Science.gov

Sample records for endothelin a-receptor blockade

  1. Selective endothelin-A receptor blockade attenuates endotoxin-induced pulmonary hypertension and pulmonary vascular dysfunction

    PubMed Central

    2014-01-01

    Abstract Endothelin-1 is a potent mediator of sepsis-induced pulmonary hypertension (PH). The pulmonary vascular effects of selective blockade of endothelin receptor subtype A (ETAR) during endotoxemia remain unknown. We hypothesized that selective ETAR antagonism attenuates endotoxin-induced PH and improves pulmonary artery (PA) vasoreactivity. Adult male Sprague-Dawley rats (250–450 g) received lipopolysaccharide (LPS; Salmonella typhimurium; 20 mg/kg intraperitoneally) or vehicle 6 hours before hemodynamic assessment and tissue harvest. The selective ETAR antagonist sitaxsentan (10 or 20 mg/kg) or vehicle was injected intravenously 3 hours after receipt of LPS. Right ventricular systolic pressure, mean arterial pressure (MAP), cardiac output (CO), oxygenation (P/F ratio), and serum bicarbonate were measured. Bronchoalveolar lavage (BAL) cell differential and lung wet-to-dry ratios were obtained. Endothelium-dependent and endothelium-independent vasorelaxations were determined in isolated PA rings. PA interleukin (IL)-1β, IL-6, tumor necrosis factor α (TNF-α), and inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) were measured. LPS caused PH, decreased MAP, CO, and serum bicarbonate, and increased PA IL-1β, IL-6, TNF-α, and iNOS mRNA. Sitaxsentan attenuated sepsis-induced PH and increased MAP. The P/F ratio, CO, serum bicarbonate, and BAL neutrophilia were not affected by sitaxsentan. In isolated PA rings, while not affecting phenylephrine-induced vasocontraction or endothelium-dependent relaxation, sitaxsentan dose-dependently attenuated LPS-induced alterations in endothelium-independent relaxation. PA cytokine mRNA levels were not significantly attenuated by ETAR blockade. We conclude that ETAR blockade attenuates endotoxin-induced alterations in systemic and PA pressures without negatively affecting oxygenation. This protective effect appears to be mediated not by attenuation of sepsis-induced cardiac dysfunction, acidosis, or alveolar

  2. Improvement in lung diffusion by endothelin A receptor blockade at high altitude.

    PubMed

    de Bisschop, Claire; Martinot, Jean-Benoit; Leurquin-Sterk, Gil; Faoro, Vitalie; Guénard, Hervé; Naeije, Robert

    2012-01-01

    Lung diffusing capacity has been reported variably in high-altitude newcomers and may be in relation to different pulmonary vascular resistance (PVR). Twenty-two healthy volunteers were investigated at sea level and at 5,050 m before and after random double-blind intake of the endothelin A receptor blocker sitaxsentan (100 mg/day) vs. a placebo during 1 wk. PVR was estimated by Doppler echocardiography, and exercise capacity by maximal oxygen uptake (Vo(2 max)). The diffusing capacities for nitric oxide (DL(NO)) and carbon monoxide (DL(CO)) were measured using a single-breath method before and 30 min after maximal exercise. The membrane component of DL(CO) (Dm) and capillary volume (Vc) was calculated with corrections for hemoglobin, alveolar volume, and barometric pressure. Altitude exposure was associated with unchanged DL(CO), DL(NO), and Dm but a slight decrease in Vc. Exercise at altitude decreased DL(NO) and Dm. Sitaxsentan intake improved Vo(2 max) together with an increase in resting and postexercise DL(NO) and Dm. Sitaxsentan-induced decrease in PVR was inversely correlated to DL(NO). Both DL(CO) and DL(NO) were correlated to Vo(2 max) at sea level (r = 0.41-0.42, P < 0.1) and more so at altitude (r = 0.56-0.59, P < 0.05). Pharmacological pulmonary vasodilation improves the membrane component of lung diffusion in high-altitude newcomers, which may contribute to exercise capacity.

  3. Up-Regulation of Endothelin Type A Receptor in Human and Rat Radiation Proctitis: Preclinical Therapeutic Approach With Endothelin Receptor Blockade

    SciTech Connect

    Jullien, Nicolash; Blirando, Karl; Milliat, Fabien; Benderitter, Marc; Francois, Agnes

    2009-06-01

    Purpose: Rectum radiation damage and fibrosis are often associated with radiation therapy of pelvic tumors. The endothelin (ET) system has been implicated in several fibrotic diseases but never studied in the context of gastrointestinal radiation damage. This study assessed modifications in ET type 1 (ET-1), ET type A receptor (ET{sub A}), and ET type B receptor (ET{sub B}) localization and/or expression in irradiated human rectal tissue and in a rat model of delayed colorectal injury. We also evaluated the therapeutic potential of long-term ET receptor blockade. Methods and Materials: Routine histological studies of sections of healthy and radiation-injured human rectum tissue were done; the sections were also immunostained for ET{sub A} and ET{sub B} receptors. The rat model involved the delivery of 27 Gy in a single dose to the colons and rectums of the animals. The ET-1/ET{sub A}/ET{sub B} expression and ET{sub A}/ET{sub B} localization were studied at 10 weeks postexposure. The abilities of bosentan and atrasentan to protect against delayed rectal injury were also investigated. Results: The immunolocalization of ET{sub A} and ET{sub B} in healthy human rectums was similar to that in rat rectums. However, strong ET{sub A} immunostaining was seen in the presence of human radiation proctitis, and increased ET{sub A} mRNA levels were seen in the rat following colorectal irradiation. Immunostaining for ET{sub A} was also strongly positive in rats in areas of radiation-induced mucosal ulceration, atypia, and fibroproliferation. However, neither bosentan nor atrasentan prevented radiation damage to the rectum when given long term. The only effect seen for atrasentan was an increased number of sclerotic vessel sections in injured tissues. Conclusions: As the result of the overexpression of ET{sub A}, radiation exposure deregulates the endothelin system through an 'ET{sub A} profile' in the human and rodent rectum. However, therapeutic interventions involving mixed or

  4. Endothelin-a receptor antagonism after renal angioplasty enhances renal recovery in renovascular disease.

    PubMed

    Chade, Alejandro R; Tullos, Nathan; Stewart, Nicholas J; Surles, Bret

    2015-05-01

    Percutaneous transluminal renal angioplasty/stenting (PTRAS) is frequently used to treat renal artery stenosis and renovascular disease (RVD); however, renal function is restored in less than one half of the cases. This study was designed to test a novel intervention that could refine PTRAS and enhance renal recovery in RVD. Renal function was quantified in pigs after 6 weeks of chronic RVD (induced by unilateral renal artery stenosis), established renal damage, and hypertension. Pigs with RVD then underwent PTRAS and were randomized into three groups: placebo (RVD+PTRAS), chronic endothelin-A receptor (ET-A) blockade (RVD+PTRAS+ET-A), and chronic dual ET-A/B blockade (RVD+PTRAS+ET-A/B) for 4 weeks. Renal function was again evaluated after treatments, and then, ex vivo studies were performed on the stented kidney. PTRAS resolved renal stenosis, attenuated hypertension, and improved renal function but did not resolve renal microvascular rarefaction, remodeling, or renal fibrosis. ET-A blocker therapy after PTRAS significantly improved hypertension, microvascular rarefaction, and renal injury and led to greater recovery of renal function. Conversely, combined ET-A/B blockade therapy blunted the therapeutic effects of PTRAS alone or PTRAS followed by ET-A blockade. These data suggest that ET-A receptor blockade therapy could serve as a coadjuvant intervention to enhance the outcomes of PTRAS in RVD. These results also suggest that ET-B receptors are important for renal function in RVD and may contribute to recovery after PTRAS. Using clinically available compounds and techniques, our results could contribute to both refinement and design of new therapeutic strategies in chronic RVD.

  5. Chronic blockade of endothelin A and B receptors using macitentan in experimental renovascular disease

    PubMed Central

    Tullos, Nathan A.; Stewart, Nicholas J.; Davidovich, Ryan; Chade, Alejandro R.

    2015-01-01

    Background Emerging research has identified the endothelin (ET)-1 pathway as a potential target for novel renoprotective therapies. We recently showed that selective ET-A receptor antagonism in chronic renovascular disease (RVD) improves renal function and reduces renal injury. Although ET-A and -B have opposing roles, in some clinical situations they may induce similar effects. Thus, we hypothesized that simultaneous blockade of the ET-A and -B receptors would protect the kidney during RVD. Methods Unilateral RVD was induced in pigs. After 6 weeks, single-kidney function was quantified in vivo using multi-detector computer tomography. Pigs were subsequently divided into untreated (RVD, n = 7) or daily-treated with the dual ET-A/B receptor antagonist macitentan (RVD + macitentan, n = 6) for 4 weeks. At 10 weeks, in vivo studies were repeated, then pigs were euthanized and ex vivo studies performed in the stenotic kidney to quantify inflammation, fibrosis, microvascular density and remodeling. Results Four weeks of macitentan therapy modestly improved renal blood flow (29%, P = 0.06 versus pre-treatment) and showed protective effects on the renal parenchyma by attenuating inflammation and glomerulosclerosis, reducing apoptosis and tubular casts and improving albuminuria and cortical microvessel density. No overt adverse effects were observed. Conclusion Possibly by inducing a pro-survival renal microenvironment, macitentan increased renal microvascular density, promoted cell survival and decreased injury, which in turn improved stenotic kidney hemodynamics in our model. Our results further support the safety of using macitentan in patients with concomitant chronic renal disease and supported the feasibility of a new strategy that may preserve the stenotic kidney in RVD. PMID:25438341

  6. Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease.

    PubMed

    Dufek, Brianna; Meehan, Daniel T; Delimont, Duane; Cheung, Linda; Gratton, Michael Anne; Phillips, Grady; Song, Wenping; Liu, Shiguang; Cosgrove, Dominic

    2016-08-01

    Recent work demonstrates that Alport glomerular disease is mediated through a biomechanical strain-sensitive activation of mesangial actin dynamics. This occurs through a Rac1/CDC42 cross-talk mechanism that results in the invasion of the subcapillary spaces by mesangial filopodia. The filopodia deposit mesangial matrix proteins in the glomerular basement membrane, including laminin 211, which activates focal adhesion kinase in podocytes culminating in the up-regulation of proinflammatory cytokines and metalloproteinases. These events drive the progression of glomerulonephritis. Here we test whether endothelial cell-derived endothelin-1 is up-regulated in Alport glomeruli and further elevated by hypertension. Treatment of cultured mesangial cells with endothelin-1 activates the formation of drebrin-positive actin microspikes. These microspikes do not form when cells are treated with the endothelin A receptor antagonist sitaxentan or under conditions of small, interfering RNA knockdown of endothelin A receptor mRNA. Treatment of Alport mice with sitaxentan results in delayed onset of proteinuria, normalized glomerular basement membrane morphology, inhibition of mesangial filopodial invasion of the glomerular capillaries, normalization of glomerular expression of metalloproteinases and proinflammatory cytokines, increased life span, and prevention of glomerulosclerosis and interstitial fibrosis. Thus endothelin A receptor activation on mesangial cells is a key event in initiation of Alport glomerular disease in this model.

  7. ENDOTHELIN-A RECEPTOR ANTAGONISM IN EMBRYO CULTURE: WINDOW OF SENSITIVITY AND TIMING OF DEFECT

    EPA Science Inventory

    BRANNEN, K.C., J.M. ROGERS, and E.S. HUNTER, Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, and Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Endothelin-A receptor antagonism in embryo culture: w...

  8. Endothelin

    PubMed Central

    Hyndman, Kelly A.; Dhaun, Neeraj; Southan, Christopher; Kohan, Donald E.; Pollock, Jennifer S.; Pollock, David M.; Webb, David J.; Maguire, Janet J.

    2016-01-01

    The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists. PMID:26956245

  9. Organization, structure, chromosomal assignment, and expression of the gene encoding the human endothelin-A receptor.

    PubMed

    Hosoda, K; Nakao, K; Tamura, N; Arai, H; Ogawa, Y; Suga, S; Nakanishi, S; Imura, H

    1992-09-15

    We have isolated and characterized the gene for the human endothelin-A receptor. Southern blot analyses demonstrated a single copy gene for the receptor. The gene spans more than 40 kilobases and contains eight exons and seven introns. Intron 1 exists in the 5'-noncoding region, and introns 2-7 occur in the coding region. The locations of introns 2-7 exist before or after the regions encoding the membrane-spanning domains. The transcription start site, determined by primer extension experiments, is 502 base pairs upstream of the methionine initiation codon. The 5'-flanking region lacks a typical TATA box but contains a potential SP-1-binding site 27 base pairs upstream of the transcription start site. Using human-rodent somatic hybrid cell DNA, the gene was assigned to human chromosome 4. Northern blot analyses revealed a 4.3-kilobase mRNA in a wide variety of human tissues, at the highest level in the aorta and at a substantial level in the cultured human mesangial cells. This is the first report of cloning of a gene for a member of the endothelin receptor family. The present study should give a clue to the discovery of possible disorders of the endothelin-A receptor, as well as facilitate the elucidation of the mechanisms by which the gene expression is regulated.

  10. Endothelin-1/endothelin A receptor-mediated biased signaling is a new player in modulating human ovarian cancer cell tumorigenesis.

    PubMed

    Teoh, Jian-peng; Park, Kyoung-mi; Wang, Yongchao; Hu, Qiuping; Kim, Sangmi; Wu, Guangyu; Huang, Shuang; Maihle, Nita; Kim, Il-man

    2014-12-01

    The endothelin-1 (ET-1)/endothelin A receptor (ETAR, a G protein-coupled receptor) axis confers pleiotropic effects on both tumor cells and the tumor microenvironment, modulating chemo-resistance and other tumor-associated processes by activating Gαq- and β-arrestin-mediated pathways. While the precise mechanisms by which these effects occur remain to be elucidated, interference with ETAR signaling has emerged as a promising antitumor strategy in many cancers including ovarian cancer (OC). However, current clinical approaches using ETAR antagonists in the absence of a detailed knowledge of downstream signaling have resulted in multiple adverse side effects and limited therapeutic efficacy. To maximize the safety and efficacy of ETAR-targeted OC therapy, we investigated the role of other G protein subunits such as Gαs in the ETAR-mediated ovarian oncogenic signaling. In HEY (human metastatic OC) cells where the ET-1/ETAR axis is well-characterized, Gαs signaling inhibits ETAR-mediated OC cell migration, wound healing, proliferation and colony formation on soft agar while inducing OC cell apoptosis. Mechanistically, ET-1/ETAR is coupled to Gαs/cAMP signaling in the same ovarian carcinoma-derived cell line. Gαs/cAMP/PKA activation inhibits ETAR-mediated β-arrestin activation of angiogenic/metastatic Calcrl and Icam2 expression. Consistent with our findings, Gαs overexpression is associated with improved survival in OC patients in the analysis of the Cancer Genome Atlas data. In conclusion, our results indicate a novel function for Gαs signaling in ET-1/ETAR-mediated OC oncogenesis and may provide a rationale for a biased signaling mechanism, which selectively activates Gαs-coupled tumor suppressive pathways while blocking Gαq-/β-arrestin-mediated oncogenic pathways, to improve the targeting of the ETAR axis in OC.

  11. Dual Endothelin Receptor Blockade Abrogates Right Ventricular Remodeling and Biventricular Fibrosis in Isolated Elevated Right Ventricular Afterload

    PubMed Central

    Nielsen, Eva Amalie; Sun, Mei; Honjo, Osami; Hjortdal, Vibeke E.; Redington, Andrew N.; Friedberg, Mark K.

    2016-01-01

    Background Pulmonary arterial hypertension is usually fatal due to right ventricular failure and is frequently associated with co-existing left ventricular dysfunction. Endothelin-1 is a powerful pro-fibrotic mediator and vasoconstrictor that is elevated in pulmonary arterial hypertension. Endothelin receptor blockers are commonly used as pulmonary vasodilators, however their effect on biventricular injury, remodeling and function, despite elevated isolated right ventricular afterload is unknown. Methods Elevated right ventricular afterload was induced by progressive pulmonary artery banding. Seven rabbits underwent pulmonary artery banding without macitentan; 13 received pulmonary artery banding + macitentan; and 5 did not undergo inflation of the pulmonary artery band (sham-operated controls). Results: Right and left ventricular collagen content was increased with pulmonary artery banding compared to sham-operated controls and ameliorated by macitentan. Right ventricular fibrosis signaling (connective tissue growth factor and endothelin-1 protein levels); extra-cellular matrix remodeling (matrix-metalloproteinases 2 and 9), apoptosis and apoptosis-related peptides (caspases 3 and 8) were increased with pulmonary artery banding compared with sham-operated controls and decreased with macitentan. Conclusion Isolated right ventricular afterload causes biventricular fibrosis, right ventricular apoptosis and extra cellular matrix remodeling, mediated by up-regulation of endothelin-1 and connective tissue growth factor signaling. These pathological changes are ameliorated by dual endothelin receptor blockade despite persistent elevated right ventricular afterload. PMID:26765263

  12. SY 15-1 MECHANISM OF ENDOTHELIN-1 REGULATION IN HYPERTENSION: THE ROLE OF ENDOTHELIN TYPE A RECEPTORS.

    PubMed

    Schiffrin, Ernesto

    2016-09-01

    For many years we have studied models of hypertension in which endothelin-1 (ET-1) is overexpressed. These include DOCA-salt hypertensive rats, Dahl-salt sensitive rats, and stroke prone SHR, in all of which ET-1-mediated mechanisms play a role in blood pressure elevation and vascular injury. In humans we demonstrated overexpression of ET-1 in the endothelium of small arteries from stage 2 hypertensive patients. We have also produced a mouse that overexpresses human ET-1 in the endothelium using a Tie-2 promoter, which exhibited increased oxidative stress and inflammation, hypertrophic remodeling and endothelial dysfunction of small arteries but only slight blood pressure elevation. More recently, using Cre/loxP technology we generated a transgenic mouse with tamoxifen-inducible endothelium-restricted human ET-1 overexpression (ieET-1). ieET-1 mice exhibited BP rise after three weeks of induction in an ET type A receptor (ETAR)-dependent manner, in absence of vascular and kidney injury. Long-term exposure to endothelial ET-1 overexpression, however, caused sustained BP elevation, endothelial dysfunction and vascular stiffening and oxidative stress that was ETAR-dependent. In conclusion, ETA receptors mediate blood pressure elevation and vascular injury induced by ET-1. PMID:27643132

  13. PTEN overexpression attenuates angiogenic processes of endothelial cells by blockade of endothelin-1/endothelin B receptor signaling.

    PubMed

    Kuo, Hsiao-Mei; Lin, Chun-Yao; Lam, Hing-Chung; Lin, Pey-Ru; Chan, Hoi-Hung; Tseng, Jui-Cheng; Sun, Cheuk-Kwan; Hsu, Te-Fa; Wu, Chia-Ching; Yang, Chao-Yuh; Hsu, Ching-Mei; Tai, Ming-Hong

    2012-04-01

    Arteriovenous (AV) graft is frequently used as vascular access in hemodialysis patients. However, clotting or thrombosis of AV grafts often occurs and requires surgical removal. At present, the molecular pathogenesis underlying thrombosis of AV graft is not clear. The PTEN/Akt signaling has been implicated in the pathogenesis of vascular diseases. In this study, elevated PTEN expression and concomitant Akt inactivation was observed in endothelium of atherosclerotic brachial arteries from hemodialysis patients. To investigate whether PTEN upregulation affects endothelial function, adenovirus-mediated PTEN (Ad-PTEN) overexpression was performed in aorta rings and cultured endothelial cells. It was found that PTEN overexpression potently inhibited the microvessel sprouting in aorta rings and the angiogenic activities of endothelial cells including migration and tube formation. On the contrary, PTEN knockdown by RNA interference promoted the endothelial migration and reversed the Ad-PTEN-induced inhibition of endothelial migration. Expression analysis showed that PTEN overexpression attenuated the expression of endothelin-1 (ET-1) and endothelin B receptor (ETBR) in endothelial cells at transcriptional levels. However, exogenous ET-1 supply only partially reversed the PTEN-induced inhibition of migration and tube formation. This was delineated due to that PTEN overexpression also perturbed endothelial nitric oxide synthase (eNOS) activation and vascular endothelial growth factor (VEGF) release. In summary, PTEN upregulation induces endothelial dysfunction by attenuating the availability and signaling of multiple angiogenic pathways in endothelial cells, thereby may contribute to thrombosis of AV graft.

  14. Plasma endothelin-1 and single nucleotide polymorphisms of endothelin-1 and endothelin type A receptor genes as risk factors for normal tension glaucoma

    PubMed Central

    Kosior-Jarecka, Ewa; Łukasik, Urszula; Aung, Tin; Khor, Chiea Chuen; Kocki, Janusz; Żarnowski, Tomasz

    2016-01-01

    Purpose The purpose of this study was to determine whether four single nucleotide polymorphisms (SNPs) of endothelin and endothelin receptor type A genes can constitute a risk factor for normal tension glaucoma (NTG) and high tension glaucoma (HTG). Methods The study included 160 patients with NTG, 124 patients with HTG, and 165 healthy controls. To analyze the frequency of polymorphic variants of the endothelin EDN gene (K198N) and the endothelin receptor type A gene EDN RA (C1222T, C70G, G231A), DNA was isolated from peripheral blood, and SNP genotyping was performed using the real-time PCR (RT–PCR) method. Plasma endothelin (ET) concentrations were detected using an enzyme immunoassay. Endothelin levels were compared with genotype and allele distributions, patients’ clinical status, and various risk factors for NTG. Results There was a significant difference between the patients with NTG and HTG and the controls (p = 0.035, p = 0.008) regarding the genotype of the C1222T and C70G polymorphism. Plasma concentrations of ET did not differ between the NTG and HTG groups, and no significant correlation with intraocular pressure (IOP), best-corrected visual acuity (BCVA), and the cup to disc ratio (c/d ratio) was seen in patients with NTG. Plasma endothelin levels showed a noticeably positive correlation with age in the NTG group (R = 0.249, p = 0.042). Higher endothelin levels corresponded to more advanced visual field damage. No statistical difference was observed between variant genotypes of K198N and the ET-1 plasma concentration in patients with NTG, whereas a slightly higher ET level was observed in the patients with HTG with the GT genotype in comparison to those with the GG genotype (p = 0.001). The C1222T polymorphism significantly affected the plasma ET level in patients with NTG. The TT genotype carriers had the highest ET level, and the CC genotype carriers the lowest (p = 0.034). The AA variant genotype of the G231A polymorphism exhibited the highest

  15. Endothelin-A blockade attenuates systemic and renal hemodynamic effects of L-NAME in humans.

    PubMed

    Montanari, A; Biggi, A; Carra, N; Fasoli, E; Calzolari, M; Corsini, F; Perinotto, P; Novarini, A

    2000-01-01

    Eight Na-repleted volunteers underwent 3 separate 90-minute infusions of either N(G)-nitro-L-arginine methyl ester (L-NAME) 3.0 mg. kg(-1). min(-1) or endothelin-A receptor (ET-A) blocker BQ-123 (BQ) 0.125 nmol. kg(-1). min(-1) or both. Mean arterial pressure (MAP), glomerular filtration rate (GFR), renal blood flow (RBF), renal vascular resistances (RVR), and sodium excretion rate (UNaV) were measured at baseline (b) and from 0 to 45 minutes (period 1) and 45 to 90 minutes (period 2) of infusion. BQ alone had no effect. GFR declined by 4.9% (P<0.001 versus b) in period 1, to 9.9% (P<0. 001) in period 2 with L-NAME, and by 3.3% (P<0.01) to 6.6% (P<0.001) with L-NAME plus BQ (P=NS between L-NAME and L-NAME plus BQ). UNaV fell equally with L-NAME or L-NAME plus BQ. MAP rose significantly in period 2 with L-NAME (6.9%; P<0.001) but not with coinfused BQ (2. 1%; P=NA versus b, P=0.005 versus L-NAME alone). RBF declined by 12. 2% (P<0.001) to 18.3% (P<0.001) with L-NAME and by 4.6% (P<0.005) to 8.2% (P<0.001) with L-NAME plus BQ. These changes were smaller with L-NAME plus BQ (P<0.05 in period 1 and P<0.02 in period 2). Blunted changes were also seen for RVR (P<0.005 in period 1 and P<0.001 in period 2 between L-NAME alone and L-NAME plus BQ). These findings show that systemic and renal vasoconstriction due to L-NAME are attenuated by BQ, which suggests that an interaction between endogenous nitric oxide production and ET-A activity participates in the maintenance of baseline systemic and renal vascular tone in humans.

  16. miR-30a inhibits endothelin A receptor and chemoresistance in ovarian carcinoma

    PubMed Central

    Rosanò, Laura; Tocci, Piera; Semprucci, Elisa; Di Castro, Valeriana; Caprara, Valentina; Ferrandina, Gabriella; Sacconi, Andrea; Blandino, Giovanni; Bagnato, Anna

    2016-01-01

    Drug resistance remains the major clinical barrier to successful treatment in epithelial ovarian carcinoma (EOC) patients, and the evidence of microRNA involvement in drug resistance has been recently emerging. Endothelin-1 (ET-1)/ETA receptor (ETAR) axis is aberrantly activated in chemoresistant EOC cells and elicits pleiotropic effects promoting epithelial-to-mesenchymal transition (EMT) and the acquisition of chemoresistance. However, the relationship between ETAR and miRNA is still unknown. Hence, in this study we evaluated whether dysregulation of miRNA might enhance ETAR expression in sensitive and resistant EOC cells. Based on bioinformatic tools, we selected putative miRNA able to recognize the 3′UTR of ETAR. An inverse correlation was observed between the expression levels of miR-30a and ETAR in both EOC cell lines and tumor samples. miR-30a was found to specifically bind to the 3′UTR of ETAR mRNA, indicating that ETAR is a direct target of miR-30a. Overexpression of miR-30a decreased Akt and mitogen activated protein kinase signaling pathway activation, cell proliferation, invasion, plasticity, EMT marker levels, and vascular endothelial growth factor release. Interestingly, ectopic expression of miR-30a re-sensitized platinum-resistant EOC cells to cisplatinum-induced apoptosis. Consistently, resistant EOC xenografts overexpressing miR-30a resulted in significantly less tumor growth than controls. Together our study provides a new perspective on the regulatory mechanism of ETAR gene. Interestingly, our findings highlight that blockade of ETAR regulatory axis is the mechanism underlying the tumor suppressor function of miR-30a in chemoresistant EOC cells. PMID:26675258

  17. Endothelin-A receptor-dependent and -independent signaling pathways in establishing mandibular identity

    PubMed Central

    Ruest, Louis-Bruno; Xiang, Xilin; Lim, Kim-Chew; Levi, Giovanni; Clouthier, David E.

    2009-01-01

    Summary The lower jaw skeleton is derived from cephalic neural crest (CNC) cells that reside in the mandibular region of the first pharyngeal arch. Endothelin-A receptor (Ednra) signaling in crest cells is crucial for their development, as Ednra−/− mice are born with severe craniofacial defects resulting in neonatal lethality. In this study, we undertook a more detailed analysis of mandibular arch development in Ednra−/− embryos to better understand the cellular and molecular basis for these defects. We show that most lower jaw structures in Ednra−/− embryos undergo a homeotic transformation into maxillary-like structures similar to those observed in Dlx5/Dlx6−/− embryos, though lower incisors are still present in both mutant embryos. These structural changes are preceded by aberrant expansion of proximal first arch gene expression into the distal arch, in addition to the previously described loss of a Dlx6/Hand2 expression network. However, a small distal Hand2 expression domain remains. Although this distal expression is not dependent on either Ednra or Dlx5/Dlx6 function, it may require one or more GATA factors. Using fate analysis, we show that these distal Hand2-positive cells probably contribute to lower incisor formation. Together, our results suggest that the establishment of a ‘mandibular identity’ during lower jaw development requires both Ednra-dependent and -independent signaling pathways. PMID:15306564

  18. Anti-Hypotensive Treatment and Endothelin Blockade Synergistically Antagonize Exercise Fatigue in Rats under Simulated High Altitude

    PubMed Central

    Radiloff, Daniel; Zhao, Yulin; Boico, Alina; Blueschke, Gert; Palmer, Gregory; Fontanella, Andrew; Dewhirst, Mark; Piantadosi, Claude A.; Noveck, Robert; Irwin, David; Hamilton, Karyn; Klitzman, Bruce; Schroeder, Thies

    2014-01-01

    Rapid ascent to high altitude causes illness and fatigue, and there is a demand for effective acute treatments to alleviate such effects. We hypothesized that increased oxygen delivery to the tissue using a combination of a hypertensive agent and an endothelin receptor A antagonist drugs would limit exercise-induced fatigue at simulated high altitude. Our data showed that the combination of 0.1 mg/kg ambrisentan with either 20 mg/kg ephedrine or 10 mg/kg methylphenidate significantly improved exercise duration in rats at simulated altitude of 4,267 m, whereas the individual compounds did not. In normoxic, anesthetized rats, ephedrine alone and in combination with ambrisentan increased heart rate, peripheral blood flow, carotid and pulmonary arterial pressures, breathing rate, and vastus lateralis muscle oxygenation, but under inspired hypoxia, only the combination treatment significantly enhanced muscle oxygenation. Our results suggest that sympathomimetic agents combined with endothelin-A receptor blockers offset altitude-induced fatigue in rats by synergistically increasing the delivery rate of oxygen to hypoxic muscle by concomitantly augmenting perfusion pressure and improving capillary conductance in the skeletal muscle. Our findings might therefore serve as a basis to develop an effective treatment to prevent high-altitude illness and fatigue in humans. PMID:24960187

  19. Dissecting the functional significance of endothelin A receptors in peripheral nociceptors in vivo via conditional gene deletion.

    PubMed

    Stösser, Sebastian; Agarwal, Nitin; Tappe-Theodor, Anke; Yanagisawa, Masashi; Kuner, Rohini

    2010-02-01

    The peptide endothelin-1 (ET1), which was originally identified as a vasoconstrictor, has emerged as a critical regulator of a number of painful conditions, including inflammatory pain and tumor-associated pain. There is considerable pharmacological evidence supporting a role for endothelin A receptors (ET(A)) in mediating ET1-induced pro-algesic functions. ET(A) receptors are expressed in small-diameter nociceptive neurons, but also found in a variety of other cell types in peripheral tissues, including immune cells, keratinocytes, endothelial cells, which have the potential to modulate nociception. To elucidate the functional contribution of ET(A) receptors expressed in sensory neurons towards the functions of the ET1 axis in pathological pain states, we undertook a conditional gene deletion approach to selectively deplete expression of ET(A) in sensory nerves, preserving expression in non-neural peripheral tissues; the expression of ET(B) remained unchanged. Behavioural and pharmacological experiments showed that only late nociceptive hypersensitivity caused by ET1 is abrogated upon a loss of ET(A) receptors on nociceptors and further suggest that ET1-induced early nociceptive hypersensitivity involves activation of ET(A) as well as ET(B) receptors in non-neural peripheral cells. Furthermore, in the context of alleviation of cancer pain and chronic inflammatory pain by ET(A) receptor antagonists, we observed in corresponding mouse models that the contribution of ET(A) receptors expressed in nociceptors is most significant. These results help understand the role of ET(A) receptors in complex biological processes and peripheral cell-cell interactions involved in inflammatory and tumor-associated pain.

  20. Expression of endothelin 1 and endothelin A receptor in HPV-associated cervical carcinoma: new potential targets for anticancer therapy.

    PubMed

    Venuti, A; Salani, D; Manni, V; Poggiali, F; Bagnato, A

    2000-11-01

    Human papillomaviruses (HPV) are associated with cervical cancer and interact with growth factors that may enhance malignant transformation of cervical carcinoma cells. Endothelin-1 (ET-1) is released from HPV transfected keratinocytes and induces increased growth response in these cell lines in comparison with normal cells. In the present study several cervical carcinoma cell lines have been analyzed to investigate the expression of ET-1 and its receptors as well as their involvement in tumor growth. All HPV-positive cancer cells secreted ET-1 and expressed mRNA for ET-1 and its receptors, whereas a HPV-negative carcinoma cell line expressed only the ETBR mRNA and didn't secrete ET-1. Binding studies showed that HPV-associated cells expressed an increased number of functional ETAR. ET-1 stimulated a marked dose-dependent increase in [3H]-thymidine incorporation with respect to the normal cells whereas ET-3 and ETBR agonists had no effect. In HPV-positive cancer cells, a specific antagonist of ETAR inhibited the proliferation induced by ET-1 and substantially reduced the basal growth rate of unstimulated cervical tumor cells, whereas the ETBR antagonist had no effect. These results demonstrate that ET-1 participates in the progression of neoplastic growth in HPV-associated carcinoma, in which ETAR are increased and could be targeted for antitumor therapy.

  1. Endothelin receptor blockade inhibits the growth of human papillomavirus-associated cervical carcinoma.

    PubMed

    Venuti, Aldo; Salani, Debora; Cirilli, Alessia; Simeone, Paola; Muller, Antonio; Flamini, Silvio; Padley, Robert; Bagnato, Anna

    2002-08-01

    Human papillomaviruses (HPVs) are associated with cervical cancer and interact with growth factors that may enhance malignant transformation of cervical carcinoma cells. Endothelin-1 (ET-1) is released from HPV-transfected keratinocytes and induces increased growth response in these cell lines in comparison with normal cells. HPV-positive cancer cells secrete ET-1 and express mRNA for ET-1 and its receptors, whereas HPV-negative carcinoma cell lines express only the ET(B) receptor (ET(B)R) mRNA and do not secrete ET-1. In HPV-positive cancer cells, ET(A)R mediates the ET-1-induced mitogenic effect and sustains the basal growth rate of unstimulated cervical tumour cells. Therefore, ET-1 may be involved in the neoplastic growth of HPV-associated cervical carcinoma, where the increased ET-1 autocrine loop can be targeted for antitumour therapy. In the present work, the action of specific antagonists of ET(A)R (BQ-123 and ABT-627), was analysed in CaSki and C33A cells that are derived from human cervical carcinoma. CaSki cells are HPV-16-positive, produce ET-1 and possess ET(A)R and ET(B)R, whereas the C33A line is HPV-negative, does not secrete ET-1 and has no ET(A)R. In HPV-positive cancer cells ABT-627 strongly inhibited the proliferation induced by ET-1 and substantially reduced the basal growth rate of unstimulated cervical tumour cells, whereas the ET(B)R antagonist had no effect. These results demonstrate that ET-1 participates in the progression of neoplastic growth in HPV-associated carcinoma, in which ET(A)R expression is increased and could be targeted for antitumour therapy. In conclusion, an ET-1 autocrine loop is involved in tumour cell proliferation via ET(A)R, and ABT-627 is effective in controlling proliferation of cervical carcinoma cells.

  2. Antifibrotic effects of ambrisentan, an endothelin-A receptor antagonist, in a non-alcoholic steatohepatitis mouse model

    PubMed Central

    Okamoto, Toshiaki; Koda, Masahiko; Miyoshi, Kennichi; Onoyama, Takumi; Kishina, Manabu; Matono, Tomomitsu; Sugihara, Takaaki; Hosho, Keiko; Okano, Junichi; Isomoto, Hajime; Murawaki, Yoshikazu

    2016-01-01

    AIM To examine the effects of the endothelin type A receptor antagonist ambrisentan on hepatic steatosis and fibrosis in a steatohepatitis mouse model. METHODS Fatty liver shionogi (FLS) FLS-ob/ob mice (male, 12 wk old) received ambrisentan (2.5 mg/kg orally per day; n = 8) or water as a control (n = 5) for 4 wk. Factors were compared between the two groups, including steatosis, fibrosis, inflammation, and endothelin-related gene expression in the liver. RESULTS In the ambrisentan group, hepatic hydroxyproline content was significantly lower than in the control group (18.0 μg/g ± 6.1 μg/g vs 33.9 μg/g ± 13.5 μg/g liver, respectively, P = 0.014). Hepatic fibrosis estimated by Sirius red staining and areas positive for α-smooth muscle actin, indicative of activated hepatic stellate cells, were also significantly lower in the ambrisentan group (0.46% ± 0.18% vs 1.11% ± 0.28%, respectively, P = 0.0003; and 0.12% ± 0.08% vs 0.25% ± 0.11%, respectively, P = 0.047). Moreover, hepatic RNA expression levels of procollagen-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1) were significantly lower by 60% and 45%, respectively, in the ambrisentan group. Inflammation, steatosis, and endothelin-related mRNA expression in the liver were not significantly different between the groups. CONCLUSION Ambrisentan attenuated the progression of hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing procollagen-1 and TIMP-1 gene expression. Ambrisentan did not affect inflammation or steatosis. PMID:27574547

  3. Evaluation of the Effect of Bosentan-Mediated Endothelin Receptor Blockade on Flap Survival in Rats: An Experimental Study.

    PubMed

    Görgülü, Tahsin; Guler, Ramazan; Olgun, Abdulkerim; Torun, Merve; Kargi, Eksal

    2016-08-01

    Local skin flaps are important tools for performing plastic surgery. Skin flaps are used for closure of defects after tumor excision or in tissue losses after trauma. However, problems associated with these flaps are commonly encountered, particularly in areas of marginal necrosis. Bosentan is a vasodilator that exerts its effect through endothelin receptor blockade, and has been shown to prevent ischemic tissue damage. However, no reports have addressed the effect of bosentan on skin flaps. The aim of the study was to investigate the effects of bosentan, which may be applied clinically to promote survival of ischemic skin flaps. A modified McFarlane flap was elevated in the dorsum of 20 Albino Wistar rats with a width-to-length ratio of 3 to 10 cm, respectively, with the caudal base. Perioperatively, 0.9% of physiologic NaCl and injectable distilled water of identical volume were injected into rats in Group 1 (n = 10), and 5 mg/kg bosentan was injected intraperitoneally into rats in Group 2 (n = 10). All of the rats were followed up for 7 days postoperatively. The surviving parts of the flaps were measured at the end of day 7. Acute and chronic inflammation, amount of granulation tissue, fibroblast maturation, amount of collagen, and amounts of reepithelialization and neovascularization present in the ischemic zones of the distal parts of the flaps were evaluated histopathologically, and results were compared statistically. The mean flap survivals were 61.1% in Group 1 and 91.1% in Group 2; the percentage of the surviving flap area in Group 2 was higher than that in Group 1 (p < 0.005). In both groups, there was significantly less acute inflammation in the ischemic zones in Group 2 than in Group 1 (p < 0.005). No significant difference was found in the amounts of chronic inflammation and granulation tissue between the two groups (p > 0.005). Fibroblast maturation, amount of collagen, and amounts of reepithelialization and neovascularization

  4. Essential role of sympathetic endothelin A receptors for adverse cardiac remodeling

    PubMed Central

    Lehmann, Lorenz H.; Rostosky, Julia S.; Buss, Sebastian J.; Kreusser, Michael M.; Krebs, Jutta; Mier, Walter; Enseleit, Frank; Spiger, Katharina; Hardt, Stefan E.; Wieland, Thomas; Haass, Markus; Lüscher, Thomas F.; Schneider, Michael D.; Parlato, Rosanna; Gröne, Hermann-Josef; Haberkorn, Uwe; Yanagisawa, Masashi; Katus, Hugo A.; Backs, Johannes

    2014-01-01

    In preclinical studies, endothelin receptor A (ETA) antagonists (ETAi) attenuated the progression of heart failure (HF). However, clinical HF trials failed to demonstrate beneficial effects of ETAi. These conflicting data may be explained by the possibility that established HF drugs such as adrenergic receptor blockers interfered with the mechanism of ETAi action in clinical trials. Here we report that mice lacking ETA only in sympathetic neurons (SN-KO) showed less adverse structural remodeling and cardiac dysfunction in response to pathological pressure overload induced by transverse aortic constriction (TAC). In contrast, mice lacking ETA only in cardiomyocytes (CM-KO) were not protected. TAC led to a disturbed sympathetic nerve function as measured by cardiac norepinephrine (NE) tissue levels and [124I]-metaiodobenzylguanidine-PET, which was prevented in SN-KO. In a rat model of HF, ETAi improved cardiac and sympathetic nerve function. In cocultures of cardiomyocytes (CMs) and sympathetic neurons (SNs), endothelin-1 (ET1) led to a massive NE release and exaggerated CM hypertrophy compared with CM monocultures. ETA-deficient CMs gained a hypertrophic response through wild-type SNs, but ETA-deficient SNs failed to mediate exaggerated CM hypertrophy. Furthermore, ET1 mediated its effects indirectly via NE in CM-SN cocultures through adrenergic receptors and histone deacetylases, resulting in activation of the prohypertrophic transcription factor myocyte enhancer factor 2. In conclusion, sympathetic ETA amplifies ET1 effects on CMs through adrenergic signaling pathways. Thus, antiadrenergic therapies may blunt potentially beneficial effects of ETAi. Taken together, this may indicate that patients with β blocker intolerance or disturbed sympathetic nerve function could be evaluated for a potential benefit from ETAi. PMID:25197047

  5. Endothelin A receptor/β-arrestin signaling to the Wnt pathway renders ovarian cancer cells resistant to chemotherapy.

    PubMed

    Rosanò, Laura; Cianfrocca, Roberta; Tocci, Piera; Spinella, Francesca; Di Castro, Valeriana; Caprara, Valentina; Semprucci, Elisa; Ferrandina, Gabriella; Natali, Pier Giorgio; Bagnato, Anna

    2014-12-15

    The high mortality of epithelial ovarian cancer (EOC) is mainly caused by resistance to the available therapies. In EOC, the endothelin-1 (ET-1, EDN1)-endothelin A receptor (ETAR, EDNRA) signaling axis regulates the epithelial-mesenchymal transition (EMT) and a chemoresistant phenotype. However, there is a paucity of knowledge about how ET-1 mediates drug resistance. Here, we define a novel bypass mechanism through which ETAR/β-arrestin-1 (β-arr1, ARRB1) links Wnt signaling to acquire chemoresistant and EMT phenotype. We found that ETAR/β-arr1 activity promoted nuclear complex with β-catenin and p300, resulting in histone acetylation, chromatin reorganization, and enhanced transcription of genes, such as ET-1, enhancing the network that sustains chemoresistance. Silencing of β-arr1 or pharmacologic treatment with the dual ETAR/ETBR antagonist macitentan prevented core complex formation and restored drug sensitivity, impairing the signaling pathways involved in cell survival, EMT, and invasion. In vivo macitentan treatment reduced tumor growth, vascularization, intravasation, and metastatic progression. The combination of macitentan and cisplatinum resulted in the potentiation of the cytotoxic effect, indicating that macitentan can enhance sensitivity to chemotherapy. Investigations in clinical specimens of chemoresistant EOC tissues confirmed increased recruitment of β-arr1 and β-catenin to ET-1 gene promoter. In these tissues, high expression of ETAR significantly associated with poor clinical outcome and chemoresistance. Collectively, our findings reveal the existence of a novel mechanism by which ETAR/β-arr1 signaling is integrated with the Wnt/β-catenin pathway to sustain chemoresistance in EOC, and they offer a solid rationale for clinical evaluation of macitentan in combination with chemotherapy to overcome chemoresistance in this setting.

  6. Pharmacophore modeling of dual angiotensin II and endothelin A receptor antagonists.

    PubMed

    Xue, Wei-Zhe; Lü, Wei; Zhou, Zhi-Ming; Wang, Zhan-Li

    2009-09-01

    Three-dimensional pharmacophore models were generated for AT1 and ET(A) receptors based on highly selective AT1 and ET(A) antagonists using the program Catalyst/HipHop. Both the best pharmacophore model for selective AT1 antagonists (Hypo-AT(1)-7) and ETA antagonists (Hypo-ET(A)-1) were obtained through a careful validation process. All five features contained in Hypo-AT(1)-7 and Hypo-ET(A)-1 (hydrogen-bond acceptor (A), hydrophobic aliphatic (Z), negative ionizable (N), ring aromatic (R), and hydrophobic aromatic (Y)) seem to be essential for antagonists in terms of binding activity. Dual AT1 and ET(A) receptor antagonists (DARAs) can map to both Hypo-AT(1)-7 and Hypo-ET(A)-1, separately. Comparison of Hypo-AT(1)-7 and Hypo-ET(A)-1, not only AT1 and ET(A) antagonist pharmacophore models consist of essential features necessary for compounds to be highly active and selective toward their corresponding receptor, but also have something in common. The results in this study will act as a valuable tool for designing and researching structural relationship of novel dual AT1 and ET(A) receptor antagonists. PMID:20055175

  7. Pharmacophore modeling of dual angiotensin II and endothelin A receptor antagonists.

    PubMed

    Xue, Wei-Zhe; Lü, Wei; Zhou, Zhi-Ming; Wang, Zhan-Li

    2009-09-01

    Three-dimensional pharmacophore models were generated for AT1 and ET(A) receptors based on highly selective AT1 and ET(A) antagonists using the program Catalyst/HipHop. Both the best pharmacophore model for selective AT1 antagonists (Hypo-AT(1)-7) and ETA antagonists (Hypo-ET(A)-1) were obtained through a careful validation process. All five features contained in Hypo-AT(1)-7 and Hypo-ET(A)-1 (hydrogen-bond acceptor (A), hydrophobic aliphatic (Z), negative ionizable (N), ring aromatic (R), and hydrophobic aromatic (Y)) seem to be essential for antagonists in terms of binding activity. Dual AT1 and ET(A) receptor antagonists (DARAs) can map to both Hypo-AT(1)-7 and Hypo-ET(A)-1, separately. Comparison of Hypo-AT(1)-7 and Hypo-ET(A)-1, not only AT1 and ET(A) antagonist pharmacophore models consist of essential features necessary for compounds to be highly active and selective toward their corresponding receptor, but also have something in common. The results in this study will act as a valuable tool for designing and researching structural relationship of novel dual AT1 and ET(A) receptor antagonists.

  8. Effects of endothelin ETA receptor antagonism on granulocyte and lymphocyte accumulation in LPS-induced inflammation.

    PubMed

    Sampaio, André L F; Rae, Giles A; Henriques, Maria das Graças M O

    2004-07-01

    Endothelin peptides play active roles in different aspects of inflammation. This study investigates the contribution of endogenous endothelins to lipopolysaccharide (LPS) pulmonary inflammation by assessing the influence of ET(A) receptor antagonism on leukocyte accumulation, granulocyte adhesion molecule expression, and chemokine/cytokine modulation. Local pretreatment with BQ-123 or A-127722 (150 pmol), two selective and chemically unrelated endothelin ET(A) receptor antagonists, inhibits neutrophil and eosinophil accumulation in LPS-induced pleurisy at 24 h but not neutrophil migration at 4 h. The effect of endothelin antagonism on neutrophil accumulation at 24 h was concomitant with inhibition of eosinophil and CD4 and CD8 T lymphocyte influx. It is surprising that the ET(A) receptor blockade did not inhibit the accumulation of gammadelta T lymphocytes, cells that are important for granulocyte recruitment in this model. Blockade of ET(A) receptors did not influence the expression of adhesion molecules (CD11b, CD49d) on granulocytes but abrogated the increase in tumor necrosis factor alpha levels 4 h after LPS stimulation and also markedly inhibited increases in levels of interleukin-6 and keratinocyte-derived chemokine/CXC chemokine ligand 1 but not eotaxin/chemokine ligand 11. Thus, acting via ET(A) receptors, endogenous endothelins play an important role in early cytokine/chemokine production and on granulocyte and lymphocyte mobilization in LPS-induced pleurisy.

  9. Role of an endothelin type A receptor antagonist in regulating torsion-induced testicular apoptosis in rats.

    PubMed

    Cayli, Sevil; Ocakli, Seda; Senel, Ufuk; Karaca, Zafer; Erdemir, Fikret; Delibasi, Tuncay

    2016-05-01

    Testicular torsion is a well-known medical emergency that can lead to pathological changes in the testicular tissues and male infertility. This investigation was undertaken to gain insight into the effects of an endothelin type A receptor antagonist (BQ123) on torsion-induced germ cell loss. Twenty-eight male Wistar albino rats were divided into four groups. In group I (control group), a sham operation to the left testis was performed. In group II (I/R injury), I/R injury was created by rotating the left testis 720° in a clockwise direction for 2 h and detorsing the testis after 2 h. In group III (I/R injury+BQ123), the rats were subjected to I/R injury and BQ123 injection (1 mg/kg, intravenous). In group IV (control+BQ123), the sham operated rats were subjected to BQ123. The testes of the rats were removed in all groups. Torsion-induced apoptosis and the effects of BQ123 were examined by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL) technique, immunohistochemistry and western blotting. In group II, the number of TUNEL-positive cells increased after testicular torsion. Immunohistochemistry and western blotting showed that apoptotic proteins (active caspase 3 and Bax) were upregulated, and the anti-apoptotic protein Bcl2 was downregulated in I/R injury. The administration of BQ123 caused a significant decrease in the number of apoptotic cells and the expression of apoptotic proteins (p<0.05) when compared with the I/R injury group. No significant effect of BQ123 was observed in the testicular cells of group IV. This animal study provides evidence of the regulatory effects of BQ123 on torsion-induced testicular apoptosis.

  10. Blockade of adenosine A2A receptors prevents protein phosphorylation in the striatum induced by cortical stimulation.

    PubMed

    Quiroz, César; Gomes, Catarina; Pak, Arlene C; Ribeiro, Joaquim A; Goldberg, Steven R; Hope, Bruce T; Ferré, Sergi

    2006-10-18

    Previous studies have shown that cortical stimulation selectively activates extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and immediate early gene expression in striatal GABAergic enkephalinergic neurons. In the present study, we demonstrate that blockade of adenosine A2A receptors with caffeine or a selective A2A receptor antagonist counteracts the striatal activation of cAMP-protein kinase A cascade (phosphorylation of the Ser845 residue of the glutamate receptor 1 subunit of the AMPA receptor) and mitogen-activated protein kinase (ERK1/2 phosphorylation) induced by the in vivo stimulation of corticostriatal afferents. The results indicate that A2A receptors strongly modulate the efficacy of glutamatergic synapses on striatal enkephalinergic neurons.

  11. Endothelin antagonists.

    PubMed

    Benigni, A; Remuzzi, G

    1999-01-01

    The very potent endogenous vasoconstrictor endothelin was discovered in 1988. We know now that there are three isoforms (1, 2, and 3) and two receptor subtypes (A and B). A whole range of peptide and non-peptide antagonists has been developed, some selective for A or B receptors and others with non-selective A/B antagonistic activity. So far the main application of these agents has been experimental--ie, endothelin blockers are used to throw light on disease mechanisms, most notably cardiovascular and renal. However, the non-selective antagonist bosentan and a few other agents have been studied clinically. Evidence so far from preclinical studies and healthy volunteers and from the limited number of investigations in patients permits a listing of the potential areas of clinical interest. These are mainly cardiovascular (eg, hypertension, cerebrovascular damage, and possibly heart failure) and renal. Clouds on the horizon are the need to show that these new agents are better than existing drugs; the possibility of conflicting actions if mixed A/B antagonists are used; and animal evidence hinting that endothelin blockade during development could be dangerous.

  12. Blockade of 5-HT2A receptors suppresses hyperthermic but not cardiovascular responses to psychosocial stress in rats.

    PubMed

    Beig, M I; Baumert, M; Walker, F R; Day, T A; Nalivaiko, E

    2009-03-31

    The aim of this study was to determine whether 5-HT2A receptors mediate cardiovascular and thermogenic responses to acute psychological stresses. For this purpose, adult male Wistar hooded rats instrumented for telemetric recordings of either electrocardiogram (ECG) (n=12) or arterial pressure (n=12) were subjected, on different days, to four 15-min episodes of social defeat. Prior to stress, animals received s.c. injection of the selective 5-HT2A receptor antagonist SR-46349B (trans-4-((3Z)3-[(2-dimethylaminoethyl)oxyimino]-3-(2-fluorophenyl)propen-1-yl)-phenol, hemifumarate) (at doses of 0.3, 1.0 and 3.0 mg/kg) or vehicle. The drug had no effect on basal heart rate or heart rate variability indexes, arterial pressure, and core body temperature. Social defeat elicited significant and substantial tachycardic (347+/-7 to 500+/-7 bpm), pressor (77+/-4 to 97+/-4 mm Hg) and hyperthermic (37.0+/-0.3 to 38.5+/-0.1 degrees C) responses. Blockade of 5-HT2A receptors, at all doses of the antagonist, completely prevented stress-induced hyperthermia. In contrast, stress-induced cardiovascular responses were not affected by the blockade (except small reduction of tachycardia by the highest dose of the drug). We conclude that in rats, 5-HT2A receptors mediate stress-induced hyperthermic responses, but are not involved in the genesis of stress-induced rises in heart rate or arterial pressure, and do not participate in cardiovascular control at rest. PMID:19356699

  13. Endothelin ETA receptor antagonism in cardiovascular disease.

    PubMed

    Nasser, Suzanne A; El-Mas, Mahmoud M

    2014-08-15

    Since the discovery of the endothelin system in 1988, it has been implicated in numerous physiological and pathological phenomena. In the cardiovascular system, endothelin-1 (ET-1) acts through intracellular pathways of two endothelin receptors (ETA and ETB) located mainly on smooth muscle and endothelial cells to regulate vascular tone and provoke mitogenic and proinflammatory reactions. The endothelin ETA receptor is believed to play a pivotal role in the pathogenesis of several cardiovascular disease including systemic hypertension, pulmonary arterial hypertension (PAH), dilated cardiomyopathy, and diabetic microvascular dysfunction. Growing evidence from recent experimental and clinical studies indicates that the blockade of endothelin receptors, particularly the ETA subtype, grasps promise in the treatment of major cardiovascular pathologies. The simultaneous blockade of endothelin ETB receptors might not be advantageous, leading possibly to vasoconstriction and salt and water retentions. This review summarizes the role of ET-1 in cardiovascular modulation and the therapeutic potential of endothelin receptor antagonism.

  14. Adenosine A2A Receptor Blockade Prevents Rotenone-Induced Motor Impairment in a Rat Model of Parkinsonism

    PubMed Central

    Fathalla, Ahmed M.; Soliman, Amira M.; Ali, Mohamed H.; Moustafa, Ahmed A.

    2016-01-01

    Pharmacological studies implicate the blockade of adenosine receptorsas an effective strategy for reducing Parkinson’s disease (PD) symptoms. The objective of this study is to elucidate the possible protective effects of ZM241385 and 8-cyclopentyl-1, 3-dipropylxanthine, two selective A2A and A1 receptor antagonists, on a rotenone rat model of PD. Rats were split into four groups: vehicle control (1 ml/kg/48 h), rotenone (1.5 mg/kg/48 h, s.c.), ZM241385 (3.3 mg/kg/day, i.p) and 8-cyclopentyl-1, 3-dipropylxanthine (5 mg/kg/day, i.p). After that, animals were subjected to behavioral (stride length and grid walking) and biochemical (measuring concentration of dopamine levels using high performance liquid chromatography, HPLC). In the rotenone group, rats displayed a reduced motor activity and disturbed movement coordination in the behavioral tests and a decreased dopamine concentration as foundby HPLC. The effect of rotenone was partially prevented in the ZM241385 group, but not with 8-cyclopentyl-1,3-dipropylxanthine administration. The administration of ZM241385 improved motor function and movement coordination (partial increase of stride length and partial decrease in the number of foot slips) and an increase in dopamine concentration in the rotenone-injected rats. However, the 8-cyclopentyl-1,3-dipropylxanthine and rotenone groups were not significantly different. These results indicate that selective A2A receptor blockade by ZM241385, but not A1 receptor blockadeby 8-cyclopentyl-1,3-dipropylxanthine, may treat PD motor symptoms. This reinforces the potential use of A2A receptor antagonists as a treatment strategy for PD patients. PMID:26973484

  15. Endothelin-1 and antiangiogenesis.

    PubMed

    Lankhorst, Stephanie; Danser, A H Jan; van den Meiracker, Anton H

    2016-02-01

    Antiangiogenesis, targeting vascular endothelial growth factor (VEGF), has become a well-established treatment for patients with cancer. This treatment is associated with nitric oxide (NO) suppression and a dose-dependent activation of the endothelin system, resulting in preeclampsia-like features, particularly hypertension and renal injury. Studies in endothelium NO synthase (eNOS)-deficient mice and pharmacological treatment with endothelin receptor blockers and sildenafil indicate that an activated endothelin system, rather than NO suppression, mediates the side effects of angiogenesis inhibitors. Activation of the endothelin system is also observed in preeclamptic women, where it is related to the increased placental production of sFlt-1, the soluble form of the VEGF receptor-1. This receptor binds VEGF, thereby having the same consequences as antiangiogenic treatment with VEGF inhibitors. The side effects of antiangiogenic treatment in patients with cancer may be dose limiting, thereby impairing its therapeutic potential. In addition, because endothelin exerts proangiogenic effects, investigation of the effects of endothelin receptor blockade in patients with cancer treated with angiogenesis inhibitors is warranted. PMID:26511523

  16. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  17. Endothelin A Receptor Antagonism Enhances Inhibitory Effects of Anti-Ganglioside GD2 Monoclonal Antibody on Invasiveness and Viability of Human Osteosarcoma Cells

    PubMed Central

    Liu, Bo; Wu, Yi; Zhou, Yu; Peng, Dan

    2014-01-01

    Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists. PMID:24727660

  18. Endothelin A receptor antagonism enhances inhibitory effects of anti-ganglioside GD2 monoclonal antibody on invasiveness and viability of human osteosarcoma cells.

    PubMed

    Liu, Bo; Wu, Yi; Zhou, Yu; Peng, Dan

    2014-01-01

    Endothelin-1 (ET-1)/endothelin A receptor (ETAR) signaling is important for osteosarcoma (OS) progression. Monoclonal antibodies (mAbs) targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL), anti-GD2 14G2a mAb (50 µg/mL), selective ETAR antagonist BQ123 (5 µM), or 14G2a (50 µg/mL)+BQ123 (5 µM). Cells with knockdown of ETAR (ETAR-shRNA) with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K) inhibitor BKM120 (50 µM) were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2) expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473) of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists. PMID:24727660

  19. Specific endothelin ET(A) receptor antagonism does not modulate insulin-induced hemodynamic effects in the human kidney, eye, or forearm.

    PubMed

    Rab, Anna; Dallinger, Susanne; Polak, Kaija; Pleiner, Johannes; Polska, Elzbieta; Wolzt, Michael; Schmetterer, Leopold

    2004-05-01

    There is evidence that hyperinsulinemia may stimulate endothelin-1 (ET-1) generation or release, which may affect diabetic vascular complications. BQ-123, a specific ET(A) receptor antagonist, was used to investigate if insulin-induced vascular effects are influenced by an acute ET-1 release. Two randomized, placebo-controlled, double-blind, cross-over studies were performed. In protocol 1, 12 healthy subjects received, on separate study days, infusions of BQ-123 (60 microg/min for 30 min) during placebo clamp conditions, BQ-123 during euglycemic hyperinsulinemia (3 mU/kg/min for 390 min), or placebo during euglycemic hyperinsulinemia. Fundus pulsation amplitude (FPA) was measured to assess pulsatile choroidal blood flow, and mean flow velocity (MFV) of the ophtalmic artery was measured by color Doppler imaging. In protocol 2, eight healthy subjects received, on separate study days, intra-arterial infusions of BQ-123 (32 microg/min for 120 min) during placebo or insulin clamp. Forearm blood flow was measured with bilateral plethysmography, expressing the ratio of responses in the intervention arm and in the control arm. Insulin alone increased FPA (+10%, p < 0.001) and forearm blood flow (+19%). BQ-123 increased FPA, MFV, and forearm blood flow ratio in the absence and presence of exogenous insulin, but this effect was not different between normo- and hyperinsulinemic conditions. ET-1 plasma concentrations were not affected by insulin. In conclusion, these data do not support the concept that hyperinsulinemia increases ET-1 generation in healthy subjects. Our results, however, cannot necessarily be extrapolated to diabetic and obese subjects.

  20. Differential effects of presynaptic versus postsynaptic adenosine A2A receptor blockade on Δ9-tetrahydrocannabinol (THC) self-administration in squirrel monkeys.

    PubMed

    Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi

    2014-05-01

    Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.

  1. Endothelin A receptor drives invadopodia function and cell motility through the β-arrestin/PDZ-RhoGEF pathway in ovarian carcinoma.

    PubMed

    Semprucci, E; Tocci, P; Cianfrocca, R; Sestito, R; Caprara, V; Veglione, M; Castro, V Di; Spadaro, F; Ferrandina, G; Bagnato, A; Rosanò, L

    2016-06-30

    The endothelin-1 (ET-1)/ET A receptor (ETAR) signalling pathway is a well-established driver of epithelial ovarian cancer (EOC) progression. One key process promoted by ET-1 is tumor cell invasion, which requires the scaffolding functions of β-arrestin-1 (β-arr1) downstream of the receptor; however, the potential role of ET-1 in inducing invadopodia, which are crucial for cellular invasion and tumor metastasis, is completely unknown. We describe here that ET-1/ETAR, through β-arr1, activates RhoA and RhoC GTPase and downstream ROCK (Rho-associated coiled coil-forming kinase) kinase activity, promoting actin-based dynamic remodelling and enhanced cell invasion. This is accomplished by the direct interaction of β-arr1 with PDZ-RhoGEF (postsynaptic density protein 95/disc-large/zonula occludens-RhoGEF). Interestingly, ETAR-mediated invasive properties are related to the regulation of invadopodia, as evaluated by colocalization of actin with cortactin, as well as with TKS5 and MT1-MMP (membrane type 1-matrix metalloproteinase) with areas of matrix degradation, and activation of cofilin pathway, which is crucial for regulating invadopodia activity. Depletion of PDZ-RhoGEF, or β-arr1, or RhoC, as well as the treatment with the dual ET-1 receptor antagonist macitentan, significantly impairs invadopodia function, MMP activity and invasion, demonstrating that β-arr1/PDZ-RhoGEF interaction mediates ETAR-driven ROCK-LIMK-cofilin pathway through the control of RhoC activity. In vivo, macitentan is able to inhibit metastatic dissemination and cofilin phosphorylation. Collectively, our data unveil a noncanonical activation of the RhoC/ROCK pathway through the β-arr1/PDZ-RhoGEF complex as a regulator of ETAR-induced motility and metastasis, establishing ET-1 axis as a novel regulator of invadopodia protrusions through the RhoC/ROCK/LIMK/cofilin pathway during the initial steps of EOC invasion.

  2. The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A2A receptors

    PubMed Central

    Yacoubi, Malika El; Ledent, Catherine; Ménard, Jean-François; Parmentier, Marc; Costentin, Jean; Vaugeois, Jean-Marie

    2000-01-01

    The locomotor stimulatory effects induced by caffeine (1,3,7-trimethylxanthine) in rodents have been attributed to antagonism of adenosine A1 and A2A receptors. Little is known about its locomotor depressant effects seen when acutely administered at high doses. The roles of adenosine A1 and A2A receptors in these activities were investigated using a Digiscan actimeter in experiments carried out in mice. Besides caffeine, the A2A antagonist SCH 58261 (5-amino-7-(β-phenylethyl)-2-(8-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine), the A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine), the A1 agonist CPA (N6-cyclopentyladenosine) and A2A receptor knockout mice were used.Caffeine had a biphasic effect on locomotion of wild-type mice not habituated to the open field, stimulating locomotion at 6.25–25 mg kg−1 i.p. doses, while depressing it at 100 mg kg−1. In sharp contrast, caffeine dose-dependently decreased locomotion in A2A receptor knockout mice over the whole range of tested doses.The depressant effects induced by high doses of caffeine were lost in control CD1 mice habituated to the open field.The A1 agonist CPA depressed locomotion at 0.3–1 mg kg−1 i.p. doses.The A1 antagonist DPCPX decreased locomotion of A2A receptor knockouts and CD1 mice at 5 mg kg−1 i.p. and 25 mg kg−1 i.p. respectively.DPCPX (0.2–1 mg kg−1 i.p.) left unaltered or even reduced the stimulant effect of SCH 58261 (1–3 mg kg−1 i.p.) on CD1 mice.These results suggest therefore that the stimulant effect of low doses of caffeine is mediated by A2A receptor blockade while the depressant effect seen at higher doses under some conditions is explained by A1 receptor blockade. PMID:10742303

  3. GABA(A) receptor blockade in dorsomedial and ventromedial nuclei of the hypothalamus evokes panic-like elaborated defensive behaviour followed by innate fear-induced antinociception.

    PubMed

    Freitas, Renato Leonardo; Uribe-Mariño, Andrés; Castiblanco-Urbina, Maria Angélica; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2009-12-11

    Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour.

  4. Endothelin B receptors on human endothelial and smooth-muscle cells show equivalent binding pharmacology.

    PubMed

    Flynn, M A; Haleen, S J; Welch, K M; Cheng, X M; Reynolds, E E

    1998-07-01

    We have described the pharmacologic profiles of endothelin B receptors in human endothelial cells and vascular and nonvascular smooth-muscle cells. First, by amplifying endothelin B receptor numbers through the use of phosphoramidon and intact cell-binding techniques, we demonstrated the presence of these receptors in human umbilical vein endothelial cells (100% endothelin B receptors), human aortic smooth-muscle cells (22% endothelin B, 78% endothelin A receptors), and human bronchial smooth-muscle cells (55% endothelin B, 45% endothelin A receptors) by using [125I]-endothelin-1 radioligand binding. The typical binding profiles of the endothelin B receptors were established through competition binding curve analysis with endothelin-1, endothelin-3, sarafotoxin 6c, and the endothelin A receptor-selective antagonist BQ-123. In the presence of BQ-123, a diverse group of antagonists, including PD 142893, BQ-788, SB 209670, and Ro 47-0203, were used to probe for binding differences indicative of multiple endothelin B-receptor subtypes. The results indicate a rank order of potency for the antagonists of BQ-788 > SB 209670 > PD 142893 > Ro 47-0203 for each cell line, and that between any of these human cell lines, measurements of [125I]-endothelin-1-binding antagonism for each of the four test compounds differed by less than twofold. Although this study cannot discount the possibility of more than one endothelin B-receptor subtype in humans, it does indicate that these tissues express receptors that show equivalent binding pharmacology. PMID:9676729

  5. Endothelin Receptor-A Antagonist Attenuates Retinal Vascular and Neuroretinal Pathology in Diabetic Mice

    PubMed Central

    Chou, Jonathan C.; Rollins, Stuart D.; Ye, Minghao; Batlle, Daniel; Fawzi, Amani A.

    2014-01-01

    Purpose. We sought to determine the effects of atrasentan, a selective endothelin-A receptor antagonist, on the retinal vascular and structural integrity in a db/db mouse, an animal model of type 2 diabetes and diabetic retinopathy. Methods. Diabetic mice, 23 weeks old, were given either atrasentan or vehicle treatment in drinking water for 8 weeks. At the end of the treatment period, eyes underwent trypsin digest to assess the retinal vascular pathology focusing on capillary degeneration, endothelial cell, and pericyte loss. Paraffin-embedded retinal cross sections were used to evaluate retinal sublayer thickness both near the optic nerve and in the retinal periphery. Immunohistochemistry and TUNEL assay were done to evaluate retinal cellular and vascular apoptosis. Results. Compared with untreated db/db mice, atrasentan treatment was able to ameliorate the retinal vascular pathology by reducing pericyte loss (29.2% ± 0.4% vs. 44.4% ± 2.0%, respectively, P < 0.05) and capillary degeneration as determined by the percentage of acellular capillaries (8.6% ± 0.3% vs. 3.3% ± 0.41%, respectively, P < 0.05). A reduction in inner retinal thinning both at the optic nerve and at the periphery in treated diabetic mice was also observed in db/db mice treated with atrasentan as compared with untreated db/db mice (P < 0.05). TUNEL assay suggested that atrasentan may decrease enhanced apoptosis in neuroretinal layers and vascular pericytes in the db/db mice. Conclusions. Endothelin-A receptor blockade using atrasentan significantly reduces the vascular and neuroretinal complications in diabetic mice. Endothelin-A receptor blockade is a promising therapeutic target in diabetic retinopathy. PMID:24644048

  6. Effects of activation and blockade of orexin A receptors in the medial preoptic area on food intake in male rats.

    PubMed

    Sarihi, Abdolrahman; Emam, Amir Hossein; Panah, Mohammad Hosseini; Komaki, Alireza; Seif, Sadegh; Vafaeirad, Majid; Alaii, Elham

    2015-09-14

    It has been shown that activation of type 1 orexinergic receptors (ORX1) in several parts of the hypothalamus stimulate food intake. Orexin A receptive sites for food intake exist primarily in a narrow band of the hypothalamus that is known to be involved in control of energy homeostasis. The present study aimed to investigate the role of orexin receptors in the medial preoptic area (MPOA) on food intake in rats. Twenty-four male rats weighing 200-250g were divided into three groups (n=8 in each group). Rats were cannulated using stereotaxic coordinates above the MPOA. Normal saline was microinjected into the MPOA in the control group. Another group received intra MPOA microinjection of SB334867, a selective antagonist for ORX1 receptors. In the other group, orexin A was microinjected (0.5μl of 1μmol) into the MPOA. Food intake was measured in metabolic cages. The statistical significance of differences between groups was detected by a one way ANOVA. A value of p<0.05 was considered significant. There was no significant difference in food consumption between saline and SB334867 treated groups. However, activation of the orexin receptor in the MPOA significantly increased food intake during the 2 and 8h after orexin A microinjection. Our results showed that during ad libitum access to food, activation but not blockade of the MPOA ORX1 receptor can increase food intake in a time-dependent manner. The role of these receptors in hunger and appetite stimulation requires further study.

  7. Adenosine A2A-receptor blockade abolishes the roll-off respiratory response to hypoxia in awake lambs.

    PubMed

    Koos, Brian J; Kawasaki, Yoshikazu; Kim, Young-Han; Bohorquez, Fanor

    2005-05-01

    Adenosine (ADO) receptor antagonists (aminophylline, caffeine) blunt the respiratory roll-off response to hypoxia in the newborn. This study was designed to determine the ADO receptor subtype involved in the respiratory depression. Chronically catheterized lambs of 7-16 days of age breathed via face mask a gas mixture with a fraction of inspired O2 of 0.21 (normoxia) or 0.07 (hypoxia), while being infused intravascularly with 9-cyclopentyl-1,3-dipropylxanthine (DPCPX; ADO A1-receptor antagonist, n=8), ZM-241385 (ADO A2A-receptor antagonist, n=7), or vehicle. Ventilation was measured at 20 degrees C by a turbine transducer flowmeter. In normoxia [arterial Po2 (PaO2) of approximately 83 Torr], infusion of vehicle did not alter cardiorespiratory measurements, whereas hypoxia (PaO2 of approximately 31 Torr, 15 min) elicited biphasic effects on mean arterial pressure (transient increase), heart rate (HR; diminishing tachycardia), and minute ventilation. In the latter, hypoxia increased ventilation to a peak value of approximately 2.5 times control within the first 3 min, which was followed by a significant (P<0.05) decline to approximately 50% of the maximum increment over the subsequent 7 min. ZM-241385 abolished the hypoxic ventilatory roll-off and blunted the rate of rise in HR without affecting mean arterial pressure or rectal temperature responses. In normoxia, DPCPX increased ventilation and mean arterial pressure but did not change HR. Compared with vehicle, DPCPX did not significantly affect cardiorespiratory responses to hypoxemia (PaO2 of approximately 31 Torr, 10 min). It is concluded that 1) ADO A2A receptors are critically involved in the ventilatory roll-off and HR responses to hypoxia, and 2) ADO A1 receptors, which are tonically active in cardiorespiratory control in normoxia, appear to have little impact on hypoxic ventilatory depression.

  8. Adenosine A(2A) receptor antagonists are broad facilitators of antinicotinic neuromuscular blockade monitored either with 2 Hz train-of-four or 50 Hz tetanic stimuli.

    PubMed

    Pereira, Monalisa W; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson

    2012-10-01

    1. The 2 Hz train-of-four ratio (TOF(ratio)) is used to monitor the degree of patient curarization. Using a rat phrenic nerve-hemidiaphragm preparation, we showed that antinicotinic agents, such as hexamethonium, d-tubocurarine and pancuronium, but not cisatracurium, decreased contractions produced by physiological nerve activity patterns (50 Hz) more efficiently than those caused by 2 Hz trains. Uncertainty about the usefulness of the TOF(ratio) to control safe recovery from curarization prompted us to investigate the muscarinic and adenosine neuromodulation of tetanic (50 Hz) fade induced by antinicotinic agents at concentrations that cause a 25% reduction in the TOF(ratio) (TOF(fade)). 2. Tetanic fade caused by d-tubocurarine (1.1 μmol/L), pancuronium (3 μmol/L) and hexamethonium (5.47 mmol/L) was attenuated by blocking presynaptic inhibitory muscarinic M(2) and adenosine A(1) receptors with methoctramine (1 μmol/L) and 1,3-dipropyl-8-cyclopentylxanthine (2.5 nmol/L), respectively. These compounds enhanced rather than decreased tetanic fade induced by cisatracurium (2.2 μmol/L), but they consistently attenuated cisatracurium-induced TOF(fade). The effect of the M(1) receptor antagonist pirenzepine (10 nmol/L) on fade produced by antinicotinic agents at 50 Hz was opposite to that observed with TOF stimulation. Blockade of adenosine A(2A) receptors with ZM 241385 (10 nmol/L) attenuated TOF(fade) caused by all antinicotinic drugs tested, with the exception of the 'pure' presynaptic nicotinic antagonist hexamethonium. ZM 241385 was the only compound tested in this series that facilitated recovery from tetanic fade produced by cisatracurium. 3. The data suggest that distinct antinicotinic relaxants interfere with fine-tuning neuromuscular adaptations to motor nerve stimulation patterns via activation of presynaptic muscarinic and adenosine receptors. These results support the use of A(2A) receptor antagonists together with atropine to facilitate recovery from

  9. TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling.

    PubMed

    Ye, Dongqing; Li, Yang; Zhang, Xiangrong; Guo, Fei; Geng, Leiyu; Zhang, Qi; Zhang, Zhijun

    2015-12-01

    Current antidepressants often remain the inadequate efficacy for many depressive patients, which warrant the necessary endeavor to develop the new molecules and targets for treating depression. Recently, the two-pore domain potassium channel TREK1 has been implicated in mood regulation and TREK-1 antagonists could be the promising antidepressant. This study has screened a TREK1 blocker (SID1900) with a satisfactory blood-brain barrier permeation and bioavailability. Electrophysiological research has shown that SID1900 and the previously reported TREK1 blocker (spadin) efficiently blocked TREK-1 current in HEK293 cells and specifically blocked two-pore domain potassium channels in primary-cultured rat hippocampal neurons. SID1900 and spadin induced a significant antidepressant-like response in the rat model of chronic unpredictable mild stress (CUMS). Both two TREK1 blockers substantially increased the firing rate of 5-HT-ergic neurons in the dorsal raphe nuclei (DRN) and PFC of CUMS rats. SID1900 and spadin significantly up-regulated the expression of PKA-pCREB-BDNF signaling in DRN, hippocampus and PFC of CUMS rats, which were enhanced and reversed by a 5-HTR1A agonist (8-OH-DPAT) and antagonist (WAY100635) respectively. The present findings suggested that TREK1 channel blockers posses the substantial antidepressant-like effect and have the potential synergistic effect with 5-HT1A receptor activation through the common CREB-BDNF signal transduction. PMID:26441141

  10. Effects of a Proprietary Standardized Orthosiphon stamineus Ethanolic Leaf Extract on Enhancing Memory in Sprague Dawley Rats Possibly via Blockade of Adenosine A 2A Receptors.

    PubMed

    George, Annie; Chinnappan, Sasikala; Choudhary, Yogendra; Choudhary, Vandana Kotak; Bommu, Praveen; Wong, Hoi Jin

    2015-01-01

    The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory.

  11. Effects of a Proprietary Standardized Orthosiphon stamineus Ethanolic Leaf Extract on Enhancing Memory in Sprague Dawley Rats Possibly via Blockade of Adenosine A 2A Receptors.

    PubMed

    George, Annie; Chinnappan, Sasikala; Choudhary, Yogendra; Choudhary, Vandana Kotak; Bommu, Praveen; Wong, Hoi Jin

    2015-01-01

    The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory. PMID:26649059

  12. Systemic modulation of serotonergic synapses via reuptake blockade or 5HT1A receptor antagonism does not alter perithreshold taste sensitivity in rats.

    PubMed

    Mathes, Clare M; Spector, Alan C

    2014-09-01

    Systemic blockade of serotonin (5HT) reuptake with paroxetine has been shown to increase sensitivity to sucrose and quinine in humans. Here, using a 2-response operant taste detection task, we measured the effect of paroxetine and the 5HT1A receptor antagonist WAY100635 on the ability of rats to discriminate sucrose, NaCl, and citric acid from water. After establishing individual psychometric functions, 5 concentrations of each taste stimulus were chosen to represent the dynamic portion of the concentration-response curve, and the performance of the rats to these stimuli was assessed after vehicle, paroxetine (7mg/kg intraperitoneally), and WAY100635 (0.3mg/kg subcutaneously; 1mg/kg intravenously) administration. Although, at times, overall performance across concentrations dropped, at most, 5% from vehicle to drug conditions, no differences relative to vehicle were seen on the parameters of the psychometric function (asymptote, slope, or EC50) after drug administration. In contrast to findings in humans, our results suggest that modulation of 5HT activity has little impact on sucrose detectability at perithreshold concentrations in rats, at least at the doses used in this task. In the rat model, the purported paracrine/neurocrine action of serotonin in the taste bud may work in a manner that does not impact overt taste detection behavior.

  13. Effects of a Proprietary Standardized Orthosiphon stamineus Ethanolic Leaf Extract on Enhancing Memory in Sprague Dawley Rats Possibly via Blockade of Adenosine A2A Receptors

    PubMed Central

    Choudhary, Yogendra; Choudhary, Vandana Kotak; Bommu, Praveen; Wong, Hoi Jin

    2015-01-01

    The aim of the study was to explore a propriety standardized ethanolic extract from leaves of Orthosiphon stamineus Benth in improving impairments in short-term social memory in vivo, possibly via blockade of adenosine A2A receptors (A2AR). The ethanolic extract of O. stamineus leaves showed significant in vitro binding activity of A2AR with 74% inhibition at 150 μg/ml and significant A2AR antagonist activity with 98% inhibition at 300 μg/mL. A significant adenosine A1 receptor (A1R) antagonist activity with 100% inhibition was observed at 300 μg/mL. Its effect on learning and memory was assessed via social recognition task using Sprague Dawley rats whereby the ethanolic extract of O. stamineus showed significant (p < 0.001) change in recognition index (RI) at 300 mg/kg and 600 mg/kg p.o and 120 mg/kg i.p., respectively, compared to the vehicle control. In comparison, the ethanolic extract of Polygonum minus aerial parts showed small change in inflexion; however, it remained insignificant in RI at 200 mg/kg p.o. Our findings suggest that the ethanolic extract of O. stamineus leaves improves memory by reversing age-related deficits in short-term social memory and the possible involvement of adenosine A1 and adenosine A2A as a target bioactivity site in the restoration of memory. PMID:26649059

  14. Chemical Synthesis of Tetracyclic Terpenes and Evaluation of Antagonistic Activity on Endothelin-A Receptors and Voltage-gated Calcium Channels

    PubMed Central

    Lu, Jianyu; Aguilar, Angelo; Zou, Bende; Bao, Weier; Koldas, Serkan; Aibin, Shi; Desper, John; Wangemann, Philine; Xie, Xinmin Simon; Hua, Duy H.

    2015-01-01

    A class of tetracyclic terpenes was synthesized and evaluated for antagonistic activity of endothelin-1 (ET-1) induced vasoconstriction and inhibitory activity of voltage-activated Ca2+ channels. Three repeated Robinson annulation reactions were utilized to construct the tetracyclic molecules. A stereoselective reductive Robinson annulation was discovered for the formation of optically pure tricyclic terpenes. Stereoselective addition of cyanide to the hindered α-face of tetracyclic enone (-)-18 was found and subsequent transformation into the aldehyde function was affected by the formation of bicyclic hemiiminal (-)-4. Six selected synthetic tetracyclic terpenes show inhibitory activities in ET-1 induced vasoconstriction in the gerbil spiral modiolar artery with putative affinity constants ranging between 93 and 319 nM. Moreover, one compound, (-)-3, was evaluated further and found to inhibit voltage-activated Ca2+ currents but not to affect Na+ or K+ currents in dorsal root ganglion cells under similar concentrations. These observations imply a dual mechanism of action. In conclusion, tetracyclic terpenes represent a new class of hit molecules for the discovery of new drugs for the treatment of pulmonary hypertension and vascular related diseases. PMID:26190460

  15. Disrupting the endothelin and Wnt relationship to overcome chemoresistance

    PubMed Central

    Rosanò, Laura; Bagnato, Anna

    2015-01-01

    Knowledge of the mechanisms underlying chemoresistance is important in the development of novel targeted treatments for ovarian cancer. We recently reported that targeting endothelin A receptor/β-arrestin-1, a binding partner of Wnt/β-catenin, is sufficient to sensitize ovarian cancer to chemotherapy. This result highlights endothelin-1 receptor antagonists as potential anticancer therapeutics. PMID:27308478

  16. Blockade of 5-HT1A receptors by (+/-)-pindolol potentiates cortical 5-HT outflow, but not antidepressant-like activity of paroxetine: microdialysis and behavioral approaches in 5-HT1A receptor knockout mice.

    PubMed

    Guilloux, Jean-Philippe; David, Denis J P; Guiard, Bruno P; Chenu, Franck; Repérant, Christelle; Toth, Miklos; Bourin, Michel; Gardier, Alain M

    2006-10-01

    Selective serotonin reuptake inhibitors like paroxetine (Prx) often requires 4-6 weeks to achieve clinical benefits in depressed patients. Pindolol shortens this delay and it has been suggested that this effect is mediated by somatodendritic 5-hydroxytryptamine (5-HT) 1A autoreceptors. However clinical data on the beneficial effects of pindolol are conflicting. To study the effects of (+/-)-pindolol-paroxetine administration, we used genetical and pharmacological approaches in 5-HT1A knockout mice (5-HT1A-/-). Two assays, in vivo intracerebral microdialysis in awake mice and the forced swimming test (FST), were used to assess the antidepressant-like effects of this drug combination. Basal levels of extracellular serotonin, 5-HT ([5-HT]ext) in the frontal cortex (FCX) and the dorsal raphe nucleus (DRN) did not differ between the two strains of mice, suggesting a lack of tonic control of 5-HT1A autoreceptors on nerve terminal 5-HT release. Prx (1 and 4 mg/kg) dose-dependently increased cortical [5-HT]ext in both genotypes, but the effects were greater in mutants. The selective 5-HT1A receptor antagonist, WAY-100635 (0.5 mg/kg), or (+/-)-pindolol (5 and 10 mg/kg) potentiated the effects of Prx (4 mg/kg) on cortical [5-HT]ext in 5-HT1A+/+, but not in 5-HT1A-/- mice. Similar responses were obtained following local intra-raphe perfusion by reverse microdialysis of either WAY-100635 or (+/-)-pindolol (100 microM each). In the FST, Prx administration dose-dependently decreased the immobility time in both strains of mice, but the response was much greater in 5HT1A-/- mice. In contrast, (+/-)-pindolol blocked Prx-induced decreases in the immobility time while WAY-100635 had no effect in both genotypes. These findings using 5-HT1A-/- mice confirm that (+/-)-pindolol behaves as an antagonist of 5-HT1A autoreceptor in mice, but its blockade of paroxetine-induced antidepressant-like effects in the FST may be due to its binding to other neurotransmitter receptors.

  17. Cerebrospinal Fluid from Patients with Subarachnoid Haemorrhage and Vasospasm Enhances Endothelin Contraction in Rat Cerebral Arteries

    PubMed Central

    Assenzio, Barbara; Martin, Erica L.; Stankevicius, Edgaras; Civiletti, Federica; Fontanella, Marco; Boccaletti, Riccardo; Berardino, Maurizio; Mazzeo, AnnaTeresa; Ducati, Alessandro; Simonsen, Ulf; Mascia, Luciana

    2015-01-01

    Introduction Previous studies have suggested that cerebrospinal fluid from patients with subarachnoid hemorrhage (SAH) leads to pronounced vasoconstriction in isolated arteries. We hypothesized that only cerebrospinal fluid from SAH patients with vasospasm would produce an enhanced contractile response to endothelin-1 in rat cerebral arteries, involving both endothelin ETA and ETB receptors. Methods Intact rat basilar arteries were incubated for 24 hours with cerebrospinal fluid from 1) SAH patients with vasospasm, 2) SAH patients without vasospasm, and 3) control patients. Arterial segments with and without endothelium were mounted in myographs and concentration-response curves for endothelin-1 were constructed in the absence and presence of selective and combined ETA and ETB receptor antagonists. Endothelin concentrations in culture medium and receptor expression were measured. Results Compared to the other groups, the following was observed in arteries exposed to cerebrospinal fluid from patients with vasospasm: 1) larger contractions at lower endothelin concentrations (p<0.05); 2) the increased endothelin contraction was absent in arteries without endothelium; 3) higher levels of endothelin secretion in the culture medium (p<0.05); 4) there was expression of ETA receptors and new expression of ETB receptors was apparent; 5) reduction in the enhanced response to endothelin after ETB blockade in the low range and after ETA blockade in the high range of endothelin concentrations; 6) after combined ETA and ETB blockade a complete inhibition of endothelin contraction was observed. Conclusions Our experimental findings showed that in intact rat basilar arteries exposed to cerebrospinal fluid from patients with vasospasm endothelin contraction was enhanced in an endothelium-dependent manner and was blocked by combined ETA and ETB receptor antagonism. Therefore we suggest that combined blockade of both receptors may play a role in counteracting vasospasm in patients

  18. Endothelins & erectile dysfunction.

    PubMed

    Ritchie, Robert; Sullivan, Mark

    2011-06-01

    Erectile dysfunction (ED) is common and a significant contributor to poor quality of life and psychosocial morbidity in men. Normal erectile function requires effective co-ordination between a number of complex neural pathways. Penile tumescence occurs in response to rapid arterial inflow to the corpora cavernosa with simultaneous venous outflow restriction due to expansion of the lacunar spaces. This process is under both central and local neuromediation. Endothelins are potent vasoconstrictor peptides that cause strong, slowly developing but sustained contraction of trabecular smooth muscles cells of the corpora cavernosa. Multiple mechanisms of action are proposed, including transmembrane calcium flux, mobilisation of inositol triphosphate sensitive intracellular calcium stores and calcium sensitisation through the Rho-Rho kinase pathway. The exact role of endothelins in the pathogenesis of ED currently remains unclear. Elevated endothelin-1 levels are found in patients with diabetes mellitus and this alone may be sufficient to cause ED. However, this is not borne out in clinical studies. The resultant elevated intracellular calcium may, however, modulate gene expression sufficiently to cause smooth muscle proliferation. Alternatively, alterations in endothelin receptor sensitivity in conditions such as diabetes and hypertension may enhance vasoconstrictor processes. Currently there is contradictory evidence for the role of endothelin receptor antagonists in ED. Animals studies suggest they inhibit corporal vasoconstriction, improve erectile function and protect against diabetes-induced smooth muscle apoptosis. However, the results of clinical studies in ED have been less promising. Uncertainty regarding the exact role of endothelin in penile erection hampers progress in this area. It is possible that the endothelin system may only be relevant to ED in certain conditions where global endothelial dysfunction exists (e.g. diabetes mellitus, systemic sclerosis) and

  19. Determination of tissue endothelin levels.

    PubMed

    Wong, M; Jeng, A Y

    1995-05-01

    A methodology for the quantitation of tissue endothelin levels has been developed. About 85% of authentic endothelin-1 added to the tissue extract was recovered. Using this protocol, the levels of endothelin in various rat tissues were determined. In Wistar-Kyoto rats, the kidney was found to have the highest level of endothelin, 1120 pg/gm wet weight, followed by the spleen and liver. The brain contained only half as much of endothelin when compared with the kidney. This method can be utilized to assess the pathological role of endothelin in cardiovascular or renal diseases.

  20. Endothelin in human brain and pituitary gland: Presence of immunoreactive endothelin, endothelin messenger ribonucleic acid, and endothelin receptors

    SciTech Connect

    Takahashi, K.; Ghatei, M.A.; Jones, P.M.; Murphy, J.K.; Lam, H.C.; O'Halloran, D.J.; Bloom, S.R. )

    1991-03-01

    The presence of immunoreactive (IR) endothelin, endothelin mRNA, and endothelin receptors in human brain and pituitary gland has been studied by RIA, Northern blot hybridization, and receptor assay. IR endothelin was detected in all five brain regions examined (cerebral cortex, cerebellum, brain stem, basal ganglia, and hypothalamus) (6-10 fmol/g wet wt) and spinal cord (22 +/- 6 fmol/g wet wt, n = 7, mean +/- SEM). Higher concentrations of IR endothelin were found in the pituitary gland (147 +/- 30 fmol/g wet wt). Fast protein liquid chromatographic analysis of the IR endothelin in pituitary gland showed a large IR peak in the position of endothelin-3 and a smaller peak in the position of endothelin-1, whereas IR endothelin in the hypothalamus and brain stem was mainly endothelin-1. Endothelin messenger RNA was detected by Northern blot hybridization in the pituitary but not in hypothalamus. The receptor assay showed that 125I-endothelin-1 binding sites were present in large numbers in all five brain regions but were much less abundant in the pituitary gland. Binding capacity and dissociation constant were 5052 +/- 740 fmol/mg protein and 0.045 +/- 0.007 nM in brain stem and 963 +/- 181 fmol/mg protein and 0.034 +/- 0.009 nM in hypothalamus. In the pituitary gland, there were two classes of binding sites for endothelin with dissociation constants of 0.059 +/- 0.002 nM (binding capacity = 418 +/- 63 fmol/mg protein) and 0.652 +/- 0.103 nM (binding capacity = 1717 +/- 200 fmol/mg protein). Endothelin-1, -2 and -3 were almost equipotent in displacing the binding (IC50 approximately 0.04 nM). These findings are in accord with the possibility that endothelin acts as a neurotransmitter, neuromodulator or neurohormone in man.

  1. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  2. Influence of ETR-p1/f1 antisense peptide on endothelin-induced constriction in rat renal arcuate arteries

    PubMed Central

    Wu, Xiaochun; Richards, Nicholas T; Johns, Edward J; Kohsaka, Takeo; Nakamura, Akio; Okada, Hidechika

    1997-01-01

    This study set out to examine the endothelin receptor subtypes mediating vasoconstriction in the rat renal arcuate artery. This was done in isolated vessels 120–200 μm in diameter, incubated with a selective agonist and the novel ‘antisense' peptide to part of the human endothelinA receptor. Groups of vessels (n=6) were incubated with increasing concentrations of endothelin-1 (ET-1), from 1 to 100 nM, which caused a 65% maximal contraction at the highest dose with an pEC50 of 8.16±0.11 M. By contrast, in six other vessels sarafotoxin 6c over the same dose range gave a minimal contraction (around 5% of maximum). Preincubation of six vessels with the antisense peptide ETR p1/f1 at 1 μM had no effect on the ET-1 induced vasoconstriction, in terms of displacement of the concentration-response curve or the maximal tension achieved by the agonist. In the six vessels exposed to 4 μM ETR p1/f1, there was a significant shift of the concentration-response curve and a lower pEC50 at 7.78±0.09 M (P<0.05). At the highest concentrations of ETR p1/f1, there was a marked suppression of all responses to ET-1, which at the maximal concentrations tested, 0.1 μM, only reached some 10% of the maximal achievable contraction. Increasing ET-1 concentrations up to 2 μM in vessels incubated with 40 μM ETR-p1/f1 showed that the blockade could be overcome and that the relationship was shifted to the right (P<0.001) by approximately one log unit with a pEC50 of 7.13±0.11 M. A Schild plot of the data indicated the antagonist to be acting competitively at a single population of receptors. At the highest concentrations tested, 40 μM, ETR-p1/f1 had no effect on noradrenaline-induced contractions, indicating a lack of non-specific actions. Together, these data suggest that at the rat renal arcuate artery the endothelinA receptor is the predominant functional receptor mediating contraction. Furthermore, this study has shown the potential usefulness of this novel

  3. Endothelins and carcinogenesis.

    PubMed

    Olender, Jacek; Nowakowska-Zajdel, Ewa; Walkiewicz, Katarzyna; Muc-Wierzgoń, Małgorzata

    2016-01-01

    Endothelins are a family of four endogenous peptides (ET-1, ET-2, ET-3, ET-4) secreted primarily in an inactive form by the endothelium. They are activated with the participation of converting enzyme. Numerous studies have described their pleiotropic biological activity. These peptides are involved, inter alia, in the regulation of processes such as cell proliferation, migration, angiogenesis and apoptosis. Their important role in the regulation of blood pressure, tissue perfusion (especially in the central nervous system), and myocardial systolic function is also known. Moreover, changes in transcriptional activity of endothelin and its receptors may be involved, with the participation of a number of signaling pathways, in carcinogenesis, and the pathogenesis of numerous diseases (heart, kidney, lung and skin disorders, especially with the component of fibrosis). Their role has been documented in the development of breast, prostatic, colorectal, ovarian, lung, kidney, and endometrial cancer, and in melanoma. In this article we present a brief description of the endothelin group and the participation of them and their receptors in carcinogenesis. We also try to show their role as prognostic and predictive factors in human malignant tumors. The article also refers to clinical trials on the use of preparations of endothelin receptor antagonists in the design of molecular therapeutic strategies in human malignancies. PMID:27594562

  4. ETA receptor blockade potentiates the bronchoconstrictor response to ET-1 in the guinea pig airway.

    PubMed

    Polakowski, J S; Opgenorth, T J; Pollock, D M

    1996-08-01

    The effect of ETA receptor blockade on the bronchopulmonary response to endothelin-1 was determined in the airway of the anesthetized, spontaneously breathing guinea pig. Endothelin-1 administered as an aerosol increased lung resistance and decreased dynamic lung compliance. Delivery of the ETA receptor antagonist, FR139317, 5 min prior to giving endothelin-1 greatly potentiated these changes. A lower dose of endothelin-1 that had no effect on resistance or compliance produced large and significant changes when pretreated with FR139317. In contrast, aerosolized FR139317 had no effect on the bronchopulmonary response to intravenously administered endothelin-1. These data suggest a non-contractile function of ETA receptors accessible from the airways that serve to buffer the constrictor effects of non-ETA receptors.

  5. Celecoxib, but not indomethacin, ameliorates the hypertensive and perivascular fibrotic actions of cyclosporine in rats: Role of endothelin signaling

    SciTech Connect

    El-Mas, Mahmoud M.; Helmy, Maged W.; Ali, Rabab M.; El-Gowelli, Hanan M.

    2015-04-01

    The immunosuppressant drug cyclosporine (CSA) is used with nonsteroidal antiinflammatory drugs (NSAIDs) in arthritic conditions. In this study, we investigated whether NSAIDs modify the deleterious hypertensive action of CSA and the role of endothelin (ET) receptors in this interaction. Pharmacologic, protein expression, and histopathologic studies were performed in rats to investigate the roles of endothelin receptors (ET{sub A}/ET{sub B}) in the hemodynamic interaction between CSA and two NSAIDs, indomethacin and celecoxib. Tail-cuff plethysmography measurements showed that CSA (20 mg kg{sup −1} day{sup −1}, 10 days) increased systolic blood pressure (SBP) and heart rate (HR). CSA hypertension was associated with renal perivascular fibrosis and divergent changes in immunohistochemical signals of renal arteriolar ET{sub A} (increases) and ET{sub B} (decreases) receptors. While these effects of CSA were preserved in rats treated concomitantly with indomethacin (5 mg kg{sup −1} day{sup −1}), celecoxib (10 mg kg{sup −1} day{sup −1}) abolished the pressor, tachycardic, and fibrotic effects of CSA and normalized the altered renal ET{sub A}/ET{sub B} receptor expressions. Selective blockade of ET{sub A} receptors by atrasentan (5 mg kg{sup −1} day{sup −1}) abolished the pressor response elicited by CSA or CSA plus indomethacin. Alternatively, BQ788 (ET{sub B} receptor blocker, 0.1 mg kg{sup −1} day{sup −1}) caused celecoxib-sensitive elevations in SBP and potentiated the pressor response evoked by CSA. Together, the improved renovascular fibrotic and endothelin receptor profile (ET{sub A} downregulation and ET{sub B} upregulation) mediate, at least partly, the protective effect of celecoxib against the hypertensive effect of CSA. Clinically, the use of celecoxib along with CSA in the management of arthritic conditions might provide hypertension-free regimen. - Highlights: • Chronic CSA causes hypertension and renal perivascular fibrosis in rats.

  6. Endothelin-1 as a master regulator of whole-body Na+ homeostasis.

    PubMed

    Speed, Joshua S; Heimlich, J Brett; Hyndman, Kelly A; Fox, Brandon M; Patel, Vivek; Yanagisawa, Masashi; Pollock, Jennifer S; Titze, Jens M; Pollock, David M

    2015-12-01

    The current study was designed to determine whether vascular endothelial-derived endothelin-1 (ET-1) is important for skin Na(+) buffering. In control mice (C57BL/6J), plasma Na(+) and osmolarity were significantly elevated in animals on high- vs. low-salt (HS and LS, respectively) intake. The increased plasma Na(+) and osmolarity were associated with increased ET-1 mRNA in vascular tissue. There was no detectable difference in skin Na(+):H2O in HS fed mice (0.119 ± 0.005 mM vs. 0.127 ± 0.007 mM; LS vs. HS); however, skin Na(+):H2O was significantly increased by blockade of the endothelin type A receptor with ABT-627 (0.116 ± 0.006 mM vs. 0.137 ± 0.007 mM; LS vs. HS; half-maximal inhibitory concentration, 0.055 nM). ET-1 peptide content in skin tissue was increased in floxed control animals on HS (85.9 ± 0.9 pg/mg vs. 106.4 ± 6.8 pg/mg; P < 0.05), but not in vascular endothelial cell endothelin-1 knockout (VEET KO) mice (76.4 ± 5.7 pg/mg vs. 65.7 ± 7.9 pg/mg; LS vs. HS). VEET KO mice also had a significantly elevated skin Na(+):H2O (0.113 ± 0.007 mM vs. 0.137 ± 0.005 mM; LS vs. HS; P < 0.05). Finally, ET-1 production was elevated in response to increasing extracellular osmolarity in cultured human endothelial cells. These data support the hypothesis that increased extrarenal vascular ET-1 production in response to HS intake is mediated by increased extracellular osmolarity and plays a critical role in regulating skin storage of Na(+). PMID:26268928

  7. Endothelin, Astrocytes and Glaucoma

    PubMed Central

    Prasanna, Ganesh; Krishnamoorthy, Raghu; Yorio, Thomas

    2010-01-01

    It has become increasingly clear that astrocytes may play an important role in the genesis of glaucoma. Astrogliosis occurs in response to ocular stress or the presence of noxious stimuli. Agents that appear to stimulate reactive gliosis are becoming increasingly clear. One class of agents that is emerging is the endothelins (ETs; specifically, ET-1). In this review we examine the interactions of ET-1 with astrocytes and provide examples where ET-1 appears to contribute to activation of astrocytes and play a role in the neurodegenerative effects that accompany such reactivation resulting in astrogliosis. These actions are presented in the context of glaucoma although information is also presented with respect to ET-1's role in the central nervous system and brain. While much has been learned with respect to ET-1/astrocyte interactions, there are still a number of questions concerning the potential therapeutic implications of these findings. Hopefully this review will stimulate others to examine this potential. PMID:20849847

  8. Endothelin receptor alterations in equine airway hyperreactivity

    PubMed Central

    2006-01-01

    Abstract The purpose of this study was to evaluate the role of endothelin-1 (ET-1) and its receptors in the airway hyperreactivity of horses with obstructive pulmonary disease associated with summer pasture (SPAOPD). The right diaphragmatic lobe of the lung of 8 clinically healthy (unaffected) and 8 SPAOPD-affected horses was collected immediately after euthanasia. Bronchial rings (4 mm wide) were prepared and mounted in organ baths and attached to force transducers interfaced with a polygraph. Four rings were used to study each ET-1 receptor; 1 ring served as the control, and the other 3 were incubated with 10−9, 10−7, or 10−5 M of either BQ-123, an ETA-receptor antagonist, or IRL-1038, an ETB-receptor antagonist. Cumulative concentrations (10−8.5 to 10−6 M) of ET-1 were applied to all rings. Using pooled pulmonary tissue from different regions of the lung, we performed a reverse-transcription polymerase chain reaction (RT-PCR) to determine ETB-receptor gene expression. Although ET-1 caused concentration-dependent bronchial ring contraction in both groups of horses, the rings of SPAOPD-affected horses had significantly greater contraction than the rings of unaffected horses. Whereas ETA-receptor blockade significantly increased the response to ET-1 in unaffected horses, ETB-receptor blockade significantly decreased the response in affected horses. The pA2 values showed a nonsignificant decrease in ETA-receptor affinity and a significant increase in ETB-receptor affinity in affected horses compared with unaffected horses. The ETB-receptor mRNA expression of the pooled pulmonary tissue showed a nonsignificant increase in affected horses compared with unaffected horses. The airway hyperreactivity to ET-1 observed in the bronchial rings from the affected horses appears to be due in part to activation of pulmonary ETB receptors, which appear to be inactive in unaffected horses. PMID:16548332

  9. Endothelin ETB1 receptor agonism as a new therapeutic strategy in pulmonary arterial hypertension and chronic heart failure.

    PubMed

    Ramirez, Giuseppe A

    2013-11-01

    Pulmonary arterial hypertension and post-ischemic chronic heart failure are highly prevalent diseases with high morbidity and mortality rates due to chronic vascular injury and extensive remodeling responses at the level of the vessel walls. Endothelins play a central role in this setting, through a complex signaling system that mainly affects endothelial and vascular smooth muscle cells. ETA and ETB2 endothelin receptors are thought to mediate pro-ischemic responses, while ETB1 receptor activity could account for the overall protective effect of ETB signaling in physiology. The pharmacologic modulation of the endothelin system has mainly focused on the dual non-selective blockade of ETA and ETB endothelin receptors or to the selective blockade of ETA-related pathways to date. Good clinical results were achieved in the setting of pulmonary hypertension but no advantage has been demonstrated for heart failure. Restoring and enhancing the physiological protective role of ETB1-signaling with concomitant blockade of ETB2 could possibly improve the efficacy of current therapies in the setting of pulmonary arterial hypertension and post-ischemic chronic heart failure.

  10. Endothelin-1 in idiopathic pulmonary fibrosis.

    PubMed Central

    Uguccioni, M; Pulsatelli, L; Grigolo, B; Facchini, A; Fasano, L; Cinti, C; Fabbri, M; Gasbarrini, G; Meliconi, R

    1995-01-01

    AIMS--To evaluate whether endothelin-1 is involved in the pathology of idiopathic pulmonary fibrosis (IPF). METHODS--Plasma endothelin-1 concentrations were evaluated in 37 patients with IPF and 27 normal controls by radioimmunoassay. In addition, expression of endothelin-1 in lung tissue was evaluated in biopsy specimens obtained from four patients with IPF. Three biopsy specimens of normal lung were used as controls. Endothelin-1 immunoreactivity was detected using immunohistochemistry. RESULTS--Elevated endothelin-1 plasma concentrations were found in patients with IPF compared with controls and a positive correlation was found with duration of disease. No significant difference was observed between treated and untreated patients with IPF. Increased endothelin-1 immunoreactivity was found in lungs of three of four patients with IPF. Endothelin-1 positive consisted mainly of small vessel endothelial cells. Some scattered macrophages were also positive. CONCLUSIONS--Elevated plasma concentrations and expression of endothelin-1 in lung tissue are suggestive of increased production of endothelin-1 in at least a proportion of patients with IPF. Consequently, endothelin-1 activity could play a role in the fibrogenic process of the disease. Images PMID:7615852

  11. Endothelin-1 vasoconstriction and the age-related decline in endothelium-dependent vasodilatation in men.

    PubMed

    Westby, Christian M; Weil, Brian R; Greiner, Jared J; Stauffer, Brian L; DeSouza, Christopher A

    2011-06-01

    ET (endothelin)-1, a potent vasoconstrictor peptide released by the endothelium, plays an important role in vasomotor regulation and has been linked to diminished endothelial vasodilator capacity in several pathologies associated with human aging, including hypertension, Type 2 diabetes and coronary artery disease. However, it is currently unknown whether the decline in endothelial vasodilatation with advancing age is due to elevated ET-1 vasoconstrictor activity. Accordingly, we tested the hypothesis that the age-related impairment in ACh (acetylcholine)-mediated endothelium-dependent vasodilatation is due, at least in part, to increased ET-1-mediated vasoconstrictor tone. FBF (forearm blood flow) responses to ACh, SNP (sodium nitroprusside) and BQ-123 (ET(A) receptor blocker) were determined in 14 young (age, 25 ± 1 years) and 14 older (age, 61 ± 2 years) healthy non-obese men. Additionally, FBF responses to ACh were determined in the presence of ETA blockade. Vasodilatation to ACh was lower (approx. 25%; P<0.05) in the older men (from 4.9 ± 0.2 to 13.9 ± 0.9 ml·100 ml(-1) of tissue·min(-1)) compared with the young men (4.6 ± 0.3 to 17.2 ± 1.0 ml·100 ml(-1) of tissue·min(-1)). There were no differences in FBF responses to SNP between the young (4.8 ± 0.3 to 18.5 ± 0.3 ml·100 ml(-1) of tissue·min(-1)) and older (5.1 ± 0.3 to 17.3 ± 0.8 ml·100 ml(-1) of tissue·min(-1)) men. In the young men, resting FBF was not significantly altered by BQ-123, whereas, in the older men, FBF increased approx. 25% in response to BQ-123 infusion (P<0.05). Co-infusion of ACh with BQ-123 resulted in an approx. 20% increase in the ACh-induced vasodilatation in older men compared with saline. In contrast, FBF responses to ACh were not significantly altered by ET(A) blockade in the young men. In conclusion, these results demonstrate that ET-1 vasoconstrictor activity contributes, at least in part, to diminished endothelium-dependent vasodilatation in older men.

  12. Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury.

    PubMed

    Khodorova, Alla; Navarro, Betsy; Jouaville, Laurence Sophie; Murphy, Jo-Ellen; Rice, Frank L; Mazurkiewicz, Joseph E; Long-Woodward, Denise; Stoffel, Markus; Strichartz, Gary R; Yukhananov, Rus; Davar, Gudarz

    2003-08-01

    Endothelin-1 (ET-1) is a newly described pain mediator that is involved in the pathogenesis of pain states ranging from trauma to cancer. ET-1 is synthesized by keratinocytes in normal skin and is locally released after cutaneous injury. While it is able to trigger pain through its actions on endothelin-A (ET(A)) receptors of local nociceptors, it can coincidentally produce analgesia through endothelin-B (ET(B)) receptors. Here we map a new endogenous analgesic circuit, in which ET(B) receptor activation induces the release of beta-endorphin from keratinocytes and the activation of G-protein-coupled inwardly rectifying potassium channels (GIRKs, also named Kir-3) linked to opioid receptors on nociceptors. These results indicate the existence of an intrinsic feedback mechanism to control peripheral pain in skin, and establish keratinocytes as an ET(B) receptor-operated opioid pool.

  13. Human Cytomegalovirus Up-Regulates Endothelin Receptor Type B: Implication for Vasculopathies?

    PubMed Central

    Yaiw, Koon-Chu; Mohammad, Abdul-Aleem; Costa, Helena; Taher, Chato; Badrnya, Sigrun; Assinger, Alice; Wilhelmi, Vanessa; Ananthaseshan, Sharan; Estekizadeh, Atosa; Davoudi, Belghis; Ovchinnikova, Olga; Shlyakhto, Eugene; Rafnsson, Arnar; Khan, Zahidul; Butler, Lynn; Rahbar, Afsar; Pernow, John; Söderberg-Nauclér, Cecilia

    2015-01-01

    Background. Both endothelin receptor type B ([ETBR], a G protein-coupled receptor that mediates the vascular effects of the potent vasoconstrictor endothelin-1) and human cytomegalovirus ([HCMV], a ubiquitous herpesvirus) have been implicated in the pathogenesis of cardiovascular disease (CVD). The effects of HCMV infection on ETBR expression are unknown. We hypothesized that HCMV may contribute to the pathogenesis of CVD via ETBR modulation. Methods. Human CMV effects on ETBR were studied in vitro in endothelial cells (ECs) and smooth muscle cells (SMCs) and ex vivo in human carotid plaque tissue specimens. Expression of ETBR and viral immediate-early were quantified using quantitative polymerase chain reaction. Functional consequences after ETBR blockade in ECs were examined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide proliferation, wound healing, tube formation, and flow adhesion assays. Results. Human CMV is capable of upregulating both ETBR mRNA and protein expression in ECs and SMCs. The ETBR was also abundantly expressed in ECs, foam cells, and SMCs, and, more importantly, in HCMV-positive cells in human carotid plaques. Endothelin receptor type B blockade led to decreased proliferation and reduced tumor necrosis factor α-mediated leukocyte recruitment in both uninfected and HCMV-infected ECs. Direct HCMV infection was antimigratory and antiangiogenic in ECs. Conclusions. Human CMV may contribute to CVD via ETBR induction. PMID:26719843

  14. Cathepsin E induces itch-related response through the production of endothelin-1 in mice.

    PubMed

    Andoh, Tsugunobu; Yoshida, Tetsuro; Lee, Jung-Bum; Kuraishi, Yasushi

    2012-07-01

    This study investigated the pruritogenic potency of cathepsin E, an aspartic protease, and its mechanisms in mice. An intradermal injection of cathepsin E to the rostral back elicited scratching, an itch-associated response, of the injection site. This action was inhibited by the aspartic protease inhibitor pepstatin A, the endothelin ET(A) receptor antagonist BQ-123, and the opioid receptor antagonists naltrexone and naloxone, but not by the H(1) histamine receptor antagonist terfenadine, the proteinase-activated receptor-2 antagonist FSLLRY-NH(2), or mast cell deficiency. Pepstatin A inhibited scratching induced by intradermal injection of the mast-cell degranulator compound 48/80, but not by tryptase, a mast-cell mediator. An intradermal injection of cathepsin E increased endothelin-1 levels in the skin at the injection site. Preproendothelin-1 mRNA was present in primary cultures of keratinocytes, and immunohistochemistry using an antibody recognizing endothelin-1 and big-endothelin-1 revealed immunoreactivity in the epidermis, especially in the prickle and granular cell layers, but not in the basal cell layer. These results suggest that cathepsin E is an endogenous itch inducer, and that its action is mediated at least in part by the production of endothelin-1 in the epidermis.

  15. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus

    PubMed Central

    Kido-Nakahara, Makiko; Buddenkotte, Jörg; Kempkes, Cordula; Ikoma, Akihiko; Cevikbas, Ferda; Akiyama, Tasuku; Nunes, Frank; Seeliger, Stephan; Hasdemir, Burcu; Mess, Christian; Buhl, Timo; Sulk, Mathias; Müller, Frank-Ulrich; Metze, Dieter; Bunnett, Nigel W.; Bhargava, Aditi; Carstens, Earl; Furue, Masutaka; Steinhoff, Martin

    2014-01-01

    In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein–coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin–converting enzyme 1 (ECE-1) as a key regulator of ET-1–induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1–containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1–induced activation of ERK1/2, but not p38. In a murine itch model, ET-1–induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1–induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans. PMID:24812665

  16. Endothelin system in oral squamous carcinoma cells: specific siRNA targeting of ECE-1 blocks cell proliferation.

    PubMed

    Awano, Shuji; Dawson, Louise A; Hunter, Alison R; Turner, Anthony J; Usmani, Badar A

    2006-04-01

    The present study focused on the endothelin axis in human oral squamous cell carcinoma (SCC) cells. We investigated the expression and distribution of endothelin-1 (ET-1), its receptors (endothelin-A receptor (ET(A)R) and endothelin-B receptor (ET(B)R)) and isoforms of its specific converting enzyme (ECE-1a, 1b, 1c) and the report on their relative influences on cell proliferation. We also investigated the effect of an ECE-specific inhibitor (ECE-i) and siRNA targeting of the ECE-1 gene on SCC cell proliferation. We observed the expression of ET-1, ET(A)R, ET(B)R and all endothelin-converting enzyme-1 (ECE-1) isoforms in oral SCC cells, but only the expression of ET-1, ET(B)R and ECE-1 was increased when compared to normal human epidermal keratinocytes. ET-1 alone stimulated proliferation of oral SCC cells. Antagonists of either ET(A)R or ET(B)R inhibited ET-1-mediated proliferation. Decreased ECE-1 expression after ECE siRNA treatment reduced SCC cell proliferation. Antiproliferative effects were also observed by inhibiting ECE activity with ECE-i. In conclusion, the present study demonstrates that modulation of the endothelin system in oral SCC cells might provide a novel therapeutic protocol for oral cancer.

  17. Novel isonahocol E(3) exhibits anti-inflammatory and anti-angiogenic effects in endothelin-1-stimulated human keratinocytes.

    PubMed

    Sah, Shyam Kishor; Kim, Byung-Hak; Park, Geon-Tae; Kim, Sunghwam; Jang, Kyoung Hwa; Jeon, Ju Eun; Shin, Jongheon; Kim, Tae-Yoon

    2013-11-15

    Endothelin-1 (ET-1) is reported to be a potent mitogenic and pro-angiogenic factor that plays a vital role in both physiological and pathological processes. ET-1 is implicated in dermal cell proliferation and skin disorders, such as psoriasis and atopic dermatitis. ET-1, endothelin ET(A) receptor, and endothelin ET(B) receptor could be potential targets for developing specific therapeutics to treat such disorders. Here, we provide the first report that an isonahocol [2,-5-hihydroxy-3-(13-hydroxy-3,-7,-11,-15-tetramethyl-12-oxo-hexadeca-2,-6,-14-trienyl)-phenyl]-acetic acid methyl ester (isonahocol E(3)) from the brown algae Sargassum siliquastrum has functional antagonistic activities against ET-1 induced inflammatory and proangiogenic effects. Isonahocol E(3) significantly inhibited ET-1-induced cell proliferation, as well as inflammatory mediators, such as interleukin-6 (IL-6) and interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), and pro-angiogenic factors including metalloproteinases in immortalized human keratinocytes. We also found that isonahocol E(3) reduced expression level of endothelin ET(A) receptor, and endothelin ET(B) receptor as well as suppressed ET-1 induced extracellular signal-regulated kinase (ERK) phosporylation. Taken together, our results suggest that isonahocol E(3) can exert anti-inflammatory and anti-angiogenic activities at least by regulating the expression of ET-1 receptors and ERK signaling pathway.

  18. Endothelin-1 in systemic sclerosis

    PubMed Central

    Aghaei, Mehrdad; Gharibdost, Farhad; Zayeni, Habib; Akhlaghi, Maryam; Sedighi, Sima; Rostamian, Abduo Rahman; Aghdami, Naser; Shojaa, Mahdieh

    2012-01-01

    Introduction: Scleroderma is a systemic disorder with unknown etiology most notably characterized by skin thickening and organ damage. Endothelin-1 (ET-1) plays a role in skin fibrosis. The aim of this study was survey and comparison of ET-1 level in Systemic Sclerosis (SSc) patients with and without digital ulcer. Material and Methods: A cross-sectional analytical study conducted among the 95 patients with scleroderma in 2006 who were referred to the Rheumatology clinic in Shariati hospital of Tehran. The questionnaire was completed for every patient. Plasma level of endothelin-1 was also measured in all of them. The data was analyzed using SPSS software and statistical tests. Results: The result indicated, relationship among digital ulcers and digital pitting scars with plasma level of ET-1 were significant (P value < 0.05). We could not find any significant relationship between age and plasma level of ET-1. Conclusion: These data indicate plasma level of ET-1 in scleroderma patients with digital ulcer was higher than patients without digital ulcer. Thus, increase in plasma level of ET-1 could be effective in vascular damage, fibrosis, and skin thickness. PMID:23130253

  19. Endothelin receptor B protects granulocyte macrophage colony-stimulating factor mRNA from degradation.

    PubMed

    Jungck, David; Knobloch, Jürgen; Körber, Sandra; Lin, Yingfeng; Konradi, Jürgen; Yanik, Sarah; Stoelben, Erich; Koch, Andrea

    2015-06-01

    Evidence is lacking on the differential effects of the two therapeutic concepts of endothelin receptor antagonists (ERAs): the blockade of only the endothelin receptor A (ETAR; selective antagonism) versus both ETAR and endothelin receptor B (ETBR; dual blockade). Ambrisentan, a selective ERA, and bosentan, a dual blocker, are both available for therapy. We hypothesized that there are differences in the potential of ERAs to ameliorate inflammatory processes in human airway smooth muscle cells (HASMCs) and aimed to unravel underlying mechanisms. We used HASMC culture, enzyme-linked immunosorbent assay, and quantitative reverse-transcription polymerase chain reaction. Tumor necrosis factor α (TNFα) induced transcription and expression of chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand 3 (CXCL3), granulocyte macrophage colony-stimulating factor (GM-CSF), and matrix metalloproteinase 12 (MMP12) in HASMCs. In concentration-response experiments, bosentan led to a significantly greater reduction of GM-CSF and MMP12 protein release than ambrisentan, whereas there was no significant difference in their effect on GM-CSF and MMP12 mRNA. Both ERAs reduced CXCL3 protein and mRNA equally but had no effect on CXCL2. Blocking mitogen-activated protein kinases revealed that both ETAR and ETBR signal through p38 mitogen-activated protein kinase, but ETBR also signals through extracellular signal-regulated kinase (ERK) 1/2 to induce GM-CSF expression. In the presence of the transcription inhibitor actinomycin D, bosentan, but not ambrisentan, reduced GM-CSF but not MMP12 or CXCL3 mRNA. In conclusion, blockade of each endothelin receptor subtype reduces GM-CSF transcription, but blocking ETBR additionally protects GM-CSF mRNA from degradation via ERK-1/2. Accordingly, blocking both ETAR and ETBR leads to a stronger reduction of TNFα-induced GM-CSF protein expression. This mechanism might be specific to GM-CSF. Our data stress the anti-inflammatory potential

  20. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    SciTech Connect

    Zhao, Y.D.; Springall, D.R.; Wharton, J.; Polak, J.M. )

    1991-01-01

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with the known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.

  1. Regulation of human retinal blood flow by endothelin-1.

    PubMed

    Polak, Kaija; Luksch, Alexandra; Frank, Barbara; Jandrasits, Kerstin; Polska, Elzbieta; Schmetterer, Leopold

    2003-05-01

    There is evidence from in vitro and animal studies that endothelin is a major regulator of retinal blood flow. We set out to characterize the role of the endothelin-system in the blood flow control of the human retina. Two studies in healthy subjects were performed. The study design was randomized, placebo-controlled, double-masked, balanced, two-way crossover in protocol A and three way-way crossover in protocol B. In protocol A 18 healthy male subjects received intravenous endothelin-1 (ET-1) in a dose of 2.5 ng kg (-1)min(-1) for 30 min or placebo on two different study days and retinal vessel diameters were measured. In protocol B 12 healthy male subjects received ET-1 in stepwise increasing doses of 0, 1.25, 2.5 and 5 ng kg (-1)min(-1) (each infusion step over 20 min) in co-infusion with the specific ET(A)-receptor antagonist BQ123 (60 microg min (-1)) or placebo or BQ123 alone investigating retinal vessel diameters, retinal blood velocity and retinal blood flow. Measurements of retinal vessel size were done with the Zeiss retinal vessel analyzer. Measurements of blood velocities were done with bi-directional laser Doppler velocimetry. From these measurements retinal blood flow was calculated. In protocol A exogenous ET-1 tended to decrease retinal arterial diameter, but this effect was not significant versus placebo. No effect on retinal venous diameter was seen. In protocol B retinal venous blood velocity and retinal blood flow was significantly reduced after administration of exogenous ET-1. These effects were significantly blunted when BQ-123 was co-administered. By contrast, BQ-123 alone had no effect on retinal hemodynamic parameters. Concluding, BQ123 antagonizes the effects of exogenously administered ET-1 on retinal blood flow in healthy subjects. In addition, the results of the present study are compatible with the hypothesis that ET-1 exerts its vasoconstrictor effects in the retina mainly on the microvessels.

  2. Novel dual endothelin receptor antagonist macitentan reverses severe pulmonary arterial hypertension in rats.

    PubMed

    Kunita-Takanezawa, Mutsumi; Abe, Kohtaro; Hirooka, Yoshitaka; Kuwabara, Yukimitsu; Hirano, Katsuya; Oka, Masahiko; Sunagawa, Kenji

    2014-11-01

    The efficacy of endothelin (ET) receptor antagonist bosentan in patients with severe pulmonary arterial hypertension (PAH) remains limited, partly because its higher doses for potential blockade of ET receptors have never been tested due to liver dysfunction. We hypothesized that rigorous blockade of ET receptors using the novel dual ET receptor antagonist macitentan would be effective in treating severe PAH without major side effects in a preclinical model appropriately representing the human disorder. In normal rats, 30 mg·kg·d of macitentan completely abolished big ET-1-induced increases in right ventricle (RV) systolic pressure. Adult male rats were injected with SU5416, a vascular endothelial growth factor blocker, and exposed to hypoxia for 3 weeks and then to normoxia for an additional 5 weeks (total 8 weeks). In intrapulmonary arterial rings isolated from rats with severe PAH, macitentan concentration dependently inhibited ET-1-induced contraction. Long-term treatment with macitentan (30 mg·kg·d, from week 3 to 8) reversed the high RV systolic pressure with preserved cardiac output. Development of RV hypertrophy, luminal occlusive lesions and medial wall thickening were also significantly improved without increasing serum levels of liver enzymes by macitentan. In conclusion, efficacious blockade of ET receptors with macitentan would reverse severe PAH without major adverse effects.

  3. Methamphetamine induces the release of endothelin.

    PubMed

    Seo, Jeong-Woo; Jones, Susan M; Hostetter, Trisha A; Iliff, Jeffrey J; West, G Alexander

    2016-02-01

    Methamphetamine is a potent psychostimulant drug of abuse that increases release and blocks reuptake of dopamine, producing intense euphoria, factors that may contribute to its widespread abuse. It also produces severe neurotoxicity resulting from oxidative stress, DNA damage, blood-brain barrier disruption, microgliosis, and mitochondrial dysfunction. Intracerebral hemorrhagic and ischemic stroke have been reported after intravenous and oral abuse of methamphetamine. Several studies have shown that methamphetamine causes vasoconstriction of vessels. This study investigates the effect of methamphetamine on endothelin-1 (ET-1) release in mouse brain endothelial cells by ELISA. ET-1 transcription as well as endothelial nitric oxide synthase (eNOS) activation and transcription were measured following methamphetamine treatment. We also examine the effect of methamphetamine on isolated cerebral arteriolar vessels from C57BL/6 mice. Penetrating middle cerebral arterioles were cannulated at both ends with a micropipette system. Methamphetamine was applied extraluminally, and the vascular response was investigated. Methamphetamine treatment of mouse brain endothelial cells resulted in ET-1 release and a transient increase in ET-1 message. The activity and transcription of eNOS were only slightly enhanced after 24 hr of treatment with methamphetamine. In addition, methamphetamine caused significant vasoconstriction of isolated mouse intracerebral arterioles. The vasoconstrictive effect of methamphetamine was attenuated by coapplication of the endothelin receptor antagonist PD145065. These findings suggest that vasoconstriction induced by methamphetamine is mediated through the endothelin receptor and may involve an endothelin-dependent pathway.

  4. Ultrasound for neuraxial blockade.

    PubMed

    Srinivasan, Karthikeyan Kallidaikurichi; Lee, Peter John; Iohom, Gabriella

    2014-12-01

    Neuraxial blockade is still largely performed as a blind procedure. Despite of developments in the type of needles used and drugs administered, the process of locating the epidural or intra-thecal space is still limited to identification of landmarks by palpation and reliance on tactile feedback of the operator. Ultrasound has provided the long needed "eye" to the procedure and has already shown promise of improving the safety and efficacy or neuraxial blocks. This review focuses on understanding the sonoanatomy of the neuraxial space, performing a systematic pre-procedural ultrasound scan, and reviewing the available evidence. PMID:25463890

  5. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria

    PubMed Central

    Freeman, Brandi D.; Martins, Yuri C.; Akide-Ndunge, Oscar B.; Bruno, Fernando P.; Wang, Hua; Tanowitz, Herbert B.; Spray, David C.; Desruisseaux, Mahalia S.

    2016-01-01

    Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. PMID:27031954

  6. Endothelin-1 and its A and B receptors: are they possibly involved in vitiligo?

    PubMed

    Aly, Dalia Gamal; Salem, Samar Abdallah Mohamed; Abdel-Hamid, Mahmoud Fawzy; Youssef, Nermeen Salah; El Shaer, Marwa Abdel Moneim

    2013-01-01

    Endothelin-1 (ET-1), expressed by keratinocytes, has paracrine effects on melanocytes. The endothelin 1-axis [ET-1, endothelin A receptor (ETAR) and endothelin B receptor (ETBR)] is thought to play a role in the depigmentation process occurring in vitiligo, with no studies on the cutaneous protein expression of this axis in the disease. The aim of the present study was to compare the expression of ET-1 axis in lesional and perilesional normal epidermis of vitiligo patients with healthy controls. Ten patients with non-segmental stable vitiligo and ten healthy controls were included. Skin biopsies from all subjects were studied immunohistochemically for ET-1, ETAR and ETBR expression. No significant difference was detected in the rate of expression and the degree of staining of ET-1 axis in controls compared with each of lesional vitiligo and perilesional normal epidermis (P>0.05). There was no statistically significant difference between lesional vitiligo and perilesional normal epidermis regarding to the rates of ET-1, ETAR and ETBR expression (P=0.82, P=0.5 and P=0.99, respectively). Semi-quantitative analysis of ETAR revealed higher staining grades in lesional compared with perilesional normal epidermis, with a statistically significant difference (P=0.04). There was no statistically significant difference between the two groups regarding the staining grades of ET-1 and ETBR (P>0.05 for both markers). A highly significant positive correlation was found between ET-1 and ETAR (r =0.99, P<0.05) and between ET-1 and ETBR (r=0.87, P<0.05). The study demonstrated unaltered expression of ET-1 axis in keratinocytes in lesional vitiligo and perilesional normal epidermis. Additional studies on the differential expression of this axis in keratinocytes and melanocytes are therefore required.

  7. Neuropathic pain induced by spinal cord injury: Role of endothelin ETA and ETB receptors.

    PubMed

    Forner, S; Martini, A C; de Andrade, E L; Rae, G A

    2016-03-23

    Spinal cord injury (SCI) is a devastating neurologic disorder that often inflicts neuropathic pain, which further impacts negatively on the patient's quality of life. Endothelin peptides, which exert their effects via endothelin A (ETAR) and endothelin B (ETBR) receptors, can contribute to sensory changes associated with inflammatory and neuropathic pain, but their role in nociception following SCI is unknown. At different time points after subjecting male Wistar rats to surgery for compression-induced T10 level SCI, the spinal cord levels of ETAR and ETBR were assessed by Western blot and immunohistochemistry, and the corresponding mRNAs by real-time PCR, alongside recordings of behavioural responses to mechanical stimulation of the hind paws with von Frey hairs. SCI was associated with development of hind paw mechanical allodynia from day 14 onwards, and up-regulation of ETAR and ETBR mRNA in the spinal cord and dorsal root ganglia, and of ETAR protein in the spinal cord. SCI increased ETAR protein expression in spinal grey matter. Treatment on day 21 after surgery with the ETAR selective antagonist BQ-123 (40 and 90 pmol, intrathecally) or the dual ETAR/ETBR antagonist bosentan (30 and 100mg/kg, orally) transiently reduced SCI-induced mechanical allodynia, but the ETBR antagonist BQ-788 was ineffective. Altogether, these data show that SCI upregulates ETAR expression in the spinal cord, which appears to contribute to the hind paw mechanical allodynia associated with this condition. Therapies directed towards blockade of spinal ETAR may hold potential to limit SCI-induced neuropathic pain.

  8. UV-induction of keratinocyte endothelin-1 downregulates E-cadherin in melanocytes and melanoma cells.

    PubMed

    Jamal, Sumayah; Schneider, Robert J

    2002-08-01

    Endothelin-1 (ET-1), a peptide that is secreted by keratinocytes in the skin in response to ultraviolet irradiation, is a ligand for the endothelin-B (ET(B)) receptor. Blockade of this receptor inhibits melanoma cell growth and induces cell death in vivo and in vitro. Additionally, ET(B) is a melanoma progression marker. These findings suggest that the ET-1/ET(B) receptor pathway contributes to melanoma development or progression. Here, we demonstrate that activation of the ET-1/ET(B) pathway downregulates E-cadherin and associated catenin proteins in human melanocytes and melanoma cells. E-cadherin is an established suppressor of melanoma cell invasion in vitro and in vivo. Downregulation of E-cadherin by ET-1/ET(B) involves the downstream activation of caspase-8 but not of distal, executioner caspases, and does not lead to apoptosis. ET-1 also induces a transient association between caspase-8 and E-cadherin:beta-catenin complexes. Hence, activation of the ET-1/ET(B) pathway promotes molecular events known to promote melanoma invasion.

  9. Endothelin-1 Promotes Survival and Chemoresistance in Chronic Lymphocytic Leukemia B Cells through ETA Receptor

    PubMed Central

    Martinelli, Silvia; Castelli, Ilaria; Valenti, Vanessa; Rossi, Davide; Bonacorsi, Goretta; Zucchini, Patrizia; Potenza, Leonardo; Vallisa, Daniele; Gattei, Valter; Poeta, Giovanni Del; Forconi, Francesco; Gaidano, Gianluca; Narni, Franco; Luppi, Mario; Marasca, Roberto

    2014-01-01

    The endothelin axis, comprising endothelins (ET-1, ET-2 and ET-3) and their receptors (ETAR and ETBR), has emerged as relevant player in tumor growth and metastasis. Here, we investigated the involvement of ET-1/ETAR axis in chronic lymphocytic leukemia (CLL). CLL cells expressed higher levels of ET-1 and ETA receptor as compared to normal B cells. ET-1 peptide stimulated phosphoinositide-3-kinase and mitogen-activated protein kinase signaling pathways, improved survival and promoted proliferation of leukemic cells throughout ETAR triggering. Moreover, the blockade of ETAR by the selective antagonist BQ-123 inhibited the survival advantage acquired by CLL cells in contact with endothelial layers. We also found that blocking ETAR via BQ-123 interferes with ERK phosphorylation and CLL pro-survival effect mediated by B-cell receptor (BCR) activation. The pro-apoptotic effect of phosphoinositide-3-kinase δ inhibitor idelalisib and mitogen-activated protein kinase inhibitor PD98059 was decreased by the addition of ET-1 peptide. Then, ET-1 also reduced the cytotoxic effect of fludarabine on CLL cells cultured alone or co-cultured on endothelial layers. ETAR blockade by BQ-123 inhibited the ET-1-mediated protection against drug-induced apoptosis. Lastly, higher plasma levels of big ET-1 were detected in patients (n = 151) with unfavourable prognostic factors and shorter time to first treatment. In conclusion, our data describe for the first time a role of ET-1/ETAR signaling in CLL pathobiology. ET-1 mediates survival, drug-resistance, and growth signals in CLL cells that can be blocked by ETAR inhibition. PMID:24901342

  10. 25 years of endothelin research: the next generation.

    PubMed

    Emoto, Noriaki; Vignon-Zellweger, Nicolas; Lopes, Rhéure Alves Moreira; Cacioppo, Joseph; Desbiens, Louisane; Kamato, Danielle; Leurgans, Thomas; Moorhouse, Rebecca; Straube, Julia; Wurm, Raphael; Heiden, Susi; Ergul, Adviye; Yanagisawa, Masashi; Barton, Matthias

    2014-11-24

    In the past three decades, endothelin and endothelin receptor antagonists have received great scientific and clinical interest, leading to the publication of more than 27,000 scientific articles since its discovery. The Thirteenth International Conference on Endothelin (ET-13) was held on September 8-11, 2013, at Tokyo Campus of the University of Tsukuba in Japan. Close to 300 scientists from 25 countries from around the world came to Tokyo to celebrate the anniversary of the discovery of the endothelin peptide discovered 25 years ago at the University of Tsukuba. This article summarizes some of the highlights of the conference, the anniversary celebration ceremony, and particularly the participation of next generation of endothelin researchers in endothelin science and the anniversary celebration. As a particular highlight, next generation endothelin researchers wrote a haiku (a traditional form of Japanese poetry originating from consisting of no more than three short verses and 27 on, or Japanese phonetic units) to describe the magic of endothelin science which they presented to the conference audience at the anniversary ceremony. The text of each haiku - both in its original language together with the English translation - is part of this article providing in an exemplary fashion how poetry can be bridged with science. Finally, we give an outlook towards the next 25 years of endothelin research. PMID:25238993

  11. 25 years of endothelin research: the next generation.

    PubMed

    Emoto, Noriaki; Vignon-Zellweger, Nicolas; Lopes, Rhéure Alves Moreira; Cacioppo, Joseph; Desbiens, Louisane; Kamato, Danielle; Leurgans, Thomas; Moorhouse, Rebecca; Straube, Julia; Wurm, Raphael; Heiden, Susi; Ergul, Adviye; Yanagisawa, Masashi; Barton, Matthias

    2014-11-24

    In the past three decades, endothelin and endothelin receptor antagonists have received great scientific and clinical interest, leading to the publication of more than 27,000 scientific articles since its discovery. The Thirteenth International Conference on Endothelin (ET-13) was held on September 8-11, 2013, at Tokyo Campus of the University of Tsukuba in Japan. Close to 300 scientists from 25 countries from around the world came to Tokyo to celebrate the anniversary of the discovery of the endothelin peptide discovered 25 years ago at the University of Tsukuba. This article summarizes some of the highlights of the conference, the anniversary celebration ceremony, and particularly the participation of next generation of endothelin researchers in endothelin science and the anniversary celebration. As a particular highlight, next generation endothelin researchers wrote a haiku (a traditional form of Japanese poetry originating from consisting of no more than three short verses and 27 on, or Japanese phonetic units) to describe the magic of endothelin science which they presented to the conference audience at the anniversary ceremony. The text of each haiku - both in its original language together with the English translation - is part of this article providing in an exemplary fashion how poetry can be bridged with science. Finally, we give an outlook towards the next 25 years of endothelin research.

  12. Endothelin-1: Biosynthesis, Signaling and Vasoreactivity.

    PubMed

    Houde, M; Desbiens, L; D'Orléans-Juste, P

    2016-01-01

    Endothelin-1 (ET-1) is an extremely potent vasoconstrictor peptide originally isolated from endothelial cells. Its synthesis, mainly regulated at the gene transcription level, involves processing of a precursor by a furin-type proprotein convertase to an inactive intermediate, big ET-1. The latter peptide can then be cleaved directly by an endothelin-converting enzyme (ECE) into ET-1 or reach the active metabolite through a two-step process involving chymase hydrolyzing big ET-1 to ET-1 (1-31), itself needing conversion to ET-1 by neprilysin (NEP) to exert physiological activity. ET-1 signals through two G protein-coupled receptors, endothelin receptor A (ETA) and endothelin receptor B (ETB). Both receptors induce an increase in intracellular Ca(2+), mainly from the extracellular space through voltage-independent mechanisms, the receptor-operated channels and store-operated channels. ET-1 also induces signaling through epidermal growth factor receptor transactivation, oxidative stress induction, rho-kinase, and the activation (ETA) or inhibition (ETB) of the adenylate cyclase/cyclic adenosine monophosphate pathway. Arterial vasoconstriction is mediated mainly by the ETA receptor. ET-1, via endothelium-located ETB, relaxes arteries or constricts vessels following activation of the same receptor type on the smooth muscle, where it can interact with ETA. In addition, ETB-dependent vasoconstriction seems more prominent in the venous vasculature. A better understanding of how ET-1 is synthesized and how ETA and ETB receptors interact could help design better pharmacological agents in the treatment of cardiovascular diseases where targeting the ET-1 system is indicated. PMID:27451097

  13. Endothelin-1 Levels in Scleroderma Patients: A Pilot Study

    PubMed Central

    Cozzani, Emanuele; Javor, Sanja; Drosera, Massimo; Parodi, Aurora

    2013-01-01

    Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor, which mediates vascular wall cells proliferation, fibrosis, and inflammation through two types of ET-1 receptors (ET-A and ET-B). In our retrospective study the serum levels of ET-1 in 18 systemic sclerosis (SSc) patients with and without digital ulcers (DUs) were assessed to observe possible correlation between the levels of ET-1, the evolution of SSc, and the therapy with an ET-1 antagonist (bosentan). In all our patients, the levels of ET-1 were found higher than normal range and correlate with the severity of the disease. Furthermore we also observed that in patients without DUs the levels of ET-1 were higher and did not correlate with new DUs development. In conclusion, the levels of ET-1 in our studied patients do not correlate with the possible development of DUs. The reduction of ET-1 levels in DUs patients in therapy with bosentan confirms the efficacy of this molecule both for treatment and prevention of digital ulcers. The inhibition of ET-A receptor by its antagonist may activate the opposite ET-B receptors, with well-known function ET-1 degradation and reducing of ET-1 serum level as confirmed in our pilot study. PMID:23984086

  14. Vascular hypothesis revisited: Role of stimulating antibodies against angiotensin and endothelin receptors in the pathogenesis of systemic sclerosis.

    PubMed

    Cabral-Marques, Otavio; Riemekasten, Gabriela

    2016-07-01

    Systemic sclerosis (SSc) is a connective tissue disorder of unknown etiology characterized by the presence of multiple autoantibodies, including those against angiotensin and endothelin receptors. Patients with SSc can develop heterogeneous clinical manifestations including microvascular damage, the dysregulation of innate and adaptive immunity, and generalized fibrosis of multiple organs. Autoantibodies against angiotensin II type I receptor (AT1R) and endothelin-1 type A receptor (ETAR) play important roles in the pathogenesis of SSc. These autoantibodies regulate physiological processes ranging from production of collagen by skin fibroblasts to angiogenesis modulation. Understanding the mechanisms behind autoantibodies against AT1R and ETAR could provide insight to future novel therapies for SSc patients. In this review, we focus on elucidating the immunopathological mechanisms triggered by anti-AT1R and anti-ETAR autoantibodies to summarize current knowledge about vascular abnormalities resulting in progressive damage of organs seen in patients with SSc.

  15. Plasma endothelin in psoriasis: possible relations to therapy and toxicity.

    PubMed

    Zachariae, H; Heickendorff, L; Bjerring, P

    1996-11-01

    Plasma endothelin levels were studied in 71 patients suffering from severe psoriasis. The psoriatics were treated either with topical therapy alone (n = 18) or with cyclosporin A (n = 26), methotrexate (n = 21), or with hydroxyurea, acitretin or ranitidin (n = 6) with or without topical therapy. The psoriatics had a significantly higher average plasma endothelin than 40 healthy controls. The patients treated with cyclosporin A had the highest values and these were in contrast to patients on methotrexate and other systemic therapy higher than patients treated with topical therapy alone. There was not significant difference between endothelin levels in patients treated with methotrexate compared to those in patients only receiving topical treatment. Whether the increased endothelin levels in plasma are derived from keratinocytes or enlarged vessels need to be investigated. An increased plasma endothelin level could be related to therapy and for patients on cyclosporin A be of importance for toxicity.

  16. Desensitization and Internalization of Endothelin Receptor A

    PubMed Central

    Gärtner, Florian; Seidel, Thorsten; Schulz, Uwe; Gummert, Jan; Milting, Hendrik

    2013-01-01

    Endothelin receptor A (ETA), a G protein-coupled receptor, mediates endothelin signaling, which is regulated by GRK2. Three Ser and seven Thr residues recently proven to be phosphoacceptor sites are located in the C-terminal extremity (CTE) of the receptor following its palmitoylation site. We created various phosphorylation-deficient ETA mutants. The phospholipase C activity of mutant receptors in HEK-293 cells was analyzed during continuous endothelin stimulation to investigate the impact of phosphorylation sites on ETA desensitization. Total deletion of phosphoacceptor sites in the CTE affected proper receptor regulation. However, proximal and distal phosphoacceptor sites both turned out to be sufficient to induce WT-like desensitization. Overexpression of the Gαq coupling-deficient mutant GRK2-D110A suppressed ETA-WT signaling but failed to decrease phospholipase C activity mediated by the phosphorylation-deficient mutant ETA-6PD. In contrast, GRK2-WT acted on both receptors, whereas the kinase-inactive mutant GRK2-D110A/K220R failed to inhibit signaling of ETA-WT and ETA-6PD. This demonstrates that ETA desensitization involves at least two autonomous GRK2-mediated components: 1) a phosphorylation-independent signal decrease mediated by blocking of Gαq and 2) a mechanism involving phosphorylation of Ser and Thr residues in the CTE of the receptor in a redundant fashion, able to incorporate either proximal or distal phosphoacceptor sites. High level transfection of GRK2 variants influenced signaling of ETA-WT and ETA-6PD and hints at an additional phosphorylation-independent regulatory mechanism. Furthermore, internalization of mRuby-tagged receptors was observed with ETA-WT and the phosphorylation-deficient mutant ETA-14PD (lacking 14 phosphoacceptor sites) and turned out to be based on a phosphorylation-independent mechanism. PMID:24064210

  17. An endothelin-1 switch specifies maxillomandibular identity

    PubMed Central

    Sato, Takahiro; Kurihara, Yukiko; Asai, Rieko; Kawamura, Yumiko; Tonami, Kazuo; Uchijima, Yasunobu; Heude, Eglantine; Ekker, Marc; Levi, Giovanni; Kurihara, Hiroki

    2008-01-01

    Articulated jaws are highly conserved structures characteristic of gnathostome evolution. Epithelial-mesenchymal interactions within the first pharyngeal arch (PA1) instruct cephalic neural crest cells (CNCCs) to form the different skeletal elements of the jaws. The endothelin-1 (Edn1)/endothelin receptor type-A (Ednra)→Dlx5/6→Hand2 signaling pathway is necessary for lower jaw formation. Here, we show that the Edn1 signaling is sufficient for the conversion of the maxillary arch to mandibular identity. Constitutive activation of Ednra induced the transformation of upper jaw, maxillary, structures into lower jaw, mandibular, structures with duplicated Meckel's cartilage and dermatocranial jaws constituted by 4 dentary bones. Misexpression of Hand2 in the Ednra domain caused a similar transformation. Skeletal transformations are accompanied by neuromuscular remodeling. Ednra is expressed by most CNCCs, but its constitutive activation affects predominantly PA1. We conclude that after migration CNCCs are not all equivalent, suggesting that their specification occurs in sequential steps. Also, we show that, within PA1, CNCCs are competent to form both mandibular and maxillary structures and that an Edn1 switch is responsible for the choice of either morphogenetic program. PMID:19017795

  18. Ionic Coulomb Blockade in Nanopores

    PubMed Central

    Krems, Matt; Di Ventra, Massimiliano

    2014-01-01

    Understanding the dynamics of ions in nanopores is essential for applications ranging from single-molecule detection to DNA sequencing. We show both analytically and by means of molecular dynamics simulations that under specific conditions ion-ion interactions in nanopores lead to the phenomenon of ionic Coulomb blockade, namely the build-up of ions inside a nanopore with specific capacitance impeding the flow of additional ions due to Coulomb repulsion. This is the counterpart of electronic Coulomb blockade observed in mesoscopic systems. We discuss the analogies and differences with the electronic case as well as experimental situations in which this phenomenon could be detected. PMID:23307655

  19. Molecular characterization of a dual endothelin-1/Angiotensin II receptor.

    PubMed Central

    Ruiz-Opazo, N.; Hirayama, K.; Akimoto, K.; Herrera, V. L.

    1998-01-01

    BACKGROUND: The molecular recognition theory (MRT) provides a conceptual framework that could explain the evolution of intermolecular and intramolecular interaction of peptides and proteins. As such, it predicts that binding sites of peptide hormones, and its receptor binding sites were originally encoded by and evolved from complementary strands of genomic DNA. MATERIALS AND METHODS: On the basis of principles underlying the MRT, we screened a rat brain complementary DNA library using an AngII followed by an endothelin-1 (ET-1) antisense oligonucleotide probe, expecting to isolate potential cognate receptors. RESULTS: An identical cDNA clone was isolated independently from both the AngII and ET-1 oligonucleotide screenings. Structural analysis revealed a receptor polypeptide containing a single predicted transmembrane region with distinct ET-1 and AngII putative binding domains. Functional analysis demonstrated ET-1- and AngII-specific binding as well as ET-1- and AngII-induced coupling to a Ca2+ mobilizing transduction system. Amino acid substitutions within the predicted ET-1 binding domain obliterate ET-1 binding while preserving AngII binding, thus defining the structural determinants of ET-1 binding within the dual ET-1/AngII receptor, as well as corroborating the dual nature of the receptor. CONCLUSIONS: Elucidation of the dual ET-1/AngII receptor provides further molecular genetic evidence in support of the molecular recognition theory and identifies for the first time a molecular link between the ET-1 and AngII hormonal systems that could underlie observed similar physiological responses elicited by ET-1 and AngII in different organ systems. The prominent expression of the ET-1/AngII receptor mRNA in brain and heart tissues suggests an important role in cardiovascular function in normal and pathophysiological states. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:9508787

  20. Clinical pharmacokinetics and drug-drug interactions of endothelin receptor antagonists in pulmonary arterial hypertension.

    PubMed

    Venitz, Jürgen; Zack, Julia; Gillies, Hunter; Allard, Martine; Regnault, Jean; Dufton, Christopher

    2012-12-01

    The authors review the basic pharmacology and potential for adverse drug-drug interactions (DDIs) of bosentan and ambrisentan, the 2 endothelin receptor antagonists currently approved for pulmonary arterial hypertension (PAH) treatment. Bosentan, an endothelin (ET) receptor-type ET(A) and ET(B) antagonist, is metabolized to active metabolites by and an inducer of cytochrome P450 (CYP)2C9 and CYP3A. Ambrisentan, a selective ET(A) receptor antagonist, is metabolized primarily by uridine 5'diphosphate glucuronosyltransferases (UGTs) 1A9S, 2B7S, and 1A3S and, to a lesser extent, by CYP3A and CYP2C19. Drug interactions observed with bosentan DDI studies have demonstrated a potential for significant clinical implications during PAH management: bosentan is contraindicated with cyclosporine A and glyburide, and additional monitoring/dose adjustments are required when coadministered with hormonal contraceptives, simvastatin, lopinavir/ritonavir, and rifampicin. As bosentan carries a boxed warning regarding risks of liver injury and showed dose-dependant increases in serum aminotransferase abnormalities, drug interactions that increase bosentan exposure are of particular clinical concern. Ambrisentan DDI studies performed to date have shown only one clinically relevant DDI, an interaction with cyclosporine A that requires ambrisentan dose reduction. As the treatment of PAH moves toward multimodal combination therapy, scrutiny should be placed on ensuring that drug combinations achieve maximal clinical benefit while minimizing side effects.

  1. Endothelin-1 and endothelin receptors in the basilar artery of the capybara.

    PubMed

    Loesch, Andrzej; Gajkowska, Barbara; Dashwood, Michael R; Fioretto, Emerson T; Gagliardo, Karina M; Lima, Ana R De; Ribeiro, Antonio A C M

    2005-02-01

    Little is known about cerebral vasculature of capybara, which seems may serve as a natural model of studying changes in cerebral circulation due to internal carotid artery atrophy at animal sexual maturation. This is the first study of the light- and electron-immunocytochemical localisation of endothelin-1 (ET-1) and ETA and ETB endothelin receptors in the basilar artery of capybaras (6 to 12-month-old females and males) using an ExtrAvidin detection method. All animals examined showed similar patterns of immunoreactivity. Immunoreactivity for ET-1 was detected in the endothelium and adventitial fibroblasts, whilst immunoreactivity for ETA and ETB receptors was present in the endothelium, vascular smooth muscle, perivascular nerves and fibroblasts. In endothelial cells immunoreactivity to ET-1 was pronounced in the cytoplasm or on the granular endoplasmic reticulum. Similar patterns of immunolabelling were observed for ETA and ETB receptors, though cytoplasmic location of clusters of immunoprecipitate seems dominant. These results suggest that the endothelin system is present throughout the wall of the basilar artery of capybara.

  2. EFFECTOR CELL BLOCKADE

    PubMed Central

    Schrader, John W.; Nossal, G. J. V.

    1974-01-01

    of PFC. Consistent with this suggestion was the observation that the degree of inhibition of plaque formation could be increased by decreasing the sensitivity of the assay so that only AFC secreting at high rates were detected. A micromanipulation study, where single PFC were subjected to inhibition, and were then tested for the rate at which they could cause hemolysis, showed a 68% inhibition of mean secretory rate. Micromanipulation studies were performed to test the amount of cell surface-associated Ig on control and preinhibited PFC. For this, single PFC were held with [125I]antiglobulin and quantitative radioautography was performed. No significant difference emerged, suggesting that retention of secreted Ig on cell-attached antigen was not the cause of inhibition. The results are discussed in the framework of tolerance models and blocking effects at the T-cell level by antigen-antibody complexes. The name effector cell blockade is suggested in the belief that the phenomenon may be a general one applying to both T and B cells. PMID:4133616

  3. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    PubMed

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF.

  4. Anti-arrhythmic and electrophysiological effects of the endothelin receptor antagonists, BQ-123 and PD161721.

    PubMed

    Crockett, T R; Scott, G A; McGowan, N W; Kane, K A; Wainwright, C L

    2001-11-30

    The effects of the endothelin ET(A), (BQ-123) and endothelin ET(A/B) (PD161721) receptor antagonists were investigated on ischaemia-induced arrhythmias and on the maximum following frequency. The study was carried out in Langendorff perfused rat hearts subjected to coronary artery occlusion in which the severity of arrhythmias, coronary perfusion pressure and heart rate were measured. The % incidence of ischaemia-induced irreversible ventricular fibrillation (ventricular fibrillation) was reduced significantly from 58%, in control rat hearts, to 0% (at 10(-7) and 10(-6) M PD161721 and 10(-6) M BQ-123 P<0.05). Maximum following frequency was measured in guinea-pig isolated atria. In the presence of normal extracellular [K(+)], BQ-123 and PD161721, at 10(-6) M, significantly decreased the maximum following frequency from 9.0+/-0.7 to 7.2+/-0.4 and from 8.3+/-0.4 to 6.7+/-0.3 Hz, respectively (P<0.05). These effects were not potentiated by raising the extracellular [K(+)] with the exception of 10(-9) M PD161721. In contrast, lignocaine's ability to reduce the maximum following frequency was greater in elevated (e.g. at 1.7x10(-4) M from 8.4+/-0.3 to 2.5+/-0.6 Hz) than in normal [K(+)] (from 9.0+/-0.3 to 4.9+/-0.5 Hz). In conclusion, both BQ-123 and PD161721 had an anti-fibrillatory effect in isolated rat hearts that may be due, at least in part, to an ability to reduce the maximum following frequency. This latter effect is unlikely to be due to Na(+) channel blockade since it was not markedly potentiated by elevation of extracellular [K(+)].

  5. Role of endothelin-1 in mediating changes in cardiac sympathetic nerve activity in heart failure.

    PubMed

    Abukar, Yonis; May, Clive N; Ramchandra, Rohit

    2016-01-01

    Heart failure (HF) is associated with increased sympathetic nerve activity to the heart (CSNA), which is directly linked to mortality in HF patients. Previous studies indicate that HF is associated with high levels of plasma endothelin-1 (ET-1), which correlates with the severity of the disease. We hypothesized that blockade of endothelin receptors would decrease CSNA. The effects of intravenous tezosentan (a nonselective ETA and ETB receptor antagonist) (8 mg·kg(-1)·h(-1)) on resting levels of CSNA, arterial pressure, and heart rate were determined in conscious normal sheep (n = 6) and sheep with pacing-induced HF (n = 7). HF was associated with a significant decrease in ejection fraction (from 74 ± 2% to 38 ± 1%, P < 0.001) and a significant increase in resting levels of CSNA burst incidence (from 56 ± 11 to 87 ± 2 bursts/100 heartbeats, P < 0.01). Infusion of tezosentan for 60 min significantly decreased resting mean aterial pressure (MAP) in both normal and HF sheep (-8 ± 4 mmHg and -4 ± 3 mmHg, respectively; P < 0.05). This was associated with a significant decrease in CSNA (by 25 ± 26% of control) in normal sheep, but there was no change in CSNA in HF sheep. Calculation of spontaneous baroreflex gain indicated significant impairment of the baroreflex control of HR after intravenous tezosentan infusion in normal animals but no change in HF animals. These data suggest that endogenous levels of ET-1 contribute to the baseline levels of CSNA in normal animals, but this effect is absent in HF. PMID:26468257

  6. Distinct Actions of Endothelin A-Selective Versus Combined Endothelin A/B Receptor Antagonists in Early Diabetic Kidney Disease

    PubMed Central

    Saleh, Mohamed A.; Pollock, Jennifer S.

    2011-01-01

    Selective endothelin A (ETA) and combined ETA and ETB receptor antagonists are being investigated for use in treating diabetic nephropathy. However, the receptor-specific mechanisms responsible for producing the potential benefits have not been discerned. Thus, we determined the actions of ETA and ETB receptors on measures of glomerular function and renal inflammation in the early stages of diabetic renal injury in rats through the use of selective and combined antagonists. Six weeks after streptozotocin (STZ)-induced hyperglycemia, rats were given 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N,N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627) (5 mg/kg/day), a selective ETA antagonist; (2R,3R,4S)-4-(benzo[d][1,3]dioxol-5-yl)-2-(3-fluoro-4-methoxyphenyl)-1-(2-(N-propylpentylsulfonamido)ethyl)pyrrolidine-3-carboxylic acid hydrochloride (A-182086) (10 mg/kg/day), a combined ETA/B antagonist; or vehicle for 1 week. Sham controls received STZ vehicle (saline). Hyperglycemia led to significant proteinuria, increased glomerular permeability to albumin (Palb), nephrinuria, and an increase in total matrix metalloprotease (MMP) and transforming growth factor-β1 (TGF-β1) activities in glomeruli. Plasma and glomerular soluble intercellular adhesion molecule-1 (sICAM-1) and monocyte chemoattractant protein-1 (MCP-1) were elevated after 7 weeks of hyperglycemia. Daily administration of both ABT-627 and A-182086 for 1 week significantly attenuated proteinuria, the increase in Palb, nephrinuria, and total MMP and TGF-β1 activity. However, glomerular sICAM-1 and MCP-1 expression was attenuated with ABT-627, but not A-182086, treatment. In summary, both selective ETA and combined ETA/B antagonists reduced proteinuria and glomerular permeability and restored glomerular filtration barrier component integrity, but only ETA-selective blockade had anti-inflammatory and antifibrotic effects. We conclude that selective ETA antagonists are more likely to be

  7. Contribution of the endothelin and renin–angiotensin systems to the vascular changes in rats chronically treated with ouabain

    PubMed Central

    Xavier, Fabiano E; Yogi, Álvaro; Callera, Gláucia E; Tostes, Rita C; Alvarez, Yolanda; Salaices, Mercedes; Alonso, María J; Rossoni, Luciana V

    2004-01-01

    Renin–angiotensin and endothelin systems are involved in the cardiovascular effects produced by treatment with ouabain. We recently demonstrated that the contractile response to phenylephrine is decreased in ouabain-treated rats. The present study investigated whether endothelin-1 (ET-1) and angiotensin II (Ang II) contributes to the vascular changes observed in rats chronically treated with ouabain. Wistar rats were treated with ouabain (8.0 μg day−1, s.c. pellets for 5 weeks) alone or in combination with an endothelin type A receptor (ETA) antagonist, BMS182874 (40 mg kg−1 day−1, per gavage) or an angiotensin type 1 (AT1) receptor antagonist, losartan (15 mg kg−1 day−1, p.o.). Treatment with ouabain increased systolic blood pressure and treatment with either losartan or BMS182874 prevented the development of ouabain-induced hypertension. The sensitivity and maximal response for phenylephrine were reduced in aortic rings from ouabain-treated rats. Removal of the endothelium or in vitro exposure to an inhibitor of nitric oxide synthase (NOS), N-nitro-L-arginine methyl ester (L-NAME, 100 μM) increased the responses to phenylephrine, an effect that was more pronounced in aortas from ouabain-treated rats. Endothelial NOS protein (eNOS) expression was increased after ouabain treatment. Treatment with BMS182874, but not with losartan, prevented the effects of ouabain on the reactivity of phenylephrine and in eNOS protein expression. Gene expression of pre–pro-ET-1 and ETA receptors was increased in aortic rings from ouabain-treated rats. ETB receptor gene expression was not altered by ouabain treatment. In conclusion, our results suggest that endothelin and angiotensin systems play an important role in the development of ouabain-induced hypertension. However, ET-1, by activation of ETA receptors, but not Ang II, contributes to changes in vascular reactivity to phenylephrine induced by chronic treatment with ouabain. PMID:15477225

  8. Thyroid storm during beta blockade.

    PubMed

    Strube, P J

    1984-04-01

    A thyrotoxic patient who had received beta-adrenoceptor blockers pre-operatively suffered an episode of severe heart failure immediately following thyroidectomy and required artificial ventilation of the lungs for six hours. The possible causes are discussed and the likelihood of thyroid storm unmitigated by beta adrenergic blockade suggested.

  9. Endothelin-1 production by normal human cultured keratinocytes and its regulation.

    PubMed

    Inoue, H; Wakisaka, N; Tane, N; Ando, K; Isono, E; Yamanaka, M; Aihara, M; Ishida, H

    1994-01-01

    The possibility that cultured keratinocytes produce endothelins were investigated. The results showed that cultured keratinocytes derived from normal human skin produce endothelin-1. Moreover, keratinocyte endothelin-1 production was completely inhibited by the presence of actinomycin D in the medium. As in the case of endothelial cells, recombinant interleukin-1beta was capable of promoting endothelin-1 production in keratinocytes, whereas herapin inhibited it. Thrombin also inhibited endothelin-1 production. These results indicate that the mechanism of endothelin-1 production in keratinocytes is slightly different from the mechanism in vascular endothelial cells.

  10. The Thirteenth International Conference on Endothelin (ET-13), Tokyo, 2013.

    PubMed

    Emoto, Noriaki; Yanagisawa, Masashi

    2014-11-24

    The Thirteenth International Conference on Endothelin (ET-13) was held from September 8-11, 2013 in Tokyo, Japan chaired by Noriaki Emoto, Kobe Pharmaceutical University, Japan, and Takashi Miyauchi, University of Tsukuba, Japan and held on the Tokyo Campus of Tsukuba University. The International Conferences on Endothelin were launched in December of 1988 shortly after the discovery of endothelin and organized by Sir John Vane, laureate of the Nobel Prize in Physiology or Medicine 1982, as the Conference Chair at The William Harvey Research Institute, London. Since then, the conference has been held every two years alternating between North America, Europe and Asia. In 2013, the conference was again held in Asia and also marked the 25th anniversary of the discovery of endothelin at University of Tsukuba. The 25th anniversary of the discovery of endothelin was celebrated by almost 300 attendees from 25 different countries, the largest number of delegates in the recent history of the conference. Conference delegates who traveled to Japan were from Argentina, Australia, Austria, Brazil, Canada, China, Czech Republic, Denmark, France, Germany, Greece, Hong Kong, Hungary, Indonesia, Italy, Japan, Korean Republic, Netherlands, Sweden, Switzerland, Taiwan, Turkey, United Kingdom, United States, and from Vietnam. In this article we summarize the conference highlights, its speakers, and some of the festivities related to the celebration of the 25th anniversary of the discovery of endothelin.

  11. Tissue specificity of endothelin binding sites

    SciTech Connect

    Bolger, G.T.; Liard, F.; Krogsrud, R.; Thibeault, D.; Jaramillo, J. )

    1990-09-01

    A measurement was made of the binding of 125I-labeled endothelin (125I-ET) to crude membrane fractions prepared from rat aorta, atrium, ventricle, portal vein, trachea, lung parenchyma, vas deferens, ileum, bladder, and guinea-pig taenia coli and lung parenchyma. Scatchard analysis of 125I-ET binding in all tissues indicated binding to a single class of saturable sites. The affinity and density of 125I-ET binding sites varied between tissues. The Kd of 125I-ET binding was approximately 0.5 nM for rat aorta, trachea, lung parenchyma, ventricle, bladder, and vas deferens, and guinea-pig taenia coli and lung parenchyma, 1.8 nM for rat portal vein and atrium, and 3.3 nM for ileum. The Bmax of 125I-ET binding had the following rank order of density in rat tissues: trachea greater than lung parenchyma = vas deferens much greater than aorta = portal vein = atrium greater than bladder greater than ventricle = ileum. The properties of 125I-ET endothelin binding were characterized in rat ventricular membranes. 125I-ET binding was time dependent, reaching a maximum within 45-60 min at 25 degrees C. The calculated microassociation constant was 9.67 x 10(5) s-1 M-1. Only 15-20% of 125I-ET dissociated from its binding site even when dissociation was studied as long as 3 h. Preincubation of ventricular membranes with ET prevented binding of 125I-ET. 125I-ET binding was destroyed by boiling of ventricular membranes and was temperature, pH, and cation (Ca2+, Mg2+, and Na+) dependent.

  12. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling

    PubMed Central

    Square, Tyler; Jandzik, David; Cattell, Maria; Hansen, Andrew; Medeiros, Daniel Meulemans

    2016-01-01

    Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates. PMID:27677704

  13. Endothelin receptor polymorphisms in the cardiovascular system: potential implications for therapy and screening.

    PubMed

    Holzhauser, Luise; Zolty, Ronald

    2014-11-01

    Since its discovery in 1988, the endothelin system has been employed in multiple physiological and pathological roles. Endothelin-1 (ET-1) is not only a major regulator of vascular tone and cardiac contractility but also exerts mitogenic effects and is involved in inflammatory responses. ET-1 acts via two endothelin receptors located mainly on smooth muscle and endothelial cells through complex intracellular pathways differing between receptors and cell types. Polymorphisms of the endothelin receptor A have been associated not only with the risk in pulmonary arterial hypertension (PAH), systolic heart failure and systemic hypertension but are also of prognostic significance in dilated cardiomyopathy. Polymorphisms of endothelin receptors might lead to altered endothelin signaling and influence the response to endothelin receptor antagonist therapy in PAH in light of pharmacogenetics. This review will summarize the role of ET-1 within major cardiovascular pathologies and discuss endothelin receptor polymorphisms with special emphasis on potential therapeutic and screening implications.

  14. Effects of endothelin-1 eyedrops on the retina in rats.

    PubMed

    Masuzawa, Koichi; Miyauchi, Takashi; Takanashi, Masakatsu; Ogata, Takehiro; Yamaguchi, Iwao; Goto, Katsutoshi

    2004-11-01

    Eye disorder accompanied with chronic retinal microvascular obstruction, such as diabetic retinopathy, exists in many diseases. However, it is difficult to produce this model experimentally in the animal eye. Endothelin-1 eyedrops were prepared in order to examine whether the eyedrops affect the rat retina and whether we can produce an obstruction model. Endothelin-1 eyedrops diluted by artificial tears in seven stages from 4 x 10(-5) M to 4 x 10(-11) M were arranged. We administered this solution three times a day in the left eye of male Sprague-Dawley rats. Artificial tears alone were applied to the right eye as a control vehicle. After 2 weeks, rats were sacrificed under anesthesia and the retinal tissues were isolated. As an index to the action of endothelin- 1 eyedrops to the retina, the expressions of endothelin-A (ETA) and endothelin-B (ETB) receptors in the retina were compared in both eyes. Frozen sections of the retina were immunostained to reveal the distribution of the ETA and ETB receptors. We also examined ETA and ETB mRNA expression by quantitative real-time polymerase chain reaction. As a result, the expressions of ETA and ETB receptors are reduced with both immunostaining and the mRNA levels in the left eye, in which endothelin-1 eyedrops were applied at 4 x 10(-5) M. It is suggested that endothelin-1 eyedrops affected the retina and the possibility of producing the experimental model of chronic microvascular obstruction in the rat retina.

  15. Autoregulation of endothelin-1 secretion by cultured human keratinocytes via the endothelin B receptor.

    PubMed

    Yohn, J J; Smith, C; Stevens, T; Morelli, J G; Shurnas, L R; Walchak, S J; Hoffman, T A; Kelley, K K; Escobedo-Morse, A; Yanagisawa, M

    1994-12-30

    We investigated endothelin-1 (ET-1) receptor expression on normal human keratinocytes (HK). We show that HK express the ETB receptor isoform and respond to ET-1 with a 2.7-fold increase in intracellular free calcium. HK did not respond to ET-1 with increased proliferation; however, 30 nM ET-1 caused a 51.7% decrease in ET-1 accumulation in HK-conditioned medium. We propose that HK ET-1 receptors function in autocrine regulation of ET-1 secretion.

  16. Ultraviolet B irradiation increases endothelin-1 and endothelin receptor expression in cultured human keratinocytes.

    PubMed

    Tsuboi, R; Sato, C; Oshita, Y; Hama, H; Sakurai, T; Goto, K; Ogawa, H

    1995-09-01

    The effect of ultraviolet B (UVB) irradiation on endothelin-1 (ET-1) and ET receptor expression was examined using cultured normal human keratinocytes. Keratinocytes secreted ET-1 in the medium at a level of 2.1 pg/day/10(5) cells. UVB irradiation up to 10 mJ/cm2 increased ET-1 secretion 3-fold, and potentiated expression of mRNA for ET-1. Both ETA and ETB receptor mRNAs were detected in keratinocytes, and their expression was up-regulated by 5 mJ/cm2 UVB irradiation.

  17. Plasma concentrations of endothelin in patients with abnormal vascular reactivity

    SciTech Connect

    Predel, H.G.; Meyer-Lehnert, H.; Baecker, A.; Stelkens, H.; Kramer, H.J. )

    1990-01-01

    We measured circulating concentrations of endothelin in healthy subjects and in patients with abnormal vascular reactivity. Endothelin concentrations were determined by radioimmunoassay after extraction of plasma using Sep-Pak C-18 cartridges in healthy subjects, in patients with diabetes mellitus type I, in patients with mild to moderate essential hypertension and in non-dialyzed patients with stable chronic renal failure. Plasma concentrations were similar in healthy controls, in diabetics and in hypertensive patients averaging 5.0{plus minus}0.6 pg/ml, 4.7{plus minus}0.2 pg/ml and 6.5{plus minus}1.0 pg/ml, respectively. In contrast, plasma concentrations of endothelin were markedly elevated in patients with chronic renal failure averaging 16.6{plus minus}2.9 pg/ml. No correlations were observed between serum creatinine concentrations ranging from 124 to 850 {mu}mol/l or blood pressure and plasma concentrations of endothelin. Bicycle ergometric exercise in six healthy subjects and an acute modest i.v. saline load of 1,000 ml of 0.45% NaCl administered within 60 min in six patients with mild essential hypertension did not affect plasma concentrations of endothelin.

  18. Endothelins and NADPH oxidases in the cardiovascular system.

    PubMed

    Dammanahalli, Karigowda J; Sun, Zhongjie

    2008-01-01

    1. The endothelin (ET) system and NADPH oxidase play important roles in the regulation of cardiovascular function, as well as in the pathogenesis of hypertension and other cardiovascular diseases. 2. Endothelins activate NADPH oxidases and thereby increase superoxide production, resulting in oxidative stress and cardiovascular dysfunction. Thus, NADPH oxidases may mediate the role of endothelins in some cardiovascular diseases. However, the role of reactive oxygen species (ROS) in mediating ET-induced vasoconstriction and cardiovascular disease remains under debate, as evidenced by conflicting reports from different research teams. Conversely, activation of NADPH oxidase can stimulate ET secretion via ROS generation, which further enhances the cardiovascular effects of NADPH oxidase. However, little is known about how ROS activate the endothelin system. It seems that the relationship between ET-1 and ROS may vary with cardiovascular disorders. 3. Endothelins activate NADPH oxidase via the ET receptor-proline-rich tyrosine kinase-2 (Pyk2)-Rac1 pathway. Rac1 is an important regulator of NADPH oxidase. There is ample evidence supporting direct stimulation by Rac1 of NADPH oxidase activity. In addition, Rac1-induced cardiomyocyte hypertrophy is mediated by the generation of ROS.

  19. The pathophysiological role of astrocytic endothelin-1.

    PubMed

    Hostenbach, Stéphanie; D'haeseleer, Miguel; Kooijman, Ron; De Keyser, Jacques

    2016-09-01

    In the normal central nervous system, endothelin-1 (ET-1) is found in some types of neurons, epithelial cells of the choroid plexus, and endothelial cells of microvessels, but it is usually not detectable in glial cells. However, in different pathological conditions, astrocytes adapting a reactive phenotype express high levels of ET-1 and its receptors, mainly the ETB receptor. ET-1 released by reactive astrocytes appears mainly to have neurodeleterious effects by mechanisms that include constriction of cerebral arterioles leading to impairment of the cerebral microcirculation, increase of blood brain barrier permeability, inflammation, excitotoxicity, impairment of fast axonal transport, and astrogliosis. A few studies in rodents found that ET-1 increased the astrocytic expression of brain-derived neurotrophic factor, glial cell-line derived neurotrophic factor and neurotropin-3, and the production of endocannabinoids. However, whether this occurs in physiological or pathological conditions is unclear. This review summarizes current knowledge about the role of the astrocytic ET-1 system in acute and chronic neurological conditions, including multiple sclerosis, ischemic stroke and hypoxic/ischemic brain injury, traumatic brain injury, subarachnoid hemorrhage, Alzheimer's disease, Binswanger's disease and post-stroke dementia, amyotrophic lateral sclerosis, and CNS infections. Counteracting the harmful effects of astrocytic ET-1 may represent a promising therapeutic target for mitigating secondary brain damage in a variety of neurological diseases. We also briefly address the role of astrocytic ET-1 in astrocytic tumors and pain. PMID:27132521

  20. Mechanical stimulation enhances endothelin-1 hyperalgesia.

    PubMed

    Joseph, E K; Gear, R W; Levine, J D

    2011-03-31

    When comparing a cumulative dose-response curve for endothelin-1 (ET-1)-induced mechanical hyperalgesia to the effect of individual doses (1 ng, 10 ng, 100 ng, and 1 μg) administered in separate groups of rats, a marked difference was observed in the peak magnitude of hyperalgesia. Hyperalgesia was measured as decrease in the threshold for mechanically-induced withdrawal of the hind paw. The cumulative dosing protocol produced markedly greater maximum hyperalgesia. To determine whether this was due to the cumulative dosing protocol or to the repeated exposure to the mechanical test stimulus, we evaluated the impact of repeated testing on ET-1-induced mechanical hyperalgesia. While ET-1-induced mechanical hyperalgesia was dose- and time-dependent, repeated testing of nociceptive threshold, at 5 min intervals, following a single dose of ET-1, produced further decrease in nociceptive threshold. This mechanical stimulation-induced enhancement of ET-1 hyperalgesia lasted only 3-4 h, while the hyperalgesia lasted in excess of 5 days. The stimulation-enhanced hyperalgesia also occurred after a second injection of ET-1, administered 24 h after the initial dose. That this phenomenon is unique to ET-1 is suggested by the observation that while five additional, direct-acting hyperalgesic agents-prostaglandin E2 (PGE2), nerve growth factor (NGF), glia-derived neurotrophic factor (GDNF), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFα)-induced robust mechanical hyperalgesia, none produced mechanical stimulation-enhanced hyperalgesia.

  1. Endothelin therapeutics in cancer: Where are we?

    PubMed

    Rosanò, Laura; Bagnato, Anna

    2016-03-15

    In human cancers, the autocrine and paracrine loop mediated by the aberrantly activation of endothelin-1 (ET-1) receptor (ET-1R) elicits pleiotropic effects, preferentially mediated by the scaffold protein β-arrestin 1 (β-arr1), on tumor cells and on the host microenvironment, providing a strong rationale for targeting ET-1 receptors. This review describes the most up-to-date preclinical and clinical results obtained by using ET-1 therapeutics. The previous negative clinical results of ET-1 therapeutics should not prevent us from setting the standard of this class of drugs for future well-designed clinical trials. The preclinical data obtained with the dual ETAR and ETBR antagonist macitentan indicate that this molecule, which targets cancer cells and tumor-associated microenvironmental elements, could be a cancer therapeutic option. The field of ET-1 therapeutics will be improved in the next decade, facilitated by the new knowledge on the genomic landscape of the human stroma and tumor, and by the low invasive approaches based on liquid biopsies for the discovery of predictive biomarkers. The information obtained from preclinical studies in patient-derived models and from the Cancer Genome Atlas will set the scene of precision medicine for cancer. Results from these studies are expected to open the possibility that ET-1R antagonists might be more efficacious as molecular cancer therapeutics, able to hamper the functional β-arr1-dependent signaling complexes, either alone or coupled with new targeted approaches.

  2. Endothelin receptor antagonists in clinical research--lessons learned from preclinical and clinical kidney studies.

    PubMed

    Reichetzeder, Christoph; Tsuprykov, Oleg; Hocher, Berthold

    2014-11-24

    Endothelin receptor antagonists (ETRAs) are approved for the treatment of pulmonary hypertension and scleroderma-related digital ulcers. The efforts to approve this class of drugs for renal indications, however, failed so far. Preclinical studies were promising. Transgenic overexpression of ET-1 or ET-2 in rodents causes chronic renal failure. Blocking the ET system was effective in the treatment of renal failure in rodent models. However, various animal studies indicate that blocking the renal tubular ETAR and ETBR causes water and salt retention partially mediated via the epithelial sodium transporter in tubular cells. ETRAs were successfully tested clinically in renal indications in phase 2 trials for the treatment of diabetic nephropathy. They showed efficacy in terms of reducing albumin excretion on top of guideline based background therapy (RAS blockade). However, these promising results could not be translated to successful phase III trials so far. The spectrum of serious adverse events was similar to other phase III trials using ETRAs. Potential underlying reasons for these failures and options to solve these issues are discussed. In addition preclinical and clinical studies suggest caution when addressing renal patient populations such as patients with hepatorenal syndrome, patients with any type of cystic kidney disease and patients at risk of contrast media induced nephropathy. The lessons learned in renal indications are also important for other potential promising indications of ETRAs like cancer and heart failure.

  3. Endothelin: A novel peptide in the posterior pituitary system

    SciTech Connect

    Yoshizawa, Toshihiro; Kanazawa, Ichiro; Shinmi, Osamu; Kimura, Sadao; Yanagisawa, Masashi; Masaki, Tomoh; Uchiyama, Yasuo ); Giaid, A.; Gibson, S.J.; Polak, J.M. )

    1990-01-26

    Endothelin (ET), originally characterized as a 21-residue vasoconstrictor peptide from endothelial cells, is present in the porcine spinal cord and may act as a neuropeptide. Endothelin-like immunoreactivity has now been demonstrated by immunohistochemistry in the paraventricular and supraoptic nuclear neurons and their terminals in the posterior pituitary of the pig and the rat. The presence of ET in the porcine hypothalamus was confirmed by reversed-phase high-pressure liquid chromatography and radioimmunoassay. Moreover, in situ hybridization demonstrated ET messenger RNA in porcine paraventricular nuclear neurons. Endothelin-like immunoreactive products in the posterior pituitary of the rat were depleted by water deprivation, suggesting a release of ET under physiological conditions. These findings indicate that ET is synthesized in the posterior pituitary system and may be involved in neurosecretory functions.

  4. INHIBITION OF ENaC BY ENDOTHELIN-1

    PubMed Central

    Sorokin, Andrey; Staruschenko, Alexander

    2016-01-01

    The amiloride-sensitive epithelial Na+ channel (ENaC) is a key player in the regulation of Na+ homeostasis. Its functional activity is under continuous control by a variety of signaling molecules including bioactive peptides of endothelin family. Since ENaC dysfunction is causative for disturbances in total body Na+ levels associated with abnormal regulation of blood volume, blood pressure, and lung fluid balance, the uncovering the molecular mechanisms of inhibitory modulation or inappropriate activation of ENaC is crucial for the successful treatment of a variety of human diseases including hypertension. The precise regulation of ENaC is particularly important for normal Na+ and fluid homeostasis in organs where endothelins are known to act: kidneys, lung and colon. Inhibition of ENaC by endothelin-1 (ET-1) has been established in renal cells and several molecular mechanisms of inhibition of ENaC by ET-1 are proposed and will be reviewed in this chapter. PMID:25817869

  5. Transcriptional regulation of vascular bone morphogenetic protein by endothelin receptors in early autoimmune diabetes mellitus.

    PubMed

    Nett, Philipp C; Ortmann, Jana; Celeiro, Jennifer; Haas, Elvira; Hofmann-Lehmann, Regina; Tornillo, Luigi; Terraciano, Luigi M; Barton, Matthias

    2006-04-01

    Endothelin (ET) and bone morphogenic proteins (BMP) have been implicated in the development of micro- and macrovascular complications of type 2 diabetes mellitus due to atherosclerosis. This study investigated vascular BMP-expression during early development of experimental autoimmune diabetes mellitus and whether ET(A) receptors are involved in its regulation, using the selective ET(A) receptor antagonist BSF461314. Specificity of BSF461314 was confirmed through ET-mediated p44/42 mitogen-activated protein kinase (ERK1/2) phosphorylation experiments. For animal studies, non-obese diabetic (NOD) and control mice at 16 weeks of age were treated with BSF461314 for 6 weeks. Plasma glucose levels were measured before and after treatment and vascular gene expression of BMP-2, BMP-7, and BMP-type II receptor was determined in the aorta by quantitative real-time polymerase chain reaction analysis. At the beginning of the study in all animals, plasma glucose levels were within the normal range. After 6 weeks gene expression of vascular BMP-2, BMP-7 and BMP-type II receptor was almost doubled in NOD mice compared with non-diabetic controls (p < 0.05). Concomitant treatment with BSF461314 significantly reduced expression of all BMPs and lowered plasma glucose levels in NOD mice close to controls (all p < 0.05 versus untreated). In conclusion, vascular BMP-2, BMP-7, and BMP-type II receptor expression is upregulated in early stages of autoimmune diabetes mellitus. The data further indicate that ET(A) receptors inhibit diabetes-associated activation of vascular BMPs and regulate plasma glucose levels suggesting that ET(A) receptors might provide a new therapeutic target to interfere with the early development of atherosclerosis in patients with type 1 diabetes mellitus. PMID:16300798

  6. Different pressor and bronchoconstrictor properties of human big-endothelin-1, 2 (1-38) and 3 in ketamine/xylazine-anaesthetized guinea-pigs.

    PubMed Central

    Gratton, J P; Rae, G A; Claing, A; Télémaque, S; D'Orléans-Juste, P

    1995-01-01

    1. In the present study, the precursors of endothelin-1, endothelin-2 and endothelin-3 were tested for their pressor and bronchoconstrictor properties in the anaesthetized guinea-pig. In addition, the effects of big-endothelin-1 and endothelin-1 were assessed under urethane or ketamine/xylazine anaesthesia. 2. When compared to ketamine/xylazine, urethane markedly depressed the pressor and bronchoconstrictor properties of endothelin-1 and big-endothelin-1. 3. Under ketamine/xylazine anaesthesia, the three endothelins induced a biphasic increase of mean arterial blood pressure. In contrast, big-endothelin-1, as well as big-endothelin-2 (1-38), induced only sustained increase in blood pressure whereas big-endothelin-3 was inactive at doses up to 25 nmol kg-1. 4. Big-endothelin-1, but not big-endothelin-2, induced a significant increase in airway resistance. Yet, endothelin-1, endothelin-2 and endothelin-3 were equipotent as bronchoconstrictor agents. 5. Big-endothelin-1, endothelin-1 and endothelin-2, but not big-endothelin-2, triggered a marked release of prostacyclin and thromboxane A2 from the guinea-pig perfused lung. 6. Our results suggest the presence of a phosphoramidon-sensitive endothelin-converting enzyme (ECE) which is responsible for the conversion of big-endothelin-1 and big-endothelin-2 to their active moieties, endothelin-1 and 2. However, the lack of bronchoconstrictor and eicosanoid-releasing properties of big-endothelin-2, as opposed to endothelin-2 or big-endothelin-1, suggests the presence of two distinct phosphoramidon-sensitive ECEs in the guinea-pig.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7735698

  7. Retinal venous pressure: the role of endothelin.

    PubMed

    Flammer, Josef; Konieczka, Katarzyna

    2015-01-01

    The retinal venous pressure (RVP) can be measured non-invasively. While RVP is equal to or slightly above intraocular pressure (IOP) in healthy people, it is often markedly increased in patients with eye or systemic diseases. Beside a mechanical obstruction, the main cause of such an elevation is a local dysregulation of a retinal vein, particularly a constriction induced by endothelin-1 (ET-1). A local increase of ET-1 can result from a high plasma level, as ET-1 can diffuse from the fenestrated capillaries of the choroid into the optic nerve head (ONH), bypassing the blood retinal barrier. A local increase can also result from increased local production either by a sick neighboring artery or retinal tissue. Generally, the main factors increasing ET-1 are inflammations and hypoxia, either locally or in a remote organ. RVP is known to be increased in patients with glaucoma, retinal vein occlusion (RVO), diabetic retinopathy, high mountain disease, and primary vascular dysregulation (PVD). PVD is the major vascular component of Flammer syndrome (FS). An increase of RVP decreases perfusion pressure, which heightens the risk for hypoxia. An increase of RVP also elevates transmural pressure, which in turn heightens the risk for retinal edema. In patients with RVO, a high level of RVP may not only be a consequence but also a potential cause of the occlusion; therefore, it risks causing a vicious circle. Narrow retinal arteries and particularly dilated retinal veins are known risk indicators for future cardiovascular events. As the major cause for such a retinal venous dilatation is an increased RVP, RVP may likely turn out to be an even stronger predictor. PMID:26504500

  8. β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury.

    PubMed

    Buelli, Simona; Rosanò, Laura; Gagliardini, Elena; Corna, Daniela; Longaretti, Lorena; Pezzotta, Anna; Perico, Luca; Conti, Sara; Rizzo, Paola; Novelli, Rubina; Morigi, Marina; Zoja, Carlamaria; Remuzzi, Giuseppe; Bagnato, Anna; Benigni, Ariela

    2014-03-01

    Activation of endothelin-A receptor (ET(A)R) by endothelin-1 (ET-1) drives epithelial-to-mesenchymal transition in ovarian tumor cells through β-arrestin signaling. Here, we investigated whether this pathogenetic pathway could affect podocyte phenotype in proliferative glomerular disorders. In cultured mouse podocytes, ET-1 caused loss of the podocyte differentiation marker synaptopodin and acquisition of the mesenchymal marker α-smooth muscle actin. ET-1 promoted podocyte migration via ET(A)R activation and increased β-arrestin-1 expression. Activated ET(A)R recruited β-arrestin-1 to form a trimeric complex with Src leading to epithelial growth factor receptor (EGFR) transactivation and β-catenin phosphorylation, which promoted gene transcription of Snail. Increased Snail expression fostered ET-1-induced migration as confirmed by Snail knockdown experiments. Silencing of β-arrestin-1 prevented podocyte phenotypic changes and motility and inhibited ET(A)R-driven signaling. In vitro findings were confirmed in doxorubicin (Adriamycin)-induced nephropathy. Mice receiving Adriamycin developed renal injury with loss of podocytes and hyperplastic lesion formation; β-arrestin-1 expression increased in visceral podocytes and in podocytes entrapped in pseudo-crescents. Administration of the selective ET(A)R antagonist sitaxsentan prevented podocyte loss, formation of the hyperplastic lesions, and normalized expression of glomerular β-arrestin-1 and Snail. Increased β-arrestin-1 levels in podocytes retrieved from crescents of patients with proliferative glomerulopathies confirmed the translational relevance of these findings and suggest the therapeutic potential of ET(A)R antagonism for a group of diseases still needing a specific treatment.

  9. Thromboxane prostanoid receptors enhance contractions, endothelin-1 and oxidative stress in microvessels from mice with CKD

    PubMed Central

    Wang, Cheng; Luo, Zaiming; Kohan, Donald; Wellstein, Anton; Jose, Pedro A.; Welch, William J.; Wilcox, Christopher S.; Wang, Dan

    2015-01-01

    Cardiovascular disease (CVD) is frequent in chronic kidney disease (CKD) and has been related to angiotensin II (ANG II), endothelin-1 (ET-1), thromboxane A2 (TxA2) and reactive oxygen species (ROS). Since activation of thromboxane prostanoid receptors (TP-Rs) can generate ROS which can generate ET-1, we tested the hypothesis that CKD induces cyclooxygenase (COX)-2 whose products activate TP-Rs to enhance ET-1 and ROS generation and contractions. Mesenteric resistance arterioles were isolated from C57/BL6, or TP-R +/+ and TP-R −/− mice 3 months after SHAM-operation (SHAM) or surgical reduced renal mass (RRM, n=6/group). Microvascular contractions were studied on a wire myograph. Cellular (ethidium: dihydroethidium) and mitochondrial (mitoSOX) ROS were measured by fluorescence microscopy. Mice with RRM had increased excretion of markers of oxidative stress, thromboxane, and microalbumin, increased plasma ET-1 and increased microvascular expression of p22phox, COX-2, TP-Rs, preproendothelin and endothelin-A receptors and increased arteriolar remodeling. They had increased contractions to U-46,619 (118±3 vs. 87±6, P<0.05) and ET-1 (108±5 vs. 89±4, P<0.05), which were dependent on cellular and mitochondrial ROS, COX-2, and TP-Rs. RRM doubled the ET-1-induced cellular and mitochondrial ROS generation (P<0.05). TP-R −/− mice with RRM lacked these abnormal structural and functional microvascular responses and lacked the increased systemic and the increased microvascular oxidative stress and circulating ET-1. In conclusion, RRM leads to microvascular remodeling and enhanced ET-1-induced cellular and mitochondrial ROS and contractions that are mediated by COX-2 products activating TP-Rs. Thus, TP-Rs can be upstream from enhanced ROS, ET-1, microvascular remodeling and contractility and may thereby coordinate vascular dysfunction in CKD. PMID:25733239

  10. Plasmon blockade in nanostructured graphene.

    PubMed

    Manjavacas, Alejandro; Nordlander, Peter; García de Abajo, F Javier

    2012-02-28

    Among the many extraordinary properties of graphene, its optical response allows one to easily tune its interaction with nearby molecules via electrostatic doping. The large confinement displayed by plasmons in graphene nanodisks makes it possible to reach the strong-coupling regime with a nearby quantum emitter, such as a quantum dot or a molecule. In this limit, the quantum emitter can introduce a significant plasmon-plasmon interaction, which gives rise to a plasmon blockade effect. This produces, in turn, strongly nonlinear absorption cross sections and modified statistics of the bosonic plasmon mode. We characterize these phenomena by studying the equal-time second-order correlation function g((2))(0), which plunges below a value of 1, thus revealing the existence of nonclassical plasmon states. The plasmon-emitter coupling, and therefore the plasmon blockade, can be efficiently controlled by tuning the doping level of the graphene nanodisks. The proposed system emerges as a new promising platform to realize quantum plasmonic devices capable of commuting optical signals at the single-photon/plasmon level.

  11. Iontophoresis of Endothelin Receptor Antagonists in Rats and Men

    PubMed Central

    Roustit, Matthieu; Blaise, Sophie; Arnaud, Claire; Hellmann, Marcin; Millet, Claire; Godin-Ribuot, Diane; Dufournet, Boris; Boutonnat, Jean; Ribuot, Christophe; Cracowski, Jean-Luc

    2012-01-01

    Introduction The treatment of scleroderma-related digital ulcers is challenging. The oral endothelin receptor antagonist (ERA) bosentan has been approved but it may induce liver toxicity. The objective of this study was to test whether ERAs bosentan and sitaxentan could be locally delivered using iontophoresis. Methods Cathodal and anodal iontophoresis of bosentan and sitaxentan were performed on anaesthetized rat hindquarters without and during endothelin-1 infusion. Skin blood flow was quantified using laser-Doppler imaging and cutaneous tolerability was assessed. Iontophoresis of sitaxentan (20 min, 20 or 100 µA) was subsequently performed on the forearm skin of healthy men (n = 5). Results In rats neither bosentan nor sitaxentan increased skin blood flux compared to NaCl. When simultaneously infusing endothelin-1, cathodal iontophoresis of sitaxentan increased skin blood flux compared to NaCl (AUC0–20 were 44032.2±12277 and 14957.5±23818.8 %BL.s, respectively; P = 0.01). In humans, sitaxentan did not significantly increase skin blood flux as compared to NaCl. Iontophoresis of ERAs was well tolerated both in animals and humans. Conclusions This study shows that cathodal iontophoresis of sitaxentan but not bosentan partially reverses endothelin-induced skin vasoconstriction in rats, suggesting that sitaxentan diffuses into the dermis. However, sitaxentan does not influence basal skin microvascular tone in rats or in humans. PMID:22808263

  12. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    PubMed

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma.

  13. Celecoxib offsets the negative renal influences of cyclosporine via modulation of the TGF-β1/IL-2/COX-2/endothelin ET{sub B} receptor cascade

    SciTech Connect

    El-Gowelli, Hanan M.; Helmy, Maged W.; Ali, Rabab M.; El-Mas, Mahmoud M.

    2014-03-01

    Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET{sub B} receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β{sub 1}, TGF-β{sub 1}). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). We also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET{sub B} receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET{sub B} receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ET{sub B} receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET{sub B} receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats. - Highlights: • Celecoxib abolishes nephrotoxic manifestations of CSA in rats. • Blockade of ETB receptors by BQ788 mimicked the nephrotoxic effects of CSA. • CSA or BQ788 reduces renal protein expression of COX-2 and endothelin ETB receptors. • Enhanced TGFβ1/IL-2/COX2/ETB

  14. Effects of endothelin family on ANP secretion.

    PubMed

    Yuan, Kuichang; Park, Byung Mun; Choi, Young Tae; Kim, Jong Hun; Cho, Kyung Woo; Kim, Suhn Hee

    2016-08-01

    The endothelins (ET) peptide family consists of ET-1, ET-2, ET-3, and sarafotoxin (s6C, a snake venom) and their actions appears to be different among isoforms. The aim of this study was to compare the secretagogue effect of ET-1 on atrial natriuretic peptide (ANP) secretion with ET-3 and evaluate its physiological meaning. Isolated nonbeating atria from male Sprague-Dawley rats were used to evaluate stretch-activated ANP secretion in response to ET-1, ET-2, ET-3, and s6C. Changes in mean blood pressure (MAP) were measured during acute injection of ET-1 and ET-3 with and without natriuretic peptide receptor-A antagonist (A71915) in anesthetized rats. Changes in atrial volume induced by increased atrial pressure from o to 1, 2, 4, or 6cm H2O caused proportional increases in mechanically-stimulated extracellular fluid (ECF) translocation and stretch-activated ANP secretion. ET-1 (10nM) augmented basal and stretch-activated ANP secretion in terms of ECF translocation, which was blocked by the pretreatment with ETA receptor antagonist (BQ123, 1μM) but not by ETB receptor antagonist (BQ788, 1μM). ETA receptor antagonist itself suppressed stretch-activated ANP secretion. As compared to ET-1- induced ANP secretion (3.2-fold by 10nM), the secretagogue effects of ANP secretion by ET-2 was similar (2.8-fold by 10nM) and ET-3 and s6C were less potent (1.7-fold and 1.5-fold by 100nM, respectively). Acute injection of ET-1 or ET-3 increased mean blood pressure (MAP), which was augmented in the presence of natriuretic peptide receptor-A antagonist. Therefore, we suggest that the order of secretagogue effect of ET family on ANP secretion was ET-1≥ET-2>ET-3>s6C and ET-1-induced ANP secretion negatively regulates the pressor effect of ET-1. PMID:27208702

  15. The role of the epidermal endothelin cascade in the hyperpigmentation mechanism of lentigo senilis.

    PubMed

    Kadono, S; Manaka, I; Kawashima, M; Kobayashi, T; Imokawa, G

    2001-04-01

    Little is known about the mechanism(s) underlying hyperpigmentation in lentigo senilis. We have previously reported that keratinocyte-derived endothelins are intrinsic paracrine mitogens and melanogens for human melanocytes and that they play an essential role in stimulating ultraviolet-B-induced melanogenesis. In this study, we have used immunohistochemistry and reverse transcriptase polymerase chain reaction analysis to clarify the role of the endothelin cascade, including endothelin production, processing by endothelin-converting enzyme, and expression of the endothelin B receptor, in the hyperpigmentary mechanism(s) involved in lentigo senilis. The number of tyrosinase immunopositive melanocytes in lentigo senilis lesional skin was increased 2-fold over the perilesional epidermis. Immunohistochemistry using antibodies to endothelin-1 demonstrated relatively stronger staining in the lesional epidermis than in the perilesional epidermis. Reverse transcriptase polymerase chain reaction analysis concomitantly demonstrated accentuated expression of transcripts for endothelin-1 and for the endothelin B receptor in lentigo senilis lesional skin, which was accompanied by a similar accentuated expression of tyrosinase mRNA compared with the perilesional control. The endothelin-1-inducible cytokine, tumor necrosis factor alpha, was consistently upregulated in the lentigo senilis lesional epidermis as determined at the transcriptional level and by immunostaining, whereas interleukin-1alpha was downregulated. In contrast, endothelin-converting enzyme 1alpha mRNA was not substantially increased in the lesional epidermis. These findings suggest that an accentuation of the epidermal endothelin cascade, especially with respect to expression of endothelin and the endothelin B receptor, plays an important role in the mechanism involved in the hyperpigmentation of lentigo senilis.

  16. Valley blockade quantum switching in Silicon nanostructures.

    PubMed

    Prati, Enrico

    2011-10-01

    In analogy to the Coulomb and the Pauli spin blockade, based on the electrostatic repulsion and the Pauli exclusion principle respectively, the concept of valley blockade in Silicon nanostructures is explored. The valley parity operator is defined. Valley blockade is determined by the parity conservation of valley composition eigenvectors in quantum transport. A Silicon quantum changeover switch based on a triple of donor quantum dots capable to separate electrons having opposite valley parity by virtue of the valley parity conservation is proposed. The quantum changeover switch represents a novel kind of hybrid quantum based classical logic device.

  17. Relation of smoking to immunoreactive endothelin in the bronchiolar epithelial cells.

    PubMed Central

    Shokeir, M. O.; Paré, P.; Wright, J. L.

    1994-01-01

    BACKGROUND--Endothelin is a potent bronchoconstrictor which appears to be important in asthma. To ascertain whether cigarette smoking is associated with any alteration in the proportion of bronchiolar epithelial cells which express endothelin immunoreactivity, the airways in the lungs of non-smokers and smokers were analysed. Since an increase in immunoreactivity has been found in the bronchial epithelial cells of asthmatic subjects, cigarette smokers with and without evidence of airway hyperresponsiveness were also selected. METHODS--A point counting method which examined the proportion of endothelin immunoreactive epithelial cells in membranous and respiratory bronchioles was used. RESULTS--Neither smoking itself nor evidence of airway hyperresponsiveness altered the percentage of endothelin immunoreactive epithelial cells in the membraneous and respiratory bronchioles. CONCLUSIONS--Cigarette smoke does not induce endothelin production in bronchiolar epithelial cells, and the airway hyperresponsiveness seen in some patients with lung disease induced by cigarette smoking is not related to exaggerated endothelin production in epithelial cells. PMID:8091324

  18. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction.

    PubMed

    Chan, Elizabeth A W; Buckley, Barbara; Farraj, Aimen K; Thompson, Leslie C

    2016-09-01

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease have been explored, although linkage with specific factors or genes remains limited. These hypotheses may or may not also lead to particulate matter-induced cardiac dysfunction. Evidence pointing to autocrine/paracrine signaling systems as modulators of cardiac dysfunction has increased interest in the emerging role of endothelins as mediators of cardiac function following particulate matter exposure. Endothelin-1, a well-described small peptide expressed in the pulmonary and cardiovascular systems, is best known for its ability to constrict blood vessels, although it can also induce extravascular effects. Research on the role of endothelins in the context of air pollution has largely focused on vascular effects, with limited investigation of responses resulting from the direct effects of endothelins on cardiac tissue. This represents a significant knowledge gap in air pollution health effects research, given the abundance of endothelin receptors found on cardiac tissue and the ability of endothelin-1 to modulate cardiac contractility, heart rate, and rhythm. The plausibility of endothelin-1 as a mediator of particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility of certain endothelin receptor antagonists. The present review examines the possibility that endothelin-1 release caused by exposure to PM directly modulates extravascular effects on the heart, deleteriously altering cardiac function.

  19. Flow regulation of endothelin-1 production in the inner medullary collecting duct.

    PubMed

    Pandit, Meghana M; Inscho, Edward W; Zhang, Shali; Seki, Tsugio; Rohatgi, Rajeev; Gusella, Luca; Kishore, Bellamkonda; Kohan, Donald E

    2015-03-15

    Collecting duct-derived endothelin (ET)-1 is an autocrine inhibitor of Na(+) and water reabsorption; its deficiency causes hypertension and water retention. Extracellular fluid volume expansion increases collecting duct ET-1, thereby promoting natriuresis and diuresis; however, how this coupling between volume expansion and collecting duct ET-1 occurs is incompletely understood. One possibility is that volume expansion increases tubular fluid flow. To investigate this, cultured IMCD3 cells were subjected to static or flow conditions. Exposure to a shear stress of 2 dyn/cm(2) for 2 h increased ET-1 mRNA content by ∼2.3-fold. Absence of perfusate Ca(2+), chelation of intracellular Ca(2+), or inhibition of Ca(2+) signaling (calmodulin, Ca(2+)/calmodulin-dependent kinase, calcineurin, PKC, or phospholipase C) prevented the flow response. Evaluation of possible flow-activated Ca(2+) entry pathways revealed no role for transient receptor potential (TRP)C3, TRPC6, and TRPV4; however, cells with TRPP2 (polycystin-2) knockdown had no ET-1 flow response. Flow increased intracellular Ca(2+) was blunted in TRPP2 knockdown cells. Nonspecific blockade of P2 receptors, as well as specific inhibition of P2X7 and P2Y2 receptors, prevented the ET-1 flow response. The ET-1 flow response was not affected by inhibition of either epithelial Na(+) channels or the mitochondrial Na(+)/Ca(2+) exchanger. Taken together, these findings provide evidence that in IMCD3 cells, flow, via polycystin-2 and P2 receptors, engages Ca(2+)-dependent signaling pathways that stimulate ET-1 synthesis. PMID:25587122

  20. Human cultured endothelial cells do secrete endothelin-1

    SciTech Connect

    Clozel, M.; Fischli, W. )

    1989-01-01

    Endothelin-1 (ET-1) has been identified in the conditioned medium of porcine endothelial cells. Human endothelin (ET-1) cloned from a placenta cDNA library is similar to porcine, but it is not known whether endothelin itself is secreted by human endothelial cells. To answer this question, a conditioned medium taken every 48 h from confluent cultures of umbilical vein endothelial cells was analyzed by HPLC and all fractions were tested for their ability to inhibit ({sup 125}I)ET-1 binding on human placenta membranes. Only one fraction did inhibit ({sup 125}I)ET-1 binding. When the conditioned medium was spiked with ET-1, the same single fraction inhibited ({sup 125}I)ET-1 binding showing that ET-1, itself, is present in the conditioned medium of human endothelial cells. ET-1 accumulates with time, reaching a plateau at 48 h. ET-1 secretion is not increased by a 24-h incubation of endothelial cells with phorbol myristate acetate, interleukin-1, tumor necrosis factor, thrombin or neuropeptide Y.

  1. Endothelins modulate inflammatory reaction in zymosan-induced arthritis: participation of LTB4, TNF-alpha, and CXCL-1.

    PubMed

    Conte, Fernando de Paiva; Barja-Fidalgo, Christina; Verri, Waldiceu A; Cunha, Fernando Queiroz; Rae, Giles A; Penido, Carmen; Henriques, Maria das Graças M O

    2008-09-01

    Endothelins (ETs) are involved in inflammatory events, including pain, fever, edema, and cell migration. ET-1 levels are increased in plasma and synovial membrane of rheumatoid arthritis (RA) patients, but the evidence that ETs participate in RA physiopathology is limited. The present study investigated the involvement of ETs in neutrophil accumulation and edema formation in the murine model of zymosan-induced arthritis. Intra-articular (i.a.) administration of selective ET(A) or ET(B) receptor antagonists (BQ-123 and BQ-788, respectively; 15 pmol/cavity) prior to i.a. zymosan injection (500 microg/cavity) markedly reduced knee-joint edema formation and neutrophil influx to the synovial cavity 6 h and 24 h after stimulation. Histological analysis showed that ET(A) or ET(B) receptor blockade suppressed zymosan-induced neutrophil accumulation in articular tissue at 6 h. Likewise, dual blockade of ET(A)/ET(B) with bosentan (10 mg/kg, i.v.) also reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF-alpha production within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene B(4) at both time-points. Consistent with the demonstration that ET receptor antagonists inhibit zymosan-induced inflammation, i.a. injection of ET-1 (1-30 pmol/cavity) or sarafotoxin S6c (0.1-30 pmol/cavity) also triggered edema formation and neutrophil accumulation within 6 h. Moreover, knee-joint synovial tissue expressed ET(A) and ET(B) receptors. These findings suggest that endogenous ETs contribute to knee-joint inflammation, acting through ET(A) and ET(B) receptors and modulating edema formation, neutrophil recruitment, and production of inflammatory mediators.

  2. The Evaluation of Endothelin-1 and Endothelin Receptor Type A Gene Polymorphisms in Patients with Vitiligo

    PubMed Central

    Bingül, İlknur; Aydıngöz, İkbal Esen; Vural, Pervin; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-01-01

    Background: Endothelin-1 (EDN1) and EDN receptor type A (EDNRA) are implicated in melanocyte functions. Aim and Objectives: This study examines the role of EDN1 (G5665T and T-1370G) and EDNRA (C + 70G and G-231A) polymorphisms as a risk factor for vitiligo, and evaluates the relationship between genotypes and clinical characteristics of vitiligo patients. Materials and Methods: We analyzed genotype/allele distributions of EDN1 and EDNRA polymorphisms in 100 patients with vitiligo and 185 healthy controls by real-time polymerase chain reaction. Results: There was no notable risk for vitiligo afflicted by studied polymorphisms. However, the presence of EDNRA +70 variant G allele was found to be related with decreased risk for development of generalized type of vitiligo (odds ratio [OR]: 0.42, 95% confidence interval [CI] = 0.21–0.86, pcorr = 0.03) and showed protective effect against associated diseases seen in vitiligo (OR: 0.49, 95% CI = 0.27–0.88, pcorr = 0.034). Haplotype analysis demonstrated a strong (disequilibrium coefficient = 0.73, r2 = 0.405) linkage disequilibrium between EDN1 G5665T and T-1370G polymorphisms. The EDN1 5665/-1330 TT haplotype was over represented significantly in controls than in patients (P = 0.04). Conclusion: The studied polymorphisms do not seem to be a major risk for vitiligo. Haplotype analysis denoting protective effects against vitiligo may indicate an indirect interaction in the course of vitiligo. In addition, EDNRA + 70 polymorphism is protective against generalized type of vitiligo and associated diseases. PMID:26955120

  3. Proliferative effects of angiotensin II and endothelin-1 on guinea pig gingival fibroblast cells in culture.

    PubMed

    Ohuchi, Nozomi; Koike, Katsuo; Sano, Masakazu; Kusama, Tadashi; Kizawa, Yasuo; Hayashi, Kazuhiko; Taniguchi, Yumiko; Ohsawa, Masami; Iwamoto, Keishi; Murakami, Hajime

    2002-08-01

    We investigated whether phenytoin (PHT) and nifedipine (NIF) induce angiotensin II (Ang II) and endothelin-1 (ET-1) generation by cultured gingival fibroblasts derived from guinea pigs and whether Ang II and ET-1 induce proliferation of these cells. Immunohistochemical experiments showed that PHT (250 nM) and NIF (250 nM) increased the immunostaining intensities of immunoreactive Ang II and ET-1 (IRET-1) in these cells. Captopril (3 microM), an angiotensin-converting enzyme inhibitor, reduced these enhanced intensities to control levels. Ang II (100 nM) enhanced the immunostaining intensity of IRET-1. PHT (250 nM) and NIF (250 nM)-induced cell proliferation. Both PHT- and NIF-induced proliferation was inhibited by captopril (3 microM). Ang II (100 nM) and ET-1 (100 nM) also induced cell proliferation. Ang II-induced proliferation was inhibited by CV11974 (1 microM), an AT(1) receptor antagonist and saralasin (1 microM), an AT(1)/AT(2) receptor antagonist, but not by PD123,319 (1 microM), an AT(2) receptor antagonist. ET-1-induced proliferation was inhibited by BQ123 (10 microM), an ET(A) receptor antagonist, but not by BQ788 (1 microM), an ET(B) receptor antagonist. These findings suggest that PHT- and NIF-induced gingival fibroblast proliferation is mediated indirectly through the induction of Ang II and ET-1 and probably mediated through AT(1) and ET(A) receptors present in or on gingival fibroblasts. PMID:12223201

  4. Sugammadex: A Review of Neuromuscular Blockade Reversal.

    PubMed

    Keating, Gillian M

    2016-07-01

    Sugammadex (Bridion(®)) is a modified γ-cyclodextrin that reverses the effect of the steroidal nondepolarizing neuromuscular blocking agents rocuronium and vecuronium. Intravenous sugammadex resulted in rapid, predictable recovery from moderate and deep neuromuscular blockade in patients undergoing surgery who received rocuronium or vecuronium. Recovery from moderate neuromuscular blockade was significantly faster with sugammadex 2 mg/kg than with neostigmine, and recovery from deep neuromuscular blockade was significantly faster with sugammadex 4 mg/kg than with neostigmine or spontaneous recovery. In addition, recovery from neuromuscular blockade was significantly faster when sugammadex 16 mg/kg was administered 3 min after rocuronium than when patients spontaneously recovered from succinylcholine. Sugammadex also demonstrated efficacy in various special patient populations, including patients with pulmonary disease, cardiac disease, hepatic dysfunction or myasthenia gravis and morbidly obese patients. Intravenous sugammadex was generally well tolerated. In conclusion, sugammadex is an important option for the rapid reversal of rocuronium- or vecuronium-induced neuromuscular blockade. PMID:27324403

  5. Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells

    PubMed Central

    Sitkovsky, M; Lukashev, D; Deaglio, S; Dwyer, K; Robson, S C; Ohta, A

    2008-01-01

    The intensity and duration of host responses are determined by protective mechanisms that control tissue injury by dampening down inflammation. Adenosine generation and consequent effects, mediated via A2A adenosine receptors (A2AR) on effector cells, play a critical role in the pathophysiological modulation of these responses in vivo. Adenosine is both released by hypoxic cells/tissues and is also generated from extracellular nucleotides by ecto-enzymes e.g. CD39 (ENTPD1) and CD73 that are expressed by the vasculature and immune cells, in particular by T regulatory cell. In general, these adenosinergic mechanisms minimize the extent of collateral damage to host tissues during the course of inflammatory reactions. However, induction of suppressive pathways might also cause escape of pathogens and permit dissemination. In addition, adenosinergic responses may inhibit immune responses while enhancing vascular angiogenic responses to malignant cells that promote tumor growth. Novel drugs that block A2AR-adenosinergic effects and/or adenosine generation have the potential to boost pathogen destruction and to selectively destroy malignant tissues. In the latter instance, future treatment modalities might include novel ‘anti-adenosinergic' approaches that augment immune clearance of malignant cells and block permissive angiogenesis. This review addresses several possible pharmacological modalities to block adenosinergic pathways and speculates on their future application together with impacts on human disease. PMID:18311159

  6. Endothelin receptor-A (ETa) inhibition fails to improve neonatal hypoxic-ischemic brain injury in rats.

    PubMed

    Khatibi, Nikan H; Lee, Lillian K; Zhou, Yilin; Chen, Wanqiu; Rolland, William; Fathali, Nancy; Martin, Robert; Applegate, Richard; Stier, Gary; Zhang, John H

    2011-01-01

    Cerebral hypoxia-ischemia (HI) is an important cause of mortality and disability in newborns. It is a result of insufficient oxygen and glucose circulation to the brain, initiating long-term cerebral damage and cell death. Emerging evidence suggests that endothelin receptor-A (ETA) activation can play an important role in mediating brain damage. In this study, we investigated the role of ETA receptor inhibition using ABT-627 in neonatal HI injured rats. Postnatal day 10 Sprague-Dawley rat pups (n=91) were assigned to the following groups: sham (n=28), HI (vehicle, n=32), and HI with ABT-627 at 3 mg/kg (n=31). The Rice-Vannucci model was used to induce ischemia by ligating the right common carotid artery, followed by a 2 h hypoxic episode using 8% oxygen in a 37°C chamber. Postoperative assessment was conducted at 48 h after injury and again at 4 weeks. At the acute time point, investigative markers included cerebral edema, infarction volume, and body weight change. Neurobehavioral testing was measured at 4 weeks post-injury. Our findings indicated that ABT-627 had no effect on the measured parameters. This study suggests that ETA receptor blockade using ABT-627 post-treatment fails to improve neurological outcomes in neonatal HI injured rats. PMID:21725757

  7. Vascular Effects of Endothelin Receptor Antagonists Depends on Their Selectivity for ETA Versus ETB Receptors and on the Functionality of Endothelial ETB Receptors

    PubMed Central

    Steiner, Pauline; Wanner, Daniel; Rey, Markus; Hess, Patrick; Clozel, Martine

    2015-01-01

    Introduction: The goal of this study was to characterize the role of Endothelin (ET) type B receptors (ETB) on vascular function in healthy and diseased conditions and demonstrate how it affects the pharmacological activity of ET receptor antagonists (ERAs). Methods: The contribution of the ETB receptor to vascular relaxation or constriction was characterized in isolated arteries from healthy and diseased rats with systemic (Dahl-S) or pulmonary hypertension (monocrotaline). Because the role of ETB receptors is different in pathological vis-à-vis normal conditions, we compared the efficacy of ETA-selective and dual ETA/ETB ERAs on blood pressure in hypertensive rats equipped with telemetry. Results: In healthy vessels, ETB receptors stimulation with sarafotoxin S6c induced vasorelaxation and no vasoconstriction. In contrast, in arteries of rats with systemic or pulmonary hypertension, endothelial ETB-mediated relaxation was lost while vasoconstriction on stimulation by sarafotoxin S6c was observed. In hypertensive rats, administration of the dual ETA/ETB ERA macitentan on top of a maximal effective dose of the ETA-selective ERA ambrisentan further reduced blood pressure, indicating that ETB receptors blockade provides additional benefit. Conclusions: Taken together, these data suggest that in pathology, dual ETA/ETB receptor antagonism can provide superior vascular effects compared with ETA-selective receptor blockade. PMID:25992919

  8. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  9. Atomic Fock state preparation using Rydberg blockade.

    PubMed

    Ebert, Matthew; Gill, Alexander; Gibbons, Michael; Zhang, Xianli; Saffman, Mark; Walker, Thad G

    2014-01-31

    We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected √N Rabi frequency enhancement to within 4%. The resulting atom number distributions are consistent with an essentially perfect blockade. We then use collective Rabi π pulses to produce N=1, 2 atom number Fock states with fidelities of 62% and 48%, respectively. The N=2 Fock state shows the collective Rabi frequency enhancement without corruption from atom number fluctuations.

  10. Contractile endothelin-B (ETB) receptors in human small bronchi.

    PubMed

    Adner, M; Cardell, L O; Sjöberg, T; Ottosson, A; Edvinsson, L

    1996-02-01

    Endothelins (ETs) are a family of novel regulatory peptides and various lines of evidence suggest an important role for ETs in regulating pulmonary function. Two receptors for endothelin, ETA and ETB, have been found in the human lung, and according to recent studies a non-ETA receptor seems to mediate the contraction of large sized human bronchi. Several studies have emphasized the importance of small bronchi in the pathogenesis of airway disease. In the present paper, improved methodology was used which enables in vitro studies of small human bronchi down to a diameter of 0.5-1.0 mm. Using the new methodology we have tried to further characterize this receptor. Small bronchi from the distal parts of the bronchial tree were obtained from pulmonary tissue removed from 15 patients with lung cancer. They were dissected and cut into ring segments, in which isometric tension was recorded. ET-1, ET-2 and ET-3 elicited strong concentration-dependent contractions of the human small bronchus. Basically, the three peptides were equipotent with about the same maximal response. Upon reapplication, they all showed the same tachyphylaxis pattern, reaching half the initial contraction. Comparative analysis of IRL 1620, a selective ETB receptor agonist, revealed that the effect of the ETB agonist was, in all respects, similar to the responses induced by the ETs. PD 145065, a combined ETA/ETB receptor antagonist competitively inhibited the contractions induced by IRL 1620, whereas FR139317, a selective ETA receptor antagonist, was without effect. In conclusion, the present study shows that accurate measurements can be made in vitro on small human bronchi and all present data are in favour of an ETB receptor mediating endothelin-induced contraction of human bronchi smaller than 1.0 mm. PMID:8777976

  11. Neuromuscular blockade in the elderly patient

    PubMed Central

    Lee, Luis A; Athanassoglou, Vassilis; Pandit, Jaideep J

    2016-01-01

    Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids). Other drugs (atracurium, cisatracurium) have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient. PMID:27382330

  12. Nonequilibrium dephasing in Coulomb blockaded quantum dots.

    PubMed

    Altland, Alexander; Egger, Reinhold

    2009-01-16

    We present a theory of zero-bias anomalies and dephasing rates for a Coulomb-blockaded quantum dot, driven out of equilibrium by coupling to voltage biased source and drain leads. We interpret our results in terms of the statistics of voltage fluctuations in the system.

  13. Localization of [125I]endothelin-1 in injured aorta of rabbits.

    PubMed

    Kurata, C; Callahan, R J; Molea, N; Wilkinson, R; Fischman, A J; Strauss, H W

    1995-07-01

    Endothelin-1 is a potent vasoconstrictor. This study was performed to determine whether arterial injury, induced by either hypercholesterolemia or mechanical disruption of the endothelium, is associated with increased localization of endothelin-1 in the artery. The blood clearance and tissue distribution of intravenously injected [125I]endothelin-1 was evaluated in 33 rabbits--control animals (n = 7), balloon de-endothelialized animals (n = 12), cholesterol-fed animals (n = 6) and animals that had both balloon de-endothelialization and high cholesterol diet (n = 8). The blood clearance half time was less than 10 min, with slightly slower clearance in the ballooned/cholesterol-fed animals. [125I]Endothelin-1 localized in the lung (approximately 12% injected dose (ID)/organ) and kidney (approximately 8%ID/organ). [125I]Endothelin-1 localization in the injured aorta increased from the baseline level of 0.06%kgID/g to its highest level within 5 min of balloon de-endothelialization (0.2%kgID/g) and decreased to 0.11%kgID/g within one week and remained essentially unchanged through 16 weeks. The area with increased binding of [125I]endothelin-1 corresponded to the zone of arterial injury stained with Evans blue. On the other hand, the binding in the aorta did not increase with the atherogenic diet. These findings suggest that endothelin-1 accumulates in injured vessels, attaining the highest levels immediately after mechanical injury.

  14. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    SciTech Connect

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko; Yagi, Keiko; Hocher, Berthold; Hirata, Ken-ichi; Emoto, Noriaki

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  15. Endothelin converting enzyme (ECE) activity in human vascular smooth muscle

    PubMed Central

    Maguire, Janet J; Johnson, Christopher M; Mockridge, James W; Davenport, Anthony P

    1997-01-01

    We have characterized the human smooth muscle endothelin converting enzyme (ECE) present in the media of the endothelium-denuded human umbilical vein preparation. Endothelin-1 (ET-1) and ET-2 were potent constrictors of umbilical vein with EC50 values of 9.2 nM and 29.6 nM, respectively. ET-1 was at least 30 times more potent than ET-3 suggesting the presence of constrictor ETA receptors. Little or no response was obtained to the ETB-selective agonist sarafotoxin 6c. These data suggest that endothelin-mediated vasoconstriction is via ETA receptors in this preparation. Autoradiographical visualization of endothelin receptors with subtype selective ligands confirmed the predominance of the ETA receptor in the media of umbilical vein. High density of binding was obtained with the ETA selective [125I]-PD151242, with much lower levels detected with the ETB selective [125I]-BQ3020. Big ET-1 (EC50=42.7 nM) and big ET-2(1-38) (EC50=99.0 nM) were less potent than ET-1 and ET-2, respectively. Big ET-2(1-38) was more potent than its isoform big ET-2(1-37) with concentration–response curves to big ET-2(1-37) incomplete at 300 nM. No response was obtained to big ET-3 at concentrations up to 700 nM. The C-terminal fragments, big ET-1(22-38) and big ET-2(22-38) were inactive. Responses to ET-1 were unaffected by either the neutral endopeptidase (NEP) inhibitor thiorphan (10−5 M) or by the dual NEP/ECE inhibitor phosphoramidon (10−5 M). Big ET-1 was also unaffected by thiorphan but antagonized in a concentration-dependent manner by phosphoramidon (10−5 M and 10−4 M). Addition of all four big endothelin peptides to human umbilical vein preparations resulted in detectable amounts of ET-IR in the bathing medium. Therefore, although big ET-3 was functionally inactive this reflects the low potency of ET-3 at the ETA receptor rather than the lack of ability of this smooth muscle ECE to convert big ET-3 to ET-3. To conclude we have demonstrated the presence

  16. 5-Hydroxytryptamine 2A receptor signaling cascade modulates adiponectin and plasminogen activator inhibitor 1 expression in adipose tissue.

    PubMed

    Uchida-Kitajima, Shoko; Yamauchi, Toshimasa; Takashina, Youko; Okada-Iwabu, Miki; Iwabu, Masato; Ueki, Kohjiro; Kadowaki, Takashi

    2008-09-01

    Knowledge of the regulatory factors associated with down-regulation of adiponectin gene expression and up-regulation of PAI-1 gene expression is crucial to understand the pathophysiological basis of obesity and metabolic diseases, and could establish new treatment strategies for these conditions. We showed that expression of 5-HT(2A) receptors was up-regulated in hypertrophic 3T3-L1 adipocytes, which exhibited decreased expression of adiponectin and increased expression of PAI-1. 5-HT(2A) receptor antagonists and suppression of 5-HT(2A) receptor gene expression enhanced adiponectin expression. Activation of Gq negatively regulated adiponectin expression, and inhibition of mitogen-activated protein kinase reversed the Gq-induced effect. Moreover, the 5-HT(2A) receptor blockade reduced PAI-1 expression. These findings indicate that antagonism of 5-HT(2A) receptors in adipocytes could improve the obesity-linked decreases in adiponectin expression and increases in PAI-1 expression.

  17. Identification of endothelin 1 and big endothelin 1 in secretory vesicles isolated from bovine aortic endothelial cells.

    PubMed

    Harrison, V J; Barnes, K; Turner, A J; Wood, E; Corder, R; Vane, J R

    1995-07-01

    Vesicles containing endothelin 1 (ET-1) were isolated from bovine aortic endothelial cells (BAECs) by fractionation of homogenates on sucrose density gradients by ultracentrifugation. The vesicles were localized at the 1.0/1.2 M sucrose interface using a specific anti-ET-1-(16-21) RIA. Identification of ET-1 and big ET-1 in this fraction was confirmed by HPLC analysis combined with RIA. Morphological examination of the ET-1-enriched fraction by electron microscopy identified clusters of vesicles approximately 100 nm in diameter. Immunostaining of ultrathin cryosections prepared from the vesicle fraction for ET-1 or big ET-1 showed clusters of 15-nm gold particles attached to or within vesicles. Immunofluorescence staining of whole BAECs using a specific ET-1-(16-21) IgG purified by affinity chromatography revealed punctate granulation of the cell cytoplasm viewed under light microscopy. This distinct pattern of staining was shown by confocal light microscopy to be intracellular. Immunofluorescence staining of whole cells with a polyclonal antiserum for big ET-1-(22-39) showed a defined perinuclear localization of precursor molecule. Hence, several different approaches have demonstrated that ET-1 and big ET-1 are localized within intracellular vesicles in BAECs, suggesting that these subcellular compartments are an important site for processing of big ET-1 by endothelin-converting enzyme.

  18. Short-term effects of endothelins on tyrosine hydroxylase activity and expression in the olfactory bulb of normotensive rats.

    PubMed

    Nabhen, Sabrina L; Perfume, Guadalupe; Battistone, María A; Rossi, Andrés; Abramoff, Tamara; Bianciotti, Liliana G; Vatta, Marcelo S

    2009-05-01

    The olfactory system in rats is part of the limbic region with extensive afferent connections with brain areas involved in the regulation of behaviour and autonomic responses. The existence of the endothelin system and catecholaminergic neurons in the olfactory bulb suggests that endothelins may modulate noradrenergic transmission and diverse olfactory mediated processes. In the present work we studied the effect of endothelin-1 and -3 on neuronal norepinephrine release and the short-term regulation of tyrosine hydroxylase in the olfactory bulb. Results showed that both endothelins increased tyrosine hydroxylase activity through the activation of a non-conventional endothelin G-protein coupled receptor, coupled to the stimulation of protein kinase A and C, as well as Ca(2+)/calmodulin-dependent protein kinase II. On the other hand, neither endothelin-1 nor endothelin-3 modified tyrosine hydroxylase total protein levels, but both peptides increased the phosphorylation of serine residues of the enzyme at sites 19 and 40. Furthermore, endothelins enhanced norepinephrine release in olfactory neurons suggesting that this event may contribute to increased tyrosine hydroxylase activity by reducing the feedback inhibition. Taken together present findings show a clear interaction between the endothelin system, and the catecholaminergic transmission in the olfactory bulb. Additional studies are required to evaluate the physiological functions regulated by endothelins at this brain level.

  19. Endothelin-1 protects human melanocytes from UV-induced DNA damage by activating JNK and p38 signalling pathways.

    PubMed

    von Koschembahr, Anne M; Swope, Viki B; Starner, Renny J; Abdel-Malek, Zalfa A

    2015-04-01

    Endothelin-1 is a paracrine factor with mitogenic, melanogenic and survival effects on cultured human melanocytes. We report that endothelin-1 signalling reduced the generation and enhanced the repair of ultraviolet radiation (UV)-induced DNA photoproducts, and inhibited apoptosis of human melanocytes, without increasing cAMP levels, melanin content or proliferation. Treatment with endothelin-1 activated the MAP kinases JNK and p38, as evidenced by phosphorylation of their target, activating transcription factor-2 (ATF-2). Endothelin-1 also enhanced the phosphorylation of JNK, p38 and ATF-2 by UV. The effects of endothelin-1 were dependent on increasing intracellular calcium mobilization by endothelin B receptor signalling. Activation of both JNK and p38 was required for reducing DNA photoproducts, but only JNK partially contributed to the survival effect of endothelin-1. ATF-2 activation depended mainly on JNK, yet was not sufficient for the effect of endothelin-1 on UV-induced DNA damage, suggesting the requirement for other JNK and p38 targets for this effect. Our results underscore the significance of endothelin-1 and endothelin B receptor signalling in reducing the genotoxic effects of UV via activating JNK and p38, hence restoring genomic stability of melanocytes.

  20. Hippocampal 5-HT1A Receptor and Spatial Learning and Memory

    PubMed Central

    Glikmann-Johnston, Yifat; Saling, Michael M.; Reutens, David C.; Stout, Julie C.

    2015-01-01

    Spatial cognition is fundamental for survival in the topographically complex environments inhabited by humans and other animals. The hippocampus, which has a central role in spatial cognition, is characterized by high concentration of serotonin (5-hydroxytryptamine; 5-HT) receptor binding sites, particularly of the 1A receptor (5-HT1A) subtype. This review highlights converging evidence for the role of hippocampal 5-HT1A receptors in spatial learning and memory. We consider studies showing that activation or blockade of the 5-HT1A receptors using agonists or antagonists, respectively, lead to changes in spatial learning and memory. For example, pharmacological manipulation to induce 5-HT release, or to block 5-HT uptake, have indicated that increased extracellular 5-HT concentrations maintain or improve memory performance. In contrast, reduced levels of 5-HT have been shown to impair spatial memory. Furthermore, the lack of 5-HT1A receptor subtype in single gene knockout mice is specifically associated with spatial memory impairments. These findings, along with evidence from recent cognitive imaging studies using positron emission tomography (PET) with 5-HT1A receptor ligands, and studies of individual genetic variance in 5-HT1A receptor availability, strongly suggests that 5-HT, mediated by the 5-HT1A receptor subtype, plays a key role in spatial learning and memory. PMID:26696889

  1. Pharmacology of macitentan, an orally active tissue-targeting dual endothelin receptor antagonist.

    PubMed

    Iglarz, Marc; Binkert, Christoph; Morrison, Keith; Fischli, Walter; Gatfield, John; Treiber, Alexander; Weller, Thomas; Bolli, Martin H; Boss, Christoph; Buchmann, Stephan; Capeleto, Bruno; Hess, Patrick; Qiu, Changbin; Clozel, Martine

    2008-12-01

    Macitentan, also called Actelion-1 or ACT-064992 [N-[5-(4-bromophenyl)-6-(2-(5-bromopyrimidin-2-yloxy)ethoxy)-pyrimidin-4-yl]-N'-propylaminosulfonamide], is a new dual ET(A)/ET(B) endothelin (ET) receptor antagonist designed for tissue targeting. Selection of macitentan was based on inhibitory potency on both ET receptors and optimization of physicochemical properties to achieve high affinity for lipophilic milieu. In vivo, macitentan is metabolized into a major and pharmacologically active metabolite, ACT-132577. Macitentan and its metabolite antagonized the specific binding of ET-1 on membranes of cells overexpressing ET(A) and ET(B) receptors and blunted ET-1-induced calcium mobilization in various natural cell lines, with inhibitory constants within the nanomolar range. In functional assays, macitentan and ACT-132577 inhibited ET-1-induced contractions in isolated endothelium-denuded rat aorta (ET(A) receptors) and sarafotoxin S6c-induced contractions in isolated rat trachea (ET(B) receptors). In rats with pulmonary hypertension, macitentan prevented both the increase of pulmonary pressure and the right ventricle hypertrophy, and it markedly improved survival. In diabetic rats, chronic administration of macitentan decreased blood pressure and proteinuria and prevented end-organ damage (renal vascular hypertrophy and structural injury). In conclusion, macitentan, by its tissue-targeting properties and dual antagonism of ET receptors, protects against end-organ damage in diabetes and improves survival in pulmonary hypertensive rats. This profile makes macitentan a new agent to treat cardiovascular disorders associated with chronic tissue ET system activation.

  2. Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes.

    PubMed

    Imokawa, G; Yada, Y; Miyagishi, M

    1992-12-01

    We recently demonstrated that human melanocyte proliferation and differentiation could be stimulated by endothelin (ET) derivatives via a receptor-mediated signal transduction pathway (Yada, Y., Higuchi, K., and Imokawa, G. (1991) J. Biol. Chem. 266, 18352-18357). We show here that the growth factors for human melanocytes are produced and secreted by the surrounding cells, namely human keratinocytes for ET-1 and Big-ET-1. Northern blots have revealed the presence of ET-1 gene transcripts in proliferating human keratinocytes. The ET-1 production by human keratinocytes increased after irradiation with ultraviolet B (UVB) in a dose-dependent manner, accompanied by the significant secretion of interleukin 1 alpha (IL-1 alpha). Among the cytokines related to UVB-induced cellular reactions and keratinocyte growth, only IL-1 alpha and -1 beta stimulated the secretion of ET-1 and Big-ET-1 but not of ET-3 and Big-ET-3 in a time-dependent manner. Northern blots for IL-1 alpha-stimulated or UVB-exposed human keratinocytes revealed that production of ET-1 gene transcripts markedly increased (by about 300 or 1,200%) with constant levels of beta-actin gene transcripts. In a parallel study, the medium conditioned by UVB-exposed human keratinocytes elicited a significant anti-ET-1 antibody-suppressible increase in DNA synthesis by cultured human melanocytes in a UV dose-dependent manner, which was associated with a marked and rapid (80 s) increase in the intracellular calcium level upon incubation with human melanocytes. These studies suggest that ETs produced and secreted by keratinocytes play an essential role in the maintenance of melanocyte proliferation and UV hyperpigmentation in the epidermis.

  3. Agonist-promoted ubiquitination differentially regulates receptor trafficking of endothelin type A and type B receptors.

    PubMed

    Terada, Koji; Horinouchi, Takahiro; Fujioka, Yoichiro; Higashi, Tsunehito; Nepal, Prabha; Horiguchi, Mika; Karki, Sarita; Hatate, Chizuru; Hoshi, Akimasa; Harada, Takuya; Mai, Yosuke; Ohba, Yusuke; Miwa, Soichi

    2014-12-19

    Two types of G protein-coupled receptors for endothelin-1 (ET-1), ET type A receptor (ETAR) and ETBR, closely resemble each other, but upon ET-1 stimulation, they follow totally different intracellular trafficking pathways; ETAR is recycled back to plasma membrane, whereas ETBR is targeted to lysosome for degradation. However, the mechanisms for such different fates are unknown. Here we demonstrated that ETBR but not ETAR was ubiquitinated on the cell surface following ET-1 stimulation and that ETBR was internalized and degraded in lysosome more rapidly than ETAR. The mutant ETBR (designated "5KR mutant") in which 5 lysine residues in the C-tail were substituted to arginine was not ubiquitinated, and its rates of internalization and degradation after ET-1 stimulation became slower, being comparable with those of ETAR. Confocal microscopic study showed that following ET-1 stimulation, ETAR and 5KR mutant of ETBR were co-localized mainly with Rab11, a marker of recycling endosome, whereas ETBR was co-localized with Rab7, a marker of late endosome/lysosome. In the 5KR mutant, ET-1-induced ERK phosphorylation and an increase in the intracellular Ca(2+) concentration upon repetitive ET-1 stimulation were larger. A series of ETBR mutants (designated "4KR mutant"), in which either one of 5 arginine residues of the 5KR mutant was reverted to lysine, were normally ubiquitinated, internalized, and degraded, with ERK phosphorylation being normalized. These results demonstrate that agonist-induced ubiquitination at either lysine residue in the C-tail of ETBR but not ETAR switches intracellular trafficking from recycling to plasma membrane to targeting to lysosome, causing decreases in the cell surface level of ETBR and intracellular signaling.

  4. A dinucleotide mutation in the endothelin-B receptor gene is associated with lethal white foal syndrome (LWFS); a horse variant of Hirschsprung disease.

    PubMed

    Yang, G C; Croaker, D; Zhang, A L; Manglick, P; Cartmill, T; Cass, D

    1998-06-01

    Lethal white foal syndrome (LWFS) is a congenital anomaly of horses characterized by a white coat colour and aganglionosis of the bowel, which is similar to Hirschsprung disease (HSCR). We decided to investigate possible mutations of the endothelin-B receptor gene ( EDNRB ) in LWFS as recent studies in mutant rodents and some patients have demonstrated EDNRB defects. First, we identified a full-length cDNA for horse EDNRB . This cDNA fragment contained a 1329 bp open reading frame which encoded 443 amino acid residues. The predicted amino acid sequence was 89, 91 and 85% identical to human, bovine and mouse as well as rat EDNRB respectively, but only 55% identical to the human, bovine and rat endothelin A receptor (EDNRA). Secondly, sequence analysis, together with allele-specific PCR and the amplification-created restriction site (ACRS) technique, revealed a dinucleotide TC-->AG mutation, which changed isoleucine to lysine in the predicted first transmembrane domain of the EDNRB protein. This was associated with LWFS when homozygous and with the overo phenotype when heterozygous.

  5. Polymorphisms in Endothelin System Genes, Arsenic Levels and Obesity Risk

    PubMed Central

    Martínez-Barquero, Vanesa; de Marco, Griselda; Martínez-Hervas, Sergio; Rentero, Pilar; Galan-Chilet, Inmaculada; Blesa, Sebastian; Morchon, David; Morcillo, Sonsoles; Rojo, Gemma; Ascaso, Juan Francisco; Real, José Tomás; Martín-Escudero, Juan Carlos; Chaves, Felipe Javier

    2015-01-01

    Background/Objectives Obesity has been linked to morbidity and mortality through increased risk for many chronic diseases. Endothelin (EDN) system has been related to endothelial function but it can be involved in lipid metabolism regulation: Receptor type A (EDNRA) activates lipolysis in adipocytes, the two endothelin receptors mediate arsenic-stimulated adipocyte dysfunction, and endothelin system can regulate adiposity by modulating adiponectin activity in different situations and, therefore, influence obesity development. The aim of the present study was to analyze if single nucleotide polymorphisms (SNPs) in the EDN system could be associated with human obesity. Subjects/Methods We analyzed two samples of general-population-based studies from two different regions of Spain: the VALCAR Study, 468 subjects from the area of Valencia, and the Hortega Study, 1502 subjects from the area of Valladolid. Eighteen SNPs throughout five genes were analyzed using SNPlex. Results We found associations for two polymorphisms of the EDNRB gene which codifies for EDN receptor type B. Genotypes AG and AA of the rs5351 were associated with a lower risk for obesity in the VALCAR sample (p=0.048, OR=0.63) and in the Hortega sample (p=0.001, OR=0.62). Moreover, in the rs3759475 polymorphism, genotypes CT and TT were also associated with lower risk for obesity in the Hortega sample (p=0.0037, OR=0.66) and in the VALCAR sample we found the same tendency (p=0.12, OR=0.70). Furthermore, upon studying the pooled population, we found a stronger association with obesity (p=0.0001, OR=0.61 and p=0.0008, OR=0.66 for rs5351 and rs3759475, respectively). Regarding plasma arsenic levels, we have found a positive association for the two SNPs studied with obesity risk in individuals with higher arsenic levels in plasma: rs5351 (p=0.0054, OR=0.51) and rs3759475 (p=0.009, OR=0.53) Conclusions Our results support the hypothesis that polymorphisms of the EDNRB gene may influence the susceptibility to

  6. [Cancer immunotherapy by immuno-checkpoint blockade].

    PubMed

    Kawakami, Yutaka

    2015-10-01

    As cancer immunotherapies utilizing anti-tumor T-cell responses, immuno-checkpoint blockade and adoptive T-cell immunotherapy have recently achieved durable responses even in advanced cancer patients with metastases. Administration of antibodies on the T-cell surface, CTLA-4 and PD-1 (or PD-1 ligand PD-L1), resulted in tumor regression of not only melanoma and renal cell cancer which were known to be relatively sensitive to immunotherapy, but also various malignancies including lung, bladder, ovarian, gastric, and head and neck cancers, as well as hematological malignancies such as Hodgkin and B-cell malignant lymphomas. These findings have changed the status of immunotherapy in the development of cancer treatments. Currently, development of combinations employing cancer immunotherapy with immuno-checkpoint blockade, as well as personalized cancer immunotherapy based on the evaluation of pretreatment immune status, are in progress.

  7. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    SciTech Connect

    Saffman, M.; Moelmer, K.

    2009-06-19

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.

  8. TIMAP-protein phosphatase 1-complex controls endothelin-1 production via ECE-1 dephosphorylation.

    PubMed

    Boratkó, Anita; Veréb, Zoltán; Petrovski, Goran; Csortos, Csilla

    2016-04-01

    Endothelin induced signaling pathways can affect blood pressure and vascular tone, but the influence of endothelins on tumor cells is also significant. We have detected elevated endothelin-1 secretion from TIMAP (TGF-β inhibited membrane associated protein) depleted vascular endothelial cells. The autocrine signaling activated by the elevated endothelin-1 level through the ETB receptors evoked an angiogenic-like phenotype, the cells assumed an elongated morphology, and enhanced tube formation and wound healing abilities. The depleted protein, TIMAP, is a highly specific and abundant protein in the endothelial cells, and it is a regulatory/targeting subunit for the catalytic subunit of protein phosphatase 1 (PP1c). Protein-protein interaction between the TIMAP-PP1c complex and the endothelin converting enzyme-1 (ECE-1) was detected, the latter of which is a transmembrane protein that produces the biologically active 21-amino acid form of endothelin-1 from proendothelin. The results indicate that silencing of TIMAP induces a reduction in TIMAP-PP1c activity connected to ECE-1. This leads to an increase in the amount of ECE-1 protein in the plasma membrane and a consequent increase in endothelin-1 secretion. Similarly, activation of PKC, the kinase responsible for ECE-1 phosphorylation increased ECE-1 protein level in the membrane fraction of the endothelial cells. The elevated ECE-1 level was mitigated in time in normal cells, but was clearly preserved in TIMAP-depleted cells. Overall, our results indicate that PKC-phosphorylated ECE-1 is a TIMAP-PP1c substrate and this phosphatase complex has an important role in endothelin-1 production of EC through the regulation of ECE-1 activity.

  9. TIMAP-protein phosphatase 1-complex controls endothelin-1 production via ECE-1 dephosphorylation.

    PubMed

    Boratkó, Anita; Veréb, Zoltán; Petrovski, Goran; Csortos, Csilla

    2016-04-01

    Endothelin induced signaling pathways can affect blood pressure and vascular tone, but the influence of endothelins on tumor cells is also significant. We have detected elevated endothelin-1 secretion from TIMAP (TGF-β inhibited membrane associated protein) depleted vascular endothelial cells. The autocrine signaling activated by the elevated endothelin-1 level through the ETB receptors evoked an angiogenic-like phenotype, the cells assumed an elongated morphology, and enhanced tube formation and wound healing abilities. The depleted protein, TIMAP, is a highly specific and abundant protein in the endothelial cells, and it is a regulatory/targeting subunit for the catalytic subunit of protein phosphatase 1 (PP1c). Protein-protein interaction between the TIMAP-PP1c complex and the endothelin converting enzyme-1 (ECE-1) was detected, the latter of which is a transmembrane protein that produces the biologically active 21-amino acid form of endothelin-1 from proendothelin. The results indicate that silencing of TIMAP induces a reduction in TIMAP-PP1c activity connected to ECE-1. This leads to an increase in the amount of ECE-1 protein in the plasma membrane and a consequent increase in endothelin-1 secretion. Similarly, activation of PKC, the kinase responsible for ECE-1 phosphorylation increased ECE-1 protein level in the membrane fraction of the endothelial cells. The elevated ECE-1 level was mitigated in time in normal cells, but was clearly preserved in TIMAP-depleted cells. Overall, our results indicate that PKC-phosphorylated ECE-1 is a TIMAP-PP1c substrate and this phosphatase complex has an important role in endothelin-1 production of EC through the regulation of ECE-1 activity. PMID:26806547

  10. Correlation between Saliva and Plasma Levels of Endothelin Isoforms ET-1, ET-2, and ET-3.

    PubMed

    Gurusankar, Roma; Kumarathasan, Prem; Saravanamuthu, Anusha; Thomson, Errol M; Vincent, Renaud

    2015-01-01

    Although saliva endothelins are emerging as valuable noninvasive cardiovascular biomarkers, reports on the relationship between isoforms in saliva and plasma remain scarce. We measured endothelins in concurrent saliva and plasma samples (n = 30 males; age 18-63) by HPLC-fluorescence. Results revealed statistically significant positive correlations among all isoforms between saliva and plasma: big endothelin-1 (BET-1, 0.55 ± 0.27 versus 3.35 ± 1.28 pmol/mL; r = 0.38, p = 0.041), endothelin-1 (ET-1, 0.52 ± 0.21 versus 3.45 ± 1.28 pmol/mL; r = 0.53, p = 0.003), endothelin-2 (ET-2, 0.21 ± 0.07 versus 1.63 ± 0.66 pmol/mL; r = 0.51, p = 0.004), and endothelin-3 (ET-3, 0.39 ± 0.19 versus 2.32 ± 1.44 pmol/mL; r = 0.75, p < 0.001). Correlations of BET-1, ET-1, and ET-3 within each compartment were positive in both plasma (p < 0.05) and saliva (p ≤ 0.1), whereas ET-2 was not significantly correlated with other isoforms in either plasma or saliva. For all isoforms, concentrations varied on average fivefold between individuals (90th/10th percentiles); individuals with high plasma endothelin levels generally had high saliva endothelin levels. Our results reveal that salivary ET isoform profiles portray the plasmatic profiles and support the view of coordinated regulation of ET-1 and ET-3, but distinct regulatory pathways for ET-2.

  11. Endothelin-1-induced endoplasmic reticulum stress in disease.

    PubMed

    Jain, Arjun

    2013-08-01

    The accumulation of unfolded proteins in the endoplasmic reticulum (ER) represents a cellular stress induced by multiple stimuli and pathologic conditions. Recent evidence implicates endothelin-1 (ET-1) in the induction of placental ER stress in pregnancy disorders. ER stress has previously also been implicated in various other disease states, including neurodegenerative disorders, diabetes, and cardiovascular diseases, as has ET-1 in the pathophysiology of these conditions. However, to date, there has been no investigation of the link between ET-1 and the induction of ER stress in these disease states. Based on recent evidence and mechanistic insight into the role of ET-1 in the induction of placental ER stress, the following review attempts to outline the broader implications of ET-1-induced ER stress, as well as strategies for therapeutic intervention based around ET-1. PMID:23740603

  12. Endothelin-1 induces endothelial barrier failure in the cat hindlimb.

    PubMed

    Porter, L P; McNamee, J E; Wolf, M B

    1999-02-01

    Our purpose was to see whether endothelin- (ET) 1 could produce a change in the endothelial membrane barrier to protein in skeletal muscle. Previous studies in other tissues have suggested that ET-1 affects this barrier, but the measurement methods used could not exclude vascular protein extravasation due to microvascular pressure changes or the effects of changes in perfused capillary surface area. We measured the protein sieving coefficient, a specific measure of the permeability of the membrane to protein, in the isolated, perfused cat hindlimb preparation. The integral-mass balance method determined this coefficient from the changes in hematocrit and plasma protein concentration induced by a period of transvascular fluid filtration. The data clearly indicate that ET-1 produces a dose (1-20 nM) dependent increase in permeability indicative of barrier dysfunction. Hence, elevated ET levels may contribute to the perivascular edema, hemoconcentration, and impaired tissue perfusion found in systemic inflammatory response syndromes and related diseases. PMID:10030797

  13. The role of endothelin-1 in pulmonary arterial hypertension

    PubMed Central

    Chester, Adrian H.; Yacoub, Magdi H.

    2014-01-01

    Pulmonary arterial hypertension (PAH) is a rare but debilitating disease, which if left untreated rapidly progresses to right ventricular failure and eventually death. In the quest to understand the pathogenesis of this disease differences in the profile, expression and action of vasoactive substances released by the endothelium have been identified in patients with PAH. Of these, endothelin-1 (ET-1) is of particular interest since it is known to be an extremely powerful vasoconstrictor and also involved in vascular remodelling. Identification of ET-1 as a target for pharmacological intervention has lead to the discovery of a number of compounds that can block the receptors via which ET-1 mediates its effects. This review sets out the evidence in support of a role for ET-1 in the onset and progression of the disease and reviews the data from the various clinical trials of ET-1 receptor antagonists for the treatment of PAH. PMID:25405182

  14. Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan.

    PubMed

    Sidharta, P N; Treiber, A; Dingemanse, J

    2015-05-01

    Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vascular system, which leads to right-sided heart failure and ultimately death if untreated. Treatments to regulate the pulmonary vascular pressure target the prostacyclin, nitric oxide, and endothelin (ET) pathways. Macitentan, an oral, once-daily, dual ETA and ETB receptor antagonist with high affinity and sustained receptor binding is the first ET receptor antagonist to show significant reduction of the risk of morbidity and mortality in PAH patients in a large-scale phase III study with a long-term outcome. Here we present a review of the available clinical pharmacokinetic, pharmacodynamic, pharmacokinetic/pharmacodynamic relationship, and drug-drug interaction data of macitentan in healthy subjects, patients with PAH, and in special populations.

  15. Endothelin-1 mRNA expression in the rat kidney.

    PubMed Central

    Nunez, D J; Taylor, E A; Oh, V M; Schofield, J P; Brown, M J

    1991-01-01

    Cultured pig and bovine endothelial cells are capable of synthesizing endothelin-1 (ET-1). Thus the observation that the kidney contains a large number of binding sites for ET distributed in close proximity to endothelial cells suggests that ET-1 may be released from the endothelium to act locally on these receptors. In support of this hypothesis, using the technique of reverse transcription with specific amplification of cDNA, we report here that ET-1 mRNA is expressed in the rat kidney. The partial sequence of the amplified rat ET-1 cDNA confirms that the mature rat peptide is identical to that of the mouse, man and pig, but with some differences in codon usage. PMID:2039460

  16. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    PubMed

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.

  17. alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes.

    PubMed

    Kadekaro, Ana Luisa; Kavanagh, Renny; Kanto, Hiromi; Terzieva, Silva; Hauser, Jennifer; Kobayashi, Nobuhiko; Schwemberger, Sandy; Cornelius, James; Babcock, George; Shertzer, Howard G; Scott, Glynis; Abdel-Malek, Zalfa A

    2005-05-15

    UV radiation is an important etiologic factor for skin cancer, including melanoma. Constitutive pigmentation and the ability to tan are considered the main photoprotective mechanism against sun-induced carcinogenesis. Pigmentation in the skin is conferred by epidermal melanocytes that synthesize and transfer melanin to keratinocytes. Therefore, insuring the survival and genomic stability of epidermal melanocytes is critical for inhibiting photocarcinogenesis, particularly melanoma, the most deadly form of skin cancer. The paracrine factors alpha-melanocortin and endothelin-1 are critical for the melanogenic response of cultured human melanocytes to UV radiation. We report that alpha-melanocortin and endothelin-1 rescued human melanocytes from UV radiation-induced apoptosis and reduced DNA photoproducts and oxidative stress. The survival effects of alpha-melanocortin and endothelin-1 were mediated by activation of the melanocortin 1 and endothelin receptors, respectively. Treatment of melanocytes with alpha-melanocortin and/or endothelin-1 before exposure to UV radiation activated the inositol triphosphate kinase-Akt pathway and increased the phosphorylation and expression of the microphthalmia-related transcription factor. Treatment with alpha-melanocortin and/or endothelin-1 enhanced the repair of cyclobutane pyrimidine dimers and reduced the levels of hydrogen peroxide induced by UV radiation. These effects are expected to reduce genomic instability and mutagenesis.

  18. Endothelin signalling in iridophore development and stripe pattern formation of zebrafish

    PubMed Central

    Krauss, Jana; Frohnhöfer, Hans Georg; Walderich, Brigitte; Maischein, Hans-Martin; Weiler, Christian; Irion, Uwe; Nüsslein-Volhard, Christiane

    2014-01-01

    ABSTRACT Colour patterns of adult fish are composed of several different types of pigment cells distributing in the skin during juvenile development. The zebrafish, Danio rerio, displays a striking pattern of dark stripes of melanophores interspersed with light stripes of xanthophores. A third cell type, silvery iridophores, contributes to both stripes and plays a crucial role in adult pigment pattern formation. Several mutants deficient in iridophore development display similar adult phenotypes with reduced numbers of melanophores and defects in stripe formation. This indicates a supporting role of iridophores for melanophore development and maintenance. One of these mutants, rose (rse), encodes the Endothelin receptor b1a. Here we describe a new mutant in zebrafish, karneol (kar), which has a phenotype similar to weak alleles of rse with a reduction in iridophore numbers and defects of adult pigment patterning. We show that, unlike rse, kar is not required in iridophores. The gene defective in the kar mutant codes for an endothelin-converting enzyme, Ece2, which activates endothelin ligands by proteolytic cleavage. By morpholino-mediated knockdown, we identify Endothelin 3b (Edn3b) as the ligand for endothelin receptor signalling in larval iridophores. Thus, Endothelin signalling is involved in iridophore development, proliferation and stripe morphogenesis in larvae as well as adult zebrafish. In mammals the pathway is required for melanocyte development; therefore, our results indicate a previously unrecognized close evolutionary relationship between iridophores in zebrafish and melanocytes in mammals. PMID:24857848

  19. Marine and soil derived natural products: a new source of novel cardiovascular protective agents targeting the endothelin system.

    PubMed

    Planes, Nadir; Caballero-George, Catherina

    2015-06-01

    Inhibition of the endothelin system is a recognized therapeutic approach for treating complex cardiovascular diseases. The search for natural inhibitors of the endothelin system has focused mainly on land, with recent, emerging data suggesting the underestimated potential of marine microorganisms for producing leads with cardioprotective potential. The present work reviews natural products identified as inhibitors of the endothelin system, their origin, their mechanism of action, and their ecological significance.

  20. Endothelin-1 and -3 modulate the neuronal norepinephrine transporter through multiple signalling pathways in the rat posterior hypothalamus.

    PubMed

    Hope, Sandra I; Nabhen, Sabrina L; Soria, Celeste; Bianciotti, Liliana G; Vatta, Marcelo S

    2010-10-01

    We have previously reported that endothelin-1 and -3 modulate different steps of noradrenergic transmission in the hypothalamus. We showed that endothelins modify neuronal norepinephrine transport activity through the regulation of the kinetic constant and internalization. In the present work we sought to define the endothelin receptors and intracellular mechanisms involved in the down-regulation of neuronal norepinephrine uptake induced by endothelin-1 and -3 in the rat posterior hypothalamic region. Results showed that endothelin-1 reduced norepinephrine uptake through ET(B) receptors, whereas endothelin-3 through a non-conventional or atypical endothelin receptor. In both cases, the effect on norepinephrine uptake was coupled to protein kinase A and C as well as nitric oxide pathways. However, neither protein kinase G nor intracellular or extracellular calcium and calcium/calmodulin-dependent protein kinase II were involved. In addition, the same intracellular mechanisms participated in the reduction of nisoxetine binding (norepinephrine transporter internalization index) induced by both endothelins. Present findings reveal the underlying mechanisms involved in the regulation of the neuronal norepinephrine transporter by endothelins and further support the role of these peptides in the modulation of noradrenergic transmission at the presynaptic nerve endings in the posterior hypothalamus.

  1. Reduced contribution of endothelin to the regulation of systemic and pulmonary vascular tone in severe familial hypercholesterolaemia.

    PubMed

    Bender, Shawn B; de Beer, Vincent J; Tharp, Darla L; van Deel, Elza D; Bowles, Douglas K; Duncker, Dirk J; Laughlin, M Harold; Merkus, Daphne

    2014-04-15

    Vascular dysfunction has been associated with familial hypercholesterolaemia (FH), a severe form of hyperlipidaemia. We recently demonstrated that swine with FH exhibit reduced exercise-induced systemic, but not pulmonary, vasodilatation involving reduced nitric oxide (NO) bioavailability. Since NO normally limits endothelin (ET) action, we examined the hypothesis that reduced systemic vasodilatation during exercise in FH swine results from increased ET-mediated vasoconstriction. Systemic and pulmonary vascular responses to exercise were examined in chronically instrumented normal and FH swine in the absence and presence of the ETA/B receptor antagonist tezosentan. Intrinsic reactivity to ET was further assessed in skeletal muscle arterioles. FH swine exhibited ∼9-fold elevation in total plasma cholesterol versus normal swine. Similar to our recent findings, systemic, not pulmonary, vasodilatation during exercise was reduced in FH swine. Blockade of ET receptors caused marked systemic vasodilatation at rest and during exercise in normal swine that was significantly reduced in FH swine. The reduced role of ET in FH swine in vivo was not the result of decreased arteriolar ET responsiveness, as responsiveness was increased in isolated arterioles. Smooth muscle ET receptor protein content was unaltered by FH. However, circulating plasma ET levels were reduced in FH swine. ET receptor antagonism caused pulmonary vasodilatation at rest and during exercise in normal, but not FH, swine. Therefore, contrary to our hypothesis, FH swine exhibit a generalised reduction in the role of ET in regulating vascular tone in vivo probably resulting from reduced ET production. This may represent a unique vascular consequence of severe familial hypercholesterolaemia.

  2. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease

    PubMed Central

    Plotkin, Horacio

    2016-01-01

    Inhibition of the renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in treatment of chronic kidney diseases (CKD). However, reversal of the course of CKD or at least long-term stabilization of renal function are often difficult to achieve, and many patients still progress to end-stage renal disease. New treatments are needed to enhance protective actions of RAAS inhibitors (RAASis), such as angiotensin-converting enzyme (ACE) inhibitors (ACEIs) or angiotensin receptor blockers (ARBs), and improve prognosis in CKD patients. Inhibition of endothelin (ET) system in combination with established RAASis may represent such an approach. There are complex interactions between both systems and similarities in their renal physiological and pathophysiological actions that provide theoretical rationale for combined inhibition. This view is supported by some experimental studies in models of both diabetic and nondiabetic CKD showing that a combination of RAASis with ET receptor antagonists (ERAs) ameliorate proteinuria, renal structural changes, and molecular markers of glomerulosclerosis, renal fibrosis, or inflammation more effectively than RAASis or ERAs alone. Practically all clinical studies exploring the effects of RAASis and ERAs combination in nephroprotection have thus far applied add-on designs, in which an ERA is added to baseline treatment with ACEIs or ARBs. These studies, conducted mostly in patients with diabetic nephropathy, have shown that ERAs effectively reduce residual proteinuria in patients with baseline RAASis treatment. Long-term studies are currently being conducted to determine whether promising antiproteinuric effects of the dual blockade will be translated in long-term nephroprotection with acceptable safety profile. PMID:27009050

  3. Effects of doxazosin and atenolol on circulating endothelin-1 and von Willebrand factor in hypertensive middle-aged men.

    PubMed

    Seljeflot, I; Arnesen, H; Andersen, P; Aspelin, T; Kierulf, P

    1999-10-01

    Elevated levels of endothelin-1 (ET-1) and von Willebrand factor (vWF), both markers indicative of endothelial function, are associated with hypertension. In a randomized open study we investigated the effect of antihypertensive treatment with the alpha-blocker doxazosin (n = 23) or the beta-blocker atenolol (n = 22) for 22 weeks on circulating levels of ET-1 and vWF in middle-aged men with essential hypertension. Blood pressure reduction was satisfactorily achieved with both drugs, although the decrease in the atenolol group was larger than that in the doxazosin group. A reduction in the levels of vWF occurred in both groups, being more pronounced in the alpha-blocker group compared with the decrease on beta blockers, p = 0.004 and p = 0.056, respectively. In the alpha-blocker group, there was a significant correlation (r = 0.50, p = 0.022) between the reduction in diastolic blood pressure and the decline in vWF. A highly significant decrease in plasma ET-1 was obtained during beta blockade (p = 0.007), whereas no significant change occurred within the alpha-blocker group. There was, however, no correlation between the decrease in blood pressure and the reduction in ET-1. The different favorable effects of alpha and beta blockers on endothelial function expressed as vWF and ET-1, could indicate that the effects are probably related not only to the blood pressure per se, but also to the different pharmacologic mechanisms of the drugs.

  4. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats.

    PubMed

    Gohar, Eman Y; Speed, Joshua S; Kasztan, Malgorzata; Jin, Chunhua; Pollock, David M

    2016-08-01

    Renal endothelin-1 (ET-1) and purinergic signaling systems regulate Na(+) reabsorption in the renal medulla. A link between the renal ET-1 and purinergic systems was demonstrated in vitro, however, the in vivo interaction between these systems has not been defined. To test whether renal medullary activation of purinergic (P2) receptors promotes ET-dependent natriuresis, we determined the effect of increased medullary NaCl loading on Na(+) excretion and inner medullary ET-1 mRNA expression in anesthetized adult male Sprague-Dawley rats in the presence and absence of purinergic receptor antagonism. Isosmotic saline (NaCl; 284 mosmol/kgH2O) was infused into the medullary interstitium (500 μl/h) during a 30-min baseline urine collection period, followed by isosmotic or hyperosmotic saline (1,800 mosmol/kgH2O) for two further 30-min urine collection periods. Na(+) excretion was significantly increased during intramedullary infusion of hyperosmotic saline. Compared with isosmotic saline, hyperosmotic saline infused into the renal medulla caused significant increases in inner medullary ET-1 mRNA expression. Renal intramedullary infusion of the P2 receptor antagonist suramin inhibited the increase in Na(+) excretion and inner medullary ET-1 mRNA expression induced by NaCl loading in the renal medulla. Activation of medullary P2Y2/4 receptors by infusion of UTP increased urinary Na(+) excretion. Combined ETA and ETB receptor blockade abolished the natriuretic response to intramedullary infusion of UTP. These data demonstrate that activation of medullary P2 receptors promotes ET-dependent natriuresis in male rats, suggesting that the renal ET-1 and purinergic signaling systems interact to efficiently facilitate excretion of a NaCl load.

  5. Gene silencing of endothelial von Willebrand Factor attenuates angiotensin II-induced endothelin-1 expression in porcine aortic endothelial cells

    PubMed Central

    Dushpanova, Anar; Agostini, Silvia; Ciofini, Enrica; Cabiati, Manuela; Casieri, Valentina; Matteucci, Marco; Del Ry, Silvia; Clerico, Aldo; Berti, Sergio; Lionetti, Vincenzo

    2016-01-01

    Expression of endothelin (ET)-1 is increased in endothelial cells exposed to angiotensin II (Ang II), leading to endothelial dysfunction and cardiovascular disorders. Since von Willebrand Factor (vWF) blockade improves endothelial function in coronary patients, we hypothesized that targeting endothelial vWF with short interference RNA (siRNA) prevents Ang II-induced ET-1 upregulation. Nearly 65 ± 2% silencing of vWF in porcine aortic endothelial cells (PAOECs) was achieved with vWF-specific siRNA without affecting cell viability and growth. While showing ET-1 similar to wild type cells at rest, vWF-silenced cells did not present ET-1 upregulation during exposure to Ang II (100 nM/24 h), preserving levels of endothelial nitric oxide synthase activity similar to wild type. vWF silencing prevented AngII-induced increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity and superoxide anion (O2−) levels, known triggers of ET-1 expression. Moreover, no increase in O2− or ET-1 levels was found in silenced cells treated with AngII or NOX-agonist phorbol ester (PMA 5 nM/48 h). Finally, vWF was required for overexpression of NOX4 and NOX2 in response to AngII and PMA. In conclusion, endothelial vWF knockdown prevented Ang II-induced ET-1 upregulation through attenuation of NOX-mediated O2− production. Our findings reveal a new role of vWF in preventing of Ang II-induced endothelial dysfunction. PMID:27443965

  6. Cigarette smoke exposure up-regulates endothelin receptor B in human pulmonary artery endothelial cells: molecular and functional consequences

    PubMed Central

    Milara, J; Ortiz, JL; Juan, G; Guijarro, R; Almudever, P; Martorell, M; Morcillo, EJ; Cortijo, J

    2010-01-01

    BACKGROUND AND PURPOSE Pulmonary arteries from smokers and chronic obstructive pulmonary disease patients show abnormal endothelium-dependent vascular reactivity. We studied the effect of cigarette smoke extract (CSE) on endothelin receptor B (ETB) expression in human pulmonary artery endothelial cells (HPAECs) and its role in endothelial dysfunction. EXPERIMENTAL APPROACH ETB receptor expression was measured by real time RT-PCR, Western blot and immunofluorescence. Cell contraction, intracellular Ca2+, F/G-actin, RhoA activity, myosin light chain phosphorylation, ET, NO, thromboxane (Tx)A2 and reactive oxygen species (ROS) were measured by traction microscopy, fluorescence microscopy, phalloidin fluorescence, colorimetric assay, Western blot, elisa and DCFDA fluorescence respectively. KEY RESULTS Cigarette smoke extract dose-dependently increased ETB receptor expression in HPAECs after 24 h incubation. CSE-induced ETB expression was attenuated by bosentan, the ETB receptor antagonist BQ788, the Rho kinase antagonist Y27632 and the antioxidant N-acetylcysteine. A monoclonal antibody to ET-1 prevented CSE-induced ETB receptor overexpression. Twenty-four hour exposure to ET-1 dose-dependently increased ETB receptor expression, mimicking the effect of CSE. CSE-induced ETB receptor overexpression caused greater cell contraction; increased intracellular Ca2+; increased F/G-actin and RhoA activity; increased myosin light chain phosphorylation; augmented TxA2 and ROS production; and decreased NO after acute ET-1 (10 nM). These effects were attenuated by bosentan, BQ788, Y27632 and N-acetylcysteine. CONCLUSIONS AND IMPLICATION Cigarette smoke extract induced ETB receptor overexpression by a feed forward mechanism mediated partly by ET release, promoting HPAEC dysfunction and attenuated by ETB receptor blockade, Rho kinase and ROS inhibition. These results provide support for the use of bosentan in CS-related endothelial dysfunction. PMID:20698855

  7. Dual inhibition of renin-angiotensin-aldosterone system and endothelin-1 in treatment of chronic kidney disease.

    PubMed

    Komers, Radko; Plotkin, Horacio

    2016-05-15

    Inhibition of the renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in treatment of chronic kidney diseases (CKD). However, reversal of the course of CKD or at least long-term stabilization of renal function are often difficult to achieve, and many patients still progress to end-stage renal disease. New treatments are needed to enhance protective actions of RAAS inhibitors (RAASis), such as angiotensin-converting enzyme (ACE) inhibitors (ACEIs) or angiotensin receptor blockers (ARBs), and improve prognosis in CKD patients. Inhibition of endothelin (ET) system in combination with established RAASis may represent such an approach. There are complex interactions between both systems and similarities in their renal physiological and pathophysiological actions that provide theoretical rationale for combined inhibition. This view is supported by some experimental studies in models of both diabetic and nondiabetic CKD showing that a combination of RAASis with ET receptor antagonists (ERAs) ameliorate proteinuria, renal structural changes, and molecular markers of glomerulosclerosis, renal fibrosis, or inflammation more effectively than RAASis or ERAs alone. Practically all clinical studies exploring the effects of RAASis and ERAs combination in nephroprotection have thus far applied add-on designs, in which an ERA is added to baseline treatment with ACEIs or ARBs. These studies, conducted mostly in patients with diabetic nephropathy, have shown that ERAs effectively reduce residual proteinuria in patients with baseline RAASis treatment. Long-term studies are currently being conducted to determine whether promising antiproteinuric effects of the dual blockade will be translated in long-term nephroprotection with acceptable safety profile. PMID:27009050

  8. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases.

    PubMed

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-01-01

    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation.

  9. Therapeutic Opportunities for Caffeine and A2A Receptor Antagonists in Retinal Diseases.

    PubMed

    Boia, Raquel; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-01-01

    Caffeine, the major component of coffee, is the most consumed psychostimulant in the world. Caffeine is an adenosine analog and acts as a nonselective adenosine receptor antagonist. The majority of the effects of caffeine are mainly mediated by the blockade of adenosine receptors, and the proved neuroprotective effects of caffeine in brain disorders have been mimicked by the blockade of adenosine A2A receptor (A2AR). A growing body of evidence demonstrates that microglia-mediated neuroinflammation plays a key role in the pathophysiology of brain and retinal diseases. Moreover, the control of microglia reactivity by blocking A2AR has been proposed to be the mechanism underlying the observed protective effects of caffeine. Hence, it is conceivable that caffeine and A2AR antagonists offer therapeutic value for the treatment of retinal diseases, mainly those involving microglia-mediated neuroinflammation. PMID:26959995

  10. Elevated Plasma Endothelin-1 and Pulmonary Arterial Pressure in Children Exposed to Air Pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J.; Reed, William

    2007-01-01

    Background Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. Objectives The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O3 that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. Methods We conducted a study of 81 children, 7.9 ± 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O3 levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Results Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 μm in aerodynamic diameter (PM2.5) before endothelin-1 measurement (p = 0.03). Conclusions Chronic exposure of children to PM2.5 is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure. PMID:17687455

  11. A Novel Bidirectional Interaction between endothelin-3 and Retinoic Acid in Rat Enteric Nervous System Precursors

    PubMed Central

    Gisser, Jonathan M.; Cohen, Ariella R.; Yin, Han; Gariepy, Cheryl E.

    2013-01-01

    Background Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung’s aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. Methods Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. Results Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. Conclusions A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations. PMID:24040226

  12. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.

  13. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism. PMID:25910812

  14. Photonic nonlinearities via quantum Zeno blockade.

    PubMed

    Sun, Yu-Zhu; Huang, Yu-Ping; Kumar, Prem

    2013-05-31

    Realizing optical-nonlinear effects at a single-photon level is a highly desirable but also extremely challenging task, because of both fundamental and practical difficulties. We present an avenue to surmounting these difficulties by exploiting quantum Zeno blockade in nonlinear optical systems. Considering specifically a lithium-niobate microresonator, we find that a deterministic phase gate can be realized between single photons with near-unity fidelity. Supported by established techniques for fabricating and operating such devices, our approach can provide an enabling tool for all-optical applications in both classical and quantum domains.

  15. Immune checkpoint blockade in lung cancer.

    PubMed

    Somasundaram, Aswin; Socinski, Mark A; Villaruz, Liza C

    2016-08-01

    Immunotherapy has revolutionized the therapeutic landscape of advanced lung cancer. The adaptive immune system has developed a sophisticated method of tumor growth control, but T-cell activation is regulated by various checkpoints. Blockade of the immune checkpoints with therapies targeting the PD-1 pathway, such as nivolumab and pembrolizumab, has been validated as a therapeutic approach in non-small cell lung cancer. Newer therapies and novel combinations are also being evaluated, and the use of biomarkers in conjunction with these drugs is an area of active investigation. This review summarizes the current evidence for the efficacy and safety of the above approaches in the treatment of lung cancer. PMID:27585231

  16. Pyramidal Neurons in Rat Prefrontal Cortex Projecting to Ventral Tegmental Area and Dorsal Raphe Nucleus Express 5-HT2A Receptors

    PubMed Central

    Vázquez-Borsetti, Pablo; Cortés, Roser

    2009-01-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotics modulate cortico-limbic circuits mainly through subcortical D2 receptor blockade, whereas second generation (atypical) antipsychotics preferentially target cortical 5-HT receptors. Anatomical and functional evidence supports a PFC-based control of the brainstem monoaminergic nuclei. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of PFC pyramidal neurons projecting to the dorsal raphe (DR) and/or ventral tegmental area (VTA) express 5-HT2A receptors. Cholera-toxin B application into the DR and the VTA retrogradely labeled projection neurons in the medial PFC (mPFC) and in orbitofrontal cortex (OFC). In situ hybridization of 5-HT2A receptor mRNA in the same tissue sections labeled a large neuronal population in mPFC and OFC. The percentage of DR-projecting neurons expressing 5-HT2A receptor mRNA was ∼60% in mPFC and ∼75% in OFC (n = 3). Equivalent values for VTA-projecting neurons were ∼55% in both mPFC and ventral OFC. Thus, 5-HT2A receptor activation/blockade in PFC may have downstream effects on dopaminergic and serotonergic systems via direct descending pathways. Atypical antipsychotics may distally modulate monoaminergic cells through PFC 5-HT2A receptor blockade, presumably decreasing the activity of neurons receiving direct cortical inputs. PMID:19029064

  17. Antiallodynic effect through spinal endothelin-B receptor antagonism in rat models of complex regional pain syndrome.

    PubMed

    Kim, Yeo Ok; Kim, In Ji; Yoon, Myung Ha

    2015-01-01

    Complex regional pain syndrome (CRPS) is a very complicated chronic pain disorder that has been classified into two types (I and II). Endothelin (ET) receptors are involved in pain conditions at the spinal level. We investigated the role of spinal ET receptors in CRPS. Chronic post-ischemia pain (CPIP) was induced in male Sprague-Dawley rats as a model for CRPS-I by placing a tourniquet (O-ring) at the ankle joint for 3h, and removing it to allow reperfusion. Ligation of L5 and L6 spinal nerves to induce neuropathic pain was performed as a model for CRPS-II. After O-ring application and spinal nerve ligation, the paw withdrawal threshold was significantly decreased at injured sites. Intrathecal administration of the selective ET-B receptor antagonist BQ 788 dose-dependently increased the withdrawal threshold in both CRPS-I and CRPS-II. In contrast, ET-A receptor antagonist BQ 123 did not affect the withdrawal threshold in either CRPS type. The ET-1 levels of plasma and spinal cord increased in both CRPS types. Intrathecal BQ 788 decreased the spinal ET-1 level. These results suggest that ET-1 is involved in the development of mechanical allodynia in CRPS. Furthermore, the ET-B receptor appears to be involved in spinal cord-related CRPS. PMID:25451723

  18. Pulmonary hypertension secondary to left ventricular dysfunction: the role of nitric oxide and endothelin-1 in the control of pulmonary vascular tone.

    PubMed

    Deuchar, Graeme A; Docherty, Andrew; MacLean, Margaret R; Hicks, Martin N

    2002-02-01

    1. Using an in vivo model of pulmonary hypertension (PHT) secondary to left ventricular dysfunction (LVD), the pulmonary arterial response to the nitric oxide synthase (NOS) blocker L-NAME (30 micromol.min(-1) i.v.) and the subsequent responses to cumulatively administered endothelin-1 (ET-1) (0.001 -- 4 nmol.kg(-1) i.v.) or big ET-1 (0.1 -- 2.0 nmol.kg(-1) i.v.) were studied. Additionally, the effect of the non-selective ET-1 receptor antagonist, SB209670, was investigated. 2. Eight weeks after coronary artery ligation or sham operation, rabbits demonstrated increased mean pulmonary arterial pressure (PAP) accompanied by right ventricular hypertrophy. 3. Blockade of NOS caused a greater increase in basal PAP (increased by 7.7 +/- 1.1 mmHg c.f. 3.8 +/- 1.0 mmHg in controls, P<0.05) and uncovered a greater pulmonary pressor response to exogenous ET-1 in rabbits with PHT (increased by 10.2 +/- 2.3 mmHg c.f. 4.9 +/- 1.0 mmHg in controls, P<0.05). 4. Big ET-1 evoked a pulmonary pressor effect, in both groups of rabbits, that was increased following blockade of NOS and was more potent in rabbits with PHT. 5. The non-selective ET-1 receptor antagonist, SB209670, reduced basal PAP (from 16.9 mmHg to 15.9 mmHg, P < 0.05) in rabbits with PHT and blocked the response to ET-1 in the presence of L-NAME. 6. In conclusion, the results demonstrate that basal NO activity masks a pulmonary pressor response to exogenously administered ET-1. An increased responsiveness to ET-1 was shown in the pulmonary arterial bed of rabbits with PHT secondary to LVD, implicating a pathophysiological role for ET-1 in this model.

  19. Endothelin-1: a key pathological factor in pre-eclampsia?

    PubMed

    Jain, Arjun

    2012-11-01

    Endothelin (ET)-1 has been implicated in a diverse range of signalling events in a wide variety of target tissues. Given its potent vasoactive function and the prevalence of hypertension in pre-eclampsia, there has been extensive research on the role of ET-1 in this disorder. Indeed, ET-1 has been suggested to contribute to hypertension in pre-eclampsia. Recently, ET-1 has also been implicated in the induction of both oxidative stress and endoplasmic reticulum stress in pre-eclampsia; each of which has been proposed to contribute to many of the clinical manifestations of this disorder. ET-1 has been shown to activate key signalling molecules that lead to induction of these stress pathways. The use of ET-receptor antagonists could block oxidative and endoplasmic reticulum stress. Hence, further research into the role of ET-1 in pre-eclampsia may lead to the development of possible strategies to circumvent these stress pathways and the associated pathology that occurs in pre-eclampsia. Endothelin (ET)-1 has been implicated in a diverse range of signalling events in a wide variety of target tissues. Given its potent vasoactive function and the prevalence of hypertension in pre-eclampsia, there has been extensive research on the role of ET-1 in this disorder. Indeed, ET-1 has been suggested to contribute to hypertension in pre-eclampsia. Recently, ET-1 has also been implicated in the induction of both oxidative stress and endoplasmic reticulum stress in pre-eclampsia, each of which has been proposed to contribute to many of the clinical manifestations of this disorder. ET-1 has been shown to activate key signalling molecules that lead to induction of these stress pathways. The use of ET-receptor antagonists could block oxidative and endoplasmic reticulum stress. Hence, further research into the role of ET-1 in pre-eclampsia may lead to the development of possible strategies to circumvent these stress pathways and the associated pathology that occurs in pre

  20. Endothelin Receptor Subtype Distribution Predisposes Coronary Arteries to Damage

    PubMed Central

    Louden, Calvert S.; Nambi, Ponnal; Pullen, Mark A.; Thomas, Roberta A.; Tierney, Lauren A.; Solleveld, Henk A.; Schwartz, Lester W.

    2000-01-01

    Several vasoactive drugs that lower blood pressure and increase heart rate induce regional cardiotoxicity in the dog, most frequently of right coronary arteries and right atrium. The basis for this selective damage is thought to result from local changes in vascular tone and blood flow. Administration of an endothelin receptor antagonist (ETRA, SB 209670) to dogs induced damage most frequent and severe in the right coronary artery and right atrium. Because site predisposition may correlate with distribution of vasoactive receptors, the objectives of this study were to map endothelin (ET) receptor distribution and density within regions of dog heart using both gene (mRNA) and protein expression endpoints for dog ETA and ETB receptors, and, additionally, correlate ET receptor subtype density with regional cardiac blood flow. A 10- to 15-mmHg reduction in mean arterial pressure with a concomitant increase in heart rate (10–20%), a six- and twofold increase in regional blood flow to the right and left atrium, respectively, and acute hemorrhage, medial necrosis, and inflammation were observed in the right coronary arteries and arteries of the right atrium after ETRA infusion for 5 days. Radioligand protein binding to quantify both ET receptors in normal dog heart indicated a twofold greater density of ET receptors in atrial regions versus ventricular regions. Importantly, ET receptor density in coronary arteries was markedly (about five- to sixfold) increased above that in atrial or ventricular tissues. ET receptor subtype characterization indicated ETB receptors were three times more prevalent in right coronary arteries compared to left coronary arteries and in situ hybridization confirmed localization of ETB in vascular smooth muscle. ETA receptor density was comparable in right and left coronary arteries. Quantitative real-time polymerase chain reaction for ETA and ETB receptor mRNA transcripts supported the site prevalence for message distribution. Consequently

  1. Effects of increased white blood cell count on endothelin-induced vasoconstriction in healthy subjects.

    PubMed

    Told, Reinhard; Fuchsjäger-Mayrl, Gabriele; Wolzt, Michael; Schmetterer, Leopold; Garhöfer, Gerhard

    2012-04-01

    It is known that administration of granulocyte-colony stimulating factor is followed by an increase of white blood cell count. There is evidence from other vascular beds that an increase in white blood cell count impairs blood flow regulation especially in the microcirculation. Whether this also holds true for the ocular circulation is unknown. In the following study we investigated whether an increase in white blood cell count alters the endothelin-1 induced vasoconstriction in humans. Neither granulocyte-colony stimulating factor nor endothelin-1 had any consistent effect on blood pressure, pulse rate or intraocular pressure. Administration of granulocyte-colony stimulating factor induced a pronounced increase in retinal white blood cell density (p < 0.01). Administration of endothelin-1 decreased choroidal (p < 0.01) and retinal blood flow (p < 0.01). The change in choroidal blood flow in response to endothelin-1 was not altered by pre-treatment with granulocyte-colony stimulating factor. By contrast, the decrease in retinal blood flow was more pronounced during an increase in white blood cell count (p = 0.02) when compared to placebo. Our data indicates that during pronounced vasoconstriction, as induced by administration of endothelin-1, vascular regulation can be altered by the number of circulating white blood cells. Whether this effect is caused by an interaction of red and white blood cells in the microcirculation or a yet unknown mechanism needs further investigation.

  2. Effects of sustained proNGF blockade on attentional capacities in aged rats with compromised cholinergic system.

    PubMed

    Yegla, B; Parikh, V

    2014-03-01

    Disruption in nerve growth factor (NGF) signaling via tropomyosin-related kinase A (trkA) receptors compromises the integrity of the basal forebrain (BF) cholinergic system, yielding cognitive, specifically attentional, impairments in Alzheimer's disease (AD). Although normal aging is considered a risk factor for AD, the mechanisms underlying the selective vulnerability of the aging cholinergic system to trkA disruption is not clear. The levels of proNGF, a proneurotrophin that possesses higher affinity for p75 receptors, increase in aging. The present study was designed to test the hypothesis that cholinergic and attentional dysfunction in aged rats with reduced BF trkA receptors occurs due to the overactivation of endogenous proNGF signaling. We employed a viral vector that produced trkA shRNA to suppress trkA receptors in the corticopetal cholinergic neurons of aged rats. BF trkA suppression impaired animals' performance on signal trials in both the sustained attention task (SAT) and the cognitively taxing distractor version of SAT (dSAT) and these deficits were normalized by chronic intracerebroventricular administration of proNGF antibody. Moreover, depolarization-evoked acetylcholine (ACh) release and the density of cortical cholinergic fibers were partially restored in these animals. However, SAT/dSAT scores reflecting overall performance did not improve following proNGF blockade in trkA knockdown rats due to impaired performance in non-signal trials. Sustained proNGF blockade alone did not alter baseline attentional performance but produced moderate impairments during challenging conditions. Collectively, our findings indicate that barring proNGF-p75 signaling may exert some beneficial effects on attentional capacities specifically when BF trkA signaling is abrogated. However, endogenous proNGF may also possess neurotrophic effects and blockade of this proneurotrophin may not completely ameliorate attentional impairments in AD and potentially hinder

  3. Endothelin Receptors and Their Antagonists☆☆☆

    PubMed Central

    Maguire, Janet J.; Davenport, Anthony P.

    2015-01-01

    Summary All three members of the endothelin (ET) family of peptides, ET-1, ET-2, and ET-3, are expressed in the human kidney, with ET-1 being the predominant isoform. ET-1 and ET-2 bind to two G-protein–coupled receptors, ETA and ETB, whereas at physiological concentrations ET-3 has little affinity for the ETA receptor. The human kidney is unusual among the peripheral organs in expressing a high density of ETB. The renal vascular endothelium only expresses the ETB subtype and ET-1 acts in an autocrine or paracrine manner to release vasodilators. Endothelial ETB in kidney, as well as liver and lungs, also has a critical role in scavenging ET-1 from the plasma. The third major function is ET-1 activation of ETB in in the nephron to reduce salt and water re-absorption. In contrast, ETA predominate on smooth muscle, causing vasoconstriction and mediating many of the pathophysiological actions of ET-1. The role of the two receptors has been delineated using highly selective ETA (BQ123, TAK-044) and ETB (BQ788) peptide antagonists. Nonpeptide antagonists, bosentan, macitentan, and ambrisentan, that are either mixed ETA/ETB antagonists or display ETA selectivity, have been approved for clinical use but to date are limited to pulmonary hypertension. Ambrisentan is in clinical trials in patients with type 2 diabetic nephropathy. This review summarizes ET-receptor antagonism in the human kidney, and considers the relative merits of selective versus nonselective antagonism in renal disease. PMID:25966344

  4. Endothelin-converting enzymes and related metalloproteases in Alzheimer's disease.

    PubMed

    Pacheco-Quinto, Javier; Herdt, Aimee; Eckman, Christopher B; Eckman, Elizabeth A

    2013-01-01

    The efficient clearance of amyloid-β (Aβ) is essential to modulate levels of the peptide in the brain and to prevent it from accumulating in senile plaques, a hallmark of Alzheimer's disease (AD) pathology.We and others have shown that failure in Aβ catabolism can produce elevations in Aβ concentration similar to those observed in familial forms of AD. Based on the available evidence, it remains plausible that in late-onset AD, disturbances in the activity of Aβ degrading enzymes could induce Aβ accumulation, and that this increase could result in AD pathology. The following review presents a historical perspective of the parallel discovery of three vasopeptidases (neprilysin and endothelin-converting enzymes-1 and -2) as important Aβ degrading enzymes. The recognition of the role of these vasopeptidases in Aβ degradation, beyond bringing to light a possible explanation of how cardiovascular risk factors may influence AD risk, highlights a possible risk of the use of inhibitors of these enzymes for other clinical indications such as hypertension. We will discuss in detail the experiments conducted to assess the impact of vasopeptidase deficiency (through pharmacological inhibition or genetic mutation) on Aβ accumulation, as well as the cooperative effect of multiple Aβ degrading enzymes to regulate the concentration of the peptide at multiple sites, both intracellular and extracellular, throughout the brain.

  5. Cultured human keratinocytes synthesize and secrete endothelin-1.

    PubMed

    Yohn, J J; Morelli, J G; Walchak, S J; Rundell, K B; Norris, D A; Zamora, M R

    1993-01-01

    The human epidermal-melanin unit exists as a complex interplay of cell-cell interactions. Melanocytes synthesize melanin and transfer it to the surrounding keratinocytes, which, in turn, produce factors that affect melanocyte homeostasis, growth, and melanization. Endothelin-1 (ET-1), a vasoconstrictor peptide produced by endothelial cells, has recently been shown to stimulate human melanocyte proliferation and tyrosinase activity. To investigate the possibility that keratinocytes synthesize and secrete ET-1, we grew human keratinocytes in a defined serum-free medium and measured ET-1 levels in the keratinocytes and the keratinocyte-conditioned medium. Northern analysis of keratinocyte total RNA also was performed. We found that human keratinocytes express preproET-1 mRNA and translate the message to ET-1 protein, which is secreted into the keratinocyte medium. Human keratinocytes produced ET-1 in a time-dependent manner with total production of 20.1 +/- 1.1 pg ET-1/10(6) cells at 24 h (n = 7). Although total ET-1 production (secreted plus cell-associated ET-1) was similar, the proportion of secreted versus cell-associated ET-1 varied widely among the different donors. We have found that human keratinocytes synthesize and secrete ET-1 in vitro. From these data we believe that the keratinocyte could be an in vivo epidermal source of this melanocyte growth and pigmentation factor.

  6. Role of endothelin-1 in hyperpigmentation in seborrhoeic keratosis.

    PubMed

    Teraki, E; Tajima, S; Manaka, I; Kawashima, M; Miyagishi, M; Imokawa, G

    1996-12-01

    Seborrhoeic keratosis (SK) is a benign epidermal tumour with a varying degree of pigmentation. We have recently demonstrated that endothelin-1 (ET-1) is a strong keratinocyte-derived mitogen and melanogen for human melanocytes in UVB-induced melanosis. To clarify the role of ET-1 in hyperpigmentation in SK, we have used immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) to see whether the production of ET-1 is accentuated in SK. Immunohistochemical analysis in SK (n = 7; acanthotic and deeply pigmented types) revealed marked immunostaining with anti-ET-1 in almost all basaloid and basal cells as compared with definite staining confined to basal cells in the perilesional normal controls. In parallel, RT-PCR of ET-1 mRNA demonstrated accentuated expression of ET-1 transcript in SK (n = 4) in comparison with that in the perilesional normal controls, accompanied by a similarly accentuated expression of tyrosinase mRNA. These findings suggest that ET-1 plays a part in the hyperpigmentation seen in SK.

  7. Regulation of Blood Pressure and Salt Homeostasis by Endothelin

    PubMed Central

    KOHAN, DONALD E.; ROSSI, NOREEN F.; INSCHO, EDWARD W.; POLLOCK, DAVID M.

    2011-01-01

    Endothelin (ET) peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and body Na homeostasis, exerting these effects through alterations in a host of circulating and local factors. Hormonal systems affected by ET include natriuretic peptides, aldosterone, catecholamines, and angiotensin. ET also directly regulates cardiac output, central and peripheral nervous system activity, renal Na and water excretion, systemic vascular resistance, and venous capacitance. ET regulation of these systems is often complex, sometimes involving opposing actions depending on which receptor isoform is activated, which cells are affected, and what other prevailing factors exist. A detailed understanding of this system is important; disordered regulation of the ET system is strongly associated with hypertension and dysregulated extracellular fluid volume homeostasis. In addition, ET receptor antagonists are being increasingly used for the treatment of a variety of diseases; while demonstrating benefit, these agents also have adverse effects on fluid retention that may substantially limit their clinical utility. This review provides a detailed analysis of how the ET system is involved in the control of blood pressure and Na homeostasis, focusing primarily on physiological regulation with some discussion of the role of the ET system in hypertension. PMID:21248162

  8. Endothelin-1 enhances the melanogenesis via MITF-GPNMB pathway

    PubMed Central

    Zhang, Ping; Liu, Wei; Yuan, Xiaoying; Li, Dongguang; Gu, Weijie; Gao, Tianwen

    2013-01-01

    Endothelin-1 (ET-1) plays an indispensable role in epidermal pigmentation in hyperpigmentary disorders due to a central role in melanogenesis. Nevertheless, precise mechanism involved in ET-1-induced hyperpigmentation is still undefined. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB) is a key element in melanosome formation. Therefore, we speculated that GPNMB was correlated with ET-1-induced pigmentation. After culturing with ET-1, melanin synthesis was significantly up-regulated, accompanying with increased expression of GPNMB and microphthalmia-associated transcription factor (MITF). Total number of melanosomes and melanin synthesis were sharply reduced via GPNMB-siRNA transfection, indicating ET-1-induced pigmentation by GPNMB-dependent manner. Furthermore, MITFsiRNA transfection strikingly inhibited GPNMB expression and the melanogenesis, and this suppression failed to be alleviated by ET-1 stimulation. All of these results demonstrated that ET-1 can trigger melanogenesis via the MITF-regulated GPNMB pathway. Taken together, these findings will provide a new explanation of how ET-1 induces hyperpigmentation, and possibly supply a new strategy for cosmetic studies. [BMB Reports 2013; 46(7): 364-369] PMID:23884103

  9. Endothelin-1-induced priming to capsaicin in young animals.

    PubMed

    Smith, Terika; Beasley, Sarah; Smith, Sherika; Mark, Isiasha; Sweitzer, Sarah M

    2014-05-01

    Endothelin-1 (ET-1) is a known algogen that causes acute pain and sensitization in humans and spontaneous nociceptive behaviors when injected into the periphery in rats. This study sought to examine the effect of ET-1 exposure in the neonatal period on subsequent contralateral capsaicin-induced secondary mechanical hyperalgesia. ET-1 or saline was injected into the left plantar hindpaw on postnatal day 7 (P7). On postnatal day 11 (P11), capsaicin cream or control lotion was applied to the right dorsum hind paw and mechanical paw withdrawal thresholds were measured in the plantar hind paw. In saline control males, P11 administration of capsaicin produced a secondary mechanical hyperalgesia that was still present at 2h. Neonatal priming with ET-1 did not alter the magnitude or the duration of secondary mechanical hyperalgesia in males. In contrast, in control females, P11 administration of capsaicin produced less than 40 min of mechanical hyperalgesia. Neonatal priming with ET-1 prolonged the duration of secondary mechanical hyperalgesia in females. Priming with ET-1 on P7 led to a significant increase in capsaicin-induced Fos expression in the dorsal horn of the spinal cord in both males and females compared to controls (p<0.001). These findings further suggest that pain in early life may alter future responses to painful stimuli at both the behavioral and neuronal level.

  10. The Cardiovascular Physiology and Pharmacology of Endothelin-1

    PubMed Central

    Thorin, Eric; Clozel, Martine

    2013-01-01

    One year after the discovery in 1980 that the endothelium was obligatory for acetylcholine to relax isolated arteries, it was clearly shown that the endothelium could also promote contraction. In 1988, Dr Yanagisawa’s group identified endothelin-1 (ET-1) as the first endothelium-derived contracting factor. The circulating levels of this short (21 amino acids) peptide were quickly determined in humans and it was reported that in most cardiovascular diseases, circulating levels of ET-1 were increased and ET-1 was then recognized as a likely mediator of pathological vasoconstriction in human. The discovery of two receptor subtypes in 1990, ETA and ETB, permitted optimization of bosentan, which entered clinical development in 1993, and was offered to patients with pulmonary arterial hypertension in 2001. In this report, we discuss the physiological and pathophysiological role of endothelium-derived ET-1, the pharmacology of its two receptors, focusing on the regulation of the vascular tone and as much as possible in humans. The coronary bed will be used as a running example, but references to the pulmonary, cerebral, and renal circulation will also be made. Many of the cardiovascular complications associated with aging and cardiovascular risk factors are initially attributable, at least in part, to endothelial dysfunction, particularly dysregulation of the vascular function associated with an imbalance in the close interdependence of NO and ET-1, in which the implication of the ETB receptor may be central. PMID:21081213

  11. The cardiovascular physiology and pharmacology of endothelin-1.

    PubMed

    Thorin, Eric; Clozel, Martine

    2010-01-01

    One year after the discovery in 1980 that the endothelium was obligatory for acetylcholine to relax isolated arteries, it was clearly shown that the endothelium could also promote contraction. In 1988, Dr Yanagisawa's group identified endothelin-1 (ET-1) as the first endothelium-derived contracting factor. The circulating levels of this short (21 amino acids) peptide were quickly determined in humans and it was reported that in most cardiovascular diseases, circulating levels of ET-1 were increased and ET-1 was then recognized as a likely mediator of pathological vasoconstriction in human. The discovery of two receptor subtypes in 1990, ET(A) and ET(B), permitted optimization of bosentan, which entered clinical development in 1993, and was offered to patients with pulmonary arterial hypertension in 2001. In this report, we discuss the physiological and pathophysiological role of endothelium-derived ET-1, the pharmacology of its two receptors, focusing on the regulation of the vascular tone and as much as possible in humans. The coronary bed will be used as a running example, but references to the pulmonary, cerebral, and renal circulation will also be made. Many of the cardiovascular complications associated with aging and cardiovascular risk factors are initially attributable, at least in part, to endothelial dysfunction, particularly dysregulation of the vascular function associated with an imbalance in the close interdependence of NO and ET-1, in which the implication of the ET(B) receptor may be central.

  12. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    PubMed Central

    Park, Kyoungmin; Mima, Akira; Li, Qian; Rask-Madsen, Christian; He, Pingnian; Mizutani, Koji; Katagiri, Sayaka; Maeda, Yasutaka; Wu, I-Hsien; Khamaisi, Mogher; Preil, Simone Rordam; Sørensen, Ditte; Huang, Paul L.; King, George L.

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe–/– mice (Irs1/Apoe–/–) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE–/– mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin’s enhanced antiatherogenic actions in EC was related to remarkable induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca2+]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1 overexpression in the endothelia of Aki/ApoE–/– mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway. Finally EDNRB deletion in EC of Ldlr–/– and Irs1/Ldlr–/– mice decreased NO production and accelerated atherosclerosis, compared with Ldlr–/– mice. Accelerated atherosclerosis in diabetes may be reduced by improving insulin signaling selectively via IRS1/Akt in the EC by inducing EDNRB expression and NO production. PMID:27200419

  13. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    PubMed Central

    Park, Kyoungmin; Mima, Akira; Li, Qian; Rask-Madsen, Christian; He, Pingnian; Mizutani, Koji; Katagiri, Sayaka; Maeda, Yasutaka; Wu, I-Hsien; Khamaisi, Mogher; Preil, Simone Rordam; Maddaloni, Ernesto; Sørensen, Ditte; Rasmussen, Lars Melholt; Huang, Paul L.; King, George L.

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of Apoe−/− mice (Irs1/Apoe−/−) increased insulin signaling and function in the aorta. Atherosclerosis was significantly reduced in Irs1/ApoE−/− mice on diet-induced hyperinsulinemia and hyperglycemia. The mechanism of insulin’s enhanced antiatherogenic actions in EC was related to remarkable induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca2+]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1 overexpression in the endothelia of Aki/ApoE−/− mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway. Finally EDNRB deletion in EC of Ldlr−/− and Irs1/Ldlr−/− mice decreased NO production and accelerated atherosclerosis, compared with Ldlr−/− mice. Accelerated atherosclerosis in diabetes may be reduced by improving insulin signaling selectively via IRS1/Akt in the EC by inducing EDNRB expression and NO production. PMID:27200419

  14. Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system

    SciTech Connect

    Li, Cheng; Zheng, Huaibin; Zhang, Zhaoyang; Yao, Xin; Zhang, Yunzhe; Zhang, Yiqi; Zhang, Yanpeng

    2013-10-28

    We investigate the interaction between dark states and Rydberg excitation blockade by using electromagnetically induced transparency (EIT), fluorescence, and four-wave mixing (FWM) signals both theoretically and experimentally. By scanning the frequency detunings of the probe and dressing fields, respectively, we first observe these signals (three coexisting EIT windows, two fluorescence signals, and two FWM signals) under Rydberg excitation blockade. Next, frequency detuning dependences of these signals are obtained, in which the modulated results are well explained by introducing the dressing effects (leading to the dark states) with the corrected factor of the Rydberg excitation blockade. In addition, the variations by changing the principal quantum number n of Rydberg state shown some interesting phenomena resulting from Rydberg blockade are observed. The unique nature of such blockaded signals can have potential application in the demonstration of quantum computing.

  15. Endothelin stimulates a sustained 1,2-diacylglycerol increase and protein kinase C activation in bovine aortic smooth muscle cells

    SciTech Connect

    Lee, T.S.; Chao, T.; Hu, K.Q.; King, G.L.

    1989-07-14

    Endothelin is a long-lasting potent vasoconstrictor peptide. We report here that in bovine aortic smooth muscle cells, endothelin biphasically increased total cellular diacylglycerol (DAG) content. When cellular DAG was labeled with (/sup 14/C) glycerol for 48h, endothelin stimulated (/sup 14/C)DAG formation in a biphasic pattern. Only one prolonged phase of DAG accumulation was observed when cells were labeled with (/sup 3/H)glycerol for 2 h. Endothelin induced an increase in the membranous protein kinase C (PKC) activities, which lasted for more than 20 min. These data suggest that (i) endothelin stimulates a sustained generation of DAG, (ii) this accumulation of DAG results in a sustained translocation of cytosolic PKC activities to the membrane.

  16. Pathways and Drugs in Pulmonary Arterial Hypertension - Focus on the Role of Endothelin Receptor Antagonists.

    PubMed

    Madonna, Rosalinda; Cocco, Nino; De Caterina, Raffaele

    2015-01-01

    Pulmonary arterial hypertension (PAH) is a group of diseases characterized by a progressive increase of pulmonary vascular resistance (PVR), initially due to abnormal pulmonary vasoconstriction in response to endothelial injury. Recent studies have here confirmed the prominent role of endothelin (ET)-1 in vasoconstriction and remodelling of the pulmonary microcirculation. In patients who are acute-vasoreactive, classical treatments for PAH are calcium channels blockers (CCBs), while drugs targeting the prostacyclin, nitric oxide and endothelin pathways, i.e., prostanoids, phosphodiesterase (PDE)-5 inhibitors and endothelin receptor antagonists (ERAs), respectively, are indicated in non-vasoreactive patients or in vasoreactive patients not responding to initial CCB therapy. Randomised, placebo-controlled trials have shown that ERAs improve pulmonary haemodynamics, exercise capacity, functional status and clinical outcome in patients with PAH. Here we provide an overview of the currently recommended diagnostic and therapeutic work-up in PAH, with special emphasis on ERAs. PMID:26145170

  17. Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK

    PubMed Central

    Kobayashi, T; Nogami, T; Taguchi, K; Matsumoto, T; Kamata, K

    2008-01-01

    Background and purpose: Mechanisms associated with the enhanced contractile response to endothelin-1 in hyperinsulinaemic diabetes have been examined using the rat aorta. Functions for angiotensin II, endothelin-1 receptor expression and extracellular signal-regulated kinase (ERK) have been investigated. Experimental approach: Streptozotocin-induced diabetic rats were infused with angiotensin II or, following insulin treatment, were treated with losartan, an angiotensin II receptor antagonist. Contractions of aortic strips with or without endothelium, in response to endothelin-1 and angiotensin II, were examined in vitro. Aortic ETA receptors and ERK/MEK expression were measured by western blotting. Key results: Insulin-treated diabetic rats exhibited increases in plasma insulin, angiotensin II and endothelin-1. The systolic blood pressure and endothelin-1-induced contractile responses in aortae in vitro were enhanced in insulin-treated diabetic rats and blunted by chronic losartan administration. LY294002 (phosphatidylinositol 3-kinase inhibitor) and/or PD98059 (MEK inhibitor) diminished the enhanced contractile response to endothelin-1 in aortae from insulin-treated diabetic rats. ETA and ETB receptors, ERK-1/2 and MEK-1/2 protein expression and endothelin-1-stimulated ERK phosphorylation were all increased in aortae from insulin-treated diabetic rats. Such increases were blunted by chronic losartan administration. Endothelin-1-induced contraction was significantly higher in aortae from angiotensin II-infused diabetic rats. angiotensin II-infusion increased ERK phosphorylation, but the expression of endothelin receptors and ERK/MEK proteins remained unchanged. Conclusions and implications: These results suggest that the combination of high plasma angiotensin II and insulin with a diabetic state induced enhancement of endothelin-1-induced vasoconstriction, ETA receptor expression and ERK expression/activity in the aorta. Losartan improved both the diabetes

  18. On Disruption of Fear Memory by Reconsolidation Blockade: Evidence from Cannabidiol Treatment

    PubMed Central

    Stern, Cristina A J; Gazarini, Lucas; Takahashi, Reinaldo N; Guimarães, Francisco S; Bertoglio, Leandro J

    2012-01-01

    The search for reconsolidation blockers may uncover clinically relevant drugs for disrupting memories of significant stressful life experiences, such as those underlying the posttraumatic stress disorder. Considering the safety of systemically administered cannabidiol (CBD), the major non-psychotomimetic component of Cannabis sativa, to animals and humans, the present study sought to investigate whether and how this phytocannabinoid (3–30 mg/kg intraperitoneally; i.p.) could mitigate an established memory, by blockade of its reconsolidation, evaluated in a contextual fear-conditioning paradigm in rats. We report that CBD is able to disrupt 1- and 7-days-old memories when administered immediately, but not 6 h, after their retrieval for 3 min, with the dose of 10 mg/kg being the most effective. This effect persists in either case for at least 1 week, but is prevented when memory reactivation was omitted, or when the cannabinoid type-1 receptors were antagonized selectively with AM251 (1.0 mg/kg). Pretreatment with the serotonin type-1A receptor antagonist WAY100635, however, failed to block CBD effects. These results highlight that recent and older fear memories are equally vulnerable to disruption induced by CBD through reconsolidation blockade, with a consequent long-lasting relief in contextual fear-induced freezing. Importantly, this CBD effect is dependent on memory reactivation, restricted to time window of <6 h, and is possibly dependent on cannabinoid type-1 receptor-mediated signaling mechanisms. We also observed that the fear memories disrupted by CBD treatment do not show reinstatement or spontaneous recovery over 22 days. These findings support the view that reconsolidation blockade, rather than facilitated extinction, accounts for the aforementioned CBD results in our experimental conditions. PMID:22549120

  19. Increased cerebrovascular sensitivity to endothelin-1 in a rat model of obstructive sleep apnea: a role for endothelin receptor B.

    PubMed

    Durgan, David J; Crossland, Randy F; Lloyd, Eric E; Phillips, Sharon C; Bryan, Robert M

    2015-03-01

    Obstructive sleep apnea (OSA) is associated with cerebrovascular diseases. However, little is known regarding the effects of OSA on the cerebrovascular wall. We tested the hypothesis that OSA augments endothelin-1 (ET-1) constrictions of cerebral arteries. Repeated apneas (30 or 60 per hour) were produced in rats during the sleep cycle (8 hours) by remotely inflating a balloon implanted in the trachea. Four weeks of apneas produced a 23-fold increase in ET-1 sensitivity in isolated and pressurized posterior cerebral arteries (PCAs) compared with PCAs from sham-operated rats (EC50=10(-9.2) mol/L versus 10(-10.6) mol/L; P<0.001). This increased sensitivity was abolished by the ET-B receptor antagonist, BQ-788. Constrictions to the ET-B receptor agonist, IRL-1620, were greater in PCAs from rats after 2 or 4 weeks of apneas compared with that from sham-operated rats (P=0.013). Increased IRL-1620 constrictions in PCAs from OSA rats were normalized with the transient receptor potential channel (TRPC) blocker, SKF96365, or the Rho kinase (ROCK) inhibitor, Y27632. These data show that OSA increases the sensitivity of PCAs to ET-1 through enhanced ET-B activity, and enhanced activity of TRPCs and ROCK. We conclude that enhanced ET-1 signaling is part of a pathologic mechanism associated with adverse cerebrovascular outcomes of OSA.

  20. Adipokine, adropin and endothelin-1 levels in intrauterine growth restricted neonates and their mothers.

    PubMed

    Aydin, Halil Ibrahim; Eser, Ayla; Kaygusuz, Ikbal; Yildirim, Sevgi; Celik, Tugrul; Gunduz, Suzan; Kalman, Suleyman

    2016-08-01

    Intrauterine growth retardation/restriction (IUGR) is associated with fetal malnutrition. It has consequences for later life including increased incidence of obesity, diabetes mellitus, cardiovascular disease (CVD), and metabolic syndrome. Adipokines (adiponectin and leptin), adropin, and endothelin-1 are associated with obesity and metabolic syndrome regulation. Intrauterine changes in these mediators could affect programming of later adult obesity and metabolic syndrome. Our objectives were to compare the levels of these mediators in both cord and maternal blood between IUGR pregnancies and control, healthy pregnancies, and to study the correlation of adipokines with adropin and endothelin-1 in maternal and cord blood in IUGR pregnancies as well as in healthy control pregnancies. Maternal and cord blood samples were taken from 16 women with IUGR pregnancies and 16 women with healthy pregnancies. Serum levels of leptin, adiponectin, adropin, and endothelin-1 were measured by ELISA. Maternal blood adropin levels were significantly lower in the IUGR group than in the control group; the other mediators did not differ significantly. There was a positive correlation between maternal blood adropin and endothelin levels. (r=0.731, P=0.001) in the control but not the IUGR group. Cord blood adropin and adiponectin levels were significantly lower in the IUGR group compared with the control group, while leptin or endothelin-1 did not differ significantly. There was a negative correlation between adropin and leptin (r=-0.704, P=0.001) in the IUGR but not the control group cord blood. There were also positive correlations between endothelin and adropin for both groups (r=0.594, P=0.006; r=0.560, P=0.010, respectively); to the best of our knowledge, this is the first report of such a correlation. Differences in fetal expression of adropin and adiponectin in IUGR could influence programming of obesity, metabolic syndrome, diabetes, and CVD in later life.

  1. Specification of the mouse cardiac conduction system in the absence of Endothelin signaling.

    PubMed

    Hua, Lisa L; Vedantham, Vasanth; Barnes, Ralston M; Hu, Jianxin; Robinson, Ashley S; Bressan, Michael; Srivastava, Deepak; Black, Brian L

    2014-09-15

    Coordinated contraction of the heart is essential for survival and is regulated by the cardiac conduction system. Contraction of ventricular myocytes is controlled by the terminal part of the conduction system known as the Purkinje fiber network. Lineage analyses in chickens and mice have established that the Purkinje fibers of the peripheral ventricular conduction system arise from working myocytes during cardiac development. It has been proposed, based primarily on gain-of-function studies, that Endothelin signaling is responsible for myocyte-to-Purkinje fiber transdifferentiation during avian heart development. However, the role of Endothelin signaling in mammalian conduction system development is less clear, and the development of the cardiac conduction system in mice lacking Endothelin signaling has not been previously addressed. Here, we assessed the specification of the cardiac conduction system in mouse embryos lacking all Endothelin signaling. We found that mouse embryos that were homozygous null for both ednra and ednrb, the genes encoding the two Endothelin receptors in mice, were born at predicted Mendelian frequency and had normal specification of the cardiac conduction system and apparently normal electrocardiograms with normal QRS intervals. In addition, we found that ednra expression within the heart was restricted to the myocardium while ednrb expression in the heart was restricted to the endocardium and coronary endothelium. By establishing that ednra and ednrb are expressed in distinct compartments within the developing mammalian heart and that Endothelin signaling is dispensable for specification and function of the cardiac conduction system, this work has important implications for our understanding of mammalian cardiac development.

  2. Pauli spin blockade in double molecular magnets

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz

    2016-07-01

    The Pauli spin blockade effect in transport through two, coupled in series, single molecular magnets weakly attached to external leads is considered theoretically. By using the real-time diagrammatic technique in the lowest-order perturbation theory with respect to the coupling strength, the behavior of the current and the shot noise is studied in the nonlinear response regime. It is shown that the current suppression occurs due to the occupation of highest-weight spin states of the system. Moreover, transport properties are found to strongly depend on parameters of the double molecular magnet, such as the magnitude of spin, internal exchange interaction and the hopping between the molecules. It is also demonstrated that the current suppression may be accompanied by negative differential conductance and a large super-Poissonian shot noise. The mechanisms leading to those effects are discussed.

  3. Novel drug development for neuromuscular blockade

    PubMed Central

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration. PMID:27625489

  4. Novel drug development for neuromuscular blockade

    PubMed Central

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration.

  5. Novel drug development for neuromuscular blockade.

    PubMed

    Prabhakar, Amit; Kaye, Alan D; Wyche, Melville Q; Salinas, Orlando J; Mancuso, Kenneth; Urman, Richard D

    2016-01-01

    Pharmacological advances in anesthesia in recent decades have resulted in safer practice and better outcomes. These advances include improvement in anesthesia drugs with regard to efficacy and safety profiles. Although neuromuscular blockers were first introduced over a half century ago, few new neuromuscular blockers and reversal agents have come to market and even fewer have remained as common clinically employed medications. In recent years, newer agents have been studied and are presented in this review. With regard to nondepolarizer neuromuscular blocker agents, the enantiomers Gantacurium and CW002, which are olefinic isoquinolinium diester fumarates, have shown potential for clinical application. Advantages include ultra rapid reversal of neuromuscular blockade via cysteine adduction and minimal systemic hemodynamic effects with administration. PMID:27625489

  6. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy

    PubMed Central

    Seo, Kinya; Rainer, Peter P.; Shalkey Hahn, Virginia; Lee, Dong-ik; Jo, Su-Hyun; Andersen, Asger; Liu, Ting; Xu, Xiaoping; Willette, Robert N.; Lepore, John J.; Marino, Joseph P.; Birnbaumer, Lutz; Schnackenberg, Christine G.; Kass, David A.

    2014-01-01

    Chronic neurohormonal and mechanical stresses are central features of heart disease. Increasing evidence supports a role for the transient receptor potential canonical channels TRPC3 and TRPC6 in this pathophysiology. Channel expression for both is normally very low but is increased by cardiac disease, and genetic gain- or loss-of-function studies support contributions to hypertrophy and dysfunction. Selective small-molecule inhibitors remain scarce, and none target both channels, which may be useful given the high homology among them and evidence of redundant signaling. Here we tested selective TRPC3/6 antagonists (GSK2332255B and GSK2833503A; IC50, 3–21 nM against TRPC3 and TRPC6) and found dose-dependent blockade of cell hypertrophy signaling triggered by angiotensin II or endothelin-1 in HEK293T cells as well as in neonatal and adult cardiac myocytes. In vivo efficacy in mice and rats was greatly limited by rapid metabolism and high protein binding, although antifibrotic effects with pressure overload were observed. Intriguingly, although gene deletion of TRPC3 or TRPC6 alone did not protect against hypertrophy or dysfunction from pressure overload, combined deletion was protective, supporting the value of dual inhibition. Further development of this pharmaceutical class may yield a useful therapeutic agent for heart disease management. PMID:24453217

  7. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy.

    PubMed

    Seo, Kinya; Rainer, Peter P; Shalkey Hahn, Virginia; Lee, Dong-Ik; Jo, Su-Hyun; Andersen, Asger; Liu, Ting; Xu, Xiaoping; Willette, Robert N; Lepore, John J; Marino, Joseph P; Birnbaumer, Lutz; Schnackenberg, Christine G; Kass, David A

    2014-01-28

    Chronic neurohormonal and mechanical stresses are central features of heart disease. Increasing evidence supports a role for the transient receptor potential canonical channels TRPC3 and TRPC6 in this pathophysiology. Channel expression for both is normally very low but is increased by cardiac disease, and genetic gain- or loss-of-function studies support contributions to hypertrophy and dysfunction. Selective small-molecule inhibitors remain scarce, and none target both channels, which may be useful given the high homology among them and evidence of redundant signaling. Here we tested selective TRPC3/6 antagonists (GSK2332255B and GSK2833503A; IC50, 3-21 nM against TRPC3 and TRPC6) and found dose-dependent blockade of cell hypertrophy signaling triggered by angiotensin II or endothelin-1 in HEK293T cells as well as in neonatal and adult cardiac myocytes. In vivo efficacy in mice and rats was greatly limited by rapid metabolism and high protein binding, although antifibrotic effects with pressure overload were observed. Intriguingly, although gene deletion of TRPC3 or TRPC6 alone did not protect against hypertrophy or dysfunction from pressure overload, combined deletion was protective, supporting the value of dual inhibition. Further development of this pharmaceutical class may yield a useful therapeutic agent for heart disease management.

  8. Effect of Endothelin-1 on Baroreflexes and the Cardiovascular Action of Clonidine in Conscious Rabbits

    PubMed Central

    Lim, Kyungjoon; van den Buuse, Maarten; Head, Geoffrey A.

    2016-01-01

    We studied the influence of pretreatment with endothelin–1 on cardiac baroreflexes and on the effect of clonidine on blood pressure and heart rate. In order to avoid the complication of the direct vasoconstrictor effects of endothelin-1, initial dose-response studies in animals treated with a ganglion blocker were performed. Intravenous administration of 50, 200, and 1200 ng/kg of endothelin-1 produced biphasic changes in blood pressure, consisting of an immediate depressor response, followed by a long lasting and dose-dependent pressor effect (peak response 3 ± 1, 9 ± 3, and 33 ± 5 mmHg, respectively). Thus, the 50 ng/kg dose of endothelin-1 was used in subsequent studies. Conscious rabbits were pretreated on separate days with endothelin-1, either intravenously (50 ng/kg) or intracisternally (10 and 50 ng/kg), or with vehicle. The animals then received an intravenous dose (20 μg/kg) or an intracisternal dose (1 μg/kg) of clonidine and the effects on blood pressure and heart rate were measured. In vehicle-treated rabbits, the intravenous administration of clonidine induced a significant decrease in blood pressure and heart rate (15 min after injection: −15.7 ± 4.7 mmHg and −33 ± 4 b/min, respectively). Similarly, the intracisternal injection of clonidine lowered blood pressure (−16.0 ± 2.5 mmHg), but produced a less pronounced bradycardia (−18 ± 4 b/min). Endothelin pretreatment, either 50 ng/kg centrally or peripherally, had no significant effect on the hypotension or bradycardia produced either by central or peripheral injection of clonidine. At this dose, endothelin by itself did not produce significant changes in blood pressure or heart rate. There was a reduction of the gain of the baroreceptor-heart rate reflex with intracisternal endothelin-1. These results suggest that central 2–adrenoceptor mechanisms involved in clonidine-induced hypotension and bradycardia do not appear to be influenced by activation of endothelin receptors. PMID

  9. Impact of Superoxide Dismutase Mimetic AEOL 10150 on the Endothelin System of Fischer 344 Rats

    PubMed Central

    Ganesh, Devi; Kumarathasan, Prem; Thomson, Errol M.; St-Germain, Carly; Blais, Erica; Crapo, James; Vincent, Renaud

    2016-01-01

    Endothelin-1 is a potent vasoconstrictor and mitogenic peptide involved in the regulation of vasomotor tone and maintenance of blood pressure. Oxidative stress activates the endothelin system, and is implicated in pulmonary and cardiovascular diseases including hypertension, congestive heart failure, and atherosclerosis. Superoxide dismutase mimetics designed with the aim of treating diseases that involve reactive oxygen species in their pathophysiology may exert a hypotensive effect, but effects on the endothelin system are unknown. Our objective was to determine the effect of the superoxide dismutase mimetic AEOL 10150 on the basal endothelin system in vivo. Male Fischer-344 rats were injected subcutaneously with 0, 2 or 5 mg/kg body weight of AEOL 10150 in saline. Plasma oxidative stress markers and endothelins (bigET-1, ET-1, ET-2, ET-3) as well as lung and heart endothelin/nitric oxide system gene expressions were measured using HPLC-Coularray, HPLC-Fluorescence and RT-PCR respectively. AEOL 10150 reduced (p<0.05) the circulating levels of isoprostane (-25%) and 3-nitrotyrosine (-50%) measured in plasma 2h and 24h after treatment, confirming delivery of a physiologically-relevant dose and the potent antioxidant activity of the drug. The reduction in markers of oxidative stress coincided with sustained 24h decrease (p<0.05) of plasma levels of ET-1 (-50%) and ET-3 (-10%). Expression of preproET-1 and endothelin converting enzyme-1 mRNA were not altered significantly in the lungs. However preproET-1 (not significant) and ECE-1 mRNA (p<0.05) were increased (10–25%) in the heart. Changes in the lungs included decrease (p<0.05) of mRNA for the ET-1 clearance receptor ETB and the vasoconstriction-signaling ETA receptor (-30%), and an early surge of inducible nitric oxide synthase expression followed by sustained decrease (-40% after 24 hours). The results indicate that interception of the endogenous physiological flux of reactive nitrogen species and reactive

  10. Postsynaptic blockade of inhibitory postsynaptic currents by plasmin in CA1 pyramidal cells of rat hippocampus.

    PubMed

    Mizutani, A; Tanaka, T; Saito, H; Matsuki, N

    1997-06-27

    We have shown previously that plasmin facilitated the generation of long-term potentiation (LTP) in CA1 and dentate region of rat hippocampus. In the present study, we investigated the effects of plasmin on postsynaptic currents in CA1 pyramidal neurons of rat hippocampal slices. Plasmin (100 nM) had no effect on NMDA nor on non-NMDA receptor-mediated excitatory postsynaptic currents. However, plasmin significantly decreased GABA(A) receptor-mediated inhibitory postsynaptic currents. This effect of plasmin disappeared when intracellular Ca2+ was strongly chelated with BAPTA. Furthermore, plasmin attenuated the GABA-induced currents in CA1 pyramidal cells. These results suggest that the STP-enhancing effect of plasmin is due to a blockade of postsynaptic GABA(A) responses and that an increase in intracellular Ca2+ by plasmin may be involved in its mechanism.

  11. Horizon 2020 in Diabetic Kidney Disease: The Clinical Trial Pipeline for Add-On Therapies on Top of Renin Angiotensin System Blockade

    PubMed Central

    Perez-Gomez, Maria Vanessa; Sanchez-Niño, Maria Dolores; Sanz, Ana Belen; Martín-Cleary, Catalina; Ruiz-Ortega, Marta; Egido, Jesus; Navarro-González, Juan F.; Ortiz, Alberto; Fernandez-Fernandez, Beatriz

    2015-01-01

    Diabetic kidney disease is the most frequent cause of end-stage renal disease. This implies failure of current therapeutic approaches based on renin-angiotensin system (RAS) blockade. Recent phase 3 clinical trials of paricalcitol in early diabetic kidney disease and bardoxolone methyl in advanced diabetic kidney disease failed to meet the primary endpoint or terminated on safety concerns, respectively. However, various novel strategies are undergoing phase 2 and 3 randomized controlled trials targeting inflammation, fibrosis and signaling pathways. Among agents currently undergoing trials that may modify the clinical practice on top of RAS blockade in a 5-year horizon, anti-inflammatory agents currently hold the most promise while anti-fibrotic agents have so far disappointed. Pentoxifylline, an anti-inflammatory agent already in clinical use, was recently reported to delay estimated glomerular filtration rate (eGFR) loss in chronic kidney disease (CKD) stage 3–4 diabetic kidney disease when associated with RAS blockade and promising phase 2 data are available for the pentoxifylline derivative CTP-499. Among agents targeting chemokines or chemokine receptors, the oral small molecule C-C chemokine receptor type 2 (CCR2) inhibitor CCX140 decreased albuminuria and eGFR loss in phase 2 trials. A dose-finding trial of the anti-IL-1β antibody gevokizumab in diabetic kidney disease will start in 2015. However, clinical development is most advanced for the endothelin receptor A blocker atrasentan, which is undergoing a phase 3 trial with a primary outcome of preserving eGFR. The potential for success of these approaches and other pipeline agents is discussed in detail. PMID:26239562

  12. Endothelin-1 in the tumor microenvironment correlates with melanoma invasion.

    PubMed

    Chiriboga, Luis; Meehan, Shane; Osman, Iman; Glick, Michael; de la Cruz, Gelo; Howell, Brittny S; Friedman-Jiménez, George; Schneider, Robert J; Jamal, Sumayah

    2016-06-01

    Endothelin-1 (ET-1) is a vasoactive peptide that also plays a role in the tanning response of the skin. Animal and cell culture studies have also implicated ET-1 in melanoma progression, but no association studies have been performed to link ET-1 expression and melanoma in humans. Here, we present the first in-vivo study of ET-1 expression in pigmented lesions in humans: an ET-1 immunohistochemical screen of melanocytic nevi, melanoma in situ lesions, invasive melanomas, metastatic melanomas, and blue nevi was performed. Twenty-six percent of melanocytic nevi and 44% of melanoma in situ lesions demonstrate ET-1 expression in the perilesional microenvironment, whereas expression in nevus or melanoma cells was rare to absent. In striking contrast, 100% of moderately to highly pigmented invasive melanomas contained numerous ET-1-positive cells in the tumor microenvironment, with 79% containing ET-1-positive melanoma cells, confirmed by co-staining with melanoma tumor marker HMB45. Hypopigmented invasive melanomas had reduced ET-1 expression, suggesting a correlation between ET-1 expression and pigmented melanomas. ET-1-positive perilesional cells were CD68-positive, indicating macrophage origin. Sixty-two percent of highly pigmented metastatic melanomas demonstrated ET-1 expression in melanoma cells, in contrast to 28.2% of hypopigmented specimens. Eighty-nine percent of benign nevi, known as blue nevi, which have a dermal localization, were associated with numerous ET-1-positive macrophages in the perilesional microenvironment, but no ET-1 expression was detected in the melanocytes. We conclude that ET-1 expression in the microenvironment increases with advancing stages of melanocyte transformation, implicating a critical role for ET-1 in melanoma progression, and the importance of the tumor microenvironment in the melanoma phenotype.

  13. Brain Remodelling following Endothelin-1 Induced Stroke in Conscious Rats

    PubMed Central

    Abeysinghe, Hima C. S.; Bokhari, Laita; Dusting, Gregory J.; Roulston, Carli L.

    2014-01-01

    The extent of stroke damage in patients affects the range of subsequent pathophysiological responses that influence recovery. Here we investigate the effect of lesion size on development of new blood vessels as well as inflammation and scar formation and cellular responses within the subventricular zone (SVZ) following transient focal ischemia in rats (n = 34). Endothelin-1-induced stroke resulted in neurological deficits detected between 1 and 7 days (P<0.001), but significant recovery was observed beyond this time. MCID image analysis revealed varying degrees of damage in the ipsilateral cortex and striatum with infarct volumes ranging from 0.76–77 mm3 after 14 days, where larger infarct volumes correlated with greater functional deficits up to 7 days (r = 0.53, P<0.05). Point counting of blood vessels within consistent sample regions revealed that increased vessel numbers correlated significantly with larger infarct volumes 14 days post-stroke in the core cortical infarct (r = 0.81, P<0.0001), core striatal infarct (r = 0.91, P<0.005) and surrounding border zones (r = 0.66, P<0.005; and r = 0.73, P<0.05). Cell proliferation within the SVZ also increased with infarct size (P<0.01) with a greater number of Nestin/GFAP positive cells observed extending towards the border zone in rats with larger infarcts. Lesion size correlated with both increased microglia and astrocyte activation, with severely diffuse astrocyte transition, the formation of the glial scar being more pronounced in rats with larger infarcts. Thus stroke severity affects cell proliferation within the SVZ in response to injury, which may ultimately make a further contribution to glial scar formation, an important factor to consider when developing treatment strategies that promote neurogenesis. PMID:24809543

  14. Pigmentation in basal cell carcinoma involves enhanced endothelin-1 expression.

    PubMed

    Lan, Cheng-Che E; Wu, Ching-Shuang; Cheng, Chiu-Min; Yu, Chia-Li; Chen, Gwo-Shing; Yu, Hsin-Su

    2005-07-01

    Basal cell carcinoma (BCC) is the most prevalent malignant skin tumor. In Asian patients, marked pigmentation in BCC lesions is often observed. Recently, endothelins (ETs) have been implicated to participate in the pigmentation process of BCC. Therefore, we set out to investigate the involvement of ET in the pigmentation process of BCC and the potential regulators in the pigmentation pathway. We explored the effects of an established BCC cell line on melanocytes. The growth factor profiles of BCC culture supernatant and effects of supernatant on melanocytes were documented. Potential regulators involved in the pigmentation pathway were also studied. The immunohistochemical staining of pigmented and non-pigmented BCC specimens was performed to confirm our in vitro findings. Our results showed that BCC supernatant contained significant amount of ET-1, basic fibroblast growth factor, and nerve growth factor. Furthermore, BCC supernatant stimulated melanin formation of cultured melanocytes. Addition of ET-receptor antagonist abrogated the melanogenic effect of BCC supernatant on melanocytes. Introduction of UVB irradiation decreased the ET-1 secretion by BCC cells. Immunohistochemical staining of the pigmented facial BCC specimens showed prominent expression of ET-1 on pigmented BCC, while the non-pigmented facial BCC specimens showed little ET-1 reactivity. Tumor necrosis factor-alpha (TNF-alpha) staining showed little expression on BCC specimens, regardless of pigmentation status. In summary, our results indicate that enhanced ET-1 expression in pigmented BCC plays an important role in the hyperpigmentation of this tumor. Moreover, this enhanced ET-1 cascade showed little correlation with UV irradiation and TNF-alpha expression in our study.

  15. Association of Big Endothelin-1 with Coronary Artery Calcification

    PubMed Central

    Zhang, Yan; Li, Yi-Lin; Xu, Rui-Xia; Guo, Yuan-Lin; Li, Sha; Wu, Na-Qiong; Li, Jian-Jun

    2015-01-01

    Background The coronary artery calcification (CAC) is clinically considered as one of the important predictors of atherosclerosis. Several studies have confirmed that endothelin-1(ET-1) plays an important role in the process of atherosclerosis formation. The aim of this study was to investigate whether big ET-1 is associated with CAC. Methods and Results A total of 510 consecutively admitted patients from February 2011 to May 2012 in Fu Wai Hospital were analyzed. All patients had received coronary computed tomography angiography and then divided into two groups based on the results of coronary artery calcium score (CACS). The clinical characteristics including traditional and calcification-related risk factors were collected and plasma big ET-1 level was measured by ELISA. Patients with CAC had significantly elevated big ET-1 level compared with those without CAC (0.5±0.4 vs. 0.2±0.2, P<0.001). In the multivariate analysis, big ET-1 (Tertile 2, HR = 3.09, 95% CI 1.66–5.74, P <0.001, Tertile3 HR = 10.42, 95% CI 3.62–29.99, P<0.001) appeared as an independent predictive factor of the presence of CAC. There was a positive correlation of the big ET-1 level with CACS (r = 0.567, p<0.001). The 10-year Framingham risk (%) was higher in the group with CACS>0 and the highest tertile of big ET-1 (P<0.01). The area under the receiver operating characteristic curve for the big ET-1 level in predicting CAC was 0.83 (95% CI 0.79–0.87, p<0.001), with a sensitivity of 70.6% and specificity of 87.7%. Conclusions The data firstly demonstrated that the plasma big ET-1 level was a valuable independent predictor for CAC in our study. PMID:26565974

  16. Combined unilateral blockade of cholinergic, peptidergic, and serotonergic receptors in the ventral respiratory column does not affect breathing in awake or sleeping goats

    PubMed Central

    Muere, Clarissa; Neumueller, Suzanne; Olesiak, Samantha; Miller, Justin; Langer, Thomas; Hodges, Matthew R.; Pan, Lawrence

    2015-01-01

    Previous work in intact awake and sleeping goats has found that unilateral blockade of excitatory inputs in the ventral respiratory column (VRC) elicits changes in the concentrations of multiple neurochemicals, including serotonin (5-HT), substance P, glycine, and GABA, while increasing or having no effect on breathing. These findings are consistent with the concept of interdependence between neuromodulators, whereby attenuation of one modulator elicits compensatory changes in other modulators to maintain breathing. Because there is a large degree of redundancy and multiplicity of excitatory inputs to the VRC, we herein tested the hypothesis that combined unilateral blockade of muscarinic acetylcholine (mACh), neurokinin-1 (NK1, the receptor for substance P), and 5-HT2A receptors would elicit changes in multiple neurochemicals, but would not change breathing. We unilaterally reverse-dialyzed a cocktail of antagonists targeting these receptors into the VRC of intact adult goats. Breathing was continuously monitored while effluent fluid from dialysis was collected for quantification of neurochemicals. We found that neither double blockade of mACh and NK1 receptors, nor triple blockade of mACh, NK1, and 5-HT2A receptors significantly affected breathing (P ≥ 0.05) in goats that were awake or in non-rapid eye movement (NREM) sleep. However, both double and triple blockade increased the effluent concentration of substance P (P < 0.001) and decreased GABA concentrations. These findings support our hypothesis and, together with past data, suggest that both in wakefulness and NREM sleep, multiple neuromodulator systems collaborate to stabilize breathing when a deficit in one or multiple excitatory neuromodulators exists. PMID:26023224

  17. Energy Gaps and Interaction Blockade in Confined Quantum Systems

    SciTech Connect

    Capelle, K.; Borgh, M.; Kaerkkaeinen, K.; Reimann, S. M.

    2007-07-06

    We investigate universal properties of strongly confined particles that turn out to be dramatically different from what is observed for electrons in atoms and molecules. For a large class of harmonically confined systems, such as small quantum dots and optically trapped atoms, many-body particle addition and removal energies, and energy gaps, are accurately obtained from single-particle eigenvalues. Transport blockade phenomena are related to the derivative discontinuity of the exchange-correlation functional. This implies that they occur very generally, with Coulomb blockade being a particular realization of a more general phenomenon. In particular, we predict a van der Waals blockade in cold atom gases in traps.

  18. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    PubMed

    Lindsly, Casie; Gonzalez-Islas, Carlos; Wenner, Peter

    2014-01-01

    Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs). We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  19. D-Val22 containing human big endothelin-1 analog, [D-Val22]Big ET-1[16-38], inhibits the endothelin converting enzyme.

    PubMed

    Morita, A; Nomizu, M; Okitsu, M; Horie, K; Yokogoshi, H; Roller, P P

    1994-10-10

    Endothelin converting enzyme (ECE) is essential for generation of the biological effects of endothelin-1 (ET-1) from a precursor, big endothelin-1 (Big ET-1). We synthesized four analogs of human Big ET-1[16-38], substituted with single D-amino acids at P1, P2, P1' and P2' positions. ECE activity was determined using an ET-1 specific radioimmunoassay system. None of the D-amino acid containing Big ET-1 analogs were apparently cleaved by ECE, however, one of the synthetic peptides, [D-Val22]Big ET-1[16-38], strongly inhibited the ECE activity. Furthermore, when this D-Val22 containing peptide was preadministered to rat striatum, it was found to inhibit the dopamine release induced by Big ET-1. This result suggests that the D-Val22 containing peptide inhibits the ECE activity in vivo. The D-Val22 containing inhibitor offers hope of developing more potent and highly specific ECE inhibitors of therapeutic significance.

  20. Transcription levels of endothelin-1 and endothelin receptors are associated with age and leaflet location in porcine mitral valves.

    PubMed

    Pedersen, L G; Offenberg, H; Moesgaard, S G; Thomsen, P D; Pedersen, H D; Olsen, L H

    2007-04-01

    The aim of the study was to investigate the expression levels of endothelin-1 (ET-1) and ET(A) and ET(B) receptors (ET(A)-R and ET(B)-R) in porcine mitral valves and associate the transcription levels to age, leaflet location and deposition of mucopolysaccharides (MPS). Tissue samples from the chordal and inter-chordal insertion area of the anterior mitral valve leaflet from 11 sows (> or = 2 years of age) and 10 slaughter pigs (approximately 6 months old) were obtained and the relative gene expression levels of ET-1, ET(A)-R and ET(B)-R measured by semi-quantitative real-time PCR. A separate tissue sample was taken for histopathological grading of MPS deposition. The transcription levels of ET-1 (P < 0.0001) and ET(A)-R (P < 0.0004) were significantly higher in leaflets from the sows compared with slaughter pigs. The gene expression of ET(B)-R was not associated to age (P = 0.38), but increased in chordal insertion areas compared with inter-chordal areas (P = 0.01). The expression of ET-1 and ET(A)-R mRNA did not differ significantly between the two leaflet locations. The valve leaflets from sows had a significantly increased degree of MPS deposition compared with slaughter pigs upon histological examination (P = 0.04). In conclusion, an age-related valvular degeneration is observed in porcine mitral valve leaflets and ET-1 is suggested to be involved through action of both ET(A) and ET(B) receptors.

  1. Effect of extracorporeal shockwave lithotripsy on plasma and urine endothelin concentrations.

    PubMed

    Esen, A A; Gezer, S; Gemalmaz, A; Kirkali, G; Kirkali, Z

    1996-08-01

    Since the first reports of extracorporeal shockwave lithotripsy (SWL), there have been increasing numbers of articles in the literature documenting renal blood flow impairment and blood pressure elevation as complications. However, little is known about the pathophysiology and prevention of these complications. In this prospective study, the influence of high-energy shockwaves on plasma and urine endothelin concentrations was investigated in 20 patients with renal stones. The patients were randomly assigned to receive a calcium channel blocker, 10 mg of nitrendipine (Bypress; Bayer) (N = 10) 2 hours before SWL or no medication (control group; N = 10). Blood samples were taken just before and 1 minute after application of 3000 shocks. Urine samples were collected by ureteral catheters. The plasma endothelin-1 concentrations were significantly elevated after SWL in the control group (P = 0.003). On the other hand, nitrendipine significantly reduced plasma endothelin concentrations after SWL (P = 0.003). No significant change was observed in urine samples and blood pressure measurements. These results suggest that endothelin release after SWL may be a cause for lithotripsy-induced hemodynamic changes. Medical prevention with calcium channel blockers warrants further investigation.

  2. The Endothelin System Has a Significant Role in the Pathogenesis and Progression of Mycobacterium tuberculosis Infection

    PubMed Central

    Correa, Andre F.; Bailão, Alexandre M.; Bastos, Izabela M. D.; Orme, Ian M.; Soares, Célia M. A.; Kipnis, Andre

    2014-01-01

    Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues. PMID:25267836

  3. The endothelin system has a significant role in the pathogenesis and progression of Mycobacterium tuberculosis infection.

    PubMed

    Correa, Andre F; Bailão, Alexandre M; Bastos, Izabela M D; Orme, Ian M; Soares, Célia M A; Kipnis, Andre; Santana, Jaime M; Junqueira-Kipnis, Ana Paula

    2014-12-01

    Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues.

  4. Blockade involving high- n, n ~ 300 , strontium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Yoshida, Shuhei; Burgdörfer, Joachim; Zhang, Xinyue; Dunning, F. Barry

    2016-05-01

    The blockade of high- n strontium n1F3 Rydberg states contained in a hot atomic beam is investigated both theoretically and experimentally. One difficulty in such experiments is that, once created, Rydberg atoms move out of the excitation volume reducing blockade effects. While the effects of such motion are apparent, the data provide strong evidence of blockade, consistent with theoretical predictions. Because of their relatively high angular momentum (L = 3) , a pair of n1F3 Rydberg atoms have many degenerate states whose degeneracy is removed by Rydberg-Rydberg interactions yielding a high density of states near the target energy. To evaluate the effect of blockade not only the energy shifts but also the modification of the oscillator strengths for excitation have to be taken into account. The n-scaling of the interactions and the importance of high-order multipoles will also be discussed. Research supported by the NSF and Robert A. Welch Foundation.

  5. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected. PMID:26621247

  6. 5-HT2A receptors control body temperature in mice during LPS-induced inflammation via regulation of NO production.

    PubMed

    Voronova, Irina P; Khramova, Galina M; Kulikova, Elizabeth A; Petrovskii, Dmitrii V; Bazovkina, Daria V; Kulikov, Alexander V

    2016-01-01

    G protein-coupled 5-HT2A receptors are involved in the regulation of numerous normal and pathological physiological functions. At the same time, its involvement in the regulation of body temperature (Tb) in normal conditions is obscure. Here we study the effect of the 5-HT2A receptor activation or blockade on Tb in sick animals. The experiments were carried out on adult C57BL/6 mouse males. Systemic inflammation and sickness were produced by lipopolysaccharide (LPS, 0.1mg/kg, ip), while the 5-HT2A receptor was stimulated or blocked through the administration of the receptor agonist DOI or antagonist ketanserin (1mg/kg), respectively. LPS, DOI or ketanserin alone produced no effect on Tb. However, administration of LPS together with a peripheral or central ketanserin injection reduced Tb (32.2°C). Ketanserin reversed the LPS-induced expression of inducible NO synthase in the brain. Consequently, an involvement of NO in the mechanism of the hypothermic effect of ketanserin in sick mice was hypothesized. Administration of LPS together with NO synthase inhibitor, l-nitro-arginine methyl ester (60mg/kg, ip) resulted in deep (28.5°C) and prolonged (8h) hypothermia, while administration of l-nitro-arginine methyl ester alone produced no effect on Tb. Thus, 5-HT2A receptors play a key role in Tb control in sick mice. Blockade of this GPCR produces hypothermia in mice with systemic inflammation via attenuation of LPS-induced NO production. These results indicate an unexpected role of 5-HT2A receptors in inflammation and NO production and have a considerable biological impact on understanding the mechanism of animal adaptation to pathogens and parasites. Moreover, adverse side effects of 5-HT2A receptor antagonists in patients with inflammation may be expected.

  7. Duration of opioid receptor blockade determines biotherapeutic response.

    PubMed

    McLaughlin, Patricia J; Zagon, Ian S

    2015-10-01

    Historically, studies on endogenous and exogenous opioids and their receptors focused on the mediation of pain, with excess opiate consumption leading to addiction. Opioid antagonists such as naloxone and naltrexone blocked these interactions, and still are widely used to reverse drug and alcohol overdose. Although specific opioid antagonists have been designed for mu, delta, and kappa opioid receptors, the general antagonists remain the most effective. With the discovery of the opioid growth factor (OGF)-OGF receptor (OGFr) axis as a novel biological pathway involved in homeostasis of replicating cells and tissues, the role of opioid receptor antagonists was expanded. An intermittent OGFr blockade by low dosages of naltrexone resulted in depressed cell replication, whereas high (or sustained) dosages of naltrexone that conferred a continuous OGFr blockade resulted in enhanced growth. More than 3 decades of research have confirmed that the duration of opioid receptor blockade, not specifically the dosage, by general opioid antagonists determines the biotherapeutic outcome. Dysregulation of the OGF-OGFr pathway is apparent in a number of human disorders including diabetes, multiple sclerosis, and cancer, and thus opioid antagonist disruption of interaction prevails as a therapeutic intervention. We review evidence that the duration of opioid receptor blockade is correlated with the magnitude and direction of response, and discuss the potential therapeutic effectiveness of continuous receptor blockade for treatment of diabetic complications such as corneal defects and skin wounds, and of intermittent receptor blockade by low dosages of naltrexone for treatment of autoimmune diseases and cancer. PMID:26119823

  8. Valley-spin blockade and spin resonance in carbon nanotubes.

    PubMed

    Pei, Fei; Laird, Edward A; Steele, Gary A; Kouwenhoven, Leo P

    2012-10-01

    The manipulation and readout of spin qubits in quantum dots have been successfully achieved using Pauli blockade, which forbids transitions between spin-triplet and spin-singlet states. Compared with spin qubits realized in III-V materials, group IV materials such as silicon and carbon are attractive for this application because of their low decoherence rates (nuclei with zero spins). However, valley degeneracies in the electronic band structure of these materials combined with Coulomb interactions reduce the energy difference between the blocked and unblocked states, significantly weakening the selection rules for Pauli blockade. Recent demonstrations of spin qubits in silicon devices have required strain and spatial confinement to lift the valley degeneracy. In carbon nanotubes, Pauli blockade can be observed by lifting valley degeneracy through disorder, but this makes the confinement potential difficult to control. To achieve Pauli blockade in low-disorder nanotubes, quantum dots have to be made ultrasmall, which is incompatible with conventional fabrication methods. Here, we exploit the bandgap of low-disorder nanotubes to demonstrate robust Pauli blockade based on both valley and spin selection rules. We use a novel stamping technique to create a bent nanotube, in which single-electron spin resonance is detected using the blockade. Our results indicate the feasibility of valley-spin qubits in carbon nanotubes.

  9. Transport Through a Coulomb Blockaded Majorana Nanowire

    NASA Astrophysics Data System (ADS)

    Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd

    In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.

  10. Interleukin-6 blockade in ocular inflammatory diseases

    PubMed Central

    Mesquida, M; Leszczynska, A; Llorenç, V; Adán, A

    2014-01-01

    Interleukin-6 (IL-6) is a key cytokine featuring redundancy and pleiotropic activity. It plays a central role in host defence against environmental stress such as infection and injury. Dysregulated, persistent interleukin (IL)-6 production has been implicated in the development of various autoimmune, chronic inflammatory diseases and even cancers. Significant elevation of IL-6 has been found in ocular fluids derived from refractory/chronic uveitis patients. In experimental autoimmune uveitis models with IL-6 knock-out mice, IL-6 has shown to be essential for inducing inflammation. IL-6 blockade can suppress acute T helper type 17 (Th17) responses via its differentiation and, importantly, can ameliorate chronic inflammation. Tocilizumab, a recombinant humanized anti-IL-6 receptor antibody, has been shown to be effective in several autoimmune diseases, including uveitis. Herein, we discuss the basic biology of IL-6 and its role in development of autoimmune conditions, focusing particularly on non-infectious uveitis. It also provides an overview of efficacy and safety of tocilizumab therapy for ocular inflammatory diseases. PMID:24528300

  11. Regulation of cardiac nitric oxide signaling by nuclear β-adrenergic and endothelin receptors.

    PubMed

    Vaniotis, George; Glazkova, Irina; Merlen, Clémence; Smith, Carter; Villeneuve, Louis R; Chatenet, David; Therien, Michel; Fournier, Alain; Tadevosyan, Artavazd; Trieu, Phan; Nattel, Stanley; Hébert, Terence E; Allen, Bruce G

    2013-09-01

    At the cell surface, βARs and endothelin receptors can regulate nitric oxide (NO) production. β-adrenergic receptors (βARs) and type B endothelin receptors (ETB) are present in cardiac nuclear membranes and regulate transcription. The present study investigated the role of the NO pathway in the regulation of gene transcription by these nuclear G protein-coupled receptors. Nitric oxide production and transcription initiation were measured in nuclei isolated from the adult rat heart. The cell-permeable fluorescent dye 4,5-diaminofluorescein diacetate (DAF2 DA) was used to provide a direct assessment of nitric oxide release. Both isoproterenol and endothelin increased NO production in isolated nuclei. Furthermore, a β3AR-selective agonist, BRL 37344, increased NO synthesis whereas the β1AR-selective agonist xamoterol did not. Isoproterenol increased, whereas ET-1 reduced, de novo transcription. The NO synthase inhibitor l-NAME prevented isoproterenol from increasing either NO production or de novo transcription. l-NAME also blocked ET-1-induced NO-production but did not alter the suppression of transcription initiation by ET-1. Inhibition of the cGMP-dependent protein kinase (PKG) using KT5823 also blocked the ability of isoproterenol to increase transcription initiation. Furthermore, immunoblotting revealed eNOS, but not nNOS, in isolated nuclei. Finally, caged, cell-permeable isoproterenol and endothelin-1 analogs were used to selectively activate intracellular β-adrenergic and endothelin receptors in intact adult cardiomyocytes. Intracellular release of caged ET-1 or isoproterenol analogs increased NO production in intact adult cardiomyocytes. Hence, activation of the NO synthase/guanylyl cyclase/PKG pathway is necessary for nuclear β3ARs to increase de novo transcription. Furthermore, we have demonstrated the potential utility of caged receptor ligands in selectively modulating signaling via endogenous intracellular G protein-coupled receptors.

  12. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    SciTech Connect

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K. . E-mail: mkwalker@unm.edu

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.

  13. Muscarinic M(3) facilitation of acetylcholine release from rat myenteric neurons depends on adenosine outflow leading to activation of excitatory A(2A) receptors.

    PubMed

    Vieira, C; Duarte-Araújo, M; Adães, S; Magalhães-Cardoso, T; Correia-de-Sá, P

    2009-10-01

    Acetylcholine (ACh) is a major excitatory neurotransmitter in the myenteric plexus, and it regulates its own release acting via muscarinic autoreceptors. Adenosine released from stimulated myenteric neurons modulates ACh release preferentially via facilitatory A(2A) receptors. In this study, we investigated how muscarinic and adenosine receptors interplay to regulate ACh from the longitudinal muscle-myenteric plexus of the rat ileum. Blockade of the muscarinic M(2) receptor with 11-[[2-1[(diethylamino) methyl-1-piperidinyl]- acetyl

  14. Genetic blockade of adenosine A2A receptors induces cognitive impairments and anatomical changes related to psychotic symptoms in mice.

    PubMed

    Moscoso-Castro, Maria; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2016-07-01

    Schizophrenia is a chronic severe mental disorder with a presumed neurodevelopmental origin, and no effective treatment. Schizophrenia is a multifactorial disease with genetic, environmental and neurochemical etiology. The main theories on the pathophysiology of this disorder include alterations in dopaminergic and glutamatergic neurotransmission in limbic and cortical areas of the brain. Early hypotheses also suggested that nucleoside adenosine is a putative affected neurotransmitter system, and clinical evidence suggests that adenosine adjuvants improve treatment outcomes, especially in poorly responsive patients. Hence, it is important to elucidate the role of the neuromodulator adenosine in the pathophysiology of schizophrenia. A2A adenosine receptor (A2AR) subtypes are expressed in brain areas controlling motivational responses and cognition, including striatum, and in lower levels in hippocampus and cerebral cortex. The aim of this study was to characterize A2AR knockout (KO) mice with complete and specific inactivation of A2AR, as an animal model for schizophrenia. We performed behavioral, anatomical and neurochemical studies to assess psychotic-like symptoms in adult male and female KO and wild-type (WT) littermates. Our results show impairments in inhibitory responses and sensory gating in A2AR KO animals. Hyperlocomotion induced by d-amphetamine and MK-801 was reduced in KO animals when compared to WT littermates. Moreover, A2AR KO animals show motor disturbances, social and cognitive alterations. Finally, behavioral impairments were associated with enlargement of brain lateral ventricles and decreased BDNF levels in the hippocampus. These data highlight the role of adenosine in the pathophysiology of schizophrenia and provide new possibilities for the therapeutic management of schizophrenia. PMID:27133030

  15. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception.

    PubMed

    Biagioni, Audrey Franceschi; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; da Silva, Juliana Almeida; dos Anjos-Garcia, Tayllon; Roncon, Camila Marroni; Corrado, Alexandre Pinto; Zangrossi, Hélio; Coimbra, Norberto Cysne

    2016-03-01

    The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH. PMID:26749090

  16. Renin-angiotensin system blockade: Its contribution and controversy.

    PubMed

    Miyajima, Akira; Kosaka, Takeo; Kikuchi, Eiji; Oya, Mototsugu

    2015-08-01

    Angiotensin II is a key biological peptide in the renin-angiotensin system that regulates blood pressure and renal hemodynamics, and extensive experimental studies have shown that angiotensin II promotes diverse fibrotic changes and induces neovascularization in several inflammatory diseases. It is known that angiotensin II can be controlled using renin-angiotensin system blockade when angiotensin II is the main factor inducing a particular disease, and renin-angiotensin system blockade has assumed a central role in the treatment of inflammatory nephritis, cardiovascular disorders and retinopathy. In contrast, renin-angiotensin system blockade was found to have not only these effects but also other functions, such as inhibition of cancer growth, angiogenesis and metastasis. Numerous studies have sought to elucidate the mechanisms and support these antitumor effects. However, a recent meta-analysis showed that renin-angiotensin system blockade use might in fact increase the incidence of cancer, so renin-angiotensin system blockade use has become somewhat controversial. Although the renin-angiotensin system has most certainly made great contributions to experimental models and clinical practice, some issues still need to be resolved. The present review discusses the contribution and controversy surrounding the renin-angiotensin system up to the present time.

  17. The endothelin pathway: a protective or detrimental target of bardoxolone methyl on cardiac function in patients with advanced chronic kidney disease?

    PubMed

    Camer, Danielle; Huang, Xu-Feng

    2014-01-01

    Bardoxolone methyl has been reported to cause detrimental cardiovascular events in the terminated BEACON Phase III human clinical trial via modulation of the renal endothelin pathway. However, the effects of bardoxolone methyl administration on the endothelin pathway in the heart are unknown. Our purpose in this perspective is to highlight the distinctive opposing roles of the renal and heart endothelin pathway in cardiac function. Furthermore, we address the need for further investigation in order to determine if bardoxolone methyl has a protective role in cardiac function through the suppression of the endothelin pathway in the heart.

  18. Phosphodiesterase-5 activity exerts a coronary vasoconstrictor influence in awake swine that is mediated in part via an increase in endothelin production.

    PubMed

    Zhou, Zhichao; de Beer, Vincent J; Bender, Shawn B; Jan Danser, A H; Merkus, Daphne; Laughlin, M Harold; Duncker, Dirk J

    2014-03-01

    Nitric oxide (NO)-induced coronary vasodilation is mediated through production of cyclic guanosine monophosphate (cGMP) and through inhibition of the endothelin-1 (ET) system. We previously demonstrated that phosphodiesterase-5 (PDE5)-mediated cGMP breakdown and ET each exert a vasoconstrictor influence on coronary resistance vessels. However, little is known about the integrated control of coronary resistance vessel tone by these two vasoconstrictor mechanisms. In the present study, we investigated the contribution of PDE5 and ET to the regulation of coronary resistance vessel tone in swine both in vivo, at rest and during graded treadmill exercise, and in vitro. ETA/ETB receptor blockade with tezosentan (3 mg/kg iv) and PDE5 inhibition with EMD360527 (300 μg·min(-1)·kg(-1) iv) each produced coronary vasodilation at rest and during exercise as well as in preconstricted isolated coronary small arteries. In contrast, tezosentan failed to produce further coronary vasodilation in the presence of EMD360527, both in vivo and in vitro. Importantly, EMD360527 (3 μM) and cGMP analog 8-Br-cGMP (100 μM) had no significant effects on ET-induced contractions of isolated porcine coronary small arteries, suggesting unperturbed ET receptor responsiveness. In contrast, PDE5 inhibition and cGMP blunted the contractions produced by the ET precursor Big ET, but only in vessels with intact endothelium, suggesting that PDE5 inhibition limited ET production in the endothelium of small coronary arteries. In conclusion, PDE5 activity exerts a vasoconstrictor influence on coronary resistance vessels that is mediated, in part, via an increase in endothelial ET production.

  19. The endothelin ET(B) receptor agonist [125I]BQ-3020 binds predominantly to nerves in the bovine retractor penis muscle and penile artery.

    PubMed

    Parkkisenniemi, U M; Palkama, A; Virtanen, I; Klinge, E

    2000-11-01

    Preliminary pharmacological experiments have suggested that in the bovine retractor penis muscle there are relaxation-mediating endothelin ET(B) receptors, at least part of which are located on the inhibitory nitrergic nerves. The present work was undertaken to test this hypothesis by means of receptor autoradiography and additional pharmacological experiments. In the retractor penis muscle and the penile artery, specific binding of the ETB receptor-selective agonist [125I]BQ-3020 took place predominantly to nerve trunks and minor nerve branches. The situation was the same in the dorsal metatarsal artery, that was included as a reference because of its different innervation. Throughout the nerves the silver grains were evenly distributed over the nuclei of Schwann cells and the spaces between them. In the retractor penis there was also a small amount of specific binding to smooth muscle. No specific endothelial binding was observed in any of the tissues examined. The pharmacological studies confirmed that the relaxation of the retractor penis muscle induced by the ET(B) receptor-selective agonist, sarafotoxin S6c, is susceptible to tetrodotoxin as well as to inhibition of nitric oxide synthase. The relaxation was also characterized by inconsistency, weakness and tachyphylaxis. The electrical field stimulation-induced submaximal relaxation of the retractor penis was unaffected by stimulation or blockade of ET(B) receptors. The autoradiography suggests that in all the three bovine tissues studied there are ET(B) receptors located on nerves independently of the type of efferent nerve. The pharmacological experiments do not support the concept that in the bovine retractor penis muscle neuronal ET(B) receptors exert important immediate effects on the functioning of the penile erection-mediating nitrergic nerves.

  20. Endothelin-1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin-resistant obese rats: role of ETA and ETB receptors

    PubMed Central

    Sánchez, A; Martínez, P; Muñoz, M; Benedito, S; García-Sacristán, A; Hernández, M; Prieto, D

    2014-01-01

    Background and Purpose We assessed whether endothelin-1 (ET-1) inhibits NO and contributes to endothelial dysfunction in penile arteries in a model of insulin resistance-associated erectile dysfunction (ED). Experimental Approach Vascular function was assessed in penile arteries, from obese (OZR) and lean (LZR) Zucker rats, mounted in microvascular myographs. Changes in basal and stimulated levels of superoxide (O2−) were detected by lucigenin-enhanced chemiluminescence and ET receptor expression was determined by immunohistochemistry. Key Results ET-1 stimulated acute O2− production that was blunted by tempol and the NADPH oxidase inhibitor, apocynin, but markedly enhanced in obese animals. ET-1 inhibited the vasorelaxant effects of ACh and of the NO donor S-nitroso-N-acetyl-DL-penicillamine in arteries from both LZR and OZR. Selective ETA (BQ123) or ETB receptor (BQ788) antagonists reduced both basal and ET-1-stimulated superoxide generation and reversed ET-1-induced inhibition of NO-mediated relaxations in OZR, while only BQ-123 antagonized ET-1 actions in LZR. ET-1-induced vasoconstriction was markedly enhanced by NO synthase blockade and reduced by endothelium removal and apocynin. In endothelium-denuded penile arteries, apocynin blunted augmented ET-1-induced contractions in OZR. Both ETA and ETB receptors were expressed in smooth muscle and the endothelial layer and up-regulated in arteries from OZR. Conclusions and Implications ET-1 stimulates ETA-mediated NADPH oxidase-dependent ROS generation, which inhibits endothelial NO bioavailability and contributes to ET-1-induced contraction in healthy penile arteries. Enhanced vascular expression of ETB receptors contributes to augmented ROS production, endothelial dysfunction and increased vasoconstriction in erectile tissue from insulin-resistant obese rats. Hence, antagonism of ETB receptors might improve the ED associated with insulin-resistant states. PMID:25091502

  1. Endothelin ETA receptor/lipid peroxides/COX-2/TGF-β1 signalling underlies aggravated nephrotoxicity caused by cyclosporine plus indomethacin in rats

    PubMed Central

    Helmy, Maged W; El-Gowelli, Hanan M; Ali, Rabab M; El-Mas, Mahmoud M

    2015-01-01

    Background and Purpose Cyclosporine (CSA) and non-steroidal anti-inflammatory drugs (NSAIDs) are co-prescribed for some arthritic conditions. We tested the hypothesis that this combined regimen elicits exaggerated nephrotoxicity in rats via the up-regulation of endothelin (ET) receptor signalling. Experimental Approach The effects of a 10 day treatment with CSA (20 mg·kg−1·day−1), indomethacin (5 mg·kg−1·day−1) or their combination on renal biochemical, inflammatory, oxidative and structural profiles were assessed. The roles of ETA receptor and COX-2 pathways in the interaction were evaluated. Key Results Oral treatment with CSA or indomethacin elevated serum urea and creatinine, caused renal tubular atrophy and interstitial fibrosis, increased renal TGF-β1, and reduced immunohistochemical expressions of ETA receptors and COX-2. CSA, but not indomethacin, increased renal ET-1, the lipid peroxidation product malondialdehyde (MDA) and GSH activity. Compared with individual treatments, simultaneous CSA/indomethacin exposure caused: (i) greater elevations in serum creatinine and renal MDA; (ii) loss of the compensatory increase in GSH; (iii) renal infiltration of inflammatory cells and worsening of fibrotic and necrotic profiles; and (iv) increased renal ET-1 and decreased ETA receptor and COX-2 expressions. Blockade of ETA receptors by atrasentan ameliorated the biochemical, structural, inflammatory and oxidative abnormalities caused by the CSA/indomethacin regimen. Furthermore, atrasentan partly reversed the CSA/indomethacin-evoked reductions in the expression of ETA receptor and COX-2 protein. Conclusions and Implications The exaggerated oxidative insult and associated dysregulation of the ETA receptor/COX-2/TGF-β1 signalling might account for the aggravated nephrotoxicity caused by the CSA/indomethacin regimen. The potential renoprotective effect of ETA receptor antagonism might be exploited therapeutically. PMID:26013701

  2. Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia.

    PubMed

    Feldman-Goriachnik, Rachel; Hanani, Menachem

    2011-07-13

    There is immunohistochemical evidence for endothelin (ET) receptors in satellite glial cells in sensory ganglia, but there is no information on the function of these receptors. We used calcium imaging to study this question in isolated mouse trigeminal ganglia and found that satellite glial cells are highly sensitive to ET-1, with threshold at 0.05 nM. Responses displayed strong desensitization at ET-1 concentrations of more than 1 nM. A large component of the response persisted when Ca was deleted from the external medium, consistent with Ca release from internal stores. The use of receptor selective agents showed that the responses were mediated by ETB receptors. We conclude that satellite glial cells display endothelin receptors, which may participate in neuron-glia communications in the trigeminal ganglia.

  3. Molecular characterization of human and bovine endothelin converting enzyme (ECE-1).

    PubMed

    Schmidt, M; Kröger, B; Jacob, E; Seulberger, H; Subkowski, T; Otter, R; Meyer, T; Schmalzing, G; Hillen, H

    1994-12-19

    A membrane-bound protease activity that specifically converts Big endothelin-1 has been purified from bovine endothelial cells (FBHE). The enzyme was cleaved with trypsin and the peptide sequencing analysis confirmed it to be a zinc chelating metalloprotease containing the typical HEXXH (HELTH) motif. RT-PCR and cDNA screens were employed to isolate the complete cDNAs of the bovine and human enzymes. This human metalloprotease was expressed heterologously in cell culture and oocytes. The catalytic activity of the recombinant enzyme is the same as that determined for the natural enzyme. The data suggest that the characterized enzyme represents the functional human endothelin converting enzyme ECE-1. PMID:7805846

  4. The effect of adrenergic blockade on blushing and facial flushing.

    PubMed

    Drummond, P D

    1997-03-01

    The effect of adrenergic blockade on vascular responses in the forehead was assessed during stressful mental arithmetic, singing, and moderate exercise in 21 frequent blushers and 21 infrequent blushers. Adrenergic antagonists were introduced into a small site on the forehead by iontophoresis, and vascular responses were monitored bilaterally with laser Doppler flowmetry. Beta blockade prevented increases in blood flow in infrequent blushers during mental arithmetic and partially inhibited vasodilatation during singing, indicating minor participation of beta-adrenoceptors in blushing. Alpha blockade did not affect blushing but augmented vasodilatation during exercise. Despite higher ratings of self-consciousness in frequent than in infrequent blushers, vascular responses were similar in both groups. Thus, blushing propensity does not appear to be related to the density of alpha- or beta-adrenoceptors in facial vessels and may have a psychological basis. PMID:9090265

  5. Molecular characterization of two endothelin pathways in East African cichlid fishes.

    PubMed

    Diepeveen, Eveline T; Salzburger, Walter

    2011-12-01

    The adaptive radiations of cichlid fishes in East Africa have been associated with the acquisition of evolutionary novelties as well as the ecological opportunities existing in the East African Great lakes. Two remarkable evolutionary innovations are the pharyngeal jaw apparatus, found in all cichlid species, and the anal fin egg-spots of mouthbrooding cichlids. Based on their conserved functions during the development of both the jaw apparatus and pigmentation, the endothelin ligands and receptors form a putative link between these naturally and sexually selected traits. Here we study the evolutionary history of four members of two endothelin pathways (Edn1/EdnrAa and Edn3b/EdnrB1a) to elucidate their possible roles during the evolution and development of key innovations in East African cichlids species. The analyses performed on partial sequences (ca. 6,000 bp per taxon) show that all four endothelin family members evolved under purifying selection, although both ligands are characterized by an accelerated rate of protein evolution in comparison to the receptors. In accordance with earlier findings, we show that the mature protein sequence of Edn1 and Edn3 are highly conserved, also in cichlids, whereas the preproendothelin parts are variable indicating relaxed selective constraints. In the receptors, nonsynonymous substitutions were mainly found in the ligand-binding domains suggesting functional divergence. Gene expression assays with Real-Time PCR indeed reveal that the two studied endothelin pathways are expressed in the cichlid pharyngeal jaw and in the haplochromine egg-spot (among other pigment-cell containing tissues), suggesting their involvement during morphogenesis of naturally and sexually selected traits in cichlids. PMID:22271349

  6. New test for endothelin receptor type B (EDNRB) mutation genotyping in horses.

    PubMed

    Ayala-Valdovinos, Miguel Angel; Galindo-García, Jorge; Sánchez-Chiprés, David; Duifhuis-Rivera, Theodor

    2016-06-01

    Lethal white foal syndrome (LWFS) is an autosomal recessive disease of neonatal foals characterized by a white hair coat and a functional intestinal obstruction. Traditional techniques for identifying the dinucleotide mutation (TC→AG) of the endothelin receptor B gene (EDNRB) associated with LWFS are time-consuming. We developed a new technique based on mutagenically separated polymerase chain reaction (MS-PCR) for simple detection of the EDNRB genotype in horses.

  7. Increased salt sensitivity secondary to leptin resistance in SHHF rats is mediated by endothelin.

    PubMed

    Radin, M Judith; Holycross, Bethany J; Hoepf, Toni M; McCune, Sylvia A

    2003-01-01

    A link between leptin resistance, obesity, and salt sensitivity has been suggested. SHHF/Mcc-fa(cp) rats (SHHF) were used to study the effect of gene dosage of a null mutation of the leptin receptor (cp) on salt sensitivity and response to a combined endothelin A and B receptor antagonist (bosentan). Obese (cp/cp), heterozygous (+/cp), and homozygous lean (+/+) male SHHF were fed a low salt diet (0.3% NaCl) for 7 days, followed by a high salt diet (8.0% NaCl) for 7 days. There were no significant differences in systolic blood pressure between genotypes on low salt. In response to high salt, cp/cp had significantly greater systolic pressure than +/cp and +/+. On high salt diet, cp/cp showed a significant increase in 24 h urinary endothelin excretion and increased renal expression of preproendothelin mRNA. There was no effect of high salt diet on renal excretion of nitric oxide (NOx) or on gene expression of endothelial, neuronal, or cytokine-induced nitric oxide synthase isoforms (eNOS, nNOS, iNOS, respectively). Treatment with bosentan prevented the high salt-induced increment in systolic blood pressure in cp/cp. This was associated with a doubling of renal NOx excretion, but without changes in eNOS, nNOS, or iNOS expression. Endothelin receptor antagonism did not normalize systolic pressure in any of the genotypes. Our studies indicate that obesity secondary to leptin resistance (cp/cp) results in increased salt sensitivity that is mediated by endothelin in the SHHF rat.

  8. Primary Thermometry in the Intermediate Coulomb Blockade Regime

    NASA Astrophysics Data System (ADS)

    Feshchenko, A. V.; Meschke, M.; Gunnarsson, D.; Prunnila, M.; Roschier, L.; Penttilä, J. S.; Pekola, J. P.

    2013-10-01

    We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.

  9. Mechanical vibrations induced resonant breakdown of the Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Pogosov, A. G.; Budantsev, M. V.; Shevyrin, A. A.; Plotnikov, A. E.; Bakarov, A. K.; Toropov, A. I.

    2011-12-01

    Influence of forced mechanical vibrations of a suspended single-electron transistor on electron tunneling through the quantum dot limited by the Coulomb blockade is investigated. It is shown that mechanical oscillations of the quantum dot lead to the Coulomb blockade breakdown, shown in sharp resonant peaks in the transistor conductance dependence on the excitation frequency at values corresponding to the mechanical oscillations eigen modes. The observed effect is presumably connected with oscillations of the mutual electrical capacitances between the quantum dot and surrounding electrodes.

  10. Palmitoylation of the three isoforms of human endothelin-converting enzyme-1.

    PubMed Central

    Schweizer, A; Löffler, B M; Rohrer, J

    1999-01-01

    Endothelin-converting enzyme-1 (ECE-1) is a membrane-bound metalloprotease that catalyses the conversion of inactive big endothelins into active endothelins. Here we have examined whether the three isoforms of human ECE-1 (ECE-1a, ECE-1b and ECE-1c) are modified by the covalent attachment of the fatty acid palmitate and have evaluated a potential functional role of this modification. To do this, wild-type and mutant enzymes were expressed and analysed by metabolic labelling with [3H]palmitate, immunoprecipitation and SDS/PAGE. All three ECE-1 isoforms were found to be palmitoylated via hydroxylamine-sensitive thioester bonds. In addition, the isoforms showed similar levels of acylation. Cys46 in ECE-1a, Cys58 in ECE-1b and Cys42 in ECE-1c were identified as sites of palmitoylation and each of these cysteines accounted for all the palmitoylation that occured in the corresponding isoform. Immunofluorescence analysis demonstrated further that palmitoylated and non-palmitoylated ECE-1 isoforms had the same subcellular localizations. Moreover, complete solubility of the three isoforms in Triton X-100 revealed that palmitoylation does not target ECE-1 to cholesterol and sphingolipid-rich membrane domains or caveolae. The enzymic activities of ECE-1a, ECE-1b and ECE-1c were also not significantly affected by the absence of palmitoylation. PMID:10359648

  11. Activation of the Endothelin System Mediates Pathological Angiogenesis during Ischemic Retinopathy

    PubMed Central

    Patel, Chintan; Narayanan, S. Priya; Zhang, Wenbo; Xu, Zhimin; Sukumari-Ramesh, Sangeetha; Dhandapani, Krishnan M.; Caldwell, R. William; Caldwell, Ruth B.

    2015-01-01

    Retinopathy of prematurity adversely affects premature infants because of oxygen-induced damage of the immature retinal vasculature, resulting in pathological neovascularization (NV). Our pilot studies using the mouse model of oxygen-induced retinopathy (OIR) showed marked increases in angiogenic mediators, including endothelins and endothelin receptor (EDNR) A. We hypothesized that activation of the endothelin system via EDNRA plays a causal role in pathological angiogenesis and up-regulation of angiogenic mediators, including vascular endothelial growth factor A (VEGFA) in OIR. Mice were exposed to 75% oxygen from post-natal day P7 to P12, treated with either vehicle or EDNRA antagonist BQ-123 or EDNRB antagonist BQ-788 on P12, and kept at room air from P12 to P17 (ischemic phase). RT-PCR analysis revealed increased levels of EDN2 and EDNRA mRNA, and Western blot analysis revealed increased EDN2 expression during the ischemic phase. EDNRA inhibition significantly increased vessel sprouting, resulting in enhanced physiological angiogenesis and decreased pathological NV, whereas EDNRB inhibition modestly improved vascular repair. OIR triggered significant increases in VEGFA protein and mRNA for delta-like ligand 4, apelin, angiopoietin-2, and monocyte chemoattractant protein-1. BQ-123 treatment significantly reduced these alterations. EDN2 expression was localized to retinal glia and pathological NV tufts of the OIR retinas. EDN2 also induced VEGFA protein expression in cultured astrocytes. In conclusion, inhibition of the EDNRA during OIR suppresses pathological NV and promotes physiological angiogenesis. PMID:25203536

  12. Endothelin-1 critically influences cardiac function via superoxide-MMP9 cascade

    PubMed Central

    Hathaway, Catherine K.; Grant, Ruriko; Hagaman, John R.; Hiller, Sylvia; Li, Feng; Xu, Longquan; Chang, Albert S.; Madden, Victoria J.; Bagnell, C. Robert; Rojas, Mauricio; Kim, Hyung-Suk; Wu, Bingruo; Zhou, Bin; Smithies, Oliver; Kakoki, Masao

    2015-01-01

    We have generated low-expressing and high-expressing endothelin-1 genes (L and H) and have bred mice with four levels of expression: L/L, ∼20%; L/+, ∼65%; +/+ (wild type), 100%; and H/+, ∼350%. The hypomorphic L allele can be spatiotemporally switched to the hypermorphic H allele by Cre-loxP recombination. Young adult L/L and L/+ mice have dilated cardiomyopathy, hypertension, and increased plasma volumes, together with increased ventricular superoxide levels, increased matrix metalloproteinase 9 (Mmp9) expression, and reduced ventricular stiffness. H/+ mice have decreased plasma volumes and significantly heavy stiff hearts. Global or cardiomyocyte-specific switching expression from L to H normalized the abnormalities already present in young adult L/L mice. An epithelial sodium channel antagonist normalized plasma volume and blood pressure, but only partially corrected the cardiomyopathy. A superoxide dismutase mimetic made superoxide levels subnormal, reduced Mmp9 overexpression, and substantially improved cardiac function. Genetic absence of Mmp9 also improved cardiac function, but increased superoxide remained. We conclude that endothelin-1 is critical for maintaining normal contractile function, for controlling superoxide and Mmp9 levels, and for ensuring that the myocardium has sufficient collagen to prevent overstretching. Even a modest (∼35%) decrease in endothelin-1 gene (Edn1) expression is sufficient to cause cardiac dysfunction. PMID:25848038

  13. Mutations in the Endothelin Receptor Type A Cause Mandibulofacial Dysostosis with Alopecia

    PubMed Central

    Gordon, Christopher T.; Weaver, K. Nicole; Zechi-Ceide, Roseli Maria; Madsen, Erik C.; Tavares, Andre L.P.; Oufadem, Myriam; Kurihara, Yukiko; Adameyko, Igor; Picard, Arnaud; Breton, Sylvain; Pierrot, Sébastien; Biosse-Duplan, Martin; Voisin, Norine; Masson, Cécile; Bole-Feysot, Christine; Nitschké, Patrick; Delrue, Marie-Ange; Lacombe, Didier; Guion-Almeida, Maria Leine; Moura, Priscila Padilha; Garib, Daniela Gamba; Munnich, Arnold; Ernfors, Patrik; Hufnagel, Robert B.; Hopkin, Robert J.; Kurihara, Hiroki; Saal, Howard M.; Weaver, David D.; Katsanis, Nicholas; Lyonnet, Stanislas; Golzio, Christelle; Clouthier, David E.; Amiel, Jeanne

    2015-01-01

    The endothelin receptor type A (EDNRA) signaling pathway is essential for the establishment of mandibular identity during development of the first pharyngeal arch. We report four unrelated individuals with the syndrome mandibulofacial dysostosis with alopecia (MFDA) who have de novo missense variants in EDNRA. Three of the four individuals have the same substitution, p.Tyr129Phe. Tyr129 is known to determine the selective affinity of EDNRA for endothelin 1 (EDN1), its major physiological ligand, and the p.Tyr129Phe variant increases the affinity of the receptor for EDN3, its non-preferred ligand, by two orders of magnitude. The fourth individual has a somatic mosaic substitution, p.Glu303Lys, and was previously described as having Johnson-McMillin syndrome. The zygomatic arch of individuals with MFDA resembles that of mice in which EDNRA is ectopically activated in the maxillary prominence, resulting in a maxillary to mandibular transformation, suggesting that the p.Tyr129Phe variant causes an EDNRA gain of function in the developing upper jaw. Our in vitro and in vivo assays suggested complex, context-dependent effects of the EDNRA variants on downstream signaling. Our findings highlight the importance of finely tuned regulation of EDNRA signaling during human craniofacial development and suggest that modification of endothelin receptor-ligand specificity was a key step in the evolution of vertebrate jaws. PMID:25772936

  14. Autoantibodies to angiotensin and endothelin receptors in systemic sclerosis induce cellular and systemic events associated with disease pathogenesis

    PubMed Central

    2014-01-01

    Introduction Vasculopathy, inflammatory fibrosis and functional autoantibodies (Abs) are major manifestations of systemic sclerosis (SSc). Abs directed against the angiotensin II type 1 receptor (AT1R) and endothelin-1 type A receptor (ETAR) are associated with characteristic disease features including vascular, inflammatory, and fibrotic complications indicating their role in SSc pathogenesis. Therefore, the impact of anti-AT1R and anti-ETAR Abs on initiation of inflammation and fibrosis was analyzed. Methods Anti-AT1R and anti-ETAR Ab-positive immunoglobulin G (IgG) from SSc patients (SSc-IgG) was used for experiments. Healthy donor IgG served as a normal control, and AT1R and ETAR activation was inhibited by antagonists. Protein expression was measured with ELISA, mRNA expression with real time-PCR, endothelial repair with a scratch assay, and collagen expression with immunocytochemistry. Transendothelial neutrophil migration was measured with a culture insert system, and neutrophil ROS activation with immunofluorescence. Neutrophils in bronchoalveolar lavage fluids (BALFs) were analyzed microscopically after passive transfer of SSc-IgG or NC-IgG into naïve C57BL/6J mice. KC plasma levels were quantified by a suspension array system. Histologic analyses were performed by using light microscopy. Results Anti-AT1R and anti-ETAR Ab-positive SSc-IgG induced activation of human microvascular endothelial cells (HMEC-1). Elevated protein and mRNA levels of the proinflammatory chemokine interleukin-8 (IL-8, CXCL8) and elevated mRNA levels of the vascular cell adhesion molecule-1 (VCAM-1) were induced in HMEC-1. Furthermore, activation of HMEC-1 with SSc-IgG increased neutrophil migration through an endothelial cell layer and activation of reactive oxygen species (ROS). SSc-IgG decreased HMEC-1 wound repair and induced type I collagen production in healthy donor skin fibroblasts. Effects of migration, wound repair, and collagen expression were dependent on the Ab

  15. Endothelin induces two types of contractions of rat uterus: phasic contractions by way of voltage-dependent calcium channels and developing contractions through a second type of calcium channels

    SciTech Connect

    Kozuka, M.; Ito, T.; Hirose, S.; Takahashi, K.; Hagiwara, H.

    1989-02-28

    Effects of endothelin on nonvascular smooth muscle have been examined using rat uterine horns and two modes of endothelin action have been revealed. Endothelin (0.3 nM) caused rhythmic contractions of isolated uterus in the presence of extracellular calcium. The rhythmic contractions were completely inhibited by calcium channel antagonists. These characteristics of endothelin-induced contractions were very similar to those induced by oxytocin. Binding assays using /sup 125/I-endothelin showed that endothelin and the calcium channel blockers did not compete for the binding sites. However, endothelin was unique in that it caused, in addition to rhythmic contractions, a slowly developing monophasic contraction that was insensitive to calcium channel blockers. This developing contraction became dominant at higher concentrations of endothelin and was also calcium dependent.

  16. [Alfa-blockade with doxazosin vs tamsulozin in combination of intermittent androgen blockade in patients with prostate cancer].

    PubMed

    Muradian, A A

    2005-03-01

    We have studied the efficacy of Alfa-blockade with Doxazosin vs Tamsulozin in combination with Intermittent Androgen Blockade (IAB) in patients with low grade prostate cancer. Our clinical trial included: I group (n=15) of patients who received doxazosin with IAB and flutamide; II group (n=13) of patients who received tamsulozin in combination with IAB and flutamide and III (n=33) group with flutamid monotherapy alone. Our results have shown that the combination of doxasozin and IAB with the flutamide leads to the better improvement of uroflowmetry and IPSS parameters, whereas the tamsulozin and IAB with flutamide combination induce those improvements for the longer period during the disease remission.

  17. The Union Blockade and Demoralization of the South: Relative Prices in the Confederacy.

    ERIC Educational Resources Information Center

    Ekelund, Robert B., Jr.; Thornton, Mark

    1992-01-01

    Applies the economic concept of relative prices to the blockaded Confederacy during the U.S. Civil War. Describes how the Union blockade encouraged blockade runners to supply luxury items while soldiers lacked food, clothing, and ammunition. Contends that the resultant demoralization was a factor in the demise of the Confederacy. (CFR)

  18. Accurate Coulomb blockade thermometry up to 60 kelvin.

    PubMed

    Meschke, M; Kemppinen, A; Pekola, J P

    2016-03-28

    We demonstrate experimentally a precise realization of Coulomb blockade thermometry working at temperatures up to 60 K. Advances in nano-fabrication methods using electron beam lithography allow us to fabricate uniform arrays of sufficiently small tunnel junctions to guarantee an overall temperature reading precision of about 1%. PMID:26903107

  19. A new regime of Pauli-spin blockade

    NASA Astrophysics Data System (ADS)

    Perron, Justin K.; Stewart, M. D.; Zimmerman, Neil M.

    2016-04-01

    Pauli-spin blockade (PSB) is a transport phenomenon in double quantum dots that allows for a type of spin to charge conversion often used to probe fundamental physics such as spin relaxation and singlet-triplet coupling. In this paper, we theoretically explore Pauli-spin blockade as a function of magnetic field B applied parallel to the substrate. In the well-studied low magnetic field regime, where PSB occurs in the forward (1, 1) → (0, 2) tunneling direction, we highlight some aspects of PSB that are not discussed in detail in existing literature, including the change in size of both bias triangles measured in the forward and reverse biasing directions as a function of B. At higher fields, we predict a crossover to "reverse PSB" in which current is blockaded in the reverse direction due to the occupation of a spin singlet as opposed to the traditional triplet blockade that occurs at low fields. The onset of reverse PSB coincides with the development of a tail like feature in the measured bias triangles and occurs when the Zeeman energy of the polarized triplet equals the exchange energy in the (0, 2) charge configuration. In Si quantum dots, these fields are experimentally accessible; thus, this work suggests a way to observe a crossover in magnetic field to qualitatively different behavior.

  20. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    ERIC Educational Resources Information Center

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  1. Non-linear HRV indices under autonomic nervous system blockade.

    PubMed

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  2. Ischemia triggered by spreading neuronal activation is induced by endothelin-1 and hemoglobin in the subarachnoid space.

    PubMed

    Petzold, Gabor C; Einhäupl, Karl M; Dirnagl, Ulrich; Dreier, Jens P

    2003-11-01

    Delayed cerebral vasospasm has a major impact on the outcome of subarachnoid hemorrhage. Two important candidates to cause the arterial spasm are the red blood cell product oxyhemoglobin and the vasoconstrictor endothelin-1, although oxyhemoglobin alone is not sufficient to induce cerebral ischemia and endothelin-1 leads to ischemia only at relatively high concentrations. In this study, we demonstrated that the combination of oxyhemoglobin and endothelin-1 triggered spreading neuronal activation in rat cortex in vivo. In contrast with the expected transient increase of regional cerebral blood flow during spreading depression, however, cerebral blood flow decreased profoundly and was long-lasting, paralleled by delayed repolarization of the steady (direct current) potential. These changes are characteristic of cortical spreading ischemia. Replacing oxyhemoglobin for the nitric oxide synthase inhibitor Nomega-nitro-L-arginine mimicked these effects, implicating nitric oxide scavenging functions of oxyhemoglobin. Furthermore, the effect of endothelin-1 was related to a reduction of Na(+)-/K(+)-ATPase activity rather than solely to its vasoconstrictive properties. In conclusion, the threshold concentration of endothelin-1 that induces cerebral ischemia is profoundly reduced via a complex interaction between the neuronal/astroglial network and the cortical microcirculation if nitric oxide availability declines. The results may have implications for the understanding of subarachnoid hemorrhage-related cortical lesions.

  3. Novel isonahocol E3 exhibits anti-inflammatory and anti-angiogenic effects in endothelin-1-stimulated human keratinocytes.

    PubMed

    Sah, Shyam K; Kim, Byung-Hak; Park, Geon-Tae; Kim, Sunghwan; Hwa Jang, Kyoung; Eun Jeon, Ju; Shin, Jongheon; Kim, Tae-Yoon

    2013-10-25

    Endothelin-1 (ET-1) is reported to be a potent mitogenic and pro-angiogenic factor that plays a vital role in both physiological and pathological processes. ET-1 is implicated in dermal cell proliferation and skin disorders, such as psoriasis and atopic dermatitis. ET-1, endothelin ETA receptor, and endothelin ETB receptor could be potential targets for developing specific therapeutics to treat such disorders. Here, we provide the first report that an isonahocol [2,-5-dihydroxy-3-(13-hydroxy-3,-7,-11,-15-tetramethyl-12-oxo-hexadeca-2,-6,-14-trienyl)-phenyl]- acetic acid methyl ester (isonahocol E3) from the brown algae Sargassum siliquastrum has functional antagonistic activities against ET-1 induced inflammatory and pro-angiogenic effects. Isonahocol E3 significantly inhibited ET-1-induced cell proliferation, as well as inflammatory mediators, such as interleukin-6 (IL-6) and interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), and pro-angiogenic factors including metalloproteinases in immortalized human keratinocytes. We also found that isonahocol E3 reduced expression level of endothelin ETA receptor, and endothelin ETB receptor as well as suppressed ET-1-induced extracellular signal-regulated kinase (ERK) phosphorylation. Taken together, our results suggest that isonahocol E3 can exert anti-inflammatory and anti-angiogenic activities at least by regulating the expression of ET-1 receptors and ERK signaling pathway.

  4. Estimation of Some Oxidative Stress Parameters and Blood Pressure After Administration of Endothelin-1 (ET-1) in Rats.

    PubMed

    Kleniewska, Paulina; Kowalczyk, Agata; Ciesla, Wlodzimierz; Goraca, Anna

    2015-04-01

    The aim of the study was to investigate changes in the plasma antioxidative activity and in lipid peroxidation after administration of endothelin-1 (ET-1) and endothelin receptor blockers and additionally, to estimate blood pressure. The study was performed on male Wistar rats (n = 6 per group) divided into 4 groups which received: (1) saline, (2) endothelin-1 (ET-1) (3 μg/kg b.w.) + saline, (3) BQ123 (1 mg/kg) + ET-1 (3 μg/kg), and (4) BQ788 (3 mg/kg) + ET-1 (3 μg/kg b.w.). The endothelin receptor antagonist was injected intravenously 30 min before ET-1 administration. Blood pressure was monitored, and the blood was collected before the saline or ET-1 administration as well as 60 and 300 min after their administration. The antioxidative properties were examined by FRAP method (ferric reducing ability of plasma), and the concentration of lipid peroxidation products was examined by the reaction with thiobarbituric acid (TBARS). It was estimated that intravenous administration of endothelin receptor blocker ETA increases plasma antioxidative properties (p < 0.01) and parallelly decreases the process of lipid peroxidation (p < 0.05 vs. ET-1) and blood pressure (p < 0.05).

  5. Endothelin-1 as a predictor of impaired glucose tolerance and type 2 diabetes--A longitudinal study in the Vara-Skövde Cohort.

    PubMed

    Olausson, Josefin; Daka, Bledar; Hellgren, Margareta I; Larsson, Charlotte A; Petzold, Max; Lindblad, Ulf; Jansson, Per-Anders

    2016-03-01

    We addressed whether endothelin-1, a marker of endothelial dysfunction, predicts impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in a population study in south-western Sweden. Follow-up after 9.7 years showed an association between circulating endothelin-1 levels at baseline and development of IGT/T2DM in women but not in men.

  6. Anandamide inhibits endothelin-1 production by human cultured endothelial cells: a new vascular action of this endocannabinoid.

    PubMed

    Ronco, Ana María; Llanos, Miguel; Tamayo, Daniela; Hirsch, Sandra

    2007-01-01

    The endogenous cannabinoid receptor agonist anandamide (AEA) exerts vascular effects such as vasodilatation and hypotension. In this study, we determined the effect of AEA on endothelin-1 production by cultured human umbilical vein endothelial cells. Anandamide (>or=5 micromol/l) significantly decreased endothelin-1 production in a dose-dependent manner, a response not affected by the specific CB1 receptor antagonist/inverse agonist SR-141716A. Adenosine, via activation of adenosine receptors (also targets for SR-141716A), was not involved in these effects. Conversely, AEA increased nitric oxide (NO) production, an effect inhibited by SR-141716A, indicating the involvement of CB1 receptors. Therefore, we hypothesize that AEA effects on endothelial cells may lead to vasodilatation through independent concerted mechanisms, involving a non-CB1 receptor-dependent inhibition of endothelin-1 production and a CB1-mediated increase of NO.

  7. Effects of the mammalian vasoconstrictor peptide, endothelin-1, on Tetrahymena pyriformis GL, and the immunocytological detection of endogenous endothelin-like activity.

    PubMed

    Köhidai, L; Csaba, G

    1995-06-01

    The vasoconstrictor endothelin-1 (ET-1) is shown to have significant physiological effects on a unicellular organism, Tetrahymena pyriformis. These responses include: (1) A significant increase in intracellular [Ca2+] induced by 10(-10) M ET-1; (2) Increased chemotaxis, maximal at 10(-10) M; and (3) A small inhibition of proliferation at the 10(-13)-10(-12) M concentration range. Immunocytochemical detection of endogenous ET-1 using rabbit antibodies directed against human or porcine ET-1 indicates that this is a further example of the widening group of vertebrate hormones now known to be synthesized by Tetrahymena. These observations suggest that hormones are of considerable antiquity in their phylogenetic appearance and have been highly conserved throughout evolution.

  8. Human breast cancer cells contain a phosphoramidon-sensitive metalloproteinase which can process exogenous big endothelin-1 to endothelin-1: a proposed mitogen for human breast fibroblasts.

    PubMed Central

    Patel, K. V.; Schrey, M. P.

    1995-01-01

    Endothelin-1 (ET-1) levels are elevated in human breast tumours compared with normal and benign tissues, and in the presence of insulin-like growth factor 1 (IGF-I) ET-1 is a potent mitogen for human breast fibroblasts. In this study we have examined the ability of intact human breast cancer cell lines to process exogenously added big ET-1 (1-38) to the active mature ET-1 peptide by using a specific radioimmunometric assay. In both hormome-dependent (MCF-7, T47-D) and hormone-independent (MDA-MB-231) breast cancer cell lines the putative endothelin-converting enzyme (ECE) exhibited apparent Michaelis-Menten kinetics when converting added big ET-1 to ET-1. Both basal ET-1 production and exogenously added big ET-1 to ET-1 conversion were greatly reduced in all three cell lines in response to the metalloproteinase inhibitor phosphoramidon but were insensitive to other classes of protease inhibitors. Inhibition was also observed when cells were incubated in the presence of the divalent cation chelators 1,10-phenanthroline and EDTA. In MCF-7 cells the optimal pH for the ECE activity using a saponin cell permeabilisation procedure was found to residue within a narrow range of 6.2-7.26. Our results indicate that human breast cancer cells contain a neutral phosphoramidon-sensitive metalloproteinase which can process big ET-1 to ET-1. In the breast this conversion could contribute substantially to the local extracellular levels of this proposed paracrine breast fibroblast mitogen. PMID:7880721

  9. Characterization of three non-peptide endothelin receptor ligands using human cloned ETA and ETB receptors.

    PubMed Central

    Buchan, K. W.; Alldus, C.; Christodoulou, C.; Clark, K. L.; Dykes, C. W.; Sumner, M. J.; Wallace, D. M.; White, D. G.; Watts, I. S.

    1994-01-01

    1. A number of putative endothelin (ET) receptor ligands were synthesized with a view to assessing their relative affinity for human recombinant ET receptors. 2. Human (h) and endothelin ETA and ETB receptor open reading frames were cloned by reverse transcription-polymerase chain reaction into the mammalian expression vector pcDNA1 and stable cell lines were created by transfection of Chinese hamster ovary cells. 3. Scatchard analyses of saturation isotherms for the specific binding of [125I]-endothelin-1 ([125I]-ET-1) to membranes, prepared from Chinese hamster ovary cells transfected with hETA or hETB receptors, yielded values for equilibrium dissociation constants (Kd) of 20.5 +/- 1.8 pM and 25.5 +/- 5.5 pM, respectively. Hill coefficients did not differ significantly from unity, suggesting binding to homogeneous, non-interacting receptor populations. 4. Pharmacological characterization of the transfected hETA and hETB receptors was undertaken by measuring the relative abilities of ETA and ETB receptor-selective peptide ligands to inhibit binding of [125I]ET-1. For interaction with hETA receptors, the relative order of potency was ET-1 > ET-3 = FR139317 = BQ123 >[Ala1,3,11,15]-ET-1 = sarafotoxin S6c (S6c). In contrast, the relative order of potency, at hETB receptors, was ET-1 = ET-3 = [Ala1,3,11,15]-ET-1 = S6c >> FR139317 = BQ123. 5. The novel non-peptide ligands, Ro 46-2005, SB 209670 and BMS 182874, were found to inhibit [125I]-ET-1 binding to human recombinant ETA and ETB receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7952888

  10. Endothelin-1 in exhaled breath condensate of allergic asthma patients with exercise-induced bronchoconstriction

    PubMed Central

    Zietkowski, Ziemowit; Skiepko, Roman; Tomasiak, Maria M; Bodzenta-Lukaszyk, Anna

    2007-01-01

    Background Exercise-induced bronchoconstriction (EIB) is a highly prevalent condition, whose pathophysiology is not well understood. Endothelins are proinflammatory, profibrotic, broncho- and vasoconstrictive peptides which play an important role in the development of airway inflammation and remodeling in asthma. The aim of the study was to evaluate the changes in endothelin-1 levels in exhaled breath condensate following intensive exercise in asthmatic patients. Methods The study was conducted in a group of 19 asthmatic patients (11 with EIB, 8 without EIB) and 7 healthy volunteers. Changes induced by intensive exercise in the concentrations of endothelin-1 (ET-1) in exhaled breath condensate (EBC) during 24 hours after an exercise challenge test were determined. Moreover, the possible correlations of these measurements with the results of other tests commonly associated with asthma and with the changes of airway inflammation after exercise were observed. Results In asthmatic patients with EIB a statistically significant increase in the concentration of ET-1 in EBC collected between 10 minutes and 6 hours after an exercise test was observed. The concentration of ET-1 had returned to its initial level 24 hours after exercise. No effects of the exercise test on changes in the concentrations of ET-1 in EBC in either asthmatic patients without EIB or healthy volunteers were observed. A statistically significant correlation between the maximum increase in ET-1 concentrations in EBC after exercise and either baseline FENO and the increase in FENO or BHR to histamine 24 hours after exercise in the groups of asthmatics with EIB was revealed. Conclusion The release of ET-1 from bronchial epithelium through the influence of many inflammatory cells essential in asthma and interactions with other cytokines, may play an important role in increase of airway inflammation which was observed after postexercise bronchoconstriction in asthmatic patients. PMID:17973986

  11. Chemical function based pharmacophore generation of endothelin-A selective receptor antagonists.

    PubMed

    Funk, Oliver F; Kettmann, Viktor; Drimal, Jan; Langer, Thierry

    2004-05-20

    Both quantitative and qualitative chemical function based pharmacophore models of endothelin-A (ET(A)) selective receptor antagonists were generated by using the two algorithms HypoGen and HipHop, respectively, which are implemented in the Catalyst molecular modeling software. The input for HypoGen is a training set of 18 ET(A) antagonists exhibiting IC(50) values ranging between 0.19 nM and 67 microM. The best output hypothesis consists of five features: two hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI) function. The highest scoring Hip Hop model consists of six features: three hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI). It is the result of an input of three highly active, selective, and structurally diverse ET(A) antagonists. The predictive power of the quantitative model could be approved by using a test set of 30 compounds, whose activity values spread over 6 orders of magnitude. The two pharmacophores were tested according to their ability to extract known endothelin antagonists from the 3D molecular structure database of Derwent's World Drug Index. Thereby the main part of selective ET(A) antagonistic entries was detected by the two hypotheses. Furthermore, the pharmacophores were used to screen the Maybridge database. Six compounds were chosen from the output hit lists for in vitro testing of their ability to displace endothelin-1 from its receptor. Two of these are new potential lead compounds because they are structurally novel and exhibit satisfactory activity in the binding assay. PMID:15139753

  12. Chemical function based pharmacophore generation of endothelin-A selective receptor antagonists.

    PubMed

    Funk, Oliver F; Kettmann, Viktor; Drimal, Jan; Langer, Thierry

    2004-05-20

    Both quantitative and qualitative chemical function based pharmacophore models of endothelin-A (ET(A)) selective receptor antagonists were generated by using the two algorithms HypoGen and HipHop, respectively, which are implemented in the Catalyst molecular modeling software. The input for HypoGen is a training set of 18 ET(A) antagonists exhibiting IC(50) values ranging between 0.19 nM and 67 microM. The best output hypothesis consists of five features: two hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI) function. The highest scoring Hip Hop model consists of six features: three hydrophobic (HY), one ring aromatic (RA), one hydrogen bond acceptor (HBA), and one negative ionizable (NI). It is the result of an input of three highly active, selective, and structurally diverse ET(A) antagonists. The predictive power of the quantitative model could be approved by using a test set of 30 compounds, whose activity values spread over 6 orders of magnitude. The two pharmacophores were tested according to their ability to extract known endothelin antagonists from the 3D molecular structure database of Derwent's World Drug Index. Thereby the main part of selective ET(A) antagonistic entries was detected by the two hypotheses. Furthermore, the pharmacophores were used to screen the Maybridge database. Six compounds were chosen from the output hit lists for in vitro testing of their ability to displace endothelin-1 from its receptor. Two of these are new potential lead compounds because they are structurally novel and exhibit satisfactory activity in the binding assay.

  13. 17β-Estradiol regulates the expression of endothelin receptor type B in the heart

    PubMed Central

    Nuedling, Simone; Eickels, Martin van; Alléra, Axel; Doevendans, Pieter; Meyer, Rainer; Vetter, Hans; Grohé, Christian

    2003-01-01

    Little is known about the interaction of 17β-estradiol (E2) and the vasoactive endothelin system in the heart. Endothelin signaling is activated in a failing heart and may contribute to myocardial dysfunction and remodeling. Therefore, we investigated the regulation of proteins of the endothelin system (ppET-1, ECE and ETA-R and ETB-R) in the hearts of female spontaneously hypertensive rats (SHR) with respect to E2. Relative expression levels of the respective cardiac mRNA obtained from sham-operated, ovariectomized and ovariectomized E2-substituted SHR were quantified by real-time PCR. Ovariectomy led to a significant upregulation of the ETB-R mRNA (2.6±0.8-fold) in the left ventricular myocardium, which was not attendant with an alteration of ETA-R, ECE and ppET-1 mRNA expression. An upregulation of the relative expression level of ETB-R protein due to ovariectomy was also demonstrated by radioligand binding assay. Upregulation of both ETB-R mRNA and ETB-R protein expression was completely inhibited by E2 replacement. To confirm these results in in vitro experiments, we quantified the mRNA of ET-R subtypes from isolated cardiomyocytes in the presence and absence of E2 (10−8 M, 24 h). Our data showed a markedly downregulated level of ETB-R mRNA in cardiomyocytes stimulated with E2. ETB-R downregulation was not attendant with the alteration of ETA-R, ECE and ppET-1 mRNA expression. Taken together, these data demonstrate that estrogen regulates the expression of ETB-R in rat ventricular myocardium in vivo and in vitro. These observations may help to understand gender-based differences found in cardiovascular disease. PMID:12967949

  14. Endothelin B receptor contribution to peripheral microvascular function in women with polycystic ovary syndrome

    PubMed Central

    Wenner, Megan M; Taylor, Hugh S; Stachenfeld, Nina S

    2011-01-01

    Abstract Endothelin-1 is elevated in women with polycystic ovary syndrome (PCOS), and may play a role in the endothelial dysfunction associated with PCOS. Endothelin-1 binds two receptor subtypes, endothelin A (ET-A) and endothelin B (ET-B). We hypothesized that ET-A mediates vasoconstriction in the cutaneous microvasculature in women with and without PCOS. We further hypothesized that while the ET-B receptors mediate vasodilatation in both groups of women, this response would be blunted in women with PCOS. During local skin warming, we used laser Doppler flowmetry combined with intradermal microdialysis to measure skin blood flow (SkBF) during graded ET-A (BQ-123) and ET-B (BQ-788) antagonist infusions in women with (n = 6) and without (n = 8) PCOS. In both groups, SkBF increased during local heating. The percentage of maximal SkBF–[BQ123] sigmoidal dose–response curve indicated a vasodilatory response as the concentration of the antagonist increased (Hill slope 4.96 ± 4.77, 4.74 ± 5.01; logED50 2.53 ± 0.09, 2.49 ± 0.09 nm, for PCOS and Control, respectively). In contrast, the % max SkBF–[BQ788] curve indicated a vasoconstrictive response (Hill slope –4.69 ± 3.85, –4.03 ± 3.85; logED50, 2.56 ± 0.09, 2.41 ± 0.12 nm, in PCOS and Control). Moreover, the SkBF–[BQ788] curve shifted to the right in women with PCOS, suggesting attenuated ET-B receptor mediated vasodilatation during local skin warming compared to Controls. Thus, the endothelium located ET-B receptors function similarly in women with and without PCOS, although with blunted responsiveness in women with PCOS. Our studies suggest that the lower ET-B receptor responsiveness associated with PCOS may reflect lower endothelial-mediated vasodilatation independent of generally lower vascular reactivity. PMID:21825025

  15. Endothelin-3 production by human rhabdomyosarcoma: a possible new marker with a paracrine role.

    PubMed

    Palladini, Arianna; Astolfi, Annalisa; Croci, Stefania; De Giovanni, Carla; Nicoletti, Giordano; Rosolen, Angelo; Sartori, Francesca; Lollini, Pier-Luigi; Landuzzi, Lorena; Nanni, Patrizia

    2006-03-01

    Several autocrine and paracrine growth factor circuits have been found in human rhabdomyosarcoma cells. In this study we show that endothelin-3 (ET-3), a vasoactive peptide, is produced by human rhabdomyosarcoma cell lines, whereas it is not expressed by human sarcoma cell lines of non-muscle origin. We did not find evidence of a significant autocrine loop; nevertheless ET-3 produced by rhabdomyosarcoma cells can act as a paracrine factor, since it promotes migration of endothelial cells. Moreover ET-3 is present in plasma of mice bearing xenografts of human rhabdomyosarcoma cells, and may be potential new marker of the human rhabdomyosarcoma to be studied further.

  16. Alteration of Endothelins: A Common Pathogenetic Mechanism in Chronic Diabetic Complications

    PubMed Central

    Khan, Zia Ali; Cukiernik, Mark; Fukuda, Gen; Chen, Shali; Mukherjee, Suranjana

    2002-01-01

    Endothelin (ET) peptides perform several physiological, vascular, and nonvascular functions and are widely distributed in a number of tissues. They are altered in several disease processes including diabetes. Alteration of ETs have been demonstrated in organs of chronic diabetic complications in both experimental and clinical studies. The majority of the effects of ET alteration in diabetes are due to altered vascular function. Furthermore, ET antagonists have been shown to prevent structural and functional changes induced by diabetes in animal models. This review discusses the contribution of ETs in the pathogenesis and the potential role of ET antagonism in the treatment of chronic diabetic complications. PMID:12546275

  17. Kinetic parameters for the generation of endothelins-1,-2 and -3 by human cathepsin E.

    PubMed Central

    Robinson, P S; Lees, W E; Kay, J; Cook, N D

    1992-01-01

    The specific conversion of human endothelin (ET) precursors big ET-1, big ET-2 and big ET-3 into their respective ET by cathepsin E was examined. Comparable pH optima were obtained for ET-1 and ET-2 generation, whereas effective conversion of big ET-3 into ET-3 necessitated a lower pH value. Determination of kinetic parameters (Km, kcat.) for all three conversions indicated that the precursors were efficiently bound by cathepsin E. The significance of the values obtained for the catalytic-centre activities and the effect of a specific inhibitor are discussed. PMID:1599425

  18. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis. PMID:27381687

  19. Counting Atoms Using Interaction Blockade in an Optical Superlattice

    SciTech Connect

    Cheinet, P.; Trotzky, S.; Schnorrberger, U.; Moreno-Cardoner, M.; Foelling, S.; Bloch, I.; Feld, M.

    2008-08-29

    We report on the observation of an interaction blockade effect for ultracold atoms in optical lattices, analogous to the Coulomb blockade observed in mesoscopic solid state systems. When the lattice sites are converted into biased double wells, we detect a discrete set of steps in the well population for increasing bias potentials. These correspond to tunneling resonances where the atom number on each side of the barrier changes one by one. This allows us to count and control the number of atoms within a given well. By evaluating the amplitude of the different plateaus, we can fully determine the number distribution of the atoms in the lattice, which we demonstrate for the case of a superfluid and Mott insulating regime of {sup 87}Rb.

  20. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis.

  1. Silicon-based Coulomb blockade thermometer with Schottky barriers

    NASA Astrophysics Data System (ADS)

    Tuboltsev, V.; Savin, A.; Rogozin, V. D.; Räisänen, J.

    2014-04-01

    A hybrid Coulomb blockade thermometer (CBT) in form of an array of intermittent aluminum and silicon islands connected in series via tunnel junctions was fabricated on a thin silicon-on-insulator (SOI) film. Tunnel barriers in the micrometer size junctions were formed by metal-semiconductor Schottky contacts between aluminium electrodes and heavily doped silicon. Differential conductance through the array vs. bias voltage was found to exhibit characteristic features of competing thermal and charging effects enabling absolute temperature measurements over the range of ˜65 to ˜500 mK. The CBT performance implying the primary nature of the thermometer demonstrated for rather trivial architecture attempted in this work paves a route for introduction of Coulomb blockade thermometry into well-developed contemporary SOI technology.

  2. Conductance of a proximitized nanowire in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    van Heck, B.; Lutchyn, R. M.; Glazman, L. I.

    2016-06-01

    We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.

  3. Vasopressin V1 receptors contribute to hemodynamic and sympathoinhibitory responses evoked by stimulation of adenosine A2a receptors in NTS.

    PubMed

    Scislo, Tadeusz J; O'Leary, Donal S

    2006-05-01

    Activation of adenosine A2a receptors in the nucleus of the solitary tract (NTS) decreases mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), whereas increases in preganglionic adrenal sympathetic nerve activity (pre-ASNA) occur, a pattern similar to that observed during hypotensive hemorrhage. Central vasopressin V1 receptors may contribute to posthemorrhagic hypotension and bradycardia. Both V1 and A2a receptors are densely expressed in the NTS, and both of these receptors are involved in cardiovascular control; thus they may interact. The responses elicited by NTS A2a receptors are mediated mostly via nonglutamatergic mechanisms, possibly via release of vasopressin. Therefore, we investigated whether blockade of NTS V1 receptors alters the autonomic response patterns evoked by stimulation of NTS A2a receptors (CGS-21680, 20 pmol/50 nl) in alpha-chloralose-urethane anesthetized male Sprague-Dawley rats. In addition, we compared the regional sympathetic responses to microinjections of vasopressin (0.1-100 ng/50 nl) into the NTS. Blockade of V1 receptors reversed the normal decreases in MAP into increases (-95.6 +/- 28.3 vs. 51.4 +/- 15.7 integralDelta%), virtually abolished the decreases in HR (-258.3 +/- 54.0 vs. 18.9 +/- 57.8 integralDeltabeats/min) and RSNA (-239.3 +/- 47.4 vs. 15.9 +/- 36.1 integralDelta%), and did not affect the increases in pre-ASNA (279.7 +/- 48.3 vs. 233.1 +/- 54.1 integralDelta%) evoked by A2a receptor stimulation. The responses partially returned toward normal values approximately 90 min after the blockade. Microinjections of vasopressin into the NTS evoked dose-dependent decreases in HR and RSNA and variable MAP and pre-ASNA responses with a tendency toward increases. We conclude that the decreases in MAP, HR, and RSNA in response to NTS A2a receptor stimulation may be mediated via release of vasopressin from neural terminals in the NTS. The differential effects of NTS V1 and A2a receptors on

  4. Touch Perception Altered by Chronic Pain and by Opioid Blockade.

    PubMed

    Case, Laura K; Čeko, Marta; Gracely, John L; Richards, Emily A; Olausson, Håkan; Bushnell, M Catherine

    2016-01-01

    Touch plays a significant role in human social behavior and social communication, and its rewarding nature has been suggested to involve opioids. Opioid blockade in monkeys leads to increased solicitation and receipt of grooming, suggesting heightened enjoyment of touch. We sought to study the role of endogenous opioids in perception of affective touch in healthy adults and in patients with fibromyalgia, a chronic pain condition shown to involve reduced opioid receptor availability. The pleasantness of touch has been linked to the activation of C-tactile fibers, which respond maximally to slow gentle touch and correlate with ratings of pleasantness. We administered naloxone to patients and healthy controls to directly observe the consequences of µ-opioid blockade on the perceived pleasantness and intensity of touch. We found that at baseline chronic pain patients showed a blunted distinction between slow and fast brushing for both intensity and pleasantness, suggesting reduced C-tactile touch processing. In addition, we found a differential effect of opioid blockade on touch perception in healthy subjects and pain patients. In healthy individuals, opioid blockade showed a trend toward increased ratings of touch pleasantness, while in chronic pain patients it significantly decreased ratings of touch intensity. Further, in healthy individuals, naloxone-induced increase in touch pleasantness was associated with naloxone-induced decreased preference for slow touch, suggesting a possible effect of opioid levels on processing of C-tactile fiber input. These findings suggest a role for endogenous opioids in touch processing, and provide further evidence for altered opioid functioning in chronic pain patients. PMID:27022625

  5. Deterministic entanglement of two neutral atoms via Rydberg blockade

    SciTech Connect

    Zhang, X. L.; Isenhower, L.; Gill, A. T.; Walker, T. G.; Saffman, M.

    2010-09-15

    We demonstrate the deterministic entanglement of two individually addressed neutral atoms using a Rydberg blockade mediated controlled-not gate. Parity oscillation measurements reveal a Bell state fidelity of F=0.58{+-}0.04, which is above the entanglement threshold of F=0.5, without any correction for atom loss, and F=0.71{+-}0.05 after correcting for background collisional losses. The fidelity results are shown to be in good agreement with a detailed error model.

  6. Dynamical Coulomb blockade of tunnel junctions driven by alternating voltages

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann

    2015-12-01

    The theory of the dynamical Coulomb blockade is extended to tunneling elements driven by a time-dependent voltage. It is shown that, for standard setups where an external voltage is applied to a tunnel junction via an impedance, time-dependent driving entails an excitation of the modes of the electromagnetic environment by the applied voltage. Previous approaches for ac driven circuits need to be extended to account for the driven bath modes. A unitary transformation involving also the variables of the electromagnetic environment is introduced which allows us to split off the time dependence from the Hamiltonian in the absence of tunneling. This greatly simplifies perturbation-theoretical calculations based on treating the tunneling Hamiltonian as a perturbation. In particular, the average current flowing in the leads of the tunnel junction is studied. Explicit results are given for the case of an applied voltage with a constant dc part and a sinusoidal ac part. The connection with standard dynamical Coulomb blockade theory for constant applied voltage is established. It is shown that an alternating voltage source reveals significant additional effects caused by the electromagnetic environment. The hallmark of the dynamical Coulomb blockade in ac driven devices is a suppression of higher harmonics of the current by the electromagnetic environment. The theory presented basically applies to all tunneling devices driven by alternating voltages.

  7. Intrathecal rimantadine induces motor, proprioceptive, and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Wang, Jieh-Neng; Wang, Jhi-Joung; Chen, Yu-Wen; Hung, Ching-Hsia

    2016-04-01

    The purpose of the experiment was to evaluate the local anesthetic effect of rimantadine in spinal anesthesia. Rimantadine in a dose-dependent fashion was constructed after intrathecally injecting the rats with four different doses. The potency and duration of rimantadine were compared with that of the local anesthetic lidocaine at producing spinal motor, nociceptive, and proprioceptive blockades. We demonstrated that intrathecal rimantadine dose-dependently produced spinal motor, nociceptive, and proprioceptive blockades. On the 50% effective dose (ED50) basis, the ranks of potencies at inducing spinal motor, nociceptive, and proprioceptive blockades was lidocaine>rimantadine (P<0.01). Rimantadine exhibited more nociceptive block (ED50) than motor block (P<0.05). At equi-anesthetic doses (ED25, ED50, and ED75), the spinal block duration produced by rimantadine was longer than that produced by lidocaine (P<0.01). Furthermore, rimantadine (26.52μmol/kg) prolonged the nociceptive nerve block more than the motor block (P<0.001). Our preclinical data showed that rimantadine, with a more sensory-selective action over motor block, was less potent than lidocaine. Rimantadine produced longer duration in spinal anesthesia when compared with lidocaine.

  8. Sequential RAAS blockade: is it worth the risk?

    PubMed

    Persson, Frederik; Rossing, Peter

    2014-03-01

    Soon after the emergence of the renin-angiotensin-aldosterone system (RAAS) blocking treatment as the cornerstone of renoprotective treatment in the prevention and treatment of diabetic and nondiabetic CKD, it was investigated if a higher degree of achievable RAAS blockade by combining more than one compound is feasible and advantageous. Regardless of the benefits from using monotherapy for diabetic kidney disease, there is still much improvement to wish for in terms of kidney prognosis in these populations. A great deal of research has gone into evaluating combinations of the RAAS blocking treatments in different populations and with different drugs and doses. Studies have mostly been short-term and use surrogate endpoints such as albuminuria. Side effects have been well known and expected in terms of increasing potassium levels and hypotension, but to an acceptable extent. With recent disappointing results from major hard endpoint trials using dual RAAS blockade the concept is now under scrutiny. In this review we will discuss the pros and cons of dual RAAS blockade, with facts and findings from smaller studies, endpoint trials, and meta-analyses. PMID:24602465

  9. Shape-sensitive Pauli blockade in a bent carbon nanotube

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Pályi, András

    2015-01-01

    Motivated by a recent experiment [F. Pei et al., Nat. Nanotechnol. 7, 630 (2012), 10.1038/nnano.2012.160], we theoretically study the Pauli blockade transport effect in a double quantum dot embedded in a bent carbon nanotube. We establish a model for the Pauli blockade, taking into account the strong g -factor anisotropy that is linked to the local orientation of the nanotube axis in each quantum dot. We provide a set of conditions under which our model is approximately mapped to the spin-blockade model of Jouravlev and Nazarov [O. N. Jouravlev and Y. V. Nazarov, Phys. Rev. Lett. 96, 176804 (2006), 10.1103/PhysRevLett.96.176804]. The results we obtain for the magnetic anisotropy of the leakage current, together with their qualitative geometrical explanation, provide a possible interpretation of previously unexplained experimental results. Furthermore, we find that in a certain parameter range, the leakage current becomes highly sensitive to the shape of the tube, and this sensitivity increases with increasing g -factor anisotropy. This mutual dependence of the electron transport and the tube shape allows for mechanical control of the leakage current, and for characterization of the tube shape via measuring the leakage current.

  10. Brain temperature responses to salient stimuli persist during dopamine receptor blockade despite a blockade of locomotor responses.

    PubMed

    Kiyatkin, Eugene A

    2008-12-01

    We examined how an acute dopamine (DA) receptor blockade affects locomotor and brain (nucleus accumbens or NAcc), muscle and skin temperature responses to three arousing stimuli (procedure of sc injection, tail-pinch and social interaction with another male rat) and intravenous cocaine (1 mg/kg). DA receptor blockade was induced by mixture of D1- (SCH23390) and D-2 selective (eticlopride) DA antagonists at 0.2 mg/kg doses. Each arousing stimulus and cocaine caused locomotor activation, prolonged increase in NAcc and muscle temperature (0.6-1.0 degrees C for 20-50 min) and transient skin hypothermia (-0.6 degrees C for 1-3 min) in drug-naive conditions. DA receptor blockade strongly decreased basal locomotor activity, but moderately increased brain, muscle and skin temperatures. Therefore, selective interruption of DA transmission does not inhibit the brain, making it more metabolically active and warmer despite skin vasodilatation and the enhanced heat loss to the body and the external environment. DA antagonists strongly decreased locomotor responses to all stimuli and cocaine, had no effects on acute skin vasoconstriction, but differentially affected stimuli- and drug-induced changes in NAcc and muscle temperatures. While brain and muscle temperatures induced by cocaine were fully blocked and both temperatures slightly decreased, temperature increases induced by tail-pinch and social interaction, despite a significant attenuation, persisted during DA receptor blockade. These data are discussed to define the role of the DA system in regulating the central activation processes and behavioral responsiveness to natural arousing and drug stimuli. PMID:18727935

  11. Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens

    PubMed Central

    Gubin, Matthew M.; Zhang, Xiuli; Schuster, Heiko; Caron, Etienne; Ward, Jeffrey P.; Noguchi, Takuro; Ivanova, Yulia; Hundal, Jasreet; Arthur, Cora D.; Krebber, Willem-Jan; Mulder, Gwenn E.; Toebes, Mireille; Vesely, Matthew D.; Lam, Samuel S.K.; Korman, Alan J.; Allison, James P.; Freeman, Gordon J.; Sharpe, Arlene H.; Pearce, Erika L.; Schumacher, Ton N.; Aebersold, Ruedi; Rammensee, Hans-Georg; Melief, Cornelis J. M.; Mardis, Elaine R.; Gillanders, William E.; Artyomov, Maxim N.; Schreiber, Robert D.

    2014-01-01

    The immune system plays key roles in determining the fate of developing cancers by not only functioning as a tumour promoter facilitating cellular transformation, promoting tumour growth and sculpting tumour cell immunogenicity1–6, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion1,2,7. Yet clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer induced immunosuppression. In many individuals, immunosuppression is mediated by Cytotoxic T-Lymphocyte Associated Antigen-4 (CTLA-4) and Programmed Death-1 (PD-1), two immunomodulatory receptors expressed on T cells8,9. Monoclonal antibody (mAb) based therapies targeting CTLA-4 and/or PD-1 (checkpoint blockade) have yielded significant clinical benefits—including durable responses—to patients with different malignancies10–13. However, little is known about the identity of the tumour antigens that function as the targets of T cells activated by checkpoint blockade immunotherapy and whether these antigens can be used to generate vaccines that are highly tumour-specific. Herein, we use genomics and bioinformatics approaches to identify tumour-specific mutant proteins as a major class of T cell rejection antigens following αPD-1 and/or αCTLA-4 therapy of mice bearing progressively growing sarcomas and show that therapeutic synthetic long peptide (SLP) vaccines incorporating these mutant epitopes induce tumour rejection comparably to checkpoint blockade immunotherapy. Whereas, mutant tumour antigen-specific T cells are present in progressively growing tumours, they are reactivated following treatment with αPD-1- and/or αCTLA-4 and display some overlapping but mostly treatment-specific transcriptional profiles rendering them capable of mediating tumour rejection. These results reveal that tumour-specific mutant antigens (TSMA) are not only important targets of checkpoint blockade therapy but also can be

  12. Animals lacking endothelin converting enzyme-2 are deficient in learning and memory

    PubMed Central

    Rodriguiz, Ramona M.; Gadnidze, Khatuna; Ragnauth, Andre; Dorr, Nathan; Yanagisawa, Masashi; Wetsel, William C.; Devi, Lakshmi A.

    2009-01-01

    Endothelin converting enzyme-2 is a metalloprotease that possesses many properties consistent with it being a neuropeptide processing enzyme. This protease is found primarily in neural tissues with high levels of expression in midbrain, cerebellum, hypothalamus, frontal cortex, and spinal cord, and with moderate levels in hippocampus and striatum. To evaluate its role in neural function, mice have been generated lacking this enzyme. Physical appearance, autonomic reflexes, motor coordination, balance, locomotor activity, and spontaneous emotional responses appear normal in these knockout mice. However, these mutants display deficits in learning and memory as evidenced by marked impairment in the Morris water maze. Knockout mice are deficient also in object recognition memory where they show delays in discerning changes in object location, as well as in recognizing the introduction of a novel object. Here, perseveration appears to interfere with learning and memory. Finally, mutants are impaired in social transmission of food preference where they show poor short-term memory and perturbations in long-term memory; the latter can be ameliorated by reminder cues. As endothelin converting enzyme-2 has been implicated in Alzheimer’s disease, the deficits in learning and memory in the knockout mice may provide unique insights into processes that may contribute to this disease and possible other disorders of cognition. PMID:21450041

  13. Adaptations of the endothelin system after exercise training in a porcine model of ischemic heart disease

    PubMed Central

    Robles, Juan Carlos; Heaps, Cristine L.

    2014-01-01

    Objective Test the hypothesis that exercise training would increase endothelin-mediated vasoconstriction in collateral-dependent arteries via enhanced contribution of ETA. Methods An ameroid constrictor was surgically placed around the proximal LCX artery to induce gradual occlusion in Yucatan miniature swine. Eight-weeks postoperatively, pigs were randomized into sedentary or exercise-training (treadmill; 5 days/wk; 14 wks) groups. Subsequently, arteries (~150 μm diameter) were isolated from collateral-dependent and nonoccluded myocardial regions and studied. Results Following exercise training, ET-1-mediated contraction was significantly enhanced in collateral-dependent arteries. Exercise training induced a disproportionate increase in the ETA contribution to the ET-1 contractile response in collateral-dependent arteries, with negligible contributions by ETB. In collateral-dependent arteries of sedentary pigs, inhibition of ETA or ETB did not significantly alter ET-1 contractile responses in collateral-dependent arteries, suggesting compensation by the functionally active receptor. These adaptations occurred without significant changes in ETA, ETB, or ECE mRNA levels but with significant exercise training-induced elevations in endothelin levels in both nonoccluded and collateral-dependent myocardial regions Conclusions Taken together, these data reveal differential adaptive responses in collateral-dependent arteries based upon physical activity level. ETA and ETB appear to compensate for one another to maintain contraction in sedentary pigs, whereas exercise-training favors enhanced contribution of ETA. PMID:25220869

  14. Comparative safety and tolerability of endothelin receptor antagonists in pulmonary arterial hypertension.

    PubMed

    Aversa, Meghan; Porter, Sandra; Granton, John

    2015-05-01

    Pulmonary arterial hypertension (PAH) is a condition that leads to progressive right heart failure and death unless recognized and treated early. Endothelin, a potent endogenous vasoconstrictor, has been identified as an important mediator of PAH. Endothelin receptor antagonists (ERAs) have been associated with an improvement in exercise capacity and time to clinical worsening in patients with Group 1 PAH, and three different ERAs are currently approved for use in this population: bosentan, ambrisentan, and macitentan. While all three ERAs are generally well-tolerated, they each have important adverse effects that need to be recognized and monitored. In particular, they may cause anemia, peripheral edema, and mild cardiac, respiratory, neurologic, and gastrointestinal adverse effects to varying degrees. Although bosentan increases a patient's risk of developing liver transaminitis, ambrisentan and macitentan do not appear to confer the same risk of hepatotoxicity at this time. Important drug-drug interactions, particularly involving other drugs metabolized via the cytochrome P450 pathway, are important to recognize when prescribing ERAs. In this review, we provide a brief overview of the current state of knowledge as it relates to the adverse effect profiles, tolerability, and drug-drug interactions of this class of medication as informed by the results of randomized clinical trials, drug surveillance programs, and regulatory agencies.

  15. Endothelin-converting enzyme is a plausible target gene for hypoxia-inducible factor.

    PubMed

    Khamaisi, Mogher; Toukan, Hala; Axelrod, Jonathan H; Rosenberger, Christian; Skarzinski, Galia; Shina, Ahuva; Meidan, Rina; Koesters, Robert; Rosen, Seymour; Walkinshaw, Gail; Mimura, Imari; Nangaku, Masaomi; Heyman, Samuel N

    2015-04-01

    Renal endothelin-converting enzyme (ECE)-1 is induced in experimental diabetes and following radiocontrast administration, conditions characterized by renal hypoxia, hypoxia-inducible factor (HIF) stabilization, and enhanced endothelin synthesis. Here we tested whether ECE-1 might be a HIF-target gene in vitro and in vivo. ECE-1 transcription and expression increased in cultured vascular endothelial and proximal tubular cell lines, subject to hypoxia, to mimosine or cobalt chloride. These interventions are known to stabilize HIF signaling by inhibition of HIF-prolyl hydroxylases. In rats, HIF-prolyl-hydroxylase inhibition by mimosine or FG-4497 increased HIF-1α immunostaining in renal tubules, principally in distal nephron segments. This was associated with markedly enhanced ECE-1 protein expression, predominantly in the renal medulla. A progressive and dramatic increase in ECE-1 immunostaining over time, in parallel with enhanced HIF expression, was also noted in conditional von Hippel-Lindau knockout mice. Since HIF and STAT3 are cross-stimulated, we triggered HIF expression by STAT3 activation in mice, transfected by or injected with a chimeric IL-6/IL-6-receptor protein, and found a similar pattern of enhanced ECE-1 expression. Chromatin immunoprecipitation sequence (ChIP-seq) and PCR analysis in hypoxic endothelial cells identified HIF binding at the ECE-1 promoter and intron regions. Thus, our findings suggest that ECE-1 may be a novel HIF-target gene.

  16. Glucose-dependent insulinotropic peptide stimulates thymidine incorporation in endothelial cells: role of endothelin-1

    NASA Technical Reports Server (NTRS)

    Ding, Ke-Hong; Zhong, Qing; Isales, Carlos M.; Iscules, C. M. (Principal Investigator)

    2003-01-01

    We have previously characterized the receptor for glucose-dependent insulinotropic polypeptide (GIPR) in vascular endothelial cells (EC). Different EC types were found to contain distinct GIPR splice variants. To determine whether activation of the GIPR splice variants resulted in different cellular responses, we examined GIP effects on human umbilical vein endothelial cells (HUVEC), which contain two GIPR splice variants, and compared them with a spontaneously transformed human umbilical vein EC line, ECV 304, which contains four GIPR splice variants. GIP dose-dependently stimulated HUVEC and ECV 304 proliferation as measured by [3H]thymidine incorporation. GIP increased endothelin-1 (ET-1) secretion from HUVEC but not from ECV 304. Use of the endothelin B receptor blocker BQ-788 resulted in an inhibition of [3H]thymidine incorporation in HUVEC but not in ECV 304. These findings suggest that, although GIP increases [3H]thymidine incorporation in both HUVEC and ECV 304, this proliferative response is mediated by ET-1 only in HUVEC. These differences in cellular response to GIP may be related to differences in activation of GIPR splice variants.

  17. Gnaq and Gna11 in the Endothelin Signaling Pathway and Melanoma

    PubMed Central

    Urtatiz, Oscar; Van Raamsdonk, Catherine D.

    2016-01-01

    In this article, we first briefly outline the function of G protein coupled receptors in cancer, and then specifically examine the roles of the seven transmembrane G protein coupled Endothelin B receptor (Ednrb) and the G proteins, GNAQ and GNA11, in both melanocyte development and melanoma. Ednrb plays an essential role in melanocyte development. GNAQ and GNA11 are oncogenes when mutated in certain types of melanocytic lesions, being extremely frequent in uveal melanoma, which forms from melanocytes located in the eye. Previously, we reported that in mice, Schwann cell precursor derived melanocytes colonize the dermis and hair follicles, while the inter-follicular epidermis is populated by other melanocytes. A pattern has emerged whereby melanocytes whose activities are affected by gain-of-function mutations of the Endothelin 3 ligand and Gαq/11 are the same subset that arise from Schwann cell precursors. Furthermore, the forced expression of the constitutively active human GNAQQ209L oncogene in mouse melanocytes only causes hyper-proliferation in the subset that arise from Schwann cell precursors. This has led us to hypothesize that in Schwann cell precursor derived melanocytes, Ednrb signals through Gαq/11. Ednrb is promiscuous and may signal through other G protein alpha subunits in melanomas located in the inter-follicular epidermis. PMID:27148356

  18. ORAI1 Ca(2+) channels control endothelin-1-induced mitogenesis and melanogenesis in primary human melanocytes.

    PubMed

    Stanisz, Hedwig; Stark, Alexandra; Kilch, Tatiana; Schwarz, Eva C; Müller, Cornelia S L; Peinelt, Christine; Hoth, Markus; Niemeyer, Barbara A; Vogt, Thomas; Bogeski, Ivan

    2012-05-01

    UV radiation of the skin triggers keratinocytes to secrete endothelin-1 (ET-1) that binds to endothelin receptors on neighboring melanocytes. Melanocytes respond with a prolonged increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), which is necessary for proliferation and melanogenesis. A major fraction of the Ca(2+) signal is caused by entry through Ca(2+)-permeable channels of unknown identity in the plasma membrane. ORAI Ca(2+) channels are molecular determinants of Ca(2+) release-activated Ca(2+) (CRAC) channels and are expressed in many tissues. Here, we show that ORAI1-3 and their activating partners stromal interaction molecules 1 and 2 (STIM1 and STIM2) are expressed in human melanocytes. Although ORAI1 is the predominant ORAI isoform, STIM2 mRNA expression exceeds STIM1. Inhibition of ORAI1 by 2-aminoethoxydiphenyl borate (2-APB) or downregulation of ORAI1 by small interfering RNA (siRNA) reduced Ca(2+) entry and CRAC current amplitudes in activated melanocytes. In addition, suppression of ORAI1 caused reduction in the ET-1-induced cellular viability, melanin synthesis, and tyrosinase activity. Our results imply a role for ORAI1 channels in skin pigmentation and their potential involvement in UV-induced stress responses of the human skin.

  19. Endothelin receptors and their cellular signal transduction mechanism in human cultured prostatic smooth muscle cells.

    PubMed

    Saita, Y; Koizumi, T; Yazawa, H; Morita, T; Takenaka, T; Honda, K

    1997-06-01

    1. Endothelin (ET) receptors, and their cellular signal transduction mechanism, were characterized in a primary culture of human prostatic smooth muscle cells (HP cell). 2. [125I]-ET-1 and [125I]-ET-3 binding studies revealed that both ETA and ETB receptors were present in the HP cells, and the ratio of ETA to ETB receptors was 1.4:1. 3. Analysis of ET receptor mRNA by reverse transcription-polymerase chain reaction also demonstrated that HP cells express both ETA and ETB receptors. 4. ET-1 and ET-3 increased intracellular free Ca2+ concentration ([Ca2+]i) in the HP cells in a concentration-dependent manner. Use of subtype selective antagonists BQ-123 and BQ-788, indicated that both ETA and ETB receptors were coupled to an increase in [Ca2+]i. 5. Pretreatment of the cells with pertussis toxin resulted in a significant but partial attenuation of the [Ca2+]i increase mediated through the ETA and ETB receptors. However, sensitivity to pertussis toxin (PTX) was significantly different between them. 6. In conclusion, HP cells possess ETA and ETB receptors. Further, these two endothelin receptor subtypes evoke an increase in [Ca2+]i possibly via the action of different GTP-binding proteins. PMID:9208135

  20. Down-regulation of endothelin binding sites in rat vascular smooth muscle cells

    SciTech Connect

    Roubert, P.; Gillard, V.; Plas, P.; Chabrier, P.E.; Braquet, P. )

    1990-04-01

    In cultured rat aortic smooth muscle cells, ({sup 125}I)endothelin (ET-1) bound to an apparent single class of high affinity recognition sites with a dissociation constant of 1.84 +/- 0.29 nmol/L and a maximum binding of 62 +/- 10.5 fmol/10(6) cells. The binding was not affected by calcium antagonists or vasoactive substances, including angiotensin II, arginine vasopressin, atrial natriuretic factor and bradykinin. Exposure of the cells to ET-1 (0.01 nmol/L to 10 nmol/L) resulted in an apparent dose-dependent reduction of the number of endothelin binding sites with no significant modification of its binding affinity. The time course of the down-regulation of ET-1 binding sites showed that this effect was present after 30 min incubation and persisted after 18 h. This indicates that down-regulation of ET-1 binding sites can modulate the activity of ET-1 and suggests a rapid internalization of ET-1 in vascular cells.

  1. Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates.

    PubMed

    Kuraku, Shigehiro; Takio, Yoko; Sugahara, Fumiaki; Takechi, Masaki; Kuratani, Shigeru

    2010-05-01

    In jawed vertebrates, the Dlx code, or nested expression patterns of Dlx genes, specify the dorsoventral polarity of pharyngeal arches, downstream of endothelin-1 (Edn-1) and its effectors, Bapx1 (Nkx3.2) and dHand (Hand2). To elucidate the evolution of the specification mechanism of the oropharyngeal skeletal system, lamprey homologs of Dlx, Edn, endothelin receptor (Ednr), Bapx1, and dHand were identified. Our analysis suggested that the Edn gene family emerged at the advent of vertebrates, and that gene duplications leading to the different Edn gnathostome subtypes (Edn1-3) occurred before the cyclostome-gnathostome split. This timing of gene duplications, giving rise to multiple subtypes, was also implied for Dlx, Ednr, Hand, and Bapx. In lamprey embryos, nested expressions of Dlx genes were not observed in pharyngeal arches, nor was any focal expression of Bapx1, known in gnathostomes to specify the jaw joint. The dHand homolog, however, was expressed more intensively ventrally, as in gnathostomes. Lamprey homologs of Edn-1 and EdnrA were also shown to be expressed as described in mice, indicating involvement of this signaling pathway in the craniofacial patterning early in vertebrate evolution. These results suggest that the last common ancestor of all the extant vertebrates would have possessed basic gene repertoires involved in oropharyngeal patterning in gnathostomes, but the elaborate genetic program leading to the Dlx code is likely to have been acquired uniquely in gnathostomes. PMID:20171204

  2. Reflex hypertensive response induced by capsaicin involves endothelin-dependent mechanisms.

    PubMed

    Akella, Aparna; Deshpande, Shripad B

    2015-01-01

    Capsaicin, a nociceptive agent produces triphasic pressure response in rats. The mechanisms underlying capsaicin-induced pressure responses are not clear. Therefore, the present study was undertaken to determine the mechanisms involved in capsaicin - induced pressure responses. The trachea, jugular vein and femoral artery were cannulated in anaesthetized rats. Capsaicin (10 µg/kg; i.v) - induced reflex changes in the blood pressure, respiratory excursions and ECG were recorded before/after vagotomy in the absence/presence of antagonists. Capsaicin produced the triphasic pressure response characterized by immediate fall, recovery (intermediate phase) and delayed progressive fall. After vagotomy, the immediate hypotension was abolished and the intermediate pressure response was potentiated as a hypertensive response while the delayed hypotensive response persisted. The time-matched heart rate changes (bradycardia) and respiratory changes (tachypnea in delayed phase) were abolished after vagotomy. Pretreatment with endothelin receptor antagonist (bosentan; 10 mg/kg) blocked the capsiaicn-induced intermediate hypertensive response in vagotomised animals but not the delayed hypotension. Pretreatment with nitric oxide synthase (NOS) inhibitor (L-NAME; 30 pg/kg), prostaglandin synthase inhibitor (indomethacin; 10 mg/kg) and kinin synthase inhibitor (aprotinin; 6000 KIU) did not block the delayed hypotensive response. These results demonstrate that capsaicin-induced intermediate hypertensive response involves endothelin-dependent mechanisms and the delayed hypotensive response is independent of nitrergic, prostaglandinergic or kininergic mechanisms.

  3. Endothelin receptors and their cellular signal transduction mechanism in human cultured prostatic smooth muscle cells

    PubMed Central

    Saita, Yuji; Koizumi, Tomonobu; Yazawa, Hidenori; Morita, Takashi; Takenaka, Toichi; Honda, Kazuo

    1997-01-01

    Endothelin (ET) receptors, and their cellular signal transduction mechanism, were characterized in a primary culture of human prostatic smooth muscle cells (HP cell). [125I]-ET-1 and [125I]-ET-3 binding studies revealed that both ETA and ETB receptors were present in the HP cells, and the ratio of ETA to ETB receptors was 1.4:1. Analysis of ET receptor mRNA by reverse transcription-polymerase chain reaction also demonstrated that HP cells express both ETA and ETB receptors. ET-1 and ET-3 increased intracellular free Ca2+ concentration ([Ca2+]i) in the HP cells in a concentration-dependent manner. Use of subtype selective antagonists BQ-123 and BQ-788, indicated that both ETA and ETB receptors were coupled to an increase in [Ca2+]i. Pretreatment of the cells with pertussis toxin resulted in a significant but partial attenuation of the [Ca2+]i increase mediated through the ETA and ETB receptors. However, sensitivity to pertussis toxin (PTX) was significantly different between them. In conclusion, HP cells possess ETA and ETB receptors. Further, these two endothelin receptor subtypes evoke an increase in [Ca2+]i possibly via the action of different GTP-binding proteins. PMID:9208135

  4. Short-term regulation of tyrosine hydroxylase activity and expression by endothelin-1 and endothelin-3 in the rat posterior hypothalamus.

    PubMed

    Perfume, Guadalupe; Morgazo, Carolina; Nabhen, Sabrina; Batistone, Agustina; Hope, Sandra I; Bianciotti, Liliana G; Vatta, Marcelo S

    2007-08-16

    Brain catecholamines are involved in several biological functions regulated by the hypothalamus. We have previously reported that endothelin-1 and -3 (ET-1 and ET-3) modulate norepinephrine release in the anterior and posterior hypothalamus. As tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, the aim of the present work was to investigate the effects of ET-1 and ET-3 on TH activity, total enzyme level and the phosphorylated forms of TH in the rat posterior hypothalamus. Results showed that ET-1 and ET-3 diminished TH activity but the response was abolished by both selective ET(A) and ET(B) antagonists (BQ-610 and BQ-788, respectively). In addition ET(A) and ET(B) selective agonists (sarafotoxin S6b and IRL-1620, respectively) failed to affect TH activity. In order to investigate the intracellular signaling coupled to endothelins (ETs) response, nitric oxide (NO), phosphoinositide, cAMP/PKA and CaMK-II pathways were studied. Results showed that N(omega)-nitro-l-arginine methyl ester and 7-nitroindazole (NO synthase and neuronal NO synthase inhibitors, respectively), 1H-[1,2,4]-oxadiazolo[4,3-alpha]quinozalin-1-one and KT-5823 (soluble guanylyl cyclase, and PKG inhibitors, respectively) inhibited ETs effect on TH activity. Further, sodium nitroprusside and 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and cGMP analog, respectively) mimicked ETs response. ETs-induced reduction of TH activity was not affected by a PKA inhibitor but it was abolished by PLC, PKC and CaMK-II inhibitors as well as by an IP(3) receptor antagonist. On the other hand, both ETs did not modify TH total level but reduced the phosphorylation of serine residues of the enzyme at positions 19, 31 and 40. Present results suggest that ET-1 and ET-3 diminished TH activity through an atypical ET or ET(C) receptor coupled to the NO/cGMP/PKG, phosphoinositide and CaMK-II pathways. Furthermore, TH diminished activity may result from the reduction of the

  5. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  6. Involvement of nitric oxide pathways in short term modulation of tyrosine hydroxylase activity by endothelins 1 and 3 in the rat anterior hypothalamus.

    PubMed

    Morgazo, Carolina; Perfume, Guadalupe; Legaz, Guillermina; di Nunzio, Andrea; Hope, Sandra I; Bianciotti, Liliana G; Vatta, Marcelo S

    2005-09-01

    The ability of endothelins 1 and 3 (ET-1 and ET-3) to reduce neuronal norepinephrine release through ETB receptor activation involving nitric oxide (NO) pathways in the rat anterior hypothalamus region (AHR) was previously reported. In the present work, we studied the effects of ET-1 and -3 on tyrosine hydroxylase (TH) activity and the possible involvement of NO pathways. Results showed that ET-1 and -3 (10 nM) diminished TH activity in AHR and this effect was blocked by a selective ETB receptor antagonist (100 nM BQ-788), but not by a ET(A) receptor antagonist (BQ-610). To confirm these results, 1 microM IRL-1620 (ET(B) agonist) reduced TH activity whereas 300 nM sarafotoxin S6b falled to modify it. N(omega)-Nitro-L-arginine methyl ester (10 microM), 7-nitroindazole (10 microM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-ona (10 microM), KT5823 (2 microM), inhibitors of nitric oxide synthase, neuronal nitric oxide synthase, NO-sensitive-guanylyl cyclase, and protein kinase G, respectively, did not modify the reduction of TH activity produced by ETs. In addition, both 100 microM sodium nitroprusside and 50 microM 8-bromoguanosine-3',5'-cyclic monophosphate (NO donor and guanosine-3',5'-cyclic monophosphate analog, respectively) diminished TH activity. Present results showed that ET-1 and ET-3 diminished TH activity through the activation of ET(B) receptors involving the NO/guanosine-3',5'-cyclic monophosphate/protein kinase G pathway. Taken jointly present and previous results it can be concluded that both ETs play an important role as modulators of norepinephrine neurotransmission in the rat AHR.

  7. Endothelin-1, an ulcer inducer, promotes gastric ulcer healing via mobilizing gastric myofibroblasts and stimulates production of stroma-derived factors.

    PubMed

    Nishida, Tsutomu; Tsuji, Shingo; Kimura, Arata; Tsujii, Masahiko; Ishii, Syuji; Yoshio, Toshiyuki; Shinzaki, Shinichiro; Egawa, Satoshi; Irie, Takanobu; Yasumaru, Masakazu; Iijima, Hideki; Murata, Hiroaki; Kawano, Sunao; Hayashi, Norio

    2006-05-01

    Endothelin (ET)-1 is a potent inducer of peptic ulcers. The roles of ET-1 in ulcer healing, however, have remained unclear, and these were investigated in mice. Gastric ulcers were induced in mice by serosal application of acetic acid. Three days later, mice were given a neutralizing ET-1 antibody or nonimmunized serum. The ulcer size, amount of fibrosis and myofibroblasts, and localization of ET-1 and ET(A/B) receptors were analyzed. To elucidate the mechanisms underlying the effects of ET-1, we examined the proliferation, migration, and release of growth and angiogenic factors in gastric myofibroblasts with or without ET-1. The expression of prepro-ET-1 (an ET-1 precursor) and ET-converting enzyme-1 was examined in gastric myofibroblasts using RT-PCR. Immunoneutralization of ET-1 delayed gastric ulcer healing. The areas of fibrosis and myofibroblasts were smaller in the anti-ET-1 antibody group than in the control. ET-1 was expressed in the gastric epithelium, myofibroblasts, and other cell types. ET(A) receptors, but not ET(B) receptors, were present in myofibroblasts. ET-1 increased proliferation and migration of gastric myofibroblasts. ET-1 stimulated the release of hepatocyte growth factor, VEGF, PGE(2), and IL-6 from gastric myofibroblasts. mRNA for prepro-ET-1 and ET-converting enzyme-1 was also expressed. ET-1 promotes the accumulation of gastric myofibroblasts and collagen fibrils at gastric ulcers. ET-1 also stimulates migration and proliferation of gastric myofibroblasts and enhances the release of growth factors, angiogenic factors, and PGE(2). Thus ET-1 has important roles not only in ulcer formation but also in ulcer healing via mobilizing myofibroblasts and inducing production of stroma-derived factors.

  8. 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat.

    PubMed Central

    Lalley, P M; Bischoff, A M; Richter, D W

    1994-01-01

    The involvement of the 5-HT-1A receptor in serotoninergic responses of stage 2 expiratory (E-2) neurones was investigated in pentobarbitone-anaesthetized, mechanically ventilated cats. The specific agonist of the 5-HT-1A receptor, 8-hydroxy-diproplaminotetralin (8-OH-DPAT), administered systemically or by ionophoresis directly on to the neurones, had a clear depressant effect. Administration of 8-OH-DPAT at doses of 10-50 micrograms kg-1 (I.V.) increased the membrane hyperpolarizations of E-2 neurones during the inspiratory and postinspiratory phases, and shortened their duration of activity in association with shortening of phrenic nerve activity. Discharges of E-2 neurones were also less intense. At doses of 50-90 micrograms kg-1, 8-OH-DPAT reduced or abolished inspiratory hyperpolarizations, and reduced expiratory depolarizations of membrane potential and discharge in parallel with inhibition of phrenic nerve discharges. The effects of the larger doses were reversed by I.V. injection of NAN-190, an antagonist at the 5-HT-1A receptor. Dose-dependent effects on the membrane potential and discharge of E-2 neurones, but not on phrenic nerve activity, were also seen by ionophoretic administration of 8-OH-DPAT on to E-2 neurones. At low currents, ejection of 8-OH-DPAT hyperpolarized the neurones without affecting the duration of inspiratory hyperpolarization and expiratory depolarization. This hyperpolarization depressed the intensity and the duration of expiratory discharges. Ejection with larger currents hyperpolarized the E-2 neurones further, and depressed expiratory depolarization leading to blockade of expiratory discharges. The effects on membrane potential were accompanied by decreased neuronal input resistance. This depressed the excitability of E-2 neurones as tested by discharge evoked by intracellular current injection. The amplitudes of action potentials decreased in parallel with the changes in input resistance. The effects were attributed to a

  9. Neuromuscular blockade: what was, is and will be.

    PubMed

    Schepens, Tom; Cammu, Guy

    2014-01-01

    Non-depolarizing neuromuscular blocking agents (NMBAs) produce neuromuscular blockade by competing with acetylcholine at the neuromuscular junction, whereas depolarizing NMBAs open receptor channels in a manner similar to that of acetylcholine. Problems with NMBAs include malignant hyperthermia caused by succinylcholine, anaphylaxis with the highest incidence for succinylcholine and rocuronium, and residual neuromuscular blockade. To reverse these blocks, anticholinesterases can act indirectly by increasing the amount of acetylcholine in the neuromuscular junction; sugammadex is the only selective relaxant binding agent (SRBA) in clinical use. At all levels of blockade, recovery after sugammadex is faster than after neostigmine. Sugammadex potentially also has some other advantages over neostigmine that are related to neostigmine's increase in the amount of acetylcholine and the necessity of co-administering anticholinergics. However, hypersensitivity reactions, including anaphylaxis, have occurred in some patients and healthy volunteers after sugammadex and remain an issue for the FDA. In the near future, we may see the emergence of new SRBAs and of easier-to-use technologies that can routinely monitor neuromuscular transmissions in daily practice. The nature of the effect of sugammadex on freeing nicotinic acetylcholine receptors located outside the neuromuscular junction from NMBAs is unknown. Moreover, it is uncertain whether the full removal of the competing antagonists (by SRBAs) at the neuromuscular junction impacts the efficiency of acetylcholine transmission. In a recent pilot study in healthy volunteers, we demonstrated increased electromyographic diaphragm activity after sugammadex, compared to neostigmine. Further research is needed to elucidate the role of NMBAs and their reversal agents in the central control of breathing, respiratory muscle activity, and respiratory outcomes. PMID:25622380

  10. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    PubMed Central

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J.; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that blockade of VEGF action with VEGF Trap, a potent VEGF blocker, completely inhibited neovascularization during endometrial regeneration in both models but had no marked effect on preexisting or newly formed vessels, suggesting that VEGF is essential for neoangiogenesis but not survival of mature vessels in this vascular bed. Blockade of VEGF also blocked reepithelialization in both the postmenstrual endometrium and the mouse uterus after decidual breakdown, evidence that VEGF has pleiotropic effects in the endometrium. In vitro studies with a scratch wound assay showed that the migration of luminal epithelial cells during repair involved signaling through VEGF receptor 2–neuropilin 1 (VEGFR2-NP1) receptors on endometrial stromal cells. The leading front of tissue growth during endometrial repair was strongly hypoxic, and this hypoxia was the local stimulus for VEGF expression and angiogenesis in this tissue. In summary, we provide novel experimental data indicating that VEGF is essential for endometrial neoangiogenesis during postmenstrual/postpartum repair.—Fan, X., Krieg, S., Kuo, C. J., Wiegand, S. J., Rabinovitch, M., Druzin, M. L., Brenner, R. M., Giudice, L. C., Nayak, N. R. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. PMID:18606863

  11. Biomarkers for Diabetic Retinopathy – Could Endothelin 2 Be Part of the Answer?

    PubMed Central

    Ali Rahman, Ireni S.; Vagaja, Nermina N.; Lai, Chooi-May

    2016-01-01

    Purpose The endothelins are a family of three highly conserved and homologous vasoactive peptides that are expressed across all organ systems. Endothelin (Edn) dysregulation has been implicated in a number of pathophysiologies, including diabetes and diabetes-related complications. Here we examined Edn2 and endothelin receptor B (Endrb) expression in retinae of diabetic mouse models and measured serum Edn2 to assess its biomarker potential. Materials and Methods Edn2 and Ednrb mRNA and Edn2 protein expression were assessed in young (8wk) and mature (24wk) C57Bl/6 (wild type; wt), Kimba (model of retinal neovascularisation, RNV), Akita (Type 1 diabetes; T1D) and Akimba mice (T1D plus RNV) by qRT-PCR and immunohistochemistry. Edn2 protein concentration in serum was measured using ELISA. Results Fold-changes in Edn2 and Ednrb mRNA were seen only in young Kimba (Edn2: 5.3; Ednrb: 6.0) and young Akimba (Edn2: 7.9, Ednrb: 8.8) and in mature Kimba (Edn2:9.2, Ednrb:11.2) and mature Akimba (Edn2:14.0, Ednrb:17.5) mice. Co-localisation of Edn2 with Müller-cell-specific glutamine synthetase demonstrated Müller cells and photoreceptors as the major cell types for Edn2 expression in all animal models. Edn2 serum concentrations in young Kimba, Akita and Akimba mice were not elevated compared to wt. However, in mature mice, Edn2 serum concentration was increased in Akimba (6.9pg/mg total serum protein) compared to wt, Kimba and Akita mice (3.9, 4.6, and 3.8pg/mg total serum protein, respectively; p<0.05). Conclusions These results demonstrated that long-term hyperglycaemia in conjunction with VEGF-driven RNV increased Edn2 serum concentration suggesting Edn2 might be a candidate biomarker for vascular changes in diabetic retinopathy. PMID:27482904

  12. GP IIb/IIIa Blockade During Peripheral Artery Interventions

    SciTech Connect

    Tepe, Gunnar Wiskirchen, Jakub; Pereira, Philippe; Claussen, Claus D.; Miller, Stephen; Duda, Stephan H.

    2008-01-15

    The activation of the platelet GP IIb/IIIa receptor is the final and common pathway in platelet aggregation. By blocking this receptor, platelet aggregation can be inhibited independently of the stimulus prompted the targeting of this receptor. Several years ago, three drugs have been approved for coronary artery indications. Since that time, there is increasing evidence that GP IIb/IIIa receptor blockade might have also an important role in peripheral arterial intervention. This article summarizes the action and differences of GP Ilb/IIIa receptor inhibitors and its possible indication in peripheral arteries.

  13. Coulomb blockade and superuniversality of the theta angle.

    PubMed

    Burmistrov, I S; Pruisken, A M M

    2008-08-01

    Based on the Ambegaokar-Eckern-Schön approach to the Coulomb blockade, we develop a complete quantum theory of the single electron transistor. We identify a previously unrecognized physical observable in the problem that, unlike the usual average charge on the island, is robustly quantized for any finite value of the tunneling conductance as the temperature goes to absolute zero. This novel quantity is fundamentally related to the nonsymmetrized current noise of the system. Our results display all of the superuniversal topological features of the theta angle concept that previously arose in the theory of the quantum Hall effect.

  14. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

    PubMed Central

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-01-01

    BACKGROUND AND PURPOSE Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. EXPERIMENTAL APPROACH We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. KEY RESULTS As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. PMID:23937445

  15. Continuous neuromuscular blockade is associated with decreased mortality in post-cardiac arrest patients

    PubMed Central

    Salciccioli, Justin D.; Cocchi, Michael N.; Rittenberger, Jon C.; Peberdy, Mary Ann; Ornato, Joseph P.; Abella, Benjamin S.; Gaieski, David F.; Clore, John; Gautam, Shiva; Giberson, Tyler; Callaway, Clifton W.; Donnino, Michael W.

    2013-01-01

    Aim Neuromuscular blockade may improve outcome in patients with acute respiratory distress syndrome. In post-cardiac arrest patients receiving therapeutic hypothermia, neuromuscular blockade is often used to prevent shivering. Our objective was to determine whether neuromuscular blockade is associated with improved outcomes after out-of-hospital cardiac arrest. Methods A post-hoc analysis of a prospective observational study of comatose adult (> 18 years) out-of-hospital cardiac arrest at 4 tertiary cardiac arrest centers. The primary exposure of interest was neuromuscular blockade for 24 hours following return of spontaneous circulation and primary outcomes were in-hospital survival and neurologically intact survival. Secondary outcomes were evolution of oxygenation (PaO2:FiO2), and change in lactate. We tested the primary outcomes of in-hospital survival and neurologically intact survival with multivariable logistic regression. Secondary outcomes were tested with multivariable linear mixed-models. Results A total of 111 patients were analyzed. In patients with 24 hours of sustained neuromuscular blockade, the crude survival rate was 14/18 (78%) compared to 38/93 (41%) in patients without sustained neuromuscular blockade (p = 0.004). After multivariable adjustment, neuromuscular blockade was associated with survival (adjusted OR: 7.23, 95% CI: 1.56 –33.38). There was a trend toward improved functional outcome with neuromuscular blockade (50% vs. 28%; p = 0.07). Sustained neuromuscular blockade was associated with improved lactate clearance (adjusted p = 0.01). Conclusions We found that early neuromuscular blockade for a 24-hour period is associated with an increased probability of survival. Secondarily, we found that early, sustained neuromuscular blockade is associated with improved lactate clearance. PMID:23796602

  16. The metabolism of the dual endothelin receptor antagonist macitentan in rat and dog.

    PubMed

    Treiber, Alexander; Miraval, Tommaso; Bolli, Martin H; Funel, Jacques-Alexis; Segrestaa, Jerome; Seeland, Swen

    2016-01-01

    1. The metabolism of the endothelin receptor antagonist macitentan has been characterized in bile duct-cannulated rats and dogs. 2. In both species, macitentan was metabolized along five primary pathways, i.e. conjugation with glucose (M9), oxidative depropylation (M6), aliphatic hydroxylation (M7), oxidative cleavage of the ethylene glycol linker (M4) and hydrolysis of the sulfamide moiety (M3). Most of the primary metabolites underwent subsequent biotransformation including conjugation with glucuronic acid or glucose, hydrolysis of the sulfamide group or secondary oxidation of the ethylene glycol moiety. 3. Though there were species differences in their relative importance, all metabolic pathways were present in rat and dog. The depropylated M6 was the only metabolite present in plasma of both species. 4. Metabolism was a prerequisite for macitentan excretion as relevant amounts of parent drug were neither detected in bile nor urine. Biliary excretion was the major elimination pathway, while renal elimination was of little importance.

  17. Endothelin-1 receptor antagonists in fetal development and pulmonary arterial hypertension.

    PubMed

    de Raaf, Michiel Alexander; Beekhuijzen, Manon; Guignabert, Christophe; Vonk Noordegraaf, Anton; Bogaard, Harm Jan

    2015-08-15

    The Pregnancy Prevention Program (PPP) is in place to prevent drug-induced developmental malformations. Remarkably, among the ten PPP-enlisted drugs are three endothelin-1 (ET-1) receptor antagonists (ERA's: ambrisentan, bosentan and macitentan), which are approved for the treatment of Pulmonary Arterial Hypertension (PAH). This review describes the effects of ERA's in PAH pathobiology and cardiopulmonary fetal development. While ERA's hamper pathological remodeling of the pulmonary vasculature and as such exert beneficial effects in PAH, they disturb fetal development of cardiopulmonary tissues. By blocking ET-1-mediated positive inotropic effects and myocardial fetal gene induction, ERA's may affect right ventricular adaptation to the increased pulmonary vascular resistance in both the fetus and the adult PAH patient.

  18. The Role of the Endothelin System in the Vascular Dysregulation Involved in Retinitis Pigmentosa

    PubMed Central

    Sorrentino, Francesco Saverio; Bonifazzi, Claudio; Perri, Paolo

    2015-01-01

    Retinitis pigmentosa is a clinical and genetic group of inherited retinal disorders characterized by alterations of photoreceptors and retinal pigment epithelium leading to a progressive concentric visual field restriction, which may bring about severe central vision impairment. Haemodynamic studies in patients with retinitis pigmentosa have demonstrated ocular blood flow abnormalities both in retina-choroidal and in retroocular vascular system. Moreover, several investigations have studied the augmentation of endothelin-1 plasma levels systemically in the body and locally in the eye. This might account for vasoconstriction and ischemia, typical in vascular dysregulation syndrome, which can be considered an important factor of reduction of the ocular blood flow in subjects affected by retinitis pigmentosa. PMID:26613048

  19. Antivascular therapy for multidrug-resistant ovarian tumors by macitentan, a dual endothelin receptor antagonist.

    PubMed

    Kim, Sun-Jin; Kim, Jang Seong; Kim, Seung Wook; Yun, Seok Joong; He, Junqin; Brantley, Emily; Fan, Dominic; Strickner, Panja; Lehembre, François; Regenass, Urs; Fidler, Isaiah J

    2012-02-01

    Endothelin receptors (ETRs) are often overexpressed in ovarian tumors, which can be resistant to conventional therapies. Thus, we investigated whether blockage of the ETR pathways using the dual ETR antagonist macitentan combined with taxol or cisplatinum can produce therapy for orthotopically growing multidrug-resistant (MDR) human ovarian carcinoma. In several studies, nude mice were injected in the peritoneal cavity with HeyA8-MDR human ovarian cancer cells. Ten days later, mice were randomized to receive vehicle (saline), macitentan (oral, daily), taxol (intraperitoneal, weekly), cisplatinum (intraperitoneal, weekly), macitentan plus taxol, or macitentan plus cisplatinum. Moribund mice were killed, and tumors were collected, weighed, and prepared for immunohistochemical analysis. The HeyA8-MDR tumors did not respond to taxol, cisplatinum, or macitentan administered as single agents. In contrast, combination therapy with macitentan and taxol or macitentan and cisplatinum significantly decreased the tumor incidence and weight and significantly increased the survival of mice and their general condition. Multiple immunohistochemical analyses revealed that treatment with macitentan and macitentan plus taxol or cisplatinum inhibited the phosphorylation of ETRs, decreased the levels of pVEGFR2, pAkt, and pMAPK in tumor cells after 2 weeks of treatment and induced a first wave of apoptosis in tumor-associated endothelial cells followed by apoptosis in surrounding tumor cells. Our study shows that ovarian cancer cells, which express the endothelin axis and are multidrug resistant, are exquisitely sensitive to treatment with a dual ET antagonist and can be resensitized to both taxol and cisplatinum. This combined therapy led to a significant reduction in tumor weight.

  20. Flavonol-rich dark cocoa significantly decreases plasma endothelin-1 and improves cognition in urban children.

    PubMed

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Cross, Janet V; Engle, Randall; Aragón-Flores, Mariana; Gómez-Garza, Gilberto; Jewells, Valerie; Medina-Cortina, Humberto; Solorio, Edelmira; Chao, Chih-Kai; Zhu, Hongtu; Mukherjee, Partha S; Ferreira-Azevedo, Lara; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2013-01-01

    Air pollution exposures are linked to systemic inflammation, cardiovascular and respiratory morbidity and mortality, neuroinflammation and neuropathology in young urbanites. In particular, most Mexico City Metropolitan Area (MCMA) children exhibit subtle cognitive deficits, and neuropathology studies show 40% of them exhibiting frontal tau hyperphosphorylation and 51% amyloid-β diffuse plaques (compared to 0% in low pollution control children). We assessed whether a short cocoa intervention can be effective in decreasing plasma endothelin 1 (ET-1) and/or inflammatory mediators in MCMA children. Thirty gram of dark cocoa with 680 mg of total flavonols were given daily for 10.11 ± 3.4 days (range 9-24 days) to 18 children (10.55 years, SD = 1.45; 11F/7M). Key metabolite ratios in frontal white matter and in hippocampus pre and during cocoa intervention were quantified by magnetic resonance spectroscopy. ET-1 significantly decreased after cocoa treatment (p = 0.0002). Fifteen children (83%) showed a marginally significant individual improvement in one or both of the applied simple short memory tasks. Endothelial dysfunction is a key feature of exposure to particulate matter (PM) and decreased endothelin-1 bioavailability is likely useful for brain function in the context of air pollution. Our findings suggest that cocoa interventions may be critical for early implementation of neuroprotection of highly exposed urban children. Multi-domain nutraceutical interventions could limit the risk for endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, cognitive deficits, structural volumetric detrimental brain effects, and the early development of the neuropathological hallmarks of Alzheimer's and Parkinson's diseases. PMID:23986703

  1. Effect of mineralocorticoid treatment in mice with collecting duct-specific knockout of endothelin-1.

    PubMed

    Lynch, I Jeanette; Welch, Amanda K; Gumz, Michelle L; Kohan, Donald E; Cain, Brian D; Wingo, Charles S

    2015-12-15

    Aldosterone increases blood pressure (BP) by stimulating sodium (Na) reabsorption within the distal nephron and collecting duct (CD). Aldosterone also stimulates endothelin-1 (ET-1) production that acts within the CD to inhibit Na reabsorption via a negative feedback mechanism. We tested the hypothesis that this renal aldosterone-endothelin feedback system regulates electrolyte balance and BP by comparing the effect of a high-salt (NaCl) diet and mineralocorticoid stimulation in control and CD-specific ET-1 knockout (CD ET-1 KO) mice. Metabolic balance and radiotelemetric BP were measured before and after treatment with desoxycorticosterone pivalate (DOCP) in mice fed a high-salt diet with saline to drink. CD ET-1 KO mice consumed more high-salt diet and saline and had greater urine output than controls. CD ET-1 KO mice exhibited increased BP and greater fluid retention and body weight than controls on a high-salt diet. DOCP with high-salt feeding further increased BP in CD ET-1 KO mice, and by the end of the study the CD ET-1 KO mice were substantially hypernatremic. Unlike controls, CD ET-1 KO mice failed to respond acutely or escape from DOCP treatment. We conclude that local ET-1 production in the CD is required for the appropriate renal response to Na loading and that lack of local ET-1 results in abnormal fluid and electrolyte handling when challenged with a high-salt diet and with DOCP treatment. Additionally, local ET-1 production is necessary, under these experimental conditions, for renal compensation to and escape from the chronic effects of mineralocorticoids. PMID:26400543

  2. The effect of endothelin-1 on pancreatic diseases in patients who smoke.

    PubMed

    Sliwińska-Mossoń, Mariola; Sciskalska, Milena; Karczewska-Górska, Patrycja; Milnerowicz, Halina

    2013-01-01

    Endothelin (ET) is a peptide secreted by the endothelial cells of blood vessels. It has a very strong vasoconstricting effect. Endothelin-1 (ET-1) is present in the blood in low concentrations, but in response to the stimulus of cigarette smoking, it can be released into the interior of blood vessels in substantial quantities, resulting in rapid vasoconstriction. ET-1 activity causes ischemia and hypoxia in many organs, particularly in the pancreas. The destructive action of tobacco smoke components on the cells of the pancreas is known, but so far the mechanisms of these changes are not fully understood. It has been suggested that ET-1 may play a major role in this process. By inducing vasoconstriction in the pancreas, with a subsequent disruption in its blood flow, ET-1 leads to structural changes in this organ and to exocrine and endocrine dysfunction. ET-1 also has the ability to induce secretion of pro-inflammatory cytokines (IL-1, IL-6), which intensify existing pancreatitis and lead to the progression of this disease. ET-1 can stimulate collagen production in the pancreas, which contributes to the formation of fibrosis in patients with chronic pancreatitis. Nicotine from tobacco smoke intensifies insulin resistance in patients with diabetes. High insulin concentrations induce the secretion of ET-1 by the endothelial cells of the pancreas. By inducing vasoconstriction and subsequent tissue hypoxemia, ET-1 can cause a decrease in peripheral glucose utilization and contribute to the progression of type 2 diabetes. ET-1 is considered a risk factor for pancreatic diseases, particularly acute ischemia and pancreatitis.

  3. Flavonol-rich dark cocoa significantly decreases plasma endothelin-1 and improves cognition in urban children

    PubMed Central

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Cross, Janet V.; Engle, Randall; Aragón-Flores, Mariana; Gómez-Garza, Gilberto; Jewells, Valerie; Weili, Lin; Medina-Cortina, Humberto; Solorio, Edelmira; Chao, Chih-kai; Zhu, Hongtu; Mukherjee, Partha S.; Ferreira-Azevedo, Lara; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2013-01-01

    Air pollution exposures are linked to systemic inflammation, cardiovascular and respiratory morbidity and mortality, neuroinflammation and neuropathology in young urbanites. In particular, most Mexico City Metropolitan Area (MCMA) children exhibit subtle cognitive deficits, and neuropathology studies show 40% of them exhibiting frontal tau hyperphosphorylation and 51% amyloid-β diffuse plaques (compared to 0% in low pollution control children). We assessed whether a short cocoa intervention can be effective in decreasing plasma endothelin 1 (ET-1) and/or inflammatory mediators in MCMA children. Thirty gram of dark cocoa with 680 mg of total flavonols were given daily for 10.11 ± 3.4 days (range 9–24 days) to 18 children (10.55 years, SD = 1.45; 11F/7M). Key metabolite ratios in frontal white matter and in hippocampus pre and during cocoa intervention were quantified by magnetic resonance spectroscopy. ET-1 significantly decreased after cocoa treatment (p = 0.0002). Fifteen children (83%) showed a marginally significant individual improvement in one or both of the applied simple short memory tasks. Endothelial dysfunction is a key feature of exposure to particulate matter (PM) and decreased endothelin-1 bioavailability is likely useful for brain function in the context of air pollution. Our findings suggest that cocoa interventions may be critical for early implementation of neuroprotection of highly exposed urban children. Multi-domain nutraceutical interventions could limit the risk for endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, cognitive deficits, structural volumetric detrimental brain effects, and the early development of the neuropathological hallmarks of Alzheimer's and Parkinson's diseases. PMID:23986703

  4. Inhibitory mechanism of an extract of Althaea officinalis L. on endothelin-1-induced melanocyte activation.

    PubMed

    Kobayashi, Akemi; Hachiya, Akira; Ohuchi, Atsushi; Kitahara, Takashi; Takema, Yoshinori

    2002-02-01

    It is known that expression of endothelin-1 (ET-1) increases in the epidermis after UVB irradiation, and that this plays an important role during the induction of pigmentation both as a mitogen and as a melanogen for normal human melanocytes (NHMC). When ET-1 acts on NHMC via the endothelin B receptor (ET(B)R) on their cell surface, mobilization of intracellular calcium is induced, which is followed by activation of Raf-1 located upstream of mitogen activated protein kinase (MAPK). We have continued the search for new agent which inhibit this calcium mobilization and we have found that an extract of Althaea officinalis L. has such an action. In this study, we investigated the precise inhibitory mechanism of this botanical extract on the ET-1-induced activation of melanocytes. Treatment of NHMC with this extract abrogated the stimulatory effect of ET-1 on proliferation and also on activation of MAPK in the intracellular signal transduction pathway, but did not affect the binding of ET-1 to the ET(B)R or the production of Inositol 1,4,5-Trisphosphate (IP3). Further, when this extract was used to treat normal human keratinocytes (NHKC), secretion of ET-1 by those cells was reduced. Taken together, these findings indicate that an extract of A. officinalis inhibits both the secretion of ET-1 from NHKC and the action of ET-1 on NHMC mainly by suppressing the ET-1-induced calcium mobilization without the modification of IP3 production, which in turn suggests that this extract is a useful ingredient for a whitening agent.

  5. Repeatability of local forearm vasoconstriction to endothelin-1 measured by venous occlusion plethysmography

    PubMed Central

    Strachan, Fiona E; Newby, David E; Sciberras, David G; McCrea, Jacqueline B; Goldberg, Michael R; Webb, David J

    2002-01-01

    Aims We investigated the repeatability of the forearm blood flow response to intra-arterial infusion of endothelin-1 (ET-1), assessed by venous occlusion plethysmography. Methods In eight healthy men (aged 18–50 years), on four separate occasions, ET-1 (2.5 or 10 pmol min−1) was infused for 120 min via a 27 SWG cannula sited in the brachial artery of the nondominant arm. Each dose level was administered twice on consecutive visits. The dose order was randomized. Results are expressed as percentage change from baseline at 120 min (mean ± s.e. mean). Results ET-1 caused significant vasoconstriction (P < 0.0001 anova) at both doses (38 ± 3%, 2.5 pmol min−1 and 62 ± 3%, 10 pmol min−1; mean visit 1 and 2). There was no difference in the response to either dose on repeated challenge. Responses appeared to be less variable when expressed as percentage change in the ratio of blood flow (infused:noninfused) in both arms than as percentage change in blood flow in the infused arm alone, as indicated by repeatability coefficients (15% vs 21%, 2.5 pmol min−1 and 11% vs 13%, 10 pmol min−1; ratio vs infused arm alone). Conclusions We have shown dose-dependent vasoconstriction in the forearm vascular bed to intra-arterial infusion of ET-1 and that this response is less variable when expressed as percentage change in the ratio of forearm blood flow than percentage change in the infused arm. These data should also provide useful information to determine the power of early clinical pharmacology studies investigating the activity of endothelin receptor antagonists. PMID:12392586

  6. Assessment of bronchial beta blockade after oral bevantolol.

    PubMed

    Mackay, A D; Gribbin, H R; Baldwin, C J; Tattersfield, A E

    1981-01-01

    We have applied a new method for quantitative measurement of bronchial beta adrenoceptor blockade to a new beta adrenoceptor antagonist, bevantolol. Dose-response curves to a beta agonist, albuterol, were obtained in six normal subjects by measuring specific airway conductance (sGaw) after increasing doses of inhaled albuterol. These were repeated on three separate occasions 2 hr after subjects had taken oral placebo or bevantolol (75 or 150 mg), double-blind in random order. The dose-response curves after bevantolol 75 mg were displaced in the right of placebo in four subjects and after 150 mg were displaced to the right of placebo in all subjects. The mean dose ratios for bevantolol 75 or 150 mg were 1.02 and 2.77, much the same as those obtained in the same subjects after practolol 100 and 200 mg and considerably less than that after propranolol 40 mg. The mean reductions in exercise heart rate were 25% and 29% after bevantolol 75 and 150 mg. Our data show that bronchial beta blockade after a beta blocking drug can be assessed quantitatively in many by a double-blind technique.

  7. Effects of VLA-1 Blockade on Experimental Inflammation in Mice.

    PubMed

    Totsuka, Ryuichi; Kondo, Takaaki; Matsubara, Shigeki; Hirai, Midori; Kurebayashi, Yoichi

    2016-01-01

    VLA-1 (very late antigen-1) is implicated in recruitment, retention and activation of leukocytes and its blockade has been referred as a potential target of new drug discovery to address unmet medical needs in inflammatory disease area. In the present study, we investigate the effects of an anti-murine CD49a (integrin α subunit of VLA-1) monoclonal antibody (Ha31/8) on various experimental models of inflammatory diseases in mice. Pretreatment with Ha31/8 at an intraperitoneal dose of 250 µg significantly (P<0.01) reduced arthritic symptoms and joint tissue damage in mice with type II collagen-induced arthritis. In addition, Ha31/8 at an intraperitoneal dose of 100 µg significantly (P<0.01) inhibited airway inflammatory cell infiltration induced by repeated exposure to cigarette smoke. In contrast, Ha31/8 failed to inhibit oxazolone-induced chronic dermatitis and OVA-induced airway hyperresponsiveness at an intraperitoneal dose of 100 µg. These results show that VLA-1 is involved, at least partly, in the pathogenesis of type II collagen-induced arthritis and cigarette smoke-induced airway inflammatory cell infiltration in mice, indicating the therapeutic potential of VLA-1 blockade against rheumatoid arthritis and chronic occlusive pulmonary disease. PMID:27578034

  8. OX40L blockade protects against inflammation-driven fibrosis.

    PubMed

    Elhai, Muriel; Avouac, Jérôme; Hoffmann-Vold, Anna Maria; Ruzehaji, Nadira; Amiar, Olivia; Ruiz, Barbara; Brahiti, Hassina; Ponsoye, Matthieu; Fréchet, Maxime; Burgevin, Anne; Pezet, Sonia; Sadoine, Jérémy; Guilbert, Thomas; Nicco, Carole; Akiba, Hisaya; Heissmeyer, Vigo; Subramaniam, Arun; Resnick, Robert; Molberg, Øyvind; Kahan, André; Chiocchia, Gilles; Allanore, Yannick

    2016-07-01

    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40-OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation.

  9. Chlorpheniramine produces spinal motor, proprioceptive and nociceptive blockades in rats.

    PubMed

    Tzeng, Jann-Inn; Lin, Heng-Teng; Chen, Yu-Wen; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-04-01

    This study aimed to assess the local anesthetic effects of chlorpheniramine in spinal anesthesia and is compared with mepivacaine, a widely-used local anesthetic. Spinal anesthesia with chlorpheniramine and mepivacaine was constructed in a dosage-dependent fashion after the rats were injected intrathecally. The spinal block effect of chlorpheniramine in motor function, nociception, and proprioception was compared to that of mepivacaine. We revealed that intrathecal chlorpheniramine and mepivacaine exhibited a dose-dependent spinal block of motor function, nociception, and proprioception. On the 50% effective dose (ED50) basis, the ranks of potencies in motor function, nociception, and proprioception were chlorpheniramine>mepivacaine (P<0.01 for the differences). On the equianesthetic basis (ED25, ED50, ED75), the duration of spinal anesthesia with chlorpheniramine was greater than that of mepivacaine (P<0.01 for the differences). Instead of mepivacaine, chlorpheniramine produced a greater duration of sensory blockade than the motor blockade. These preclinical data showed that chlorpheniramine has a better sensory-selective action over motor block to produce more potent and long-lasting spinal anesthesia than mepivacaine.

  10. Assessment of Methods for the Intracellular Blockade of GABAA Receptors.

    PubMed

    Atherton, Laura A; Burnell, Erica S; Mellor, Jack R

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4'-dinitro-stilbene-2,2'-disulphonic acid (DNDS) and 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  11. Philosophical Intelligence: Letters, Print, and Experiment during Napoleon's Continental Blockade.

    PubMed

    Watts, Iain P

    2015-12-01

    This essay investigates scientific exchanges between Britain and France from 1806 to 1814, at the height of the Napoleonic Wars. It argues for a picture of scientific communication that sees letters and printed texts not as separate media worlds, but as interconnected bearers of time-critical information within a single system of intelligence gathering and experimental practice. During this period, Napoleon Bonaparte's Continental System blockade severed most links between Britain and continental Europe, yet scientific communications continued--particularly on electrochemistry, a subject of fierce rivalry between Britain and France. The essay traces these exchanges using the archive of a key go-between, the English man of science Sir Charles Blagden. The first two sections look at Blagden's letter-writing operation, reconstructing how he harnessed connections with neutral American diplomats, merchants, and the State to get scientific intelligence between London and Paris. The third section, following Blagden's words from Britain to France to America, looks at how information in letters cross-fertilized with information in print. The final section considers how letters and print were used together to solve the difficult practical problem of replicating experiments across the blockade.

  12. [Recent Development of Therapies for Melanoma Using Immune Checkpoint Blockades].

    PubMed

    Okuyama, Ryuhei

    2016-06-01

    Melanoma is a highly immune tumor, and tumor-specific T lymphocytes are occasionally induced. Recent progress in tumor immunology has made it possible to clinically develop new medicines targeting immune checkpoint molecules, such as cytotoxic T lymphocyte antigen 4(CTLA-4), programmed cell death 1(PD-1), and programmed cell death 1 ligand 1(PD-L1). CTLA-4 is expressed on naïve T cells and regulatory T cells. Ipilimumab, an anti-CTLA-4 antibody, shows a distinct durable clinical benefit by inhibiting the immunosuppressive function of CTLA-4. PD-1, which is expressed on activated T cells, inhibits T cell responses against tumor cells. The antibodies against PD-1, nivolumab and pembrolizumab, produce anti-tumor responses in melanoma and other cancers due to T cell reactivation. Furthermore, clinical trials of combination therapies using immune checkpoint blockades with molecularly targeted therapies and other chemotherapeutic agents are being conducted. However, immune checkpoint blockades frequently cause immune-related adverse events. Targeted therapies to immune checkpoint molecules are expected to be promising strategies for treatment of melanoma and other cancers. PMID:27306802

  13. OX40L blockade protects against inflammation-driven fibrosis.

    PubMed

    Elhai, Muriel; Avouac, Jérôme; Hoffmann-Vold, Anna Maria; Ruzehaji, Nadira; Amiar, Olivia; Ruiz, Barbara; Brahiti, Hassina; Ponsoye, Matthieu; Fréchet, Maxime; Burgevin, Anne; Pezet, Sonia; Sadoine, Jérémy; Guilbert, Thomas; Nicco, Carole; Akiba, Hisaya; Heissmeyer, Vigo; Subramaniam, Arun; Resnick, Robert; Molberg, Øyvind; Kahan, André; Chiocchia, Gilles; Allanore, Yannick

    2016-07-01

    Treatment for fibrosis represents a critical unmet need, because fibrosis is the leading cause of death in industrialized countries, and there is no effective therapy to counteract the fibrotic process. The development of fibrosis relates to the interplay between vessel injury, immune cell activation, and fibroblast stimulation, which can occur in various tissues. Immunotherapies have provided a breakthrough in the treatment of immune diseases. The glycoprotein OX40-OX40 ligand (OX40L) axis offers the advantage of a targeted approach to costimulatory signals with limited impact on the whole immune response. Using systemic sclerosis (SSc) as a prototypic disease, we report compelling evidence that blockade of OX40L is a promising strategy for the treatment of inflammation-driven fibrosis. OX40L is overexpressed in the fibrotic skin and serum of patients with SSc, particularly in patients with diffuse cutaneous forms. Soluble OX40L was identified as a promising serum biomarker to predict the worsening of lung and skin fibrosis, highlighting the role of this pathway in fibrosis. In vivo, OX40L blockade prevents inflammation-driven skin, lung, and vessel fibrosis and induces the regression of established dermal fibrosis in different complementary mouse models. OX40L exerts potent profibrotic effects by promoting the infiltration of inflammatory cells into lesional tissues and therefore the release of proinflammatory mediators, thereafter leading to fibroblast activation. PMID:27298374

  14. Philosophical Intelligence: Letters, Print, and Experiment during Napoleon's Continental Blockade.

    PubMed

    Watts, Iain P

    2015-12-01

    This essay investigates scientific exchanges between Britain and France from 1806 to 1814, at the height of the Napoleonic Wars. It argues for a picture of scientific communication that sees letters and printed texts not as separate media worlds, but as interconnected bearers of time-critical information within a single system of intelligence gathering and experimental practice. During this period, Napoleon Bonaparte's Continental System blockade severed most links between Britain and continental Europe, yet scientific communications continued--particularly on electrochemistry, a subject of fierce rivalry between Britain and France. The essay traces these exchanges using the archive of a key go-between, the English man of science Sir Charles Blagden. The first two sections look at Blagden's letter-writing operation, reconstructing how he harnessed connections with neutral American diplomats, merchants, and the State to get scientific intelligence between London and Paris. The third section, following Blagden's words from Britain to France to America, looks at how information in letters cross-fertilized with information in print. The final section considers how letters and print were used together to solve the difficult practical problem of replicating experiments across the blockade. PMID:27024935

  15. The Sphingolipid Receptor S1PR2 Is a Receptor for Nogo-A Repressing Synaptic Plasticity

    PubMed Central

    Arzt, Michael E.; Weinmann, Oliver; Obermair, Franz J.; Pernet, Vincent; Zagrebelsky, Marta; Delekate, Andrea; Iobbi, Cristina; Zemmar, Ajmal; Ristic, Zorica; Gullo, Miriam; Spies, Peter; Dodd, Dana; Gygax, Daniel; Korte, Martin; Schwab, Martin E.

    2014-01-01

    Nogo-A is a membrane protein of the central nervous system (CNS) restricting neurite growth and synaptic plasticity via two extracellular domains: Nogo-66 and Nogo-A-Δ20. Receptors transducing Nogo-A-Δ20 signaling remained elusive so far. Here we identify the G protein-coupled receptor (GPCR) sphingosine 1-phosphate receptor 2 (S1PR2) as a Nogo-A-Δ20-specific receptor. Nogo-A-Δ20 binds S1PR2 on sites distinct from the pocket of the sphingolipid sphingosine 1-phosphate (S1P) and signals via the G protein G13, the Rho GEF LARG, and RhoA. Deleting or blocking S1PR2 counteracts Nogo-A-Δ20- and myelin-mediated inhibition of neurite outgrowth and cell spreading. Blockade of S1PR2 strongly enhances long-term potentiation (LTP) in the hippocampus of wild-type but not Nogo-A−/− mice, indicating a repressor function of the Nogo-A/S1PR2 axis in synaptic plasticity. A similar increase in LTP was also observed in the motor cortex after S1PR2 blockade. We propose a novel signaling model in which a GPCR functions as a receptor for two structurally unrelated ligands, a membrane protein and a sphingolipid. Elucidating Nogo-A/S1PR2 signaling platforms will provide new insights into regulation of synaptic plasticity. PMID:24453941

  16. Deletion of adenosine A1 or A2A receptors reduces L-3,4-dihydroxyphenylalanine-induced dyskinesia in a model of Parkinson’s disease

    PubMed Central

    Xiao, Danqing; Cassin, Jared J.; Healy, Brian; Burdett, Thomas C.; Chen, Jiang-Fan; Fredholm, Bertil B.; Schwarzschild, Michael A.

    2010-01-01

    Adenosine A2A receptor antagonism provides a promising approach to developing nondopaminergic therapy for Parkinson’s disease (PD). Clinical trials of A2A antagonists have targeted PD patients with L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve parkinsonian symptoms. The role of adenosine in the development of LID is little known, especially regarding its actions via A1 receptors. We aimed to examine the effects of genetic deletion and pharmacological blockade of A1 and/or A2A receptors on the development of LID, on the induction of molecular markers of LID including striatal preprodynorphin and preproenkephalin (PPE), and on the integrity of dopaminergic nigrostriatal neurons in hemiparkinsonian mice. Following a unilateral 6-hydroxydopamine lesion A1, A2A and double A1-A2A knockout (KO) and wild-type littermate mice, and mice pretreated with caffeine (an antagonist of both A1 and A2A receptors) or saline were treated daily for 18–21 days with a low dose of L-DOPA. Total abnormal involuntary movements (AIMs, a measure of LID) were significantly attenuated (p<0.05) in A1 and A2A KOs, but not in A1-A2A KOs and caffeine-pretreated mice. An elevation of PPE mRNA ipsilateral to the lesion in WT mice was reduced in all KO mice. In addition, neuronal integrity assessed by striatal dopamine content was similar in all KOs and caffeine-pretreated mice following 6-hydroxydopamine lesioning. Our findings raise the possibility that A1 or A2A receptors blockade might also confer a disease-modifying benefit of reduced risk of disabling LID, whereas the effect of their combined inactivation is less clear. PMID:20828543

  17. Effect of +Gz on plasma levels of calcitonin gene related peptide, endothelin and renal function in pilots.

    PubMed

    Dai, Y; Ji, G; Dai, D; Wang, X; Xiao, L

    1998-02-01

    The effect of positive acceleration on plasma levels of calcitonin gene related peptide (CGRP), and endothelin as well as renal function in pilots were observed in this study. 20 pilots were exposed to +2.5 Gz 10 s and +3.0 Gz 10 s with an interval of 5 min without anti-G suits. Samples of plasma and serum were taken 2Omin before and after exposure. Plasma levels of CGRP and endothelin after the exposure were significantly increased (P<0.01), but alkaline phosphatase(AKP), blood levels of beta 2-microglobulin(beta 2-MG), Ca2+ in serum showed no significant change (P>0.05) as compared with those before exposure. There was a correlation between CGRP and endothlin (r=0.772, P<0.01). It is concluded that positive acceleration(+2.5, +3.0Gz) could increase plasma levels of CGRP and endothlin but did not affect renal function.

  18. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2

    PubMed Central

    Mediero, Aránzazu; Wilder, Tuere; Perez-Aso, Miguel; Cronstein, Bruce N.

    2015-01-01

    Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 μM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 μM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 μM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration.—Mediero, A., Wilder, T., Perez-Aso, M., Cronstein, B. N. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. PMID:25573752

  19. The association between clinical symptoms, laboratory findings and serum endothelin 1 concentrations, in cirrhotic patients with and without hepatopulmonary syndrome

    PubMed Central

    Khoshbaten, Manouchehr; Ansarin, Khalil; Fatemi, Reza; Dulaimi, David Al; Derakhshan, Faramarz; Jafarinia, Nagmeh; Barford, Sophie; Zali, Mohammad Reza

    2012-01-01

    Aim This study evaluated the association between serum endothelin- 1 level and symptoms, clinical examination, laboratory and cardio-respiratory parameters, in patients with cirrhosis compared to controls. Background Cirrhosis is associated with significant portal, pulmonary and systemic vascular abnormities. Recent studies have suggested that endothelin -1 may have a significant role in the regulation of vascular tone. Patients and methods In this case – control study, subjects that had been evaluated and diagnosed with biopsy-proven cirrhosis and age-matched controls with no evidence of cardio-vascular or liver disease were recruited. Review of medical records, routine laboratory investigations and cardio-respiratory investigations including echocardiography to look for evidence of hepato-pulmonary syndrome were performed. Results 50 patients were subjects were recruited. The most common aetiology of the cirrhosis was chronic hepatitis B viral infection. 7/50 cases had evidence of the hepatopulmonary syndrome. Among the patients with evidence of the hepatopulmonary syndrome, dyspnoea (100%) and cyanosis (90%) were the most common of the symptoms and signs recorded. Pao2 and arterial – alveolar oxygen gradients were the most sensitive tests in the diagnosis of hepatopulmonary syndrome. Orthodoxy specificity was 100%. The median concentration of serum endothelin-1 in cases with hepatopulmonary syndrome was 1.06+/- 0.015 pg/ml (range 0.92 – 1.21), in cases of sub-clinical hepatopulmonary syndrome, 2.49+/- 0.08 (4.05- 0.93) in patients with cirrhosis but no evidence of hepatopulmonary syndrome criteria 0.85+/-0.74(1.06-0.64) in controls. Conclusion There was a significant difference in serum endothelin- 1 levels between patients with cirrhosis and controls, but not between patients with cirrhosis complicated by hepatopulmonary syndrome and controls. PMID:24834232

  20. The endothelin receptor antagonist bosentan restores gut oxygen delivery and reverses intestinal mucosal acidosis in porcine endotoxin shock

    PubMed Central

    Oldner, A; Wanecek, M; Goiny, M; Weitzberg, E; Rudehill, A; Alving, K; Sollevi, A

    1998-01-01

    Background—Endothelin-1, the most potent vasoconstrictor known, is produced in septic states and may be involved in the pathophysiology of the deteriorated splanchnic circulation seen in septic shock. 
Aims—To elucidate the capability of bosentan, a non-peptide mixed endothelin receptor antagonist, to attenuate splanchnic blood flow disturbances and counteract intestinal mucosal acidosis in endotoxic shock. 
Methods—In 16 anaesthetised pigs, central and regional haemodynamics were monitored by thermodilution and ultrasonic flow probes, respectively. A tonometer in the ileum was used for measurement of mucosal pH. Onset of endotoxin challenge was followed by bosentan administration (to eight pigs) two hours later. 
Results—Endotoxin infusion reduced cardiac index and systemic oxygen delivery; bosentan restored these parameters. The reduced mean arterial blood pressure and renal blood flow remained unaffected by bosentan. The profound reduction in gut oxygen delivery in response to endotoxin was completely abolished by bosentan. Bosentan significantly improved the notably deteriorated intestinal mucosal pH and mucosal-arterial PCO2 gap. The mucosal-portal vein PCO2 gap, used to monitor the mucosa in relation to the gut as a whole (including the spleen and pancreas), was also greatly increased by endotoxaemia and significantly reversed by bosentan. 
Conclusion—Bosentan completely restored the profound endotoxin induced reductions in systemic and gut oxygen delivery with a concomitant reversal of intestinal mucosal acidosis. Results suggest that endothelin is involved in the pronounced perfusion disturbances seen in the gut in endotoxic shock. Bosentan may prove useful in reducing gut ischaemia in septic shock. 

 Keywords: splanchnic circulation; septic shock; tonometry; pHi; PCO2 gap; endothelin-1 PMID:9659167

  1. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling.

    PubMed

    Moore, Carlene; Cevikbas, Ferda; Pasolli, H Amalia; Chen, Yong; Kong, Wei; Kempkes, Cordula; Parekh, Puja; Lee, Suk Hee; Kontchou, Nelly-Ange; Yeh, Iwei; Ye, Iwei; Jokerst, Nan Marie; Fuchs, Elaine; Steinhoff, Martin; Liedtke, Wolfgang B

    2013-08-20

    At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.

  2. Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.

    PubMed

    Lehtinen, J S; Zakharov, K; Arutyunov, K Yu

    2012-11-01

    Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state--the Coulomb blockade. When exposed to rf radiation, the internal Bloch oscillations can be synchronized with the external rf drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS--the QPS junction.

  3. Interleukin-1 blockade in refractory giant cell arteritis.

    PubMed

    Ly, Kim-Heang; Stirnemann, Jérôme; Liozon, Eric; Michel, Marc; Fain, Olivier; Fauchais, Anne-Laure

    2014-01-01

    Giant cell arteritis is a primary large-vessel vasculitis characterized by an arterial wall inflammation associated with intimal hyperplasia leading to arterial occlusion. Glucocorticoids remain the mainstay of giant cell arteritis treatment. However, relapses and glucocorticoid-related complications are frequent and therapeutic options for refractory giant cell arteritis are quite limited. Like tumor necrosis factor-α and interleukin-6, interleukin-1β is also highly expressed in inflamed arterial walls of patients with giant cell arteritis and may contribute in the pathogenesis of this disease. We report treatment of three cases of refractory giant cell arteritis successfully treated with anakinra, an interleukin-1 blockade therapy. Anakinra was effective for all patients, yielding improvement in their inflammation biomarkers and/or in their symptoms, as well as a disappearance of arterial inflammation in PET/CT for two of them.

  4. Costimulation Blockade in Autoimmunity and Transplantation: The CD28 Pathway.

    PubMed

    Adams, Andrew B; Ford, Mandy L; Larsen, Christian P

    2016-09-15

    T cell activation is a complex process that requires multiple cell signaling pathways, including a primary recognition signal and additional costimulatory signals. TCR signaling in the absence of costimulatory signals can lead to an abortive attempt at activation and subsequent anergy. One of the best-characterized costimulatory pathways includes the Ig superfamily members CD28 and CTLA-4 and their ligands CD80 and CD86. The development of the fusion protein CTLA-4-Ig as an experimental and subsequent therapeutic tool is one of the major success stories in modern immunology. Abatacept and belatacept are clinically approved agents for the treatment of rheumatoid arthritis and renal transplantation, respectively. Future interventions may include selective CD28 blockade to block the costimulatory potential of CD28 while exploiting the coinhibitory effects of CTLA-4. PMID:27591335

  5. Cavity polaritons with Rydberg blockade and long-range interactions

    NASA Astrophysics Data System (ADS)

    Litinskaya, Marina; Tignone, Edoardo; Pupillo, Guido

    2016-08-01

    We study interactions between polaritons, arising when photons strongly couple to collective excitations in an array of two-level atoms trapped in an optical lattice inside a cavity. We consider two types of interactions between atoms: dipolar forces and atomic saturability, which range from hard-core repulsion to Rydberg blockade. We show that, in spite of the underlying repulsion in the subsystem of atomic excitations, saturability induces a broadband bunching of photons for two-polariton scattering states. We interpret this bunching as a result of interference, and trace it back to the mismatch of the quantization volumes for atomic excitations and photons. We also examine bound bipolaritonic states: these include states created by dipolar forces, as well as a gap bipolariton, which forms solely due to saturability effects in the atomic transition. Both types of bound states exhibit strong bunching in the photonic component. We discuss the dependence of bunching on experimentally relevant parameters.

  6. Weber Blockade Theory of Magnetoresistance Oscillations in Superconducting Strips

    NASA Astrophysics Data System (ADS)

    Pekker, David; Refael, Gil; Goldbart, Paul M.

    2011-07-01

    Recent experiments on the conductance of thin, narrow superconducting strips have found periodic fluctuations, as a function of the perpendicular magnetic field, with a period corresponding to approximately two flux quanta per strip area [A. Johansson , Phys. Rev. Lett. 95, 116805 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.116805]. We argue that the low-energy degrees of freedom responsible for dissipation correspond to vortex motion. Using vortex-charge duality, we show that the superconducting strip behaves as the dual of a quantum dot, with the vortices, magnetic field, and bias current respectively playing the roles of the electrons, gate voltage, and source-drain voltage. In the bias-current versus magnetic-field plane, the strip conductance displays regions of small vortex conductance (i.e., small electrical resistance) that we term “Weber blockade” diamonds, which are dual to Coulomb blockade diamonds in quantum dots.

  7. Investigation of uncertainty components in Coulomb blockade thermometry

    SciTech Connect

    Hahtela, O. M.; Heinonen, M.; Manninen, A.; Meschke, M.; Savin, A.; Pekola, J. P.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.

    2013-09-11

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  8. Deterministic spin-wave interferometer based on the Rydberg blockade

    SciTech Connect

    Wei Ran; Deng Youjin; Pan Jianwei; Zhao Bo; Chen Yuao

    2011-06-15

    The spin-wave (SW) N-particle path-entangled |N,0>+|0,N> (NOON) state is an N-particle Fock state with two atomic spin-wave modes maximally entangled. Attributed to the property that the phase is sensitive to collective atomic motion, the SW NOON state can be utilized as an atomic interferometer and has promising application in quantum enhanced measurement. In this paper we propose an efficient protocol to deterministically produce the atomic SW NOON state by employing the Rydberg blockade. Possible errors in practical manipulations are analyzed. A feasible experimental scheme is suggested. Our scheme is far more efficient than the recent experimentally demonstrated one, which only creates a heralded second-order SW NOON state.

  9. Effect of on-chip filter on Coulomb blockade thermometer

    NASA Astrophysics Data System (ADS)

    Roschier, L.; Gunnarsson, D.; Meschke, M.; Savin, A.; Penttilä, J. S.; Prunnila, M.

    2012-12-01

    Coulomb Blockade Thermometer (CBT) is a primary thermometer based on electric conductance of normal tunnel junction arrays. One limitation for CBT use at the lowest temperatures has been due to environmental noise heating. To improve on this limitation, we have done measurements on CBT sensors fabricated with different on-chip filtering structures in a dilution refrigerator with a base temperature of 10 mK. The CBT sensors were produced with a wafer scale tunnel junction process. We present how the different on-chip filtering schemes affect the limiting saturation temperatures and show that CBT sensors with proper on-chip filtering work at temperatures below 20 mK and are tolerant to noisy environment.

  10. Investigation of uncertainty components in Coulomb blockade thermometry

    NASA Astrophysics Data System (ADS)

    Hahtela, O. M.; Meschke, M.; Savin, A.; Gunnarsson, D.; Prunnila, M.; Penttilä, J. S.; Roschier, L.; Heinonen, M.; Manninen, A.; Pekola, J. P.

    2013-09-01

    Coulomb blockade thermometry (CBT) has proven to be a feasible method for primary thermometry in every day laboratory use at cryogenic temperatures from ca. 10 mK to a few tens of kelvins. The operation of CBT is based on single electron charging effects in normal metal tunnel junctions. In this paper, we discuss the typical error sources and uncertainty components that limit the present absolute accuracy of the CBT measurements to the level of about 1 % in the optimum temperature range. Identifying the influence of different uncertainty sources is a good starting point for improving the measurement accuracy to the level that would allow the CBT to be more widely used in high-precision low temperature metrological applications and for realizing thermodynamic temperature in accordance to the upcoming new definition of kelvin.

  11. Anisotropic Pauli spin blockade in hole quantum dots

    NASA Astrophysics Data System (ADS)

    Brauns, Matthias; Ridderbos, Joost; Li, Ang; Bakkers, Erik P. A. M.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.

    2016-07-01

    We present measurements on gate-defined double quantum dots in Ge-Si core-shell nanowires, which we tune to a regime with visible shell filling in both dots. We observe a Pauli spin blockade and can assign the measured leakage current at low magnetic fields to spin-flip cotunneling, for which we measure a strong anisotropy related to an anisotropic g factor. At higher magnetic fields we see signatures for leakage current caused by spin-orbit coupling between (1,1) singlet and (2,0) triplet states. Taking into account these anisotropic spin-flip mechanisms, we can choose the magnetic field direction with the longest spin lifetime for improved spin-orbit qubits.

  12. Assessment of Methods for the Intracellular Blockade of GABAA Receptors

    PubMed Central

    Atherton, Laura A.; Burnell, Erica S.; Mellor, Jack R.

    2016-01-01

    Selective blockade of inhibitory synaptic transmission onto specific neurons is a useful tool for dissecting the excitatory and inhibitory synaptic components of ongoing network activity. To achieve this, intracellular recording with a patch solution capable of blocking GABAA receptors has advantages over other manipulations, such as pharmacological application of GABAergic antagonists or optogenetic inhibition of populations of interneurones, in that the majority of inhibitory transmission is unaffected and hence the remaining network activity preserved. Here, we assess three previously described methods to block inhibition: intracellular application of the molecules picrotoxin, 4,4’-dinitro-stilbene-2,2’-disulphonic acid (DNDS) and 4,4’-diisothiocyanostilbene-2,2’-disulphonic acid (DIDS). DNDS and picrotoxin were both found to be ineffective at blocking evoked, monosynaptic inhibitory postsynaptic currents (IPSCs) onto mouse CA1 pyramidal cells. An intracellular solution containing DIDS and caesium fluoride, but lacking nucleotides ATP and GTP, was effective at decreasing the amplitude of IPSCs. However, this effect was found to be independent of DIDS, and the absence of intracellular nucleotides, and was instead due to the presence of fluoride ions in this intracellular solution, which also blocked spontaneously occurring IPSCs during hippocampal sharp waves. Critically, intracellular fluoride ions also caused a decrease in both spontaneous and evoked excitatory synaptic currents and precluded the inclusion of nucleotides in the intracellular solution. Therefore, of the methods tested, only fluoride ions were effective for intracellular blockade of IPSCs but this approach has additional cellular effects reducing its selectivity and utility. PMID:27501143

  13. Influence of antiseptics on microcirculation after neuronal and receptor blockade.

    PubMed

    Goertz, Ole; Hirsch, Tobias; Ring, Andrej; Muehlberger, Thomas; Steinau, Hans U; Tilkorn, Daniel; Lehnhardt, Marcus; Homann, Heinz H

    2011-08-01

    The topical application of the antiseptics octenidine and polyhexanide on wounds seems to improve microcirculation. These two antiseptics were tested in combination with neuronal inhibition and sympathethic receptor blockade to verify these findings, explore the influence of β blockers on these microcirculative effects, and find out the principle of operation. Investigations were carried out on a standardised cremaster muscle model in rats (n = 66). The tested antiseptics, octenidine and polyhexanide were investigated alone (n = 12) and in combination with bupivacaine (n = 12), metoprolol (n = 12), phentolamine (n = 12) and surgical denervation (n = 12). Physiological saline was used for control (n = 6). The arteriolar diameter and functional capillary density (FCD) were investigated via trans-illumination microscopy before, as well as 60 and 120 minutes after application. Polyhexanide caused a significant increase in arteriolar diameter (86·5 ± 3·8 µm versus 100·0 ± 3·6 µm) and, like octenidine (7·2 ± 0·7 n/0·22 mm(2) versus 11·6 ± 0·6 n/0·22 mm(2) ), in FCD (9·2 ± 0·5 versus 12·6 ± 0·9) as well. When the antiseptics are used in combination with bupivacaine, metoprolol, phentolamine or surgical sympathectomy, these effects were eliminated or inverted. Assessing the results of the different blockades in combination with polyhexanide, we surmise that the antiseptic polyhexanide acts on the microcirculation mainly by blocking α receptors. This study shows that polyhexanide and octenidine improve muscular perfusion. Interestingly, the benefit of polyhexanide and octenidine on muscular perfusion is eliminated when the antiseptics are combined with other vasoactive agents, especially β blockers.

  14. Blockade of tolerance to morphine analgesia by cocaine.

    PubMed

    Misra, A L; Pontani, R B; Vadlamani, N L

    1989-07-01

    Tolerance to morphine analgesia was induced in male Sprague-Dawley rats by s.c. implantation of a morphine base pellet (75 mg) on the first and second day and determining the magnitude of tolerance 72 h after the first implant by s.c. injection of a test dose of morphine (5 mg/kg). Implantation of a cocaine hydrochloride pellet (25 mg), concurrently with morphine pellets or of a cocaine hydrochloride (50 mg) pellet after the development of tolerance, blocked both the development and expression of morphine analgesic tolerance. In morphine-pelleted animals pretreatment for 3 days with desipramine or zimelidine or phenoxybenzamine but not haloperidol produced no significant morphine tolerance. Pretreatment with a combination of desipramine and zimelidine, however, was as effective as cocaine in blocking morphine tolerance. Alpha-Methyl-p-tyrosine methyl ester counteracted the effect of cocaine in blocking morphine tolerance and potentiated the tolerance development. Blockade of morphine tolerance by cocaine was reinforced and facilitated by pretreatment with fenfluramine or p-chlorophenylalanine ethyl ester and to a lesser extent by clonidine and haloperidol. Acute administration of fenfluramine or zimelidine or a combination of desipramine and zimelidine or alpha-methyl-p-tyrosine methyl ester or p-chlorophenylalanine ethyl ester did not significantly affect morphine analgesia. The study suggests an important role of the concomitant depletion of both central noradrenaline and serotonin in the blockade of morphine tolerance by cocaine and stresses the importance of the counter-balancing functional relationship between these two neurotransmitters in the central nervous system. PMID:2780065

  15. Aldosterone Inactivates the Endothelin-B Receptor via a Cysteinyl Thiol Redox Switch to Decrease Pulmonary Endothelial Nitric Oxide Levels and Modulate Pulmonary Arterial Hypertension

    PubMed Central

    Maron, Bradley A.; Zhang, Ying-Yi; White, Kevin; Chan, Stephen Y.; Handy, Diane E.; Mahoney, Christopher E.; Loscalzo, Joseph; Leopold, Jane A.

    2012-01-01

    Background Pulmonary arterial hypertension (PAH) is characterized, in part, by decreased endothelial nitric oxide (NO•) production and elevated levels of endothelin-1. Endothelin-1 is known to stimulate endothelial nitric oxide synthase (eNOS) via the endothelin-B receptor (ETB), suggesting that this signaling pathway is perturbed in PAH. Endothelin-1 also stimulates adrenal aldosterone synthesis; in systemic blood vessels, hyperaldosteronism induces vascular dysfunction by increasing endothelial reactive oxygen species (ROS) generation and decreasing NO• levels. We hypothesized that aldosterone modulates PAH by disrupting ETB-eNOS signaling through a mechanism involving increased pulmonary endothelial oxidant stress. Methods and Results In rats with PAH, elevated endothelin-1 levels were associated with elevated aldosterone levels in plasma and lung tissue and decreased lung NO• metabolites in the absence of left heart failure. In human pulmonary artery endothelial cells (HPAECs), endothelin-1 increased aldosterone levels via PGC-1α/steroidogenesis factor-1-dependent upregulation of aldosterone synthase. Aldosterone also increased ROS production, which oxidatively modified cysteinyl thiols in the eNOS-activating region of ETB to decrease endothelin-1-stimulated eNOS activity. Substitution of ETB-Cys405 with alanine improved ETB-dependent NO• synthesis under conditions of oxidant stress, confirming that Cys405 is a redox sensitive thiol that is necessary for ETB-eNOS signaling. In HPAECs, mineralocorticoid receptor antagonism with spironolactone decreased aldosterone-mediated ROS generation and restored ETB-dependent NO• production. Spironolactone or eplerenone prevented or reversed pulmonary vascular remodeling and improved cardiopulmonary hemodynamics in two animal models of PAH in vivo. Conclusions Our findings demonstrate that aldosterone modulates an ETB cysteinyl thiol redox switch to decrease pulmonary endothelium-derived NO• and promote PAH

  16. Chloride dysregulation and inhibitory receptor blockade yield equivalent disinhibition of spinal neurons yet are differentially reversed by carbonic anhydrase blockade.

    PubMed

    Lee, Kwan Yeop; Prescott, Steven A

    2015-12-01

    Synaptic inhibition plays a key role in processing somatosensory information. Blocking inhibition at the spinal level is sufficient to produce mechanical allodynia, and many neuropathic pain conditions are associated with reduced inhibition. Disinhibition of spinal neurons can arise through decreased GABAA/glycine receptor activation or through dysregulation of intracellular chloride. We hypothesized that these distinct disinhibitory mechanisms, despite all causing allodynia, are differentially susceptible to therapeutic intervention. Specifically, we predicted that reducing bicarbonate efflux by blocking carbonic anhydrase with acetazolamide (ACTZ) would counteract disinhibition caused by chloride dysregulation without affecting normal inhibition or disinhibition caused by GABAA/glycine receptor blockade. To test this, responses to innocuous tactile stimulation were recorded in vivo from rat superficial dorsal horn neurons before and after different forms of pharmacological disinhibition and again after application of ACTZ. Blocking GABAA or glycine receptors caused hyperresponsiveness equivalent to that caused by blocking the potassium chloride cotransporter KCC2, but, consistent with our predictions, only disinhibition caused by KCC2 blockade was counteracted by ACTZ. ACTZ did not alter responses of neurons with intact inhibition. As pathological downregulation of KCC2 is triggered by brain-derived neurotrophic factor, we also confirmed that ACTZ was effective against brain-derived neurotrophic factor-induced hyperresponsiveness. Our results argue that intrathecal ACTZ has antiallodynic effects only if allodynia arises through chloride dysregulation; therefore, behavioral evidence that ACTZ is antiallodynic in nerve-injured animals affirms the contribution of chloride dysregulation as a key pathological mechanism. Although different disinhibitory mechanisms are not mutually exclusive, these results demonstrate that their relative contribution dictates which

  17. Functional measures, inflammatory markers and endothelin-1 as predictors of 360-day survival in centenarians.

    PubMed

    Szewieczek, Jan; Francuz, Tomasz; Dulawa, Jan; Legierska, Katarzyna; Hornik, Beata; Włodarczyk, Iwona; Janusz-Jenczeń, Magdalena; Batko-Szwaczka, Agnieszka

    2015-10-01

    Centenarians represent a rapidly growing population. To better characterize this specific age group, we have performed a cross-sectional study to observe associations between functional measures and a range of biochemical markers, including inflammatory markers and their significance as predictors of 360-day survival. Medical history and physical and functional assessment (Mini-Mental State Examination (MMSE), Katz Index (activities of daily living, ADL) and Barthel Index (Barthel Index) of Activities of Daily Living, and Lawton Instrumental Activities of Daily Living Scale (Lawton IADL)) were conducted on 86 101.9 ± 1.2-year-old (mean ± SD) subjects (70 women, 16 men). Blood tests were performed on 84 subjects of whom 43 also had extended biomarker assessment. As a reference group 30 51.8 ± 5.0-year old healthy subjects (20 women, 10 men) were recruited. The centenarians received follow-up phone calls. Fifty-two centenarians (60 %) survived ≥360 days. Longer survival was associated with higher MMSE (hazard ratio, HR = 0.934, 95 % confidence interval (CI) 0.896-0.975, P = .002), ADL (HR = 0.840, 95 % CI 0.716-0.985, P = .032), Barthel Index (HR = 0.988, 95 % CI 0.977-0.999, P = .026), and albumin level (HR .926, 95 % CI 0.870-0.986, P .016) and with lower white blood cell (WBC) (HR = 1.161, 95 % CI 1.059-1.273, P = .001), C-reactive protein (CRP) (HR = 1.032, 95 % CI 1.014-1.050, P < .001), IL-6 (HR = 1.182, 95 % CI 1.047-1.335, P = .007), and endothelin-1 (ET-1) level (HR = 3.711, 95 % CI 1.233-11.169, P = .020). Centenarians had higher 360-day survival probability with MMSE ≥13 (P < .001), ADL ≥1 (P < .001), Barthel Index ≥15 (P < .001), Lawton IADL ≥10 points (P = .009), WBC <8.3 G/L (P = .039), CRP <10 mg/L (P < .001), IL-6 <6 pg/mL (P .002), and ET-1 <1.1 pg/mL (P .007). Our results indicate that functional measures, inflammatory markers, and endothelin-1 are predictors of 360-day survival in centenarians.

  18. Combined exposure to big endothelin-1 and mechanical loading in bovine sternal cores promotes osteogenesis.

    PubMed

    Meyer, Luisa A; Johnson, Michael G; Cullen, Diane M; Vivanco, Juan F; Blank, Robert D; Ploeg, Heidi-Lynn; Smith, Everett L

    2016-04-01

    Increased bone formation resulting from mechanical loading is well documented; however, the interactions of the mechanotransduction pathways are less well understood. Endothelin-1, a ubiquitous autocrine/paracrine signaling molecule promotes osteogenesis in metastatic disease. In the present study, it was hypothesized that exposure to big endothelin-1 (big ET1) and/or mechanical loading would promote osteogenesis in ex vivo trabecular bone cores. In a 2×2 factorial trial of daily mechanical loading (-2000με, 120cycles daily, "jump" waveform) and big ET1 (25ng/mL), 48 bovine sternal trabecular bone cores were maintained in bioreactor chambers for 23days. The bone cores' response to the treatment stimuli was assessed with percent change in core apparent elastic modulus (ΔEapp), static and dynamic histomorphometry, and prostaglandin E2 (PGE2) secretion. Two-way ANOVA with a post hoc Fisher's LSD test found no significant treatment effects on ΔEapp (p=0.25 and 0.51 for load and big ET1, respectively). The ΔEapp in the "no load + big ET1" (CE, 13±12.2%, p=0.56), "load + no big ET1" (LC, 17±3.9%, p=0.14) and "load + big ET1" (LE, 19±4.2%, p=0.13) treatment groups were not statistically different than the control group (CC, 3.3%±8.6%). Mineralizing surface (MS/BS), mineral apposition (MAR) and bone formation rates (BFR/BS) were significantly greater in LE than CC (p=0.037, 0.0040 and 0.019, respectively). While the histological bone formation markers in LC trended to be greater than CC (p=0.055, 0.11 and 0.074, respectively) there was no difference between CE and CC (p=0.61, 0.50 and 0.72, respectively). Cores in LE and LC had more than 50% greater MS/BS (p=0.037, p=0.055 respectively) and MAR (p=0.0040, p=0.11 respectively) than CC. The BFR/BS was more than two times greater in LE (p=0.019) and LC (p=0.074) than CC. The PGE2 levels were elevated at 8days post-osteotomy in all groups and the treatment groups remained elevated compared to the CC group on days 15

  19. Functional measures, inflammatory markers and endothelin-1 as predictors of 360-day survival in centenarians.

    PubMed

    Szewieczek, Jan; Francuz, Tomasz; Dulawa, Jan; Legierska, Katarzyna; Hornik, Beata; Włodarczyk, Iwona; Janusz-Jenczeń, Magdalena; Batko-Szwaczka, Agnieszka

    2015-10-01

    Centenarians represent a rapidly growing population. To better characterize this specific age group, we have performed a cross-sectional study to observe associations between functional measures and a range of biochemical markers, including inflammatory markers and their significance as predictors of 360-day survival. Medical history and physical and functional assessment (Mini-Mental State Examination (MMSE), Katz Index (activities of daily living, ADL) and Barthel Index (Barthel Index) of Activities of Daily Living, and Lawton Instrumental Activities of Daily Living Scale (Lawton IADL)) were conducted on 86 101.9 ± 1.2-year-old (mean ± SD) subjects (70 women, 16 men). Blood tests were performed on 84 subjects of whom 43 also had extended biomarker assessment. As a reference group 30 51.8 ± 5.0-year old healthy subjects (20 women, 10 men) were recruited. The centenarians received follow-up phone calls. Fifty-two centenarians (60 %) survived ≥360 days. Longer survival was associated with higher MMSE (hazard ratio, HR = 0.934, 95 % confidence interval (CI) 0.896-0.975, P = .002), ADL (HR = 0.840, 95 % CI 0.716-0.985, P = .032), Barthel Index (HR = 0.988, 95 % CI 0.977-0.999, P = .026), and albumin level (HR .926, 95 % CI 0.870-0.986, P .016) and with lower white blood cell (WBC) (HR = 1.161, 95 % CI 1.059-1.273, P = .001), C-reactive protein (CRP) (HR = 1.032, 95 % CI 1.014-1.050, P < .001), IL-6 (HR = 1.182, 95 % CI 1.047-1.335, P = .007), and endothelin-1 (ET-1) level (HR = 3.711, 95 % CI 1.233-11.169, P = .020). Centenarians had higher 360-day survival probability with MMSE ≥13 (P < .001), ADL ≥1 (P < .001), Barthel Index ≥15 (P < .001), Lawton IADL ≥10 points (P = .009), WBC <8.3 G/L (P = .039), CRP <10 mg/L (P < .001), IL-6 <6 pg/mL (P .002), and ET-1 <1.1 pg/mL (P .007). Our results indicate that functional measures, inflammatory markers, and endothelin-1 are predictors of 360-day survival in centenarians. PMID:26289439

  20. Rat white matter injury model induced by endothelin-1 injection: technical modification and pathological evaluation.

    PubMed

    Ono, Hideaki; Imai, Hideaki; Miyawaki, Satoru; Nakatomi, Hirofumi; Saito, Nobuhito

    2016-01-01

    White matter injury is an important cause of functional disability of the brain. We comprehensively analyzed a modified endothelin-1 (ET‑1) injection-induced white matter injury model in the rat which is very valuable for investigating the underlying mechanisms of subcortical ischemic stroke. ET-1 was stereotactically injected into the internal capsule of the rat. To avoid complications with leakage of ET-1 into the lateral ventricle, the safest trajectory angle to the target was established. Rats with white matter injury were extensively evaluated for structural changes and functional sequelae, using motor function tests, magnetic resonance (MR) imaging, histopathology evolution, volume estimation of the lesion, and neuroanatomical identification of affected neurons using the retrograde tracer hydroxystilbamidine. Optimization of the trajectory of the ET-1 injection needle provided excellent survival rate. MR imaging visualized the white matter injury 2 days after surgery. Motor function deficit appeared temporarily after the operation. Histological studies confirmed damage of axons and myelin sheaths followed by inflammatory reaction and gliosis similar to lacunar infarction, with lesion volume of less than 1% of the whole brain. Hydroxystilbamidine injected into the lesion revealed wide spatial distribution of the affected neuronal population. Compared with prior ET-1 injection models, this method induced standardized amount of white matter damage and temporary motor function deficit in a reproducible and safe manner. The present model is valuable for studying the pathophysiology of not only ischemia, but a broader set of white matter damage conditions in the lissencephalic brain. PMID:27685774

  1. Endothelin stimulates phosphatidylinositol hydrolysis and DNA synthesis in brain capillary endothelial cells.

    PubMed Central

    Vigne, P; Marsault, R; Breittmayer, J P; Frelin, C

    1990-01-01

    Endothelin-1 (ET-1) is a novel vasoconstricting and cardiotonic peptide that is synthesized by the vascular endothelium. Bovine aortic endothelial cells which secrete ET in vitro lack membrane receptor sites for the peptide. Endothelial cells from rat brain microvessels that do not secrete ET in vitro express large amounts of high-affinity receptors for 125I-labelled ET-1 (Kd 0.8 nM). The ET receptor is recognized by sarafotoxin S6b and the different ET peptides with the following order of potency: ET-1 (Kd 0.5 nM) approximately equal to ET-2 (Kd 0.7 nM) greater than sarafotoxin S6b (Kd 27 nM) greater than ET-3 (Kd 450 nM). This structure-activity relationship is different from those found in vascular smooth muscle cells, renal cells and cardiac cells. ET-1 stimulates DNA synthesis in brain capillary endothelial cells. It is more potent than basic fibroblast growth factor. The action of ET on endothelial cells from microvessels involves phosphatidylinositol hydrolysis and intracellular Ca2+ mobilization. These observations suggest that brain endothelial cells might be an important target for ET. PMID:2156495

  2. Comparative effects of endothelin and phorbol 12-13 dibutyrate in rat aorta

    SciTech Connect

    Auguet, M.; Delaflotte, S.; Chabrier, P.E.; Braquet, P. )

    1989-01-01

    The vasoconstrictive properties of endothelin (ET-1) and the protein kinase C activator, phorbol 12-13 dibutyrate (PDB) were comparatively investigated in isolated rat aorta. ET-1 and PDB induced a slowly developing sustained contraction in endothelium denuded aorta. Maximal contractions induced by ET-1 and PDB were unaffected by diltiazem. Substantial contraction to ET-1 and PDB remained in calcium-free medium. Contractions of ET-1 and PDB in calcium-free medium were unaffected by intracellular calcium depletion induced by phenylephrine. Following the response to ET-1 and PDB in a calcium-free medium, an additional sustained was observed after calcium was added to the bath. The protein kinase C inhibitor, H7 was more potent in inhibiting contractions induced by phenylephrine and KCl than the ones elicited by ET-1 and PDB. The other protein kinase C inhibitors i.e. staurosporine and phloretin inhibited to a similar extent all the agonists tested. These results suggest that protein kinase C may play an important role in mediating the contraction to ET-1 in rat aorta.

  3. Effects of echinomycin on endothelin-2 expression and ovulation in immature rats primed with gonadotropins

    PubMed Central

    Zhang, Zhenghong; Wu, Yanqing; Chen, Liyun; Luo, Qianping; Zhang, Jisen; Chen, Jiajie; Luo, Zimiao; Huang, Xiaohong; Cheng, Yong

    2012-01-01

    Echinomycin is a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity, which plays a crucial role in ovarian ovulation in mammalians. The present study was designed to test the hypothesis that hypoxia-inducible factor (HIF)-1α-mediated endothelin (ET)-2 expressions contributed to ovarian ovulation in response to human chorionic gonadotropin (hCG) during gonadotropin-induced superuvulation. By real-time RT-PCR analysis, ET-2 mRNA level was found to significantly decrease in the ovaries after echinomycin treatment, while HIF-1α mRNA and protein expression was not obviously changed. Further analysis also showed that these changes of ET-2 mRNA were consistent with HIF-1 activity in the ovaires, which is similar with HIF-1α and ET-2 expression in the granulosa cells with gonadotropin and echinomycin treatments. The results of HIF-1α and ET-2 expression in the granulosa cells transfected with cis-element oligodeoxynucleotide (dsODN) under gonadotropin treatment further indicated HIF-1α directly mediated the transcriptional activation of ET-2 during gonadotropin-induced superuvulation. Taken together, these results demonstrated that HIF-1α-mediated ET-2 transcriptional activation is one of the important mechanisms regulating gonadotropin-induced mammalian ovulatory precess in vivo. PMID:22874467

  4. Osmolar regulation of endothelin-1 production by rat inner medullary collecting duct.

    PubMed Central

    Kohan, D E; Padilla, E

    1993-01-01

    Recent evidence has implicated endothelin-1 (ET-1) as an autocrine inhibitor of inner medullary collecting duct (IMCD) sodium and water transport. The regulators of IMCD ET-1 production are, however, largely unknown. Because of the unique hypertonic environment of the IMCD, the effect of varying extracellular tonicity on IMCD ET-1 production was evaluated. Increasing media osmolality from 300 to 450 mosmol with NaCl or mannitol but not urea caused a marked dose- and time-dependent reduction in ET-1 release by and ET-1 mRNA in cultured rat IMCD cells. In contrast, increasing osmolality had no effect on ET-1 production by rat endothelial or mesangial cells. To see if ET-1 varies in a similar manner in vivo, ET-1 production was assessed in volume expanded (lower medullary tonicity) or volume depleted (high medullary tonicity) rats. Urinary ET-1 excretion and inner medulla ET-1 mRNA were significantly reduced in volume depleted as compared to volume expanded animals. These results indicate that extracellular sodium concentration inhibits ET-1 production specifically in IMCD cells. We speculate that extracellular sodium concentration, via regulation of ET-1 production, provides a link between volume status and IMCD sodium and water reabsorption. PMID:8450052

  5. Absorption, distribution, metabolism, and excretion of macitentan, a dual endothelin receptor antagonist, in humans.

    PubMed

    Bruderer, Shirin; Hopfgartner, Gérard; Seiberling, Michael; Wank, Janine; Sidharta, Patricia N; Treiber, Alexander; Dingemanse, Jasper

    2012-09-01

    Macitentan is a tissue-targeting, dual endothelin receptor antagonist, currently under phase 3 investigation in pulmonary arterial hypertension. In this study the disposition and metabolism of macitentan were investigated following administration of a single oral 10 mg dose of (14)C-macitentan to six healthy male subjects. The total radioactivity in matrices was determined using liquid scintillation counting. The proposed structure of metabolites was based on mass spectrometry characteristics and, when available, confirmed by comparison with reference compounds. Mean (± SD) cumulative recovery of radioactivity from faeces and urine was 73.6% (± 6.2%) of the administered radioactive dose, with 49.7% (± 3.9%) cumulative recovery from urine, and 23.9% (± 4.8%) from faeces. In plasma, in addition to parent macitentan, ACT-132577, a pharmacologically active metabolite elicited by oxidative depropylation and the carboxylic acid metabolite ACT-373898 were identified. In urine, four entities were identified, with the hydrolysis product of ACT-373898 as the most abundant one. In faeces, five entities were identified, with the hydrolysis product of macitentan and ACT-132577 as the most abundant one. Concentrations of total radioactivity in whole blood were lower compared to plasma, which indicates that macitentan and its metabolites poorly bind to or penetrate into erythrocytes.

  6. Validation of Endothelin B Receptor Antibodies Reveals Two Distinct Receptor-related Bands on Western Blot

    PubMed Central

    Barr, Travis P.; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R.

    2014-01-01

    Antibodies are important tools for the study of protein expression, but are often used without full validation. In this study, we use Western blots to characterize antibodies targeted to the N- (NT) or C-termini (CT) and the second (IL2) or third intracellular (IL3) loops of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50kD band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37 kD band, but failed to detect endogenous ETB in rat brain. Bands detected by the CT-targeted or IL3-targeted antibodies were found to be unrelated to ETB. Our findings show that functional ETB receptors can be detected at 50 kD or 37 kD on Western blot, with drastic differences in antibody affinity for these bands. The 37 kD band likely reflects ETB receptor processing, which appears to be dependent on cell type and/or culture condition. PMID:25232999

  7. Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases.

    PubMed

    Gohar, Eman Y; Giachini, Fernanda R; Pollock, David M; Tostes, Rita C

    2016-08-15

    Epidemiological studies of blood pressure in men and women and in experimental animal models point to substantial sex differences in the occurrence of arterial hypertension as well as in the various manifestations of arterial hypertension, including myocardial infarction, stroke, retinopathy, chronic kidney failure, as well as hypertension-associated diseases (e.g. diabetes mellitus). Increasing evidence demonstrates that the endothelin (ET) system is a major player in the genesis of sex differences in cardiovascular and renal physiology and diseases. Sex differences in the ET system have been described in the vasculature, heart and kidney of humans and experimental animals. In the current review, we briefly describe the role of the ET system in the cardiovascular and renal systems. We also update information on sex differences at different levels of the ET system including synthesis, circulating and tissue levels, receptors, signaling pathways, ET actions, and responses to antagonists in different organs that contribute to blood pressure regulation. Knowledge of the mechanisms underlying sex differences in arterial hypertension can impact therapeutic strategies. Sex-targeted and/or sex-tailored approaches may improve treatment of cardiovascular and renal diseases.

  8. Nitric oxide and endothelin relationship in intestinal ischemia/reperfusion injury (II).

    PubMed

    Ozel, S K; Yüksel, M; Haklar, G; Durakbaşa, C U; Dagli, T E; Aktan, A O

    2001-01-01

    Endothelins ( ETs ) are potent vasoconstrictors derived from vascular endothelium. They have primary roles in many pathophysiologic states including ischemia/reperfusion (I/R) injury. The relationships between nitric oxide (NO) and ETs are still under investigation. In this study on rats we want to focus on the interaction of NO and ET especially in I/R injury. For this purpose ET-1 and PD-156252, a nonselective ET receptor blocker, were given in a mesenteric I/R model and reactive oxygen species were detected directly using chemiluminescence of the ileal tissue. ET administrations to sham and I/R groups caused significant increases in NO concentrations whereas, in terms of peroxynitrite, which is a highly reactive group of free radicals, its increasing effects were seen only in I/R groups. This suggests that in I/R where superoxide levels increase together with NO, the conversion to peroxynitrite is likely and this effect is augmented with ET administration. On the other hand PD administration decreases superoxide and thereby peroxynitrite levels and this study shows that the effect of PD-156252 is established through this mode of action. These data suggest therapeutic approaches that may be beneficial in the treatment of I/R injury.

  9. Endothelin ETA receptor antagonist reverses naloxone-precipitated opioid withdrawal in mice.

    PubMed

    Bhalla, Shaifali; Pais, Gwendolyn; Tapia, Melissa; Gulati, Anil

    2015-11-01

    Long-term use of opioids for pain management results in rapid development of tolerance and dependence leading to severe withdrawal symptoms. We have previously demonstrated that endothelin-A (ETA) receptor antagonists potentiate opioid analgesia and eliminate analgesic tolerance. This study was designed to investigate the involvement of central ET mechanisms in opioid withdrawal. The effect of intracerebroventricular administration of ETA receptor antagonist BQ123 on morphine and oxycodone withdrawal was determined in male Swiss Webster mice. Opioid tolerance was induced and withdrawal was precipitated by the opioid antagonist naloxone. Expression of ETA and ETB receptors, nerve growth factor (NGF), and vascular endothelial growth factor was determined in the brain using Western blotting. BQ123 pretreatment reversed hypothermia and weight loss during withdrawal. BQ123 also reduced wet shakes, rearing behavior, and jumping behavior. No changes in expression of vascular endothelial growth factor, ETA receptors, and ETB receptors were observed during withdrawal. NGF expression was unaffected in morphine withdrawal but significantly decreased during oxycodone withdrawal. A decrease in NGF expression in oxycodone- but not in morphine-treated mice could be due to mechanistic differences in oxycodone and morphine. It is concluded that ETA receptor antagonists attenuate opioid-induced withdrawal symptoms.

  10. Endothelin receptors: what's new and what do we need to know?

    PubMed Central

    2010-01-01

    Receptors are at the heart of how a molecule transmits a signal to a cell. Two receptor classes for endothelin (ET) are recognized, the ETA and ETB receptors. Intriguing questions have arisen in the field of ET receptor pharmacology, physiology, and function. For example, a host of pharmacological studies support the interaction of the ETA and ETB receptor in tissues (veins, arteries, bronchus, arterioles, esophagus), but yet few have been able to demonstrate direct ETA/ETB receptor interaction. Have we modeled this interaction wrong? Do we have a truly selective ETA receptor agonist such that we could selectively stimulate this important receptor? What can we learn from the recent phylogenic studies of the ET receptor family? Have we adequately addressed the number of biological molecules with which ET can interact to exert a biological effect? Recent mass spectrometry studies in our laboratory suggest that ET-1 interacts with other hereto unrecognized proteins. Biased ligands (ligands at the same receptor that elicit distinct signaling responses) have been discovered for other receptors. Do these exist for ET receptors and can we take advantage of this possibility in drug design? These and other questions will be posed in this minireview on topics on ET receptors. PMID:19907001

  11. Endothelin and neonatal capsaicin regulate gastric resistance to injury in BDL rats

    PubMed Central

    Câmara, Paula RS; Ferraz, Gerson JN; Velloso, Licio A; Zeitune, José Murilo R; Suassuna, Fernando AB; Ferraz, Jose Geraldo P

    2012-01-01

    AIM: To investigate the relationship between primary afferent neurons, endothelin (ET) and the role of its receptors on ethanol-induced gastric damage in cirrhotic rats. METHODS: Cirrhosis and portal hypertension were induced in rats by bile duct ligation (BDL) while controls had a sham operation. The association between ET and afferent neurons on the gastric mucosa was evaluated by capsaicin treatment in newborn rats, the use of ET agonists or antagonists, gastric ET-1 and -3 mRNA and synthetic capacity. Ethanol-induced damage was assessed using ex vivo gastric chamber experiments. Gastric blood flow was measured by laser-Doppler flowmetry. RESULTS: ET-3 and an ETB receptor antagonist significantly reduced the extent of ethanol-induced gastric damage in BDL rats. Gastric ET-1 and -3 levels were 30% higher in BDL rats compared to control rats. Capsaicin treatment restored the gastric resistance and blood flow responses to topical application of ethanol in BDL rats and ET-1 and -3 production to levels observed in controls. CONCLUSION: Our results suggest that the reduced resistance of the gastric mucosa of cirrhotic rats to ethanol-induced injury is a phenomenon modulated by ET through the ETB receptor and by sensory afferent neurons. PMID:23293745

  12. Nobiletin, a polymethoxy flavonoid, reduced endothelin-1 plus SCF-induced pigmentation in human melanocytes.

    PubMed

    Kim, Hyo Jung; Yonezawa, Takayuki; Teruya, Toshiaki; Woo, Je-Tae; Cha, Byung-Yoon

    2015-01-01

    Nobiletin is a unique flavonoid having polymethoxy groups and has exhibited anti-inflammatory and antiobesity effects. Here, we examined the inhibition of nobiletin on melanogenesis induced by endothelin-1 (ET) and stem cell factor (SCF) in normal human melanocytes. Nobiletin dose dependently reduced ET plus SCF-stimulated tyrosinase activity without causing cytotoxicity. Nobiletin reduced cAMP-response element-binding protein (CREB) phosphorylation and microphthalmia-associated transcription factor (MITF) expression, which is a key transcription factor for tyrosinase expression in pigmentation induced by ET plus SCF stimulation. Nobiletin treatment effectively decreased ET plus SCF-induced Raf-1, MEK and ERK1/2 phosphorylation and also downregulated the forskolin-induced phosphorylation of CREB. Furthermore, nobiletin inhibited ET plus SCF-triggered production of melanin and expression of MITF/tyrosinase in a three-dimensional human epidermal model. In accordance with protein expression, the expression of genes related to the pigmentation was also increased in the cells stimulated with ET plus SCF and the cotreatment with nobiletin decreased obviously the ET plus SCF-triggered gene expressions of tyrosinase, PMEL, TRP1 and MITF. Nobiletin contributes to hypopigmentation by downregulating MITF and tyrosinase expression through reduced Raf-1 phosphorylation. Our findings implicate nobiletin as a potential new whitening agent.

  13. [The new endothelin receptor antagonist macitentan: Prospects for therapy of pulmonary arterial hypertension].

    PubMed

    Avdeev, S N

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a clinical group of severe and rare diseases with similar morphological, hemodynamic, and therapeutic characteristics. One of the novel drugs to treat PAH is macitentan, a new double endothelin ETA and ETB receptor antagonist that is characterized by special physicochemical properties, ensuring the penetration of the drug into tissues and its improved receptor-binding properties. The SERAPHIN trial has demonstrated that therapy with macitentan 10 mg versus placebo statistically significantly reduces the risk of poor outcomes and death by 45%. The treatment with macitentan 10 is observed to be highly effective regardless of the presence/absence of basic PAH-specific therapy. The drug considerably improves clinically important outcomes, including 6-minute walk distance and WHO functional class. Macitentan exerts a steady-state therapeutic effect, by improving pulmonary hemodynamics. Macitentan 10 mg statistically significantly reduces the risk of PAH, frequency of its related hospitalizations, and the number of days spent in hospital. The drug has a favorable safety profile; its most common side effects are headache, nasopharyngitis, and anemia. Macitentan is an effective first-line drug to improve long-term outcomes in patients with newly and previously diagnosed PAH.

  14. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist.

    PubMed

    Allon, Nahum; Saxena, Ashima; Chambers, Carolyn; Doctor, Bhupendra P

    2012-06-10

    We formulated a new gene delivery system based on targeted liposomes. The efficacy of the delivery system was demonstrated in in vitro and in vivo models. The targeting moiety consists of a high-affinity 7-amino-acid peptide, covalently and evenly conjugated to the liposome surface. The targeting peptide acts as an endothelin antagonist, and accelerates liposome binding and internalization. It is devoid of other biological activity. Liposomes with high phosphatidyl serine (PS) were specially formulated to help their fusion with the endosomal membrane at low pH and enable release of the liposome payload into the cytoplasm. A DNA payload, pre-compressed by protamine, was encapsulated into the liposomes, which directed the plasmid into the cell's nucleus. Upon exposure to epithelial cells, binding of the liposomes occurred within 5-10 min, followed by facilitated internalization of the complex. Endosomal escape was complete within 30 min, followed by DNA accumulation in the nucleus 2h post-transfection. A549 lung epithelial cells transfected with plasmid encoding for GFP encapsulated in targeted liposomes expressed significantly more protein than those transfected with plasmid complexed with Lipofectamine. The intra-tracheal instillation of plasmid encoding for GFP encapsulated in targeted liposomes into rat lungs resulted in the expression of GFP in bronchioles and alveoli within 5 days. These results suggest that this delivery system has great potential in targeting genes to lungs.

  15. Expression of endothelin-1 gene and protein in human granulosa cells

    SciTech Connect

    Magini, A.; Granchi, S.; Susini, T.

    1996-04-01

    Previous studies in animal models indicated an autocrine/paracrine action of endothelin-1 (ET-1) in the ovary. We now report evidence on the presence of ET-1 in human ovary during reproductive life. Immunohistochemical and in situ hybridization studies demonstrated a positive signal into cytoplasm of granulosa cells (GC) of follicles at different growth stages. The concentration of ET-1-like immunoreactivity (ET-1-Li) was also measured by a specific RIA in human follicular fluid (FF). FF samples were obtained from women in an in vitro fertilization program undergoing gonadotropin stimulation (group A; n = 24) or no treatment (group B; n = 7). The mean ({+-}SD) ET-1-LI FF level in group A (4.85 {+-} 2.06 pg/mL) was significantly higher than that in group B (1.29 {+-} 0.43 pg/mL; P < 0.01), whereas the corresponding mean plasma levels were not significantly different and were not correlated to respective FF values. Our results indicate for the first time the presence of ET-1 and its messenger ribonucleic acid in the GC of the human ovary. The higher ET-1-LI levels found in the FF from women undergoing gonadotropin treatment suggest a modulation by gonadotropins and/or ovarian steroids of ET-1 production by GC. 19 refs., 4 figs., 1 tab.

  16. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    PubMed

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-03-08

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo.

  17. Renal function and blood pressure: molecular insights into the biology of endothelin-1.

    PubMed

    Vignon-Zellweger, Nicolas; Heiden, Susi; Emoto, Noriaki

    2011-01-01

    The therapeutic implications of the actions of endothelin (ET)-1 upon renal and cardiovascular function are evident. Among other diseases, ET-1 is recognized to be involved in hypertension and renal failure and, in a rush to develop novel treatments, has been extensively studied. However, given the broad localization of the two receptors (ET(A) and ET(B)) and the diverse effects resulting from their activation, analysis of the role of ET-1 in kidney-regulated blood pressure remains complicated. Moreover, the actions of ET-1 depend upon the cell type and physiological situation. To add to the complexity, both receptors often activate opposing signaling pathways within a single cell. Thus, until recently, reliable insights into the respective involvement of both receptors in the physiology and pathology of the kidney were eagerly awaited. These have been obtained using mice that are genetically modified for different members of the ET system. In this article, the molecular biology of ET-1 and its receptors in the control of renal vasculature tonicity, glomerular function, and management of water and salt reabsorption is discussed. The role of renal ET-1 in the context of blood pressure regulation will be discussed, and the potential of utilizing ET receptor antagonism in the treatment and prevention of glomerular and proteinuric diseases is also outlined. PMID:21893986

  18. The E5 oncoprotein of human papillomavirus type 16 enhances endothelin-1-induced keratinocyte growth.

    PubMed

    Venuti, A; Salani, D; Poggiali, F; Manni, V; Bagnato, A

    1998-08-15

    Human keratinocytes express ETA receptors and produce endothelin-1 (ET-1), which stimulates growth response. Previously, we reported that a twofold increase in ETA receptors is present in human papillomavirus type 16 (HPV16) immortalized keratinocytes and that ET-1 induces enhanced proliferative response in these cell lines compared to normal cells. The present studies examine whether the E5 gene of HPV16 is responsible for the enhanced activity of ET-1 in HPV-transfected keratinocytes. The presence of the E5 gene in growth factor-starved keratinocytes induced the DNA synthesis and enhanced the mitogenic activity of ET-1 or epidermal growth factor. The selection of primary keratinocytes in growth factor-free medium with the addition of ET-1 as a growth factor showed that E5-transfected keratinocytes were able to grow and to form a higher number of larger colonies with respect to untransfected cells. This effect seems to be related to the interaction of E5 with the mitogenic signaling pathway of ET-1 rather than to an increase in the expression of the receptors for ET-1. In conclusion, our data demonstrate that E5 enhances ligand signaling in keratinocytes outside the EGF pathway by the amplification of the proliferative effect of ET-1/ETA receptor signaling.

  19. CD10 expressed by fibroblasts and melanoma cells degrades endothelin-1 secreted by human keratinocytes.

    PubMed

    Xie, Lining; Moroi, Yoichi; Takahara, Masakazu; Tsuji, Gaku; Oba, Junna; Hayashida, Sayaka; Takeuchi, Satoshi; Shan, Baoen; Uchi, Hiroshi; Furue, Masutaka

    2011-01-01

    Endothelin-1 (ET-1) is a potent multifunctional peptide linked to wound healing, pigmentation, carcinogenesis, and fibrosclerotic processes in the skin. Whereas ET-1 was thought to be digested by receptor-mediated endocytosis, it is also reported to be biochemically degraded by the neutral endopeptidase CD10 using kidney homogenates. Although keratinocytes (KC) and fibroblasts (Fb) are sources of both ET-1 and CD10, respectively, there is no report investigating the direct association between CD10 expression and its function in relation to ET-1 degradation in the skin. CD10 expression in melanoma cells is associated with clinical prognosis, suggesting an important role in the invasive and metastatic potential of melanoma cells. Here, cultured KC produced much higher amounts of ET-1 than did cultured Fb or melanoma cells. In contrast, KC and A375 melanoma cells did not express CD10, while Fb, SK-MEL-28 and G361 melanoma cells constitutively expressed CD10. KC-derived ET-1 was down-modulated by both CD10-positive Fb and CD10-positive melanoma cells, and the inhibition was partially reversed under substitution conditions using CD10-knockdown Fb or CD10-knockdown melanoma cells. This indicates that CD10 on cultured Fb and melanoma cells is biochemically active in the degradation or down-modulation of ET-1 secreted from KC. These findings may lead to better understanding of skin homeostasis and of the malignant potential of melanoma.

  20. Identification of the ETA receptor subtype that mediates endothelin induced autocrine proliferation of normal human keratinocytes.

    PubMed

    Bagnato, A; Venuti, A; Di Castro, V; Marcante, M L

    1995-04-01

    Endothelin-1 has a wide range of pharmacological effects in various tissues and acts as autocrine/paracrine factor. The potential of ET-1 to function as an autocrine growth factor was evaluated in normal human keratinocytes. Radioligand binding studies showed that 125I-ET-1 bound to a single class of high-affinity-binding sites on the surface of the cells. The dissociation constant was 0.045 nM with receptor numbers of 1700 sites/cell. Treatment with serum caused increases in expression of binding sites (3500 sites/cell), with no change in binding affinity. ET-1 stimulated thymidine incorporation in these cells that expressed ET receptors. An ET antagonist selective for the ETA receptor subtype (BQ 123) inhibited DNA synthesis stimulated by ET-1 and reduced the basal growth rate of unstimulated cells. These data suggest that the ET-1 induced DNA synthesis is mediated by ETA receptor subtype and that endogenously produced ET-1 promotes the autocrine proliferation of keratinocytes.

  1. Endothelin-2/vasoactive intestinal contractor via ROCK regulates transglutaminase 1 on differentiation of mouse keratinocytes.

    PubMed

    Kotake-Nara, Eiichi; Takizawa, Satoshi; Saida, Kaname

    2007-05-25

    We previously found that endothelin-2/vasoactive intestinal contractor (ET-2/VIC) greatly increased in mouse epidermis after birth. In the present study, we evaluated whether ET-2/VIC expression was associated with the calcium-induced differentiation of cultured mouse keratinocytes. The differentiation induction was revealed by morphological change, cornified envelope (CE) formation, and involucrin and transglutaminase 1 (TG 1) expressions. ET-2/VIC gene expression and peptide production subsequently increased in the induction of the differentiation. We also found that Y-27632, a Rho-associated coiled-coil forming protein serine/threonine kinase (ROCK) inhibitor, suppressed up-regulation of ET-2/VIC gene expression, the induction of morphological change, the CE formation, and TG 1 expression, but not involucrin expression. These results indicate new three findings, (1) ET-2/VIC expression increases and has potential as a differentiation marker, (2) ET-2/VIC expression is mediated by ROCK, and (3) the ROCK regulated TG 1 expression, on the calcium-induced differentiation of mouse keratinocytes.

  2. Endothelin-1 of keratinocyte origin is a mediator of melanocyte dendricity.

    PubMed

    Hara, M; Yaar, M; Gilchrest, B A

    1995-12-01

    Melanocytes synthesize melanin and transfer it to keratinocytes via dendritic processes. Keratinocytes are known to produce constitutively several factors, including endothelin-1 (ET-1), that together affect melanocyte proliferation, migration, melanogenesis, and dendrite formation. After ultraviolet (UV) irradiation, synthesis and secretion of ET-1 are up-regulated in keratinocytes. Because UV irradiation of skin is known to be associated with increased melanocyte dendricity, and because medium conditioned by UV-irradiated keratinocytes (UV-KCM) induces melanocyte dendricity to a greater degree than does baseline keratinocyte-conditioned medium (KCM), we investigated whether ET-1 promotes melanocyte dendricity. ET-1, originally recognized as a vasoconstrictive peptide, has recently been shown to stimulate melanocyte proliferation and tyrosinase activity. We now report that ET-1 supplementation of cultured melanocytes significantly increases the percentage of dendritic melanocytes, as well as dendrite length, in a dose-dependent manner. Moreover, UV-KCM was found to contain over 25-fold more ET-1 than KCM, and ET-1 supplementation of KCM induced melanocyte dendricity comparable to that induced by UV-KCM. Further, melanocyte dendricity induced by UV-KCM was significantly inhibited by the addition of anti-ET-1 monoclonal antibody to the medium, suggesting that the UV-KCM effect on melanocyte dendricity is mediated largely through ET-1. Our findings suggest that in the skin, ET-1 of keratinocyte origin promotes melanocyte dendricity in response to UV irradiation.

  3. Endothelin receptor B polymorphism associated with lethal white foal syndrome in horses.

    PubMed

    Santschi, E M; Purdy, A K; Valberg, S J; Vrotsos, P D; Kaese, H; Mickelson, J R

    1998-04-01

    Overo lethal white syndrome (OLWS) is an inherited syndrome of foals born to American Paint Horse parents of the overo coat-pattern lineage. Affected foals are totally or almost totally white and die within days from complications due to intestinal aganglionosis. Related conditions occur in humans and rodents in which mutations in the endothelin receptor B (EDNRB) gene are responsible. EDNRB is known to be involved in the developmental regulation of neural crest cells that become enteric ganglia and melanocytes. In this report we identify a polymorphism in the equine EDNRB gene closely associated with OLWS. This Ile to Lys substitution at codon 118 is located within the first transmembrane domain of this seven-transmembrane domain G-protein-coupled receptor protein. All 22 OLWS-affected foals examined were homozygous for the Lys118 EDNRB allele, while all available parents of affected foals were heterozygous. All but one of the parents also had an overo white body-spot phenotype. Solid-colored control horses of other breeds were homozygous for the Ile118 EDNRB allele. Molecular definition of the basis for OLWS in Paint Horses provides a genetic test for the presence of the Lys118 EDNRB allele and adds to our understanding of the basis for coat color patterns in the horse.

  4. Cyclosporine-induced synthesis of endothelin by cultured human endothelial cells.

    PubMed Central

    Bunchman, T E; Brookshire, C A

    1991-01-01

    Endothelin (ET), a peptide synthesized by endothelial cells (EC), causes a decreased renal blood flow and glomerular filtration rate and an increased mean arterial pressure when infused in animals. In tissue culture, ET causes smooth muscle cell (SMC) proliferation and contraction by influx of extracellular calcium, which is inhibited by calcium channel antagonists. Infusion of cyclosporine (CSA) hemodynamically parallels ET action, and knowing that CSA effects EC, we hypothesize that the vasoconstrictive effects of CSA are a result of ET synthesis by EC. Varying concentrations of CSA were incubated with EC resulting in ET present in the supernatants in a dose-dependent manner peaking at 75% above basal activity. Coincubation of either cremophor alone or cycloheximide with CSA resulted in minimal ET present in the EC supernatants (P less than 0.01 each). Incubation of conditioned media from CSA-treated EC with SMC caused proliferation at 114% above basal activity, which did not occur in the presence of CSA alone (P less than 0.01). This activity is specifically inhibited in the presence of an anti-ET antibody or nonspecifically in the presence of calcium channel antagonists (P less than 0.01 each). Therefore, CSA stimulates EC synthesis of ET which in turn causes SMC proliferation. This action is inhibited by the coincubation of a specific antibody to ET or a calcium channel antagonist. These findings may help in the understanding of CSA-induced hypertension and vasculopathy. Images PMID:2056124

  5. Endothelin receptor antagonists: a new therapeutic option for improving the outcome after solid organ transplantation?

    PubMed

    Göttmann, Uwe; van der Woude, Fokko J; Braun, Claude

    2003-10-01

    Initially described as the most potent vasoconstrictor peptide, endothelin (ET) has also been shown to possess extraordinary immunomodulatory and proinflammatory properties. Because of this broad spectrum of biological activities, a possible role of the ET-system in solid organ transplantation has soon become a focus of research. Several studies demonstrated a pathogenetic involvement of ET in ischemia/reperfusion injury of heart, liver, kidney, and lung grafts. ET accumulates during cold storage of organs and can be detected in the effluent preservation solution. In addition ET is very, likely to play a pivotal role in the development of chronic rejection, which represents the major cause of late allograft loss. Increased expression of components of the ET-system has been described in areas of neointimal proliferation, a hallmark of chronic graft rejection. Both selective ET-A as well as non-selective ET-A/B receptor antagonists improved histomorphological and functional sequelae of chronic rejection. However these data have largely been derived from experimental animal transplantation, and ET receptor blockers have only recently been introduced in clinical medicine. A significant number of investigational drugs are now being tested in humans, with a main focus on cardiovascular diseases, such as congestive heart failure and pulmonary hypertension. First results have markedly dampened the initial enthusiastic vision of ET receptor blockers being organoprotective super-weapons. Thus the clinical potential of ET antagonists in general, and especially in solid-organ transplantation, is still to be defined.

  6. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells

    PubMed Central

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C.; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S.; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A.; Lim, Bing; Chien, Kenneth R.

    2016-01-01

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human–mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1+ vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. PMID:26952167

  7. Localization of endothelin ETA and ETB receptor-mediated constriction in the renal microcirculation of rats.

    PubMed Central

    Endlich, K; Hoffend, J; Steinhausen, M

    1996-01-01

    1. The aim of the study was to visualize endothelin-1 (ET-1)-mediated constriction in renal vessels of cortical and juxtamedullary glomeruli in the split hydronephrotic rat kidney in vivo and to functionally characterize the ET receptor subtypes involved. 2. ET-1 (10(-9) M) constricted preglomerular vessels (by 6-18%) and efferent arterioles (by 11-13%), and decreased glomerular blood flow (GBF, by 55%) of cortical and juxtamedullary glomeruli. 3. The ETA antagonist BQ-123 (10(-6) M), as well as the ETB antagonist BQ-788 (2 x 10(-7) M) and IRL 1038 (10(-6) M), shifted the concentration-response curve of GBF for ET-1 to the right by one order of magnitude. While BQ-123 antagonized ET-1 constriction only in preglomerular vessels, BQ-788 and IRL 1038 were effective both in preglomerular vessels and efferent arterioles. 4. The ETB agonist IRL 1620 (10(-8) M) reduced GBF by 50% and constricted efferent arterioles (by 20-33%) about two times more than preglomerular vessels (by 6-14%). 5. Our results suggest that in renal cortical and juxtamedullary vessels of rats, ET-1-induced preglomerular vasoconstriction is mediated by ETA and ETB receptors, while efferent vasoconstriction is predominantly mediated by ETB receptors, which might have important consequences for the regulation of glomerular filtration pressure by ET. PMID:8951723

  8. Inhibition of endothelin-1-mediated contraction of hepatic stellate cells by FXR ligand.

    PubMed

    Li, Jiang; Kuruba, Ramalinga; Wilson, Annette; Gao, Xiang; Zhang, Yifei; Li, Song

    2010-11-11

    Activation of hepatic stellate cells (HSCs) plays an important role in the development of cirrhosis through the increased production of collagen and the enhanced contractile response to vasoactive mediators such as endothelin-1 (ET-1). The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidneys, adrenals, and intestine. FXR is also expressed in HSCs and activation of FXR in HSCs is associated with significant decreases in collagen production. However, little is known about the roles of FXR in the regulation of contraction of HSCs. We report in this study that treatment of quiescent HSCs with GW4064, a synthetic FXR agonist, significantly inhibited the HSC transdifferentiation, which was associated with an inhibition of the upregulation of ET-1 expression. These GW4064-treated cells also showed reduced contractile response to ET-1 in comparison to HSCs without GW4064 treatment. We have further shown that GW4064 treatment inhibited the ET-1-mediated contraction in fully activated HSCs. To elucidate the potential mechanism we showed that GW4064 inhibited ET-1-mediated activation of Rho/ROCK pathway in activated HSCs. Our studies unveiled a new mechanism that might contribute to the anti-cirrhotic effects of FXR ligands.

  9. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. )

    1991-06-01

    The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.

  10. Validation of endothelin B receptor antibodies reveals two distinct receptor-related bands on Western blot.

    PubMed

    Barr, Travis P; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R

    2015-01-01

    Antibodies are important tools for the study of protein expression but are often used without full validation. In this study, we used Western blots to characterize antibodies targeted to the N or C terminal (NT or CT, respectively) and the second or third intracellular loop (IL2 or IL3, respectively) of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50-kDa band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37-kDa band but failed to detect endogenous ETB in rat brain. Bands detected by the CT- or IL3-targeted antibody were found to be unrelated to ETB. Our findings show that functional ETB can be detected at 50 or 37kDa on Western blot, with drastic differences in antibody affinity for these bands. The 37-kDa band likely reflects ETB processing, which appears to be dependent on cell type and/or culture condition.

  11. Endothelin-1 supports clonal derivation and expansion of cardiovascular progenitors derived from human embryonic stem cells.

    PubMed

    Soh, Boon-Seng; Ng, Shi-Yan; Wu, Hao; Buac, Kristina; Park, Joo-Hye C; Lian, Xiaojun; Xu, Jiejia; Foo, Kylie S; Felldin, Ulrika; He, Xiaobing; Nichane, Massimo; Yang, Henry; Bu, Lei; Li, Ronald A; Lim, Bing; Chien, Kenneth R

    2016-01-01

    Coronary arteriogenesis is a central step in cardiogenesis, requiring coordinated generation and integration of endothelial cell and vascular smooth muscle cells. At present, it is unclear whether the cell fate programme of cardiac progenitors to generate complex muscular or vascular structures is entirely cell autonomous. Here we demonstrate the intrinsic ability of vascular progenitors to develop and self-organize into cardiac tissues by clonally isolating and expanding second heart field cardiovascular progenitors using WNT3A and endothelin-1 (EDN1) human recombinant proteins. Progenitor clones undergo long-term expansion and differentiate primarily into endothelial and smooth muscle cell lineages in vitro, and contribute extensively to coronary-like vessels in vivo, forming a functional human-mouse chimeric circulatory system. Our study identifies EDN1 as a key factor towards the generation and clonal derivation of ISL1(+) vascular intermediates, and demonstrates the intrinsic cell-autonomous nature of these progenitors to differentiate and self-organize into functional vasculatures in vivo. PMID:26952167

  12. Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells

    NASA Technical Reports Server (NTRS)

    Chen, J.; Fabry, B.; Schiffrin, E. L.; Wang, N.; Ingber, D. E. (Principal Investigator)

    2001-01-01

    A magnetic twisting stimulator was developed based on the previously published technique of magnetic twisting cytometry. Using ligand-coated ferromagnetic microbeads, this device can apply mechanical stresses with varying amplitudes, duration, frequencies, and waveforms to specific cell surface receptors. Biochemical and biological responses of the cells to the mechanical stimulation can be assayed. Twisting integrin receptors with RGD (Arg-Gly-Asp)-containing peptide-coated beads increased endothelin-1 (ET-1) gene expression by >100%. In contrast, twisting scavenger receptors with acetylated low-density lipoprotein-coated beads or twisting HLA antigen with anti-HLA antibody-coated beads did not lead to alterations in ET-1 gene expression. In situ hybridization showed that the increase in ET-1 mRNA was localized in the cells that were stressed with the RGD-coated beads. Blocking stretch-activated ion channels with gadolinium, chelating Ca2+ with EGTA, or inhibiting tyrosine phosphorylation with genistein abolished twist-induced ET-1 mRNA elevation. Abolishing cytoskeletal tension with an inhibitor of the myosin ATPase, with an inhibitor of myosin light chain kinase, or with an actin microfilament disrupter blocked twisted-induced increases in ET-1 expression. Our results are consistent with the hypothesis that the molecular structural linkage of integrin-cytoskeleton is an important pathway for stress-induced ET-1 gene expression.

  13. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System.

    PubMed

    Finch, Jordan; Conklin, Daniel J

    2016-07-01

    Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health.

  14. Relationship between endothelin-1 concentration and metabolic alterations typical of the insulin resistance syndrome.

    PubMed

    Piatti, P M; Monti, L D; Galli, L; Fragasso, G; Valsecchi, G; Conti, M; Gernone, F; Pontiroli, A E

    2000-06-01

    The purpose of the study was to examine the relationship between the endothelin-1 (ET-1) concentration and the metabolic variables characteristic of the insulin resistance syndrome ([IRS] hyperinsulinemia, insulin resistance, hypertriglyceridemia, low high-density lipoprotein [HDL] cholesterol, visceral obesity, and glycemic abnormalities). The measurement of circulating ET-1 is a well-recognized marker of endothelial atherosclerotic and cardiovascular disease. Two hundred subjects were divided into 3 groups. Group 1 included 50 subjects with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) with IRS. Group 2 included 50 subjects with IGT or NIDDM without IRS. Group 3 included 100 normal subjects as controls. ET-1 levels were higher in group 1 versus groups 2 and 3 in women (11.2 +/- 0.7 v 7.9 +/- 0.5 and 6.6 +/- 0.4 pg/mL, P < .01) and men (10.1 +/- 0.6 v 6.5 +/- 0.8 and 7.2 +/- 0.3 pg/mL, P < .01). No differences were found between groups 2 and 3. With simple regression analysis, ET-1 levels significantly correlated with insulin, glycosylated hemoglobin, body weight, waist to hip ratio, and triglyceride values. However, with multiple regression analysis, only triglycerides (P < .009) and glycosylated hemoglobin (P < .001) remained independently correlated with ET-1. In conclusion, this cross-sectional study indicates that glycosylated hemoglobin and triglycerides are independently correlated with ET-1 levels in patients with IRS.

  15. The matrix metalloproteases and endothelin-1 in infection-associated preterm birth.

    PubMed

    Olgun, Nicole S; Reznik, Sandra E

    2010-01-01

    Preterm birth (PTB) is clinically defined as any delivery which occurs before the completion of 37 weeks of gestation, and is currently the most important problem in obstetrics. In the United States, PTB accounts for 12-13% of all live births, and, with the exception of fetuses suffering from anomalies, is the primary cause of perinatal mortality. While the risk factors for PTB are numerous, the single most common cause is intrauterine infection. As there is currently no FDA-approved therapy for infection-associated PTB, understanding the pathogenesis of preterm labor (PTL) and delivery should be given high priority. The matrix metalloproteinases (MMPs) are a family of enzymes that have been implicated in normal parturition as well as infection-triggered rupture of membranes and preterm birth. Several lines of evidence also suggest a role for endothelin-1 (ET-1) in infection-associated preterm delivery. This paper focuses on the evidence that the MMPs and ET-1 act in the same molecular pathway in preterm birth.

  16. Lipopolysaccharide potentiates endothelin-1-induced proliferation of pulmonary arterial smooth muscle cells by upregulating TRPC channels.

    PubMed

    Jiang, Hong-Ni; Zeng, Bo; Chen, Gui-Lan; Lai, Bin; Lu, Shao-Hua; Qu, Jie-Ming

    2016-08-01

    Lipopolysaccharide (LPS) and endothelin-1 (ET-1) are critical pathogenic factors in sepsis-induced pulmonary hypertension; however it is unknown whether they have a coordinated action in the pathogenesis of this disease. Here we found that although LPS did not change the contractility of rat pulmonary arterial smooth muscle cells (PASMCs) in response to ET-1, it significantly promoted ET-1-induced PASMC proliferation. Measurement of ET-1-evoked Ca(2+) transients in PASMCs showed that LPS dramatically enhanced Ca(2+) influx mediated by transient receptor potential canonical (TRPC) channels. LPS did not directly activate TRPC channels, instead it selectively upregulated the expression of TRPC3 and TRPC4 in pulmonary arteries. Small interfering RNA (siRNA) and chemical blockers against TRPC channels abolished LPS-induced PASMC proliferation. LPS-induced cell proliferation and TRPC expression was mediated by the Ca(2+)-dependent calcineurin/NFAT signaling pathway. We suggest that blocking TRPC channels could be an effective strategy in controlling pulmonary arterial remodeling after endotoxin exposure. PMID:27470334

  17. Natural phenylpropanoids inhibit lipoprotein-induced endothelin-1 secretion by endothelial cells.

    PubMed

    Martin-Nizard, Françoise; Sahpaz, Sevser; Kandoussi, Abdelmejid; Carpentier, Marie; Fruchart, Jean-Charles; Duriez, Patrick; Bailleul, François

    2004-12-01

    There is increasing evidence that oxidized low-density lipoproteins (Ox-LDL) might be involved in the pathogenesis of atherosclerosis and it has been reported that polyphenols inhibit LDL peroxidation and atherosclerosis. Endothelin-1 (ET-1) is a potent vasoconstrictor peptide isolated from endothelial cells and it induces smooth muscle cell proliferation. ET-1 secretion is increased in atheroma and induces deleterious effects such as vasospasm and atherosclerosis. The goal of this study was to test the effect of four natural phenolic compounds against copper-oxidized LDL (Cu-LDL)-induced ET-1 liberation by bovine aortic endothelial cells (BAEC). The tested compounds were phenylpropanoid glycosides previously isolated from the aerial parts of Marrubium vulgare L. (acteoside 1, forsythoside B 2, arenarioside 3 and ballotetroside 4). ET-1 secretion increased when cells were incubated with Cu-LDL but the compounds 1-4 inhibited this increase. These results were confirmed by quantitative-polymerase chain reaction (QPCR) analysis. Since ET-1 plays an important role in atherosclerosis development, our work suggests that the tested phenylpropanoids could have a beneficial effect in inhibiting atherosclerosis development. PMID:15563769

  18. Electronic ground state properties of Coulomb blockaded quantum dots

    NASA Astrophysics Data System (ADS)

    Patel, Satyadev Rajesh

    Conductance through quantum dots at low temperature exhibits random but repeatable fluctuations arising from quantum interference of electrons. The observed fluctuations follow universal statistics arising from the underlying universality of quantum chaos. Random matrix theory (RMT) has provided an accurate description of the observed universal conductance fluctuations (UCF) in "open" quantum dots (device conductance ≥e 2/h). The focus of this thesis is to search for and decipher the underlying origin of similar universal properties in "closed" quantum dots (device conductance ≤e2/ h). A series of experiments is presented on electronic ground state properties measured via conductance measurements in Coulomb blockaded quantum dots. The statistics of Coulomb blockade (CB) peak heights with zero and non-zero magnetic field measured in various devices agree qualitatively with predictions from Random Matrix Theory (RMT). The standard deviation of the peak height fluctuations for non-zero magnetic field is lower than predicted by RMT; the temperature dependence of the standard deviation of the peak height for non-zero magnetic field is also measured. The second experiment summarizes the statistics of CB peak spacings. The peak spacing distribution width is observed to be on the order of the single particle level spacing, Delta, for both zero and non-zero magnetic field. The ratio of the zero field peak spacing distribution width to the non-zero field peak spacing distribution width is ˜1.2; this is good agreement with predictions from spin-resolved RMT predictions. The standard deviation of the non-zero magnetic field peak spacing distribution width shows a T-1/2 dependence in agreement with a thermal averaging model. The final experiment summarizes the measurement of the peak height correlation length versus temperature for various quantum dots. The peak height correlation length versus temperature saturates in small quantum dots, suggesting spectral scrambling

  19. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  20. EXTRINSIC COAGULATION BLOCKADE ATTENUATES LUNG INJURY AND PROINFLAMMATORY CYTOKINE RELEASE AFTER INTRATRACHEAL LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Initiation of coagulation by tissue factor (TF) is a potentially powerful regulator of local inflammatory responses. We hypothesized that blockade of TF-factor VIIa (FVIIa) complex would decrease lung inflammation and proinflammatory cytokine release after tracheal instillation o...

  1. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota

    PubMed Central

    Vétizou, Marie; Pitt, Jonathan M.; Daillère, Romain; Lepage, Patricia; Waldschmitt, Nadine; Flament, Caroline; Rusakiewicz, Sylvie; Routy, Bertrand; Roberti, Maria P.; Duong, Connie P. M.; Poirier-Colame, Vichnou; Roux, Antoine; Becharef, Sonia; Formenti, Silvia; Golden, Encouse; Cording, Sascha; Eberl, Gerard; Schlitzer, Andreas; Ginhoux, Florent; Mani, Sridhar; Yamazaki, Takahiro; Jacquelot, Nicolas; Enot, David P.; Bérard, Marion; Nigou, Jérôme; Opolon, Paule; Eggermont, Alexander; Woerther, Paul-Louis; Chachaty, Elisabeth; Chaput, Nathalie; Robert, Caroline; Mateus, Christina; Kroemer, Guido; Raoult, Didier; Boneca, Ivo Gomperts; Carbonnel, Franck; Chamaillard, Mathias; Zitvogel, Laurence

    2016-01-01

    Antibodies targeting CTLA-4 have been successfully used as cancer immunotherapy. We find that the antitumor effects of CTLA-4 blockade depend on distinct Bacteroides species. In mice and patients, T cell responses specific for B. thetaiotaomicron or B. fragilis were associated with the efficacy of CTLA-4 blockade. Tumors in antibiotic-treated or germ-free mice did not respond to CTLA blockade. This defect was overcome by gavage with B. fragilis, by immunization with B. fragilis polysaccharides, or by adoptive transfer of B. fragilis–specific T cells. Fecal microbial transplantation from humans to mice confirmed that treatment of melanoma patients with antibodies against CTLA-4 favored the outgrowth of B. fragilis with anticancer properties. This study reveals a key role for Bacteroidales in the immunostimulatory effects of CTLA-4 blockade. PMID:26541610

  2. Fano effect dominance over Coulomb blockade in transport properties of parallel coupled quantum dot system

    SciTech Connect

    Brogi, Bharat Bhushan Ahluwalia, P. K.; Chand, Shyam

    2015-06-24

    Theoretical study of the Coulomb blockade effect on transport properties (Transmission Probability and I-V characteristics) for varied configuration of coupled quantum dot system has been studied by using Non Equilibrium Green Function(NEGF) formalism and Equation of Motion(EOM) method in the presence of magnetic flux. The self consistent approach and intra-dot Coulomb interaction is being taken into account. As the key parameters of the coupled quantum dot system such as dot-lead coupling, inter-dot tunneling and magnetic flux threading through the system can be tuned, the effect of asymmetry parameter and magnetic flux on this tuning is being explored in Coulomb blockade regime. The presence of the Coulomb blockade due to on-dot Coulomb interaction decreases the width of transmission peak at energy level ε + U and by adjusting the magnetic flux the swapping effect in the Fano peaks in asymmetric and symmetric parallel configuration sustains despite strong Coulomb blockade effect.

  3. [Genetic Mutation Accumulation and Clinical Outcome of Immune Checkpoint Blockade Therapy].

    PubMed

    Takahashi, Masanobu

    2016-06-01

    Immune checkpoint blockade therapy has recently attracted great attention in the area of oncology. In Japan, since 2014, an anti-PD-1 antibody nivolumab and anti-CTLA-4 antibody ipilimumab have been available for the treatment of patients with malignant melanoma, and nivolumab has been available for patients with non-small cell lung cancer. Clinical trials using these drugs and other immune checkpoint inhibitors are currently in progress worldwide. The immune checkpoint blockade therapy is a promising new cancer therapy; however, not all patients with cancer can benefit from this therapy. Recent evidence shows that markers reflecting the extent of genetic mutation accumulation, including mutation burden, non-synonymous mutation that produces neoantigen, and microsatellite instability, possibly serve as promising marker to predict who can benefit from the immune checkpoint blockade therapy. Here, I introduce the recent evidence and discuss the correlation between genetic mutation accumulation and clinical outcome of immune checkpoint blockade therapy. PMID:27306805

  4. Nuclear β-arrestin1 is a critical cofactor of hypoxia-inducible factor-1α signaling in endothelin-1-induced ovarian tumor progression.

    PubMed

    Cianfrocca, Roberta; Tocci, Piera; Rosanò, Laura; Caprara, Valentina; Sestito, Rosanna; Di Castro, Valeriana; Bagnato, Anna

    2016-04-01

    Hypoxia-inducible factor-1α (HIF-1α) mediates the response to hypoxia or other stimuli, such as growth factors, including endothelin-1 (ET-1), to promote malignant progression in numerous tumors. The importance of cofactors that regulate HIF-1α signalling within tumor is not well understood. Here we elucidate that ET-1/ET(A) receptor (ET(A)R)-induced pathway physically and functionally couples the scaffold protein β-arrestin1 (β-arr1) to HIF-1α signalling. In epithelial ovarian cancer (EOC) cells, ET-1/ET(A)R axis induced vascular-endothelial growth factor (VEGF) expression through HIF-1α nuclear accumulation. In these cells, activation of ET(A)R by ET-1, by mimicking hypoxia, promoted the nuclear interaction between β-arr1 and HIF-1α and the recruitment of p300 acetyltransferase to hypoxia response elements on the target gene promoters, resulting in enhanced histone acetylation, and HIF-1α target gene transcription. Indeed, β-arr1-HIF-1α interaction regulated the enhanced expression and release of downstream targets, such as ET-1 and VEGF, required for tumor cell invasion and pro-angiogenic effects in endothelial cells. These effects were abrogated by β-arr1 or HIF-1α silencing or by pharmacological treatment with the dual ET-1 receptor antagonist macitentan. Interestingly, ET(A)R/β-arr1 promoted the self-amplifying HIF-1α-mediated transcription of ET-1 that sustained a regulatory circuit involved in invasive and angiogenic behaviors. In a murine orthotopic model of metastatic human EOC, treatment with macitentan, or silencing of β-arr1, inhibits intravasation and metastasis formation. Collectively, these findings reveal the interplay of β-arr1 with HIF-1α in the complexity of ET-1/ET(A)R signalling, mediating epigenetic modifications directly involved in the metastatic process, and suggest that targeting ET-1-dependent β-arr1/HIF-1α pathway by using macitentan may impair EOC progression.

  5. Efficacy of methods of intercostal nerve blockade for pain relief after thoracotomy.

    PubMed

    Detterbeck, Frank C

    2005-10-01

    Intercostal nerve blockade for postthoracotomy pain relief can be accomplished by continuous infusion of local anesthetics through a catheter in the subpleural space or through an interpleural catheter, by cryoanalgesia, and by a direct intercostal nerve block. A systematic review of randomized studies indicates that an extrapleural infusion is at least as effective as an epidural and significantly better than narcotics alone. The other techniques of intercostal blockade do not offer an advantage over narcotics alone. PMID:16181921

  6. Dynamic properties of a Josephson junction balanced comparator with Coulomb blockade

    NASA Astrophysics Data System (ADS)

    Askerzade, I. N.

    2016-09-01

    The dynamics of a Josephson junction balanced comparator with Coulomb blockade has been analyzed. An expression for the time resolution in the case of a linearly increasing gating voltage pulse has been derived with regard to the Bloch inductance. It has been shown that the time resolution depends on the Bloch inductance of small Josephson junctions. Estimates have confirmed the feasibility of a subpicosecond time resolution for balance Josephson comparators with Coulomb blockade.

  7. Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song

    2011-11-01

    We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.

  8. Coulomb Blockade Oscillations in Coupled Single-Electron Transistors

    NASA Astrophysics Data System (ADS)

    Shin, Mincheol; Lee, Seongjae; Park, Kyoung Wan

    2000-03-01

    The system we consider in this work is parallel coupled single-electron transistors (SETs) at strong coupling. For weak coupling, the transport characteristics of our coupled SETs are the same as those of the single SET, with the stability diagram exhibiting usual Coulomb diamonds. When the coupling becomes sufficiently strong, however, electron-hole binding and transport become important. In contrast to the previous works carried out in the cotunneling-dominating Coulomb blockade regime [1,2], we study e-h binding in the sequential-tunneling-dominating conducting regime. The major findings in this work are that the Coulomb diamonds in the conducting regime break up into fine internal structures at strong coupling, and that, although the cotunneling processes are much less frequent, they nonetheless play a crucial role. [1] D. V. Averin, A. N. Korotkov, and Yu. V. Nazarov, Phys. Rev. Lett. 66, 2818 (1991). [2] M. Matters, J. J. Versluys, and J. E. Mooij, Phys. Rev. Lett. 78, 2469 (1997).

  9. Novel pharmacological approaches for the antagonism of neuromuscular blockade.

    PubMed

    Pic, Lisa C

    2005-02-01

    Gamma cyclodextrin and purified plasma cholinesterase are 2 novel pharmacological agents being investigated as to their suitability for antagonism of neuromuscular blockade. Both of these agents are devoid of cholinergic stimulation and the accompanying side effects because their action is independent of acetylcholinesterase inhibition. Gamma cyclodextrin antagonizes the steroidal neuromuscular blocker rocuronium via the chemical encapsulation of the molecule forming a "host-guest" complex through van der Waals and hydrophobic interactions in the plasma. Encapsulation decreases plasma drug concentrations, shifting the neuromuscular blocking drug molecules from the neuromuscular junction back to the plasma compartment resulting in a rapid recovery of the neuromuscular function. Org 25969, a modified gamma cyclodextrin, will antagonize profound neuromuscular block induced by rocuronium in approximately 2 minutes. A commercial preparation of purified human plasma cholinesterase has been shown to be effective in reversing succinylcholine or mivacurium-induced block. Administration of exogenous plasma cholinesterase also has been shown to be effective in antagonizing mivacurium-induced neuromuscular block, cocaine toxicity, and organophosphate poisoning.

  10. Reversal of aging by NFkappaB blockade.

    PubMed

    Adler, Adam S; Kawahara, Tiara L A; Segal, Eran; Chang, Howard Y

    2008-03-01

    Genetic studies in model organisms such as yeast, worms, flies, and mice leading to lifespan extension suggest that longevity is subject to regulation. In addition, various system-wide interventions in old animals can reverse features of aging. To better understand these processes, much effort has been put into the study of aging on a molecular level. In particular, genome-wide microarray analysis of differently aged individual organisms or tissues has been used to track the global expression changes that occur during normal aging. Although these studies consistently implicate specific pathways in aging processes, there is little conservation between the individual genes that change. To circumvent this problem, we have recently developed a novel computational approach to discover transcription factors that may be responsible for driving global expression changes with age. We identified the transcription factor NFkappaB as a candidate activator of aging-related transcriptional changes in multiple human and mouse tissues. Genetic blockade of NFkappaB in the skin of chronologically aged mice reversed the global gene expression program and tissue characteristics to those of young mice, demonstrating for the first time that disruption of a single gene is sufficient to reverse features of aging, at least for the short-term.

  11. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    PubMed Central

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas. PMID:24202450

  12. Luminal and basolateral endothelin inhibit chloride reabsorption in the mouse thick ascending limb via a Ca(2+)-independent pathway.

    PubMed Central

    de Jesus Ferreira, M C; Bailly, C

    1997-01-01

    1. The recent localization of endothelin synthesis and receptors in the thick ascending limb (TAL) prompted us to investigate a possible autocrine and/or paracrine effect of this agent. The net chloride flux (JCl) has been determined in isolated cortical and medullary TALs by the in vitro microperfusion technique. 2. In both segments, endothelin 1 (ET-1) at 10(-8) M in the bath significantly decreased JCl, an effect which was partially reversible and observed at concentrations equal to or greater than 10(-13) M. 3. This JCl inhibition (by 33.9 +/- 3.2%) was blocked by BQ788 and was also observed with sarafotoxin 6C and ET-3, indicating that endothelin receptor B (ETB) are present in TAL. 4. ET-1 did not affect cAMP content under basal or hormone-stimulated conditions. The presence of a prostaglandin synthesis inhibitor also did not prevent the ET-1 action on JCl. 5. The ET-1-induced inhibition of JCl was prevented by protein kinase C inhibitors (staurosporine or GF 109203) and was reproduced by diacylglycerol analogues (OAG and DiC8). However, ET-1 failed to increase intracellular Ca2+ concentration. 6. Addition of ET-1 or ET-3 to the apical surface induced a decrease of JCl throgh ETB receptors, an effect which was not additive with that induced by basolateral ET-1, and was not concomitant with an increase in intracellular Ca2+ concentration. 7. It is concluded that the basolateral and luminal inhibitions of JCl by ET-1 in TAL, through ETB receptors, is mediated by a protein kinase C activation which is independent of intracellular Ca2+ increase. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:9457649

  13. Role of peripheral endothelin receptors in an animal model of complex regional pain syndrome type 1 (CRPS-I).

    PubMed

    Millecamps, Magali; Laferrière, Andre; Ragavendran, J Vaigunda; Stone, Laura S; Coderre, Terence J

    2010-10-01

    Chronic post-ischemic pain (CPIP) is an animal model of CRPS-I developed using a 3-h ischemia-reperfusion injury of the rodent hind paw. The contribution of local endothelin to nociception has been evaluated in CPIP mice by measuring sustained nociceptive behaviors (SNBs) following intraplantar injection of endothelin-1 or -2 (ET-1, ET-2). The effects of local BQ-123 (ETA-R antagonist), BQ-788 (ETB-R antagonist), IRL-1620 (ETB-R agonist) and naloxone (opioid antagonist) were assessed on ET-induced SNBs and/or mechanical and cold allodynia in CPIP mice. ETA-R and ETB-R expression was assessed using immunohistochemistry and Western blot analysis. Compared to shams, CPIP mice exhibited hypersensitivity to local ET-1 and ET-2. BQ-123 reduced ET-1- and ET-2-induced SNBs in both sham and CPIP animals, but not mechanical or cold allodynia. BQ-788 enhanced ET-1- and ET-2-induced SNBs in both sham and CPIP mice, and cold allodynia in CPIP mice. IRL-1620 displayed a non-opioid anti-nociceptive effect on ET-1- and ET-2-induced SNBs and mechanical allodynia in CPIP mice. The distribution of ETA-R and ETB-R was similar in plantar skin of sham and CPIP mice, but both receptors were over-expressed in plantar muscles of CPIP mice. This study shows that ETA-R and ETB-R have differing roles in nociception for sham and CPIP mice. CPIP mice exhibit more local endothelin-induced SNBs, develop a novel local ETB-R agonist-induced (non-opioid) analgesia, and exhibit over-expression of both receptors in plantar muscles, but not skin. The effectiveness of local ETB-R agonists as anti-allodynic treatments in CPIP mice holds promise for novel therapies in CRPS-I patients.

  14. Stretch induced endothelin-1 secretion by adult rat astrocytes involves calcium influx via stretch-activated ion channels (SACs)

    SciTech Connect

    Ostrow, Lyle W.; Suchyna, Thomas M.; Sachs, Frederick

    2011-06-24

    Highlights: {yields} Endothelin-1 expression by adult rat astrocytes correlates with cell proliferation. {yields} Stretch-induced ET-1 is inhibited by GsMtx-4, a specific inhibitor of Ca{sup 2+} permeant SACs. {yields} The less specific SAC inhibitor streptomycin also inhibits ET-1 secretion. {yields} Stretch-induced ET-1 production depends on a calcium influx. {yields} SAC pharmacology may provide a new class of therapeutic agents for CNS pathology. -- Abstract: The expression of endothelins (ETs) and ET-receptors is often upregulated in brain pathology. ET-1, a potent vasoconstrictor, also inhibits the expression of astrocyte glutamate transporters and is mitogenic for astrocytes, glioma cells, neurons, and brain capillary endothelia. We have previously shown that mechanical stress stimulates ET-1 production by adult rat astrocytes. We now show in adult astrocytes that ET-1 production is driven by calcium influx through stretch-activated ion channels (SACs) and the ET-1 production correlates with cell proliferation. Mechanical stimulation using biaxial stretch (<20%) of a rubber substrate increased ET-1 secretion, and 4 {mu}M GsMTx-4 (a specific inhibitor of SACs) inhibited secretion by 30%. GsMTx-4 did not alter basal ET-1 levels in the absence of stretch. Decreasing the calcium influx by lowering extracellular calcium also inhibited stretch-induced ET-1 secretion without effecting ET-1 secretion in unstretched controls. Furthermore, inhibiting SACs with the less specific inhibitor streptomycin also inhibited stretch-induced ET-1 secretion. The data can be explained with a simple model in which ET-1 secretion depends on an internal Ca{sup 2+} threshold. This coupling of mechanical stress to the astrocyte endothelin system through SACs has treatment implications, since all pathology deforms the surrounding parenchyma.

  15. Presynaptic facilitatory adenosine A2A receptors mediate fade induced by neuromuscular relaxants that exhibit anticholinesterase activity.

    PubMed

    Bornia, Elaine Cs; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson

    2011-03-01

    1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 μmol/L)-, cisatracurium (0.32 μmol/L)- and vecuronium (0.36 μmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 μmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity.

  16. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells.

    PubMed

    Gatfield, John; Mueller Grandjean, Celia; Sasse, Thomas; Clozel, Martine; Nayler, Oliver

    2012-01-01

    Two endothelin receptor antagonists (ERAs), bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH), a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC). The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP(1)) assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with K(b) values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt(1/2)) compared to bosentan and ambrisentan (ROt(1/2):17 minutes versus 70 seconds and 40 seconds, respectively). Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP(1) assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1) concentrations. However, prolongation of the ET-1 stimulation time beyond ROt(1/2) rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive ERA with

  17. Lactoferrin- Endothelin-1 Axis Contributes to the Development and Invasiveness of Triple Negative Breast Cancer Phenotypes

    PubMed Central

    Ha, Ngoc-Han; Nair, Vasudha; Reddy, Divijendra Natha Sirigiri; Mudvari, Prakriti; Ohshiro, Kazufumi; Ghanta, Krishna Sumanth; Pakala, Suresh B.; Li, Da-Qiang; Costa, Luis; Lipton, Allan; Badwe, Rajendra A.; Fuqua, Suzanne; Wallon, Margaretha; Prendergast, George C.; Kumar, Rakesh

    2013-01-01

    Triple-negative breast cancer (TNBC) is characterized by the lack of expression of ERα, PR and HER-2 receptors and the pathway(s) responsible for this downregulation and thus aggressiveness, remains unknown. Here we discovered that lactoferrin (Lf) efficiently downregulates the levels of ERα, PR and HER-2 receptors in a proteasome-dependent manner in breast cancer cells, and accounts for the loss of responsiveness to ER- or HER-2- targeted therapies. Further we found that Lf increases migration and invasiveness of both non-TNBC and TNBC cell lines. We discovered that Lf directly stimulates the transcription of endothelin-1 (ET-1), a secreted pro-invasive polypeptide that acts through a specific receptor ET(A)R, leading to secretion of bioactive ET-1 peptide. Interestingly, a therapeutic ET-1 receptor antagonist drug completely blocked Lf-dependent motility and invasiveness of breast cancer cells. Physiologic significance of this newly discovered Lf-ET-1 axis in the manifestation of TNBC phenotypes is revealed by elevated plasma and tissue Lf and ET-1 levels in TNBC patients as compared to those in ER+ cases. These findings describe the first physiologically relevant polypeptide as a functional determinant of downregulating all three therapeutic receptors in breast cancer which utilizes another secreted ET-1 system to confer invasiveness. Results presented here provide proof-of-principle evidence in support of therapeutic effectiveness of ET-1 receptor antagonist to completely block the Lf-induced motility and invasiveness of the TNBC as well as non-TBNC cells, and thus, opening a remarkable opportunity to treat TNBC by targeting the Lf-ET-1 axis using an approved developmental drug. PMID:22006997

  18. Endothelin-1 stimulates catalase activity through the PKCδ-mediated phosphorylation of serine 167.

    PubMed

    Rafikov, Ruslan; Kumar, Sanjiv; Aggarwal, Saurabh; Hou, Yali; Kangath, Archana; Pardo, Daniel; Fineman, Jeffrey R; Black, Stephen M

    2014-02-01

    Our previous studies have shown that endothelin-1 (ET-1) stimulates catalase activity in endothelial cells and in lambs with acute increases in pulmonary blood flow (PBF), without altering gene expression. The purpose of this study was to investigate the molecular mechanism by which this occurs. Exposing pulmonary arterial endothelial cells to ET-1 increased catalase activity and decreased cellular hydrogen peroxide (H2O2) levels. These changes correlated with an increase in serine-phosphorylated catalase. Using the inhibitory peptide δV1.1, this phosphorylation was shown to be protein kinase Cδ (PKCδ) dependent. Mass spectrometry identified serine 167 as the phosphorylation site. Site-directed mutagenesis was used to generate a phospho-mimic (S167D) catalase. Activity assays using recombinant protein purified from Escherichia coli or transiently transfected COS-7 cells demonstrated that S167D catalase had an increased ability to degrade H2O2 compared to the wild-type enzyme. Using a phospho-specific antibody, we were able to verify that pS167 catalase levels are modulated in lambs with acute increases in PBF in the presence and absence of the ET receptor antagonist tezosentan. S167 is located on the dimeric interface, suggesting it could be involved in regulating the formation of catalase tetramers. To evaluate this possibility we utilized analytical gel filtration to examine the multimeric structure of recombinant wild-type and S167D catalase. We found that recombinant wild-type catalase was present as a mixture of monomers and dimers, whereas S167D catalase was primarily tetrameric. Further, the incubation of wild-type catalase with PKCδ was sufficient to convert wild-type catalase into a tetrameric structure. In conclusion, this is the first report indicating that the phosphorylation of catalase regulates its multimeric structure and activity.

  19. Expression and functional implications of luteal endothelins in pregnant and non-pregnant dogs.

    PubMed

    Gram, Aykut; Latter, Sophie; Boos, Alois; Hoffmann, Bernd; Kowalewski, Mariusz P

    2015-11-01

    Luteal development is regulated by many locally produced mediators, e.g., prostaglandins and angiogenic factors. However, the role and function of vasoactive factors in the canine corpus luteum (CL) remain largely unknown. Consequently, expression of the endothelin (ET) receptors-A and -B (ETA and ETB, revealing vasoconstriction and vasodilator properties respectively), the ET-converting enzyme (ECE1) and ET1, -2 and -3 were investigated in CL from non-pregnant dogs (days 5, 15, 25, 35, 45 and 65 post-ovulation), and at selected stages of pregnancy (pre-implantation, post-implantation, mid-gestation), and during normal and antigestagen-induced prepartum luteolysis/abortion. The interrelationship between PGE2 and the ET system was investigated in PGE2-treated canine primary lutein cells from early CL. ET1 did not change significantly over time; ET2, ECE1 and ETB were elevated in early CL and were downregulated towards the mid/late-luteal phase. The prepartum increase of ET2 was significant. ET3 increased gradually, and was highest in late CL and/or at prepartum luteolysis. ETA remained constant until the late CL phase and increased only during prepartum luteolysis. ET1 was localized to the luteal cells, and ET2, ET3 and ETA to vascular endothelium. ECE1 and ETB were detected at both locations. Except for upregulated ET1 and lack of effect on ET2, antigestagen applied to mid-pregnant dogs evoked similar changes to those observed during normal luteolysis. PGE2 upregulated ETB in treated cells; ETA and ET1 remained unaffected, and ET2 decreased. A modulatory role of the ETs in canine CL, possibly in association with other factors (e.g., PGE2 and progesterone receptor), is strongly indicated.

  20. A Pathogenetic Role for Endothelin-1 in Peritoneal Dialysis-Associated Fibrosis

    PubMed Central

    Busnadiego, Oscar; Loureiro-Álvarez, Jesús; Sandoval, Pilar; Lagares, David; Dotor, Javier; Pérez-Lozano, María Luisa; López-Armada, María J.; Lamas, Santiago; López-Cabrera, Manuel

    2015-01-01

    In patients undergoing peritoneal dialysis (PD), chronic exposure to nonphysiologic PD fluids elicits low-grade peritoneal inflammation, leading to fibrosis and angiogenesis. Phenotype conversion of mesothelial cells into myofibroblasts, the so-called mesothelial-to-mesenchymal transition (MMT), significantly contributes to the peritoneal dysfunction related to PD. A number of factors have been described to induce MMT in vitro and in vivo, of which TGF-β1 is probably the most important. The vasoconstrictor peptide endothelin-1 (ET-1) is a transcriptional target of TGF-β1 and mediates excessive scarring and fibrosis in several tissues. This work studied the contribution of ET-1 to the development of peritoneal damage and failure in a mouse model of PD. ET-1 and its receptors were expressed in the peritoneal membrane and upregulated on PD fluid exposure. Administration of an ET receptor antagonist, either bosentan or macitentan, markedly attenuated PD-induced MMT, fibrosis, angiogenesis, and peritoneal functional decline. Adenovirus-mediated overexpression of ET-1 induced MMT in human mesothelial cells in vitro and promoted the early cellular events associated with peritoneal dysfunction in vivo. Notably, TGF-β1–blocking peptides prevented these actions of ET-1. Furthermore, a positive reciprocal relationship was observed between ET-1 expression and TGF-β1 expression in human mesothelial cells. These results strongly support a role for an ET-1/TGF-β1 axis as an inducer of MMT and subsequent peritoneal damage and fibrosis, and they highlight ET-1 as a potential therapeutic target in the treatment of PD-associated dysfunction. PMID:25012164

  1. Endothelin action in rat liver. Receptors, free Ca2+ oscillations, and activation of glycogenolysis.

    PubMed Central

    Serradeil-Le Gal, C; Jouneaux, C; Sanchez-Bueno, A; Raufaste, D; Roche, B; Préaux, A M; Maffrand, J P; Cobbold, P H; Hanoune, J; Lotersztajn, S

    1991-01-01

    High affinity binding sites for endothelin (ET) were identified on rat liver plasma membranes. Binding of 125I-ET-1 with its site was specific, saturable, and time dependent (kobs = 0.019 +/- 0.001 min-1), but dissociation of receptor-bound ligand was minimal. A single class of high affinity binding sites for 125I-ET-1 was identified with an apparent Kd of 32.4 +/- 9.8 pM and a Bmax of 1084 +/- 118 fmol/mg protein. ET-3 and big-ET-1 (1-38) (human) inhibited 125I-ET-1 binding with IC50 values of 1.85 +/- 1.03 nM and 43 +/- 6 nM, respectively. Aequorin measurements of cytosolic free Ca2+ in single, isolated rat hepatocytes showed that ET-1 at subnanomolar concentrations induced a series of repetitive, sustained Ca2+ transients. ET-1 had no effect on cAMP production. Finally, ET-1 caused a rapid and sustained stimulation of glycogenolysis in rat hepatocytes. A 1.8-fold maximal increase in glycogen phosphorylase alpha was observed at 1 pM ET-1, with an EC50 of 0.03 pM. Stimulation of the enzyme was specific for ET-1 since the order of potency of related peptides was similar to that in binding experiments (ET-1 greater than ET-3 greater than big ET-1). These data constitute the first demonstration of the presence of ET-1 binding sites in liver which is associated with a rise in cytosolic free Ca2+ and a potent glycogenolytic effect. We conclude that ET-1 behaves as a typical Ca2+ mobilizing hormone in liver. PMID:1845867

  2. Endothelin-1 downregulates sperm phagocytosis by neutrophils in vitro: A physiological implication in bovine oviduct immunity

    PubMed Central

    MAREY, Mohamed Ali; YOUSEF, Mohamed Samy; LIU, Jinghui; MORITA, Kazuhiro; SASAKI, Motoki; HAYAKAWA, Hiroyuki; SHIMIZU, Takashi; ELSHAHAWY, Ibrahim I.; MIYAMOTO, Akio

    2016-01-01

    The oviduct is an active contractile tube that provides the proper environment for sperm transport, capacitation and survival. Oviductal contractions are regulated by autocrine/paracrine secretion of several factors, such as prostaglandins (PGs) and endothelin-1 (EDN-1). We have previously shown that during the preovulatory stage, sperm are exposed to polymorphonuclear neutrophils (PMNs) in the bovine oviduct, and the bovine oviduct epithelial cells (BOECs) secrete molecules including PGE2 that suppress sperm phagocytosis by PMNs in vitro. In this study, we investigated the possible effects of EDN-1 on the phagocytic activity of PMNs toward sperm. The local concentrations of EDN-1 in oviduct fluid and BOEC culture medium ranged from 10–10 to 10–11 M as determined by EIA. Phagocytosis and superoxide production were assayed by co-incubation of sperm pretreated to induce capacitation with PMNs exposed to EDN-1 (0, 10–11, 10–10, 10–9, and 10–8 M) for 2 h. EDN-1 suppressed dose dependently (10–11 to 10–8 M) the phagocytic activity for sperm and superoxide production of PMNs in response to capacitated sperm. Moreover, this suppression was eliminated by an ETB receptor antagonist (BQ-788). EDN-1 suppressed mRNA expression of EDN-1 and ETB but not ETA receptors in PMNs, suggesting the ETB receptor-mediated pathway. Scanning electron microscopic observation revealed that incubation of PMNs with EDN-1 (10–9 M) completely suppressed the formation of DNA-based neutrophil extracellular traps for sperm entanglement. The results provide evidence indicating that EDN-1 may be involved in the protection of sperm from phagocytosis by PMNs in the bovine oviduct, supporting sperm survival until fertilization. PMID:26781611

  3. Endothelin@25 - new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12.

    PubMed

    Maguire, J J; Davenport, A P

    2014-12-01

    Since the discovery of endothelin (ET)-1 in 1988, the main components of the signalling pathway have become established, comprising three structurally similar endogenous 21-amino acid peptides, ET-1, ET-2 and ET-3, that activate two GPCRs, ETA and ETB . Our aim in this review is to highlight the recent progress in ET research. The ET-like domain peptide, corresponding to prepro-ET-193-166 , has been proposed to be co-synthesized and released with ET-1, to modulate the actions of the peptide. ET-1 remains the most potent vasoconstrictor in the human cardiovascular system with a particularly long-lasting action. To date, the major therapeutic strategy to block the unwanted actions of ET in disease, principally in pulmonary arterial hypertension, has been to use antagonists that are selective for the ETA receptor (ambrisentan) or that block both receptor subtypes (bosentan). Macitentan represents the next generation of antagonists, being more potent than bosentan, with longer receptor occupancy and it is converted to an active metabolite; properties contributing to greater pharmacodynamic and pharmacokinetic efficacy. A second strategy is now being more widely tested in clinical trials and uses combined inhibitors of ET-converting enzyme and neutral endopeptidase such as SLV306 (daglutril). A third strategy based on activating the ETB receptor, has led to the renaissance of the modified peptide agonist IRL1620 as a clinical candidate in delivering anti-tumour drugs and as a pharmacological tool to investigate experimental pathophysiological conditions. Finally, we discuss biased signalling, epigenetic regulation and targeting with monoclonal antibodies as prospective new areas for ET research.

  4. Interaction profile of macitentan, a new non-selective endothelin-1 receptor antagonist, in vitro.

    PubMed

    Weiss, Johanna; Theile, Dirk; Rüppell, Maximilian Alexander; Speck, Tobias; Spalwisz, Adriana; Haefeli, Walter Emil

    2013-02-15

    Macitentan is a new non-selective endothelin-1 receptor antagonist under development for the treatment of pulmonary arterial hypertension. Information on the potential for macitentan to influence the pharmacokinetics of concomitantly administered drugs by inhibition or induction of drug metabolising enzymes or drug transporters is sparse. We therefore studied the potential of macitentan to inhibit and induce critical targets of drug metabolism and drug distribution (transporters) in vitro. Induction was quantified at the mRNA level by real-time RT-PCR in LS180 cells and revealed that macitentan significantly induced mRNA expression of cytochrome P450 3A4 (CYP3A4), P-glycoprotein (P-gp, ABCB1), solute carrier of organic anions 1B1 (SLCO1B1), and uridinediphosphate-glucuronosyltransferase 1A3 (UGT1A9). By means of a reporter gene assay our study establishes macitentan as a potent activator of pregnane X receptor (PXR). Inhibition of drug transporters was evaluated by using transporter over-expressing cell lines and fluorescent specific substrates of the respective transporters and revealed that macitentan is an inhibitor of P-gp, breast cancer resistance protein (BCRP), SLCO1B1, and SLCO1B3. Using commercial kits macitentan was demonstrated to be a moderate inhibitor of CYP3A4 and CYP2C19. In conclusion our data provide a comprehensive analysis of the interaction profile of macitentan with drug metabolising and transporting enzymes in vitro. Although macitentan has a similar or higher potency for induction and inhibition of drug metabolising enzymes and transporters than bosentan, its low plasma concentrations and minimal accumulation in the liver suggest that it will be markedly less prone to drug-drug interactions than bosentan.

  5. Endothelin@25 – new agonists, antagonists, inhibitors and emerging research frontiers: IUPHAR Review 12

    PubMed Central

    Maguire, J J; Davenport, A P

    2014-01-01

    Since the discovery of endothelin (ET)-1 in 1988, the main components of the signalling pathway have become established, comprising three structurally similar endogenous 21-amino acid peptides, ET-1, ET-2 and ET-3, that activate two GPCRs, ETA and ETB. Our aim in this review is to highlight the recent progress in ET research. The ET-like domain peptide, corresponding to prepro-ET-193–166, has been proposed to be co-synthesized and released with ET-1, to modulate the actions of the peptide. ET-1 remains the most potent vasoconstrictor in the human cardiovascular system with a particularly long-lasting action. To date, the major therapeutic strategy to block the unwanted actions of ET in disease, principally in pulmonary arterial hypertension, has been to use antagonists that are selective for the ETA receptor (ambrisentan) or that block both receptor subtypes (bosentan). Macitentan represents the next generation of antagonists, being more potent than bosentan, with longer receptor occupancy and it is converted to an active metabolite; properties contributing to greater pharmacodynamic and pharmacokinetic efficacy. A second strategy is now being more widely tested in clinical trials and uses combined inhibitors of ET-converting enzyme and neutral endopeptidase such as SLV306 (daglutril). A third strategy based on activating the ETB receptor, has led to the renaissance of the modified peptide agonist IRL1620 as a clinical candidate in delivering anti-tumour drugs and as a pharmacological tool to investigate experimental pathophysiological conditions. Finally, we discuss biased signalling, epigenetic regulation and targeting with monoclonal antibodies as prospective new areas for ET research. PMID:25131455

  6. Role of endothelin receptor antagonist; bosentan in cisplatin-induced nephrotoxicity in ovariectomized estradiol treated rats

    PubMed Central

    Zahedi, Alieh; Nematbakhsh, Mehdi; Moeini, Maryam; Talebi, Ardeshir

    2015-01-01

    Background: Endothelin-1 (ET-1) is a vasoconstrictor peptide that mediates cell proliferation, fibrosis, and inflammation. ET-1 has 2 receptors A and B. Objectives: The present study investigated whether administration of ET-1 receptor type A antagonist leads to protect cisplatin (CP) induced nephrotoxicity in ovariectomized-estradiol (Es) treated rats. Materials and Methods: Thirty-six ovariectomized Wistar rats were divided into 6 groups. Group 1 received CP (2.5 mg/kg/day) for one week. Groups 2 and 3 received 2 different doses of Es (0.25 and 0.5 mg/kg/week) for 3 weeks, but CP was started in the third week. Group 4 was treated as group 1, but bosentan (BOS, 30 mg/kg/day) was also added. Groups 5 and 6 treated similar to groups 2 and 3 but CP and BOS were added in the third week. At the end of the experiment, blood samples were obtained, and the animals were sacrificed for histopathological investigation of kidney tissue. Results: The serum levels of creatinine (Cr) and blood urea nitrogen (BUN) increased by CP; however, BOS significantly elevated the BUN and Cr levels that were increased by CP administration (P < 0.05). Co-treatment of Es, BOS, and CP decreased the serum levels of BUN, Cr, and malondialdehyde (MDA) when compared with the group treated with BOS plus CP (P < 0.05). Such finding was obtained for kidney tissue damage score (KTDS). As expected, Es significantly increased uterus weight (P < 0.05). The groups were not significantly different in terms of serum and kidney nitrite, kidney weight (KW), and bodyweight Conclusions: According to our findings, BOS could not protect renal functions against CP-induced nephrotoxicity. In contrast, Es alone or accompanied with BOS could protect the kidney against CP-induced nephrotoxicity via reduction of BUN, Cr, and KTDS. PMID:26457261

  7. Role of endothelin-1 antagonist; bosentan, against cisplatin-induced nephrotoxicity in male and female rats

    PubMed Central

    Jokar, Zahra; Nematbakhsh, Mehdi; Moeini, Maryam; Talebi, Ardeshir

    2015-01-01

    Background: Cisplatin (CP) is a chemotherapy drug, with the major side effect of nephrotoxicity. The level of endothelin-1 (ET-1) increases during nephrotoxicity, which is accompanied with vasoconstrictive properties. Bosentan (BOS) is a nonselective ET-1 receptor antagonist, having vasodilatory and anti-hypertension effects. The purpose of this study was to investigate the renoprotective effect of BOS against CP-induced nephrotoxicity in male and female rats. Materials and Methods: Male and female rats were divided into six groups; groups 1–3 and 4–6 were male and female rats, respectively. Animals in groups 1 and 4 were considered as negative control and groups 2 and 5 considered as positive control groups received BOS (30 mg/kg/day) alone and CP (2.5 mg/kg/day) alone, respectively, for 1-week. The animals in groups 3 and 6 were treated with both CP and BOS. Finally, serum parameters were measured, and the kidney tissue was subjected to staining to evaluate tissue damage. Results: The serum levels of blood urea nitrogen and creatinine, kidney tissue damage score and kidney weight elevated, and body weight significantly decreased in both CP alone and in CP plus BOS-treated groups when compared with the control groups (P < 0.05), while BOS did not ameliorate these parameters neither in males nor in females. No significant differences were observed in serum levels of nitrite and malondialdehyde between the groups, but kidney tissue level of nitrite decreased significantly in CP alone and CP plus BOS-treated groups (P < 0.05). Conclusion: Renoprotective effect of BOS, as ET-1 blocker, was not observed against CP-induced nephrotoxicity neither in male nor in female rats. This is while BOS promoted the severity of injuries in females. PMID:26015909

  8. Exercise capacity is associated with endothelin-1 release during emotional excitement in coronary artery disease patients.

    PubMed

    Tulppo, Mikko P; Piira, Olli-Pekka; Hautala, Arto J; Kiviniemi, Antti M; Miettinen, Johanna A; Huikuri, Heikki V

    2014-08-01

    Endothelin-1 (ET-1), a potent vasoconstrictor, IL-6, and catecholamines are increased and heart rate variability [SD of normal to normal R-R intervals (SDNN)] decreased during emotional excitement, but individual responses vary. We tested the hypothesis that exercise capacity is associated with physiological responses caused by real-life emotional excitement. We measured the plasma levels of ET-1, IL-6, catecholamines, heart rate, and SDNN in enthusiastic male ice hockey spectators (n = 51; age, 59 ± 9 years) with stable coronary artery disease (CAD) at baseline and during the Finnish National Ice Hockey League's final play-off matches. Maximal exercise capacity (METs) by bicycle exercise test and left ventricular ejection fraction (LVEF) were measured on a separate day. ET-1 response from baseline to emotional excitement correlated with maximal METs (r = -0.30; P = 0.040). In a linear stepwise regression analysis age, body mass index (BMI), METs, LVEF, basal ET-1, and subjective experience of excitement were entered the model as independent variables to explain ET-1 response. This model explained 27% of ET-1 response (P = 0.003). Maximal METs were most strongly correlated with ET-1 response (β = -0.45; partial correlation r = -0.43; P = 0.002), followed by BMI (β = -0.31; partial correlation r = -0.31; P = 0.033) and LVEF (β = -0.30; partial correlation r = -0.33; P = 0.023). Exercise capacity may protect against further cardiovascular events in CAD patients, because it is associated with reduced ET-1 release during emotional excitement.

  9. Murine and rat cavernosal responses to endothelin-1 and urotensin-II Vasoactive Peptide Symposium

    PubMed Central

    Carneiro, Fernando S.; Carneiro, Zidonia N; Giachini, Fernanda R.C.; Lima, Victor V; Nogueira, Edson; Rainey, William E; Tostes, Rita C.; Webb, R. Clinton

    2008-01-01

    Background Endothelin-1 (ET-1) and urotensin-II (U-II) are the most potent constrictors of human vessels. Although the cavernosal tissue is higly responsive to ET-1, no information exists on the effects of U-II on cavernosal function. The aim of this study was to characterize ET-1 and U-II responses in corpora cavernosa from rats and mice. Methods and Results Male Wistar rats and C57/BL6 mice were used at 13 weeks. Cumulative concentration-response curves to ET-1, U-II and IRL-1620, an ETB agonist, were performed. ET-1 increased force generation in cavernosal strips from mice and rats, but no response to U-II was observed in the presence or absence of L-NAME, or in strips pre-stimulated with 20mM KCl. IRL-1620 did not induce cavernosal contraction even in presence of L-NAME, but induced a cavernosal relaxation which was greater in rats than mice. No relaxation responses to U-II were observed in cavernosal strips pre-contracted with phenylephrine. mRNA expression of ET-1, ETA, ETB and U-II receptors, but not U-II was observed in cavernosal strips. Conclusion ET-1, via ETA receptors activation, causes contractile responses in cavernosal strips from rats and mice whereas ETB receptor activation produces relaxation. Although the cavernosal tissue expresses U-II receptors, U-II does not induce contractile responses in corpora cavernosa from mice or rats. PMID:19884966

  10. A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis.

    PubMed

    Busnadiego, Oscar; Loureiro-Álvarez, Jesús; Sandoval, Pilar; Lagares, David; Dotor, Javier; Pérez-Lozano, María Luisa; López-Armada, María J; Lamas, Santiago; López-Cabrera, Manuel; Rodríguez-Pascual, Fernando

    2015-01-01

    In patients undergoing peritoneal dialysis (PD), chronic exposure to nonphysiologic PD fluids elicits low-grade peritoneal inflammation, leading to fibrosis and angiogenesis. Phenotype conversion of mesothelial cells into myofibroblasts, the so-called mesothelial-to-mesenchymal transition (MMT), significantly contributes to the peritoneal dysfunction related to PD. A number of factors have been described to induce MMT in vitro and in vivo, of which TGF-β1 is probably the most important. The vasoconstrictor peptide endothelin-1 (ET-1) is a transcriptional target of TGF-β1 and mediates excessive scarring and fibrosis in several tissues. This work studied the contribution of ET-1 to the development of peritoneal damage and failure in a mouse model of PD. ET-1 and its receptors were expressed in the peritoneal membrane and upregulated on PD fluid exposure. Administration of an ET receptor antagonist, either bosentan or macitentan, markedly attenuated PD-induced MMT, fibrosis, angiogenesis, and peritoneal functional decline. Adenovirus-mediated overexpression of ET-1 induced MMT in human mesothelial cells in vitro and promoted the early cellular events associated with peritoneal dysfunction in vivo. Notably, TGF-β1-blocking peptides prevented these actions of ET-1. Furthermore, a positive reciprocal relationship was observed between ET-1 expression and TGF-β1 expression in human mesothelial cells. These results strongly support a role for an ET-1/TGF-β1 axis as an inducer of MMT and subsequent peritoneal damage and fibrosis, and they highlight ET-1 as a potential therapeutic target in the treatment of PD-associated dysfunction.

  11. Endothelin-mediated calcium responses in supraoptic nucleus astrocytes influence magnocellular neurosecretory firing activity.

    PubMed

    Filosa, J A; Naskar, K; Perfume, G; Iddings, J A; Biancardi, V C; Vatta, M S; Stern, J E

    2012-02-01

    In addition to their peripheral vasoactive effects, accumulating evidence supports an important role for endothelins (ETs) in the regulation of the hypothalamic magnocellular neurosecretory system, which produces and releases the neurohormones vasopressin (VP) and oxytocin (OT). Still, the precise cellular substrates, loci and mechanisms underlying the actions of ETs on the magnocellular system are poorly understood. In the present study, we combined patch-clamp electrophysiology, confocal Ca(2+) imaging and immunohistochemistry to study the actions of ETs on supraoptic nucleus (SON) magnocellular neurosecretory neurones and astrocytes. Our studies show that ET-1 evoked rises in [Ca(2+) ](i) levels in SON astrocytes (but not neurones), an effect largely mediated by the activation of ET(B) receptors and mobilisation of thapsigargin-sensitive Ca(2+) stores. The presence of ET(B) receptors in SON astrocytes was also verified immunohistochemically. ET(B) receptor activation either increased (75%) or decreased (25%) SON firing activity, both in VP and putative OT neurones, and these effects were prevented when slices were preincubated in glutamate receptor blockers or nitric oxide synthase blockers, respectively. Moreover, ET(B) -mediated effects in SON neurones were also prevented by a gliotoxin compound, and when changes in [Ca(2+) ](i) were prevented with bath-applied BAPTA-AM or thapsigargin. Conversely, intracellular Ca(2+) chelation in the recorded SON neurones failed to block ET(B) -mediated effects. In summary, our results indicate that ET(B) receptor activation in SON astrocytes induces the mobilisation of [Ca(2+) ](i) , likely resulting in the activation of glutamate and nitric oxide signalling pathways, evoking in turn excitatory and inhibitory SON neuronal responses, respectively. Taken together, our study supports an important role for astrocytes in mediating the actions of ETs on the magnocellular neurosecretory system.

  12. Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy.

    PubMed Central

    Choukroun, G; Hajjar, R; Kyriakis, J M; Bonventre, J V; Rosenzweig, A; Force, T

    1998-01-01

    The signal transduction pathways governing the hypertrophic response of cardiomyocytes are not well defined. Constitutive activation of the stress-activated protein kinase (SAPK) family of mitogen-activated protein (MAP) kinases or another stress-response MAP kinase, p38, by overexpression of activated mutants of various components of the pathways is sufficient to induce a hypertrophic response in cardiomyocytes, but it is not clear what role these pathways play in the response to physiologically relevant hypertrophic stimuli. To determine the role of the SAPKs in the hypertrophic response, we used adenovirus-mediated gene transfer of SAPK/ERK kinase-1 (KR) [SEK-1(KR)], a dominant inhibitory mutant of SEK-1, the immediate upstream activator of the SAPKs, to block signal transmission down the SAPK pathway in response to the potent hypertrophic agent, endothelin-1 (ET-1). SEK-1(KR) completely inhibited ET-1-induced SAPK activation without affecting activation of the other MAP kinases implicated in the hypertrophic response, p38 and extracellular signal-regulated protein kinases (ERK)-1/ERK-2. Expression of SEK-1(KR) markedly inhibited the ET-1-induced increase in protein synthesis. In contrast, the MAPK/ERK kinase inhibitor, PD98059, which blocks ERK activation, and the p38 inhibitor, SB203580, had no effect on ET-1-induced protein synthesis. ET-1 also induced a significant increase in atrial natriuretic factor mRNA expression as well as in the percentage of cells with highly organized sarcomeres, responses which were also blocked by expression of SEK-1(KR). In summary, inhibiting activation of the SAPK pathway abrogated the hypertrophic response to ET-1. These data are the first demonstration that the SAPKs are necessary for the development of agonist-induced cardiomyocyte hypertrophy, and suggest that in response to ET-1, they transduce critical signals governing the hypertrophic response. PMID:9769323

  13. Peripheral endothelin B receptor agonist-induced antinociception involves endogenous opioids in mice.

    PubMed

    Quang, Phuong N; Schmidt, Brian L

    2010-05-01

    Endothelin-1 (ET-1) produced by various cancers is known to be responsible for inducing pain. While ET-1 binding to ETAR on peripheral nerves clearly mediates nociception, effects from binding to ETBR are less clear. The present study assessed the effects of ETBR activation and the role of endogenous opioid analgesia in carcinoma pain using an orthotopic cancer pain mouse model. mRNA expression analysis showed that ET-1 was nearly doubled while ETBR was significantly down-regulated in a human oral SCC cell line compared to normal oral keratinocytes (NOK). Squamous cell carcinoma (SCC) cell culture treated with an ETBR agonist (10(-4)M, 10(-5)M, and 10(-6) M BQ-3020) significantly increased the production of beta-endorphin without any effects on leu-enkephalin or dynorphin. Cancer inoculated in the hind paw of athymic mice with SCC induced significant pain, as indicated by reduction of paw withdrawal thresholds in response to mechanical stimulation, compared to sham-injected and NOK-injected groups. Intratumor administration of 3mg/kg BQ-3020 attenuated cancer pain by approximately 50% up to 3h post-injection compared to PBS-vehicle and contralateral injection, while intratumor ETBR antagonist BQ-788 treatment (100 and 300microg/kg and 3mg/kg) had no effects. Local naloxone methiodide (500microg/kg) or selective mu-opioid receptor antagonist (CTOP, 500microg/kg) injection reversed ETBR agonist-induced antinociception in cancer animals. We propose that these results demonstrate that peripheral ETBR agonism attenuates carcinoma pain by modulating beta-endorphins released from the SCC to act on peripheral opioid receptors found in the cancer microenvironment.

  14. The role of endothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis.

    PubMed

    Imokawa, G; Kobayashi, T; Miyagishi, M; Higashi, K; Yada, Y

    1997-08-01

    The paracrine linkage of endothelins (ET) between keratinocytes and melanocytes suggested that ETs are intrinsic mediators for human melanocytes in UVB-induced pigmentation. In this study, the role of ET-1 in the epidermal hyperpigmentation was investigated in vivo and in vitro. The addition of 10 nM ET-1 induced a H-7 (10 microM) suppressible-increase in tyrosinase activity in cultured human melanocytes and was accompanied by elevated levels of tyrosinase and tyrosinase-related protein-1 mRNA expression as shown by Northern blotting. Analysis of signaling mechanisms leading to tyrosinase activation demonstrated the involvements of quick translocation of PKC, the H-7 (10 microM) suppressible-phosphorylation of the threonine residue of several proteins, and highly elevated level of cyclic AMP (4-fold over control). Reverse transcription polymerase chain reaction (RT-PCR) of RNA isolated from the epidermis of human skin exposed to UVB revealed that UVB irradiation with a dose of 2 MED caused a significant increase in the expressions of ET-1, IL-1 alpha, and tyrosinase mRNA signals 5 days after irradiation. The involvement of ET-1 in UVB-pigmentation was also corroborated by the experiments that the extracts of M. Chamomilla, which can act as an antagonist for ET-receptor binding-mediated signaling but has no inhibitory effect on tyrosinase activity in culture, had a significant inhibitory effect on UVB-induced pigmentation in vivo when daily applied immediately after UVB exposure to human skin. These findings suggest that ET-1 is an important mediator in the epidermis for UVB-induced pigmentation in vivo.

  15. Activation of calcineurin in human failing heart ventricle by endothelin-1, angiotensin II and urotensin II.

    PubMed

    Li, Joan; Wang, Jianchun; Russell, Fraser D; Molenaar, Peter

    2005-06-01

    1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human (14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1 Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P<0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P>0.1). FK506 had no effect on contractile force (P=0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P=0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC(epsilon) compared to samples incubated without PKC(epsilon). 6 Endogenous cardiostimulants which activate G(alpha)q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

  16. Protective effect of magnesium acetyltaurate against endothelin-induced retinal and optic nerve injury.

    PubMed

    Arfuzir, N N N; Lambuk, L; Jafri, A J A; Agarwal, R; Iezhitsa, I; Sidek, S; Agarwal, P; Bakar, N S; Kutty, M K; Yusof, A P Md; Krasilnikova, A; Spasov, A; Ozerov, A; Mohd Ismail, N

    2016-06-14

    Vascular dysregulation has long been recognized as an important pathophysiological factor underlying the development of glaucomatous neuropathy. Endothelin-1 (ET1) has been shown to be a key player due to its potent vasoconstrictive properties that result in retinal ischemia and oxidative stress leading to retinal ganglion cell (RGC) apoptosis and optic nerve (ON) damage. In this study we investigated the protective effects of magnesium acetyltaurate (MgAT) against retinal cell apoptosis and ON damage. MgAT was administered intravitreally prior to, along with or after administration of ET1. Seven days post-injection, animals were euthanized and retinae were subjected to morphometric analysis, TUNEL and caspase-3 staining. ON sections were stained with toluidine blue and were graded for neurodegenerative effects. Oxidative stress was also estimated in isolated retinae. Pre-treatment with MgAT significantly lowered ET1-induced retinal cell apoptosis as measured by retinal morphometry and TUNEL staining. This group of animals also showed significantly lesser caspase-3 activation and significantly reduced retinal oxidative stress compared to the animals that received intravitreal injection of only ET1. Additionally, the axonal degeneration in ON was markedly reduced in MgAT pretreated animals. The animals that received MgAT co- or post-treatment with ET1 also showed improvement in all parameters; however, the effects were not as significant as observed in MgAT pretreated animals. The current study showed that the intravitreal pre-treatment with MgAT reduces caspase-3 activation and prevents retinal cell apoptosis and axon loss in ON induced by ET1. This protective effect of ET1 was associated with reduced retinal oxidative stress. PMID:27012609

  17. Endothelin and endothelium-derived relaxing factor control of basal renovascular tone in hydronephrotic rat kidneys.

    PubMed Central

    Gulbins, E; Hoffend, J; Zou, A P; Dietrich, M S; Schlottmann, K; Cavarape, A; Steinhausen, M

    1993-01-01

    1. In order to investigate the control of renal vascular tone by endothelin (ET) and endothelium-derived relaxing factor (EDRF) under basal conditions, we infused intravenously anti-ET-1/3 antibodies (a-ET-1/3) and NG-nitro-L-arginine methyl ester (L-NAME) in split hydronephrotic rat kidneys. 2. A 25 min I.V. infusion of a-ET-1/3 (4.0 x 10(-13) mol kg-1 min-1) induced a time-dependent vasodilatation of arcuate (16.5%) and interlobular arteries (18.6%) as well as an increase of glomerular blood flow (GBF) by 32%. 3. Inhibition of EDRF synthesis by L-NAME produced a marked vasoconstriction of arcuate arteries (17.1%) and efferent (20.1%) arterioles and a decrease of GBF by 43%. 4. Co-infusion of a-ET-1/3 and L-NAME induced efferent vasoconstriction by 19.5%, whereas preglomerular vessel diameters remained unchanged. 5. The specificity of a-ET-1/3 effects was confirmed by simultaneous I.V. application of a-ET-1/3 and ET-1 (160 ng I.V.) which produced no significant vascular effects. Injection of ET-1 alone constricted arcuate arteries and decreased glomerular blood flow by 25%. 6. Experiments in normal rat kidneys with a-ET-1/3 I.V. revealed an increase of renal blood flow by 21%. 7. Our results demonstrate a physiological control of basal vascular tone in larger preglomerular arterioles by ET and EDRF. Efferent arteriolar tone is predominantly controlled by EDRF. PMID:8271216

  18. Applying cardiothermography and electrophysiology to differentiate between the ischemic and arrhythmogenic actions of endothelin-1

    NASA Astrophysics Data System (ADS)

    Geller, Laslu; Szabo, Tamas; Selmeci, Laszlo; Merkely, Bela; Juhasz-Nagy, Alexander; Solti, Francis

    1999-07-01

    Endothelin-1 (ET-1) is the strongest vasoconstrictor peptide isolated so far, which has a known arrhythmogenic property, as well. Intracoronary ET-1 infusion may cause ventricular premature beats (VES), ventricular tachycardia (VT) and ventricular fibrillation (VF). The aim of our study was to compare the thermographic and electrophysiologic changes during left anterior describing coronary artery (LAD) occlusion and ic. ET-1 administration. The measurements were performed on 16 sodium-pentobarbital anesthetized, open- chest dogs. The dogs were divided into 2 groups. In group A LAD occlusion was carried out for 30 minutes, followed by a 60 min reperfusion period. In group B ET-1 was administered into LAD at 60 pmol/min dose. Arterial blood pressure, coronary blood flow (CBF), heart rate (HR) and standard ECG were monitored. IR thermography was applied to follow epimyocardial heat emission changes. To determine the electrophysiological changes an endocardial monophasic action potential (MAP) electrode was inserted into the right ventricle and an MAP electrode was placed onto the left ventricle and an MAP electrode was placed onto the left ventricular epicardium. In group A CBF returned to baseline 20 minutes after releasing the occlusion. Ic. ET-1 infusion significantly reduced CBF in group B. Epimyocardial temperature decreased in both groups. In group A ventricular extrasystoles were noticed. In group B ventricular techycardias occurred with satisfactory CBF in 4 cases. In 5 dogs VF was observed. MAP duration 90 (MAPD90) decreased significantly in group A whereas significant increase was observed in group B. The left ventricular epicardial upstroke velocities correlated excellently with the epimyocardial temperature changes. Our result suggests that the decrease of epimyocardial heat emission and upstroke velocity correlates well in both groups, indicating ischemia, whereas the lack of the other ischemic MAP signs and the change of MAPD90 in the opposite direction

  19. Attenuation of Ischemic Liver Injury by Monoclonal Anti-Endothelin Antibody, AwETN40

    PubMed Central

    Urakami, Atsushi; Todo, Satoru; Zhu, Yue; Zhang, Shimin; Jin, Maeng Bong; Ishizaki, Naoki; Shimamura, Tsuyoshi; Totsuka, Eishi; Subbotin, Vladimir; Lee, Randall; Starzl, Thomas E.

    2009-01-01

    Background Enhanced production of endothelin-1 (ET-1), vasoconstrictive 21 amino acids produced by endothelial cells during ischemia and after reperfusion of the liver, is known to cause sinusoidal constriction and microcirculatory disturbances, which lead to severe tissue damage. Using a 2-hour hepatic vascular exclusion model in dogs, we tested our hypothesis that neutralization of ET-1 by monoclonal anti-ET-1 and anti-ET-2 antibody (AwETN40) abates vascular dysfunction and ameliorates ischemia/reperfusion injury of the liver. Study Design After skeletonization, the liver was made totally ischemic by cross-clamping the portal vein, the hepatic artery, and the vena cava (above and below the liver). Veno-venous bypass was used to decompress splanchnic and inferior systemic congestion. AwETN40, 5 mg/kg, was administered intravenously 10 minutes before ischemia (treatment group, n = 5). Nontreated animals were used as controls (control group, n = 10). Animal survival, hepatic tissue blood flow, liver function tests, total bile acid, high-energy phosphate, ET-1 levels, and liver histopathology were studied. Results Treatment with AwETN40 improved 2-week animal survival from 30% to 100%. Hepatic tissue blood flow after reperfusion was significantly higher in the treatment group. The treatment significantly attenuated liver enzyme release, total bile acid, and changes in adenine nucleotides. Immunoreactive ET-1 levels in the hepatic venous blood of the control group showed a significant increase and remained high for up to 24 hours after reperfusion. Histopathologic alterations were significantly lessened in the treatment group. Conclusions These results indicate that ET-1 is involved in ischemia/reperfusion injury of the liver, which can be ameliorated by the monoclonal anti-ET-1 and anti-ET-2 antibody AwETN40. PMID:9328384

  20. Oestradiol ameliorates monocrotaline pulmonary hypertension via NO, prostacyclin and endothelin-1 pathways.

    PubMed

    Yuan, Ping; Wu, Wen-Hui; Gao, Lan; Zheng, Ze-Qi; Liu, Dong; Mei, Han-Ying; Zhang, Zhuo-Li; Jing, Zhi-Cheng

    2013-05-01

    Pulmonary hypertension continues to be a serious clinical problem with high mortality. As oestrogen is a potential vasodilator of the pulmonary circulation, this study examined the mechanisms by which 17β-oestradiol improves monocrotaline (MCT)-induced pulmonary hypertension. Female Sprague-Dawley rats underwent bilateral ovariectomy or sham operations. The rats received MCT (50 mg·kg(-1)) and were treated with 17β-oestradiol (1 mg·kg(-1) per day) for either 5 weeks or only from week 4 to week 5. Plasma 17β-oestradiol concentrations were decreased in sham-operated, MCT-treated rats when compared with sham-operated rats (17.7 ± 4.7 versus 50.3 ± 15.4 pg·mL(-1); p=0.029). The 17β-oestradiol anabolic enzyme cytochrome P450 (CYP)-19 was decreased by MCT treatment, while the catabolic enzymes CYP-1A1 and -1B1 were increased. Ovariectomised and MCT-treated rats had more severe pulmonary hypertension. 17β-oestradiol suppressed pulmonary arterial smooth muscle cell proliferation and macrophage infiltration, and enhanced apoptosis by increasing nitric oxide (NO) and prostacyclin (prostaglandin (PG)I2) levels and reducing endothelin (ET)-1 levels. Phosphoinositide-3-kinase (PI3K) and Akt phosphorylations were markedly increased, but were inhibited by 17β-oestradiol treatment in rats with pulmonary hypertension. Oestrogen deficiency may aggravate development of pulmonary hypertension. 17β-oestradiol improved pulmonary hypertension via activation of the PI3K/Akt pathway to regulate NO, PGI2 and ET-1 expression.

  1. Endothelin-1 release from cultured endothelial cells induced by sera from patients with systemic lupus erythematosus.

    PubMed Central

    Yoshio, T; Masuyama, J; Mimori, A; Takeda, A; Minota, S; Kano, S

    1995-01-01

    OBJECTIVES--To clarify the pathophysiological role of endothelin-1 (ET-1) in the vascular injury associated with systemic lupus erythematosus (SLE) by investigating the effect of sera from patients with SLE on ET-1 release from cultured human umbilical vein endothelial cells. METHODS--Confluent monolayers of cultured human umbilical vein endothelial cells were incubated with serum samples (diluted 1:10) from 25 patients with SLE and 16 normal controls for two hours at 37 degrees C and ET-1 concentration in the culture supernatant was measured by enzyme immunoassay. RESULTS--The mean release of ET-1 from endothelial cells in the presence of serum from SLE patients was greater than in the presence of serum from normal controls (p < 0.005). ET-1 release from endothelial cells significantly correlated with the titre of IgM anti-endothelial cell antibodies (IgM-AECA) and immune complex concentration in sera from SLE patients (p < 0.05 and p < 0.01, respectively). After gel chromatography of the serum from an SLE patient, those fractions containing IgM-AECA or immune complex were shown to stimulate ET-1 release from endothelial cells. Heat aggregated IgG also stimulated ET-1 release from endothelial cells in a concentration dependent manner. CONCLUSIONS--IgM-AECA and immune complexes may stimulate ET-1 release from endothelial cells and ET-1 may play an important role in the initiation and development of vascular injury, such as pulmonary hypertension and lupus nephritis, in SLE. PMID:7794041

  2. Hydrogen peroxide and endothelin-1 are novel activators of betacellulin ectodomain shedding.

    PubMed

    Sanderson, Michael P; Abbott, Catherine A; Tada, Hiroko; Seno, Masaharu; Dempsey, Peter J; Dunbar, Andrew J

    2006-10-01

    The betacellulin precursor (pro-BTC) is a novel substrate for ADAM10-mediated ectodomain shedding. In this report, we investigated the ability of novel physiologically relevant stimuli, including G-protein coupled receptor (GPCR) agonists and reactive oxygen species (ROS), to stimulate pro-BTC shedding. We found that in breast adenocarcinoma MCF7 cells overexpressing pro-BTC, hydrogen peroxide (H2O2) was a powerful stimulator of ectodomain shedding. The stimulation of pro-BTC shedding by H2O2 was blocked by the broad-spectrum metalloprotease inhibitor TAPI-0 but was still functional in ADAM17 (TACE)-deficient stomach epithelial cells indicating the involvement of a distinct metalloprotease. H2O2-induced pro-BTC shedding was blocked by co-culturing cells in the anti-oxidant N-acetyl-L-cysteine but was unaffected by culture in calcium-deficient media. By contrast, calcium ionophore, which is a previously characterized activator of pro-BTC shedding, was sensitive to calcium depletion but was unaffected by co-culture with the anti-oxidant, identifying a clear distinction between these stimuli. We found that in vascular smooth muscle cells overexpressing pro-BTC, the GPCR agonist endothelin-1 (ET-1) was a strong inducer of ectodomain shedding. This was blocked by a metalloprotease inhibitor and by overexpression of catalytically inactive E385A ADAM10. However, overexpression of wild-type ADAM10 or ADAM17 led to an increase in ET-1-induced pro-BTC shedding providing evidence for an involvement of both enzymes in this process. This study identifies ROS and ET-1 as two novel inducers of pro-BTC shedding and lends support to the notion of activated shedding occurring under the control of physiologically relevant stimuli. PMID:16676357

  3. Novel Vasoregulatory Aspects of Hereditary Angioedema: the Role of Arginine Vasopressin, Adrenomedullin and Endothelin-1.

    PubMed

    Kajdácsi, Erika; Jani, Péter K; Csuka, Dorottya; Varga, Lilian; Prohászka, Zoltán; Farkas, Henriette; Cervenak, László

    2016-02-01

    The elevation of bradykinin (BK) level during attacks of hereditary angioedema due to C1-Inhibitor deficiency (C1-INH-HAE) is well known. We previously demonstrated that endothelin-1 (ET-1) level also increases during C1-INH-HAE attacks. Although BK and ET-1 are both potent vasoactive peptides, the vasoregulatory aspect of the pathomechanism of C1-INH-HAE has not yet been investigated. Hence we studied the levels of vasoactive peptides in controls and in C1-INH-HAE patients, as well as evaluated their changes during C1-INH-HAE attacks. The levels of arginine vasopressin (AVP), adrenomedullin (ADM) and ET-1 were measured in the plasma of 100 C1-INH-HAE patients in inter-attack periods and of 111 control subjects, using BRAHMS Kryptor technologies. In 18 of the 100 C1-INH-HAE patients, the levels of vasoactive peptides were compared in blood samples obtained during attacks, or in inter-attack periods. AVP, ADM and ET-1 levels were similar in inter-attack samples from C1-INH-HAE patients and in the samples of controls, although cardiovascular risk has an effect on the levels of vasoactive peptides in both groups. The levels of all three vasoactive peptides increased during C1-INH-HAE attacks. Moreover, the levels of ET-1 and ADM as well as their changes during attacks were significantly correlated. This study demonstrated that vascular regulation by vasoactive peptides is affected during C1-INH-HAE attacks. Our results suggest that the cooperation of several vasoactive peptides may be necessary to counterbalance the actions of excess BK, and to terminate the attacks. This may reveal a novel pathophysiological aspect of C1-INH-HAE.

  4. Role of alpha1-blockade in congenital long QT syndrome: investigation by exercise stress test.

    PubMed

    Furushima, H; Chinushi, M; Washizuka, T; Aizawa, Y

    2001-07-01

    Beta-blockade is widely reported to reduce the incidence of syncope in 75-80% of patients with congenital long QT syndrome (LQTS). However, despite full-dose beta-blockade, 20-25% of patients continue to have syncopal episodes and remain at high risk for sudden cardiac death. In some patients refractory to beta-blockade, the recurrence of arrhythmias is successfully prevented by left stellate ganglionectomy, and also by labetalol, a nonselective beta-blockade with alpha1-blocking action. These observations suggest that not only beta-adrenoceptors, but also alpha1-adrenoceptors, play an important pathogenic role, especially under sympathetic stimulation, in LQTS. The clinical effects of alpha1-blockade in congenital LQTS were investigated in 8 patients with familial or sporadic LQTS. Two measurements of the QT interval were taken, from the QRS onset to the T wave offset (QT) and from the QRS onset to the peak of the T wave (QTp). Using the Bruce protocol, an exercise test was performed after administration of beta-blockade alone and again after administration of alpha1-blockade. The following were compared: (1) Bazzet-corrected QT (QTc) and QTp (QTpc) intervals in the supine and standing position before exercise and in the early recovery phase after exercise; and (2) the slopes (reflecting the dynamic change in the QT interval during exercise) of the QT interval to heart rate were obtained from the linear regression during the exercise test. In the supine position before exercise, there was no change in the QTc before or after the addition of alpha1-blockade (498+/-23 vs 486+/-23 ms [NS]). However, in the upright position before exercise and in the early recovery phase after exercise, QTc was significantly shortened from 523+/-21 to 483+/-22ms (p<0.01), and from 521+/-30 to 490+/-39ms (p<0.01), respectively, by alpha1-blockade. The QTpc was unchanged in any situation. Consequently, QTc-QTpc was significantly shortened by alpha1-blockade in the upright position

  5. The 5-hydroxytryptamine2A receptor antagonist R-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl-4-piperidinemethanol (M100907) attenuates impulsivity after both drug-induced disruption (dizocilpine) and enhancement (antidepressant drugs) of differential-reinforcem