence and RBC damage.

  19. Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells.

    PubMed

    Tarbell, John M; Shi, Zhong-Dong

    2013-01-01

    In this paper, a simple theoretical model is developed to describe the transmission of force from interstitial fluid flow to the surface of a cell covered by a proteoglycan / glycoprotein layer (glycocalyx) and embedded in an extracellular matrix. Brinkman equations are used to describe flow through the extracellular matrix and glycocalyx layers and the solid mechanical stress developed in the glycocalyx by the fluid flow loading is determined. Using reasonable values for the Darcy permeability of extracellular matrix and glycocalyx layers and interstitial flow velocity, we are able to estimate the fluid and solid shear stresses imposed on the surface of embedded vascular, cartilage and tumor cells in vivo and in vitro. The principal finding is that the surface solid stress is typically one to two orders of magnitude larger than the surface fluid stress. This indicates that interstitial flow shear stress can be sensed by the cell surface glycocalyx, supporting numerous recent observations that interstitial flow can induce mechanotransduction in embedded cells. This study may contribute to understanding of interstitial flow-related mechanobiology in embryogenesis, tumorigenesis, tissue physiology and diseases and has implications in tissue engineering.

  20. Evidence of Oxidative Stress in the Pathogenesis of Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Jurkunas, Ula V.; Bitar, Maya S.; Funaki, Toshinari; Azizi, Behrooz

    2010-01-01

    Fuchs endothelial corneal dystrophy (FECD) is a progressive, blinding disease characterized by corneal endothelial (CE) cell apoptosis. Corneal transplantation is the only measure currently available to restore vision in these patients. Despite the identification of some genetic factors, the pathophysiology of FECD remains unclear. In this study, we observed a decrease in the antioxidant response element-driven antioxidants in FECD corneal endothelium. We further demonstrated that nuclear factor erythroid 2-related factor 2, a transcription factor known to bind the antioxidant response element and activate antioxidant defense, is down-regulated in FECD endothelium. Importantly, we detected significantly higher levels of oxidative DNA damage and apoptosis in FECD endothelium compared with normal controls and pseudophakic bullous keratopathy (iatrogenic CE cell loss) specimens. A marker of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, colocalized to mitochondria, indicating that the mitochondrial genome is the specific target of oxidative stress in FECD. Oxidative DNA damage was not detected in pseudophakic bullous keratopathy corneas, whereas it colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells in FECD samples. Ex vivo, oxidative stress caused characteristic morphological changes and apoptosis of CE, suggestive of findings that characterize FECD in vivo. Together, these data suggest that suboptimal nuclear factor erythroid 2-related factor 2-regulated defenses may account for oxidant-antioxidant imbalance in FECD, which in turn leads to oxidative DNA damage and apoptosis. This study provides evidence that oxidative stress plays a key role in FECD pathogenesis. PMID:20847286

  1. Recent Developments in the Use of Liquid Crystal Coatings for Full-Surface Shear Stress Vector Measurements

    NASA Technical Reports Server (NTRS)

    Reda, D. C.; Wilder, M. C.; Zilliac, G.; Hu, K. C.; Whitney, D. J.; Deardorff, D. G.; Moffat, R. J.; Farina, D. J.; Danek, C.; Martinez, R.; Davis, Sanford S. (Technical Monitor)

    1995-01-01

    Under normal white-light illumination and oblique observation, liquid crystal coating (LCC) color-change response to shear depends on both shear st